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Chapter 0IntroductionIn this course we will study boundary value problems (BVP:s) for linear elliptic PDE:swith constant coe�cients in Lipschitz-domains 
, i.e., domains where the boundary @
locally is given by the graph of Lipschitz function. We recall that a function ' is Lipschitzif there exists a constant M <1 such thatj'(x)� '(z)j �M jx� zjfor all x and z. xy = '(x)To solve the BVP:s we will reformulate the problems in terms of integral equations. Ittherefore becomes necessary to study singular integral operators of Calderón-Zygmundtype, which we prove to be Lp-bounded for 1 < p <1 and invertible. The Lp-boundednessis a consequence of the Lp-boundedness of the Cauchy integral (Coifman, McIntosh andMeyer) Tf(z) = Z� f(w)w � zdwwhere � is a Lipschitz-curve (method of rotation). The invertability will be proved by anew set of ideas recently developed by Dahlberg, Kenig and Verchota. Among the BVP:swhich can be solved by this technique are the1



Dirichlet problem � �u = 0 in 
u = f on @
Neumann problem � �u = 0 in 
@u@n = f on @
the clamped plate problem 8<: ��u = 0 in 
u = f@u@n = g on @
and BVP's for systems e.g. the elasticity problem� �u+rdiv u = 0 in 
(ru+ruT)n = g on @
and Stoke's equation 8<: �u = rp in 
div u = 0u = f on @
where u = (u1; u2; u3) in R3.Fredholm theory for Dirichlet problem for domain 
 with C2 boundaryWe start with an example.Example (Dirichlet problem for a halfspace). If the function f 2 Lp(Rn); 1 < p <1, it iswell known that u(x; y) = py � f(x); (x; y) 2 Rn+1+ = Rn �R+;where Py(x) = ��n+12 �� n+12 � y(jxj2 + y2)n+12denotes the Poisson kernel, is a solution of� �u = 0 in Rn+1+u = f on @Rn+1+ = Rn2



and that(�) supy>0 ku(�; y)kp � kfkp:Thus with X = Lp(Rn) and Y = fu : u harmonic in Rn+1+ and u satis�es (�)g we have theimplication f 2 X ) u 2 Y:However, we can also reverse the implication since a harmonic function u which satis�es(�) has non-tangential limits a.e. on @Rn+1+ , the limit-function u0 = u(�; 0) 2 Lp(Rn) andu(x; y) = py � u0(x).Sketch of a proof. Assume u harmonic function in Rn+1+ that satis�es (�). The semigroupproperties of fpygy�0 impliesu(x; y + �) = py � u�(x); � > 0; y > 0where u�(x) = u(x; �).(�)) u�n * v in Lp(Rn) as �n # 0) py � u�n(x)! py � v(x) as �n # 0; y > 0:But py � u�n(x) = u(x; y + �n) and thusu(x; y) = py � v(x) where v 2 Lp(Rn):For the proof of the existence of non-tangential limits of py �u0 we refer to e.g. Stein/Weiss[2].The notion of �solution of the Dirichlet problem� and any other problem, is sound onlyif we have such a matching between the boundary value f of u and the solution u itself,i.e., we should not accept concepts of solution which are so weak such that the reversedimplication is �impossible�.Now assume that 
 is a bounded (connected) domain in Rn; n � 3 with C2 boundary. (Toavoid technicalities, we have assumed n 6= 2). Consider the Dirichlet problem(D) � �u = 0 in 
uj@
= f 2 C(@
)Let r denote (�1) � (the fundamental solution) of the Laplace operator in Rn, that is,r(x) = cn 1jxjn�2 ; cn = � 1(2� n)!n � � 12� n � �(n=2)2�n=23



and set R(x; y) = r(x� y):For f 2 C(@
) we de�neDf(P ) = Z@
 @@nQR(P;Q)f(Q)d�(Q) P =2 @
Sf(P ) = Z@
R(P;Q)f(Q)d�(Q) P =2 @
Thus Df and Sf denote the double layer potential and single layer potential resp. Here d�is the surface measure on @
 and @@nQ is the directional derivative along the unit outwardnormal for @
 at Q. It is immediate that�Df(P ) = 0; P 2 Rn n @
and Df will be our candidate for solution of (D). It remains to study the behaviour of Dfat @
.Part of that story isLemma 1. If f 2 C(@
), then1) Df 2 C(�
)2) Df 2 C({
).More precisely: Df can be extended as a continuous function from inside 
 to �
 and fromoutside 
 to {
. Let D+f and D�f denote the restrictions of these functions to @
 resp.Set K(P;Q) = @@nQR(P;Q) for P 6= Q; P;Q 2 @
. We note thati) K 2 C(@
� @
 n f(P;P ) : P 2 @
g)ii) jK(P;Q)j � CjP�Qjn�2 for P;Q 2 @
 and some C <1.ii) is a consequence of the regularity of the boundary and can be seen as follows:Assume @
 given by the graph of the C2-function '. Set P = (x; '(x) and Q = (y; '(y)).Then K(P;Q) = 1!n hP �Q;nQijP �Qjn where h; i is the inner product in `2(Rn) andnQ = (r'(y);�1)pjr'(y)j2 + 1 :4



Since ' is a C2 function, we have that'(x) = '(y) + hx� y;r'(y)i+ e(x; y) where je(x; y)j = O(jx� yj2):Hence jK(P;Q)j � C jhP �Q; (r'(y);�1)ijjP �Qjn � C je(x; y)jjP �Qjn � CjP �Qjn�2 :This estimate is uniform in P and Q since @
 compact.For f 2 C(@
) de�ne Tf(P ) = Z@
K(P;Q)f(Q)d�(Q); P 2 @
:We can now formulateLemma 2 (jump relation for D).1) D+ = 12I + T2) D� = �12I + TandLemma 3. T : C(@
)! C(@
) is compact.Sketch of proof of Lemma 3. De�ne the operators Tn byTnf(P ) = Z@
Kn(P;Q)f(Q)d�(Q); P 2 @
for f 2 C(@
), whereKn(P;Q) = sign (K(P;Q)) �min(n; jK(P;Q)j); n 2 Z+:ThusKn is continuous on @
�@
 and Arzela-Ascoli's theorem implies that Tn is a compactoperator on C(@
). Furthermore since kTnk � supQ2@
 kKn(�; Q)k1 � C <1, where C isindependent of n we see that Tn ! Tin the space B = fbounded linear operators on C(@
)g. But the compact operators in Bform a closed subspace in B, and hence T is compact.5



Proof of Lemma 1 and 2. Some basic facts:1) Z@
 @@nQR(P;Q)d�(Q) = 1, if P 2 
Proof: Apply Green's formula to the harmonic function R(�; Q) in 
 n B�(P ) for� > 0 small, where B�(P ) = fx 2 Rn : jP � xj � �g.2) Z@
 @@nQR(P;Q)d�(Q) = 0, if P =2 �
.Proof: Exercise.3) Z@
K(P;Q)d�(Q) = 12 , if P 2 @
Proof: Exercise.Let P 2 @
. We want to show thatDf(Q) ! 12f(P ) + Tf(P ) as 
 3 Q! PA: Assume P =2 supp f : Easy.B: Assume f(P ) = 0: We need.4) 9C > 0 : Z@
 �� @@nQR(P;Q)��d�(Q) < C for all P =2 @
Proof: Exercise.4) implies the estimate kDfkL1(Rnn@
) � CkfkL1(@
):Choose ffkg � C(@
) with P =2 supp fk such thatkf � fkkL1(@
) ! 0 as k!1:T bounded operator implies Tfk(P )! Tf(P ) as k !1. HencejDf(Q)� Tf(P )j � Ck(f � fk)kL1(Rnn@
) + jDfk(Q)� Tfk(P )j++ jTfk(P )� Tf(P )j ! 0 as k !1 and 
 3 Q! P:C: Enough to check f � 1.The result follows from basic facts 1) and 3). Hence we have proved Lemma 1 and 2 part1). Part 2) follows analogously. 6



We now return to the single layer potential and observe that Sf is harmonic in Rn n @
and continuous in Rn if f 2 C(@
). Next we want to compare the normal derivative ofSf with Df at @
. Since @
 is C2 we have following result:For " > 0 small enough ]� "; "[�@
 3 (t; P )! P + tnp 2 Vis a di�eomorphism, where np is the outward unit normal of @
 at P , and V is a neigh-borhood of @
. For P 2 @
 and t 2]� "; "[ setDSf(P + tnp) = Z@
 @@npR(P + tnp; Q)f(Q)d�(Q):The close relations between Df and DSf is formulated inLemma 4. If f 2 C(@
) then1) DSf 2 C(V \ 
)2) DSf 2 C(V \ {
)(Compare Lemma 1).Let D+Sf be the restriction to @
 of the function DSf extended to V \ 
 from insideand D�Sf the restriction to @
 of the function DSf extended to V \ {
 from outside.But R(P;Q) = R(Q;P ) so with Rn(P;Q) = K(Q;P ), which is the real-valued kernel inT �f(P ) = Z@
K�(P;Q)f(Q)d�(Q) P 2 @
;we have that T � is the adjoint operator of T .Lemma 5 (jump relations for DS). 1) D+S = �12I + T �2) D�S = 12I + T �.Proof of Lemma 4 and 5. Let f 2 C(@
) and de�newf(P ) = � Df(P ) +DSf(P ) P 2 V n @
Tf(P ) + T �f(P ) P 2 @
:Claim: wf 2 C(V ).Proof: wf continuous on V n @
 and on @
. Hence it is enough to show tahtwf (P + tnp)! wf(P ) uniformly for P 2 @
 as t! 0:7



Assume �0 2 C(@
) such that 0 � �0 � 1; �0 = 1 in a neighborhood of P andsupp �0 � B�(P ):Decompose f as f = f1 + f2 � �0f + (1� �0)f:A: wf2(P + tnp)! wf2(P ) as t! 0. EasyB: Assume t 6= 0
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��������������Pt = P + t � nP
 Pt < 0

wf1(Pt) = C Z@
 hQ� Pt; nQi � hQ� Pt; npijQ� Ptjn f1(Q)d�(Q):Hence jwf1(Pt)j � Ckfk1 Z@
\B�(P ) jhQ� Pt; nQ � npijjQ� Ptjn d�(Q) �� Ckfk1 Z@
\B�(P ) jQ� PtjjQ� P jjQ� Ptjn d�(Q) �� Ckfk1 Z@
\B�(P ) d�(Q)jQ� Ptjn�2 = O(�)independently of t, since jnQ � npj = O(jQ� P j).But wf = wf1 + wf2 and thus wf continuous on V . This proves the claim.8



ThereforeTf(P ) + T �f(P ) = D+f(P ) +D+Sf(P ) = D�f(P ) +D�Sf(P ); P 2 @
:The jumprelations for DS follow.We now give the �nal argument for the existence of a solution of the Dirichlet problem in
 and that is D+ : C(@
)! C(@
)is onto.Since D+ = 12I + T , where T is compact, Fredholm's Alternative theorem can be applied.Hence, 12I + T = D+ ontoi� 12I + T � = D�S 1� 1:To prove D�S is 1 � 1 is easy:Assume D�Sf = 0 for some f 2 C(@
). Set v = Sf . Theni) v harmonic in {�
ii) v(P ) = O(jP j2�n) as jP j ! 1iii) @v@nj@
= 0.Green's formula implies Z{�
 jrvj2 = Z{�
 v�v+ Z@
 v @v@nd� = 0:Thus v = 0 in {�
. But v 2 C(Rn) and �v = 0 in 
.Maximumprinciple) v = 0 in Rn ) f = 0.Remark: The proof above is valid for domains 
 with C1+� boundaries where � > 0, butnot for domains with boundaries with less regularity.Remark: We observe that the method is non-constructive as a consequence of the softarguments (i.e., compactness arguments) we have used. Hence it is not possible to solvethe Dirichlet problem for, say Lipschitz-domains 
 by approximating 
 with C2 domains
k, solve some Dirichlet problems for these and obtain an approximation of a solution for
, since we do not have any estimates of the inverses of the D+:s.9



References[1] Folland, G: Introduction to partial di�erential equations. Math. Notes 17, PrincetonU.P.[2] Stein, E.M./ Weiss, G: Introduction to Fourier Analysis on Euclidean Spaces. Prince-ton U.P.
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Chapter 1Dirichlet Problem for LipschitzDomain. The SetupA function ' : Rn ! R such thatj'(x)� '(y)j �M jx� yj for all x; y 2 Rnis called Lipschitz function. A bounded domain 
 � Rn+1 is called Lipschitz domain if @
can be covered by �nitely many right circular cylinders L whose bases are at a positivedistance from @
 such that to each cylider L there is a Lipschitz function ' : Rn ! R anda coordinate system (x; y); x 2 Rn; y 2 R such that the y-axis is parallel to the axis ofsymmetry of L and L \ 
 = L \ f(x; y) : y > '(x)g and L \ @
 = L \ f(x; y) : y = '(x)g.A domain D � Rn+1 is called special Lipschitz domain if there is a Lipschitz function' : Rn ! R such that D = f(x; y) : y > '(x)g and @D = f(x; y) : y = '(x)g. In this andall proceeding chapters we reserve the notation 
 for bounded Lipschitz domains and Dfor special Lipschitz domains respectively. With a cone � we mean a circular cone whichis open. A cone � with vertex at a point P 2 @C, where C � Rn+1 is a domain, is calleda nontangential cone if there is a cone �0 and a � > 0 such that; 6= (�� \B�(P )) n fPg � �0 \B�(P ) � C:Br(Q) is our standard notation for the ball fx 2 Rn : jx�Qj � rg. We say that a functionu de�ned in a domain C has nontangential limit L at a point P 2 @C ifu(Q)! L as Q! P; Q 2 �for all nontangential cones � with vertices at P . Finally we de�ne the nontangentialmaximal function M�u for � > 1 and function u de�ned in Lipschitz domain 
 byM�u(P ) = supfju(Q)j : jP �Qj < �dist (Q; @
); Q 2 
g; P 2 @
:11



One of the main results in this course will be the existence of a solution to the Dirichletproblem � �u = 0 in 
 � Rn+1uj@
= f 2 L2(@
)where 
 is a bounded Lipschitz domain. By this we mean that there exists a harmonicfunction u in 
 which converges nontangentially to f almost everywhere with respect tothe surface measure d�(@
) and that the maximal function M�u 2 L2(@
) for � > 1. Thestarting point for our enterprise of proving the existence of a solution to Dirichlet problemfor the Lipschitz domain 
 is the double layer potentialDg(P ) = Z@
 @@nQR(P;Q)g(Q)d�(Q) P 2 
;where R(P;Q) is the fundamental solution for Laplace equation in Rn+1 (multiplied with�1) and g 2 L2(@
). Since Dg is harmonic in 
, we are done if we can show thatfor some choice of g we have the right behaviour of Dg at @
. However, this is noteasy since for K(P;Q) = @@nQR(P;Q) P;Q 2 @
 P 6= Q, we only have the estimatejK(P;Q)j � CjP�Qjn�1 which cannot be improved in general. Thus we have to rely on thecancellation properties of K(P;Q), and the operator T which appeared in Chapter 0 canonly be de�ned as a principal value operator. Before we study the case with a generalbounded Lipschitz domain 
 we treat the case with a special Lipschitz domain D. Fromthis we obtain the result for 
 using standard patching techniques (see Appendix 2).Consider Dg(P ) = Z@D @@nQR(P;Q)g(Q)d�(Q) P 2 Dwhere D = f(x; y) : y > '(x)g for a Lipschitz function ' : Rn ! R. We remark that' Lipschitz function implies that '0 exists a.e. so the de�nition of Dg makes sense and@@nQR(P;Q) = Cn hnQ; P �QijP �Qjn+1 , with nQ = (r'(x);�1)pjr'(x)j2 + 1 for Q = (x; '(x)), exists a.e.d�(@D). To state the �rst proposition, we need some more notation: For every measure� and each �-measurable function g and measurable set A with �(A) 6= 0 we let �RA gd�,denote the mean value 1�(A) ZA gd�. Furthermore for g 2 L1loc(@D) we de�ne the maximalfunction Mg by Mg(P ) = supr>0 �Z@D\Br(P ) jg(Q)jd�(Q); P 2 @D:The following result is crucial. 12



Proposition 1.1. Let D = f(x; y) : y > '(x)g where ' : Rn ! R is a Lipschitz functionwith k'0k1 = A. Let P = (x; y) 2 D and P � 2 (x; '(x)) 2 @D and set � = y � '(x).Assume g 2 Lp(@D) for some p where 1 < p <1. ThenjDg(P ) � T�g(P �)j � CMg(P �)where T�g(P �) = Z@DnB�(P �)K(P �; Q)g(Q)d�(Q):The constant C depends only on the dimension a. Before we prove this proposition, wemake some remarks on the maximal function M .1) Another maximal function, which is quite similar to the Hardy-Littlewood maximalfunction M is M� de�ned byM�g(P ) = supBr(Q)3P �Z@D\Br(Q) jg(Q0)jd�(Q0); P 2 @Dfor g 2 L1loc(@D). We immediately observe that Mg � M�g � CMg for somedimensional constant C, i.e.,M and M� are equivalent.2) Let � denote the projection� : @D ! Rn where (x; '(x)) 7! xand de�ne the maximal function ~M by~Mg(x) = supr>0 �ZBr(x) jg � ��1(y)jdy; x 2 Rn;for g 2 L1loc(@D). Since ' is a Lipschitz function, we see thatM and ~M are equivalent.3) M is bounded in L1 with norm 1, i.e.,kMgk1 � kgk1 for all g 2 L14) M is a weak (1; 1) operator, i.e., there exists a C > 0 such thatjfx :Mg(x) > �gj � C kgk1� for all g 2 L1:5) M is bounded in Lp; 1 < p <1, i.e., there exists a Cp > 0 such thatkMgkp � Cpkgkp for all g 2 Lp:Here 3) is trivial, 4) can be proven by a covering lemma argument and 5) follows from 3),4) and Marcinkiewicz' interpolation theorem (see Stein [1]). For later reference we state13



Marcinkiewicz' interpolation theorem. Let 1 � p < q � 1 and let T be a subad-ditive operator de�ned on Lp + Lq. Assume T is a weak (p; p) operator and a weak (q; q)operator. Then T is bunded on Lr where p < r < q. An operator T is a weak (p; p)operator if there exists a constant C > 0 such thatjfx : Tg(x)j > �gj � C�kgkp� �p for all g 2 Lp and � > 0:Hence, if T is bounded on Lp, then T is a weak (p; p) operator, but the converse is not truein general.
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� �P DP �
jDg(P ) � T�g(P �)j � C Z@D\fjP ��Qj>�g ���hnQ; P �QijP �Qjn+1 � hnQ; P � �QijP � �Qjn+1 ��� � jg(Q)jd�+ C Z@DnfjP ��Qj>�g ���hnQ; P �QijP �Qjn+1 ���jg(Q)jd�(Q) �� C Z@D\fjP ��Qj>�g �(�+ jQ� P �j)n+1 jg(Q)jd�(Q) ++ C Z@DnfjP ��Qj>�g 1�n jg(Q)jd�(Q)where we have applied the mean value theorem to the �rst integral. The second integral is� CMg(P �) and the �rst integral can also be estimated from above with the same boundaccording toLemma 1.1. Let  � 0 be a radial decreasing function de�ned in Rn. Assume f 2 L1+L1and set mf(x) = supr>0 �RBr(x) jf(x)jdx for x 2 Rn. Then  �f(x) � Bmf(x) for all x 2 Rnwhere B = R  (x)dx. �14



If we take this lemma for granted for a moment and set (x) = �(jxj+ �)n+1 ;the �rst integral above is bounded from above by CMg(P �) and we are done.Proof of Lemma 1.1. It is enough to prove the lemma for 0 � f 2 C10 ;  2 C10 and x = 0.Set Sn = @B1(0) and A(r) = RBr(0) f(x)dx.We obtain � f(0) = ZRn  (jxj)f(x)dx = Z 10  (r)rn�1 ZSn f(rw)d�(w)dr == Z 10  (r)A0(r)dr = �Z 10  0(r)A(r)dr � �Z 10  0(r)jBr(0)jdr mf(0):Set f � 1 in the calculations above and we get � R10  0(r)Br(0)dr = B. The lemma isproven.If we de�ne the operator T� byT�g(P �) = sup�>0 jT�g(P �)j P � 2 @Dfor g 2 Lp(@D), then jDg(P )j � C(T�g(P �) +Mg(P �))for all P = (x; y) 2 D and P � = (x; '(x)) 2 @D. Thus if we can prove that T� is boundedon Lp(@D), then jDg(P �)j < 1 for a.e. P � 2 @D. We remark that with some additionalconsiderations one can prove thatjDg(Q)j � C(T�g(P �) +Mg(P �))for all Q in a nontangential cone � with vertex at P � 2 @D, and thus supQ2� jg(Q)j innon-tangential cones � with vertices at P � 2 @D for almost every P � 2 @D. It then followsthat Dg has �nite nontangential limit a.e. d�(@D) (see Dahlberg [2]).The limitfunction belongs to Lp(@D). If we also can prove that the limitfunction is equalto f for some choice of g, we are done. To be successful in our approach, we have to studythe operators T� for � > 0 and T�. This calls for some de�nitions. Let S(Rn) denotethe Schwartz class (i.e., the space of all C1-functions in Rn which together with all theirderivatives die out faster than any power of x at in�nity) with the usual topology.T is called a singular integral operator (SIO) if T : S(Rn) �! S(Rn)� is linear andcontinuous and there exists a kernel K such that for all ',  2 C10 (Rn) with supp ' \supp  = � hT'; i = Z Z K(x; y)'(y) (x)dydx;15



where h; i is the usual S � S� paring. We observe that K does not determine T uniquely.Consider for instance Tf = f 0 for which K = 0 is a kernel.We say that a kernel K is of Calderón-Zygmund type (CZ-type) if1) jK(x; y)j � Cjx� yjn2) jrxK(x; y)j+ jryK(x; y)j � Cjx� yjn+13) K(x; y) = �K(y; x).The operator-kernels, we will study, will be of the formKi(x; y) = ((x; '(x))� (y; '(y)))ij(x; '(x))� (y; '(y))jn+1 i = 1; 2; : : : ; n+ 1where (a)i denotes the i-th component of a 2 Rn+1.We observe that these kernels are of CZ-type and adopt the convention that wheneverwe discuss kernels K, they are assumed to be of CZ-type unless we explicitly state theconverse. Starting with a kernel K, we can form a well-de�ned SIO with K as the kernelnamely the principal value operator (PVO) T . Note that for ';  2 S(Rn))Z Zjx�yj>"K(x; y)'(y) (x)dydx= 12 Z Zjx�yj>"K(x; y)('(y) (x)� '(x) (y))dydxsince K(x; y) = �K(y; x) and thuslim"!0 Z Zjx�yj>"K(x; y)'(y) (x)dydxexists since j'(y) (x)� '(x) (y)j = O(jx � yj) and '; 2 S(Rn) decay fast enough atin�nity.Hence T : S(Rn) 3 ' 7! T' 2 S(Rn)� wherehT'; i = lim"!0Z Zjx�yj>"K(x; y)'(y) (x)dydxis a SIO.We leave the proof of continuity of T as an exercise. From now on we assume that alloperators T are PVO with kernels K of CZ-type.To achieve our goal to establish the existence of a solution to the Dirichlet problem forLipschitz domains, we will prove the following sequence of theoremsTheorem 1.1. If T bounded on L2, then T is a weak (1; 1) operator.This implies 16



Theorem 1.1'. If T bounded on L2, then T bounded on Lp for 1 < p <1.andTheorem 1.2. If T bounded on L2, then T � bounded on Lp for 1 < p <1 where T �g(x) =sup">0 j Rjx�yj>"K(x; y)g(y)dyj.Thus it is crucial for us to be able to prove L2-boundedness of T . This is done in two steps.Theorem 1.3. If ' : R �! R Lipschitz function and K(x; y) = 1x�y+i('(x)�'(y)) , then thecorresponding operator T is L2 bounded.Theorem 1.4. If ' : Rn �! R Lipschitz function andKi(x; y) = ((x; '(x))� (y; '(y)))ij(x; '(x))� (y; '(y))jn+1 i = 1; 2; : : : ; n+ 1;then the corresponding operators Ti are L2 bounded.Finally we proveTheorem 1.5. Dj@D is invertible.To prove Theorem 1.3, we will characterize those kernels K of CZ-type which correspondto L2 bounded operators T . This is done by a theorem of Daivd and Journé [3].Theorem 1.6. T bounded on L2 i� T1 2 BMO.The de�nition of BMO and the theorem and its proof will be discussed in Chapter 3.References[1] E. M. Stein: Singular integral and di�erentiability properties of functions, PrincetonUniversity Press 1970.[2] B.E.J. Dahlberg: Harmonic functions in Lipschitz domains, Proceedings of Symposiain Pure Mathematics Vol XXXV, Part 1 (1979) pp. 313-322.[3] G. David and J.-L. Journé: A boundedness criterion for generalized Calderón-Zygmundoperators, Preprint. 17
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Chapter 2Proofs of Theorem 1.1 and Theorem1.2We recall that T is a PVO with kernel K of CZ-type. In this chapter we give a proof ofthe following result of Calderón-Zygmund [1].Theorem 1.1: If T bounded on L2, then T is a weak (1; 1) operator.The following bound on T� is due to Cotlar [3].Theorem 1.2: If T bounded on L2, then T� is bounded on Lp for 1 < p < 1 whereT�f(x) = sup">0 j Rjx�yj>"K(x; y)f(y)dyj,Proof of Theorem 1.1. The idea of the proof is the same as when T is a translation-invariant L2-bounded operator (See Stein [2]). Thus we show that there exists C > 0such that jfx 2 Rn : jTf(x)j > �gj � C kfk1� for all f 2 L1 and � > 0by splitting f in a good part g, which is a L2-function and a bad part b. This is done withthe following lemmaLemma (Calderón-Zygmund decomposition). Let f 2 L1(Rn) and � > 0. Thenthere exist cubes Qj; j = 1; 2; : : : such that1) jQj \ Qkj = 0 for j 6= k2) jf(x)j � � a.e. for x 2 Rn n [1j=1Qj 19



3) � � �RQj jf(x)jdx < 2n�.The proof is based on a recursive stop-time argument and can be found e.g. Stein [2].Now set g(x) = � f(x) x 2 Rn n [1j=iQj�RQj jf(x)jdx x 2 Qj j = 1; 2; : : :and b(x) = f(x)� g(x). We immediately observe that1) supp b � [1j=1 �Qj2) RQj b(x)dx = 0 j = 1; 2; : : :and3) kgk2 � 2n�kfk1.Furthermore,jfx 2 Rn : jTf(x)j > �gj � jfx 2 Rn : jTg(x)j > �2 gj+ jfx 2 Rn : jTb(x)j > �2 gj� jfx 2 Rn : jTg(x)j > �2gj+ j [1j=1 2Qj j+ jfx 2 Rn n [1j=12Qj : jTb(x)j > �2 gjwhere 2Qj is the cube with the same center as Qj, which we denote yj, with sides parallelwith Qj and with doubled sidelengths compared with Qj. Herejfx 2 Rn : jTg(x)j > �2gj � 4�2kTgk2 � C�2kgk2 � C 1�kfk1and j [1j=1 2Qjj � 2n 1Xj=1 jQjj � 2n� kfk1so it remains to estimate jfx 2 Rn n [1j=12Qj : jTb(x)j > �2 gj and this is the point wherewe use the properties of the kernel K. Setbj(x) = � b(x) x 2 Qj0 otherwiseFor, x =2 2Qj we have Tbj(x) = ZQj(K(x; y)�K(x; yj))bj(y)dy20



and thus jTbj(x)j � C ZQj jy � yjjjx� yjn+1 jbj(y)jdywhere we used ZQj bj(y)dy = 0. Integrating these inequalities givesZRnn[1j=12Qj jTb(x)jdx � 1Xj=1 ZRnn2Qj jTbj(x)jdx �� C 1Xj=1 ZQj jbj(y)jdy = Ckbk1 � Ckfk1and consequentlyjfx 2 Rn n [1j=12Qj : jTb(x)j > �2gj � 2�kTbkL1(Rnn[1j=12Qj) � C kfk1� :The proof is done. �Corollary: If T is bounded on L2, then T is bounded on Lp for 1 < p <1.Proof. Marcinkiewicz' interpolation theorem and Theorem 1.1 implies that T is boundedon Lp for 1 < p � 2. But the adjoint operator T � of T is a PVO with CZ-kernelK�(x; y) =K(y; x) and T � is bounded on L2. An application of Marcinkiewicz' interpolation theoremand Theorem 1.1 to T � gives T � bounded on Lp for 1 < p � 2. Hence T = (T �)� is boundedon Lp for 2 � p <1 by duality and we are done.Proof of Theorem 1.2. The proof is an easy consequence of Cotlar's inequality, i.e., if Tbounded on L2 then T�f � C(T )(Mf +MTF )(2.1)where M is the Harcy-Littlewood maximal function; since M is bounded on Lp and T isbounded on Lp according to the corollary above.Remains to show Cotlar's inequality: It is enough to prove (2.1) for x = 0. Fix an " > 0.We will show that T"f(0) � C(Mf(0) +MTF (0))(2.2)where C is independent of ". Setf1(x) = � f(x) jxj < "0 jxj � "21



and f2(x) = f(x)�f1(x). Thus T"f(0) = Tf2(0). The strategy is to prove that for jxj < "2we have jTf2(x)� Tf2(0)j � CMf(0)(2.3)where the constant C is independent of x and ". Assume (2.3) to be true for a momentand argue as follows.jT"f(0)j = jTf2(0)j � jTf2(x)j+ ~CMf(0) � jTf(x)j+ jTf1(x)j+ ~CMf(0):Consider the two cases1) 13 jT"f(0)j � ~CMf(0).2) 13 jT"f(0)j > ~CMf(0).For case 1) inequality (2.2) is trivial. For case 2) set � = jT"f(0)j; B = B "2 (0) and de�neE1 = fx 2 B : jTf(x)j > �3 gE2 = fx 2 B : jTf1(x)j > �3g:Here B = E1 [ E2 and thus 1 � jE1jjBj + jE2jjBj :We see that jE1j � 3� ZB jTf(x)jdx � 3jBj� MTf(0)and jE2j � C� kf1k1 � CjBj� Mf(0)where we have used that T is a weak (1; 1) operator. Thus � � C(Mf(0) +MTf(0)) andit only remains to show (2.3), which is a straightforward calculation:jTf2(x)� Tf2(0)j � Zjyj>" jK(x; y)�K(0; y)jjf(y)jdy �� C Zjyj>" "jyjn+1 jf(y)jdy � C Z min� "jyjn+1 ; "�n�jf(y)jdy � CMf(0)for jxj < "2 where we have applied Lemma 1.2. This completes the proof.22



References[1] A. P. Calderon/A. Zygmund: On the existence of certain singular integrals, ActaMath. 88 (1952) pp. 85-139.[2] E. M. Stein: Singular integrals and di�erentiability properties of functions. PrincetonUniversity Press 1970.[3] M. Cotlar: Some generalizations of the Hardy-Littlewood maximal theorem Rev.Mat. Cuyana 1(1955) pp. 85-104.
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Chapter 3Proof of Theorem 1.6We begin this section by introducing some of the tools we need to prove the L2-boundednessof T .BMOp(Rn): For f 2 L1loc(Rn) we setkfkp;� = supQ cube ��ZQ jf(x)� fQjpdx� 1p ; 1 � p <1where fQ = �RQ f(x)dx and de�ne the space BMOp to consist of those functions f such thatkfkp;� < 1. Thus (BMOp; k kp;�) becomes a semi-normed vectorspace with semi-normvanishing on the constant functions. The letters BMO stand for bounded mean oscillation.Examples of BMO-functions: 1) log jxj 2 BMOp(Rn) 2) L1(Rn) � BMOp(Rn)3) Z log jx� yjd�(y) 2 BMOp(Rn) for �nite measures �.To be able to work with this space, we only need to know three basic facts.Fact 1: Let f 2 L1loc. If for all cubes Q, there exist constants CQ such that (�RQ jf(x) �CQjpdx)1=p � `, then f 2 BMOp and kfkp;� � 2`.Proof. Exercise.This fact can be used to prove following proposition.Proposition 3.1. If T bounded on L2, then T : L1 ! BMO.Proof. The �rst step in the proof is to give a de�nition of the function Tf where f 2 L1.We therefore introduce fQjg = the set of all cubes Q with centers with rational coordinates25



and with rational sidelengths. Set E = [j@Qj. For each pair (x1; x2) 2 (RnnE)� (RnnE)choose a cube Q 2 fQjg such that x1; x2 2 Q. Set f1 = f � �2Q and f2 = f � f1. De�neF (x1; x2) = Tf1(x1)� Tf1(x2) + ZRn(K(x1; y)�K(x2; y))f2(y)dy:We note that F is de�ned a.e. and that F is independent of Q (as long as x1; x2 2 Q).Check it! Furthermore, for a.e. x1 2 Rn and x2 2 Rn; F (x; x1) � F (x; x2) is a constant(regarded as a function of x). We now de�ne Tf as the class x! F (x; x1) for a.e. x1 2 Rn.It remains to show that T : L1 ! BMO is bounded. It is enough to show that�ZQ jF (x; xQ)� Tf1(xQ)jdx � CkfkL1; f 2 L1(Rn)for all cubes Q 2 fQjg.But �ZQ jTf1(x)jdx � (�ZQ jTf1(x)j2dx)1=2 � C(�ZQ jf1(x)j2dx)1=2 � Ckfk1since jZRn(K(x; y)�K(xQ; y))f2(y)dyj � jZRnn2Q jK(x; y)�K(xQ; y)jjf(y)jdy �� C ZRnn2Q jx� xQjjy � xQjn+1dykfk1 � Ckfk1 for x 2 Q:The proposition follows.Fact 2: John-Nirenberg inequalityTheorem: Let ' 2 BMO (Rn). Then there exists constants, C > 0; � > 0, dependingonly on n, such thatjfx 2 Q : j'(x)� 'Qj > �gj � CjQj exp �� ��k'k� �for all � > 0 and cubes Q.Sketch of a proof. It is enough to show thatsupQ cube�ZQ exp � �k'k� j'(x)� 'Qj�dx � C <1:26



Assume k'k� = 1 and ' 2 L1. Since the constants C and � will be independent of k'k1,the result follows for a general '. Fix a cube Q. Consider all cubes Qj in the dyadic meshof Q and choose a t > 1. Let ~Qj denote those dyadic cubes which are maximal with respectto inclusion satisfying �Z ~Qj j'(x)� 'Qjdx > tand j'(x)� 'Qj � t a.e. for x 2 Q n [1j=1 ~Qj:Clearly ~Qj � Q and j [1j=1 ~Qjj � 1t k'� 'QkL1(Q) � 1t jQj:The maximality of ~Qj implies that�Z �Qj j'(x)� 'Qjdx � twhere �Qj is the minimal cube in the dyadic mesh of Q with respect to inclusion for which~Qj 6� �Qj. Furthermore
Q �Qj~Qj j' ~Qj � 'Qj � j' ~Qj � ' �Qj j+ j' �Qj � 'Qj �� �Z ~Qj j'(x)� ' �Qj jdx+ t �� 2n�Z �Qj j'(x)� ' �Qj jdx+ t �� (2n + 1)t:Set X(�;Q) = supQj2dyadicmeshofQ �RQj exp(�j'(x) � 'Qj j)dx which is < 1 since ' 2 L1.From the properties of ~Qj it follows that�ZQ exp(�j'(x)� 'Qj)dx � 1jQj ZQn[1j=1 ~Qj e�tdx ++ 1jQj 1Xj=1 j ~Qjj�Z ~Qj exp(�j'(x)� ' ~Qj j)dx exp(�t(2n + 1)) �� e�t + 1t exp(�t(2n + 1))X(�;Q)27



Take supremum over all cubes Q. ThussupQ cubeX(�;Q)[1� 1t exp(�t(2n + 1))] � e�twhich implies supQ cubeX(�;Q) � C if � > 0 small enough. The proof is done.Remark: It is an easy consequence of John-Nirenberg's inequality that the norms k kp;�and k k� � kk1;� are equivalent for 1 < p <1.Proof. For every 1 < p <1 and � > 0 there exists a C > 0 such that xp � C exp(�x) forx > 0. Choose � = �2 and apply the inequality above. Hencek 'k'k�kp;� � C supQ cube�ZQ exp ��2 j'(x)� 'Qjk'k� �dx == C supQ cube 1jQj Z 10 exp ��2 t�d�jfx 2 Q : j'(x)� 'Qjk'k� > tgj� �� C supQ cube 1jQj Z 10 exp ��2 t�CjQj exp(��t) � (��)dt = Cand k'kp;� � Ck'k�. The inequality k'k� � k'kp;� follows from Hölder's inequality.Fact 3: Connection between BMO and Carleson measures.Carleson measures originally appeared as answers to the following question.Question: Which positive measures � on Rn+1+ have the propertyZ ZRn+1+ jPyf(x)j2d�(x; y) � C(�)kfk22 for all f 2 L2(Rn)where Pyf(x) = py � f(x) with the Poisson kernel py(x) = cn y(jxj2+y2)n+12 ?To obtain a necessary condition on � consider f = �Q, i.e., f is the characteristic functionfor a cube Q � Rn. We immediately observe that Pyf(x) � C > 0 for f(x; y) : x 2 12Q; 0 <y < `(Q)g where `(Q) = side length of Q. Set ~Q = f(�; �) 2 Rn+1+ : � 2 Q; 0 < � < `(Q)g.Hence(C) �( ~Q) � CjQj for all cubes Q � Rnis a necessary condition on �. We call a positive measure � a Carleson measure if � satis�es(C) and inffC : �( ~Q) � CjQj for all cubes Qg is called the Carleson norm for �.28



Lemma 3.1. Let � be a continuous function in Rn+1+ and setu�(x) = supfju(�; �)j : jx� �j < �g; x 2 Rn:Let � be a Carleson measure. Then�(f(x; y) 2 Rn+1+ : ju(x; y)j > �g) � Cjfx 2 R : u�(x) > �gjfor all � > 0, where C only depends on n and the Carleson norm of �.Proof. The lemma is a consequence of following geometric fact: For every covergin fQjg ofcountably many cubes there is a subcovering fQ0jg such that [Qj = [Q0j and each x 2 [Qjbelongs to at most 2n of the Q0j's. We leave the proof of this fact as an exercise. For � > 0set E� = f(x; y) 2 Rn+1+ : ju(x; y)j > �gand for each (x; y) 2 E� de�ne~Q(x; y) = f(�; �) 2 Rn+1+ : k� � xk < y; 0 < � < ygQ(x; y) = f� 2 Rn : k� � xk < ygwhere kxk = maxi=1;::: ;n jxij. Select a covering of E� consisting of countably many cubes~Q(x; y) by a compactness argument. It is obvious thatu�(�) > � for all � 2 Q(x; y)and hence �(E�) � �([ ~Q(x; y)) = �([ ~Q(x; y)0) ��X�( ~Q(x; y)0) � CX jQ(x; y)0j �� 2nCjf� 2 Rn : u�(�) > �gj:We can now answer the question posed above byTheorem 3.1. If � is a Carleson measure on Rn+1+ , thenZ ZRn+1+ jPyf(x)jpd�(x; y) � C(p; �; n)kfkpp; 1 < p � 1:Proof. Let py(x) denote the Poisson kernel. If j�x� xj < y, thenpy(�x� t) � Cpy(x� t) for all t 2 Rnwhere C is independent of x; �x and y. FurthermorePyf(x) � py � f(x) � CMf(x)and thus supfjPyf(�x)j : j�x� xj < yg � CMf(x):Lemma 3.1 implies Theorem 3.1 since M is bounded on Lp for 1 < p �1.29



Remark: Theorem 3.1 is also valid for all operators of the formPtf(x) = 't � f(x)where ' is a smooth function which decays at in�nity and such that j'(x)j �  (x) for someradial function  2 L1(Rn). 't(x) denotes 1tn'�xt �. We leave the proof of this remark asan exercise.We now introduce two families of operators denoted Pt and Qt of which the �rst is anapproximation of the identity and the second is an �approximation of the zero opera-tor�. Let '; be smooth functions that decay at in�nity such that RRn '(x)dx = 1 andRRn  (x)dx = 0. De�ne Pt and Qt bydPtf(�) = '̂(t�)f̂ (�)dQtf(�) =  ̂(t�)f̂ (�)for nice functions f in Rn. We immediately observeLemma 3.2. If f 2 L2(Rn), thenZ 10 kQtfk22dtt � C( )kfk22:Proof. Apply Plancherel's formula.Theorem 3.2. If f 2 BMO (Rn), thend�(x; t) = jQtf(x)j2dxdttis a Carleson measure with Carleson norm � C( )kfk2�.To carry through the argument in the proof of this theorem, we need a lemma.Lemma 3.3. If f 2 BMO (Rn) and Q0 is the unit cube (centered at 0), thenZRn jf(x)� fQ0 j1 + jxjn+1 dx � Ckfk�where C only depends on n.Proof. For a > 0 let aQ denote the cube with sides parallel with the sides of Q and oflengths a times the sidelengths of Q and with the same center as Q. We observe that forevery cube Q � RnjfQ � f2Qj � 1jQj ZQ jf(x)� f2Qjdx � 2nj2Qj Z2Q jf(x)� f2Qjdx � 2nkfk�:30



Set Qj = 2jQ0 for j 2 N and assume kfk� = 1. HerejfQj+1 � fQj j � 2n for j 2 Nwhich implies jfQj+1 � fQ0 j � (j + 1)2n for j 2 N:Hence ZRn jf(x)� fQ0j1 + jxjn+1 dx = 1Xj=0 ZQj+1nQj jf(x)� fQ0j1 + jxjn+1 dx++ ZQ0 jf(x)� fQ0j1 + jxjn+1 dx � 1Xj=0 � ZQj+1 jf(x)� fQj+1 j2j(n+1) dx++ ZQj+1 jfQj+1 � fQ0j2j(n+1) dx�+ 1 � 1Xj=0 (2n�j + (j + 1)22n�j ) + 1 = Cwhich completes the proof.Proof of Theorem 3.2. Qtf(x) is a well-de�ned function in Rn+1+ since Qt1 = 0. We wantto prove that for each cube Q � Rn(�) Z Z ~Q jQtf(x)j2dxdtt � C( )kfk2�jQj:It is enough to consider Q = unit cube Q0 since BMO is scale- and translation invariant,i.e., kfk� = kf st k� where f st (x) = f(t(x�s)) and dtt is scale invariant. Furthermore we mayassume f2Q0 = 0 since Qt1 = 0. Thus we have to prove (�) for Q = Q0 and all f 2 BMOwith f2Q0 = 0. Set f1 = f�2Q0 and f2 = f � f1.Then Qtf = Qtf1 +Qtf2 and we obtainZ ZQ0 jQtf1j2dxdtt � Z ZRn+1+ jQtf1j2dxdtt �� C( )kf1k22 � C( )kfk2�from lemma 3.2 and for (x; t) 2 ~Q0 we obtainjQtf2(x)j � ZRnn2Q0 1tn j �x� zt �jjf2(z)jdz �� C( )ZRnn2Q0 ttn+1 + jx� zjn+1 jf2(z)jdz �� C( )tZRn jf(z)j1 + jzjn+1dz � C( )tkfk�according to lemma 3.3. This completes the proof.We have now prepared the tools we need to prove the theorem of David and Journé.31



Theorem 1.6: If T is a PVO with CZ type kernel K, thenT is bounded on L2 i� T1 2 BMO:Here the �only if�-part follows from Proposition 3.1. The �if�-part is the hard part. Theproof we present is due to Coifman/Meyer [1]. Choose ' 2 C10 (Rn) such that ' radialwith support in the unit ball B1(0) and such that'̂(j�j) = 1 +O(j�j4) as j�j ! 0:De�ne Pt as above bydPtf (�) = '̂(tj�j)f̂(�). Analogously de�neQt bydQtf(�) = (tj�j)2'(tj�j)f(�)and Rt by dRtf(�) = (j�j)�1'̂0(tj�j)f̂ (�). Hence Pt; Qt and Rt commutes andddtP 2t = 2tRtQt:This implies 12 ddtP 2t TP 2t = 1t (RtQtTP 2t + P 2t TRtQt):The idea is as follows: We want to showjh�1; T �2ij � Ck�1k2k�2k2 for all �1; �2 2 S(Rn):We note that h�1; P 2t TP 2t �2i ! 0 as t!1 and hence it is enough to provejZ 10 ddth�1; P 2t TP 2t �2idtj � Ck�1k2k�2k2 for all �1; �2 2 S(Rn)since P0 is the identity operator.Furthermore, it is enough to provejZ 10 h�1; RtQtTP 2t �2idtt j � Ck�1k2k�2k2 for all �1; �2 2 S(Rn)since Pt; Qt; Rt are selfadjoint operators and T � = �T . We need the following estimate.Lemma 3.4. Let '; 2 C10 (Rn) with support in the unit ball B1(0) and assumeZRn  (x)dx = 0:Then jh xt ; T'yt ij � Cpt(x� y)where  xt (z) = 1tn � z�xt �; 'yt (z) = 1tn'�z�yt � and pt is the Poisson kernel.32



Proof. The argument consists of a straightforward calculation where we use the CZ typeproperties of the kernel K.2h xt ; T'yt i = lim"#0 Z Zj���j>"K(�; �)( xt (�)'yt (�)�  xt (�)'yt (�))d�d�= lim"#0 Z Zj���j>"K(t� + y; t� + y)� x�yt1 (�)'(�) �  x�yt1 (�)'(�))d�d�:Hence, it is enough to prove the lemma for y = 0.Assume jxj < 10t: Then we obtainjh xt ; T'ij � 1tn C�1 + � jxjt �2�n+12 = Cpt(x):Assume jxj � 10t: Then we obtainjh xt ; T'ij = jZ Z (K(�; �)�K(x; �)) xt (�)'t(�)d�d� �� Z Z jK(t�; t�)�K(x; t�)j xt1 (�)'(�)d�d� �� C tjxjn+1 � C t(t2 + jxj2)n+12 = Cpt(x)which concludes the proof of the lemma.Now set Lt = QtTPt where Ltf(x) = ZRn 1t(x; y)f(y)dywith j1t(x; y)j � Cpt(x� y) according to Lemma 3.4. We recall that it is enough to showthat jZ 10 h�1; RtQtTP 2t �2idtt j � Ck�1k2k�2k2 for all �1; �2 2 S(Rn):Hence it is enough to showjZ 10 h�1; RtQtTP 2t �2idtt j � C(k�1k22 + k�2k22) for all �1; �2 2 S(Rn):But jZ 10 h�1; RtQtTP 2t �2idtt j � Z 10 jhRt�1; QtTP 2t �2ijdtt �� Z 10 krt�1k22dtt + Z 10 kQtTP 2t �2k22dtt � I + II:33



Here I = Z 10 k '̂0(tj�j)tj�j �̂1(�)k22dtt � Ck�̂1k22 = Ck�1k22:To cope with II, we rewirte QtTP 2t �2 = LtPt�2 as((LtPt)�2)(x) = Lt[Pt�2 � Pt�2(x)](x) + Pt�2(x)Lt1(x) == Lt[Pt�2 � Pt�2(x)](x) + Pt�2(x)QtT1(x)But T1 2 BMO implies jQtT1j2 dxdtt is a Carleson measure according to Theorem 3.2 andhence Z 10 kPt�2(x)QtT1k22dtt = Z ZRn+1+ jPt�2(x)j2jQtT1j2dxdtt � Ck�2k22where we have used the remark to Theorem 3.1. Furthermore using Jensen's inequalityA(x; t) � jLt(Pt�2 � Pt�2(x))(x)j2 == jZRn 1t(x; y)(Pt�2(y)� P2�2(x))dyj2 � C ZRn pt(x� y)jPt�2(y)� Pt�2(x)j2dyand thus Z 10 kLt[Pt�2 � Pt�2(x)](x)k22dtt = Z 10 ZRn A(x; t)dxdtt �� C Z 10 ZRn ZRn pt(x� y)jPt�2(x)� Pt�2(y)j2dydxdtt == C Z 10 ZRn ZRn pt(x)jPt�2(x+ y)� Pt�2(y)j2dxdydtt= C Z 10 ZRn ZRn pt(x)j \(Pt�2(�+ x)� Pt�2(�))(�)j2d�dxdtt == C Z 10 ZRn ZRn pt(x)j'̂(tj�j)j2j1� eihx;�ij2j�̂2(�)j2d�dxdtt :But ZRn pt(x)j1� eihx;�ij2dx = 2� 2e�j�jt:Thus Z 10 kLt[Pt�2 � Pt�2(x)](x)k22dtt �� C ZRn Z 10 2(1� e�j�jt)j'̂(tj�j)j2dtt j�̂2(�)j2d�� C ZRn � Z 1j�j0 (1� e�j�jt)dtt + Z 11j�j j'̂(tj�j)j2dtt �j�̂2(�)j2d� �� Ck�2k22:This completes the proof. �34



References[1] R. R. Coifman/ Y. Meyer: personal communication.
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Chapter 4Proof of Theorem 1.3In this section we proveTheorem 1.3: If ' : R! R Lipschitz function and K'(x; y) = 1x� y + i('(x)� '(y)),then the corresponding operator T' is bounded on L2 and kT'k � C(k'0k1).We immediately observe that the kernel K' is of CZ type and thus the L2 boundednessof the PVO T' can be proved using Theorem 1.6, i.e., it is enough to prove T'1 2 BMO.However, this is not easy.We give the proof in two steps.A: There exists an "0 > 0 such that if k'0k1 � "0 then kT'k � C(k'0k1).B: Removal of the constraint k'0k1 � "0.Part A was proved by Calderón [1]. Part B was proved by Coifman/McIntosh/Meyer [2].The proof we present is due to David [3].Proof of A: Assume ' 2 C10 (Rn) and de�neKN (x; y) = ('(x)� '(y))N(x� y)N+1 N = 0; 1; 2; : : : :TN corresponding PVO with kernel KN .We remark that the TN 's are called commutators and arise naturally when one tries toconstruct a calculus of singular integral operators to handle di�erential equations with non-smooth coe�cients. We refer to Calderón [4] for an extensive discussion of commutatorsand PDE's. Since T =P1N=0(�i)NTN , it is enough to prove thatkTNk � CN+1k'0kN1 N = 0; 1; 2; : : : :37



We also note that it is enough to prove that there exists an "1 > 0 such that if k'0k1 � "1,then kTNk � CN N = 1; 2; : : : :since T0 is the Hilbert transform and this operator is L2 bounded. There are many proofsof this fact and one proof is supplied by Theorem 1.6. To prove that TN N = 1; 2; : : : areL2 bounded we make the following observation.Lemma 4.1. If ' 2 C10 , thenTN+1(1) = TN('0); N = 0; 1; : : : :Proof. The lemma is a consequence of the identityddy �'(x)� '(y)x� y �N+1 = (N + 1)('(x)� '(y))N+1(x� y)N+2 � (N + 1)('(x)� '(y))N(x� y)N+1 '0(y)and TN+11(x) = lim"#0 Zjx�yj>" ('(x)� '(y))N+1(x� y)N+2 dy == lim"#0 1N + 1�'(x)� '(x� ")" � '(x)� '(x+ ")�" �+ TN'0(x) = TN'0(x):A recursion argument using Proposition 3.1, Lemma 4.1 and the fact that ' Lipschitzfunction implies '0 2 L1 shows that TN ; N = 0; 1; 2; : : : are L2 bounded. What remainsto be done is to show that kTNk � CN N = 1; 2; : : : ;for some choice of C > 0. Here, of course, k k denotes the norm k kL2!L2. To conclude theproof of A we note that1: If K is a kernel of CZ type such thatjK(x; y)j+ (jrxK(x; y)j+ jryK(x; y)j)jx� yj � C1jx� yjnand if kT1k� � C2, then kTk � Dn(C1 + C2)for some constant Dn which only depends on dimension n.38



2: Under the same assumptions as in 1kTkL1!BMO � Dn(kTk+ C1)This follows from the proofs of Proposition 3.1 and Theorem 1.6. HencekTN+1k � C1 + C2kTNk N = 0; 1; 2; : : :for some constants C1; C2 independent of N andkTNk � CN N = 1; 2; : : :for some constant C > 0 follows. The proof of A is completed.Proof of B: We start with three lemmas.Lemma 4.2. There exists an "0 > 0 such that if'(x) = Ax+  (x); x 2 Rwhere A 2 R and  : R! R Lipschitz function with k 0k1 � "0 thenkT'k � C0for some constant C0 > 0 which is independent of A.Proof. Repeating the argument above, we see that if h : R ! C Lipschitz function withkh0k � � < 1 then kThk � C� where the constant C� is independent of h. Furthermoreconsider T' with kernelK'(x; y) = 1x� y + i(Ax+  (x)�Ay �  (y)) = 11 + iA � 1x� y + i(h(x)� h(y))where h(x) =  (x)1+iA . Then the �rst observation gives the desired result.Lemma 4.3 (David [3]). Assume ' : R! R Lipschitz function and L 2 R such thatj'(x) + Lx� ('(y) + Ly)j �M jx� yj x; y 2 R:Let I � R be an interval.Then there exists a Lipschtz function ~' : R! R and a ~L 2 R such that(i) jfx 2 I : '(x) = ~'(x)gj � 38 jIj(ii) j ~'(x) + ~Lx� ( ~'(y) + ~Ly)j � 910M jx� yj x; y 2 R.39



Remark: ~L 2 [L�M;L +M ].Proof. Without loss of generality we can assume that I = [0; 1];M = 1; L = �45; U �fx 2 I : '0(x) + L � 0g has measure � 12 . Check this!Hence �15 � '0 � 95 .De�ne ~' : R! R by ~'(x) = 8<: '(0) x < 0sup0�y�x '(y) 0 � x � 1sup0�y�1 '(y) 1 < x:Then ~' is an increasing function and~'(x+ h) = sup0�y�x+h '(y) � sup0�y�x'(y) + 95h = ~'(x) + 95hfor each h > 0 such that x; x+h 2 [0; 1]. Thus 0 � ~'0 � 95 and ~' satis�es (ii) with ~L = �910 .Remains to check that (i) is satis�ed. SetE = fx 2 I : '(x) = ~'(x)g:Then 0 2 E and E closed implies thatI n E � 
 = [kIkwhere the components Ik are of the form ]ak; bk[ or ]ak; 1] where 0 < ak < bk � 1. But ~'is constant on each interval Ik and thus'(ak) = ~'(ak) = ~'(bk) = '(bk) if Ik =]ak; bk['(ak) = ~'(ak) = ~'(1) � '(1) if Ik =]ak; 1]:Hence ZIk '0(x)dx � 0 for each k and we obtainZ
 '0(x)dx � 0:Finally0 � Z
 '0(x)dx = Z
\U '0(x)dx+ Z
\(InU)'0(x)dx � 45 j
 \ U j � 15 j
 \ (I n U)jimplies j
 \ U j � 14 j
 \ (I n U)j40



and this gives us j
j = j
 \ U j+ j
 \ (I n U)j � 54 j
 \ (I n U)j � 58 :Hence jEj � 38and the proof is done.Lemma 4.4 (John [6]). Assume f : R! R measurable. Assume there exists an � > 0and a continuous function C : � ! R, where � = f(a; b) 2 R2 : a < bg, such thatjfx 2 I : jf(x)� C(I)j < �gj > 13 jIj for each interval I = (a; b). Then f 2 BMO (R) andkfk� � C� where C is independent of �; f and the function C.Proof. It is enough to prove the lemma for � = 1. The arguments are similar to those oneuses to prove John-Nirenberg's inequality once we have proved the followingClaim: If I � J � R are intervals such that jJ j = 2jIj, then jC(I)� C(J)j � 15.Proof of claim: Let � denote the interval with endpoints C(I) and C(J) and assume toobtain a contradiction that j�j > 15. Then there exists points zk 2 �; k = 1; 2; : : : ; 6 suchthat zk 2 � and mink 6=1 jzk� z1j > 2. SetMk = fx 2 J : jf(x)� zkj < 1g. The setsMk aremutually disjoint. Furthermore the points zk can be chosen such that jJ j > P6k=1 jMkj.Since C : �! R is continuous, there exist intervals Ik; k = 1; 2; : : : ; 6 such that I � Ik � Jand C(Ik) = zk. HencejJ j > 6Xk=1 jMkj � 6Xk=1 jMk \ Ikj � 6 � 13 jIj = 2jIj:This contradicts jJ j = 2jIj and claim is proven.We now show that under the hypothesis in the lemma with � = 1ZI jf(x)� C(I)jdx � CjIjfor each interval I � R. Observe that we do not know whether f 2 L1loc or not. Since theassumptions on f are scale- and translationinvariant we can assume I = [0; 1]. We can alsoassume C(I) = 0.Now, set �k = 100k k = 1; 2; : : : and let 
k = [jIkj be the union of those intervalsin the dyadic mesh of I which are maximal with respect to inclusion with the propertyjC(Ikj )j > �k. We see that I =2 
1 and 
1 � 
2 � 
3 � : : : . For each Ikj in 
k there exists41



an interval ~Ikj in the dyadic mesh of I which is minimal with respect to inclusion and withthe property Ikj * ~Ikj . Hence jC(~Ikj )j � �k and the claim above implies�k < jC(Ikj )j < �k + 15:We claim that if we can prove that j
k+6j � 12 j
kjwe are done.Proof. Consider Ak = fx 2 I : jf(x)j > �k +2g which is a measurable set and take a pointof density x0 2 Ak. Then there exists a su�ciently small interval J in the dyadic mesh ofI such that x0 2 J and jfx 2 J : jf(x)j > �k + 2gj � 99100 jJ j:This implies C(J) > �k and thus x0 2 J � 
k. Hence Ak � 
k except for a set of measure0 and jAkj � j
kj:But j
k+6j � 12j
kj implies that there exist constants B; C > 0 such thatjAkj � Be�C(�k+2) k = 1; 2; : : : :Choosing a slightly larger constant C we getjfx 2 I : jf(x)j > �gj � Be�C�:The remaining argument is the same as in the proof of the remark on page 29.Finally we give the argument for j
k+6j � 12 j
kj.Proof. Set Ek = fx 2 I : jf(x)� �kj < 16g k = 1; 2; : : : . Hence Ek are mutually disjointand jEk \ Ikj j � jfx 2 Ikj : jf(x)�C(Ikj )j < 1gj � 13 jIkj j:Furthermore, for k � k0 we obtainjIk0j0 \ Ekj � 13 jIk0j0 \ 
kj42



by taking the union overall Ikj � Ik0j0 and using jEk \ Ikj j � 13 jIkj j. HencejIk0j0 j � Xk0<k�k0+6 jIk0j0 \ Ekj � 13 Xk0<k�k0+6 jIk0j0 \ 
kj �� 2jIk0j0 \ 
k0+6jwhich implies j
k+6j � 12j
kj.We have now prepared all the machinery we need to prove part B. The idea is to make aninduction argument where part A is the base and the inductionstep is the following: LetM > 0. If there exists a constant C = C� 910M�such that kT ~'k � C for all Lipschitz functions ~' with osc ~' � 910M then there exists aconstant C = C(M) such that kT'k � C for all Lipschitz functions ' with osc' � M .Here we let osc' denote inffM : j'(x) + Lx� ('(y) + Ly)j �M jx� yj for all x 6= y andsome L 2 Rg.We remark that Lemma 4.2 implies that kT'k only depends on osc' and not on k'0k1. Weobserve that it is enough to prove the inductionstep for Lipschitz-funtions ' with ' 2 C1and it is enough to prove that there exists a constant C = C(M) such thatkT'kL1!BMO � Cfor all Lipschitz-functions ' 2 C1 with osc ' � M . Take f 2 L1 with kfk1 = 1. LetI be an interval and let xI denote the center of I. Set z(x) = x + i'(x). Decomposef in f1 and f2 where f1 = f�I and f2 = f � f1. Finally set Cf(I) = T'f2(xI). Wesee that C is a continuous function with respect to the endpoints of I. Without loss ofgenerality we assume I = [0; 1]. From Lemma 4.3 we obtain a Lipschitz function  suchthat osc  � 910M and E � fx 2 I : '(x) =  (x)g has measure� 38. Set z�(x) = x+i (x).Our purpose is to use the characterization of BMO functions which is given in Lemma 4.4by showing that jfx 2 I : jT'f(x)� Cf (I)j < C(M)gj > 13for constant C = C(M) chosen large enough and which is independent of f . If this is done,Theorem 1.3 follows. We start withjT'f(x)� Cf (I)j = jT'f(x)� T'f2(xI)j �� jT'f2(x)� T'f2(xI) + jT'f1(x)� T f1(x)j+ jT f1(x)jwhere x belongs to a subset of I which we will de�ne later.43



For x 2 I, jT'f2(x)� T'f2(xI)j � ZRnI �� z(x)� z(12)(z(x)� z(y))(z(12)� z(y))��jf(y)jdy �� C 0(M)ZRnI dyjx� yjj12 � yjwhich implies ZI jT'f2(x)� T'f2(xI)jdx � C 0(M):For x 2 E � I,jT'f1(x)� T f1(x)j � ZInE �� z(y)� z�(y)(z(x)� z(y))(z�(x)� z�(y))��jf(y)jdy:But I n E = [Ik where the components Ik are intervals andjz(y)� z�(y)j � C 0(M)jIkj for y 2 Ik:Hence jT'f1(x)� T f1(x)j �Xk ZIk C 0(M)jIkjjx� yj2 dy x 2 E:Set Jk = 10011000Ik and E� = E \ {([kJk)Ik�1Jk�1 E�E JkIkThen jE n E�j � 11000 andZE� jT'f1(x)� T f1(x)jdx � C 0(M)Xk ZIk ZJk jIkjjx� yj2dxdy � C 0(M)Xk ZIk dy � C 0(M)Finally, from the hypothesis in the induction stepZI jT f1(x)jdx � � ZI jT f1(x)j2dx�1=2 � C� 910M�:But jfx 2 I : jT'f2(x)� T'f2(xI)j � C 0(M)3 gj � 11000jfx 2 E� : jT'f1(x)� T f1(x)j � C 0(M)3 gj � 11000jfx 2 I : jT f1(x)j � C 0(M)3 gj � 1100044



if C 0(M) large enough. Hence jfx 2 E� : jT'f(x)� Tf2(xI)j < C 0(M)gj � jEj � 41000 > 13if C 0(M) large enough and where C 0(M) is independent of f . (Note that we have assumedkfk1 = 1.) Lemma 4.4 concludes thatkT'k � CC 0(M) = C(M)and the induction step is proved. �References1: A. P. Calderón: Commutators of singular integral operators. Proc. Nat. Acad. Sci.U.S.A., 53 (1965) pp. 1092-10992: R. R. Coifman/A. McIntosh/Y. Meyer: L'intégrale de Cauchy dé�nit un operateurborné sur L2 pour les courbes Lipschitziennes. Ann. of Math. 116 (1982) pp. 361-388.3: G. David: An alternate proof of Coifman-McIntosh-Meyer's theorem on the Cauchyintegral. Preprint.4: A. P. Calderón: Commutators, singular integral on Lipschitz curves and applications.Proc. of the I. C. M. Helsinki (1978).5: F. John: Quasi-IsometricMappings. Semineri 1962-1963 di Analisi Algebra,GeometeriaE Topologia Vol. II.
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Chapter 5Proof of Theorem 1.4In this chapter our aim is to prove that the double layer potential D de�ned in a specialLipschitz domain D and restricted to @D is bounded on L2(@D) which corresponds toprovingTheorem 1.4: If ' : Rn ! R Lipschitz function andKi(x; y) = ((x; '(x))� (y; '(y)))ij(x; '(x))� (y; '(y))jn+1 i = 1; 2; : : : ; n+ 1then the corresponding operators Ti are bounded on L2.The proof of this runs in two steps.A: Assume ' : R ! R Lipschitz function with k'0k1 � M and F holomorphic functionin a neighborhood of [�M;M ] � f0g � C. Set K(x; y) = 1x� y � F �'(x)� '(y)x� y �.Then K is a CZ type kernel and the corresponding PVO T is bounded on L2 wherethe bound only depend on k'0k1 and F .B: Theorem 1.4Proof of Step A. Choose " > 0 so small that the curve � de�ned in the �gure belowbelongs to the domain of F . 47



Im Re�M M�1�2 �3 �4"" domain of F
Set � = �1 [ �2 [ �3 [ �4. We obtainTf(x) = ZR 1x� yF �'(x)� '(y)x� y �f(y)dy == 12�i Z� F (w)ZR f(y)(x� y)(w � '(x)�'(y)x�y �dydw == 12�i 4Xk=1 Z�k F (w)ZR f(y)w(x� y)� ('(x)� '(y))dydw:It remains to estimate ZR f(y)w(x� y)� ('(x)� '(y))dyuniformly in w 2 �k for k = 1; 2; 3 and 4.Case 1: w 2 �1. Thus w = � + i" where � 2 [�M � ";M + "] andw(x� y)� ('(x)� '(y)) = i"�x� y + i�'(x) + �x" � '(y) + �y" ��:Hence, if we set ' in Theorem 1.3 equal to '(x) + �x" we get thatZR f(y)w(x� y)� ('(x)� '(y))dyis bounded on L2 uniformly in w 2 �.Case 2: w 2 �2. Thus w = �M � "+ i� where � 2 [�"; "] andw(x� y)� ('(x)� '(y)) = (�M � ")x� '(x)� ((�M � ")y � '(y)) + i�(x� y):48



Set  (x) = (�M � ")x� '(x). Then �2M � " �  0(x) � �". Thus  �1 exists and �1 Lipschitz function. After a change of variables it follows thatZR f(y)w(x� y)� ('(x)� '(y))dy = ZR f �  �1(t) � ( �1)0(t) (x)� t+ i�( �1( (x))�  �1(t))dt == (T� �1(f �  �1 � ( �1)0)) �  (x)using obvious notation and hencekZR f(y)w(x� y)� ('(x)� '(y))dyk2 � CkT� �1(f �  �1( �1)0)k2 �� Ckf �  �1 � ( �1)0k2 � Ckfk2:The curves �3 and �4 are treated similarily and part A is proved.Proof of step B. To lift the result form R to Rn we apply the method of rotation. Tosimplify the notation, we only consider the kernelK(x; z) = '(x)� '(z)(jx� zj2 + ('(x)� '(z))2)n+12x; z 2 Rn. Assume f 2 C10 .Tf(x) = ZRnK(x; z)f(z)dz == 12 ZRn(K(x; x+ z)f(x+ z) +K(x; x� z)f(x� z))dz:Introduce polar coordinates. ThenTf(x) = ZSn�1 T!f(x)d! where T!f(x) = Z 1�1K(x; x+ r!)f(x+ r!)jrjn�1drand it is enough to prove that kT!fk2 < Ckfk2 where C independent of !. Let E!denote the ortogonal complement of the 1 dimension space ft! : t 2 Rg � Rn. Anyx 2 Rn can uniquely be written as t! + y; y 2 E! andT!f(t! + y) = Z 1�1K(t! + y; (t+ r)! + y)f((t+ r)! + y)jrjn�1dr == Z 1�1K(t! + y; s! + y)f(s! + y)js� tjn�1ds= Z 1�1 '(t!+y)�'(s!+y)t�s(t� s)(1 + '(t!+y)�'(s!+y)t�s )2)n+12 f(s! + y)ds49



Finally, we apply Part A with F (z) = z(1 + z2)n+12 which is holomorphic in a neigh-borhood of the real axis. HencekT!f(x)k22 � C(k'0k1; F )ZRn�1 ZR jf(t! + y)j2dtdy = C(k'0k1; F )kfk22:Since C10 (Rn) is dense in L2(Rn) the result in Part B follows.

50



Chapter 6Dirichlet Problem for Lipschitzdomains. The �nal arguments for theL2-theoryWe are now able to complete the proof of the following theorems where, as usual, ' : Rn !R Lipschitz function and D = f(x; y) 2 Rn+1 : '(x) < yg.Theorem 6.1. If f 2 L2(@D), then there exists a u such that� �u = 0 in Duj@D= f on @Dwhere the boundary values are taken non-tangentially a.e. @D and M�u 2 L2(@D) withkM�uk2 � Ckfk2 where C only depends on � > 1 and k'0k1.Theorem 6.2. If f 2 L2(@D), then there exists a u such that� �u = 0 in D@u@n j@D= f on @Dwhere the boundary values are taken in the sense np � ru(Q) ! f(P ) as Q ! P non-tangentialy a.e. @D and M�(ru) 2 L2(@D) with kM�(ru)k2 � Ckfk2 where C onlydepends on � > 1 and k'0k1.We recall thatM�u(P ) = supfju(Q)j : jP �Qj < � dist (Q; @D)g; P 2 @Dand that np denotes the outward unit normal at P 2 @D which is de�ned a.e. on @D.Corollary 6.1. Theorem 6.1 is valid if L2 replaced by Lp for 2 � p �1.51



This is a straightforward consequence of the maximumprinciple and interpolation betweenL2 and L1, but apart from this result we discuss the Lp-theory for the Dirichlet problemand Neumann problem in Chapter 7. The proofs of Theorems 6.1 and 6.2 involves thelayer potentials Df(P ) = Z@D @@nQr(P;Q)f(Q)d�(Q); P 2 DSf(P ) = ZD r(P;Q)f(Q)d�(Q); P 2 Dwhere r(P;Q) = cnjP �Qj1�n. With Q = (x; '(x)) 2 @D and P = (z; y) 2 DDf(z; y) = cn ZRn y � '(x)� (z � x) � r'(x)(jx� zj2 + ('(x)� y)2)n+12 f(x)dxSf(z; y) = cn ZRn p1 + jr'(x)j2(jx� zj2 + ('(x)� y)2)n�12 f(x)dx:From Proposition 1.1, the remark on page 17 and Theorems 1.2 and 1.4 it follows thatkM�(Df)kp � C(�; k'0k1)kfkp; f 2 Lpfor 1 < p < 1. Thus Dj@Df(P ) = lim D3Q!Pnon�tangentiallyDf(Q) exists and it remains to showthat Dj@D is invertible on Lp. We now observe that D� = f(x; y) 2 Rn+1 : '(x) > yg isalso a special Lipschitz domain and we have the following jump relations at the interfacebetween D and D�.Lemma 6.1. Let f 2 L2(@D) and letTf(P ) = lim"#0 ZjP�Qj>" @@nQ r(P;Q)f(Q)d�(Q); P 2 @DThen Dj@Df(p) = 12f(P ) + Tf(P ) a.e. @DDj@D�f(P ) = �12f(P ) + Tf(P ) a.e. @D@@npSj@Df(P ) = �12f(P ) + T �f(P ) a.e. @D@@nP Sj@D�f(P ) = 12f(P ) + T �f(P ) a.e. @Dwhere T � is the adjoint operator of T . 52



We observe that it is equivalent to solve the Dirichlet problem in D and the Neumannproblem in D�. The jumprelations are similar to those in the case of regular boundary inchapter 0 with the di�erence that here the operator T has to be interpreted as a PVO.The main ingredient in the proof is Proposition 1.1. The idea is to approximate @D by aC2-boundary and use the result from Chapter 0. We leave the proof as an exercise.The �nal step in the proof of Theorem 6.1 and 6.2 is to prove that �12I + T and �12I +T �are invertible on L2. The proof of this is due to Verchota [1], who used an indentity dueto Rellich [2]. See also Jerison/Kenig [3].Lemma 6.2. Let f 2 L2(@D) and u = Sf j �D. Then there exists C1; C2 > 0 such thatC1 Z@D �@u@n�2d� � Z@D jrtuj2d� � C2 Z@D �@u@n�2d�where rt denotes the �tangential derivative�.Remark: Let � : @D ! Rn denote the projection mapping (x; '(x)) 7! x. Then rtu isr(u � ��1) lifted with ��1 to @D.Proof. Assume f has compact support. Set e = (0; 1). Since �u = 0 in D we getdiv (jruj2e� 2@u@yru) = 0called Rellich identity. Apply the divergence theorem.Hence Z@D jruj2he; nid� = 2Z@D @u@y @u@nd�:(�)Since 0 < c0 � he; ni � 1 for Lipschitz domain, we obtainc0 Z@D jruj2d� � 2Z@D jruj��@u@n��d�and Schwartz inequality impliesZ@D jruj2d� � C Z@D �@u@n�2d�Remains to prove the reversed inequality.@u@y = hru; ei53



where e = he; nin + et on @D. Hence@u@y = @u@nhe; ni+ hru; etiwhich we introduce in formula (�) above together with jruj2 = �@u@n�2 + jrtuj2 andjhru; etij � jrtuj.Then we obtainZ@D jrtuj2he; nid� = Z@D �@u@n�2he; nid� + 2Z@D @u@nhru; etid�:Thus Z@D �@u@n�2d� � C� Z@D jrtuj2d� + � Z@D �@u@n�2d�� 12 � Z@D jrtuj2d�� 12 �and Z@D �@u@n�2d� � C Z@D jrtuj2d�To prove that �12I + T and �12I + T � are invertible on L2, it is enough to prove that�12I + T � are invertible. We �rst claim that there exists a C > 0 such thatk(�12I + T �)fk2 � Cjjfk2 f 2 L2(@D)Proof. Assume k(12I + T �)fk2 = "kfk2 for some f 2 L2(@D). Butk12f + T �fk2 =k @@nSj@D�fk2 � krtSj@D�fk2 == krtSj@Dfk2 � k @@nSj@Dfk2 = k � 12f + T �fk2since rtSf is continuous across the boundary.Now f = (12f + T �f)� (�12f + T �f)and k12f + T �fk2 � k � 12f + T �fk2implies that " above cannot be too small. The proof is completed.54



The �nal step for proving the invertability of �12I+T � is done with a method of continuityargument. Let U s donote the operator �12I + T � where ' is replaced by s'. We note thatU s : L2 ! L2 bounded such that for 0 � s � 1kU sfk2 � Ckfk2; C independent of s(6.1) kU sf � U tfk2 � Cjt� sjkfk2; C independent of s and t(6.2) U0 = 12I invertible(6.3)The invertability follows easily.Proof. Set S = fs 2 [0; 1] : U s invertibleg. Then that S 6= � follows from (6.3), that S isopen which follows from (6.2) and that S is closed is a consequence of (6.1) and (6.2). Weonly indicate the closedness of S. Assume sj ! s and U(sj) invertible. Take g 2 L2 andfj 2 L2 such that U(sj)fj = g. (6.1) implies fj * f in L2 for a subsequence. We can alsoassume U(s)fj * U(s)f .Claim: U(s)f = g.Take an h 2 L2. ThenjhU(s)f � g; hij � jhU(s)f � U(s)fj; hij + jh(U(s)� U(sj))fj ; hij ! 0as j !1. Hence U(s)f = g.Remark on uniqueness of solutions in Theorem 6.1 and 6.2: The u appearing in Theorem6.1 is unique while the u appearing in Theorem 6.2 is uniquely de�ned up to an additiveconstant.References[1] G. C. Verchota: Layer potentials and boundary value problems for Laplace's equationin Lispchitz domain. (to appear in J. Funct. Anal.)[2] F. Rellich: Darstellung der eigenwerte von ru + �u durch ein Randintegral Math.Z. 46 (1940) pp. 635 - 646.[3] D. S. Jerison/C. E. Kenig: The Neumann problem on Lipschitz domains. Bull AMSvol. 4 (1981) pp. 203 - 207. 55
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Chapter 7Existence of solutions to Dirichletand Neumann problems for Lipschitzdomains. The optimal Lp-resultsIn this chapter we give parts of the proofs ofTheorem 7.1. For every Lipschitz domain D = f(x; y) 2 Rn+1 : '(x) < yg for ' : Rn !R Lipschitz function there exists an " = "(D) > 0 such that for all 2� " < p � 1 and allf 2 Lp(@D) there exists an u such that�u = 0 in Duj@D = f on @Dwhere the boundary values are taken non-tangentially a.e. @D and such thatM�u 2 Lp(@D)with kM�ukp � Ckfkp where C only depends on � > 1 and k'0k1.Theorem 7.2. For every Lipschiatz domain D as above there exists an " = "(D) > 0 suchthat for all 1 < p < 2 + " and all f 2 Lp(@D) there exists an u such that�u = 0 in D@u@nj@D = f on @Dwhere the boundary values are taken in the sense np � ru(Q) ! f(P ) as Q ! P non-tangentialy a.e. @D and such that M�ru 2 Lp(@D) with kM�rukp � Ckfkp where Conly depends on � > 1 and k'0k1.Remark: The ranges 2 � " < p � 1 for the Dirichlet problem and 1 < p < 2 + "for the Neumann problem are optimal. The estimate kM�ruk1 � Ckfk1 fails even for57



smooth regions and for each p > 2 it is possible to construct a Lipschitz domain suchthat kM�rukp � Ckfkp fails. The situation is analogous for the Dirichlet problem. SeeDahlberg [1]. The extension 2� " < p < 2 for the Dirichlet problem and 2 < p < 2 + " forthe Neumann problem is done by a real variable argument using the result for p = 2 ana �good � inequality�. The extension to 1 < p < 2 in the Neumann problem is shown byestablishing that for f 2 H1at, the atomic H1 on @D, the solution of the Neumann problemwith data f satis�es kM�ruk1 � CkfkH1at. This is done by estimating the maximalfunction of gradient of the L2 solutions of atoms using the regularity theory for uniformlyelliptic equations in self-adjoint form. The full result then follows by interpolation. Theextension to 2 < p �1 in the Dirichlet problem is a consequence of the maximumprincipleand interpolation.We begin to discuss the regularity theory for uniformly elliptic equations in self-adjointform. Let A(x) = (aij(x)) be a n� n dimensional symmetric matrix valued function in Dwhere the entries aij(x) are bounded real-valued measurable functions. We assume thatA(x) is uniformly elliptic on D, i.e., there exists a � � 1 such that1� j�j2 � nXi;j=1 aij(x)�i�j � �j�j2 for all � 2 RnLet L denote the operator nXi;j=1 @@xj aij(x) @@xj . We call u a (weak) solution of Lu = 0 inD if u 2 L21; loc(D) and ZDhAru;r'idx = 0 for all ' 2 C10 (D). Here L21; loc denotesthe space of functions in L2loc(D) with distributional derivatives of �rst order in L2loc(D).We say that u is a subsolution (supersolution) of Lu = 0 in D if u 2 L21; loc(D) andZDhAru;r'idx � 0 (ZDhAru;r'idx � 0) for all 0 � ' 2 C10 (D). The main result isTheorem 7.3 (DeGiorgi [2], Nash [3]). If u is a solution of Lu = 0 in D, then u isHölder continuous.This follows fromTheorem 7.4 (Harnack's inequality). If u � 0 and Lu = 0 in D and if K � D is acompact set, then ess supKu � C ess infKuwhere C = C(n; �;K;D).Remark: Harnack's inequality is a quantitative version of the maximum principle.Remark: For notational convenience we let min and max denote ess inf and ess sup, resp.58



Proof of Theorem 7.3. This is done using Harnack's inequality. Assume Lu = 0 in D =fx 2 Rn : jxj < 2g. Set M(r) = maxjxj�r um(r) = minjxj�r u r < 1:Then M(r) � u and u�m(r) are solutions and � 0 in fx 2 Rn : jxj � rg. HenceM(r) �m�r2� � C(M(r) �M�r2��M�r2��m(r) � C�m�r2��m(r)�Add these inequalities and set �(r) =M(r) �m(r). We obtain��r2� � C � 1C + 1�(r)and hence �(r) � r��(1) for some � > 0:Note that we have used the same constant C in the repeated uses of Harnack's inequality.This is justi�ed by the scale invariance properties of C. We leave it as an exercise to checkthis.Proof of Theorem 7.4. (The proof is due to Moser [4]). Set Q(h) = fx 2 Rn : jxjj < h2g.By a covering argument it is enough to prove the theorem for K = Q(1) and D = Q(4).Thus we assume u � 0 and Lu = 0 in Q(4). Set'(p; h) = � 1jQ(h)j ZQ(h) updx�1=p � ��ZQ(h) updx�1=pfor 0 < h < 4 and �1 < p < 1. For �1 < p < 0 we study u + " for " > 0 small andthen let " tend to zero in the estimates. SincemaxQ(h) u = limp!1'(p; h)minQ(h) u = limp!�1'(p; h);the theorem is equivalent to show that for some C = C(�; n) we have'(1; 1) � C'(�1; 1):The proof is based on three general inequalties relating integrals of functions v = v(x) tointegrals of the gradient of v. We assume n � 3.59



Inequality A (Poincare's inequality)�ZQ(h) jv � vQ(h)j2dx � Ch2�ZQ(h) jrvj2dxwhere vQ(h) = �RQ(h) vdx.Inequality B (Sobolev's inequality). Set K = nn� 2 .��ZQ(h) jvj2Kdx� 1K � C(h2�ZQ(h) jrvj2dx + �ZQ(h) jvj2dx�Inequality C (John-Nirenberg's inequality). If kvk� � 1, then there exists � > 0 and Conly depeding on n such that ZQ(2) e�vdxZQ(2) e��vdx � C:The proof will be given in two parts viz.Proposition 7.1. If u � 0, subsolution in Q(4), thenmaxQ(1) u � C� pp� 1�2��ZQ(2) updx�1=p for p > 1Proposition 7.2. If u > 0, supersolution in Q(4), then��ZQ(3) updx)1=p � C� 1K � p�2minQ(1) u for 0 < p < K:Since K > 1, the theorem follows from the propositions. The proof of the propositionswill be done by estimating '(p; h)='(p0; h0) for p > p0 and derive the desired estimates byiteration. We need the following lemma.Lemma 7.1. If u > 0 is a subsolution in D and v = u�, then for any function � 2 C10 (D)one has ZD �2jrvj2dx � C� �2� � 1�2 ZD jr�j2v2dx if � > 12 :The same assertion is true for supersolutions if � < 12 .60



Proof. u subsolution in D implies that RDhAru;r'idx � 0 for all 0 � ' 2 C10 (D).Choose � 2 C10 (D) and � > 0 and set ' = u��2. (This ' does not belong to C10 (D), butwe have the approximation business as an exercise to the reader). This impliesZDhAru;rui�u��1�2dx+ ZDhAru;r�i2�u�dx � 0:The uniform ellipticity of A implies1� ZD jruj2�u��1�2dx+ ZDhAru;r�i2�u�dx � 0:Introduce v = u� where � = � + 12 . Then we obtain��2 ZD jrvj2�2dx � C ZD jhru;r�ij � j�j � ju�+12 jju��12 jdx �� C 1� ZD(jr�jv)(jrvj � j�j)dxThus ZD jrvj2�2dx � c� �2� � 1�2 ZD jr�j2v2dx; � > 12 :The argument for u supersolution and � < 12 is similar.Now let 0 < h0 < h < 2h0 < 4 and choose � 2 C10 (Q(h)) such that 0 � � � 1; � = 1 onQ(h0) and jr�j � C 1h� h0 . Since u solution to Lu = 0 in Q(h), u is both a subsolutionand a supersolution and Lemma 7.1 implies that for � 6= 12�ZQ(h0) jru�j2dx � C� 2�(2� � 1)� 1(h� h0)2 ZQ(h) u2�dx:Set p = 2�. Inequality B gives us��ZQ(h0) upKdx) 1K � C� pp� 1�2 1� hh0 � 1�2�ZQ(h) updx;i.e, '(Kp; h0) � C� pp� 1� 2p � hh0 � 1�� 2p'(p; h) if p > 1and '(Kp; h0) � C� hh0 � 1�� 2p'(p; h) if p < 0:61



Now for p > 1 let p� = K�ph� = 1 + 2�� � = 0; 1; 2; : : :h0� = h�+1We �nd since �Yi=1 � KipKip � 1� � C that'(p�+1; h�+1) � C�=K�'(p�; h�) for � = 1; 2; : : :and iteration yields'(p�+1; h�+1) � C� pp � 1�2'(p; h) = C� pp � 1�2'(p; 2):But lim sup�!1 '(p� ; h�) � '(+1; 1) and the proof of Proposition 7.1 is completed.To prove Proposition 7.2, we �rst note that'(�1; 1) � C '(�q; 2) q > 0follows if we apply the same iteration technique as above to p < 0 and especially to �q < 0close to 0. What remains to be shown is that'(�q; 2) � C'(q; 2)and '(q; 2) � C'(p; 3)where 0 < p < K is the parameter that appears in the proposition. The �rst inequalityfollows from Inequality C if q � �.Proof. It is enough to show that v = log u 2 BMO (Q(2)). Take any cube Q � Q(2) andchoose � 2 C0(Q(3)) such that � = 1 on Q. Since u is a supersolutionZDhAru;r'idx � 0 for all 0 � ' 2 C10 (D):Choose ' = �2 1u . We getZQ(3)hAru;rui�2 1u2dx � C ZQ(3)hAru;r�i1u�dx62



and with Schwarz' inequality and the uniform ellipticityZQ(3) jruj2�2 1u2dx � C ZQ(3) jr�j jruj1u�dx:Hence ZQ jrvj2dx � C ZQ(3) jr�jdxand Inequality A implies ZQ jv � vQj2dx � Cwhere C independent of Q � Q(2). The inequality'(�q; 2) � '(q; 2)follows from Inequality C.Finally, for 0 < p < K choose a q > 0 such that qK� = p for some � 2 N and q � � inIneauality C. Finitely many applicaitons of Lemma 7.1 and Inequality B regarding u as apositive supersolution gives '(q; 2) � C'(p; 3):This concludes the proof of Proposition 7.2. �The rest of the proof the Theorem 7.1 and Theorem 7.2 can be found in Dahlberg/Kenig[5]. See Appendix. There can also be found the corresponding results for bounded Lipschitzdomains using a patching technique. We �nally remark that the solution of the Dirichletproblem is unique and the solution of the Neumann problem is unique to an additiveconstant. �References[1] Dahlberg, B. E. J.: Estimates of harmonic measure. Arch. Rat. Mech. Anal. 65(1977) pp. 278 - 288.[2] DeGiori, E.: Sulle di�erenziabilata e analiticita della estremali degli integrali multipliregotari. Mem. Acad. Sci. Torino 3 (1957) pp. 25 - 43.[3] Nash, J.: Continuity of the solutions of parabolic and elliptic equations. Amer. J.Math. 80 (1957) pp. 931 - 954.[4] Moser, J.: On Harnack's theorem for elliptic di�erential operator Comm. P.A.M. 14(1961) pp. 577 - 591.[5] Dahlberg, B. E. J. /Kenig, C. E.: Hardy spaces and the Lp Neumann problem forLaplace's equation in a Lipschitz domain. Preprint.63
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IntroductionIn this note we will describe, and sketch the proofs of some recent developments on bound-ary value problems on Lipschitz domains.In 1977, B. E. J. Dahlberg was able to show the solvability of the Dirichlet problemfor Laplace's equation on a Lipschitz domain D, and with L2(@D; d�) data and optimalestimates. In fact, he proved that given a Lipschitz domain D, there exists " = "(D) suchthat this can be done for data in Lp(@D; d�); 2 � " � p � 1. (See [6], [7] and [8]). Also,simple examples show that given p < 2, there exists a Lipschitz domain D where this failsin Lp(@D; d�). Dahlberg's method consisted of a careful analysis of the harmonic measure.His techniques relied on positivity, Harnack's inequality and the maximum principle, andthus, they were not applicable to the Neumann problem, to systems of equations, or tohigher order equations. In 1978, E. Fabes, M. Jodeit, Jr. and N.Riviere ([15]) were ableto utilize A. P. Calderon's theorem ([1]) on the boundedness of the Cauchy integral onC1 curves, to extend the classical method of layer potentials to C1 domains. They werethus able to resolve the Dirichlet and Neumann problem for Laplace's equation, withLp(@D; d�) data, and optimal estimates, for C1 domains. They relied on the Fredholmtheory, exploiting the compactness of the layer potentials in the C1 case. In 1979, D.Jerison and C. Kenig [20], [21] were able to give a simpli�ed proof of Dahlberg's results,using an integral identity that goes back to Rellich ([33]). However, the method stillrelied on positivity. Shortly afterwards, D. Jerison and C. Kenig, ([22]) were also ableto treat the Neumann problem on Lipschitz domains, with L2(@D; d�) data and optimalestimates. To do so, they combined the Rellich type formulas with Dahlberg's results onthe Dirichlet problem. This still relied on positivity, and dealt only with the L2 case,leaving the corresponding Lp theory open.In 1981, R. Coifman, A. McIntosh and Y. Meyer [3] established the boundedness of theCauchy integral on any Lipschitz curve, opening the door to the applicability of the methodof layer potentials to Lipschitz domains. This method is very �exible, does not rely onpositivity, and does not in principle di�erentiate between a single equation or a systemof equations. The di�culty then becomes the solvability of the integral equations, sinceunlike in the C1 case, the Fredholm theory is not applicable, because on a Lipschitz domainoperators like the double layer potential are not compact.For the case of the Laplace equation, with L2(@D; @�) data, this di�culty was overcomeby G. C. Verchota ([36]) in 1982, in his doctoral dissertation. He made the key observationthat the Rellich identities mentioned before are the appropriate substitutes to compactness,in the case of Lipschitz domains. Thus, Verchota was able to recover the L2 results ofDahlberg [7] and of Jerison and Kenig [22], for Laplace's equation on a Lipschitz domain,but using the method of layer potentials.This paper is divided into two sections. The �rst section which consists of two parts, dealswith Laplace's equation on Lipschitz domains. The �rst part explains the L2 results of70



Verchota mentioned above. The second part deals with a sketch of recent joint work of B.Dahlberg and C. Kenig (1984) ([9]). We were able to show that given a Lipschitz domainD � Rn, there exists " = "(D) such that one can solve the Neumann problem for Laplace'sequation with data in Lp(@D; @�); 1 < p � 2 + ". Easy examples show that this rangeof p's is optimal. Moreover, we showed that the solution can be obtained by the methodof layer potentials, and that Dahlbergs solution of the Lp Dirichlet problem can also beobtained by the method of layer potentials. We also obtained endpoint estimates for theHardy space H1(@D; d�), which generalize the results for n = 2 in [25] and [26], and forC1 domains in [16]. The key idea in this work is that one can estimate the regularity ofthe so-called Neumann function for D, by using the De Giorgi-Nash regularity theory forelliptic equations with bounded measurable coe�cients. This, combined with the use ofthe so-called 'atoms' yields the desired results.The second section, which consists of three parts, deals with higher order problems. In parts1 and 2, we treat L2 boundary value problems for systems of equations. Part 1 deals withthe systems of elastostatics, whicle part 2 deals with the Stokes system of hydrostatics. Theresults in part 1 are joint work of B. Dahlberg, C. Kenig and G. Verchota (see [12]), whilethe results in part 2 are joint work of E. Fabes, C. Kenig and G. Verchota (see [17]). Theresults obtained had not been previously available for general Lipschitz domains, althougha lot of work has been devoted to the case of piecewise linear domains. (See [27], [28] andtheir bibliographies). For the case of C1 domains, our results for the systems of elastostaticshad been previously obtained by A. Gutierrez ([19]), using compactness and the Fredholmtheory. This is, of course, not available for the case of Lipschitz domains. We are able touse once more the method of layer potentials. Invertability is shown again by means ofRellich type formulas. This works very well in the Dirichlet problem for the Stokes system(see part 2), but serious di�culties occur for the systems of elastostatics (see part 1). Thesedi�culties are overcome by proving a Korn type inequality at the boundary. The proof ofthis inequality proceeds in three steps. One �rst establishes it for the case of small Lipschitzconstant. One then proves an analogous inequality for non-tangential maximal functionson any Lipschitz domain, by using the ideas of G. David ([13]), on icreasing the Lipschitzconstant. Finally, one can remove the non-tangential maximal function, using the resultson the Dirichlet problem for the Stokes system, which are established in part 2. See parts1 and 2 for the details. Some partial results in this direction were previously announcedin [26]. The third part of Section 2 deals with the Dirichlet problem for the biharmonicequation �2 ( a fourth order elliptic equation), on an arbitrary Lipschitz domain in Rn.This sketches joint work of B. Dahlberg, C. Kenig and G. Verchota ([11]). The case of C1domains in the plane was previsouly treated by J. Cohen and J. Gosselin [2], using layerpotentials and compactness. We are able to reduce the problem, for an arbitrary Lipschitzdomain in Rn, to a bilinear estimate for harmonic functions. This is a Lipschitz domainversion of the paraproduct of J. M. Bony. See part 3 of Section 2 for further details.Compete proofs of the results explained in Section 1, part 2, and Section 2, will appear infuture publicaitons. 71
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Section 1: Laplace's equationPart 1: The theory on a Lipschitz domain, for Laplace's equation,by the method of layer potentialsA bounded Lipschitz domainD � Rn is one which is locally given by the domain above thegraph of a Lipschitz function. For such a domain D, the non-tangential region of opening� at a point Q 2 @D is ��(Q) = fX 2 D : jX � Qj < (1 + �)dist (X; @D)g. All theresults in this paer are valid, when suitably interpreted for all bounded Lipschitz domainsin Rn; n � 2, with the non-tangential approach regions de�ned above. For simplicity, inthis exposition we will restrict ourselves to the case n � 3 (and sometimes even to thecase n = 3), and to domains D � Rn; D = f(x; y) : y > '(x)g, where ' : Rn�1 ! R isa Lipschitz function, with Lipschitz constant M , i.e., j'(x) � '(x0)j � M jx � x0j. D� =f(x; y) : y < '(x)g. For �xed M 0 < M;�e(x) = f(z; y) : (y � '(x)) > �M 0jz � xjg � D�,and �i(x) = f(z; y) : (y � '(x)) > M 0jz � xjg � D. Points in D will usually be denotedby X, while points on @D by Q = (x; '(x)) or simply by x. Nx or NQ will denote theunit normal to @D = � at Q = (x; '(x)). If u is a function de�ned on Rn n �, andQ 2 @D; u�(Q) will denote lim X!QX2�i(Q) u(X) or lim X!QX2�e(Q) u(X), respectively. If u is afunction de�ned on D;N(u)(Q) = supX2�i(Q) ju(X)j.We wish to solve the problems(D)� �u = 0 in Duj@D= f 2 L2(@D; d�) ; (N)� �u = 0 in D@u@N j@D= f 2 L2(@D; d�)The results here areTheorem 1.1.1: There exists a unique u such that N(u) 2 L2(@D; d�), solving (D),where the boundary values are taken non-tangentially a.e. Moreover, the solution u hasthe form u(X) = 1!n Z@D hX �Q;NQijQ�Xjn g(Q)d�(Q);for some g 2 L2(@D; d�).Theorem 1.1.2. There exists a unique u tending to 0 at 1, such that N(ru) 2L2(@D; d�), solving (N) in the sense that NQ � ru(X)! f(Q) as X ! Q non-tantentiallya.e. Moreover, the solution u has the formu(X) = �1!n(n� 2) Z@D 1jX �Qjn�2 g(Q)d�(Q);73



for some g 2 L2(@D; d�).In order to prove the above theorems, we introduceKg(x) = 1!n Z@D hX �Q;NQijX �Qjn g(Q)d�(Q)and Sg(X) = �1!n(n� 2) Z@D 1jX �Qjn�2 g(Q)d�(Q):If Q = (X;'(x)); X = (z; y), thenKg(z; y) = 1!n ZRn�1 y � '(x)� (z � x) � r'(x)[jx� zj2 + ['(x)� '(z)]2]n2 g(x)dxSg(z; y) = �1!n(n� 2) ZRn�1 p1 + jr'(x)j2[jx� zj2 + ['(x)� y]2]n�22 g(x)dx:Theorem 1.1.3. a) If g 2 Lp(@D; d�); 1 < p <1, then N(rSg); N(Kg) also belong toLp(@D; d�) and their norms are bounded by CkgkLp(@D;d�).lim"!0 1!n Zjx�zj>" '(z)� '(x)� (z � x) � r'(x)[jx� zj2 + ['(x)� '(z)]2]n=2 g(x)dx = Kg(z)(b)exists a.e. and kKgkLp(@D;d�) � CkgkLp(@D;d�); 1 < p <1;lim"!0 �1!n Zjz�xj>" (z � x; '(z)� '(x))p1 + jr'(x)j2[j2� xj2 + ['(z)� '(x)]2]n=2 g(x)dxexists a.e. and in Lp(@D; d�), and its Lp norm is bounded by CkgkLp(@D;d�); 1 < p <1.(Kg)�(Q) = �12g(Q) +Kg(Q)(c) (rSg)�(z) = �12g(z)Nz + 1!n lim"!0Zjz�xj>" (z � x; '(z)� '(x))p(1 + jr'(x)j2)[jz � xj2 + ["(z)� "(x)]2]n=2 gCorollary 1.1.4. (NzrSg)�(z)� = 12g(z)�K�g(z), where K� is the L2(@D; d�) adjointof K.The proof of Theorem 1.1.3 is an easy consequence of the deep results of Coifman-McIntosh-Meyer ([3]). 74



It is easy to see that (at least the existence part) of Theorems 1.1. and 1.1.2 will followimmediately if we can show that (12I + K) and 12I + K�) are invertible on L2(@D; d�).This is the result of G. Verchota ([36]).Theorem 1.1.5. (�12I +K); (�12I +K�) are invertible on L2(@D; d�).In order to do so, we show that if f 2 L2(@D; d�); k(12I + K�)fkL2(@D;d�) � k(12I �K�)fkL2(@D;d�), where the constants of equivalence depend only on the Lipschitz constantM . Let us take this for granted, and show, for example, that 12I + K� is invertible. Todo this, note �rst that if T = 12I +K�; kTfkL2 � CkfkL2, where C depends only on theLipschitz constant M . For 0 � t � 1, consider the operator Tt = 12I + K�t , where K�tis the operator corresponding to the domain de�ned by t'. Then, T0 = 12I; T1 = T , and@@tTt : Lp(Rn�1)! Lp(Rn�1); 1 < p <1 with bound independent of t, by the theorem ofCoifman-McIntosh-Meyer. Moreover, for each t, kTtfkL2 � CkfkL2, C independent of t.The invertibility of T now follows from the continuity mehtod:Lemma 1.1.6. Suppose that Tt : L2(Rn�1)! L2(Rn�1) satisfy(a) kTtfkL2 � C1kfkL2(b) kTtf � TsfkL2 � C2jt� sjkfkL2; 0 � t; s � 1(c) T0 : L2(Rn�1)! L2(Rn�1) is invertible.Then, T1 is invertible.The proof of 1.1.6 is very simple. We are thus reduced to proving(1.1.7) k(12I +K�)fkL2(@D;d�) � k(12I �K�)fkL2(@D;d�).In order to prove (1.1.7), we will use the following formula, which goes back to Rellich [33](see also [31], [30], [22]).Lemma 1.1.8. Assume that u 2 Lip ( �D);�u = 0 in D, and u and its derivatives aresuitablly small at 1. Then if en is the unit vector in the direction of the y-axis,Z@DhNQ; enijruj2d� = 2Z@D @u@y � @u@N d�:75



Proof. Observe that div (enjruj2) = @@y jruj2 = 2 @@yru � ru, while div �@u@yru� =@@yru � ru+ @u@y � div ru = @@yruru. Stokes' theorem now gives the lemma.We will now deduce a few consequences of the Rellich identity. Recall thatNx = (�r'(x); 1)=p1 + jr'(x)j2, so that 1(1 +M2)1=2 � hNx; eni � 1.Corollary 1.1.9. Let u be as in 1.1.8, and let T1(x); T2(x); : : : ; Tn�1(x) be an orthogonalbasis for the tangent plane to @D at (x; '(x)). Let jrtu(x)j2 = n�1Xj=1 jhru(x); Tj(x)ij2. Then,Z@D � @u@N �2d� � C Z@D jrtuj2d�:Proof. Let � = en�hNx; eniNx, so that � is a linear combination of T1(x); T2(x); : : : ; Tn�1(x).Then, @u@y = hNx; eni @u@N + h�;rui:Also, jruj2 = � @u@N �2 + jrtuj2;and so, Z@DhNx; eni� @u@N �2d� + Z@DhNx; enijrtuj2d� == 2Z@DhNx; eni� @u@N �2 + 2Z@Dh�;rui� @u@N �d�:Hence, Z@DhNx; eni� @u@N �2d� = Z@DhNx; enijrtuj2d� � 2Z@Dh�;rui @u@N d�:So, Z@D � @u@N �2d� � C Z@D jrtuj2d� + C(Z@D jrtuj2d�)1=2(Z@D � @u@N �2d��1=2;and the corollary follows. 76



Corollary 1.1.10. Let u be as in 1.1.8. Then,Z@D jrtuj2d� � cZ@D � @u@N �2d�:Proof. Z@D jruj2d� � 2� Z@D jruj2d��1=2� Z@D j @u@N j2d��1=2, and the corollary follows.Corollary 1.1.11. Let u be as in 1.1.8. ThenZ@D jrtuj2d� � Z@D j @u@N j2d�:In order to prove 1.1.7, let u = Sg. Because of 1.1.3c, rtu is continuous across theboundary, while by 1.1.4, � @u@N �� = (�12I �K�)g:We now apply 1.1.11 in D and D�, to obtain 1.1.7. This �nishes the proof of 1.1.1 and1.1.2.We now turn our attention to L2 regularity in the Dirichlet problem.De�nition 1.1.12. f 2 Lp1(�); 1 < p <1, if f(x; '(x)) has a distributional gradient inLp(Rn�1). It is easy to check that if F is any extension to Rn of f , then rxF (x; '(x))is well de�ned, and belongs to Lp(�). We call this rtf . The norm in Lp1(�) will bekrtfkLp(�).Theorem 1.1.13. The single layer potential S maps L2(�) into L21(�) boundedly, andhas a bounded inverse.Proof. The boundedness follows from 1.1.3 a). Because of the L2-Neumann theory, and1.1.11, krtS(f)kL2(�) � C @S@N (f)kL2(�) � CkfkL2(�). The argument used in the proof of1.1.5 now proves 1.1.13.Theorem 1.1.14. Given f 2 L21(�), there exists a harmonic function u, withkN(ru)kL2(�) � CkrtfkL2(�), and such that rtu = rtf (a.e.) non-tangentially on �. uis unique (modulo constants), and we can choose u = S(g), where g 2 L2(�).The existence part of 1.1.14 follows directly from 1.1.13.77



Part 2: The Lp theory for Laplace's equation on a Lipschitz domainThe main results in this section are:Theorem 1.2.1. There exists " = "(M) > 0 such that, given f 2 Lp(@D; d�), 2 � " �p < 1, there exists a unique u harmonic in D, with N(u) 2 Lp(@D; d�), such that uconverges non-tangentially almost everywhere to f . Moreover, the solution u has the formu(x) = 1!n Z@D hX �Q;NQijX �Qjn g(Q)d�(Q);for some g 2 Lp(@D; d�).Theorem 1.2.2. The exists " = "(M) > 0, such that, given f 2 Lp(@D; d�); 1 < p �2+", there exists a unique u harmonic in D, tending to 0 at1, with N(ru) 2 Lp(@D; d�),such that NQ �ru(X) covnergens non-tangentially a.e. to f(Q). Moreover, u has the formu(X) = �1!n(n� 2) Z@D 1jX �Qjn�2 g(Q)d�(Q);for some g 2 Lp(@D; d�).Theorem 1.2.3. There exists " = "(M) > 0 such that given f 2 Lp1(�); 1 < p � 2 + ",there exists a harmonic funciton u, withkN(ru)kLp(�) � CkrtfkLp(�);and such that rtu = rtf a.e. non-tangentially on �, u is unique (modulo constants).Moreover, u has the formu(x) = �1!n(n� 2) Z@D 1jX �Qjn�2 g(Q)d�(Q);for some g 2 Lp(@D; d�).The case p = 2 of the above theorems was discussed in Part 1. The �rst part of 1.2.1 (i.e.,without the representation formula), is due to B. Dahlberg (1977) ([7]). Theorem 1.2.3 was�rst proved by G. Verchota (1982) ([36]). The representation formula in 1.2.1, Theorem1.2.2, and the proof that we are going to present of 1.2.3 are due to B. Dahlberg and C.Kenig (1984) ([9]). Just like in Seciton 1, 1.2.1, 1.2.2, and 1.2.3 follow from:78



Theorem 1.2.4. There exists " = "(M) > 0 such taht (�12I � K�) is invertible inLp(@D; d�); 1 < p � 2 + "; (�12I + K) is invertible in Lp(@D; d�); 2 � " � p < 1, andS : Lp(@D; @�)! Lp1(@D; d�) is invertible, 1 < p � 2 + ".In order to prove Theorem 1.2.4, just as in Part 1, it is enough to show that if u = Sf , fsince, then, for 1 < p � 2 + ",krtukLp(@D;d�) �  @u@N Lp(@D;d�):This will be done by proving the following two theorems:Theorem 1.2.5. Let �u = 0 in D. Then kN(ru)kLp(@D;d�) � C @u@NLp(@D;d�); 1 < p �2 + ".Theorem 1.2.6. Let �u = 0 in D. ThenkN(ru)kLp(@D;d�) � CkrtukLp(@D;d�); 1 < p � 2 + ":We �rst turn our attention to the case 1 < p < 2 of Theorem 1.2.5. In order to do so, weintroduce some de�nitions. A surface ball B in � is a set of the form (x; '(x)), where xbelongs to a ball in Rn�1.De�nition 1.2.7. An atom a on � is a function supported in a surface ball B, withkakL1 � 1=�(B), and with R� ad� = 0.Notice that atoms are in particular L2 functions. The following interpolation theorem willbe of importance to us.Theorem 1.2.8. Let T be a linear operator such that kTfkL2(�) � CkfkL2(�), and suchthat for all atoms a, kTakL1(�) � C. Then, for 1 < p < 2, kTfkLp(�) � CkfkLp(�).For a proof of this theorem, see [5]. Thus, in order to establish the case 1 < p < 1 of 1.2.5,it su�ces to show that if a = @u@N is an atom, then kN(ru)kL1(�) � C. By dilation andtranslation invariance we can assume that '(0) = 0; supp a � B1 = f(x; '(x)) : jxj < 1g.Let B� be a large ball centred at (0; 0) in Rn, which contains (x; '(x)); jxj < 2. Thediameter of B� depends only on M . Since kakL2(�) � 1�(B1)1=2 = C, by the L2-Neumantheory, Z@D\B�N(ru) � C Z@D\B�N(ru)2d� � c:79



Thus, we only have to estimate RCB�\@D(ru)d�. We will do so by appealing to the regu-larity theory for divergence form elliptic equations. Consider the bi-Lipschitzian mapping� : D ! D� given by �(x; y) = (x; '(x) � [y � '(x)]). De�ne u� on D� by the formulau� = u � ��1. A simple calculation shows that, in D�; u� veri�es (in the weak sense)the equation div (A(x; y)ru�) = 0, where A(x; y) = 1J�(X) � (�0)t(X) � (�0)(X), whereX = ��1(x; y). It is easy to see that A 2 L1(D�), and hA(x; y)�; �i � Cj�j2. Notice alsothat supp @u@N � B1 � B� \ @D. De�ne nowB(x; y) = � I for (x; y) 2 DA(x; y) for (x; y) 2 D�;and ~u(x; y) = � u(x; y) for (x; y) 2 Du�(x; y) for (x; y) 2 D�:Because @u@N = 0 in @D n B�, it is very easy to see that ~u is a (weak) solution in Rn nB� of the divergence form elliptic equation with bounded measurable coe�cients, L~u =div B(x; y)r~u = 0. In order to estimate u, (and hence ru) at 1, we use the followingtheorem of J. Serrin and H. Weinberger ([34]).Theorem 1.2.9. Let ~u solve L~u = 0 in Rn n B�, and suppose that k~ukL1(RnnB�) < 1.Let g(X) solve Lg = 0 in jXj > 1, with g(X) � jXj2�n. Then, ~u(X) = ~u1+�g(X)+v(X),where Lv = 0 in Rn n B�, and jv(X)j � Ck~ukL1(RnnB�) � jXj2�n�� , where � > 0; C > 0depend only on the ellipticity constants of L., Moreover, � = c R B(X)r~u(X) � r (X),where  2 C1(Rn);  = 0 for X in 2B�, and  � 1 for large X.Let us assume for the time being that u is bounded, and let us show that if � is as in 1.2.9,then � = 0. Pick a  as in 1.2.9. In D;B(X) = I, and soZD Brur = ZDru � r = lim"!0ZD"� ru � r ;where D"� = f(x; y) : j(x; y)j < �; y > '(x) + "g;and � is large. The right-hand side equalslim"!0 Z@D"�  � @u@N = lim"!0 Z@D"�[ � 1] @u@N ;since, by the harmonicity of u, Z@D"� @u@N = 0:80



Let @D"�;1 = f(x; y) 2 @D"� : y = '(x) + "g;and @D"�;2 = @D"� n @D"�;1. Then,lim"!0 Z@D"�[ � 1] @u@N = lim"!0 Z@D"�;1 [ � 1] @u@N + lim"!0 Z@D"�;2 [ � 1] @u@N = Z@D[ � 1]a == Z@D  a� Z@D a = Z@D  a = 0;since  � 0 on supp a. Moreover RD� Br~ur = RDru � r �, where  � =  � �, byour construction of B. The last term is also 0 by the same argument, and so � = 0. Wenow show that u (and hence ~u) is bounded. We will assume that n � 4 for simplicity.Since kakL2(�) � C, we know that u(X) = Cn Z@D f(Q)jX �Qjn�2d�(Q), with kfkL2(�) � C.Now, for X 2 D1 = f(x; y) : y > '(x) + 1g; 1jX �Qjn�2 � C1 + jQjn�2 2 L2(�) and sou 2 L1(D1). Let now B be any ball in Rn so that 2B � Rn n B�, B is of unit size,and such that a �xed fraction of B is contained in D1. Since N(ru) 2 L2(�), with normless than C; R2B\D jruj2 � C, and moreover on B \ D1; ju(x)j � C. Therefore, by thePoincare inequality R2B ~u2 � C. But, since ~u solves L~u = 0; maxB ~u � C�R2B j~uj2)1=2 � C,([29]). Therefore, ~u 2 L1(Rn n B�); k~ukL1(RnnB�) � C. Hence, since � = 0;ru = rv,and jv(x; y)j � C=(jxj+ jyj)n�2+�; � > 0. For R � R0 = diam B�, set b(R) = RAR N(ru)2,where AR = f(x; '(x)) : R < jxj < 2Rg.For each �xed R, letN1(ru)(x) = supfjru(z; y)j : (z; y) 2 �i(x);dis ((z; y); @D) � �Rg;N2(ru)(x) = supfjru(z; y)j : (z; y) 2 �i(x);dist ((z; y); @D) � �Rg:In the set where the sup in N2 is taken, u is harmonic, and the distance of any pointX to the boundary is comparable to jXj. Thus, using our bound on v, we see thatN2(ru)(x) � C=jXjn�1+� � C=Rn�1+� , and so RAR N2(ru)2 � CR1�n�2� . Let now
� = f(x; y) : '(x) < y < '(x) + CR; �R < jXj < r�1Rg; � 2 �14 ; 12�:By the L2-Neumann theory in 
� ; RAR N1(ru)2d� � C R@
� jruj2d�. Integrating in � from1=4 to 1=2 givesZAR N1(ru)2d� � CR Z
1=4n
1=2 jruj2dX � CR3 ZC1R<jXj<C2R u2;81



since L~u = 0 (see [29] for example). The right-hand side is bounded by CR3 1R2(n�2)�2� .Then, ZAR N(ru) � C� ZAR N(ru)2�1=2Rn�12 � CR�� :Choosing now R = 2j, and adding in j, we obtain the desired estimate.We now turn to the case 1 < p < 2 of 1.2.6. We need a further de�nition.De�nition 1.2.10. A function a is an H11 atom if A = rta satis�es (a) supp A � B, asurface ball, (b) kAkL1 � 1=�(B), (c) R Ad� = 0.We will use the following interpolation result:Theorem 1.2.11. Let T be a linear operator such thatkTfkL2(�) � CkfkL21(�)and kTakL1(�) < Cfor all H11 atoms a. Then, for 1 < p < 2,kTfkLp(�) � CkfkLp1(�):Hence, all we need to show is that if �u = 0; rtu = rta, and a is a unit size H11 atom,N(ru) 2 L1(�). But note that if we let~u(x; y) = � u(x; y) (x; y) 2 D�u�(x; y) (x; y) 2 D� ;then ~u is a weak solution of L~u = 0 in Rn nB�, since uj@DnB�= 0. Then, ~u = ~u1 +�g+ v,but � = 0 since ~u� ~u1 must change sign at 1. The argument is then identical to the onegiven before.Before we pass to the case 2 < p < 2 + ", we would like to point out that using thetechniques described above, one can develop the Stein-Weiss Hardy space theory on anarbitrary Lipschitz domain in Rn. This generalizes the results for n = 2 obtained in [24]and [25], and the results for C1 domains in [16].Some of the results one can obtain are the following: LetH1at(@D) = f��iai : �j�ij <1; ai is an atomg;H11;at(@D) = f��iai : �j�ij < +1; ai is an H11 atomg:82



Theorem 1.2.12. a) Given f 2 H1at(@D), there exists a unique harmonic function u,which tends to 0 at 1, such that N(ru) 2 L1(@D), and such that NQ � ru(X) ! f(Q)non-tangentially a.e. Moreover, u(X) = S(g)(X); g 2 H1at. Also, uj@D2 H11;at(@D). b)Given f 2 H11;at, there exists a unique (modulo constants) harmonic function u, such thatN(ru) 2 L1(@D), and such that rtuj@D= rtf a.e. Moreover, u = S(g); g 2 H1at, and@u@N 2 H1at(@D). c) If u is harmonic, and N(ru) 2 L1(@D), then @u@N 2 H1at(@D); uj@D2H11;at(@D). d) f 2 H1at(@D) if and only if N(rSf) 2 L1(@D), if and only if �12I �K�)f 2H1at(@D).We turn now to the Lp theory, 2 < p < 2 + ". In this case, the results are obtained asautomatic real variable consequences of the fact that the L2 results hold for all Lipschitzdomains. We will now show that kN(ru)kLp(�) � Ck @u@N kLp(�) for 2 < p < 2 + ".The geometry will be clearer if we do it in Rn+, and then we transfer it to D by thebi-Lipschitzian mapping � : Rn+ ! D; �(x; y) = (x; y + '(x)):We will systematically ignore the distinction between sets in Rn+ and their images under�. Let  = f(x; y) 2 Rn+ : jxj < yg; � = f(x; y) 2 Rn+ : �jxj < yg;where � is a small constant to be chosen. Letm(x) = sup(z;y)2x+ jru(z; y)j;and m�(x) = sup(z;y)2x+� jru(z; y)j:Our aim is to show that there is a small "0 > 0 such thatZ m2+"dx � cZ jf j2+"dxfor all 0 < " � "0, where f = @u@N . Let h = M(f2)1=2, where M denotes the Hardy-Littlewood maximal operator. LetE� = fx 2 Rn�1 : m�(x) > �g:We claim that Zfm�>�;h��] � C�2jE�j+ C�Zfm�>�gm2:83



Let us assume the claim, and prove the desired estimate. First, note thatZE�m2 � Zfm�>�;h��gm2 + Zfh>�gm2 � C�2jE�j+ C�Zfm�>�gm2 + Zfh>�gm2;by the claim. Choose now and �x � so that C � � < 1=2. Then,ZE�m2 � C�2jE�j+ C Zfh��gm2:For " > 0, Z m2+" = "Z 10 �"�1 Zfm>�gm2d� � "Z 10 �"�1 ZE� m2d� �� C"Z 10 �1+"jfm� > �gjd� + C"Z 10 �"�1� Zh>�m2�d�:By a well-knwon inequality (see [18] for example), jE�j � C�jfm > �gj. Thus,Z m2+" � C"Z 10 �1+"jfm > �gjd� + C"Z 10 �"�1� Zh>�m2�d� �� C"Z m2+" + C Z m2n":If we now choose "0 so thatC"0 < 1=2; for " < "0;Z m2+" � C Z m2n":If we now use Holder's inequality with exponents 2+"2 and 2+"" , we see thatZ m2+" � C� Z m2+"� 22+" � Z M(f2) 2+"2 � "2+" ;and the desired inequality follows from the Hardy-Littlewood maximal theorem.It remains to establish the claim. Let fQkg be a Whitney decomposition of the set E� =fm� > �g, such that 3Qk � E�, and f3Qkg has bounded overlap. Fix k, we can assumethat there exists x 2 Qk such that h(x) � �, and hence, R2Qk f2 � C�2jQkj. For 1 � � � 2,let Qk;� = �Qk, and ~Qk;� = f(x; y) : x 2 �Qk; 0 < y < � length (Qk)g:~Qk;� (and �( ~Qk;�)) is a Lipschitz domain, uniformly in k; � . Also, by construction of Qk,there exists xk with dist (xk; Qk) � length (Qk) and such that m�(xk) � �. LetAk;� = @Qk;� \ xk + �Bk;� = @Qk;� \Rn+ nAk;� ;84



so that @Qk;� = Qk;� [Ak;� [Bk;� :Note that the height of Bk;� is dominated by C� length (Qk), and that jruj � � on Ak;� .Let m1 be the maximal function of ru, corresponding to the domain ~Qk;� (i.e., where thecones are truncated at height � `(Qk)). Then, for x 2 Qk;m(x) � m1(x) + �. Also,ZQk m21 � Z@ ~Qk;� m21 � (using the L2-theory on ~Qk;�) �C ZBk;� jruj2d� + cZAk;� jruj2d� + cZ2Qk f2 � C ZBk;� jruj2d� + C�2jQkj:Integrating in � between 1 and 2, we see thatZQk m21 � C`(Qk) Z �`(Qk)0 Z2Qk jruj2 + C�2jQkj � C�Z2Qk m2 + C�2jQkj:Thus, ZQk m2 � C�Z2Qk m2 + C�2jQkj:Adding in k, we see thatZfm�>�;h��gm2 � C�2jE�j+ C�Zfm�>�gm2;which is the claim. Note also that the same argument gives the estimate kN(ru)kp �Ckrtukp; 2 < p < 2 + ", and the Lp theory is thus completed.Section 2. Higher order boundary value problemsPart 1: The systems of elastostaticsIn this part we will sketch the extension of the L2 results for the Laplace equation tothe systems of linear elastostatics on Lipschitz domains. These results are joint work of B.Dahlberg, C. Kenig and G. Verchota, and will be discussed in detail in a forthcoming paper([12]). Here we will describe some of the main ideas in that work. For simplicity, here werestrict our attention to domains D above the graph of a Lipschitz function ' : R2 ! R.85



Let � > 0; � � 0 be constants (Lame moduli). We will seek to solve the following boundaryvalue problems, where ~u = (u1; u2; u3)��~u+ (� + �)rdiv ~u = 0 in D~uj@D= ~f 2 L2(@D; d�)(2.1.1) ��~u+ (� + �)rdiv ~u = 0 in D�(div ~u)N + �fr~u+ (r~u)tgN j@D= ~f 2 L2(@D; d�):(2.1.2)(2.1.1) corresponds to knowing the displacement vector ~u on the boundary of D, while(2.1.2) corresponds to knowing the surface stresses on the boundary of D. We seek tosolve (2.1.1) and (2.1.2) by the method of layer potentials. In order to do so, we introducethe Kelvin matrix of fundamental solutions (see [27] for example),�(X) = (�ij(X));where �ij(X) = A4� �ijjXj + C4� XiXjjXj3 ;and A = 12�1� + 12� + ��; C = 12�1� � 12�+ ��:We will also introduce the stress operator T , whereT~u = �(div ~u)N + �fr~u+r~utgN:The double layer potential of a density ~g(Q) is then given by~u(X) = K~g(X) = Z@DfT (Q)�(X �Q)gt~g(Q)d�(Q);where the operator T is applied to each column of the matrix �.The single layer potential of a denisty ~g(Q) is~u(X) = S~g(X) = Z@D �(X �Q) � ~g(Q)d�(Q):Our main results here parallel those of Section 1, Part 1. They are86



Theorem 2.1.3. (a) There exists a unique solution of problem 2.1.1 in D, with N(~u) 2L2(@D; d�). Moreover, the solution u has the form ~u(x) = K~g(x); ~g 2 L2(@D; d�).(b) There exists a unique solution of (2.1.2) in D, which is 0 at in�nity, with N(r~u) 2L2(@D; d�). Moreover, the solution ~u has the form ~u(X) = S~g(X); ~g 2 L2(@D; d�).(c) If the data ~f in 2.1.1 belongs to L21(@D; d�), then we can solve (2.1.1), with N(r~u) 2L2(@D; d�).The proof of Theorem 2.1.3 starts out following the pattern we used to prove 1.1.1, 1.1.2and 1.1.14. We �rst show, as in Theorem 1.1.3, that the following lemma holds:Lemma 2.1.4. Let K~g; S~g be de�ned as above, so that they both solve ��~u + (� +�)r div ~u = 0 in R3 n @D. Then,kN(K~g)kLp(@D;d�) � Ck~gkLp(@D;d�);(a) kN(rS~g)kLp(@D;d�) � Ck~gkLp(@D;d�); for 1 < p <1:(K~g)�(P ) = �12~g(P ) +K~g(P )(b) � @@Xi (S~g)j)�(P ) = ��A+ C2 ni(P )gj(P ) � ni(P ) � nj(P )hNp; g(P )i	++ �p:v:Z@D @@Pi�(P �Q)~g(Q)d�(Q))j;where K~g(P ) = p:v: R@DfT (Q)�(P � Q)gt~g(Q)d�(Q), and A;C are the constants in thede�nition of the fundamental solution.Thus, just as in Section 1, part 1 reduces to proving the invertibility on L2(@D; d�) of�12I +K; �12I +K�, and the invertibility from L2(@D; d�) onto L21(@D; d�) of S. Just asbefore, using the jump relations, it su�ces to show that if ~u(X) = S~g(X), thenkT~ukL2(@D;d�) � krt~ukL2(@D;d�):Before explaining the di�culties in doing so, it is very useful to explain the stress operatorT (and thus the boundary value problem 2.1.2), from the point of view of the theory ofconstant coe�cient second order elliptic systems. We go back to working on Rn, and usethe summation convention.Let arsij ; 1 � r; s � m; 1 � i; j � n be constants satisfying the ellipticity conditionarsij �i�j�r�s � Cj�j2j�j2and the symmetry condition arsij = asrji . Consider vector valued functions ~u = (u1; : : : ; um)on Rn satisfying the divergence form system@@Xiarsij @@Xj us = 0 in D:87



From variational considerations, the most natural boundary conditions are Dirichlet con-ditions (~uj@D= ~f) or Neumann type conditions, @~u@� = niarsij @us@Xj = fr. The interpreta-tion of problem 2.1.2 in this context is that we can �nd constants arsij ; 1 � i; j � 3; 1 �r; s � 3, which satisfy the ellipticity condition and the symmetry condition, and such that��~u+(�+�)rdiv ~u = 0 in D if and only if @@Xiarsij @us@Xj = 0 in D, and with T~u = @@�~u. Inorder to obtain the equivalence between the tangential derivatives and the stress operator,we need an identity of the Rellich type. Such identities are available for general constantcoe�cient systems (see [32], [30]).Lemma 2.1.5 (The Rellich, Payne-Weinberger, Ne�cas identities). Suppose that@@Xiarsij @@Xj us = 0 in D, arsij = asrji ;~h is a constant vector in Rn, and ~u and its derivativesare suitably small at 1. Then,Z@D h`n`arsij @ur@Xi @us@Xj d� = 2Z@D hi @ur@Xin`ars`j @us@Xj d�:Proof. Apply the divergence theorem to the formula@@X` ��h`arsij � hiars`j � hjarsi` � @ur@Xi � @us@Xj � = 0Remark 1: Note that if we are dealing with the case m = 1; aij = I, and we choose~h = en, we recover the identity we used before for Laplace's equation.Remark 2: Note that if we had the stronger ellipticity assumption that arsij �ri �sj � CP`;t j� t̀j2,we would have, if @D = f(x; '(x)) : ' : Rn�1 ! R; kr'k1 � Mg, that krtukL2(@D;d�) �k@u@� kL2(@D;d�). In fact, if we take ~h = en, then we would haveXr Z@D jrurj2d� � cZ@D h`n`arsij @ur@Xi @us@Xj d� == 2C Z@D hi @ur@Xi � n`ars`j @us@Xj d� � 2C�Xr Z@D jrurj2d��1=2� Z@D j@u@� j2d��1=2:Thus, Pr R@D jrurj2d� � C R@D j@u@� j2d�.For the opposite inequality, observe that for each r; s; j �xed, the vector hin`ars`j � h`n`arsijis perpendicular to N . Because of Lemma 2.1.5Z@D h`n`arsij @ur@Xi @us@Xj d� = 2Z@D(h`n`arsij � hin`ars`j ) @u`@Xi � @us@Xj d�:88



Hence, Z@D jruj2d� � C� Z@D jrtuj2d��1=2� Z@D jruj2d��1=2;and so Z@D j@u@� j2d� � cZ@D jruj2d� � cZ@D jrtuj2:Remark 3: In the case in which we are interested, i.e., the case of the systems of elasto-statics, arsij @us@Xi � @ur@Xj = �(div ~u)2 + �2 Xi;j � @uj@Xi + @ui@Xj �2;which clearly does not satisfy arsij �ri �sj � C X̀;t j� t̀j2;since the quadratic form involves only the symmetric part of the matrix (�ri ). In this case,of course @~u@� = T~u = �(div ~u)N + �fr~u+r~utgN .Remark 4: The inequality kr~ukL2(@D;d�) � Ckrt~ukL2(@D;d�)holds in the general case, directly from Lemma 2.1.5, by a more complicated algebraicargument. In fact, as in Remark 2,Z@D h`n`arsij @ur@Xi @us@Xj d� = 2Z@D(h`n`arsij � hin`ars`j ) @u`@Xi � @us@Xj d�;and for �xed r; s; j; (h`n`arsij � hin`ars`j ) is a tangential vector. Thus,Z@D h`n`arsij @ur@Xi @us@Xj d� � C� Z@D jrt~uj2d��1=2� Z@D jr~uj2d��1=2:Consider now the matrix drs = (arsijninj)�1. This is a strictly positive matrix, sincearsij �i�j�r�s � Cj�j2j�j2. Moreover,drs�@u@� �r�@u@� �s � arsij @ur@Xi @us@Xj == drtniartij @ut@Xj � n`asm`k @um@Xk � arsij @ur@Xi @us@Xj == drsnkartk` @ut@X` � nmas�mv @u�@Xv � at�v` @ut@Xv @u�@X` == drsnkartkv @ut@Xv � nmas�m` @u�@X` � at�v` @ut@Xv @u�@X` == fdrsnkartkvnmas�m` � at�v`g @ut@Xv @u�@X` :89



Now, note that for t; �; ` �xed fdrsnkartkvnmas�m`�at�v`g is perpendicular toN , by our de�nitionof drs, and the symmetry of arsij :drsnkartkvnmastm`nv � at�v`nv = artkvnknvdrsastm`nm � at�m`nm == atrvknvnkdrsastm`nm � at�m`nm = �tsastm`nm � at�m`nm = at�m`nm � at�m`nm = 0:Therefore, Z@D h`n`drs�@~u@� �r�@~u@� �sd� � c� Z@D jrt~uj2d��1=2� Z@D jr~uj2d��1=2Now, �@~u@� �r � arskjnknj @us@N = niarsij @us@Xj � arskjnknjni @us@Xi == niarsij @us@Xj � arskinknjni @us@Xj = fniarsij � arskinkninjg @us@Xj == fniarsij � arsiknkninjg @us@Xj :But, for i; r; s �xed, arsij � arsiknknj is perpendicular to N , and soZ@D h`n`drsfartkjnknj @ut@N gfas�i` nin` @u�@N gd� �� C�� Z@D jrt~uj2@��1=2� Z@D jr~uj2d��1=2 + Z@D jrt~uj2d�	:We now choose ~h = en, so that h`n` � C, and recall that (drs) and (artkjnknj) are strictlypositive de�nite matrices. We then see thatZ@D j @~u@N j2d� � C��Z@D jrt~uj2d��1=2� Z@D jr~uj2d��1=2 + Z@D jrt~uj2d�	:Now, as jr~uj2 = jrt~uj2 + j @~u@N j2, the remark follows.Remark 5: In order to show that R@D jrt~uj2d� � C R@D jT~uj2d�, it su�ces to show thatZ@D jr~uj2d� � cZ@D j�(div ~u)I + �fr~u+r~utgj2d�:In fact, if this inequality holds, we would clearly have thatZ@D jr~uj2d� � C Z@D jr~u+r~utj2d�90



(Korn type inequality at the boundary). The Rellich-Payne/Weinberger-Ne�cas identity is,in this case (with ~h = en),Z@D nnf�2 jr~u+r~utj2 + �(div ~u)2gd� == 2Z@D @~u@y � f�(div ~u)N + �fr~u+r~utgNgd�:But then,Z@D jr~uj2d� � C� Z@D jr~uj2d��1=2� Z@D j�(div ~u)N + �fr~u+r~utgN j2d��1=2:The rest of part 1 is devoted to sketching the proof of the above inequality.Theorem 2.1.6. Let ~u solve ��~u+ (�+ �)r div ~u = 0 in D; ~u = S(~g), where ~g is nice.Then, there exists a constant C, which depends only on the Lipschitz constant of ' so thatZ@D jr~uj2d� � C Z@D j�(div ~u)I + �fr~u+r~utgj2d�:The proof of the above theorem proceeds in two steps. They are:Lemma 2.1.7. Let ~u be as in Theorem 2.1.6. Then,Z@DN(r~u)2d� � cZ@DN(�(div ~u)I + �fr~u+r~utg)2d�:Lemma 2.1.8. Let ~u be as in Theorem 2.1.6. Then,Z@DN(�(div ~u)I + �fr~u+r~utg)2d� � C Z@D j�(div ~u)I + �fr~u+r~utgj2d�:Lemma 2.1.7 is proved by �rst doing so in the case when the Lipschitz constant is small,and then passing to the general case by using the ideas of G. David ([13]). Lemma 2.1.8 isproved by observing that if ~v is any row of the matrix �(div ~u)I + �fr~u+r~utg, then ~vis a solution of the Stokes system8<: �~v = rp in Ddiv ~v = 0 in D~vj@D= ~f 2 L2(@D; d�)(S)This is checked directly by using the system of equations ��~u+ (� + �)rdiv ~u = 0. Onethen invokes the following Theorem of E. Fabes, C. Kenig and G. Verchota, whose proofwill be presented in the next section. 91



Theorem 2.1.9. Given ~f 2 L2(@D; d�), there exists a unique solution (~v; p) to system(S) with p tending to 0 at 1, and N(~v) 2 L2(@D; d�). Moreover,kN(~v)kL2(@D;d�) � Ck~fkL2(@D;d�):We now turn to a sketch of the proof of Lemma 2.1.7. We will need the following unpub-lished real variable lemma of G. David ([14]).Lemma 2.1.10. Let F : R � Rn ! R be a function of two variables t 2 R; x =(x1; : : : ; xn) 2 Rn. Assume that for each x, the function t ! F (t; x) is Lipschitz, withLipschitz constant less than or equal to M , and for each i; 1 � i � n, the functionxi ! F (t; x) is Lipschitz, with Lipschitz constant less than or equal to Mi, for any choiceof the other variables. Given an interval I � J = I � J1 � : : :� Jn, where the Ji's and Iare 1-dimensional compact intervals, there exists a function G(t; x) : R � Rn ! R withthe following properties:(a) G(t; x) � F (t; x) on I � J(b) If E = f(t; x) 2 I � J : F (t; x) = G(t; x)g, then jEj � 38jIjjJ j.(c) For each i, the function G(t; x1; x2; : : : ; xi�1;�; xi+1; : : : ; xn) is Lipschitz, with Lips-chitz constant less than or equal to Mi, and one of the following statements is true:Either for each x, �M � @G@t (t; x) � 4M5 , or for each x, �4M5 � @G@t (t; x) �M .The proof of this lemma is the same as in the 1-dimensional case, treating x as a parameter(see [13]).Before we procedd with the proof of Lemma 2.1.7, we would like to point out that in theanalogue of Lemma 2.1.7 for bounded domains, a normalization is necessary since if ~u(x)solves the systems of elastostatics so does ~u(x) + ~a + BX, where ~a is a constant vector,while B is any antisymmetric 3 � 3 matrix. The right-hand side of the inequality in theLemma of course remains unchanged, while the left-hand side increases if B 'increases'.The most convenient normalization is that for some �xed pointX� in the domainr~u(X�)�r~u(X�)t = 0. This also gives uniqueness modulo constants to problem 2.1.2 in boundeddomains.We now need to introduce some de�nitions. Let D0 � Rn+ be a �xed, C1 domain withf(x; 0) : jjjxjjj= max jxij � 1g � @D0,f(x; y) : 0 < y < 1; jjjxjjj � 1g � D0 � f(x; y) : 0 < y < 2; jjjxjjj< 2g:If ' : Rn�1 ! R is Lipschitz, with jjjr'jjj �M , we construct the mapping T' : Rn+ ! Rnby T'(x; y) = (x; cy + �y � '(x)) where � 2 C10 (Rn�1) is radial, R � = 1, and c = c(M) is92



chosen so that T'(Rn+) � f(x; y) : y > '(x)g, and so that T' is a bi-Lipschitzian mapping.Also, it is clear that T' is smooth for (x; y) with y > 0, and T'(x; 0) = (x; '(x)). Wewill denote by A' the point T'(0; 1). Lemma 2.1.7 is an easy consequence of the followingresult.Lemma 2.1.11. GivenM > 0 and ' with jjjr'jjj �M , there exists a constant C = C(M)such that for all functions ~u in D', which are Lipschitz in �D', which satisfy ��~u+ (� +�)rdiv ~u = 0 in D' and r~u(A') = r~u(A')t, we havekN'(r~u)kL2(@D;d�) � CkN'(�(div ~u)I + �fr~u+r~utg)kL2(@D;d�):Here N' is the non-tangential maximal operator corresponding to the domain D'.This lemma will be proved by a series of propositions. Before we proceed, we need tointroduce one more de�nition. We say that proposition (M;") holds if whenever ' is suchthat jjjr'jjj �M , and there exists a constant vector ~a with jjj~ajjj �M so that jjjr'�~ajjj � ",then for all Lipschitz functions ~u on �D', with ��~u + (� + �)rdiv ~u = 0 in D', withr~u(A') = r~ut(A') we havekN'(r~u)kL2(@D;d�) � CkN'(�(div ~u)I + �fr~u+r~utgkL2(@D;d�);where C = C(M;").Note that if proposition (M;") holds, then the corresponding estimates automatically holdfor all translates, rotates or dilates of the domains D' when ' satis�es the conditions inproposition (M;"). In the rest of this section, a coordinate chart will be a translate, rotateor dilate of a domain D'. The bottom B' of @D' will be T'(@D0 \ (x; 0) : x 2 Rn�1).Proposition 2.1.12. Given M > 0, there exists " = "(M) so that propostion (M;")holds.We will not give the proof of Proposition 2.1.12 here. We will just make a few remarks aboutits proof. First, in this case the stronger estimate kN'(r~u)kL2(@D;d�) � Ck�(div ~u)N +�fr~u + r~utgNkL2(@D;d�) holds. This is because in this case, the domain D' is a smallperturbation of the smooth domainDax. For the smooth domainDax, we can solve problem2.1.2 by the method of layer potentials (see [27], for example). If " is small, a perturbationanalysis based on the theorem of Coifman-McIntosh-Meyer ([3]) shows that this is still thecase. This easily gives the estimate claimed above.Proposition 2.1.13. For all M > 0; " > 0; � 2 (0; 0:1), if proposition (M;") holds, thenpropostion (1� �M; 1:1") holds.We postpone the proof of Proposition 2.1.13, and show �rst how Proposition 2.1.12 andProposition 2.1.13 yield Lemma 2.1.11. 93



Proof of Lemma 2.1.11. We will show that proposition (M;") holds for any M;". FixM;", and choose N so large that if "(10M) is as in Proposition 2.1.12, then (1:1)N"(10M) �". Pick now �j > 0 so that NYj=1(1 � �j) = 1=10. Then, since proposition (10M;"(10M))holds, by Proposition 2.1.12, applying Proposition 2.1.13 N times we see that proposition(M;") holds.We will now sketch the proof of Proposition 2.1.13. We �rst note that it su�ces to showthat kN'(r~u)kL2(@D;d�) � Ck ~N'(�(div ~u)I + �fr~u+r~vtgkL2(@D;d�)where ~N' is the non-tangential maximal operator with a wider opening of the non-tangentialregion. This follows because of classical arguments relating non-tangential maximal func-tions with di�erent openings (see [18]) for example). Pick now ' with jjjr'jjj � (1� �)M ,and such that there exists ~a with jjjr'� ~ajjj � 1:1"; jjj~ajjj � (1 � �)M . We will choose ~N'as follows: Since @D' nB' is smooth, it is easy to see that we can �nd a �nite number ofcoordinate charts (i.e., rotates, translates and dilates of D ), which are entirely containedin D', such that their bottoms B are contained in @D', such that T ((x; 0) : jjjxjjj < 1=2)cover @D', and such that the  's involved satisfy jjjr jjj � (1 � �2 )M and there exist ~a such that jjj~a jjj � (1� �2 )M , and jjjr � ~a jjj � 1:11". The non-tantential region de�ning~N', on T ((x; 0) : jjjxjjj < 12) is de�ned as follows: let F � f(x; 0) : jjjxjjj < 1=2g be aclosed set. Consider the cone on Rn+;  = f(x; y) 2 Rn+ : bjxj < yg, where b is a smallconstant. Consider now the domain DF on Rn+, given by DF = [x2F ((x; 0)+). Then DFis the domain above the graph of a Lipschitz function �, for which jjjr�jjj � cb, for someabsolute constant c (independent of F ). It is also easy to see that we can take now b sosmall, depending only on M and " such that T (DF ) is the domain above the graph of aLipschitz function ~ , with ~ �  , and which statis�esjjjr ~ jjj � (1� �10)M; jjjr ~ � ~a jjj � 1:111":The non-tangential region de�ning ~N', for Q 2 T ((x; 0) : jjjxjjj < 1=2) is then the imageunder T of (x; 0)+, with b chosen as above, suitably truncated, and where Q = T ((x; 0).Let now, to lighten notation, m = N'(r~u); �m = ~N'(�(div ~u)I + �fr~u+r~utg).For t > 0, consider the open-set Et = fm > tg. We now produce a Whitney typedecomposition of Et into a family of disjoint sets fUjg with the property that each Uj iscontained in T ((x; 0) : jjjxjjj < 1:2) for a coordinate chart D , each Uj containes T (Ij),where Ij is a cube in jjjxjjj< 1=2, and is contained in T (�Ij), where �Ij is a �xed multiple ofIj. Finally, we can also assume that there exists a constant �0 such that if diam (Uj) � �0,there exists a point Qj in @D', with dist (Qj; Uj) � diam Uj , such thatm(Qj) � t. Let now94



� > 1 be given. We claim that there exists � > 0 so small that if Ej = Uj\fm > �t; �m � �tgthen �(Ej) � (1 � �M)�(Uj), where �M > 0. Assume the claim for the time being. Then,Z@D' m2d� = 2Z 10 t�(Et)dt = 2�2 Z 10 t�(E�t)dt =Xj 2�2 Z 10 t�(Qj \ E�t)dt ��Xj 2�2 Z 10 t�(Ej)dt+ 2�2 Z 10 t�( �m > �t)dt ��Xj 2�2(1� �M )Z 10 t�(Qj)dt+ 2�2�2 Z 10 t�f �m > tgdt == �2 � (1 � �M)Z@D'm2d� + �2�2 Z@D' �m2d�:Thus, if we choose � > 1, but so that �2 � (1 � �M) < 1, the desired result follows. Itremains to establish the claim. We argue by contradiction. Suppose not, then �(Ej) >(1 � �M)�(Uj). Let ~Ej = T�1 (Ej). If �M is chosen su�ciently small, we can guraranteethat j ~Ej \ Ijj � :99jIjj. Let now Fj = ~Ej \ Ij, and construct now the Lipschitz function ~ corresponding to it, as in the de�nition of ~N'. Thus, ~ �  ; jjjr ~ jjj � (1 � �10)M; jjjr ~ �~a jjj � 1:111". We now apply Lemma 2.1.10 to ~ , one variable at a time, to �nd a Lipschitzfunction f , with f � ~ on Ij, such that if �Fj = fx 2 Ij : f = ~ g, then j �Fj \ Fjj � c�(Uj),with jjjrf jjj � (1 � �10)M , and such that there exists ~af , with jjj~af jjj � (1 � �10)M so thatjjjrf � ~af jjj � 451:111" < ". We can also arrange the truncation of our non-tangentialregions in such a way that on the appropriate rotate, translate and dilate of Df (whichof course is contained in the corresponding coordinate chart associated to D , which iscontained in D'), j�(div ~u)I + �fr~u+r~utgj � �t:To lighten the exposition, we will still denote by Df the translate, rotate and dilate ofDf . Note that proposition (M;") applies to it it. We divide the sets Uj into two types.Type I are those with diam Uj � �0, and type II those for which diam Uj � �0. We �rstdeal with the Uj of type I. In this case, Df has diameter of the order of 1. Because ofthe solvability of problem 2.1.2 for balls, and our normalization, we see that on a ballB � D'; diam B � 1; A' 2 B, we haveZB jr~uj2 � cZB j�div ~uI + �fr~u+r~utgj2:Joining Af to A' by a �nite number of balls, and using interior regularity results for thesystem ��~u+(�+�)r div ~u = 0, we see that jr~u(Af)j � C�t, for some absolute constant95



C. Then C�(Uj)�2t2 � ZT ( �Fj\Fj)m2d� � cZ@Df N2f (ru)d� �� C�(Uj)�2t2 + C Z@Df N2f �r~u� [r~u(Af)�r~ut(Af)]2 �d� �� C�(Uj)�2t2 + C Z@Df N2f (�(div ~u)I + �fr~u+r~utg)2d�;by (M;"). The last quantity is also bounded by C�(Uj)�2t2, which is a contradiction forsmall �. Now, assume that Uj is of type II. Note that in this case there exists Qj 2 @D',with dist (Qj; Uj) � diam Uj, and such that jr~u(x)j � t for all x in the non-tantentialregion associated to Qj. Because of this, it is easy to see, using the arguments we used tobound jr~u(Af )j in case I, that for all X in a neighborhood of Af and also on the top partof Df , we have that jr~u(X)j � t+C�t. Since for Q 2 T ( �Fj \Fj);m(Q) � �t, and � > 1,if � is small enough, we see that we must have Nf (r~u)(Q) � m(Q). Hence,Nf�r~u� �r~u(Af)�r~ut(Af)2 ��(Q) � (� � 1� C�)t � (� � 1)2 tif � is small and Q 2 T ( �Fj \ Fj). Thus, applying (M;") to Df , we see thatC(� � 1)2t2�(Uj) � ZT ( �Fj\Fj)Nf (r~u� �r~u(Af)�r~ut(Af)2 ��2d� �� Z@Df Nf�r~u� �r~u(Af) �r~ut(Af )2 ��2d� � C�(Uj)�2t2;a contradiction if � is small. This �nishes the proof of Proposition 2.1.13, and hence ofLemma 2.1.11.Part 2: The Stokes system of linear hydrostaticsIn this part I will sketch the proof of the L2 results for the Stokes system of hydrostatics.These results are joint work of E. Fabes, C. Kenig and G. Verchota ([17]). We will keepusing the notation introduced in Part 1.We seek a vector valued function ~u = (u1; u2; u3) and a scalar valued function p satisfying8<: �~u = rp in Ddiv ~u = 0 in D~uj@D= ~f 2 L2(@D; d�) in the non-tangential sense(2.2.1) 96



Theorem 2.2.2 (Also Theorem 2.1.9). Given ~f 2 L2(@D; d�), there exists a uniquesolution (~u; p) to (2.2.1), with p tending to 0 at 1, and N(~u) 2 L2(@D; d�). Moreover,~u(X) = K~g(X), with ~g 2 L2(@D; d�). (K will be de�ned below).In order to sketch the proof of 2.2.2, we introduce the matrix �(X) of fundamental solutions(see the book of Ladyzhenskaya [28]), �(X) = (�ij(X)), where �ij(X) = 18� �ijjXj+ 18� XiXjjXj3 ,and its corresponding pressure vectorq(X) = (qi(X)); where qi(X) = Xi4�jXj3 :Our solution of (2.2.2) will be given in the form of a double layer potential,~u(X) = K~g(X) = �Z@DfH 0(Q)�(X �Q)g~g(Q)d�(Q);where (H 0(Q)�(X �Q))i` = �ijq`(X �Q)nj(Q) + @�i`@Qj (X �Q)nj(Q):We will also use the single layer potential~u(X) = S~g(X) = Z@D �(X;Q)~g(Q)d�(Q):In the same way as one establishes 2.1.4,Lemma 2.2.3. Let K~g; S~g be de�ned as above, with ~g 2 L2(@D; d�). Then, they bothsolve �~u = rp in D, and D� div ~u = 0 in D and D�. Also(a) kN(K~g)kL2(@D;d�) � Ck~gkL2(@D;d�),(b) (K~g)�(P ) = �12~g(P )� p:v:Z@DfH 0(Q)�(P �Q)g~g(Q)d�(Q)(c) kN(rS~g)kL2(@D;d�) � Ck~gkL2(@D;d�)(d) � @@Xi (S~g)j��(P ) = ��ni(P )gj(P )2 � ni(P )nj(P )2 hNp; ~g(P )ig+ p:v:Z@D @@Pi�(P;Q)~g(Q)d�(Q)(e) (HS~g)�(P ) = �12~g(P ) + p:v:Z@DfH(P )�(P �Q)g~g(Q)d�(Q),97



where (H(X)�(X �Q))i` = nj(x)@�i`@Xj (X �Q)� �ijq`(X �Q)nj(X):For the proof of this lemma in the case of smooth domains, see [28].The proof of Theorem 2.2.2. (at least the existence part of it), reduces to the invertibility inL2(@D; d�) of the operator 12I+K, whereK~g(P ) = �p:v: R@DfH 0(Q)�(P�Q)g~g(Q)d�(Q).As in previous cases, it is enough to showk(12I �K�)~gkL2(@D;d�) � k(12I +K�)~gkL2(@D;d�):(2.2.4)This is shown by using the following two integral identities.Lemma 2.2.5. Let ~h be a constant vector in Rn, and suppose that �~u = �p; div ~u = 0,in D, and that ~u; p and their derivatives are suitablly small at 1. Then,Z@D h`n` @us@Xj � @us@Xj d� = 2Z@D @us@N � h` @us@X` d� � 2Z@D pnsh` @us@X`d�:Lemma 2.2.6. Let ~h; p and ~u be as in 2.2.5. Then,Z@D h`n`p2d� = 2Z@D hr @ur@N pd� � 2Z@D hr @ur@Xi @ui@N d� + 2Z@D hrns @us@Xj @ur@Xid�:The proofs of 2.2.5 and 2.2.6 are simple applicaitons of the properties of ~u; p, and thedivergence theorem.Choosing ~h = e3, we see that, from 2.2.6 we obtainCorollary 2.2.7. Let ~u; p be as in 2.2.6. Then , R@D p2d� � c R@D jr~uj2d�, where Cdepends only on M .A consequence of Corollary 2.2.7 and Lemma 2.2.5, is that if @~u@� = @~u@N � p �N , then wehaveCorollary 2.2.8. Let ~u; p be as in 2.2.5. Then,Z@D j@~u@� j2d� � Z@D jrt~uj2d� +Xj Z@D jns @us@Xj j2d�;where the constants of equivalence depend only on M .98



Proof. 2.2.5 clearly implies, by Schwartz's inequality, thatZ@D jr~uj2d� � C Z@D j@~u@� j2d�:Moreover, arguing as in the second part of the Remark 2 after 2.1.5, we see that 2.2.5shows that Z@D jr~uj2d� � C Z@D jrt~uj2d� + jZ@D pnsh` @us@X` d�j:By Corollary 2.2.7, the right-hand side is bounded byC� Z@D jr~uj2d��1=2�Xj Z@D jns @us@Xj j2d��1=2 + cZ@D jrtuj2d�2.2.8 follows now, using 2.2.7 once more.To prove 2.2.4, let ~u = S(~g). By d) in 2.2.3, rt~u and ns @us@Xj are continuous across @D.Using this fact, 2.2.3 e) and Corollary 2.2.8, 2.2.4 follows.In closing this part, we would like to point out another boundary value problem for theStokes system, which is of physical sigini�cance, the so-called slip boundary condition8<: �~u = rp in Ddiv ~u = 0 in D((r~u+r~ut)N � p �N)j@D= ~f 2 L2(@D; d�):(2.2.9)This problem is very similar to (2.1.2). Using the techniques introduced in Part 1, togetherwith the observation that if �~u = rp; div ~u = 0 in D, the same is true for each row ~v ofthe matrix [r~u+r~ut � pI], we have obtainedTheorem 2.2.10. Given ~f 2 L2(@D; d�), there exists a unique solution (~u; p) to (2.2.9),which tends to 0 at 1, and with N(r~u) 2 L2(@D; d�). Moreover, ~u(X) = S(~g)(X), with~g 2 L2(@D; d�).Part 3: The Dirichlet problem for the biharmonic equation on Lipschitz do-mainsThis part deals with the Dirichlet problem for �2 on an arbitrary Lipschitz domain in Rn.The results are joint work of B. Dahlberg, C. Kenig and G. Verchota ([11]). We continueusing the notation introduced before. 99



We seek a function u de�ned in D, such that8<: �2u = 0 in Duj@D= f 2 L21(@D; d�);@u@N j@D= g 2 L2(@D; d�)(2.3.1)where the boundary values are taken non-tangentially a.e.Theorem 2.3.2. There exists a unique u solving (2.3.1), withN(ru) 2 L2(@D; d�); kN(ru)kL2(@D;d�) � CfkgkL2(@D;d�) + kfkL21(@D;d�)g;where C depends only on M .We will only discuss existence. By 1.1.14, we may assume f = 0 on @D. Let G(X;Y ) be theGreen function for � on D. Then, since uj@D= 0, we have u(X) = RDG(X;Y )�u(Y )dy.Notice that w(y) = �u(y) is harmonic in D. We claim that w(Y ) = @@yv(Y ), wherev is a harmonic function in D, with L2(@D; d�) Dirichlet data, and that the operatorT : vj@D! @u@N j@D is an invertible map from L2(@D; d�) onto L2(@D; d�). This wouldestablish 2.3.2. In fact, by using the Green's potential representation, Fubini's theorem,and the fact that @@NG(�; Y ) is the density of harmonic measure at Y 2 D,Z@D vTvd� = ZD v(Y ) @@yv(Y )dY = 12 ZRn�1 v(x; '(x))2dx � C Z@D v2d�:This shows that if T : L2(@D; d�)! L2(@D; d�) is bounded, it will have a bounded inverse.To establish the boundedness of T , note that if h is harmonic in D, then the argumentgiven above shows that Z@D hTvd� = ZD @v@y (Y )h(Y )dY:All we need therefore, is the following bilinear estimate.Theorem 2.3.3. If v; h are harmonic in D, tend to 0 at 1, thenjZD @v@y (Y ) � h(Y )dY j � CkvkL2(@D;d�) � khkL2(@D;d�):100



Proof. This theorem is a generalization to Lipschitz domains of the fact that the para-product of two L2 functions is in L1 (see [4]).In order to establish the inequality, because of the invertibility of the double layer potential(the representation formula in 1.1.1), we can assume thath(Y ) = 1!n Z@D hY �Q;NQijY �Qjn�2 g(Q)d�(Q);with kgkL2(@D;d�) � CkhkL2(@D;d�):Thus, since hY �Q;NQijY �Qjn�2 = Cn @@NQ� 1jY �Qjn�2 �;it su�ces to show thatk @@NQ ZD 1jY �Qjn�2 @v@y (Y )dY kL2(@D;d�) � CkvkL2(@D;d�):In order to do so, we will obtain a respresentation formula for@@NQ ZD 1jY �Qjn�2 @v@y (Y )dY:Fix Q 2 @D, and let B satisfy �YB(Y � Q) = 1jY �Qjn�2 , i.e., B is the fundamentalsolution for �2 (for example, if n � 5; B(Y ) = CnjY j4�n). We recall the de�nition of theRiesz transforms vj = Rjv; j = 1; : : : ; n�1. They are harmonic functions, which, togetherwith v satisfy the generalized Cauchy-Riemann equations (see [35]), i.e., @v@Xj = @@yRjv,and @v@y = � n�1Xj=1 @@xjRjv. If Y = (x; y), then 1jY �Qjn�2 @@yv(Y ) = �yB. @v@y = (using thesummation convention)� @2@x2jB + @2@y2B� @@yv = @2@x2jB @@yv � @2B@xj@y @v@y ++ @2@xj@yB@Rjv@y � @2B@y2 � @@xjRjv:Let now e1; e2; : : : ; en�1; en be the standard basis of Rn, with en pointing in the directionof the y axis. Then, we can rewrite the right-hand side ash� � @2B@x1@y ; �@2B@x2@y ; : : : ; �@2B@xn�1@y ; n�1Xj=1 @2B@x2j �;rvi++ n�1Xj=1h @2B@xj@yen;rRjvi � n�1Xj=1 h@2B@y2 ej;rRjvi:101



Let ~� = � � @2B@x1@y ; �@2B@x2@y ; : : : ; �@2B@xn�1@y ;Pn�1j=1 @2B@x2j �, ~�j = @2B@xj@yen � @2B@y2 ej. Note thatdiv ~�j = 0, and div ~� = 0, and thatZD 1jY �Qjn�2 @@yv(Y )dY = ZDh~�;rvi+ n�1Xj=1 ZDh~�j;rRjvi == Z@D v(P ) � h~�(P ); Npid�(P ) + n�1Xj=1 Z@DRjv(P ) � h~�j(P ); Npid�(p);by the divergence theorem. This can be rewritten asZ@D[(�nj(P ) @@Pj @@PnB(P �Q) + nn(P ) @@Pj @@PjB(P �Q)]v(P )d�(P ) ++ n�1Xj=1 Z@D[nn(P ) @@Pj @@PnB(P �Q)� nj(P ) @2@P 2nB(P �Q)]Rjv(P )d�(P ):Hence@@NQ ZD 1jY �Qjn�2 @@yv(Y )dY == Z@D[�nj(P ) @@Pj @@Pn hrB(P �Q); NQi+ nn(P ) @2@P 2n hrB(P �Q;NQi]v(P )d�(P ) ++ n�1Xj=1 Z@D[nn(P ) @@Pj @@Pn hrB(P �Q); NQi � nj(P ) @2@P 2n hrB(P �Q); NQiRjv(P )d�(P ):But, by the theorem of Coifman-McIntosh-Meyer, [3], @@Pj @@Pi @@QkB(P �Q) is the kernelof a bounded operator in L2(@D; d�). Thus,k @@NQ ZD 1jY �Qjn�2 @v@y (Y )dY j � CfkvkL2(@D;d�) + n�1Xj=1 kRjvkL2(@D;d�)g:Finally, we invoke a result of Dahlberg ([8]), who showed thatkRjvkL2(@D;d�) � CkvkL2(@D;d�):This concludes the proof of 2.3.3.As a �nal comment, we would like to point out that in this exposition we have emphasizednon-tangential maximal function estimates, but that optimal Sobolev space estimates alsohold. For example, the solution ~u of (2.1.1) is in the Sobolev space H1=2(D), the one of(2.1.2) in the Sobolev space H3=2(D), and the same is true for ~u in 2.1.3 c). The solutionof (2.2.1) is in H1=2(D), while the one of (2.2.9) is in H3=2(D). Finally, the solution u of2.3.1 is in H3=2(D). All of these results can be proved in a uni�ed fashion using a variant ofthe proof of Lemma 2.1.11. The details will appear in a forthcoming paper of B. Dahlbergand C. Kenig [10]. 102
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Hardy spaces and the Neumann Problem in Lp forLaplace's equation in Lipschitz domainsBy Björn E. J. Dahlberg�and Carlos E. Kenig�1. IntroductionThe purpose of this paper is to give optimal results for the solvability of the Neumannproblem in Lipschitz domains with data in Lp. We also obtain corresponding end pointresults for Hardy spaces. Our main theorem asserts that if D � Rn; n � 3, is a boundedLipschitz domain with connected boundary, then there exists " = "(D) > 0 such that, forall f 2 Lp(@D; d�), with 1 < p < 2 + ", and R@D fd� = 0, there is a unique (moduloconstants) harmonic function u in D withkM(ru)kLp(d�) � Cp(D)kfkLp(d�);(1.1)and @u@n = f on @D:(1.2)Here � is the surface measure on @D, and M(ru), the non-tangential maximal functionof ru, the gradient of u, is de�ned, for Q 2 @D by (for example)M(F )(Q) = supfjF (X)j : X 2 D; jX �Qj < 2 dist (X; @D)g:(1.3)It is known (see [4]) that if v is harmonic in a Lipschitz domain and M(v) < 1 a.e. on@D, then v has non-tangential limits a.e. on @D. Here �almost everywhere� is taken withrespect to the surface measure on @D, and the existence of the non-tangential limit meansthat limX!QX2��(Q)v(X) exists and is �nite for all � > 0, where��(Q) = fX 2 D : jX �Qj < (1 + �) dist (X; @D)g:Consequently, if (1.1) holds, thenru has non-tangential limits a.e. on @D, and the meaningof the generlized normal derivative @u=@n in (1.2) is the limit of hru(X); n(Q)i as X !Q 2 @D non-tangentially. Here hA;Bi denotes the inner product in Rn, and n(Q) theunit normal to @D at Q. As is well known, n(Q) exists for a.e. Q, since D is a Lipschitzdomain.�Both authors were supported in part by the N.S.F.109



The result was �rst established for the case p = 2 by Jerison and Kenig ([13]) and forthe case of C1 domains by Fabes, Jodeit and Riviere ([7]). Our extension of the Lipschitzdomain case to the range 1 < p < 2+ " is done by two di�erent methods. The extension to2 < p < 2+" is done by a real variable argument, using the result for p = 2, and a variant ofthe 'good �' inequalities. The extension to 1 < p < 2 is accomplished by establishing thatfor f 2 H1at(@D), the atomic H1 space on @D, there exists a unique (modulo constants)solution u of the Neumann problem with data f which satis�eskM(ru)kL1(d�) � C(D)kfkH1at(@D):This is proved by estimating the non-tangential maximal functions of gradients of theL2-solutions with data atoms. We do this in turn by using the regularity theory foruniformly elliptic operators in selfadjoint form. The full result then follows by interpolation.Combining our estimates for atoms with the techniques in [8], we are able to obtain ageneralization of the Stein-Weiss theory of Hardy spaces, valid for Lipschitz domains inRn. This generalizes the results for C1 domains in [8], and some of the two dimensionalresults in [14].The range 1 < p < 2 + " is optimal for the Neumann problem. The estimate (1.1) failsfor p = 1 even for smooth regions (Hardy space results are the appropriate analogue).Moreover, for each p0 > 2 it is possible to construct a Lipschitz domain D, for which (1.1)fails for p = p0. (See for example [16] for the relevant examples.) The situation is similarto the case of the Dirichlet problem (see Dahlberg, [5]), where one has for the solution uof the problem �u = 0 in D; u = f on @D,kM(u)kLp(d�) � cp(D)kfkLp(d�);(1.4)whenever 2� " < p � 1 for an " = "(D) > 0. The relationship between the results (1.1)and (1.3) can be best understood by the use of the method of integral equations. For f on@D, let D(f)(X) = 1!n(2� n) Z@D f(Q) @@nQ (jX �Qj2�n)d�(Q)be the double layer potential of f , and letS(f)(X) = 1!n(n� 2) Z@D f(Q)jX �Qj2�nd�(Q)be the single layer potential of f .A consequence of the boundedness of the Cauchy integral on Lipschitz curves (see Coifman,McIntosh and Meyer [2]), is that M(D(f)) and M(rS(f)) take Lp(d�) into Lp(d�); 1 <p <1. In the classical case when the domainD is smooth, one can use the Fredholm theoryto see that the operators D(f)j@D and (@=@n)S(f)j@D are invertible on Lp(d�); 1 < p <1.110



This is the result that was extended to C1 domains by Fabes, Jodeit and Riviere [7], usingthe work of A. P. Caldeón [1.A]. However, this compactness argument does not extendto the case of Lipschitz domains (see for example [16] for simple couterexamples). Theinvertibility of the layer potentials for general Lipschitz domains was established in L2(d�)by Verchota. As a consequence of (1.1) and the analogous estimatekM(ru)kLp(d�) � Cp(D)krTfkLp(d�); 1 < p < 2 + ";(1.5)" = "(D), where u is the solution of the Dirichlet problem, and rT denotes the tangentialgradient, we are able to establish that the operator f ! D(f)j@D is one-to-one and ontoon Lp(d�); 2 � " < p < 1, and that the operator f ! (@=@n)S(f)j@D is one-to-one andonto Lp0(d�); 1 < p < 2 + ", whereLp0(d�) = �f 2 Lp(d�) : Z@D fd� = 0	:This is again the optimal range of p's in both cases.At this point we would like to point out that the case p = 2 of (1.5) is due to Jerison andKenig [13], while the general case is due to Verchota [25]. Here we will also give a newproof of (1.5), analogous to our proof of (1.1). We will also present endpoint results onthe invertibility of D and (@=@n)S on BMO and H1at respectively. For a more completedescription of these results, we refer to the body of the paper.Capitial letters X;Y;Z will denote points of a �xed domain D � Rn, while P;Q will bereserved for points in @D. Lower case letters x; y; z are reserved for points in Rn�1, whilethe letters s; t will be reserved for real numbers. As was mentioned before, in the sequel weassume that n � 3. The results remain valid when n = 2 with the obvious modi�cations.2. The Neumann problem on graphsWe begin by treating the case whenD = f(x; y) 2 Rn : y > '(x); x 2 Rn�1g;where ' : Rn�1 ! R is Lipschitz continous; i.e., j'(x)� '(x0)j � mjx� x0j.We start out by reviewing the Neumann problem with data f 2 L2(�), � = @D. Let us apriori assume that f is bounded and has compact support.Let u(X) = S(f)(X) = 1!n(n� 2) Z� f(Q)jX �Qj2�nd�(Q);111



be the single layer potential of f . Since u is harmonic in D, we have the identitydiv �jruj2e� 2@u@yru� = 0;(2.1)where e = (0; 1).The results in [2] show that kM(ru)kL2(�) � CkfkL2(�):Since ru(X) = O(jXj1�n) as X ! 1, it follows from (2.1), the estimate above, and thedivergence theorem applied in the domains D�;" = f(x; y) : y > '(x) + "; jxj2 + y2 < �2g,that Z� �jruj2he; ni � 2@u@n � @u@y �d� = 0;(2.2)where the derivatives on � are taken as the non-tangential limits from D, of the corre-sponding expressions in D. This is the Rellich ([21]) identity on �.To exploit (2.2), let T1(x); T2(x); : : : ; Tn�1(x) be an orthonormal basis for the tangent planeto � at (x; '(x)). The Ti(x) exist for a.e. x. LetjrTu(x; '(x))j2 = n�1Xj=1 jhru(x; '(x)); Ti(x)ij2:A well-known argument (see [15], Corollary 2.1.11 for example) shows that there are con-stants c1; c2, that depend only on the Lipschitz constant m of ' such thatC1 Z� ��@u@n��2d� � Z� jrTuj2d� � C2 Z� ��@u@n��2d�:(2.3)Note that in the above estimate the values of the derivatives of u are taken as the limitsfrom above the graph, but the same estimate can be obtained by taking limits from belowthe graph. Let now Tf and T�f denote the normal derivatives of Sf as a function in Dand Rn n �D respectivly.We then have (see [15]) kTfkL2(�) � ckfkL2(�);(2.4)where c = c(m). To establish (2.4), we recall the classical jump relation T +T� = I, whereI is the identity operator (again, see [15] for a proof of this in our case). To prove (2.4) weonly need to remark that jrTuj2 is continuous a.e. across � (see [15]). Thus, (2.4) followsby application of (2.3) in D and Rnn �D, together with the jump relation. The boundednessof T ([2]) together with (2.4) immediately show that T is one-to-one, with closed range.112



To see that the range of T is all of L2(�), we let U : L2(Rn�1)! L2(Rn�1) be the pullbackof T , i.e., Ug = T (g �F�1) �F , where F : Rn�1 ! � is given by F (x) = (x; '(x)). LettingUs denote the operator corresponding to the graph of x! s'(x); 0 � s � 1, we see easily,using the results in [2], that kUs�Us1k � Cjs�s1j; 0 � s; s1 � 1. (See [15] for the details.)Since U0 = 12I, the continuity method shows that U1, and hence T , is onto (see [15], Lemma2.1.6).Theorem 2.5. Given any f 2 L2(�) there is a harmnonic function u in D such thatkM(ru)kL2(�) � C(m)kfkL2(�), and @u=@n = f a.e. on �, in the sense of non-tangentialconvergence. Any two such harmonic functions di�er by a constant. Let g = T�1f . Ifn � 4 one such function is given by S(g). If n = 3 one such solution is given byu(X) = Z@D g(Q)fjX �Qj2�n � jX0 �Qj2�ngd�(Q);where X0 is any �xed point in Rn n �D.Proof. The existence part and the representation formulas follow from the invertibilityof T , and the results of Coifman-McIntosh-Meyer [2] mentioned before. It remains toestablish uniqueness. We present here an argument which will be very useful for us lateron in treating the Lp case 1 < p < 2. Let ! be harmonic in D, with M(r!) 2 L2(�),and @!=@n = 0 a.e. on �. Note �rst that RDR jr!j2dX � CR, where DR = D \ f(x; y) :jxj2 + y2 < R2g. Consider now the bi-Lipschitzian mapping � : �D ! Rn nD given by�(x; y) = (x; '(x)� [y � '(x)]) = (x; 2'(x)� y):De�ne !� on Rn n �D by the formula !� = ! � ��1. A simple calculation shows thatin Rn n �D, !� veri�es (in the weak sense) the equation div (A(x; y)r!�) = 0, whereA(x; y) = 1=[J�(X)]�0(X)�0t(X), where X = ��1(x; y), �0 is the Jacobian matrix of �,and J� the Jacobian determinant of �. It is easy to see that A 2 L1(Rn n �D), andhA(x; y)�; �i � Cj�j2, where C = C(m). Let nowB(x; y) = � I for (x; y) 2 DA(x; y) for (x; y) 2 Rn n �Dand extend !(x; y) to all of Rn by setting it equal to !�(x; y) in Rn n �D. Since M(r!) 2L2(�), and @!=@n = 0 a.e. on �, it is easy to see that the extended ! is a weak solutionin all of Rn of the divergence form elliptic equation with bounded measurable coe�cientsdiv B(x; y)r! = 0. The extended ! also satis�es the estimate Rjxj<R jr!j2dX � CR. Bythe Poincaré inequality we see thatZjXj<R j! � !Rj2dX � CR3;113



where !R is the average of ! over the ball jXj < R. By the theorem of De Giorgi-Nash([6], [20]) ! is locally Hölder continuous in Rn. By the L1 estimate of Moser ([19]), itfollows that supjxj<R=2 j!(X) � !Rj � C�R�n Zjxj<R j! � !Rj2dX�1=2 � C:Therefore, the oscillation of ! over the ball of radius R remains bounded. By the Liouvilletheorem of Moser ([19]) ! is a constant. This �nishes the proof of Theorem 2.5.In order to pass to the Lp theory, we need to recall some de�nitions. An atom a is a boundedfunction on � with support in a surface ball B = B(Q; r) = fP 2 @D : jP �Qj � rg, suchthat kak1 � 1=�(B) and R ad� = 0. The atomic Hardy spaceH1at(�) = ff 2 L1(�) : f =X �jaj; where aj is an atom and P j�j j <1g:has norm, for f 2 H1at(�),kfkH1at(�) = inffX j�jj : f =X �jaj; aj atomsg:For general facts concerning atomic Hardy spaces, see the survey article by Coifman andWeiss ([3]). In the next lemma we study the action of the gradient of the single layerpotential on atoms. The lemma can be proved if one combines the arguments in [3] withthe results in [2].Lemma 2.6. Let a be an atom on �, and f =M(rS(a)). Then,Z� fd� � C;(a) � Z� f2d��� Z� f2(Q)jQ�Qaj(n�1)(1+")d��1=" � C;(b) Z @S@n (a)d� = Z @S@ ~Tj (a)d� = 0; 1 � j � n� 1;(c)where C and " > 0 depend only on m;Qa is the center of the support of a, and the tangentialvector �elds ~Tj, are given by ~Tj = (0; : : : ; 1; 0; : : : ; @'=@xj)(1 + jr'j2)�1=2, where the 1 ison the jth slot.We will now establish the analogue of Lemma 2.6 for the solution of the Neumann problemwith data a. This is the central point of our paper.114



Lemma 2.7. Let a be an atom on � and let u be a solution in D of the Neumann problemwith data a, given by Theorem 2.5. Let f =M(ru). Then,Z� fd� � C;(a) � Z� f2d��� Z� f2(Q)jQ�Qaj(n�1)(1+")d��1="� � C;(b) Z� f2(Q)jQ�Qajn�1d� � C;(c)where C and " are positive constants which depend only on m.Proof. Because of the translation and dilation invariance of the estimates, we can assumesupp a � f(x; '(x)) : jxj � 1g; Qa = (0; 0) and kak1 � 1. Pick g 2 L2(�) such that@S=@n(g) = a on �. We clearly have kgkL2(�) � C. LetD� = f(x; y) : jxj < 2; '(x) < y < '(x) + 2g:We �rst claim that there is a constant C = C(m) such that for some choice of u we haveju(X)j � C in D nD�:(2.8)In order to establish (2.8), we argue as in the uniqueness part of the proof of Theorem (2.5),and extend u by re�ection to Rn n �D so that Lu = 0 in Rn n f(x; '(x)) : jxj � 1g, where Lis a uniformly elliptic operator in divergence from, with bounded measurable coe�cients.(Here we use the support property of a.)Assume �rst that n � 4, and let u(X) = S(g)(X) in D. By the re�ection, and Schwarz'sinequality, we have that ju(X)j � C in fX 2 Rn : dist (X;�) � 1g. Let ! = maxf0; juj �cg. ! is a non-negative subsolution of L in Rn n f(x; '(x)) : jxj � 1g, and there is aconstant d > 0 such that for all n-dimensional balls B centered in Rn n f(x; y) : jxj <2; jy � '(x)j < 2g, of radius r0 = r0(m), we have that jfX 2 B : !(X) = 0gj � d.Furthermore, on such balls B, RB jr!j2 � C, by the L2 estiamte for the non-tangentialmaximal function of ru. Therefore, by a standard variant of the Poincaré inequality, wehave RB !2 � C. The sub-mean value inequality for L-subsolutions ([19]) now establishes(2.8) in the case n � 4. It remains to show (2.8) when n = 3. In this case, we let, forX 2 D;u(X) = R� g(Q)fjX�Qj2�n�jX0�Qj2�ngd�(Q). Schwarz's inequality now showsthat ju(X)j � C log(2+dist (X;�)) whenever dist (X;�) � 1. Let now X = (x; y) and set!(X) = max(ju(X)j � c; 0) for y > '(x) + 1, and 0 otherwise. If c is chosen large enough,then ! is zero in a neighborhood of f(x; y) : y = '(x) + 1g, and so ! is a subharmonicfunction in all of Rn. If �0 = f(x; y) : y + y0 > �2mjxjg, then ! is 0 on @�0 if y0 is large115



enough, and ! has logarithmic growth at 1. By the Phragmen-Lindelöf Theorem (see[17]), ! is identically 0, which yields (2.8) as in the case n � 4.Let g be the fundamental solution of L in Rn, with pole at 0. As is well-known, there areconstants C1, and C2 which depend only on the ellipticity constants of L (and hence onlyon m), such that C1jXj2�n � g(X) � C2jXj2�n(see [18]). By (2.8) and the asymptotic expansion of Serrin and Weinberger (Theorem 7 of[22]), there are constants �; �; ; � and R0; 0 < �;R0, such thatu(X) = �g(X) + � + v(X);for X 2 Rn n f(x; '(x)) : jxj � 1g where jv(X)j � jXj2�n�� for jXj � R0, where ��1can be bounded in terms of m, while �; �;  and R0 can be bounded in terms of � andkukL1(DnD�). We next claim that � = 0. To show this, we recall that if L = div Br,Theorem 7 of [22] shows that � = b R hBru;r i, where b is a constant that depends on g,and  is any C1 function on Rn, which is 0 for jxj � R0 and equals 1 for jxj � R1 > R0.Let R be large, and set, for 0 < � ,D(� ) = f(x; y) : '(x) + � < y < '(x) +R; jxj � Rg:Clearly, for R large enough,  � 1 on A(� ) = @D(� )�B(� ) where B(� ) = f(x; '(x)+ � ) :jxj � Rg. Hence,ZDhBru;r i = ZDhru;r i = lim�!0ZD(�)hru;r i= lim�!0Z@D(�) @u@n = lim�!0Z@D(�)( � 1)@u@n= lim�!0ZB(�)( � 1)@u@n = Z�( � 1)ad� = 0:By our construction of B (see the proof of Theorem 2.5), RRnn �DhBru;r i = RDhru;r ~ i,where ~ =  � �. This quanity is also zero. Leta(R) = Z�(R)M(ru)2d�;where �(R) = f(x; '(x)) : R � jxj � 2Rg;and let a(1) = Zf(x;'(x)):jxj�2gM(ru)2d�:116



By Theorem 2.5, a(1) � Ckak2L2(�) � C.For Q 2 �, let (Q) = fX 2 D : jX � Qj < 2 dist (X;�)g and for Q 2 �(R) set1(Q) = fX 2 (Q) : jX �Qj < Rg; 2(Q) = (Q) n 1(Q), and Mi(Q) = supfjru(X)j :X 2 i(Q)g; i = 1; 2. Observe that if X 2 2(Q), then u is harmonic in B = fY :jY �Xj � �Rg, where � = �(m) is small enough, and supY 2B ju(Y )��j � CR2�n�� . Sincejru(X)j � CR�1�n RB ju(y)� �jdY � CR1�n�� , it follows thatZ�(R)(M2(ru))2d� � CR1�n�2� :(2.9)For � 2 I = [1=4; 1=2], set
� = f(x; y) : '(x) < y < '(x) + �R; �R < jxj < ��1Rg;where � is chosen so that for Q 2 �(R); 1(Q) �� 
� .From the L2 Neumann theory for bounded Lipschitz domains ([13]), it follows thatZ�(R)M1(jruj)2d� � C Z@
� �@u@n�2d� � C Z@
r\D jruj2d�;with C depending only on m, since @u=@n on @
� \ @D. Integrating in � on I yieldsZ�(R)M1(jruj2)d� � CR�1 Z
1=4n
1=2 jruj2dX� CR�3 ZC1R�jxj�C2R u2dX � CR1�n�2� ;where the next to the last inequality follows from the inequality of Caciopolli for solutionsof Lu = 0 (see [12], for example). Putting this together with (2.9), we see thatZ�(R)M(ru)2d� � CR1�n�2� ;which easily yields the lemma.We shall next study the boundary value properties of harmonic functions in D, withM(ru) 2 L1(�).Lemma 2.10. Suppose that u is harmonic in D, and M(ru) 2 L1(�). Then, ru hasnon-tangential limits a.e. on �, and if @u=@n = hru(Q); n(Q)i, then @u=@n 2 H1at(�),with @u@nH1at(�) � CkM(ru)kL1(�):(2.11) 117



Proof. We �rst remark that by the extension theorem of Varoupoulos ([24]), given g contin-uous and with compact support in �, there is a continuous function G in �D, which agreeswith g on �, which has bounded support, and such that jrGjdX is a Carleson measure,with Carleson norm bounded by C(m)kgkBMO(�), i.e., for all Q 2 �, and all r � 0, we haveZfX2D:jX�Qj<rg jrGjdX � C(m)rn�1kgkBMO(�);where kgkBMO(�) is the smallest constant , such that for all surface balls B on � there isa constant �(B) such that ZB jg � �(B)j � �(B):The existence of the non-tangential boundary values of ru follows from [4]. For � > 0 letu�(X) = u(X + (0; � )). Then,����Z� g@u@nd����� = lim�!0����Z� g@u�@n d�����= lim�!0����ZDhrG;ru�idX���� � CkgkBMO(�) Z�M(ru)d�;by the basic property of Carleson measures (see [11]). Recall now that VMO(�) is theclosure in BMO (�) of the space of continuous functions with compact support, and thatthe dual space of VMO (�) is H1at(�) (see [3]). This concludes the proof of the lemma.We are now in position to solve the Neumann problem on a Lipschitz graph, with data inH1at(�).Theorem 2.12. Let f 2 H1at(�). Then there exists a harmonic function u in D withM(ru) 2 L1(�), and @u=@n = f non-tangentially a.e. on �. The function u is uniquemodulo constants. Furthermore, there are constants C1 = C1(m); C2 = C2(m); C3 = C3(m)such that C1kfkH1at(�) � kM(ru)kL1(�) � C2kfkH1at(�);and  @u@ ~TjH1at(�) � C3kfkH1at(�):Proof. The exisatence of u follows directly from Lemma 2.7 (a). In order to show unique-ness, let us assume that ! is harmonic in D;M(r!) 2 L1(�), and @!=@n = 0 non-tangentialy a.e. on �. We want to conclude that ! is a constant. From the sub-mean valueproperty of jr!j it follows thatjr!(X)j � Cfdist (X;�)g1�n:118



Therefore, adding a suitable constant to !, we havej!(X)j � Cfdist (X;�)g2�n:For � > 0, let !� (X) = !(X + (0; � )). By the estimates above, Sobolev's inequality andthe assumption on M(r!), we have thatZ� j!� j(n�1)=(n�2)d� � C;with C independent of � . Let now L be the divergence form operator used in the proof ofLemma 2.7, and let G(X;Y ) be its fundamental solution in Rn. Fix X 2 D; jXj < R, andlet  2 C10 (Rn), be identically 1 for jXj < R, and 0 for jXj > 2R. We can also assumethat Rjr j+R2j� j � C, where C is independent of R. Let G(Y ) = G(X;Y )+G(X�; Y ),where X� is the re�ection of X. Then,!� (X) = Z�G �  @!�@n d� + Z�G!� @ @nd�+ ZDG � f2hr ;r!�i+ !�� gdy= I + II + III:Set F (R) = fX : R < jXj < 2Rg. ThenjIIj � CR1�n Z�\F (R) j!� jd� � C�R1�n Z�\F (R) j!� j(n�1)=(n�2)d��(n�2)=(n�1) ! 0as R!1, andjIIIj � C ZD\F (R)R1�njr!� jdY + C ZD\F (R)R�nj!� j� CR2�n Z�M(r!)d� + C�R�n ZD\F (R) j!� j(n�1)=(n�2)dY �(n�2)=(n�1)! 0 as R!1:Hence !� (X) = Z�G � @!�@n d�:SinceG 2 L1(�), the dominated convergence theorem shows that !(X) = lim�!0 !� (X) =0. The estimate kM(ru)kL1(�) � C2kfkH1at(�) follows by construction, while the estimateC1kfkH1at(�) � kM(ru)kL1(�) follows by Lemma 2.10. Finally, it is enough to establishthe estimate k@u=@ ~TjkH1at(�) � C3kfkH1at(�) when f is an atom. One �rst shows thatR (@u=@ ~Tj)d� = 0. We see that this follows by considering the functions u� ; � > 0, andthen passing to the limit. This fact, togther with (b) of Lemma 2.7 shows that @u=@ ~Tj isa molecule and the estimate follows by the general theory of [3].We shall now treat the Neumann problem with Lp data.119



Theorem 2.13. There exists a positive number " = "(n;m) such that for all f 2Lp(�); 1 < p < 2+ " there is a harmonic function u in D with kM(ru)kLp(�) � CkfkLp(�)and @u=@n = f non-tangentially a.e. on �. Furthermore, u is unique modulo constants.Proof. We �rst remark that uniqueness for 1 < p < (n� 1) follows by the same argumentas in the uniqueness part of Theorem 2.11. The case n = 3; p = 2 of uniqueness is provedin Theorem 2.5. The case n = 3; 2 < p < 2 + " of uniqueness will be treated lateron. Next we note that existence, in the range 1 < p < 2 follows by interpolation. Weshall now treat existence in the case p > 2. We remark that this in fact follows froman abstract argument of A. P. Calderón ([1.B]). We present here an alternative proof,which also yields uniqueness. Let f 2 L1(�) have compact support and let u be the L2Neumann solution with data f , given by Theorem 2.5. Let H = f(x; y) 2 Rn; y > 0gand � : H ! D be given by �(x; y) = (x; y + '(x)) where � is a bi-Lipschitzian mappingbetween H and D. Put v = ru � �, and for x 2 Rn�1, set m(x) = sup(x) jvj, where(x) = f(x0; y) 2 H : y > jx0 � xjg. Similarly, set �(x) = f(x0; y) 2 H : �y > jx0 � xjg,and m�(x) = sup�(x) jvj, where � 2 (0; 1) is a number to be chosen later. Our aim is toshow that there exists " = "(n;m) > 0 such that, if 0 < � � ", thenZRn�1 m2+�dx � C Z� f2+�d�:(2.14)This clearly yields the desired existence results, in the range 2 < p � 2 + ". In order toestablish (2.14), we need to introduce a bit more notation. Let g(x) = f ��(x; 0); x 2 Rn�1,and h(x) = supI(1=jIj RI g2dx)1=2, where the sup is taken over all cubes I in Rn�1, thatcontain x. Finally, for � > 0 let E� = fx 2 Rn�1 : m�(x) > �g. We will show that, for �su�ciently small, Zfm�>�;h��g � C�2jE�j+ C�Zfm�>�gm2dx:(2.15)Let us assume (2.15) for the time being, and use it to establish (2.14). From (2.15) itimmediately follows that, if � is chosen su�ceintly small,ZE�m2dx � C�2jE�j+ C Zfh>�g\E�m2dx:Let now � and N be positive numbers. Then,ZRn�1[minfm;Ng]2+�dx = � Z N0 ���1� Zfm>�gm2dx�d�� C� Z N0 ��+1jE�jd� + C� Z N0 ���1� Zfh>�gm2dx�d�:By a classical argument (see [11]), jE�j � C�jfm > �gj, and soZRn�1 [minfm;Ng]2+�dx � C�=(2 + �)ZRn�1 [min(m;N)]2+�dx+ C ZRn�1 min(h;N)�m2dx:120



Thus, if we choose � small enough, we haveZRn�1[minfm;Ng]2+�dx � C ZRn�1 h�m2dx:The boundedness of f implies that h is also bounded, and hence the right-hand side is�nite. By monotone convergence, we see thatZRn�1 m2+�dx � C ZRn�1 h�m2dx < +1;(2.14) now follows from Hölder's inequality and the fact that RRn�1 h2+� � C R� f2+�d�. Itremains to establish (2.15). Let fIkg be a Whitney decomposition on E�, such that thecubes 3Ik � E�, and f3Ikg has bounded overlap (see [25]). Here 3Ik denotes the cube withthe same center as Ik, and sides 3 times those of Ik. We are only interested in Whitney cubesIk such that Ik \ fh � �g 6= ;. For 2 < � < 3, let Ik;� = f(x; y) : x 2 �Ik; 0 < y < �l(Ik)g,where l(Ik) denotes the side length of Ik. For a set F � H, we let ~F = �(F ). Clearly~Ik;� is a Lipschitz domain, with Lipschitz constants bounded independently of k; � . SinceIk is a Whitney cube, there exists a point xk 2 Rn�1 n E� with dist (xk; Ik) � Cnl(Ik).Put Ak;� = @Ik;� \ �(xk); Bk;� = (@Ik;� \H) nAk;� . Since � 2 (2; 3), the height of Bk;� isbounded by C�l(Ik), i.e., supfy : (x; y) 2 Bk;�g � C�l(Ik). Also, jvj � � on Ak;� . SinceIk \ fh � �g 6= ;, we have Zg3Ik f2d� � cZ3Ik g2dx � C�2jIkj:From the L2 Neumann theory for bounded Lipschitz domains, applied to ~Ik;� ([13]), we�nd that ZIk m21dx � C Z]@Ik;� �@u@n�2d�� C ZgBk;� jruj2d� + C�2jIkj;where m1(x) = supfjv(x0; y)j : jx � x0j < y < �l(Ik)g, and � > 0 is chosen so small thatfX 2 H : jX � (x; 0)j < �l(Ik)g is contained in Ik;� , for all x 2 Ik; � 2 (2; 3).If � is chosen small enough, then, for all x 2 Ik, we have that(X) n f(x0; y) : jx� x0j < y < �l(Ik)g � �(xk);and so, for all � 2 (2; 3), we haveZIk m2dx � cZgBk;� jruj2d� + C�2jIkj:121



Integration in � from 2 to 3 givesZIk m2dx � C�Z3Ik m2dx+ C�2jIkj;which gives (2.14) by additon of k.For the uniqueness, in the case n = 3; 2 < p < 2 + ", note that, keeping the notation weused above, if M(ru) 2 Lp; 2 < p < 2 + ", and @u=@n = 0 non-tangentially a.e. on �, theargument used before shows that ZE�m2dx � C�2jE�j:But then, Z m2+�dx � Z 10 ����1� ZEy m2dx�d�� C Z 10 ����1jfm� > �gjd� � C�(2 + �)�1 Z m2+�dx;which shows that m is � 0 if � is small enough.3. Regularity properties for the Dirichlet problem ongraphsWe continue treating domains of the form D = f(x; y) 2 Rn : y > '(x); x 2 Rn�1g, where' : Rn�1 ! R is Lipschitz continuous, i.e., j'(x)� '(x0)j � mjx� x0j.We will say that f 2 Lp1(�); 1 < p <1, if g(x) = f(x; '(x)) has a gradient in Lp(Rn�1).It is easy to check that this is equivalent to the fact that if F is any extension of fto Rn; jrTF j (de�ned as in the remarks following (2.2)) belongs to Lp(�). It is alsoeasy to see that this is equivalent to the fact that, for any extension F of f; @F=@ ~Tj; j =1; : : : ; n�1, belong to Lp(�), where ~T1; : : : ; ~Tn�1 are the vector �elds introduced in Lemma2.6. Moreover, @F=@ ~Tj is independent of the particular choice of the extension F , anddepends only on f . We put kfkLp1(�) = krxgkLp(Rn�1). Clearly, Lp1(�) is a Banach spacemodulo constants.We start out by studying the properties of the single layer potential on the L21(�) spaces.The following lemma is the graph version of results of G. Verchota ([25]).Lemma 3.1. The single layer potential S maps L2(�) onto L21(�) boundedly, and has abounded inverse. 122



Proof. The boundedness follows by the de�nition of L21(�), and the theorem of Coifman,McIntosh and Meyer ([2]). From (2.3) and (2.4), it follows thatkrTS(f)kL2(�) � C1 @@nS(f)L2(�) � CkfkL2(�):(3.2)The lemma now follows as in the L2-Neumann case.Theorem 3.3. For every f 2 L21(�) there is a harmonic function u in D with M(ru) 2L2(�), and such that @u=@ ~Tj = @f=@ ~Tj non-tangentially a.e. on �; 1 � j � n � 1.Furthermore, u is unique modulo constants, andkM(ru)kL2(�) � ckfkL21(�);where C = C(n;m).Proof. The existence follows from Lemma 3.1. To show uniqueness, it is enough to showthat if u is harmonic in D;M(ru) 2 L2(�), and @u=@ ~Tj = 0; j = 1; : : : ; n � 1 non-tantentialy a.e. on �, then u is a constant. By our assumption on u; jrTuj = 0 a.e. on �.By the uniqueness in the Neumann problem (Theorem 2.5),u(X) = C + Z� g(Q)fjX �Qj2�n � jX0 �Qj2�ngd�(Q);where X0 2 Rn n �D, and g 2 L2(�). By (3.2), g � 0, and so u is a constant.A vector-valued function A : � ! RN is a vector-valued atom if A is supported on asurface ball B = fP 2 � : jP �Qj < rg for some Q 2 �, and r > 0; kAkL2(�) � f�(B)g�1=2and R�Ad� = 0. We say that f 2 H11;at(�) if there are functions fj 2 L21(�) with� @@ ~T1fj ; @@ ~T2fj; : : : ; @@ ~Tn�1fj�being vector-valued atoms and@@ ~Tkf = 1Xj=1 �j @@ ~Tk fj; k = 1; : : : ; n� 1; X j�j j <1:(3.3)We also set kfkH11;at(�) = infP j�j j, where the �j's are as in (3.4). Note that H11;at(�) is aBanach space modulo constants. 123



Lemma 3.5. The single layer potential S maps H1at(�) into H11;at(�) boundedly.Proof. The proof is standard and will be omitted.Theorem 3.6. Given f 2 H11;at(�) there is a harmonic function u in D with M(ru) inL1(�), and @u=@ ~Tj = @f=@ ~Tj; j = 1; : : : ; n� 1 non-tangentially a.e. on �. Moreover u isunique modulo constants, andkM(ru)kL1(�) � CkfkH11;at(�):Proof. For the existence part of the theorem, it is enough to assume '(0) = 0, and to showthat if ((@f=@ ~T1); : : : ; (@f=@ ~Tn�1)) is a vector-valued atom supported in fQ 2 � : jQj < 1gand u is the L21 solution of the Dirichlet problem with data f , given in Theorem 3.3, thenkM(ru)kL1(�) � Cwhere C depends only on the Lipschitz constant of �. By adding a suitable constant to f ,we may assume that f has support in B1 = fQ 2 �; jQj < R0g where R0 depends only onthe Lipschitz constant of �. Furthermore by Sobolev's inequality, kfkL2(�) � C. By the L2theory for the Dirichlet problem (see [5]) ju(X)j � C = C(m) for X 2 D; jXj > 2R0, andu(X) takes the boundary value zero continuously on � nB1. Let !(x) = 0 for Rn nD, and!(X) = ju(X)j for X 2 D, so that ! is subharmonic inRnn �B1. By the Phragmen-Lindelöftheory (see [17]) we have j!(X)j � CjXj2�n��, where C and � only depend on m, andjxj > 2R0. Arguing as in the corresponding Neumann problem, we obtain the existenceand the estiamte in Theorem 3.7. We remark that instead of the Phragmen-Lindelöf theorywe could have used an odd re�ection of u to extend u as a solution of Lu = 0 in Rn nB1,and use the Serrin-Weinberger asymptotic expansion just as in the case of the Neumannproblem. To show uniqueness, we assume that u is harmonic in D;M(ru) 2 L1(�),and @u=@ ~Tj = 0; j = 1; : : : ; n � 1, non-tngentially a.e. on �. We must conclude thatu is a constant in D. As in the corresponding uniqueness theorem for the Neumannproblem, we have jru(X)j � Cfdist (X;�)g1�n, and after we add a suitable constantju(X)j � Cfdist (x;�)g2�n. Thus, by Sobolev's inequality, R� ju� j(n�1)=(n�2)d� � c, andso u = 0 a.e. on �. By the uniqueness in the Neumann problem, it is enough to showthat f = 0 a.e., where f = @u=@n. Let b be a Lipschitz function on �, with compactsupport. Let ! be the harmonic extension of b to D. By the Phragmen-Lindelöf principle,j!(X)j � CjXj2�n�� for X 2 D, X large, where C > 0; � > 0. We will now show that fors; t > 0 we have Z� !s @ut@n d� = Z� ut@!s@n d�:124



In fact, let R > 0 be large, and let
R = f(x; y) : jxj < R;'(x) < y < '(x) +Rg:We then have @
R = �R [ SR [ TR, where�R = f(x; '(x)) : jxj < Rg;SR = f(x; y) : jxj = R;'(x) < y < '(x) +Rg;and TR = f(x; y) : jxj < R; y = '(x) +Rg:Applying Green's theorem in 
R, we see thatZ@
R !s @ut@n d� = Z@
R ut@!s@n d�:Since !s 2 L1( �D), and N(ru) 2 L1(�),Z�R !s(@ut=@n)d�! Z� !s(@ut=@n)d�:Also, ����ZTR !s @ut@n d����� � CR2�n��R1�nRn�1 ���!R!1 0;while ����ZSR !s @ut@n d����� � R2�n�� Z�n�R M(ru)d� ���!R!1 0:Similarly, we know that, for s �xed jr!s(X)j � CjXj2�n��, and it is locally bounded in�D. Thus, since ut 2 L(n�1)=(n�2)(�); ut(@!s=@n) 2 L1(�), and so R�R ut(@!s=@n)d� !R� ut(@!s=@n)d�. Also,����ZTR ut@!s@n d����� � CR2�n �R1�n�� �Rn�1 ! 0;while 1R Z 2RR ����ZSR ut@!s@n d����� � CR Z
2Rn
R jutjjr!sjdX� CR2�n��R Z
2Rn
R jutjdX� CR2�n��R �Z
2R jutj(n�1)=(n�2)dx�(n�2)=(n�1) �Rn=n�1� CR2�n��R �R(n�2)=(n�1)Rn=n�1 = CR3�n�� ���!R!1 0:Thus, by a choice of an appropriate sequence of Rj 's tending to 1, the claim follows.Letting t # 0 we see that R� !sfd� = 0, and then letting s # 0 we have R� bfd� = 0 asdesired. 125



Corollary 3.7. The single layer potential S is a bounded operator from H1at(�) ontoH11;at(�). It has a bounded inverse, whose norm depends only on the Lipschitz constant of�.We now turn to regularity results for the solution of the Dirichlet problem when the dataare in Lp1(�). This is a new proof of results of Verchota ([25]).Theorem 3.8. There exists a positive number " = "(n;m) such that for all f 2 Lp1(�); 1 <p < 2 + ", there is a harmonic function u in D with M(ru) in Lp(�), and @u=@ ~Tj =@f=@ ~Tj; j = 1; : : : ; n � 1 non-tangentially a.e. on �. Moreover, u is unique moduloconstants and kM(ru)kLp(�) � CkfkLp1(�);were C depends only on p; n and m.Proof. The case 2 < p < 2+ " follows in the same way as in the Neumann case. Since S isinvertible fromH1at(�) onto H11;at(�) and from L2(�) onto L21(�), it follows by interpolationthat S is invertible from Lp(�) onto Lp1(�); 1 < p < 2, which gives existence for 1 < p < 2.Uniqueness follows in the same way as in the H11;at(�) case.We conclude this section by giving the invertibility properties of layer potentials.Theorem 3.9. There exists a number " = "(n;m) > 0 such that S maps Lp(�) boundedlyonto Lp1(�), with a bounded inverse, for 1 < p < 2 + ". Furthermore S is a boundedinvertible mapping from H1at(�) onto H11;at(�). The operators @S=@n and D are boundedand invertible on Lp(�) for 1 < p < 2 + " and 2 � " < p < 1 respectively. Furthermore@S=@n is a bounded invertible mapping on H1at(�), and D is a bounded invertible mappingon BMO (�).4. Bounded Lipschitz domainsIn this seciton we will sketch the localization arguments which are necessary to extend theresults in the last two sections to the case of general bounded Lipschitz domains in Rn.The L2 theory in the Neumann problem and the L2-regularity in the Dirichlet problemhave been treated in [13] and [25]. The Lp regularity in the Dirichlet problem has beentreated in [25].From now on we will assume that D � Rn; n � 3, is a bounded Lipschitz domain suchthat D� = Rn n �D is connected. Atoms are de�ned as in the graph case, and the atomic126



Hardy space H1at(@D) is also de�ned as in the graph case. We say that f 2 Lp1(@D) iff 2 Lp(@D; d�) and for each coordinate chart (Z;'), there are Lp(Z \ @D) functionsg1; : : : ; gn�1 so thatZRn�1 h(x)gj(x; '(x))dx = ZRn�1 @@xjh(x)f(x; '(x))dxfor all h 2 C10 (Z \Rn�1). It is easy to see that given f 2 Lp1(@D), it is possible to de�nea unique vector rTf 2 Rn, at almost every Q 2 @D so that krTfkLp(@D;d�) is equivalentto the sum over alla the coordinate cylinders in a given covering of @D of the Lp norms ofthe locally de�ned functions gj for f , occurring in the de�nition of Lp1(@D). The resultingvector �eld, rTf , will be called the tangential gradient of f . If F is a function de�ned onRn;rTF is orthogonal to the normal vector n, and rF = rTF + (@F=@n) � n. In localcoordinates, rTf may be realized as(g1(x; '(x)); g2(x; '(x)); : : : ; gn�1(x; '(x)); 0)� h(g1(x; '(x)); : : : ; gn�1(x; '(x)); 0); n(x;'(x))in(x;'(x));Lp1(@D) may be normed by kfkLp1(@D) = kfkLp(@D) + krTfkLp(@D).Before we proceed to de�ne the space H11;at(@D), we will make a few remarks about it inthe graph case. We say that f is an H11;at(�) � L2 atom if f is in L21(�), it is supportedin a surface ball B, and A = ((@=@ ~T1)f; : : : ; (@=@ ~Tn�1)f) (which automatically veri�esR�Ad� = 0) veri�es kAkL2(�) � �(B)�1=2. We say that f 2 ~H11;at(�) if f 2 L(n�1)=(n�2)(�),and there exist H11;at(�) � L2 atoms fj and numbers �j with P j�j j < +1, such thatf = P1j=1 �jfj, where the sum is taken in the sense of L(n�1)=(n�2)(�). Moreover, if f 2H11;at(�), there exists a constant c such that f�c 2 ~H11;at(�). Let � : Rn�1 ! � be given by�(x) = (x; '(x)). Then f 2 ~H11;at(Rn�1) if and only if g(x) = Cn RRn�1(h(y)=jx� yjn�2)dy,where h 2 H11;at(Rn�1). In fact, such g(x) clearly belong to L(n�1)=(n�2)(Rn�1), and Lemma3.5 shows that they are in fact in ~H11;at(Rn�1). Conversely, if g 2 ~H11;at(Rn�1), theng(x) = Cn RRn�1(h(y)=jx � yjn�2)dy, where h(y) = Pnj=1Rj(@=@yj)g, where Rj are theclassical Riesz transforms. Note that if we de�ne ~H11;at(Rn�1) by using H11;at(Rn�1) � Lpatoms, 1 < p � 1, we obtain the same characterization of ~H11;at(Rn�1), which shows thatall these spaces coincide, and have comparable norms. The same fact of course remainstrue for ~H11;at(�) This allows one to show in a very simple fashion that if � is a Lipschitzfunction with compact support in �, and f 2 ~H11;at(�), then �f also belongs to ~H11;at(�).Our �nal remark is that if f 2 ~H11;at(�), and u is the solution to the Dirichlet problemconstructed in Theorem 3.7, then uj�= f , in the sense of non-tangential convergence,R�(ju� j)(n�1)=(n�2)d� � C, and ju(X)j � Cfdist (X;�)g2�n. Moreover, the uniquenessthen follows without the addendum 'modulo constants'.We are now ready to de�ne H11;at(@D). We say that f is an H11;at(@D) � L2 atom if f issupported in a coordinate cylinder (Z;'), and if � is the graph of ', f is an H11;at(�)�L2atom. The spaceH11;at(@D) is then de�ned as the absolutely convergent sums ofH11;at(@D)�127



L2 atoms, where the convergence of the sum takes place in the L(n�1)=(n�2)(@D) norms. Itis a Banach space, and if we replace L2 atoms by Lp atoms, 1 < p � 1, we obtain the samespace, with an equivalent norm. Also, if � 2 Lip (@D), and f 2 H11;at(@D); �f 2 H11;at(@D),and, if f 2 H11;at(@D), then f 2 L(n�1)=(n�2)(@D). Also, Lp1(@D) � H11;at(@D), for any1 < p � 1.The non-tangential regions ��(Q); Q 2 @D, are de�ned as ��(Q) = fX 2 D : jX �Qj <(1 + �)dist (X; @D)g, while the non-tangential maximal function M(!)(Q) = supX2�1(Q)j!(X)j. Finally, we recall that a bounded Lipschitz domain 
 is called a starlike Lipschitzdomain (with respect to the origin) if there exists ' : Sn�1 ! R, where ' is strictly positive,and j'(�)�'(�0)j � mj���0j; �; �0 2 Sn�1 such that, in polar coordinates (r; �);
 = f(r; �) :0 � r < '(�)g.Note that if D is an arbitrary bounded Lipschitz domain, and (Z;') is a coordinate chart,with kr'k1 � m, then, for appropriate � > 0; a > 0; b > 0 which depend only on m,the domain D \ U is a starlike Lipschitz domain with respect to X0 = (0; b�), whereU = f(x; y) : jxj < �; jtj < a�g.Lemma 4.1. Let 
 be a starlike Lipschitz domain, and let u be the L2-solution of theNeumann problem with data an atom a, centred at Q0 2 @
. Then, there exists a constantC, which depends only on the Lipschitz constants of D such thatkM(ru)kL1(@
) � C;(a) Z@
M(ru)2jQ�Q0jn�1d� � C;(b) kukH11;at(@
) � C;(c)if we subtract from u an appropriate constant.Proof. We may assume that the size of the support of a is small. We may also assume that
 � fy < '(x)g = D, where ' : Rn�1 ! R is Lipschitz with norm depending only on theLipschitz character of 
, that @
\ @D � fjX �Q0j < r0g\ @
, where r0 depends only onthe Lipschitz characater of @
, that Q0 is the origin and that supp a � fjX �Q0j < r0g.Let v be the solution of the Neuman problem in D, with data a, given by Lemma 2.7, andlet ! be the L2-solution of the Neumann problem in 
, with data @!=@n = 0 on @
\ @D,and @!=@n = �@v=@nj@
 on @
 n (@
 \ @D). We clearly have u = v + !, and from thisthe lemma follows.Lemma 4.2. Let 
 be a bounded, starlike Lipschitz domain, and let u be harmonic in 
,with M(ru) 2 L1(@
) and either rTu = 0 or @u=@n = 0 non-tangentially a.e. on @
.Then, u is a constant. 128



Proof. Assume �rst that @u=@n = 0 non-tangentially a.e. on @
. We can show that u is aconstant using a variant of the uniqueness proof in Theorem 2.11, using a radial re�ectionacross our starlike surface.If rTu = 0, is constant on @
, we have, if b 2 Lip (@
), and ! is its harmonic extension,that (with ur(x) = u(rx)) Z@
 !s @ur@n d� = Z@
 ur@!s@n d�:If we let r! 1, the right-hand side tends to 0, while the left-hand side tends to R@
 b(@u=@n)d� = 0, and so @u=@n = 0 a.e. on @
. Therefore u is constant by the previous result.We are now in a position to give the solution of the Neumann problem with H1at(@D) data,for a general bounded Lipschitz domain D.Theorem 4.3. Let D � Rn be a bounded Lipschitz domain. If u is harmonic in D, withM(ru) 2 L1(@D), then @u=@n 2 H1at(@D) and@u@nH1at(@D) � CkM(ru)kL1(@D):(4.4)If f 2 H1at(@D), then there is a harmonic function u withM(ru) 2 L1(@D) and @u=@n = fnon-tangentially a.e. on @D. Furthermore, u is unique modulo constants, andkM(ru)kL1(@D) � CkfkH1at(@D);(4.5)u can be chosen so that kujjH11;at(@D) � CkfkH1at(@D):(4.6)Proof. As in the proof of Lemma 2.10, the estimate (4.4) follows from Green's formula,the extension theorem of Varopoulos ([24]) and the fact that the dual of VMO (@D) isH1at(@D). (See [8] for the exact form of the Varopoulos extension theorem that is neededhere.)In the case when D is a bounded starlike Lipschitz domain, the rest of the theorem followsfrom Lemma 4.1 and Lemma 4.2.We now pass to the general case. We �rst establish uniqueness in the general case. Thus,M(ru) 2 L1(@D), and @u=@n = 0 a.e. on @D. We can cover a neighborhood of @D in D,129



with �nitely many bounded starlike Lipschitz domains 
i � D, such that M
i(ru), thenon-tangential maximal function relative to the domain
i, is in L1(@
i). Thus, if vi = uj
i,we have @vi=@n 2 H1at(@
i). If also @
i � B(Qi; 3r) \ @D, for some r > 0; Qi 2 @D, wecan take the atoms in the atomic decomposition of @vi=@n to have supports that are sosmall that they are all contained in @
i=B(Qi; 2r) (since @vi=@n = 0 on B(Qi; 3r) \ @D).It then follows from (b) in Lemma 4.1, and the uniqueness for starlike Lipschitz domains,thatM(ru) 2 L2(B(Qi; r)\@D). Since [iB(Qi; r)\@D can be taken to be @D, it followsthat M(ru) 2 L2(@D), and hence u is a constant by the L2-theory (see [13] or [25]).To show (4.5), it is enough to show that if a is an atom with support contained in a ballof radius r, with r � r0 = r0(D), then kM(ru)kL1(@D) � C(D), where u is the solutionof the L2-Neumann problem with data a. For � 2 (14 ; 10) let D(�) be a domain of theform f(x; y) : '(x) < y < '(x) + �1�; jxj < �2�g, where ' is a Lispchitz function. Wecan choose numbers �1; �2 and coordinate systems so that the domains D(�) are starlikeLipschitz domains contained in D, for 14 < � < 10. The number r0 is chosen in such a waythat there are �nitely many D�(�); 1 � � � N = N(D) such that [@D�(1=4) \ @D = @D,and such that, for any � we have that either the support of a is contained in @D \ @D�(4)or supp a \ @D�(3) = ;.We �rst claim that for each compact set K � D, we havesupK jruj � C = C(K;D):(4.7)To see this, pick � 2 L1(D); supp � � K and R �(X)dX = 0. Letting !(X) = Cn R jX �Y j2�n�(Y )dY , we have that �! = �; R@D(@!=@n)d� = 0, and k@!=@nkL1(@D)� C(K;D)k�kL1(K).Let h solve the Neumann problem in D with data @!=@n and RD h(x)dx = 0. Then,ZD u�dX = ZD u�(! � h) = Z@D(! � h)@u@n:If we now note that the normal derivative of !�h is 0 on @D, and we use locally the graphre�ection argument that we used in the proof of Lemma 2.7, it follows that k!�hkL1(@D) �C(K;D)k�kL1(K) which yields (4.7).LetM�;� be the non-tangential maximal operator associated to the domain D�(�). We canchoose a suitable compact set K � D so that, for all � 2 (1=4; 10) we haveZ@DM(ru)d� �Xv Z@D�(�) jM�;�(ru)jd� + C supK jruj:(4.8)In order to apply (4.8), we shall �rst study the case when (supp a)\D�(3) = ;. From the130



L2-Neumann theory, it follows that for 1=4 < � < 3 we have�Z@D�(1=4)M�;1=4(ru)d��2 � cZ@D�(�)M�;�(ru)2d�� C Z@D�(�)n@D�@u@n�2d� �� C Z@D�(�)n@D jru(X)jd�:Integrating in � from 1/2 to 1 now gives�Z@D�(1=4)\@DM�;1=4(ru)d��2 � C ZD�(2) jru(X)j2dX� C�ZD�(3) jru(X)jdX�2:The last inequality follows from the graph re�ection and the reversed Hölder inequalityfor the gradient of the solution of a uniformly elliptic equation in divergence form (see[12]) together with the fact that one can lower the exponent on the right-hand side ofsuch a reversed Hölder inequality. This last fact was proved by the present authors; see[10]. It is possible to use the graph re�ection because supp @u=@n \ D�(3) = ;. Hence,RD�(1=4)M�;1=4(ru)d� � C RD�(3) jru(X)jdX, and therefore, given " > 0 there is a compactK" � D such thatZD� (1=4)M�;1=4(ru)d� � C"Z@DM(ru)d� + C(")ZK" jruj:(4.9)If supp a � D�(4), we let v solve the Neumann problem in D�(4), with data a on @D�(4)\@D, and 0 elsewhere on @D�(4). Let ! = u � v. Since @!=@n = 0 on @D�(4) \ @D wehave, from the argument leading to (4.9), thatZ@D�(1=4)\@DM�;1=4(r!)d� � C ZD� (3) jr!jdXand therefore Z@D�(1=4)\@DM�;1=4(ru)d� � C"Z@DM(ru)d�+ C(")ZK" jru(X)jdX + C:(4.10)Using now (4.8), (4.9) and (4.10), and the weak estimate (4.7), we see thatZ@DM(ru)d� � C"Z@DM(ru)d� + C(") + C;131



and so, if we choose " small enoughZ@DM(ru)d� � C = C(D);which yields (4.5). Finally, note that because of (4.7), we can subtract a constant Cfrom u so that supK ju � Cj � CK for all K compact in D. Let v = u � C. We claimthat kvkH11;at(@D�(1)) � C. In fact, we know that, because of the Poincaré inequality on@D�(1); R@D�(1) jvj(n�1)=(n�2)d� � C. But, by Lemma 4.1, there exists a constant C� sothat kv � C�kH11;at(@D�(1)) � C. But then, R@D�(1) jv � C� j(n�1)=(n�2)d� � C, and thusjC�j � C. Therefore kvkH11;at(@D�(1)) � C, and (4.6) follows for the case of atoms. Thegeneral case follows from this.We shall next study the regularity in the Dirichlet problem with H11;at(@D) data.Lemma 4.11. Let f be an H11;at(@D) � L2 atom. If u solves the Dirichlet problem withboundary values f , then Z@DM(ru)d� � C:(a) (Z@DM(ru)2d�)� Z@DM(ru)2jQ�Q0j("+1)(n�1)d��1=" � C;(b)where Q0 is the center of the support of f .Z@DM(ru)2jQ�Q0jn�1d� � C:(c)Here C and " > 0 are independent of the H11;at(@D)� L2 atom f .Proof. If we perform a change of scale so that the support of f is of size 1, we see that thearguments in the graph case (Theorem 3.7), yield the proof of Lemma 4.11.Theorem 4.12. Let D � Rn be a bounded Lipschitz domain. If u is harmonic in D,with M(ru) 2 L1(@D), then u 2 H11;at(@D), andkukH11;at(@D) � CkM(ru)kL1(@D):(4.13)If f 2 H11;at(@D), then there is a harmonic function u with M(ru) 2 L1(@D) and u = fnon-tangentially a.e. on @D. Furthermore, u is unique,kM(ru)kL1(@D) � CkfkH11;at(@D):132



Proof. Uniqueness follows from the uniqueness in Theorem 4.3. Next note that existencein the range 1 < p < 2 follows by interpolation between Theorem 4.3 and the L2 results.Existence in the case p > 2 follows by a minor modi�cation of the corresponding part ofthe proof of Theorem 2.12. In fact, the main di�erence is that in the bounded case thereare two kinds of Whitney cubes Ik, the small ones and the big ones. The small ones aretreated just as in 2.12, while the big ones are of diameter comparable to that of D, andhence m1 is comparable to m on them. The rest of the proof is identical, and is thereforeomitted.Our next theorem deals with regularity in the Dirichlet problem with Lp1(@D) data. It was�rst proved in [25].Theorem 4.14. Let D � Rn be a bounded Lipschitz domain. There exists a positivenumber " = "(D) such that for all f 2 Lp1(@D); 1 < p < 2+", there is a harmonic functionu in D, with M(ru) in Lp(@D), and u = f non-tangentially a.e. on @D. Moreover, u isunique and kM(ru)kLp(@D) � CkfkLp1(@D)where C depends only on p and D.Proof. Uniqueness follows from Theorem 4.12. Existence follows just as in Theorem 4.13in the range 2 < p < 2 + ", while the case 1 < p < 2 follows by interpolation.We will now study the Neumann problem and regularity in the Dirichlet problem for thedomain D� = Rn n �D. The L2 theory for D� can be found in [25]. We will let M� be thenon-tangential maximal operator associated to D�, where the non-tangential regions aretruncated. We let ~H1at(@D) be de�ned as H1at(@D), but add the constant 1 to the atoms.Theorem 4.15. Given f 2 ~H1at(@D), there exists a harmonic function u in D� with@u=@n = f non-tangentially a.e. on @D; u(X) = o(1) at 1,kM�(ru)kL1(@D) � Ckfk ~H1at(@D); and kukH11;at(@D) � Ckfk ~H1at(@D):Moreover, u is unique. There exists " = "(D) > 0 such that if f 2 Lp(@D); 1 < p < 2 + ",then kM�(ru)kLp(@D) � CkfkLp(@D) where C = C(p;D).Proof. The uniqueness reduces to the L2-uniqueness just as in Theorem 4.3. For existencein the ~H1at(@D) case, the atom 1 is taken care of by the L2-theory. The existence and the133



estimate kM�(ru)kL1(@D) � C for the other atoms are the same as in the proof of Theorem4.3, the only di�erence being that the estiamte����ZD� u����� � C(K;D�)k�kL1(K)is valid for all � 2 L1(D�); supp � � K, since u(X) = o(1) at 1. This fact also shows, bya small variation of the argument used in Theorem 4.3, that kukH11;at(@D) � C. The case1 < p < 2 + " of the theorem follows in the same way as in Theorem 4.13. Note also thatif M�(ru) 2 L1(@D), and u(X) = o(1) at 1, then @u=@n 2 ~H1at(@D). This is proved in asimilar way to (4.4) in Theorem 4.3.Theorem 4.16. Given f 2 H11;at(@D), there exists a harmonic function u in D� withu = f on @D non-tangentially a.e., u(X) = o(1) at 1,kM�(ru)kL1(@D) � CkfkH11;at(@D) and @u@n ~H1at(@D) � CkfkH11;at(@D):Moreover, u is unique. There exists " = "(D) > 0 such that if f 2 Lp1(@D); 1 < p < 2 + ",then kM�(ru)kLp(@D) � CkfkLp(@D), where C = C(p;D).Proof. Uniqueness follows as in the proof of uniqueness in Theorem 4.12. Existencefor atoms follows in the same way as in Lemma 4.11. The estimate k@u=@nk ~H1at(@D) �CkfkH11;at(@D) follows because of the remark before the statement of Theorem 4.16. Thecase 1 < p < 2 + " follows in the same way as in Theorem 4.14.We are now ready to prove the sharp invertibility properties of the layer potentials.For P;Q 2 @D; P 6= Q, let K(P;Q) = 1!n hQ� P; n(Q)i;where !n is the surface area of the unit sphere in Rn, and put Tf(P ) = p:v: R@DK(P;Q)f(Q)d�(Q). Also, letSf(P ) = 1!n(n� 2) Z@D jP �Qj2�nf(Q)d�(Q):The boundedness properties of these operators are the same as for the corresponding op-erators in the graph case. 134



Theorem 4.17. There is a number q0 = q0(D); q0 2 (2;1), such that 12I � T � is aninvertible mapping from Lp0(@D) onto Lp0(@D) for 1 < p < q0, where Lp0(@D) = ff 2Lp(@D) : R@D fd� = 0g. Also, 12I � T � is invertible from H1at(@D) onto H1at(@D). There isa number p0 = p0(D); p0 2 (1; 2) such that 12I+T is an invertible mapping of Lp(@D) ontoLp(@D) for p0 < p < 1. Also, 12I + T is invertible from BMO (@D) onto BMO (@D).There is a number r0 = r0(D); r0 2 (2;1) such that S is an invertible mapping of Lp(@D)onto Lp1(@D). Also, S is an invertible mapping from H1at(@D) onto H11;at(@D).Proof. The proof of this theorem is the same as the corresponding L2 case presented in [25],using the results of this ection. Finally, we give representation formulas for the solutionsof the Dirichlet and Neumann problem, using layer potential.Theorem 4.18. Let D � Rn be a bounded Lipschitz domain, whose complement isconnected. Let q0; p0; r0 be the numbers given in Theorem 4.17. Let f 2 Lp(@D); p0 <p < 1, and let u(X) be the unique solution of the Dirichlet problem given in [5]. Thenu(X) = (1=!n) R@D(hX � Q;n(Q)i=jX � Qjn)(12I + T )�1(f)(Q)d�(Q). The same holdswhen f 2 BMO (@D), and u is the unique solution of the Dirichlet problem given in [9].Let f 2 Lp(@D); 1 < p < q0; R@D fd� = 0, and let u(X) be the unique (modulo constants)solution of the Neumann problem given in Theorem 4.13. Then,u(X) = 1!n(n� 2) Z@D jX �Qj2�n�12I � T �)�1(f)(Q)d�(Q):The same holds when f 2 H1at(@D), and u is as in Theorem 4.3. Let f 2 Lp1(@D); 1 <p < r0 and let u(X) be the unique solution of the Dirichlet problem given in Theorem 4.14.Then, u(X) = 1!n(n� 2) Z@D jX �Qj2�nS�1(f)(Q)d�(Q):The same holds when f 2 H11;at(@D), and u is as in Theorem 4.12.Proof. The proof follows from well-known properties of layer potentials (see [25], for ex-ample), the uniqueness in all the theorems mentioned and Theorem 4.17.REFERENCES[1.A] A. P. CALDERÓN, On the Cauchy integral on Lipschitz curves, and related operators,Proc. Nat. Acad. Sci. 74 (4) (1977), 1324-1327.[1.B] ���-, Boundary value problems for the Laplace equation on Lipschitz domains. RecentProgress in Fourier Analysis, North Holland, Notas de Mat. 111 (1985), 33-48.135
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