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CALCULUS OF VARIATIONS

CHAPTER 1

INTRODUCTION

1. The Calculus of Variations owed its origin to the attempt to
solve a very interesting and rather narrow class of problems in
Maxima and Minima, in which it is required to find the form of a
function such that the definite integral of an expression involving
that function and its derivative shall be 8 maximum or a mini-
mumn.

Let us consider three simple examples: The Shortest Line, The
Curve of Quickest Descent, and The Minimum Surface of Revolu-
tion.

(a) The Shortest Line. Let it be required to find the equation of
the shortest plane curve joining two given points.

We shall use rectangular coordinates in the plane in question
taking one of the points as the origin. Call the codrdinates of the
second point 21, Y1.

If y = f(z) is a curve through (0,0) and (zi, ¥:) and I is the
length of the arc between the points, obviously

I=f\/d:c2+dy2
0

or I =f\/ 1 + y"dx, (1)
0

and we wish to determine the form of the function f so that this
integral shall be a minimum.
(b) The Curve of Quickest Descent. Let it be required to find the

form of a smooth curve lying in a vertical plane and joining two
.



2 CALCULUS OF VARIATIONS

given points, down which a particle starting from rest will slide
under gravity from the first point to the second in the least possible
time.

We shall use rectangular axes in the vertical plane taking the
higher point as the origin and taking the axis of X downward. Call
the coordinates of the second point i, ¥:.

(o]

. \

x Y

Let y = f(z) be a curve through (0, 0) and (i, y,) and use the

well-known fact that ds, the velocity of the moving particle at any

time, is V2gz. dt
ds _
We have i v 2¢z,
1L 72
whence dt ds__ Vity dx

" T Vg Ve

and t=f L\/l—i—y”dx.
A v 292

Let ‘ I =fi V1 + y"dx, )
A vz

and the form of the function f is to be.determined so that this
integral shall be a minimum.

(¢c) The Minimum Surface of Revolution. Given two points and
a line which are co-planar, let it be required to find the form of a
curve terminated by the two points and lying in the plane which,
by its revolution about the given line, shall generate a surface of
the least possible area.
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Take the line as the axis of X and use an axis of ¥ through one of
the points. Call the codrdinates of the points 0, yo, and z;, y1. Let
y = f(x) be a curve through (0, yo) and (z1, y1).

If S is the area of the surface of revolution generated by the
curve,

21

S=27rfyds=27rfy\/1—|—y’2dx.
0

0
Let I = f y V1 + ydx, (3)
0

and we wish to determine the form of the function f so that I shall
be a minimum.

2. The three problems just considered are special cases of what
“we shall call our fundamental problem Whlch is, to determine the

form of the function f so that if y = f(z), f ¢ (x, 9, y’) dx shall be a

maximum or a minimum; ¢ being a g1ven function and x, and z;,
being given constants, as are 3o and ¥, the corresponding values
of y.

In ordinary problems in maxima and minima y = f(x) is a given
function and we wish to find a value, x,, of x for which y is greater, if
we seek a maximum, less, if we seek a minimum, than for neighbor-
ing values of z; that is, for values of z differing from x, by a suffi-
ciently small amount whether that amount is positive or negative.

In our new problems, to speak in geometrical language, we have
to find the form of a curve for which our integral, I, is greater or
less than for any neighboring curve having the same end-points.

3. Let us now attack our first problem, that of the shortest line.
We have to find the form of the function f so that if

I=f\/T-T-—?Fdx

I shall be & minimum when y = f(z). v. Art. 1 (a).
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Let y = F(x) be any other continuous curve joining the given
points, and let 9(x) = F(x) — f(x).

Then y = f(x) + #(x) is our curve y = F(x). Consider the
curve ¥y = f(x) + an(x) where ais a parameter independent of z.

Y y=Frx)
l ¥
il
Y,
o X

For any particular value of o the curve y = f(x) + an(x) is one of
a family of curves including ¥ = f(z) for o = 0 and y = F(x) for
a = 1.

By taking a sufficiently small value for o we can make an(x) less
in absolute value for that and all less values of a, and for all values
of x between 0 and z;, than any previously chosen quantity ¢; and
for such values of o the curve y = f(x) + an(x) is said to be a
curve in the neighborhood of y = f(x).

If y = f(x) and y = F(x) are given, I(a), the I for any one of our

" curves y = f(x) + an(x), 1sf\/1 + (y + an’(x))*dz, and I(a) is a
function of a only.

A necessary condition that I(a) should be a minimum when
a = 0 is well known to be that j—aI (a) should be zero when a = 0.
This condition we shall express as I’(0) = 0.

Since the limits 0 and x; are constants

'@ = [ NTH W+ o @
0
Y @)
T+ +ar@r

and I'(0) = f —

7’ (z)dz,

7' (x)dzx.
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Integrating by parts

I'0) = [Q—%—,—y_—,—n( )] fdx\/—— (rv)drcv

_fe_wv

since n(x) vanishes when £ = 0 and when z = z,.

A necessary condition that I(0) shall be less than I(a) for some
value of a and for all less values of « no matter what F(x) may be,
in which case the length of the curve y = f(x) is less than that of
any neighboring curve, is that I'(0) = 0 independently of 5(x),

1. e. thatfdv

arbitrary functlon n(x)

n(x)dx = 0 no matter what the form of the

’
This condition will be satisfied if and only if — d L = 0;
dz T F 4
and we thus are led to a differential equation of the second order
between y and x.
Its solution will express ¥ as a function of 2z involving two arbi-

trary constants. /

VI+y7
whence y =K, a constant;
y = Ko + L.

The required curve is to pass through (0, 0) and (z;, ;) and thus
we are able to determine K and L.

L=0 K=%
1

)

Hence y = 31_1 x; and our curve is a straight line through the given

points. u
If certain other conditions, depending on the fact that when I(a)

1
Y1 2 must
Z,

is a minimum I’'(a) must be positive, are satisfied, y =
be the required shortest line.
As our necessary conditions gave us but a single solution it is

clear that if there is any shortest line it must be our line y = 91y,
. X1
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‘We may note in passing that in simplifying I’ (&) by integration
by parts we tacitly assumed that f(z) and F(x) were continuous
and had continuous first derivatives over the range of integration.

4. We can deal with the general problem formulated in Art. 2
precisely as we have dealt with the shortest line problem.
Let it be required to determine the form of the function f so that

y = f(x) shall make f ¢ (z,y,y’) dr a maximum or a minimum;

given that y = y, when = 2y and y = y; when z = z..

ygF( X)

y=f(x)

As in the last article let n(z) = F(x) — f(x), and consider the
family of curves

y = f(@) + an(z).

Let 1) = [,y + an@), o/ + o' @)de

Ild 14 ' 14 \
'@ = [4 oy + ar@), f + an'@)ds.

Let w=1y~+ an(x), v=1y + an'(x).

d d
=@, o =1

I,(a) =fga é(z, u, v) dx

- f 1[2—;‘1nw + %gn'm]dx.

Ty
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10 = [ 200 + )] @

and I’(0) must be made equal to zero.
Integrating by parts,

1O = [ 2@z +| 220w [7 2,

o ] o

o) = f [—2‘—5 - jx §¢] n()da

To

since 5(x) vanishes when # = x, and when z = .
I'(0) must be zero independently of the form of () therefore
o d 0 ,
By dn oy 0, 2)
and as before we are led to a differential equation of the second
order which if solved gives y as a function of z involving two arbi-
trary constants which must be determined from the facts that
Yy = yo when z = 2y and y = y, when z = 2;. This differential
equation is known as Lagrange’s Equation and it is a necessary con-
dition that I should be a4 maximum or a minimum. .

Any particular solution of Lagrange’s Equation is called an
extremal, and if the given problem has a solution it is that extremal
which passes through the given end-points.

If ¢ is a function of ¢’ only Lagrange’s Equation becomes

a¢ =y() =
Whence y =k,

a constant, and the extremals are straight lines; and therefore the
required solution is the straight line through the given end-points
as in Art. 3.

The problems of Art. 1 (b) and (c¢) can be solved by substituting
in Lagrange’s Equation the appropriate value of ¢ and then solving
the resulting equation.
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For the curve of quickest descent

L VI+y? v Art. 1) (2).

\E:
o6
=
0 1 y’

o NzVIt gy
Lagrange’s Equation becomes '

d 1 y’
_— = ——={ : 3
dx \/x "1+y,2 ()

For the minimum surface

¢ =yv1+ y? v. Art. 1 (¢) (3).

% _NTF,
oy
0o vy’

Lagrange’s Equation becomes

— 4 yy
V1 F y~2 dx—wvﬂ_yl_é—o. 1)

We shall reserve the solving of (3) and (4) for a later article.



CHAPTER 1I

VARIATIONS. NOTATION AND NOMENCLATURE.
ILLUSTRATIVE PROBLEMS

5. If y = f(x) and y = F(x) are the equations of two curves and
n(x) = F(x) — f(x), n(x) can be regarded as the increment pro-
duced in y by changing f(x) into F(x) without changing z. We
shall call it the variation of y and represent it by éy. Itisa function
of x and usually a wholly arbitrary function of .

_F(x)
/—\\
n(x)

| ——————

y:f/x)

Lo X,

7' (x) = % 8y and is easily shown to be the increment produced

in ¥’ by changing f(x) into F(z), « being held fast, since when y
becomes y + n(x)’ y’ becomes y’ + 5'(x) and is changed by 7'(x).
We shall call this increment the vartation of ¥’ and represent it by

dy’. Like &y it is a function of 2. As we have seen
3
by = - dy. (1)
If y is increased by 8Ys
| a o(y) oy
dy

is an approximation to the increment produced in ¢(y), the close-
ness of the approximation depending on the magnitude of éy. If -
8y is infinitesimal this approximation differs from the actual incre-
w:ont by an infinitesimal of higher order than dy.

9
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We shall call this approximate increment the variation of ¢ (y) and
represent it by d¢(y); so that

d
dp(y) = g,l—/¢(y)5y- (2)
TIn like manner 2o ) s n
o (y, y' o, y') <,

is imMkeymmawer an approximation to the increment produced in
¢(y, y') by giving y the increment §y and y’ the increment 6y’; the
closeness of the approximation depending on the magnitudes of §y
and 6y’. We shall call it the variation of ¢(y, y’) and represent it by
3¢ (y, y'), so that

0(y, ¥') 09(y, y')

/ o ) ) I

6p(y, y') = — oy Wt T W 3)
As all our variations are supposed to be caused by changing the

form of the function f in y = f(x) without changing x,

a ) ) ! a ) ) ! ’
dp(x, y,y') = isgx—ag—yl oy + ﬂ%}*y—) &y’ (4)

If in (2) and (3) we replace the symbol § by the symbol d we
obtain the familiar formulas for d¢. Hence variations are calcu-
lated by the use of the familiar formulas and processes of the
Differential Calculus. Indeed if y is a function, f of z, d¢ and d6¢
are approximate increments of precisely the same type but dif-
ferently caused, d¢, by changing x without changing the form of
the function and 8¢, by changing the form of the function without
changing x.

With our new notation our necessary condition that I, the

f oz, v, y') dzx, shall be a maximum or a minimum can be written

Lo

[ s, 000 = o, ©
v. Art. 4 (1), s

If we define the variation of a definite integral as the integral of
the variation of the integrand, so that
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b) f o.dx = f d¢.dz, our condition (5)

may be abridged into
: ol = 0. (6)

6. To illustrate the ordinary technique of the Calculus of Varia-
tions we shall now work out at length the problem of Art. 1 (b);
the brachistochrone or curve of quickest descent. :

We wish to make I a minimum where (v. Art. 1 (b))

I-= f”+yd

We must make oI = 0.

6l = f6< >dw
f Yoy dx
vz V1 + ¢

y d
f\/x VI fy i da 0

Integrating by parts,

- [ ]Sl
ol = |— —2— dyd
[\/x\/‘l—l—y dw Vi NI T 7 yaw.

Since our end points are fixed 8y = 0 when = 0 and when
z = x;. Therefore

o= —fdx[\/x w/—y“—]

As 81 must be equal to zero no matter what the value of our arbi-
trary function §y we must have |

arir v ]
—|—= ——1=0, 1
dx[\/x V1 4y &
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and (1) is our differential equation for %, i. e. the differential
equation of our required curve. v. Art. 4 (3).
(1) is easily integrated. We have
1 ¥y _ C
vz V1 4 ¢
, Cvz _ x
v1— C%x. 1 ,
6—72 r — X

If we let 2a = Clz’

xdx _ z
= — = — \/2&.’19 — x? a I'S_l— C.
Y f V2ax — a? tave a T

whence Y

Since y=0 when z = 0, C = 0;
and y = — V2ax — 2 + a vers™! g, (2)

where a is to be determined so that the curve shall pass through the
point (1, y1), is our required curve of quickest descent.

(2) is the equation of a cycloid having its base in the axis of Y,
its cusp at the origin, and lying on the positive side of the axis of Y.

o v Y

Y

xX

Our solution, then, is an inverted c¢ycloid with a horizontal base and
it has a cusp at the higher of the given points.

Our treatment has assumed that in the required curve y is a
single-valued function of . Our solution is, therefore, apparently
valid only if a cycloid suitably situated can be drawn so that
(21, y1) shall lie between the origin and the vertex of the curve. As
a matter of fact this limitation is unnecessary as may be shown by
interchanging the axes of X and Y and working the problem anew.
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T ___—’2_
If thisis done I = f \J—l—\/j_,i dx and it is not difficult to make
Y
0

6I = 0. The resulting differential equation
2yy" +1+y?=0

can be solved by the method employed in the following section and
we find as the equation of our required curve

r=—V2y —y +a Vers_layk (3)

Throughout the whole arch of the cycloid (3) y is a single valued
function of z, and (x4, 1) is, therefore, not restricted to lying in the
first half of the arch. "

In any concrete problem the numerical determination of « is a
matter of some difficulty. This, however, may be avoided by
Newton’s famous solution for the curve of quickest descent from
A to B.

‘““Through A on the horizontal line AC as a base draw any cycloid
cutting the straight line AB in D. Through A on the line AC draw

A C

a second cycloid whose base and altitude are to the base and alti-
tude of the first as AB is to AD; it will pass through B and will be
the curve required.”

7. As another example we shall take the problem of Art. 1 (¢),
the mintmum surface of revolution. Here (v. Art. 1 (c), (3)),

I=fy\/1—|—y’2dx.
0

o1 =f6[y\/1 + y’?ldx
0
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14
vy W] dx
I+~

Q?]r
= [ | VT F o7y +
fo- YT T

’

i d
= (vt vy —6]d.
[_ + ¥y + ___1+y,2dx‘g{ 2.

Integrating by parts,

Ty Xy
4 ’

5] = ___?ﬁ_(;] [ ,__@___'yi_]éd
[Wyo+°0f VI " G g

at
’

s 4 yy ]
= VI 92 — ——27 | bydz.
[[ + y dwmyx

To maké 81 = 0 we must make

d __yy |
N TR A U —}
VT Ty

and this is the differential equation of our required curve. .
Art. 4 (4).
Performing the differentiation indicated in (1) and reducing, the
equation becomes ’
yy" — 1 —y?=0. (2)

Equation (2) can be iﬁtegrated by a regulation device as follows:

Let 2=y
y,,__@g_d_z@_ ,dz dz.

dr dydz  Jdy " Pdy
dz

4

(1)

2) becomes z— =14 22
(2) Y2 gy
2 _dy
1+z2d2— y,'
2log (1 4+ 2% —logy = C.
V1+Z2—K—»1’
Y T T a

where a is an arbitrary constant.
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dy _d_a_c’
m‘_ a
h—1Y - %
cosh a a—l—b,
Yy = acosh(ﬁ . b). 3)

(3) is the equation of a catenary having the axis of x as its direc-
trix. The constants a and b must be determined so that (3) shall
pass through the two given points (0, o) and (zi, ). To calcu-
late their numerical values in a concrete case is not easy but the
curve required may be obtained mechanically by the following
process. |

Insert smooth pegs, at the two given points, in the vertical plane
through these points. Throw over the pegs a uniform flexible
string so long that one end will hang below the given axis; and then
pull down on the other end until the free end is drawn up to the-
axis. Then the portion of the string between the pegs will be the
required catenary.

For it is well known that if one end of a uniform flexible string is
fastened and the other end is thrown over a smooth horizontal peg,
the curved portion of the string when in equilibrium will be a
catenary whose directrix is a horizontal line through the hanging
end of the string.

8. Since any function of a single variable can be geometrically
represented by a graph by treating the independent variable as an
abscissa and the corresponding value of the function as an ordi-
nate, our theory covers the case where we are to make the definite
integral of a given function of the independent variable, and of the
dependent variable and its derivative a maximum or a minimum,
no matter what the ordinary interpretation of the variables in
question.

For example let us work the shortest line problem (Art. 1 (a))
using polar coordinates.
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Let r = f(¢) be the required shortest plane curve connecting the
‘points (1o, ¢o) and (1, ¢1).

Since ds = Vdr? + r2d¢?
®1
1= [N,
$o
and we must make
oI = 0.
o)
ol =f6‘/ r2 + r2d¢
b0
¢17’57“ + r'or
= | —d¢
r2 | r'2
b1 b1 7-’ _d._ or

Integrating by parts,

d)l ¢1 ¢l
r’ d r’ d r!
[\/rﬁ—i—r’?dd)r ¢ [\/r2+r’2 T]QS ¢d¢\/r2+r12r¢

or vanishes when ¢ = ¢, and when ¢ = ¢,.

@1
r d r’
Therefore ol =[[m - % m:l 67'd(;b.

To make 6/ = 0 we must make

r d r’
L —— } 1
V2 72 do 2 72 W
and this is the differential equation of our required line.
If we perform the indicated differentiation and reduce, (1)

assumes the comparatively simple form
rr” — 20’2 — r2

7 = 0. (2)
(r* + 1'%
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We can clear of fractions and solve without difficulty, but if we
happen to remember the Calculus formula for the curvature of a
curve in polar coordinates

dr
N d¢2+ 2( ¢>>

G

we see that our differential equation (2) represents a curve of zero
curvature, 1. e. a straight line.

.

9. As another example let us find a geodesic line joining two
given points on the surface of a sphere.

A

L/

The element of arc of a curve on the spherical surface is
ds = ' a?dg® + a? sin? Ode?
= a V1 4 sin? 0¢"%d0;

and we may take I = f V1 + sin? 66’2 d6.

2 re !
5T — f sin 0({5 o do
V1 -+ sin? ¢
sin?¢’ = d
= dé.
f\/ 1 4+ sin2 6¢’2 do o

Integrating by parts and remembering that 6¢ vanishes at both
limits 6, and 6;, we have

_ d sin2 6¢’ 56
d0 V1 F sin? 092
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Since 61 = 0 whatever the form of 6¢

d sinZ 6¢’
— = 0. 1
df V1 5 sin? 6 : L
Integrating,
sin?f¢’ = C V1 4+ sin? 692,
& = Cescd Cesc? 0 _ C csc?
Vsin® — C* V1 — C%csc?d VI1-—C*>— C%ctn?f
. | %
If we let 2 = ctné gnd K? = T —
¢=—f ldz ————— = —sin"!Kz+a= —sin! (Kctnb) + a
Vﬁ—*

where a is an arbitrary constant.
sin (a — ¢) = Ketn 6,
sin a sin 0 cos ¢ — cos a sin 0 sin ¢ = K cos 6. (2)

If we multiply by a and change to rectangular coérdinates we get
ysing — zcos o = Kz,

a plane through the centre of the sphere. The constants must be
determined so that this plane shall pass through the given points
and then the great circle in which it cuts the sphere is the required
geodesic.

ExAMPLES

(1) Work the brachistochrone problem taking the axis of ¥ verti-
cally downward. v. Art. 6, page 12.

(2) Integrate rr’’ — 2r’? — r2 = 0, the polar differential equation
of the shortest line. v. Art. 8 (2). |
Ans. 1 cos (¢ — a) = p; a straight line.

“(3) Find the shortest line that can be drawn on the surface of a
cylinder of revolution and joining two given points on the
surface; a geodesic. Suggestion. Use cylindrical codrdinates
a, ¢, 2, taking z as the independent variable.
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Then I = f V1 4+ a?¢p’?dz.

Ans. The geodesic is the line of intersection of the cylin-
der with the helicoid ¢ = bz + ¢; and is a helix.

(4) Tind a geodesic on a cone of revolution.
Suggestion. Use spherical codrdinates r, a, ¢, taking r as
the independent variable.

Then I = f V1 + 72 sin* a¢dr.

Ans. The geodesic is the intersection of the cone with
the surface r cos [(¢p — B) sin a] = c.

(5) A mountain is in the shape of a hemisphere and the velocity
of a man walking upon it varies as his height above its base;
show that his path of least time between two given points
upon its surface lies in the vertical plane through the points.

10. Isoperimetrical Problems.

There is an important class of problems in which it is required
to make I a maximum or a minimum while keeping constant the
integral of a second given function of z, y, and y’ taken between the
same limits. -

(a) For example take the problem to find the closed plane curve
of given perimeter and maximum area.

We shall use polar coordinates and take the origin within the
required curve.
If r = f(¢) is our curve, its area, 4, and its perimeter, S, are equal

27 2
respectively to f 1r%d¢ and f V12 4 r2dg.
0

0
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We are to make A a maximum while S is kept equal to a given
constant [.

If X is a constant multiplier at present undetermined A + AS
will be a maximum if our problem is correctly solved.

2w
Let, then, I = f[%rz + N V2 + r2]dg,
0

and proceed as usual.

27

i or 4 67’
6I=f 5 RT——————]d
0 -7 r -+ SR b
T A M d
r
= 14+——)ré ———  §r|d
fL< +V7"2+r’2>rr+\/r2+r’2d¢ T] ¢

0

27
A - d A/
= 1 4+—)r— — ————— | 6rdo.
[[6 +\/r2+r’2>r d¢ \'r2+r'2] rae

Since 81 = 0,

T(é_*_____L_)___d_____f,__:O
N VP i) dbNELE

Performing the indicated differentiation and reducing we get,

rr” — 29’2 — g2 1

(r2 + 7./2)% N ;

as the differential equation of our required curve. |
The first member is the curvature of the curve, and as the cur-

vature is %, a constant, the required curve is a circle. v. Art. 8§,
page 17.
As \ is the radius of the circle its given perimeter [ is 27\ and

l
our N\ proves to be 5
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(b) The ends of a uniform string are fastened at given points;
find the equation of the curve in which it must hang that its centre
of gravity may be as low as possible.

Let (20, o) and (x1, ¥1) be the end points, and let [ be the length
of the string.

f\/1+y'2dx=l.

o

If 7 is the ordinate of the centre of gravity
5 =7 [yNT+ 77
We must make .

?j—{—)\l,i.e.%f(y—l—)\l)\/l—f—y’?dx,

a minlimum.

Let k = Nl and let [ =f(y + V1 + y2de.

Turning to Art. 7 we see that we have only to replace y by y + «
in the solution there given to get the solution of the present prob-

lem, and that our required curve is y -+ x = a cosh (2 + b), a

catenary. Unlike the catenary in Art. 7 it does not generally have
the axis of X for its directrix.

In a numerical problem a and b would have to be determined so
that the catenary would pass through (x,40) and (x;, ¥.) and «
would have to be found by the condition that

f\/l-l—y’2dx=l.

Problems like (a) and (b) are known as isoperimetrical problems
and can all be handled by the device we have illustrated.
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ExAMPLES

(1) Find the form of a curve if the area bounded by an arc of
given length, the ordinates of its given end points, and the
axis of X is to be a maximum.

Ans. A circle.

(2) Find the form .of a curve if the sectorial area bounded by an
arc of given length and the radii vectores of its end points is to
be a maximum.

Ans. A circle.



CHAPTER III

PROBLEMS INVOLVING SEVERAL DEPENDENT
VARIABLES

11. Itiseasy to extend our theory to problems where instead of a
single dependent variable y and its derivative there are several varia-
bles to be determined as functions of the same independent varia-

ble. That is, when I =f¢(x, Yy, 2, y,2, - )dxand I is to be

(1]
made a maximum or a minimum.

0 0 9 |
Let 6¢=%—§6y+£6z—l—---+a—;6y’4—|—53,62’+-~,

and by the method of Art. 4 it can be shown that we must make
6l = 0.
d

' d
’ [ .
Note that oy’ = iz oy, 62 = e oz,

As an example let it be required to find the shortest curve not
necessarily plane joining (0, 0, 0) and (x,, y1, 21).

ds = Vda? + dy? + dz2 = V1 + y2 + 2"2dx.

I=f\fl+y’2+z’2dx.
0

Ty

/ 14 IEJW 4
6I=fy6y + 2’6z d
p V14 y”?+ 2"

By integration by parts

xld y’ d 4
6I=—f[—_ Sy + o a]d.
) dxwll—l—y’z—l—z”y+_dx\/1+y’2+z'2z *

23
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To make 6] = 0 we must make
4 Y
dr 1 F y? + 272

Z’

d
de N1 y? F 27

oy +

02

vanish when dy and 6z are independent arbitrary functions of x.
Hence

4 Y —0
dx1/1+y/2+z/2
’
and d & - 0.

de VT + y7 + 27

These are a pair of simultaneous differential equations of the
second order connecting y and z with x; and can be solved without
difficulty. We get 1= % =o' 2 straight line.

12. Hamalton’s Principle, called by Professor E. B. Wilson ‘“ the
-most fundamental and important single theorem in mathematical
physics,”” and closely allied to the so-called principle of Least Action
is that ¢n the actual motion of any conservative system the time-integral
of the sum of the Energy and the force function is a minimum.

t
Formulating, § f [T 4+ Uldt = 0, if U is the force function and T
)
the kinetic energy. -
We give a proof of Hamilton’s Principle for a single moving
particle.” It can be extended without difficulty to a moving system.
Let a particle of mass m moving under forces X, Y, Z, actually
move from its initial to its final position in the time #. Suppose
that by the introduction of additional forces it had been made to
move from its initial to its final pgsition in the same time ¢, but by a
slightly different path. Let (z, y, 2) be its position at any time
¢ in the actual motion and (z 4 &z, v + oy, 2 + 62) its position in
the hypothetical motion after the lapse of the same time. If ¢ is
our independent variable we have from Mechanics mz” = X,
my” = Y, mz" = Z; and if the forces are conservative and U is
the force function Xoéx + Yoy + Zoz = §U.
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mx'?
2

Xox = ma"dx = m[gl—(x’éx) — x’é:v’] = madz(x'éx) — 0

oU

lI

gt[xéx—l—yéy—l—zaz]——BT

where T = %[x’2 + y"2 4 2’?] and is the Kinetic Energy.

t=

t
fB(T + U)dt = m[z'éx + y'oy + 26z ]
O .

oH._

t=

since the initial and final positions of the particle are the same in
the actual motion and the hypothetical motion.

‘As an illustration of the use of Hamilton’s Principle we shall
obtain the differential equations for planetary motion by its aid.
If we use polar codrdinates and take the sun as origin T', the energy

of the planet is 7—@ (r'2 4 r2¢'?). The force, F, exerted by the sun

is an attractive force directed toward the sun, proportional to the
product of the masses and 1nverse1y proportional to the square of

the distance. P B Mm

7,.2
The work done in any motion of the planet is f Fdr
and der—— — bt [U < 22 g,

The simplest force function, U,is equal to wMm,

By Hamilton’s Principle

21

J3m 4 e+ 5 o

0 -

2 _
f[r'ar' -+ r2¢’6¢p" + rop’20r — %57‘ dt = 0,

0

4 '
or » f I:T’(% or + r2¢ qu + <r¢’2 — K M) 5r] dt = 0.
0
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Integrating by parts,

iy

f[— C%r'ar — %(r%’)&ﬁ -+ <7"¢'2 - Ef?lz{) 57"] dt = 0.
0

M
Whence " — r¢? = — ET
7
and r2p’ = k.
ExAaMPLE

A heavy cube containing a smooth spherical cavity rests on a

smooth horizontal plane, and a heavy particle lies at the

bottom of the cavity. The cube is given a horizontal velocity.

Find the equations for the subsequent motion of the system.
Suggestion. Let M be the mass of the cube and m the
mass of the particle, and use as codrdinates x, the distance
the cube has moved, and 6, the angle a radius of the cavity
drawn through the particle makes with the vertical. The
horizontal velocity of the particle is easily seen to be
x’ — a cos 00, its vertical velocity is a sin 66.

T = 1M + m)x"? + ma20'? — 2a cos 02'¢’.
U = mga cos 6.

The equations required are

A %[(M + m)x’ — ma cos 00’] = 0
% (a0" — cos 6z') — sin 6 (2’0" — g) = 0,
or (M + m)x’ — ma cos 60’ = C

afd” — cos 02" + g sin 0 = 0.

13. If in the proof of Hamilton’s Prinbiple in the last article we
do not replace Xéx + Yoy -+ Zoz by its equal U we get
. 21
f (6T + Xoz + Yoy + Zozldt = 0,
o .

and this equation is valid even if the forces are not conservative. It
is to be noted that Xéx -+ Y 6y + Zéz is the work that would be done
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by the actual forces if the particle were displaced from its actual
position at any time to its corresponding position in the hypotheti-
cal path.

The differential equations in polar coérdinates for the motion of
a particle in a plane are easily obtained by the aid of our new equa-
tion. Let the component of the force along the radius vector be R
and perpendicular to the radius vector be ®. If (r, ¢) is the actual
position of the particle at the time ¢ the corresponding position in
the hypothetical path is (r + 6r, ¢ -+ 6¢).

Xéx + Yoy + Zoz

becomes Ror -+ ®roop. T = gﬁ [72 4 r2¢"?].
t; .
f [6—2”3(7“2 + r2¢’?) + Ror + <I>r6¢>] dt = 0,
0

4

f [m(r'sr’ 4 r2¢’6¢" + r¢p’?6r) + Ror + Prépldt = 0,

0
¢ - ‘d .
IR— wr” 4+ r¢’? + R)ér — \Et (r2¢p’) — <I>T>6¢]dt = 0.
0

mé” — r¢p’? )= R,

td oo _
rdt(rq{)) = &,

ExaAMPLES

(1) Find the differential equations for the motion of a spherical

pendulum. g
» Ans. 6" — sin 6 cos 6¢’2 + o sing =0
sin? ¢’ = C.

(2) Obtain the differential equations for the motion of a particle in
space, using cylindrical coordinates.

Ans. m(r”" — r¢?) = R, (r?¢) =®, me" = Z.

T dt
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(3) Obtain the differential equations for the motion of a particle in
space, using spherical coordinates.

Amns. ml[r” — r (6’ 4 sin2 66'?)] = R
mld o aon e l2] —
T[dt('rﬂ) r2 8in 0 cos 0’| = O

m_ Aoy pan =
rsin@dt(r sin® 6¢") = 2.




CHAPTER IV

MULTIPLE INTEGRALS

14. If I is a multiple integral no serious additional difficulty is
presented. We have still to make 6 = 0.

It 1= [[o6 v 2 oddy,
- 02
where p=-
0z
and qQ = E

and the integration is over a given area in the XY plane, let it be
required to make I a maximum or a minimum by suitably determin-
ing z as a function, f, of z and y, 2z being given for all values of « and
y corresponding to points in the boundary of the area.

Here 6z is the increment produced in z by changing the form of
the function f, x and y being held fast, and is a function of x and y-
If we let 6p = 8%0 0z, and 6q = —3%63 then ép and d¢ are the incre-
ments produced in p and gq.

z = f(z,y) + adz is any one of a family of surfaces of which
z = f(x, y) is one.

I(a) =f o(x,y, 2 + adz, p -+ adp, q + adq)dxdy.
O — 9% 0% 9¢
I1'(0) —ff[azaz—l— ap&p + aq&q]dmdy

=ff6¢dxdy = 5ff¢dxdy = 6,
29
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and, as before, the necessary condition that I shall be a maximum
or a minimum is 6 = 0.

15. Minimal Surface. As an example let us find the form of the
surface of least area that can be bounded by a given closed curve
not necessarily plane.

I = f f V1 + p? 4 ¢?dxdy, the integral being taken over the

area bounded by the projection of the given curve on the XY plane.
oI = ff pdp + qdq dady
V1 + p? + ¢

8 _
P 52—[—9
ox oy
—f dxdy
\/1+p2+q

_ff\/l-l—p e xy+ff~/1+p T

Integrating by parts,

pﬁ;cﬁz o Pz e »
Vi+p+ ¢ Vit pP+¢ JorNI+p+¢

Since in our z-integration y is held fast our limits are the abscissas
of the points on the projection of the given boundary which corre-
spond to the value of y in question, and for these points 6z = 0.
Therefore the term outside of the sign of integration vanishes and

dzdx.

P
oz dr = — f o P dzd.
VI F p? + ¢ ax\/1+p2+q2
In like manner it may be shown that

0
95&32

d =—f— 1 szdy.
itprte ! WNTF o+ 0
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Hence i
0 P q
6[=——ﬂ[——— — ]de
a5"\/1+2?2-|-qz_l_a?/\/1+202+,612 e
0 0
| (1+q2)-3——pq<ag+ p>+(1+ 2)
_ . ?J
__ﬂ dzdxdy.
1 + p? T(f)z

6] = 0 when and only when
0%z 0z 0z 0% 0z2\2| 0%z
[1+< )]ax 25%5&axay+[1+<a_x>]5y“ﬂ

G+ T

and (1) is the differential equation of the required minimal surface.

It is shown in works on Differential Geometry that the first mem-
ber of (1) is the sum of the curvatures of any two mutually per-
pendicular normal sections of the surface, and its half is called the
mean curvature of the surface at any point. Therefore a minimal
surface is a surface of zero mean curvature.

ExAaMPLES

(1) Show that the mean curvature of a helicoid z = k& tan‘l% is

ZEro.

(2) =A cylindrical cup with a plane bottom of any shape and a given
upper rim of any shape is to be capped so that the closed cup
shall have a given volume and a minimum upper surface.

Show that the cap must be a surface of constant mean curva-
ture.

16. The differential equation for small transverse oscillations of
a stretched elastic string can now be obtained from Hamilton’s
Principle.

Let I be the length and p the tension of the string in its position
of equilibrium, and let the motion be so small that higher powers
than the first of the slope of the string at any time may be neg-
~lected. Let us assume also that longitudinal motions and the
change in tension due to the stretching of the string during its
oscillation are negligible.
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If m is the mass of a unit length of the string the kinetic energy

the potential energy, V, of the string, and V is equal to the work
that would be done by the tension, p, in restoring the string to its

CALCULUS OF VARIATIONS

Y

1
. m [0y\?
T is equal to f 5 <5i
0

length when in equilibrium:

or V=p[[\/l_——{——<—g—gx/_72dx—l]

> dx. The force function U is the negative of

L.e.V=9p(s — 1),

o[ (432 )anm]

1
2
so that approximately V = f P (% dz.
2\ox
: 0

where

since

By Hamilton’s Principle 61 = 0,
¢
1 =f(T — V).
0
' O B [\
— mo (YN _ P (%Y
I= f_z <ac> 2 <8x> ]d“’dt'
00
T oy oy dy oyl
_ Y Y __ %Y s 0Y
ol = f‘m pr B Py paxaax]dxdt
00
‘T dy 8 2
— 9 9 y o
= fLm Y 8t6y P Bm 6y]dxdt
00
!
- oy ¢ % o
- mat 9 by dide — ff W2 sy dad.
0y 0 f
M dydt = Mmoo Bydt,
0
oy =0 when ¢ = and when
l
__g 0%y
f Pos 6ydx f Po 26ydx

0

0

v. Art. 12.
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4

2.

%y _p @__@z.
Hence 2 = m o
ExAMPLE

Obtain the differential equation for small transverse oscilla-
tions of a stretched elastic membrane.

Suggestion. V = pff\/1 4 <g§>2 n <§2> dedy — A

where A = f f dxdy is the area of the membrane at rest.

. 0% _p |z, %
Ans. 7p = m [8902 + By]




CHAPTER V

VARIATION OF THE LIMITS. PRINCIPLE OF LEAST
ACTION

17. In our fundamental problem it is required to determine y as

a function of x so that f o(x, y, y')dx shall be a maximum or a
minimum, o, 2, and the corresponding Values 1o and ¥, being given,
so that 6y = 0 when x = x and when x = z;.

If while keeping the range of integration fixed we remove the
restriction that ¥, and ¥, are given the old reasoning by which we
established the necessary condition :

oI = f[a“’a v+ o5 ,6y]dx=0,

still holds good; but VWhen we integrate by parts and get

_ (Tee  d e B
Bl—f[a dz 3y’ ]Bd —I—[a,ﬁy]—O

Zy

the last term no longer disappears, but becomes

o = [y
oy’ |
where 6y and 6y; are entirely arbitrary; so tha,t 6I = 0 when and
only when
t_d e _q [w]_ [%]
dy  dw oy 0, [Ey’ =0, and oy 0,

=12z =2

and we must determine the two arbitrary constants in the solution

of the first equation by the aid of the second and third equations.
34
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The problem of sailing to windward is an interesting illustration.
The speed of a sailing vessel is a function, more or less complicated,
of the angle her course makes with the direction of the wind. It is
required to find how she must sail to get a given distance, a, to
windward in the least possible time.

Let the starting point be taken as origin and an axis of X be
drawn directly to windward. If y = f(x) is the required path y’ is

(=]
QA

the tangent of the angle the course makes at any time with the
wind’s direction, and the velocity can be expressed in terms of ¥’.

ds ..,
EZ_F(y)'
73
gt = ds \/l—l—yd;

F(y') F(y')

and I = f 7y ,)

6l = faV1+y6’dx

oy’ F(y')
d o \/1 + 9”2 [ 0 V1+4y” ]
dydx - )
fdx ay F(y') + oy F@) 1
Since we must make 6/ = 0
o V1 + y? '
o o = 1
o FG) ~C W
o V1 -+ y~?
and [ay, “F) 6y] 0. 2)
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(1) gives us ¥y’ = ¢, and the required path is a straight line.

(v. Art. 3.)
(2) reduces to

YFly) — A+ yDF' ) =0,
orsince y' =c¢ to cF(c)— (1 + AF'(c) =0,

which determines ¢, the constant slope of the required path.

As a rough approximation of the speed law for a rather sluggish
boat let : .
v=F@') =k (tan 'y — a).

k
! 4 —
F (y) - 1 __|_ ylg
and ck (tan~¢ — a) = k.
(6 - a) tan f = 1,

then, gives us the angle, 6, the course (known to sailors as full
and by) should make with the direction of the wind; and as 6
does not depend upon k this course is independent of the strength
of the wind.

If the point aimed at lies within the angle formed by lines
through the starting point making angles # and — 6 with the wind’s
direction it is reached by tacking, both tacks being steered full and
by. If it lies outside of this angle it should be steered for directly.

ExAMPLES
(1) Ifa=7§r—1=33°— , 0 = 621°,

(2) Find the curve of quickest descent from a given point to a given
vertical line. (v. Art. 9, Ex. 1.)
Ans. An inverted cycloid with a horizontal base, a cusp

at the given point, and the vertex in the given line.

(8) Given two mutually perpendicular lines and a point in their
plane; find the curve terminated by the point and one of the
lines which by its revolution about the other line shall generate
a surface of minimum area. (v. Art. 7.)

Ans. A catenary having the axis of revolution as its
directrix and having its vertex on the other given line.
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18. If I = f ¢ (z,y,y") dx and we vary xz, and x; as well as yo

and ¥, so that the range of integration is no longer fixed, the prob-
lem is more complicated.

For the sake of simplicity we shall suppose that x, and y, are
given but not z; or y;, and that we are to determine the curve
y = f(x) so that I shall be less if we seek a minimum, greater if we
seek a maximum than when y = f(x) is replaced by any neighboring
curve and z; is replaced by any value, z; + éx,, differing from =z,
by a sufficiently small amount.

With our ordinary notation y = f(x) + ady is a neighboring
curve if a is sufficiently small (v. Art. 3); and I(a), where

; + adx;

I(a) =f¢(x, y + ady, y' + ady’) du,

To

must be a maximum or a minimum when a = 0.

Letu =y + ady and v =y + ady,

then

and

x;, - adz;
I(a) = fqb(x, u, v) d.

z; + adz;

I'(a) =.[<Z¢ sy + ~«6y >dx + [o(x, u, v)]xﬁc__cl s

ro - [ (2 o+ 28 o) + lota, v, 1)) o

= f6¢ dr + [d)(x: Y, y,)] 0y

T=x

d @ 9
f[ay 7 a"b]a dx—l—[ ¢ 6y] ¢>(x,y, y)

X =

] 0.

=
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To make I'(0) = 0 we have as usual Lagrange’s Equation

o _ d 06 _
oy dx oy

and we have the conditions

0; (1)

y = Yo when x = x,

and [3%’5 ay] + (62, v, )6z = O, @)

=T
T =2

to determine the two arbitrary constants in the solution of
Lagrange’s Equation.

If (8y)1, the value 6y assumes when z = x;, and éz; are independ-
ent the solution is generally impossible, but in many interesting
problems (8y): depends upon é2;.

For instance suppose that the required curve y = f(x) which
makes I a maximum or a minimum is to be terminated by a given

point (o, 7o) and a given curve y = ¢(x), so that y; = ¥(x;). Let
the second end point in the varied curve be (x; -+ éx1, y1 -+ dy1).

Then Byl = \,b’(xl)éxl '+‘ €
and (6y)1 = 6yr — Y1621 — 7
= (@) — Y'1)ors + € — 7,

where e and » depend upon éz;, and 5% and 5% can be made as
1 1

small as we choose by taking a sufficiently small value of éx;. The
substitution of this value for (0y); in (2) gives

I:_g%} <¢’(£U) - y’ -+ € (;vln) + ¢ (x, v, y/)] Sx; = 0, (3)

T =
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and as (3) is to hold independently of the value of 8z,

3 ’ ’ /
2 w@ - v) +s@v, 0|0 @)
Comparing (4) with (2) we see that it is (2) with &y replaced by
dy(x) — dy, and éz; by dz.
If x, is varied as well as £ we have in addition to (2) the condi-
tion 0 ®
[5—7 By + ¢’(x; Y, y’) axO:I =0
Y
and if y = f(x) is to start at a point on the curve y = x(x) we must
replace 8y and 6z, by dx(x) — dy and dx respectively.

19. (@) Suppose that in our Minimum Surface problem of Art.
7 the required generating curve is to be terminated by the point
(0, yo) and the given curve y = ¢ ().

We get as in Art. 7

— - _ 4 yy -
TFyi- == =0
Ty dr N1 + y2

as the differential equation of the curve, and the condition

vy’
I 5 V1 28 ]=0,
[\/1_}_ Y+ vy + y"% oxy

Y

=z

which by Art. 18 gives us

vy’ , 7
W (@) - VTF | =0
L1+ygwm y)+y -+yx

or [y @)1+ 1 =0.
Therefore the required curve meets the given curve at right angles.
It has been shown in Art. 7 that it is a catenary having the axis
of revolution as its directrix.
(b) As a second example let it be required to find the curve of
given length and terminated by the axes, which with the axes en-
closes the maximum area. Here

E51

I=[[ly+AV1+ y?d.
/
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6l = f[ﬁy_l—)\‘ll—i— ,ﬁy]dx—l—[y—l—)n/ ]

=

=f[1—i )\—|y_ ]6ydaz—|—‘[ Ay 5y]—|—[y—|—)\\/l+y’2:|5x1=0.
0 z

de 14y VI4y”2 o _

d Ny’

dxw/l—l—y’? (1)

Ay ]

— | =0 2

["1+y,2%_0 ()
[—l—yl_w(()—y’)—i-y%—)\w/l—{—y’;:o. (3)
V1 + y? J_

(1) integrates into

(+CP+ (y — K)P? =N,

a circle.

(2) gives [y’] = 0, and the circle crosses the axis of Y at right

angles. v=0

(3) gives [—_.)_\:] = 0 since y = 0 when = = z,, and the circle
V14 y~? »

crosses the axis of X at right angles. Therefore the area in question
is the quadrant of a circle.

20. Tue PrincipLE orF LrAST ACTION.

If T is the kinetic energy of a moving system the time-integral of
2T is called the action of the system. If V is the potential energy of
the system and the forces are conservative it is well known that the
so-called equation of energy T 4 V = h, where h is a constant, holds
good during the motion.

The Principle of Least Action is that in the actual motion of the
system the action is less than in any hypothetical motion, between
the same initial and final configurations, in which the equation of
energy holds good.

In Hamilton’s Principle the actual motion is compared with a
hypothetical motion in which initial and final configurations and.
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ttme of tramsit are the same as in the actual motion, and to bring
about the hypothetical motion additional forces would have to be
imposed on the system, and these forces would do work.

In the Principle of Least Action the actual motion is compared
with a hypothetical motion in which initial and final configurations
are the same as in the actual motion, but as the equation of energy
holds good, the time of transit is different in the two motions; and
the hypothetical motion could be brought about by imposing con-
straints that would do no work.

The formulation of the Principle of Least Action is

5f2Tdt=O, T+V =h

As in the case of Hamilton’s Principle we shall prove the Prin-
ciple of Least Action for a single moving particle, and we shall use
the notation and as far as possible the results of Art. 12.

Keeping in mind that the potential energy is the negative of the
force function, i.e. V = — U, and that ¢, the time of transit, is
varied.

aszdt af(T+h—V)dt f(aT——&V)dt—l—[T-l—h Vit

fB(T V)dt = m[x'éx + y'oy + 2 5;]:;

as in Art. 12.

Since the initial positions are the same in the two motions.
ér = 6y = 6z = 0 when ¢ = 0. Since the final positions are the
same but are reached in the time #; in the actual motion and in the
time ¢ -+ &t in the hypothetical motion éx = 8y = 62 = 0 when
t = t, + o6t;, and are approximately — &’ 6t,, — y’ 6¢;, and — 2’ 6ty
when ¢ = ¢,. Therefore (v. Art. 18)

131
f 8T — V)it = — mle’ + y + 20ty = — [2T)at
; t=t¢
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approximately, and

) f 27dt = — [T 4+ V — h]ét; approximately.

i=t

In any concrete problem of course the Principle of Least Action
leads to the same differential equations of motion as Hamﬂton S
Principle.

As an example we shall take the problem of planetary motion
(v. Art. 12).

= 3’21‘ (r'2 + 122), = — “J‘fms as in Art. 12.
By the Principle of Least Action
t
ol = 5fm(r’2 + r2¢'2)dt = 0
0
and 7—;— (r'? + r2¢'?) — ,u]lfm = h.

o = 5f g(r'2 + r2%"2) 4+ b+ “]‘fm]dt

=fm Lr’ar’ + 7%’ 6¢’ -l— r¢’2or — Hj‘TJ 57”] dt

+ [% ("2 + 12/ + h + ‘MT”’L] oty
t=1

Integrating by parts

6l = mf[—— —r'or — g—t(r?qb’)w + <r¢’2 — "—‘%)67* dt

,uMm

131
b mlr'er o+ r0'o9] + [ (4 0%
The terms outside the integral sign reduce to

[ o+ r°¢"%) + h + ”Mm] o1,
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“]il)ar]dt =0
T

and are equal to zero. Therefore

51 = mf[— —r'ér — t(r2¢’)6¢ —|—<7‘¢>’2 -

as in Art. 12,
And we get " —r¢? = — y—i—l
and r’¢’ = k, as in Art. 12.

As Hamilton’s Principle is more general than the older Principle
. of Least Action and is decidedly easier to use it is much more com-
" monly employed in practice than the latter principle.

21. The whole subject of Variation of the Limits can be treated
from a different point of view, that of parametrlc representa-
tion.

Instead of trying to determine y as a function of x so that

I = f ¢ (x,y,y")dz shall be a maximum or a minimum let us

start to determine z and y as functions of a parameter 7.

We shall find it convenient to represent Z—"j by = and Z—ij_ by ¥,-in

which case y’ = %, and dx = &dr. 7of course will be our independent

variable, and we shall suppose that 7o and 7; are fixed while the
corresponding values z, and x; may be varied.

1= [o@yy)de = [y s

4

51=f ¢6x+x< 6x—!— a +8¢M>]dr

€2

(T8 9 ¢>
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Integrating by parts

o _df Y0 9% _ d 0o
of = f{[x <¢ 93y’>]6x+<xb‘y d78y>6y}dT

_ Y9 0
+[<¢ % oy ox + oy By]

To

.00 d 06 _
oy " dray 0 1)

.06 d _M%_
® o di¢ zay) = O 2)

Y 0 0p o _
( - T ay/> 6370 + ay/ 6y0 =0 (3)

when r = T0y v

and <¢> — yﬂ—; %;) oxy -+ %’, oy1 = 0 (4)

when 7 = 7.
Dividing through by z (1) and (2) beecome

op _ d 0 _
oy dx oy’ 0 (5)
op _d(f, _  , 09
- Gle—viE)-o ®)
(3) and (4) reduce to
_ 9 0 o _
<¢> Y oy >6xo + oy 0yo = 0 (7)
when z = =,
, 0P —
<¢—y 8y>5x1+ 1 =0 (8)

when z = 2;. '

(5) is Lagrange S Equa,tlon (6) which can be shown to have the
same solution as (5) we can disregard. (7) and (8), if we have a
relation between 8z, and 6y,, and between éx; and &y, serve to de-
termine the two arbitrary constants in the solution of (5).
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For instance if the required curve is to be drawn from a given
curve y = x(r) to a given curve y = Y(x) as in Art. 18,
o0yo = x'(x) dxp and Sy, = ¢'(x) oz, approx1mately, as in Art. 18;
and (7) and (8) reduce to

¢+(x(x)—y)5z—!7=0 when © = x
, n 0P
and¢—|—(:,b(a:)—~y)a—y,=0 when z = x; v. Art. 18.

22. To illustrate the practical working of this method we shall
apply it to the second example in Art. 19, to the proof of the Prin-
ciple of Least Action (v. Art. 20) and to the problem solved in Art.
20.

(@) (. Art. 19). T = f ly + A VI F 77 da.
0

If x and y are functions of a parameter 7, 6 = 0 and dy is arbitrary
at the start, i. e. when 7 = 7¢; and éx is arbitrary and dy = 0 at the
finish,i. e. when 7 = 7,.
71 ———-——7—2 T1
1 =f y—i—)\\/l —l—%]a’cdr =f[:i:y—l—7\\/$2+y2]dr

71

6l =j‘[9b6y+y69b+
AY A
=1l d gl [ gl

\E: = < v = > ]
— 3 ——— sz |.
+[ +y2y+ N A

K]

itk £ U0,
V& 7

Since 61 = 0 BN
1 __d-.—xy_.:_.o
dr V32 4+ g2
.od O\ .
§+ = = 0

dr V& +
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Ny _
:/ﬁ—’lﬁ =0 when 7 = 70
AT
| y—l—m:O Whenr=71.
These equations reduce to
d Ny
S e R W
d A
’ a N -
v+ T @)
y/
—_— = when z = 0
V1 + y?
1 =0 when x = 2.
V1 -+ y?

(1) is (1) Art. 18 and integrates into (z 4+ C)2 4+ (y — K)? = N2,
as does (2). The curve is a circle; and as 4’ = 0 when 2 = 0 and
y’ = o when y = 0, the circle crosses both axes at right angles and
the centre must be at the origin.

(b) (v. Art. 20). ,

We shall suppose that the time, £, and therefore the coordinates x
and y, depends upon an independent variable 7 in such a way that
when 7 = 79, { = 0 in the actual and in the hypothetical motion,
and when 7 = 74, { = ¢; in the actual motion and ¢ = ¢, 4 &8¢, in the
hypothetical motion. Note that dx and éy are zero when = = 7,
and when 7 = 7;, and that 6 = 0 when r = 7.

T1

ty t,
[2Tdt=[(T+h—— V)dt=f[T—l—h— Viidr.

To

5 | 2Tdt = | [(6T — V)i + (T + h — V)éildr
[ora- [

To

T

_ f[('o‘T — V)i + 2Tsildr.

To

— 8V = m(zx"6x + y"dy + 2"62).
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s _ @ , 4
xéx—d (x'dx) — 2’ dtax
_li@m)_z@_x
T otdr\i it
o m d @dr 4 yoy + 2z 1.,
V=5 i — @)
_md 16w Yoy 202 sy gL
t dr ¢
(o7 — 8V1i + 26t = m 2 LTI E 202,

1

6f2T6t= nla'sx + y'dy + 282] = 0

o

since éx = 8y = 6z = 0 when 7 = 7 and when 7 = 7.
(¢) Planetary motion (v. Art. 20).

We are to make
, y

I =f[ (r'2 + r2%¢’?) + h +
0
a minimum, while keeping
,uM m

m (T’2 + T2¢’2) — -

I= f[( 72¢2>+h+“Mm]th

_ r? 4 rig? uM
~me 2t +<m+ r>]d7‘

To

,uMm] Y

= h.

CTitrsr + 12653 + rifor) — (7 + @) ol

t’2
7o

+ <h + “M> ”ﬂfi ar]dT

6l

m

m r

_ (T _ i 2§ (ko uM P
—mf[(t W)or+? 5r+——a¢+<,"—%+ "o >6t]dr.

Ty
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T g Mt dr d r*g d (uM 724r2g2
sI = f _@_N_t___._> AP, G (M
" [ <t r?  dri T4 t o dr\ r 21 o | dr

T

t].

t

—l—m[?—;ar—}— 6¢+<7%+MM_7?'2+7”2¢2)6

r 22

<
It
N

To make 6/ = 0 we must make

T Tai Y
d rg
ar i Y
_d_<uM 72 4 22 0
dr\ r 22 !
P2 2 A2
and 7%-}- “f}[ d _{2—; L. 0 when 7 = 7y
or " — 1’ “i‘f ~0 @
‘ r’¢’ =k (2)
d [uM
G = B e | = o o)
pMm —m o 19
and h + . —~2—(r + r2¢?) =0 (4)
when t = 1.

(1) and (2) are the required equations of motion and (3) and (4)
- follow from the Equation of Energy.

ExaMprLES

(1) Work Art. 19 (a) by the method of Art. 21.
(2) Work examples 2 and 3 of Art. 17 by the method of Art. 21.
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