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1. Introduction

Let S(n) denote the space of symmetric n X n matrices with entries in R and
O(n) the orthogonal group. Consider the action:

:0(n) x S(n) — S(n)
(A,B) = ABA™' = ABA"

If ¥ is the space of all real diagonal matrices and &,, the symmetric group on n
letters, then we have the following

1.1. Theorem.

(1) X meets every O(n)-orbit.

(2) If B € ¥, then £(O(n), B) N'X, the intersection of the O(n)-orbit through
B with X, equals the &,,-orbit through B, where G, acts on B € ¥ by
permuting the eigenvalues.

(3) X intersects each orbit orthogonally in terms of the inner product (A, B) =
tr(ABY) = tr(AB) on S(n).

(4) ]R[S(n)]o("), the space of all O(n)-invariant polynomials in S(n) is isomor-
phic to ]R[E]G", the symmetric polynomials in ¥ (by restriction).

(5) The space C*™ (S(n))o(") of O(n)-invariant C*-functions is isomorphic to
C> (X)®", the space of all symmetric C* -functions in S (again by restric-
tion), and these again are isomorphic to the C*®-functions in the elementary
symmetric polynomials.

(6) The space of all O(n)-invariant horizontal p-forms on S(n), that is the
space of all O(n)-invariant p-forms w with the property ixw = 0 for all X €
T4(O(n).A), is isomorphic to the space of &, -invariant p-forms on X:

QP

For (S(n))01 2= QP ()"
Proof. (1). Clear from linear algebra.

(2) The transformation of a symmetric matrix into normal form is unique except
for the order in which the eigenvalues appear.

(3) Take an A in ¥. For any X € o(n), that is for any skew-symmetric X, let
(x denote the corresponding fundamental vector field on S(n). Then we have

(x(4) = 4 exp, (tX)Aexp,(tX ) =
dt|,_o

=XAid+idAXt=XA—- AX.
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2 1. Introduction, 1.1

Now the inner product with n € Ty¥ = ¥ computes to

(Cx (A),m) = tr(Cx (A)n) = tr((XA - AX)n) =
=tr(XAn) —tr(AXn) = tr(XnA) — tr(XnA) = 0.
——

=XnA

(4)Ifpe ]R[S(n)]o(") then clearly p := ply, € R[X]®". To construct p from p

we use the result from algebra, that R[R"”]~" is just the ring of all polynomials in
the elementary symmetric functions. So if we use the isomorphism:

ai 0 0
0 as

A= . . = (ar,a9,...,a,) =:a
0O 0 ... ap

to replace R™ by X, we find that each symmetric polynomial p on ¥ is of the form
p(A4) = p(o1(A4),02(A4),...,00(A4)),
it can be expressed as a polynimial p in the elementary symmetric functions
oy =—a' —2% — .. —2"

02:x1m2+m1x3+...

op = (=1)" X" .. 2™

Let us consider the characteristic polynomial of the diagonal matrix X with eigen-

values z',...,z™:

n
H(t ) =t"4 o " ot oy
i=1

= det(t.Id — X)
= Xn:ticn,i(X), where
i=0
cx(Y) = tr(ARY : AFR?® — AFR™)
is the k-th characteristic coefficient of a matrix A. So the o; extend to O(n)-
invariant polynomials ¢; on S(n). So we can now extend p to a polynomial on S(n)
» p(H) :=p(ci(H),co(H), ..., cn(H)) for all H € S(n),
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1. Introduction, 1.1 3

and p is an O(n)-invariant polynomial on S(n), and unique as such due to (1).

(5) Again we have that f € C* (S(n))o(") implies f := f|s € C® (%)®". Find-
ing an inverse map f — f as above is possible due to the following theorem by
Gerald Schwarz (see chapter 3) :

Let G be a compact Lie group with a finite-dimensional representation G —
GL(V), and p1, p2, - - ., pr. generators for the algebra ]R[V]G of G-invariant polyno-
mials on V (this space is finitely generated as an algebra due to Hilbert, see chapter
2). Then, for any smooth function h € C* (V)G, there is a function h € C*> (R¥)
such that h(v) = h(p1(v),..., pr(v)).

Now we can prove the assertion as in (4) above. Again we take the sym-
metric polynomials o1,...,0, as generators of ]R[Z]G". By Schwarz’ theorem

f € C™ (£)®" can be written as a smooth function in o1,...,0,. So we have
an f € C* (R") such that

f(A) = f(o1(A),...0n(4)) forall A€ ¥
If we extend the o; onto S(n) as in (4), we can define
f(H) := f(ci(H),ca(H),...,cn(H)) for H € S(n).

f is again a smooth function and the unique O(n)-invariant extension of f.
(6) Consider 0 = (01,...,0,) : ¥ = R" and put J(z) := det(do(z)). For each
a € 6, we have

Jdz' A ANdz™ =doy A -+ Adoy,
=a’doi A - Ndoy,
=(Joa).a*dx' A Adz"
= (Joa).det(a).dz' A--- Adz"

(7) Joa =det(a™").J

From this we see firstly that J is a homogeneous polynomial of degree

O+ 14 -+ (n—1) =200 — <Z>
The mapping o is a local diffeomorphism on the open set U = ¥\ J1(0), thus
doy,...,do, is a coframe on U, i.e. a basis of the cotangent bundle everywhere on
U. Let (ij) be the transpositions in &,, let Hy;) = {z € £ : 2* — 2/ = 0} be
the reflection hyperplanes of the (ij). If 2 € H;; then by (7) we have J(z) =
J((ij)x) = =J(x), so J(X) = 0. Thus J|H;;, = 0, so the polynomial .J is divisible
by the linear form z?! — 27, for each i < j. By comparing degrees we see that

(8) J(x) :c.H(xi —27), where 0 #c€R.
i<j
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4 1. Introduction, 1.1

By the same argument we see that:
(9) If g € C°°(%) satisfies g o @ = det(a™1).g for all a € &, then g = J.h for
h € C*®(%)%n.
(10) Claim (10): Let w € Q7(X)®». Then we have

w= ) Wiy,enjp dOjy N - Ao,
J1<j2<---<jp
on X, for wj, .. ;, € C> (%)%,

To prove claim (10) recall that doy,...,do, is an G,-invariant coframe on the
&, -invariant open set U. Thus

w|U = Z gj17~~~yjp dO’jl A---A do-jp
J1<g2<<Jp €C°°V—(U)
(11.) = Z (% Z a*gjl,...,jp> doj, A+ Adoj,
J1<j2<<Jjp €S,
hjy, . ip€C=(U)Sn

Now choose I = {i; < --- <ip} C{l,...,n}andlet I = {1,...,n}\ I = {ip11 <
-++ < ip}. Then we have for a sign ¢ = +1

wlUAdog,,, N+ Ndo;, =e.hr.doy A--- Ndoy,

~~

dol

=c.hp.Jdz' A--- A dz™.
On the whole of ¥ we have
wAdo!l = ekrdz' A - Adz™

for suitable k; € C*°(X). By comparing the two expression on U we see from (7)
that k; o a = det(a™!).ks since U is dense in . So from (9) we may conclude that
kr = Jwr for wr € C*(X)®", but then hy = wr|U and w = Y, wrdo’ as asserted
in claim (10).

Now we may finish the proof. By the theorem of G. Schwartz there exist f; €
C>(R") with wr = fr(o1,-..,0,). Recall now the characteristic coefficients ¢; €
R[S(n)] from the proof of (4) which satisfy ¢;|X = ;. If we put now

W= Z fi1,...,ip (cl,...,cn) dcil AR /\dcip € Qﬁor(S(n))O(n)
i1 < e <iip

then the pullback of @ to ¥ equals w. O

July 31, 1997 P. Michor, 1.1



2. Polynomial Invariant Theory

2.1. Theorem of Hilbert and Nagata. Let G be a Lie group with a finite-
dimensional representation G — GL(V) and let one of the following conditions be
fulfilled:

(1) G is semisimple and has only a finite number of connected components

(2) V and (G.f)p are completely reducible for all f € R[V] (see Nagata’s

lemma,)

Then ]R[V]G is finitely generated as an algebra, or equivalently, there is a finite set
of polynomials p1,...,pr € ]R[V]G, such that the map p := (p1,...,pr) : V — RF

induces a surjection N
R[R] —2—R[V)°.

Remark. The first condition is stronger than the second since for a connected,
semisimple Lie group, or for one with a finite number of connected components,
every finite dimensional representation is completely reducible. To prove the the-
orem we will only need to know complete reducibility for the finite dimensional
representations V and (G.f)p though (as stated in (2)).

2.2. Lemma. Let A = ®;>0A; be a connected graded R-algebra (that is Ay = R).
If Ay := @504 is finitely generated as an A-module, then A is finitely generated
as an R-algebra.

Proof. Let aq,...,a, € Ay be generators of Ay as an A-module. Since they can
be chosen homogeneous, we assume a; € A, for positive integers d;.
Claim: The a; generate A as an R-algebra: A = Rlay, ..., a,]

We will show by induction that 4; C Rlay,...,a,] for all i. For i = 0 the
assertion is clearly true, since A9 = R. Now suppose A; C R[aq,...,a,] for all
1 < N. Then we have to show that

An CRlay,...,ap]

as well. Take any a € Ayx. Then a can be expressed as
a= Z c;'-ai cj- €A
4,J

Since a is homogeneous of degree N we can discard all c;-ai with total degree
j+d; # N from the righthand side of the equation. If we set c’}v_di =: ¢ we get

a= E cta;
i
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6 2. Polynomial invariant theory, 2.3

In this equation all terms are homogeneous of degree N. In particular, any occurring
a; have degree d; < N. Consider first the a; of degree d; = N. The corresponding c*
then automatically lie in Ag = R, so c’a; € R[a1,...,ay,]. To handle the remaining
a; we use the induction hypothesis. Since a; and ¢ are of degree < N, they are
both contained in Rlay,...,a,]. Therefore, cla; lies in R[ay,...,a,] as well. So
a=>Y cla; € Rlay,...,a,], which completes the proof. [

Remark. If we apply this lemma for A = ]R[V]G we see that to prove 2.1 we only
have to show that R [V]f, the algebra of all invariant polynomials of strictly positive

degree, is finitely generated as a module over R [V]G. The first step in this direction
will be to prove the weaker statement:

B := ]R[V].]R[V]i is finitely generated as an ideal.

It is a consequence of a well known theorem by Hilbert:

2.3. Theorem. (Hilbert’s ideal basis theorem) If A is a commutative Noetherian
ring, then the polynomial ring A [x] is Noetherian as well.

A ring is Noetherian if every strictly ascending sequence of left ideals Iy C I; C
I, C ... is finite, or equivalently, if every left ideal is finitely generated. If we choose
A =R, the theorem states that R[] is again Noetherian. Now consider A = R[z],
then R[z] [y] = R[z,y] is Noetherian, and so on. By induction, we see that R[V] is
Noetherian. Therefore, any left ideal in R[V], in particular B, is finitely generated.

Proof of 2.3. Take any ideal I C A [z] and denote by A; the set of leading coefficients
of all i-th degree polynomials in I. Then A; is an ideal in A, and we have a sequence

of ideals
AgC A CAC---CA

Since A is Noetherian, this sequence stabilizes after a certain index r, i.e. A, =
Appr =---. Let {ajy, ..., ai,, } be aset of generators for A; (i =1,...,r), and p;;
a polynomial of degree ¢ in I with leading coefficient a;;.

Claim: These polynomials generate I.

Let P = (pij) a[z] € A[7] be the ideal generated by the p;;. P clearly contains all
constants in I (Ag C I). Let us show by induction that it contains all polynomials
in I of degree d > 0 as well. Take any polynomial p of degree d. We distinguish
between two cases.

(1) Suppose d < r. Then we can find coefficients ¢y, ..., ¢y, € A such that

D =P —C1Pg1 — C2Pd2 — - .- — CnyPdny

has degree < d.

(2) Suppose d > r. Then the leading coefficients of z% "p.1,..., 2% "py,, € I
generate Ag. So we can find coefficients ¢4, ...,c,, € A such that
pi=p—caz’ " prn — ez P — .. = cn, 2 ppn,

has degree < d.
In both cases we have p € p+ P and degp < d. Therefore by the induction
hypothesis p, and with it p, lies in P. O

To prove theorem 2.1 it remains only to show the following
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2. Polynomial invariant theory, 2.4 7

2.4. Lemma. Let G be a Lie group acting on V' such that the same conditions as
in Hilbert and Nagata’s theorem are satisfied. Then for fi,..., fr € ]R[V]G:

€
RIVI" N (fr, - frdrpy = (Frs - frdmpye

where the brackets denote the generated ideal (module) in the specified space.

2.5. Remark. In our case, if we take f; = p; € ]R[V]f to be the finite system of
generators of B as an ideal in R[V], we get:

€ G
RV =R[VI"NB = (p1,.- -, p)rvie
That is, the p; generate ]R[V]f as a ]R[V]G—module. With lemma 2.2, Hilbert and

Nagata’s theorem follows immediately.

2.6. Remark. The inclusion (D) in lemma 2.4 is trivial. If G is compact, then the
opposite inclusion

RIVIC O (fr - fidrpy € (oo Fidppe

is easily seen as well. Take any f € ]R[V]Gﬂ (fi,---, fk>R[V]‘ Then f can be written
as

F=Y pifi pi€R[V].

Since G is compact, we can integrate both sides over G using the Haar measure dg
to get

i

fla) = [ flonyig =3 [ ptaa)fiaais =3 ([ migario) 1)

=:p} (2)

The p} are G-invariant polynomials, therefore f is in (f1,..., fk>R[V]G‘
To show the lemma in its general form we will need to find a replacement for
the integral. This is done in the central

2.7. Lemma [26]. Under the same conditions as theorem 2.1, to any f € R[V]
there is an f* € R[V]° N (G.f)p such that

f=1el{Gf-Gf)p-

Proof. Take f € R[V]. Clearly, f is contained in My := (G.f)p, where f* is
supposed to lie as well. My is a finite dimensional subspace of R[V] since it is

contained in
My C @ R[V];-
i<deg f

In addition we have that
(Gf — Gf>R = Nf g Mf
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8 2. Polynomial invariant theory, 2.7

is an invariant subspace. So we can restrict all our considerations to the finite
dimensional G-space M which is completely reducible by our assumption.

If f € Ny, then we can set f* =0 and are done. Suppose f ¢ Ny. Then the f*
we are looking for must also lie in My \ Ny. From the identity

9.f=7f+@.f-1) forallg e G
—_———
ENy
it follows that
My =NsaRf.

In particular, Ny has codimension 1 in M.

Since we require of f* to be G-invariant, R.f* will be a one dimensional G-
invariant subspace of M; (not contained in Ny). As we just saw, Ny has codimen-
sion 1 in My, therefore R.f* will be a complementary subspace to N;.

If we now write My as the direct sum

My =Ny ® P,

where P is the invariant subspace complementary to Ny guaranteed by the complete
irreducibility of My, then P is a good place to look for f*.

Now P = M;/N; as a G-module, so let us take a look at the action of G on
M;/Ns. Every element of My/N; has a representative in R.f, so we need only
consider elements of the form Af + Ny (A € R). For arbitrary g € G we have:

g-Af +Ng) =Xg.f + Ny = Af + (Ag.f — Af) +Ny = Af + Ny.
————
eNy
So G acts trivially on My/N; and therefore on P. This is good news, since now

every f' € P is G-invariant and we only have to project f onto P (along Nj) to
get the desired f* € R[V] N M;. O

Proof of lemma 2.4. Recall that for arbitrary fi,..., f, we have to show

]R[V]G N (fl)"‘)fn)]R[V] g <f17"')fn>]R[V]G .

We will do so by induction on n. For n = 0 the assertion is trivial.
Suppose the lemma is valid for n = r — 1. Consider fi,...,f, € ]R[V]G and

fERVI“N(fr,. ., fr)zp- Then
F=Y_pifi pi€R[V].
i=1

By Nagata’s lemma 2.7, we can approximate p; up to (G.p; — G.pi)p by a pf €
R[V]®. So for some finite subset F C G' x G we have

pi=pi+ Y A,(spi—tp) A, €ER
s,teF

July 31, 1997 P. Michor, 2.7



2. Polynomial invariant theory, 2.8 9
Therefore we have
T T
3 G
F=Y 0ifi=> > N(spi—tpi)fi € R[V]Y.
i=1 i=1 s,teF

It remains to show that the righthand side of this equation lies in (fi, ..., fr>R[V]G.
Notice that by the G-invariance of f:

r

> (spi —tpi) fi = 0.

i=1
For all s,t € G. Therefore
r—1
> (s.pi = t.pi) fi = (tpr — 5.pr) fr.
i=1

Now we can use the induction hypothesis on

SN N (spi—tpi)fi =

i=1 s,teF

r—1
= Z Z (Ai,t - Ag,t)(s-pi —tpi)fi € R[V]G N (fisees fr—l)R[V]

i=1 s,teF

to complete the proof. [
2.8. Remark. With lemma 2.4, Hilbert and Nagata’s theorem is proved as well. So

in the setting of 2.1 we now have an exact sequence

*

0 — kerp* — R[RF] 25 R[V]Y =0

where ker p* = {R € R[RF] : R(p1,...,pr) = 0} is just the finitely generated ideal
consisting of all relations between the p;.

Since the action of G respects the grading of R[V] = @;R[V], it induces an
action on the space of all power series, R[[V]] = II}2,R[V],, and we have the
following

2.9. Theorem. Let G — GL(V) be a representation and pi,...,pr a system
of generators for the algebra ]R[V]G. Then the map p = (p1,...,px) : V — RF
induces a surjection

R[[R*]] £ RIV]C.

Proof. Write the formal power series f € ]R[[V]]G as the sum of its homogeneous
parts.

flx)=fo+ filz) + fa(z) + ...

July 31, 1997 P. Michor, 2.9



10 2. Polynomial invariant theory, 2.10

Then to each f;(z) € ]R[V]? there is a g;(y) € R [R*] such that

fi(z) = gi(p1(2), ..., pr(x)).

Before we can set
9) =g0o+q1(y) +g92(y) + ...

to finish the proof, we have to check whether this expression is finite in each degree.
This is the case, since the lowest degree \; that can appear in g; goes to infinity
with ¢:

Write explicitly g; = Z|a\<i‘4i7aya and take an A; o # 0. Then deg f; =i =
ar1dy + ... ady where d; = deg p; and

)\i:inf{|a|:i:Zajdj}—>oo (i = o0) a

The following corollary is an immediate consequence.

2.10. Corollary. If G is a Lie group with a finite dimensional representation
G — GL(V), then under the same conditions as Hilbert and Nagata’s theorem
there is a finite set of polynomials py1,...,pr € ]R[V]G such that the map p =
(p1y-.-,pk) : V — R¥ induces a surjection

RR S RVIC. O
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11

3. (*°-Invariant Theory of Compact Lie Groups

If G is a Lie group acting smoothly on a manifold M, then the orbit space M/G
is not generally again a smooth manifold. Yet, it still has a functional structure
induced by the smooth structure on M simply by calling a function f: M/G — R
smooth iff fom : M — R is smooth (where 7 : M — M /G is the quotient map).
That is, the functional structure on M /G is determined completely by the smooth
G-invariant functions on M. For compact Lie groups, the space of all G-invariant
C*>-functions on R™ is characterized in the theorem of Gerald Schwarz (1975),
which we already used in 1.1(4). In this chapter we will present the proof as found
in [34], Chap. IV. In the following, let G always denote a compact Lie group,
¢: G — GL(V) a representation on V = R*. Let py,...,pr € R[V]“ denote a
finite system of generators for the algebra R[V]“, and let p denote the polynomial
mapping:

p = (Pl:---:ﬂk):v_)Rk-

3.1. Definition. A mapping between two topological spaces f : X — Y is called
proper, if K CY compact implies f1(K) C X is compact.

3.2. Lemma. Let G be a compact Lie group. Then we have

(1) p is proper.
(2) p separates the orbits of G.
(3) There is a map p' : V/G — R* such that the following diagram commutes,

p

Vv —E Rk

and p' is a homeomorphism onto its image.

Proof.

(1) Let r(z) = |&|” = (z,x), where (., .) is an invariant inner product on V.
Then r € ]R[V]G. By Hilbert’s theorem there is a polynomial p € R []Rk]
such that r(z) = p(p(z)). If (z,) € V is an unbounded sequence, then
r(z,) is unbounded. Therefore p(p(x,)) is unbounded, and, since p is a
polynomial, p(z,) is also unbounded. With this insight we can conclude
that any compact and hence bounded set in R¥ must have a bounded inverse
image. By continuity of p, it must be closed as well. So the inverse image
of a compact set under p is again compact, that is, p is proper.

July 31, 1997 P. Michor, 3.2
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(2)

3. Invariant theory of compact Lie groups, 3.2
Choose two different orbits G.z # G.y (z,y € V) and consider the map:

0forveGurx

:GxUGy = R =

/ v Y f) {lforUEG.y

Both orbits are closed, so f is continuous. Furthermore, both orbits and
with them their union are compact, since G is compact. Therefore, by the
Weierstrass approximation theorem, there is a polynomial p € R[V] such
that

19~ Fllgauey = pAIp(z) — f(2)]: 7 € G UGy} < 1

Now we can average p over the group using the Haar measure dg on G to
get a G-invariant function.

q(v) ZZ/Gp(g-v)dg

Note that since the action of G is linear, ¢ is again a polynomial. Now let
us check that g approximates f equally well. For v € G.x U G.y, we have

‘/Gf(g-v)dg—/Gp(g-v)dg‘ S/Glf(g-v) —plg.v)|dg < lio/adg
=f(v) =1

Recalling how f was defined, we get

1
< —
4] < 55

1
— < — .
|1 q(v)|_10 forve Gy

Therefore ¢(G.z) # q(G.y), and since ¢ can be expressed in the Hilbert
generators, we can conclude that p(G.x) # p(G.y).

Clearly, p' is well defined. By (2) p' is injective and, with the quotient topol-
ogy on V/@G, continuous. So on every compact subset of V//G we know that
p' is a homeomorphism onto its image. Now take any diverging sequence in
V/G. It is the image under 7 of some equally diverging sequence in V. If
this sequence has an unbounded subsequence, then by (1), its image under
p is unbounded as well, in particular divergent. If the diverging sequence
in V (therefore its image under 7, our starting sequence) is bounded, then
it is contained in a compact subset of V', our starting sequence is contained
in a compact subset of V/G, and here p' is a homeomorphism. Thereby, its
image under p’ is divergent as well. So we have shown that a sequence in
V/G is convergent iff its image under p' in R is convergent and, with that,
that p’ is a homeomorphism onto its image. O

July 31, 1997 P. Michor, 3.2



3. Invariant theory of compact Lie groups, 3.3 13

3.3. Remark.

(1) If f : V — Ris in C°(V)Y, then f factors over 7 to a continuous map
f:V/G = R By 3.2(3) there is a continuous map f : p(V) — R given by
f=fop ™" It has the property f = fop. Since p(V) is closed, f extends
to a continuous function f € C°(R¥) (Tietze-Urysohn). So for continuous
functions we have the assertion that

p* : CO(R*) — CO(V)¢ is surjective.
(2) p(V) is areal semi algebraic variety, that is it is described by a finite number
of polynomial equations and inequalities. In the complex case, the image of
an algebraic variety under a polynomial map is again an algebraic variety,

meaning it is described by polynomial equations only. In the real case this
is already disproved by the simple polynomial map: z — z2.

3.4. Before we turn to Schwarz’ theorem, let us state here the extension theorem
of Whitney as found in [46], pp. 68-78. For K C R™ compact and m € N, assign
to each multi-index k = (k1,...,k,) € Ny with |k| = [k |+ -+ |k <m a
continuous function F* on K. Then the family of functions (Fk)| k|<m is called an
m-jet on K. The space of all m-jets on K endowed with the norm

|F|5 = sup |Fk(a:)|
TEK,| k|<m

shall be denoted by J™(K). There is a natural map

olklf

J"C™MRY) = JNK): f— (W K)\k|§m-

By Whitney’s first extension theorem its image is the subspace of all Whitney jets
defined as follows. For each a € K there is a map 7" : J™(K) — R[R"] given (in
multi-index notation) by

. (z—a)k .
TIF(z)= Y TF’”(a)
[k |<m
which assigns to each m-jet its would-be Taylor polynomial of degree m. With it
we can define as the remainder term (an m-jet again):

R™F := F — J™(T"F).

If F' is the set of partial derivatives restricted to K of some C™-function then in
particular

(W) @) =o(la—y[""*))  foray e K, k| <mand |a—y| -0
holds by Taylor’s theorem. We will call (W) the Whitney condition, and any m-jet
on K which satisfies (W) Whitney jet of order m on K. The space of all Whitney
jets again forms a vector space and we endow it with the norm:

|(RIF)*(y) |

K K
||F||m=|F|m+sup{| rwy €K, x#y, [k| <m}
x

Tkl -
—y "Ik

The space of all Whitney jets with the above norm is a Banach space and will be
denoted by £™(K).
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14 3. Invariant theory of compact Lie groups, 3.5

Whitney’s Extension Theorem for £™(K). For K C R* compact, there is a
continuous linear map

W :EM(K) — C™(R™)

such that for all Whitney jets F € E™(K) and for all x € K
DMW(F)(@) = F* (@) k| <m

holds and the restriction of W(F) on R™ \ K is smooth.

If we define J®(K) (resp. £*°(K)) as the projective limit of the spaces J™(K)
(E™(K)) we can extend the above theorem to the following

Whitney’s Extension Theorem for £°(K). For K C R* compact, there is a
linear map
Wy : EX(K) — C* (R™)

such that for all Whitney jets F € £*°(K) and for all x € K
D*Woo (F)(x) = F*(x) for all k € Ny

holds.

3.5. Remark. In general, the norm || . ||g generates a finer topology on £™(K) than
. |ﬁ, yet there is a case when we can show that they are equal. If K is connected
with respect to rectifiable curves and the Euclidean distance on K is equivalent to
the geodesic distance (such a K is called 1-regular), then the two norms coincide.
This is shown roughly as follows.
By definition
m k
FIE<IFIE = |F|£+sup{%}.

m k
So if we approximate SHP{M

x € K let us denote

} by C|F |i, then we are done. For a fixed

z—y "Ik
g := D"(W(F) - T"F).

Then g is in C™~*[(R*) and flat of order m — |k| — 1 at . On K, g coincides
with (R F)*. Now, by a somewhat generalized mean value theorem, we have for
any rectifiable curve o connecting z with y:

l9(y) — g(x)| < v/nlo|sup{|Dig(¢)|:E€o, |jl =1}

Since D¥g(z) =0 for all | k| < m — | k| we can iterate this inequality m — |k | —1
times, to get

m—

o sup{| Dig(e) | € € o, [j| =m— |k}

lgy)| <n
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3. Invariant theory of compact Lie groups, 3.6 15

Furthermore, we can replace |o| by the geodesic distance d(z,y), which is the
infimum over all |0 |, o as chosen above. Now, if we choose z,y in K and substitute
back for g, then the above inequality implies:

[(REF) ()] <

<07 6, y)™ 1 sup{ | FI(6) - Fi(a) | - € € K| j| =m} <

m—|k

<o 5w, y)m Ik P

Since §(z,y) < c|xz —y]| for all z,y € K, this gives us an approximation

| (R F)*(y) |

K
oo ) SO

up{

which completes our proof.

So, for a 1-regular K, we have that for every m € N, £™(K) carries the “usual”
topology of uniform convergence in each “derivative”. In this case the assertion
that the operator W of the first Whitney extension theorem is continuous implies
that a sequence of functions in W (E™(K)) C C™(RF) which converges uniformly
in all derivatives on K does so on every other compact set as well.

[4

If the |. |£—topology coincides with the usual topology on £™(K) for all m as in
the above case, then the topology on the projective limit

EX(K) := proj (E™(K),|.|)

m
m— 00

coincides with the usual topology on £%°(K) as well. So the topology on £ (K) is
generated by the family of seminorms {] . |i :m € Np}. Although there is a natural
inclusion i : £ (K) — E™(K), the restriction i*W of W : £™(K) — C™(R™) does
not coincide with W,. If it did, then W, would have to be continuous as well,
which is generally not the case.

There is one more result we will need. It is a direct consequence of Whitney’s
extension theorem if we take K = {z} (then £*(K) = R*), but was discovered
and proved independently and much earlier (1898) by Emile Borel.

Theorem of E. Borel. To any formal power series p € R[[R"]] and x € R" there
is a smooth function f € C*° (R") with formal Taylor development p at x. O

Here we can see directly that the extension operator Wy, is not continuous,
because if it were, it would give an embedding of R* into C*° (K) (where K C R”
is any compact set containing ). But this is impossible, since R* has no continuous
norm.

3.6. Theorem. Multidimensional Faa di Bruno formula. Let f € C>°(RF),
let g = (g1,...,9x) € C®(R*,R*). Then for a multiindexr v € N* the partial
derivative 7 (f o g)(x) of the composition is given by the following formula, where
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16 3. Invariant theory of compact Lie groups, 3.7

we use multiindex-notation heavily.

o (f o 0)(x) =
5 5! 1) e NP
- eue Y 5 (5) Mewwr
BENE A=(Aia )ENFX@™\D)  a€N” i,a>0
Y. Nia =B a>0
Yia dia =7

- X RI(a) e e

A=(Aia) ENFXTTMO) '%Egg i,a>0
2ia Nia =Y

This formula is attributed to Reinhold Hoppe (1845) and in the form used above
to Faa di Bruno (1855).

Proof. The proof of this goes roughly as follows. The infinite Taylor development
of the composition is the composition of the Taylor developments,

J*(fog)(x) = > f(g(x)) 0 j7 (),

) = Y 07 f(y)2°
BeRk
— # 16 B1 Br
= ﬁgk ﬁl!__ﬂk!a fy)z". ..z,

So we write down the Taylor series and compose them, using multinomial theorems,
and compute then one of the coefficients. The formula above comes up. O

3.7. Theorem of Schwarz. ([38])
Let G be a compact Lie group, £ : G — O(V) a finite-dimensional representation,
and p1, p2,- .. ,pr generators for the algebra ]R[V]G of G-invariant polynomials on
V' (this space is finitely generated as an algebra due to Hilbert; see chapter 2). If
p:=(p1,...,pr): V — RE, then
p* 1 C™ (RF) = C™ (V)¢ is surjective.

The actual proof of Gerald Schwarz’ theorem will take us the rest of this section.
But let us just begin now with some remarks and make some simplifications.

(1) For the action of G = {£1} on R! the result is due to Whitney [47].

(2) If G = 6,, acting on R™ by the standard representation it was shown by
G.Glaeser [15]

(3) It is easy to see that p*C™ (R¥) is dense in C°° (V)9 in the compact
C*>-topology. Therefore, Schwarz’ theorem is equivalent to the assertion:
p*C> (R¥) is closed in C> (V)G. If p1,..., pr can be chosen algebraically
independent, then this follows from a theorem by Glaeser (see [15]).

(4) To start out with, notice that the Hilbert polynomials can be chosen homo-
geneous and of positive degree: Since the action of G is linear, the degree
of a polynomial p € R[V] is invariant under G. Therefore, if we split
each Hilbert polynomial up into its homogeneous parts, we get a new set
of Hilbert polynomials. Let us denote these by p; and the corresponding
degrees by d; > 0.
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3.8. Corollary. Under the same conditions as 3.7:
p* O (RF) — 5o (V)@ is surjective,
where C§° denotes the space of all germs at 0 of C*.

Proof. C*° (V)G Lo, Cs° (V)Y is surjective, since for any f € C(V)Y there is
a representative f' € C* (V), and with it f” := [, l(g)*f'dg € C*(V )¢ also
represents f. By Schwarz’ theorem, ' = h o p for some h eC> (RF). O

3.9. Corollary. Under the same conditions as 3.7, also for spaces of smooth
functions with compact supports we have:

p*: CP(RY) — (V)¢ is surjective.

Proof. For f € C (V)Y by 3.7 there is an fec> (R*) such that f = p*f=fop.
Since f = f o p has compact support it vanishes outside some large compact ball
B C V. Then p(B) is contained in some larger ball B; C R¥. Take h € C°(RF)
with h|B; = 1. Then (hop)|B =1 and thus (h.f)orh= fop=f. O

3.10. Lemma. It suffices to prove theorem 3.7 for representations with zero as
the only fized point.

Proof. Decompose V' into the subspace of all fixed points and its orthogonal com-
plement:

V = Fix(G) @ Fix(G)*+
S N——
=:U =W

Then W is an invariant subspace with only the one fixed point: 0. Let o1, ...,0, be
generators of R[W]¥ such that o* : C® (R") — C® (W)% is surjective. Consider
the following diagram, where © denotes projective tensor product. Note, that in
this case it coincides with the injective tensor product, since C*° (V) is a nuclear
Fréchet space. From this it follows that the horizontal maps on the bottom and on
the top are homeomorphisms.

C®(U)& O°(R?) —=— 0 (U x R")
COO(U)®U*J J
C® ()& C®(W)E ——C® (U x W)“
Co(U)® [ g dg[ MG {(g)*dg
C=(U)& O® (W) — = C®(U x W)

Starting from the bottom, notice that C*(U)&® fG )*dg and fG )*dg are sur-
jective. Therefore, the horizontal map in the center is surjective. By our assump-
tion, O (U)&c* is also surjective, so we can conclude that the map on the top
right is surjective as well. But this map is just p* for p := (idy,o), and we are
done. 0O
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18 3. Invariant theory of compact Lie groups, 3.11

3.11. We shall use the following notation: For a manifold M and a closed subman-
ifold K C M let

C*(M;K):={feC>®(M): fis flat along K}.
Lemma. For the proof of theorem 3.7 it suffices to show that
C>(V;0)¢ o= (R¥;0) is surjective.
Proof. Consider the following diagram:

0 —— Cc®@®;0)¢ —s c°@®)Y —— R[V]]® —— 0

d d d

0 —— C®(R0) —— = (R) —— R[[R]] —— 0

The right p* is surjective by corollary 2.10. The map 7T on the lower righthand
side assigns to each function its formal Taylor series at zero. It is surjective by
the theorem of E. Borel. The same goes for the map ¢ above it. Just take any
smooth function f € C* (R") with a given formal Taylor series in R[[V]]” and
integrate it over G. The resulting function lies in C* (R")“ and has the same
formal Taylor development since this was G-invariant to begin with. Clearly, the
space C™ (R7;0)¢ embedded in C* (R")“ is just the kernel of t. So the top
sequence is exact. The same goes for the bottom sequence. Now suppose we knew
that the left p* is surjective as well, then we could conclude that the p* in the
middle is surjective by the following diagram chase. Take any f € C* (]R”)G and
consider ¢(f). Then there is a power series p € R[[R¥]] with p*(p) = ¢(f) and a
smooth function g € C*® (]Rk) with T'(g) = p. Now f — p*g € Kert = Imi, and
by the surjectivity of the p* on the lefthand side of the diagram, we can find an
h € C* (R*) such that p*h = f — p*g. So f = p*(g + h) and the central p* is
surjective as well. O

The proof will involve transforming everything into polar coordinates, so let us
start with the following lemma.

3.12. Lemma. Let ¢ :[0,00)xS™ 1 — R" be the polar coordinate transformation
o(t,z) =tx. Then

0% ([0, 00) x §"71) £ O (R™)
satisfies

(1) @* is injective.
(2) @*(C*(R";0)) = C>([0,00) x S"71;0 x §*~1).

Proof. (1) is clear since ¢ is surjective. Let us go on to (2). Here it is easy to see
the inclusion

©*(C®(R";0)) C C>°([0,00) x S"7';0 x S™71).
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If f:R* — R is smooth and flat at zero, then ¢*(f) = f o ¢ is smooth and flat
at ¢ 1(0) =0 x S™ 1. Now let us show the converse. On (0,00) x S 1, p has an
inverse =1 : R*\ {0} — (0,00) x S™~! given by o= (z) = (| z|, ‘Tl‘:v) Take a chart
(Uiyui) of S~ and define ¢; ' = (idg,u;) o p~'. Then we can find C,, A, > 0
such that

|0°¢7 " (2) | < Cal |~

Choose f € C* ([0,00) x S"~'; {0} x S™7'), then since f is flat along {0} x S™~!
we have

0% f(t,u; *(z)) < B(a, N)tV VN,Va € N*.

All together this gives us via the Faa di Bruno formula 3.6
107(f 0 7 ()| =

=\ > I (ﬁ)m (02 5) (e @) T @ (o7 Y=

) Ex(@™\0) * " qeN" i,a>0
(Am)eli_ o 'S0

ia

<Oy, M)z ™

for | x| < 1. Therefore f o ¢~ can be extended at 0 to f € C° (R"*;{0}). O

3.13. Now let us extend the result of this lemma somewhat. If GG is a compact Lie
group acting orthogonally on R", then G acts on S™~! and trivially on R, so it acts
on R x S"~ 1. Consider the Zs-action on R x S”~! given by

A:(t,0) > (=t,—0)

It clearly commutes with the G-action, so we get a Zy x G-action on R x S™~1.
Now consider

p:Rx St R o(t,0) :=1t.0.

Then ¢ is Zo x G-equivariant if we let Z5 act trivially on R™. Therefore, it induces
a homomorphism:

QZS* : Coo (]Rn)szG N Coo (]R % Sn_l)Z2XG

Y

and we have the following

Lemma.
(1) ¢* is injective.
(2) € (R x §" {0} x §» 1) = ¢*C (R";{0})
C> (R x S"~1; {0} x §7~ 12X = g=C (Re; {0})@
Remark. By (1) it is sufficient to prove 3.7 in polar coordinates. That is, we only

have to show that ¢*C*> (R"; {0})G = ¢*p*C> (R¥; {0}). The first step in this
direction is taken in (2).
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Proof.

3. Invariant theory of compact Lie groups, 3.14

(1) Asin 3.12(1) it is sufficient to note that ¢ is surjective.
(2) If we define ¢ : R x St — [0,00) x S™1 : (t,0) — sgnt.(t,0) =

(|t],sgn(t).0), then we have ¢ = ¢ o1y, where ¢ is the polar coordinate
transformation as in 3.12. Therefore:

¢*(C™ (R*;0)) = ¢" 0 o™ (C™ (R*; {0}))
= *(C™ ([0,00) x S" ' {0} x S"71)) by 3.12

Now take any f € C* ([0,00) x S"7;{0} x S"71). Since ¢ |5 ) xsn 1
and v |(7m’0]xsn_1 are diffeomorphisms onto [0, 00) x S™~, 4)* f is smooth
on (—o0,0] x S™ ! as well as on [0, 00) x S" 1. Since f is flat at {0} x S~ 1,
¥* f is smooth altogether. Furthermore, ¥*(f) is Zy-invariant, since 1 is
Zo-invariant. So we have

$*0% ([0,00) x "1 {0} x S"71) C O (R x S™'; {0} x §"71)*?

The opposite inclusion is clear, since any f € C* (]R x S L0} x S”’l)ZZ
is the image under * of its restriction to [0, 00) x S™71.

The assertion with added G-invariance follows easily from this. That
f = ¢*f is G-invariant with f is clear, since ¢ is G-equivariant. Now if f
is G-invariant, then for all ¢ € G we have f(ggzﬁ(a:)) = f((b(a:)), so by the
surjectivity of ¢ we can conclude that f is G-invariant as well. O

3.14. The next step, roughly, is to translate the Zy-action A as well as the polar

coordinate transformation to the image of R x S”~! under id x p. This is done

in the following two diagrams, where r : R* — R stands for the polynomial map
2

x|z,

Rx s — A | Rgygnt
]Rpr ]Rpr

R x p(8" 1) — AR x p(S"1)

R xSt #R"

]RXpJ rXpJ

R x p(8"1) —LB L R x p(R)

Recall that the p; were chosen homogeneous of degree d;. With this, A and B are
given by:

Alt,y) == (=, (=1)"yr, ..., (=) %y)
B(t,y) = (£, tYy1, ..., t%y)
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With this definition, we can let A and B have domain R x R¥. The choice of
(t,y) ~ t2 for the first component of B lets B retain the Z-invariance under the
Zo-action given by A. Indeed, Bo A = B:

BoA(t,y) = B(~t,(=1)"y1,...,(=1)"y) =

= ((=t)%, (=) (=) Bryr, ..., (=) (=1)Pyy) =
= (t2,td1y1, .. .,td’“yk) = B(t,y)

Now we can state the following
Lemma. The map B as defined above induces a mapping B* on C'™ (]R X ]Rk;O)
into C'> (]R x RE:0 x R’“)Zz such that

O (R x R¥;0) —B° 0 (R x R¥;0 x RF)™

N st

C™ (R x RF;0 x RF)"?

Rxp(Sm1)

1S Sur-

The map restroB*:C’o"(]Rx]Rk;O)—>C°°(]R><]Rk;0><]Rk)Z2R (51
Xp(S™~

Jective.

Proof. The inclusion B*C* (]R X ]Rk;O) C C*® (]R x RF; 0 x ]Rk)Zz is clear since,
first of all, B maps 0 x R* to 0, so if f is flat at 0, then B*f is flat at 0 x RF.
Secondly, B* f is Z-invariant, since B is Zs-invariant.

For the surjectivity, choose any h € C* (R x RF;0 x R¥)™*. Then we need to
find an H € C* (R x R*;0) such that B*Hg y p(sn-1) = hlgyp(sn—1)- Formally,
that would give us

Zo

1,4 _d4
H(tay):h(tzat zyla"'at 22/1)-

For t > 0, this is well defined. With the Zs-symmetry, we know how to define h for
t < 0 as well. To handle the case t = 0 we will need Whitney’s extension theorem.

Let A be a k-dimensional cube in R¥ with center 0 which contains p(S™1!).
Consider K := [~1,1] x A C R x R¥ and set L := B(K) C R x R¥. More precisely,
L is a compact subset of [0,00) x R¥. Now define on [0,00) x R O L the function

d d
Hs(taylv---ayk) =h ((t+8)%7(t+8)_71y177(t+8)_7kyk) .

H. is smooth on [0,00) x R¥* D L, so J®H. € J*(L) is a Whitney jet on L. Now
we will have to study the behavior of H. for ¢ — 0. Our strategy will be as follows:
(1) Show that L is 1-regular. Referring back to 3.5, the topology on £%°(L) is
then generated by the family of seminorms {|.|% : m € No}.
(2) Show that J*H. is a Cauchy sequence for ¢ — 0 in terms of the family of
seminorms {|. |7Ln :m € No}.
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22 3. Invariant theory of compact Lie groups, 3.14

(3) Since £°(L) is complete, (1) and (2) together imply that J°°H. converges
to some Whitney oo-jet H = (Ha)aeN’g“ on L. In this situation, Whitney’s
extension theorem implies that H° is the restriction onto L of some smooth
function we will again call H € C* (R x RF).

(4) Show that H is flat at zero and after some slight modifications satisfies
B*H = h on R x p(8™™') to finish the proof.

Let us now go ahead and show (1).
Let disty,(1,1") denote the shortest length of any rectifiable curve in L joining [
with {’. Then we will show that

dist(1,1') < distz(1,1') < 2dist(, ')

The lefthand side of this inequality is clear. To show the righthand side let I = (¢, y)
and ' = (¢',y') and suppose without loss of generality that ¢’ < ¢t. Recall once more
how L was defined (L = B(K) where K =[—1,1] x A). Consider the line segments
[(t,y),(t,y")] and [(¢,y"), (t',y")]. Both are contained in L:

To see this, take any (s,y') € [(¢,y), (¢',y")], that is ¢’ < s <t. Then

dy dp,

(s,9') = B(Vs,8" 2 yi,....8" 2yp)

Since (t',y") € L, we have (t’f%yi,...,t’f%y;ﬁ) € A. With t' < s, that is t’*%’c >
s’%, this implies that (s’%yi,...,s’%yk) lies in A as well. That /s € [-1,1]
is clear from (t,y) € L. In particular, we now have that (¢,3’) lies in L. Therefore,
by the linearity of B in the second variable, the first line segment [(¢,y), (¢,y')] is
also contained in L.

Since the line segments [I, (¢,y')] and [(¢,4'),1'] are the sides of a right triangle
with hypotenuse [[,1'], this immediately implies

distr (1, 1) < dist(l, (t,)) + dist (£, "), I') < 2dist(l,1")

and (1) is proved.
Now let us turn to (2). Write H. as composition H. = h o 3. where the map
B: : Ry x R¥ — R, x RF is given by

d

1 _d1 _ 4k
Be: by, ye) = (E+e)7, (E+e) T yr, ..., (t+e)" 2 yp).

By definition, every (t,y) € L is image under B of some (1,2) € K = [0,1] x A.
That is:
(tay) = (7'2,le21, v 77_dkzk)

which makes
rh

dy
:
—_— 21, e, ———— 2k | .
(e (e )

@mwz(W+@%

From this formula we see that for ¢ — 0 there is a compact subset P of R x RF
such that (:(L) lies in P for all e.

July 31, 1997 P. Michor, 3.14



3. Invariant theory of compact Lie groups, 3.14 23

Now to h. Since h is flat at 0 x R* we have that for all compact P C RxR*, a €
N* and N > 0 there is a constant C = C'(P,a, N) such that

|0°h(t,y)| < C(Pa, N)tY V(t,y) € P
Now we have all we need to approximate sup |07(H:(t,y) — Hu(t,y))|. If we
(t.y)eL

choose P as described above we may apply Faa di Bruno’s formula 3.6 and we see
that for (¢,y) € L

07 (ho B(t,y) — ho Bu(t,y))| <

< T RO e een Teaen-

A=(Aia)ENEXETMO) T aaE>NO" >0
2ia Aa Q=Y

— (0%%n) (B (t,) T] @Bt )

a>0

ZiAiﬁ
< ¥ %H(%) C(P, Y0 A N)-

, Ex(1™0) ~ oqeN"®
(AZQ)GI;I, _ a>0
>ia Aia =Y

<

"(tm’i [T @8-t = (¢ + )= T] (0 Bult )

a>0 a>0

At this point we must distinguish between two cases.
(t > 6 > 0) In this case we choose C, := C, 2 so that by the above considerations
we have

|07(H:(t,y) — Hu(t,9))| <

Zi i
< Z ’;—: H <$> C(P>Ea >‘on2)6'

, Ex(1™\0) ~ oqeN"
(AZQ)GI;I, _ a>0
>ia Aia =Y

[T (@8-t = T @*Bu(t, ) |-

a>0 a>0

Since | 6aﬁ£ (t) y) - aaﬁu (t)
(ssi}on |8’Y(HE (t7 y) _H,u (t7 y))

(6 >t > 0) In this case we have

|07 (Ha(t,y) — Hu(t,y)) | <

< > Z—:H&)ZMC(EJ&,M-

, Ex(11™\0) " qeN"
(Aw‘)elj _ a>0
>ia Nia =y

y)| — 0 for A, u — 0 we may conclude that the expres-
| goes to zero with € and g uniformly in (¢,y) € LN{t >

' ‘(tm’? [T@ 8-t = ¢+ w)* [T(0*Bu(t, ).

a>0 a>0
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Recalling how (. was defined, we see that the sums on the righthand side are
basically polynomials in (£ +¢)~! (resp. (t+ u)~') and y. So we only need to
choose N sufficiently large to have the above term converge to zero uniformly in
(t,y) for e, — 0.

This completes the proof that J>°H. is a Cauchy sequence with regard to the
seminorms | . |fn By (3) it has a limit in the space of Whitney jets on L which we
extend to a smooth function H € C* (]R X ]Rk) using Whitney’s extension theorem.
We now turn to (4).

On L, 97 H is the limit of 3 H, for € — 0. Since 0 € L, it suffices to show

0"H.(0) - 0 for all y € NF+1
to imply that H is flat at 0. This is seen as in (2) above: By setting (¢,y) =0 in
|07 (hoB:)(t,y) | <

ZiAia
et Y T (x) T M) @)

! ol
. ke x (11™\0) aEN™
(Aw‘)elj _ a>0
Yia Aia=7y

22 Xia
¥ Y R (5) s |Lae@o)|

! a!
. kx (11™\0) a€eN™
()‘“")EI;I, _ a>0
o Niaa=7

Again, the righthand sum is a polynomial in e ', and if N is chosen large enough,

we see that the whole expression converges to zero with ¢ — 0.

Next and final point of the proof is to check inhowfar B* maps H to h. On
L\ {0}, B converges to By : L\ {0} — (0,1] x A. So restricted to L\ {0}, we have
H = h o f3y. By definition of 3,

B*H =B*(hofy) =h on (0,1] x A.
Therefore, by continuity, B*H = h on [0,1] x A; in particular

BTH o 1jxp(sm=1) = P ljo,1ppsn-1)
Since h as well as B*H are A-invariant, their values on A([0,1] x p(S™71))
[-1,0] x p(S™~!) are uniquely determined by their restriction to [0,1] x p(S™~
So we even have

.

B H [1_y 1jxp(sn-1) = R li—11xp(sm-1) -
Since B is a diffeomorphism on (1,00) x p(S™ 1) as well as on (—oo, —1) x p(S™" 1)
we can change H outside of B([—1,1] x p(S™ 1)) to

ho B|(_1%oo)xp(sn—1) on B((1,00) X p(snfl))
H=<H on B([-1,1] x p(Sn—l))
ho B|(7—1007—1)><p(5"71) on B((_OO, _1) X p(Snfl))
This H is in C'*° (]R x Rk 0), and it has the desired property:

B™H gy psn-1) = P lrspsn-n- O
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3.15. The main part of the proof of Schwarz’ theorem will be carried out by induc-
tion. To be able to state the induction hypothesis, we make the following definition:
For two compact Lie groups G and G’ we will call G < G' if

(a) dim G < dim G’ or
(b) if dim G = dim G’, then G has less connected components than G'.

We will continue the proof of 3.7 under the following two hypotheses:

I (Induction hypothesis) The compact Lie group G is such that theorem 3.7 is
valid for all compact Lie groups G’ < G (and each orthogonal representation
of G").
IT The orthogonal representation has 0 as only fixed point (see 3.10).
The next step will be to prove the

Key lemma. Under the hypotheses I and II:
* YOO 3 [e%s} G
prC> (R \ {0}) = C> (V\ {0})"".

In particular: (p|5n,1)* ol (]Rk) - O (Sn—1)G_

Before we get involved in a complicated proof, let us draw some conclusions from
this.

3.16. Corollary. Under the hypotheses I and I1 we have
(a)
(id X p |gn-1)" C®(R x R¥; {0} x RF) = C>°(R x S"*; {0} x S" )¢
(b)
(id X p |gn-1)" C®(R x R¥; {0} x RF)%2 = C®°(R x S"~1; {0} x §n~1)%2xC
where the Zo-action on R x RF is given by A and on R x S~ by A.
Remark. 3.16(b) is the missing link between 3.13(2) and 3.14. Together the three
lemmas give the equation
¢*C®(R™;0)% = C®(R x " 1;{0} x S 1)Z2x¢ by 3.13(2)
= (id X p |gn_1)" C®(R x R¥; {0} x R¥)%2 by (b)
= (id X p |gn-1)" B*C=(R x R*; {0}) by 3.14.

This is already a big step forward in the proof of Schwarz’ theorem.

Proof of the Corollary. In (a) as well as in (b) the inclusion “C” is clear. So let us
just concern ourselves with the surjectivity of (id X p |g.—1)" in each case.
(a) is a consequence of the identity

C®(R x R¥; {0} x R¥) = C(R*, C*(R; {0})) = C*°(R*)® C*°(R; {0})
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26 3. Invariant theory of compact Lie groups, 3.17
and the resulting commutative diagram
O (R; 0)& C°(RF) — = L 0%(R x RF; 0 x RF)
id®(p|5"1)*l J(id x plS"h)*
C®(R;0)® C®(S" 1Y —— C®(R x S*~ 10 x S"~H)¢
i3 Iy 2

C®(R;0)& C®(S§" 1) — = C=(R x §" 1,0 x §" 1)

R

Here, the map on the upper lefthand side, id &(p|S™')*, is surjective by 3.15. The
surjectivity of the maps on the bottom is clear and implies that the horizontal map
in the middle is also surjective. From this we can deduce that (id x p|S™"~!)* on
the upper righthand side is surjective as well. This proves (a).

(b) is now a consequence of (a). To any ¢ € C®(R x S"~1; {0} x §n—1)Z=x¢
assertion (a) supplies a 1 € C®(R x R¥;0 x R*) which is mapped to ¢ under
(id X p |gn=1)". It remains to make 1) Zs-invariant. On R x p(S"~1) ¢ is automat-
ically Zs-invariant:

(id X p | gu-s)” (0 A) = o Ao (id X p|gu-s) =
=to(idxplg-1)oAd=pod=p=(idxplg.-1)" 2

Since A maps RT x RF onto R~ x R¥ and ¢ is flat at {0} x R*, we can change v on
R~ x R* to make it Zo-invariant everywhere. This way we retain its smoothness,
its flatness at {0} x R¥ and since 1 isn’t changed on R x p(S"~1) we also retain

o= (idxp |sn—1)* Y. O

Notation. In the following we will sometimes write R[z] for R[R"] where (z =
(z1,...,2n)) stands for the variable. The linear subspace of homogeneous polyno-
mials of degree i will be denoted by R[z],, so that we have

R[V] = PRIl

i>1

R[[V]] = [[R[a];

i>1

Furthermore, we will abbreviate the ideal of all polynomials with no constant term

by
Prlal, = Rz,
i>1
3.17. Definition. We will call a system of generators {o1,...,0m} of an algebra

minimal, if there is no nontrivial polynomial relation of the type
0 = P(O‘l,. 2y 05—1,0541,-- .,O'k).
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Remark. If an algebra is finitely generated, then it automatically possesses a mini-
mal system of generators. We only have to take an arbitrary finite set of generators
and recursively drop any elements which can be expressed as polynomials in the
others.

Proof of 3.15. Let us get an idea of how this proof will work before we go into the
technical lemmas it requires.

Choose an arbitrary ¢» € C>°(R"\ {0}) and take p € R"\ {0}. By hypothesis II,
p is not fixed under (. Therefore G, < G and Schwarz’ theorem is satisfied for any
representation of GG, by the induction hypothesis. In particular, take a slice S at p
small enough not to meet 0 (this also implies 0 ¢ G.S). S is contained in an affine
subspace p + L(R?) C R*, where L is a linear embedding L : R? < R". The slice
action gives a representation of G, on R?. Restrict p+ L to L™(S —p) =: S C Re
(open) to get the map A : § — S. We then have A* (¢ |g) € C=(S)%. Consider
a minimal system of generators oy,...,0s of ]R[]Rq]c”, then by Schwarz’ theorem
there is an @ € C*°(R?®) such that

NY(t) = a(or(t),...,04(t) forallt € S
(since A*1) can be extended to a G ,-invariant function on R¥). Now we require the

following

Lemma 3.20. In the above situation (where here it is important that {o;} be a
minimal system of generators), denote by &; (resp. fi;) the germ of o; (resp. p; ==
pio(p+ L)) at 0. Then there are germs of smooth functions B; € C§°(RF) such
that

6-] = B](ﬂl: e 7ﬂk)'
Let us first finish the proof of 3.15 assuming the lemma and then return to it.
Recall that on S we were able to express ¢ o A in the Hilbert generators oy, ...,05.

’(/JOX:CK(UD...,US)
In a sufficiently small neighborhood Uy of 0 we can now replace o; by B; o, where
B, is a suitable representative of the germ B; and has domain V), = u(Up) (notice
that u(Uo) = p(p + L(Uy)) = p(G.(p + L(Up))) is open since p is open by 3.2(3)).
1/]0} |U0 :CMO(Blo/J, |U07"'7Bko,u |U0)‘

Since A is a diffeomorphism and p | = p | © 5\, we can drop the X on each side.
With U, := A(Up) this gives us:

¥ lg, =ao(Bioply,, -, Broply,)

Since both sides are G-invariant, we can extend the above equation to the tubular
neighborhood U, := G.U), of p. To simplify the formula, we set

C*(Vp) 3 ¢p: & — a(Bi(x),...,Bi(x)).
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28 3. Invariant theory of compact Lie groups, 3.18

So we get:
*) ¥ |Up =p"pp |Up

In this way we can assign to each p € R" \ {0} neighborhoods U, > p and V}, 5 p(p)
as well as a map ¢, € C*(V,) with the above property. Let us consider a partition
of unity (hy) of p(R™) \ {0} which corresponds to the covering V,,. Then we can
define

P = thSop € COO(Rk \ {0}).

Now p*h, is a G-invariant partition of unity on R™ \ {0}. It corresponds to the
covering (U,) since p(U,) = V), and p separates the orbits by 3.2(2). So with (*)
we get

prp = p*(z hppp) = Z(P*hp)(p*@p) = Z(p*hp)iﬁ |Up =4 O

Before we can prove the key lemma’s key lemma (3.20) we need two supporting
lemmas:

3.18. Lemma. Let 01,...,01 be a system of homogeneous generators of ]R[m]c.
Then the following two conditions are equivalent:

(1) {o1,...,01} is a minimal system; that is there is no nontrivial polynomial
relation of the type

pj=P(p1,.. oy Pj—1,Pj+15- -5 Pk)

(2) p1,...,pr are an R-basis of ]R[a:]f /(]R[Zl?]f)Q

Proof.

(1) Suppose there is a nontrivial relation. It can be written as

pi =Y Xipi+ Y Hap®

i#]

where the second summation is taken over all multi-indices @ € N* with
|| > 2 and a; = 0. This immediately implies

pj = Xipi mod (R[2]$)*.
i#]

So the p; are linearly dependent mod (]R[a:]i)2
(1}) Since the p; generate R[z]”, they automatically generate ]R[a:]f /(]R[:v]f)2
as a vector space. So if we suppose (2) false, then there is a nontrivial

relation
> Xipi=0 mod (R[z])%.
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Order the p; by degree: ¢ < j = d; < d;. Now let ¢ be the smallest i for
which A; # 0. Then we can express p;, as follows

Pio = D Wi+ Y Vap™.

i0<j la|>2

This equality still holds if we drop all terms of degree # d;,, and both sides
remain the same. After doing so, we see that p;, does not appear on the
righthand side of the equation. Because if it did, then it would be in a term
Vop® with a;, # 0 in the sum on the far right and this term would have
degree > d;,. So we have a nontrivial polynomial relation between the p;
and a contradiction to (1). O

3.19. Lemma [15]. Consider U C R*, V C R™ open, f : U — V smooth and
f*:C®(V) = C*®(U) with the compact C*-topology on both spaces. Then for
each p € f*C>® (V) and for all a € U there is a ¢ € C> (V') such that

T =Tiyb o T f,

where T>®p € R[[x — a]] denotes the formal Taylor series of ¢ at a and by the
composition on the right we mean the insertion of T°f € R[[z —a]] for y in

T3 v € Rlly - f()].
Proof. The assertion of the lemma is equivalent to the statement
T2 (frC> (V) = T2 (f*C>= (V)),

since T°(f*C*> (V)) is simply the set of all jets which can be written as a com-
position like in the lemma. Due to the fact that T7>° is continuous, we have the
inclusions:

T2 (f7C* (V) S T2 (f*C= (V) S Tee(f*C> (V).

Therefore, it is sufficient to show that T5° o f* has a closed image. Since C* (V)
is a reflexive Fréchet space, we can show instead that the dual map (72° o f*)' has
a closed image.

(T7°) : R[z —a]] = C= (V)

R[[z — a]]’ is the space of all distributions with support a. Let 3 Ag&éﬁ) be such a
distribution, and take any « € C* (V). Then

(@0 £ oMb ) = (@ 0 £)(@), oAbl ) =
- St 10 = Sotso) = (o Sl

So the image of R[[z — a]] under (T> o f*)' is contained in the space of all distri-
butions concentrated at f(a) which is isomorphic to a countable sum of R with the
finest locally convex topology. But in this topology, every linear subspace is closed
(since every quotient mapping is continuous), so (7> o f*)'(R[[z — a]]') is closed
as well. O

Now let us state again
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3.20. Lemma. Consider A : S 2 S — G.S as in the proof of 3.15, and define
pi=plagoA: S — RF. The o; form a minimal system of generators for R []R’“]
and we denote the germ of o; (resp. ;) by &; (resp. ;). Then there are germs of
smooth functions B; € C$°(RF) such that

6-] = B](ﬂl::ﬂk)

Proof of lemma 3.20. Since p is a Gp-invariant polynomial (or the restriction of
one), we can express y; in the Hilbert generators as follows:

(*) /},i:/},i(O)+Ai(01,...,03) AZ’E]R[]RS]

So our goal is to find a local inverse for A. With the help of Glaeser’s lemma 3.19
let us now try to construct a formal power series inverse. A induces an isomorphism
by which

C*(5)% = A\*C>(G.89)“.

Without loss of generality let us now assume S was chosen compact. Then G.S is
compact as well and we can apply the Weierstrass approximation theorem to get

C®(G.)% = R[] |g.s" = p16.sR[H = p [5.sC>(RF).

If we use the fact that A* is a homeomorphism, the two equations taken together
yield

C(8)% = X (p|G.8)*C=(RF) = \*(p]G.5)*C=(RF) = p* C=(RF).

So we have that o; € C°°(S)% is “almost” some smooth function of p. Now we

can use Glaeser’s lemma. Take o; and 0 € S. Then there is a smooth function
¥; € C°°(RF) such that

Since both ¢; and p are polynomials, we can disregard the 7;°. Tﬁo)'/’i is a power

series in (¢ — p(0)). If we take ¢; € R[t] to be the power series in ¢ with the same
coefficients, then the above formula turns into

(**) i = pi(p = p(0)).
Since o; is homogeneous of degree > 0, ¢; has no constant term. So we can write

it as
@; = L; + higher order terms L; e R[],

In particular, if we insert (*) into (**) this implies
(¥*¥) 0; — Li(A1(0), ..., Ax(0)) € (R[H]F7)2.
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Since the o; were chosen to be a minimal system of generators, lemma 3.18 implies
that the o; + (]R[t]i”)2 form a basis of ]R[t]i” /(R[t]i”)? Therefore we have a well

defined algebra isomorphism:

RS /(R[7)2 5 A= Rlz, ..., 2]/ (22)

Now (***) translated to A gives
Li(A1(2),-. -, Ak(2)) =2+ 0(z%)  inR[z]

Therefore
DL(0) o DA(0) = Idp»,

and by the inverse function theorem A has a local inverse. So, locally, we can solve
the equation (*) in terms of o;, which proves the lemma. O

This completes the proof of the key lemma. So far, we have shown (see remark
3.16) that under the hypotheses I and II

¢*C>(R";{0})“ = (id X p |gu—1)" B*C™ (R x R*;{0})

holds. We have been able to pull out p, but the polar coordinate transformation
is now encoded in B. We must now pull the B* out in front of the (id X p |gn—-1)"
where it will appear again as ¢* and then get rid of the excess dimension.
Recall that B was defined to satisfy the diagram:
¢

Rx St —— LR?

id x (p |Sn1)J J(T; p)

RxR — B RxRE

where 7 denoted the polynomial map (z) = |z |* on R*. Thus Bo (id X p |gu_1) =
(r,p) o ¢. And therefore

§* O (R {0))F = (id x p | g.-1)" BC™ (R x B¥; {0}) =
— ¢ o (r, p)" C(R x B3 {0}).
Since ¢* was injective, we can now discard it to get
C®(R*; {0} = (r,p)*C™(R x R*; {0}).

That takes care of B as well as ¢, so let us now tackle r.
r is an O(n)-invariant polynomial, in particular it is G-invariant. Therefore by
Hilbert:
r=1op for some ¢ in C°°(RF).

So (r,p) = (1,id) o p and we get
C=(R*; {0} = p* o (1,id)*C>(R x R¥; {0}).
Now we are just one easy lemma away from the desired result
C(R"; {0)7 = p"C>(R; {0})
under hypotheses I and II. That is.
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3.21. Lemma.

(¥,id)*C>(R x R*; {0}) = C™(R"; {0})
Proof. Taking a closer look at (v,id), we see that it is a composition of maps

(¢,id) : R* =5 Graphe) <5 R x RF
g

where i is the embedding of the closed submanifold Graph into R x R*. Therefore
(1,id)*C>®(R x R*; {0}) = g*i*C>*(R x R*; {0}).
Since 0 = r(0) = ¢ o p(0) = ¢(0), we see that g(0) = 0. So we also have
C>(R*;{0}) = g*C*(Graph¢; {0}).
Therefore it remains to prove that
i*C*(R x R¥; {0}) = C*°(Graph; {0}).

Now take an arbitrary f € C°°(Grapht; {0}). There is a smooth extension fof f
on R x R* but it need not be flat at zero. So consider a submanifold chart (&, U)
of Graph around 0 and define

foiUSRxR 22 RE Y Graphy LR
Then fy is a smooth extension of f on U and is flat at zero. Now f and fy patched

together with a suitable partition of unity give a function f € C*°(R x R¥;0) such
that i*f = f. O

End of the Proof of 3.7. Recall from lemma 3.10 that it is sufficient to prove the
theorem of Schwarz, assuming hypothesis II. We will now carry out induction over
G. For G = {}id, 3.7 holds trivially. Now for any compact Lie group G satisfying
hypothesis IT we showed above that under the induction hypothesis (I)

p*C>(R"; {0}) = C=(R"; {0})“.

From this, together with our considerations from the beginning of the proof (3.11),
we see that Schwarz’ theorem is valid for G. O

There is one more Corollary to be gained from all of this. Notice that up to now
we have not shown

(*) p*C>(R"; {0}) = C*(R"; {0})“

in general. Although we worked on this throughout the proof of 3.7, we were
only able to show it under the hypotheses I and II. Now that Schwarz’ theorem is
proved, the hypothesis I is automatically satisfied so we can disregard it. But we
have to look more deeply into the proof to be able to see whether (*) is satisfied
for representations of compact Lie groups with more than one fixed point. It turns
out that it is.
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3.22. Corollary. Let G be a compact Lie group with an orthogonal representation
on R and p = (p1,...,pr) the corresponding Hilbert generators, homogeneous and
of positive degree. Then

p*C™(R*;{0}) = C=(R"; {0})“.

Proof. Schwarz’ theorem implies that
(p | gnmr)” O (RE) = C($71)G.

By backtracing we see that before we knew theorem 3.7 this was a consequence
of the key lemma 3.15 which was based on the two hypotheses. In fact, it was
the only assertion of 3.15 that was needed to prove the corollary 3.16. So we now
know that 3.16 does not require the hypotheses after all. But the remainder of the
proof for p*C>®(RF; {0}) = C>(R"; {0})“ did not use 3.15 at all, it only used 3.16.
Therefore, it is independent of the hypotheses as well. O

Further results in this direction were obtained by Luna who, among other things,
generalized the theorem of Schwarz to reductive Lie groups losing only the property
of the Hilbert generators separating the orbits (see [20]).

Luna’s Theorem (1976). Consider a representation of a reductive Lie group G
on K™ (where K=C,R ), and let o = (01,...,05) : K™ — K", where 01,...,0,
generate the algebra ]K[Km]G. Then the following assertions hold:

(1) K=C = o*: H(C") — H(C™)Y is surjective.

(2) K=R= o*:CY(R*) — C*(R™)Y is surjective.

(3) K =R implies that

o C®(R") — {f € C®°(R™)Y : f is constant on o' (y) for ally € R}

1§ surjective.
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4. Transformation Groups

4.1. Definition. Let G be a Lie group, M a C°°-manifold. A smooth map ( :
GxM — M (we will write £,(x), " (g) as well as g.¢ for {(g,x)), defines a smooth
action of G on M if it satisfies

(1) e.x =z, for all x € M where e € G is the unit element.
(2) (91-92).x = g1.(92.2), forall g1,90 €G, z € M.
We will also say G acts on M, M is a G-manifold or M is a smooth G-space.

4.2. Definition.

(1) For x € M the set G.x = {g.x : g € G} is called the G-orbit through x.

(2) A G-action on M is called transitive if the whole of M is one G-orbit.

(3) A G-action on M is called effective if the homorphism G — Diff (M) into
the diffeomorphism group is injective: If g.x = x for all x € M then g = e.

(4) A G-action on M is called free if (¥ : G — M is injective for each x € M:
g.x = x for one x € M already implies g = e.

(5) A G-action on M is called infinitesimally free if T.(¢*) : g — T, M is
injective for each v € M.

(6) A G-action on M is called infinitesimally transitive if T, (¢*) : g — T, M
is surjective for each x € M.

(7) A G-action on M is called linear if M is a vector space and the action
defines a representation.

(8) A G-action on M is called affine if M is an affine space, and every £, :
M — M is an affine map.

(9) A G-action on M is called orthogonal if (M,~) is a Euclidean vector space
and b, € O(M,~) forallg € G. (Then {{,:g9€ G} C O(M,~) is auto-
matically a subgroup).

(10) A G-action on M is called isometric if (M,~) is a Riemannian manifold
and {, is an isometry for all g € G.

(11) A G-action on M is called symplectic if (M,w) is a symplectic manifold
and L, is a symplectomorphism for all g € G (i.e. £ preserves w ).

(12) A G-action on M is called o principal fiber bundle action if it is free
and if the projection onto the orbit space m : M — M/G is a principal
fiber bundle. This means that that M /G is a smooth manifold, and 7 is a
submersion. By ther implicit function theorem there exit then local sections,
and the inverse function theorem the mapping 7 : M Xy M — G which
satisfies x = 7(x,y).y for x and y in the same orbit, is smooth. This is a
central notion of differential geometry.
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4.3. Definition. If M is a G-manifold, then M/G, the space of all G-orbits
endowed with the quotient topology, is called the orbit space.

4.4. Examples.

(1) The standard action of O(n) on R™ is orthogonal. The orbits are the con-
centric spheres around the fixed point 0 and 0 itself. The orbit space is
R™/O(n) 220, 00).

(2) Every Lie group acts on itself by conjugation: conj: G x G — G is defined
by (g, h) = conj,(h) := g.h.g~! and is a smooth action of the Lie group on
itself.

(3) The adjoint action Ad : G — GL(g) of the Lie group G on its Lie algebra
g is defined as the derivative of conj (interpreted as a map G — Aut(G))

Ad(g): X — % g.exp®(tX).g = Te(conj,):g — g
t=0

It is clearly linear. If G is compact, then it is orthogonal with respect to
the negative Cartan-Killing form,

—B:gxg—R:(X,Y)— —tr(ad(X) o ad(Y)),

which in this case defines an inner product on g.

(4) In particular, the orthogonal group acts orthogonally on o(n), the Lie al-
gebra of all antisymmetric n x n-matrices. Not a special case of (3) is the
O(n)-action on S(n) defined in chapter 1. Yet it is also orthogonal: Let
A€ O(n) act on G, H € S(n) then

tr (AHA " (AGA™)") = tr(AHA ' (A™")'G'A") =
tr(AHA "AG'A™ ) = tr(AHG'A™) = tr(HGY)
(5) SU(n) acts unitarily on the hermitian n X n matrices by conjugation (anal-

ogous to (4)).

4.5. Definition.
Let M be a G-manifold, then the closed subgroup G, = {g € G : g.x = z} of G is
called the isotropy subgroup of z.

Remark. The mapi: G/G, — M defined by i : .G, — g.x € M is a G-equivariant
initial immersion with image G.z. [19], Theorem 5.14

a4t

If G is compact, then clearly i is an embedding.
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4.6. Lemma. Let M be a G-manifold and z,y € M, then
(1) Gyo = 9.Gr.9g?
(2) GanNGy#0=Gz=Gy
(3) Tx(G.x) =T.(¢*).g

Proof.
(1) a€Gyp G agr=grsglagr=1 < g lage G, & a€ gG.g™".
(2 zeGzNGy=>z=g1.x =gy > = gflggy =: g.y, therefore G.x =
G.(g9.y) = G.y.
B) X eT,(Gz)e X = %|t:0 ¢(t) for some smooth curve c(t) = g;.x € G.x
with go = e. So we have X = %|t:0 0(gr) € Te(€7).g. O

4.7. Conjugacy Classes. The closed subgroups of G can be partitioned into
equivalence classes by the following relation:

H~H :<= 3gecG for which H=gH'g™!

The equivalence class of H is denoted by (H).
First consequence: ( with lemma 4.6(1) ) The conjugacy class of an isotropy sub-
group is invariant under the action of G : (G;) = (G4;). Therefore we can assign
to each orbit G.z the conjugacy class (G,). We will call (G;) the isotropy type
of the orbit through z, and two orbits are said to be of the same type, if they have
the same isotropy type.

If G is compact, we can define a partial ordering on the conjugacy classes simply
by transferring the usual partial ordering “C” on the subgroups to the classes:

(H)<(H') :<— 3dKe(H),K' e(H):KCK'
This is equivalent to a shorter definition:
(H)<(H') :<= 3Jge€G:HCgH'g™"

If G is not compact this relation may not be antisymmetric. For compact G the
antisymmetry of this relation is a consequence of the following

4.8. Lemma [5], 1.9. Let G be a compact Lie group, H a closed subgroup of G,
then
gHg ' CH = gHg'=H

Proof. By iteration, gHg ' C H implies g"Hg ™ C H for all n € N. Now let us
study the set A := {g" : n € Ny }. We will show that g—! is contained in its closure.

Suppose first that e is an accumulation point of A. Then for any neighborhood
U of e there is a g" € U where n > 0. This implies g"~' € ¢g~'U N A. Since the
sets ¢g~'U form a neighborhood basis of g~!, we see that ¢g—! is an accumulation
point of A as well. That is, g~' € A.

Now suppose that e is discrete in A. Then since G is compact, A is finite.
Therefore g" = e for some n > 0, and g ! =g~ ! € A.

Since conj : G X G — @ is continuous and H is closed, we have

conj(A,H) C H.
1

In particular, g~'Hg C H which together with our premise implies that gHg~! =
H. O
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4.9. Definition. Let M and N be G-manifolds. A smooth map f : M — N is
called equivariant, if it satisfies f(g.x) = g.f(z) for all x in M and g in G.

4.10. Definition. Let M be a G-manifold. The orbit G.x is called principal
orbit, if there is an invariant open neighborhood U of x in M and for all y € U
an equivariant map f : G.x — G.y.

Remark.

(1) The equivariant map f : G.x — G.y of the definition is automatically
surjective :
Let f(z) =: a.y. For an arbitrary z = g.y € G.y this gives us
z=gy=ga 'ay=ga"f(zr) = f(ga ".x).

(2) The existence of f in the above definition is equivalent to the condition :
G: C aGya™! for some a € G:
(=) g€ Gy = gx=2x= g.f(x) = f(9.x) = f(z) and for f(x) =: a.y
this implies ga.y = a.y = g € G4y = aGya~' (by 4.6(1)).
(<) Define f : G.x — G.y explicitly by f(g.x) := ga.y. Then we have
to check that, if g;.x = ¢go.x i.e. g := g;lgl € G, then gia.y = goa.y or
g € Guy = aGya'. This is guaranteed by our assumption.

(3) We call z € M a regular point if G.z is a principal orbit. Otherwise, z is
called singular. The subset of all regular (singular) points in M is denoted
by Mreg ( Msing )

4.11. Definition. Let M be a G-manifold and x € M then a subset S C M is
called a slice at x, if there is a G-invariant open meighborhood U of G.x and a
smooth equivariant retraction r : U — G.x such that S = r~*(z).

4.12. Proposition. If M is a G-manifold and S = r'(z) a slice at x € M,
where r : U — G.x is the corresponding retraction, then

(1) z€ Sand G,.SC S
(2) 9SNS#D=>g€q,
3) GS={gs:9€G,seS}=U

Proof.

(1) = € S is clear, since S = r~*(z) and r(z) = z. To show that G,.S C S,
take an s € S and g € G,. Then r(g.s) = g.r(s) = g.x = z, and therefore
gsert(z)=S5.

(2) gSNS#0P=>gseSforsomese S=x=r(gs) =gr(s) =gx=g¢€

Ge.
(3) (C) Since r is defined on U only, and U is G-invariant, G.S = G.r—!(z) C
GU=U.

(D) Consider y € U with r(y) = g.x, then y = g.(¢"'.y) and g~ L.y € S,
sincer(g7ty) =g tr(y) =g lgr=xsoyeG.S. O

4.13. Corollary. If M is a G-manifold and S a slice at x € M, then

(1) S is a Gy-manifold.
(2) Gs C Gy foralls € S.
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38 4. Transformation groups, 4.14

(3) If G.z is a principal orbit and G, compact, then G, = G, for ally € S if
the slice S at x is chosen small enough. In other words, all orbits near G.x
are principal as well.

(4) If two Gy-orbits G;.s1,G.s2 in S have the same orbit type as G, -orbits in
S, then G.s1 and G.so have the same orbit type as G-orbits in M.

(5) S/G, = G.S/G is an open neighborhood of G.x in the orbit space M|G.

Proof.

(1) This is is clear from 4.12(1).

(2) geGy=>9gy=yeS=g¢€cCG, by 412(2).

(3) By (2) we have G, C G, so Gy, is compact as well. Because G.x is principal
it follows that for y € S close to z, G, is conjugate to a subgroup of
Gy, G, C G, C g.Gyg~'. Since G, is compact, G, C ¢g.G,g~" implies
G, = g.Gyg~"! by 4.8. Therefore G, = G,, and G.y is also a principal
orbit.

(4) For any s € S it holds that (G;)s = G, since (G;)s C G, and, conversely,
by (2), Gs C G, therefore G5 C (Gz)s. So (Gz)s, = 9(Gz)s,g ' implies
Gs, = gGs,9 ! and the G-orbits have the same orbit type.

(5) The isomorphism S/G, = G.S/G is given by the map G,.s — G.s (it is an
injection by 4.12(2)). Since G.S = U is an open G-invariant neighborhood
of G.x in M (4.12(3)), we have G.S/G is an open neighborhood of G.z in
M/G. O

4.14. Remark. The converse to 4.13(4) is generally false. If the two G-orbits G.s,
G.s2 are of the same type, then the isotropy groups G, and G, are conjugate
in G. They need not be conjugate in G,. For example, consider the compact
Lie group G := (S! x SY)®Z> with multiplication ”o” defined as follows. Let
01, 02,01,12 € S' and a, 8 € Zs. Take on S' x S! the usual multiplication by
components, and as Zo-action:
i:0~ ig = tdg1ix gt
L (i1 : (01, 902) = (2, 91))-
Then
((101; P2, CM) o (1/11,1/12, 6) = (((1017 (p2)-ia(1/}1)1/]2)> a+ ﬁ)
shall give the multiplication on (S! x SY)® Z.
Now we let G act on M := V UW where V =W = R? x R%. For any element in

M we will indicate its connected component by the index (z,y)y or (z,y)w. The
action shall be the following

(1,92,0).(z,y)v = (1.2, 02.9)v

(Qola P2, i)(way)v = (‘Pl-y:<P2-5U)W

The action on W is simply given by interchanging the V’s and W’s in the above
formulae. This really defines an action as can be verified directly, for example,

(01,92, 1).((¢1,¥2, 1).(2,9)v) = (01,92, 1).(41.9,92.2)w
= (127, P21h1.y)v = (102, 2¢1,0) (2, y)v
= ((()0179027 I) o (1/}171/}27 i))(x,y)v
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Denote by H the abelian subgroup S! x S! x {0}. H is the isotropy subgroup of
(0,0)v, and V is a slice at (0,0)y. Now consider s; := (0,v!)y and s2 := (v%,0)v,
both not equal to zero. Then let

H, =Gy = S" x {id} x {0}

Hy =Gy, = {id} x S* x {0}
H; and H are conjugate in G by ¢ = (id, id, 1):

Hyoc 3 (p,id,0) oc = (p,id,1) = co (id,p,0) € co Hy

Yet they are clearly not conjugate in H since H is abelian. So H.s; and H.ss have
different orbit types in H while G.s; and G.sy are of the same G-orbit type.

4.15. Proposition. Let M be a G-manifold and S a slice at x, then there is a
G-equivariant diffeomorphism of the associated bundle G [S] onto G.S,

F:G[S]=Gxqa, S— G.S

which maps the zero section G X, {x} onto G.x.

Proof. Since £(gh,h~'.s) = g.s = {(g, s) for all h € G,, thereis an f : G[S] — G.S
such that the diagram below commutes.

GxS—*t a8
ql /
GXGES

f is smooth because f o ¢ = £ is smooth and ¢ is a submersion. It is equivariant
since ¢ and ¢ are equivariant. Also, f maps the zero section G X, {z} onto G.x.
It remains to show that f is a diffecomorphism. f is bijective, since with 4.12(2)

g1-S1 = g2.82 <~ s1 = gf1g2.32 <~
g1 = goh™ ! and s; = h.sy for h = gl_lg2 e G,

and this is equivalent to
qa(g1,51) = q(g2, 52).

To see that f is a diffeomorphism let us prove that the rank of f equals the dimen-
sion of M. First of all, note that

Rank({,) = dim(g.S) = dim S
and  Rank(¢*) = dim(G.x)

Since S = r~!(z) and r : G.S — G.z is a submersion (r | , = id) it follows that
dim(G.z) = codim S. Therefore,

Rank(f) = Rank(¢) = Rank(¢,) + Rank(¢*) =
dim S + dim(G.z) = dim S + codim S = dim M.
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O

4.16. Remark. The converse also holds. If f: G xg, S — G.S is a G-equivariant
diffeomorphism, then for some g € G, 5 € S, f[g, 3] = =. So f[g, s] := f[g3, s] defines
a G-equivariant diffeomorphism with the additional property that = f[e, 3].

Gxe S —L 5 Gs

G/G, —— Gux

If we define r :=iopryo f1 : G.S — G.z, then r is again a smooth G-equivariant
map, and it is a retraction onto G.z since

£t o Pri i
r — [e,5] — e.Gy — e.x.

Furthermore, r—1(z) = S making S a slice.
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5. Proper Actions

In this section we describe and characterize “proper” actions of Lie groups. We
will see that the following definition is tailored to generalize compact Lie group
actions while retaining many of their nice properties.

5.1. Definition. A smooth action £ : G x M — M is called proper if it satisfies
one of the following three equivalent conditions:
(1) (4,id) :Gx M — M x M, (g,z) — (g.z,z), is a proper mapping
(2) gn.®p — y and z, — x in M, for some g, € G and z,,z,y € M, implies
that these g, have a convergent subsequence in G.
(3) K and L compact in M implies that {g € G : . K N L # 0B} is compact as
well.

Proof.

(1) = (2) is a direct consequence of the definitions.

(2) = (3): Let g, be a sequence in {g€ G:9.KNL#0} and z, € K such
that g,.x, € L. Since K is compact, we can choose a convergent subsequence
ZTn, — ¢ € K of x,,. Since L is compact we can do the same for g, .xp, there. Now
(2) tells us that in such a case g, must have a convergent subsequence, therefore
{g€ G:g.KNL# D} is compact.

(3) = (1): Let R be a compact subset of M x M. Then L := pr;(R) and
K := pra(R) are compact, and (¢,id) " }(R) C{g€ G:9.KNL # 0} x K. By (3),
{9 € G:g.KNL# ()} is compact. Therefore (¢,id)~!(R) is compact, and (,id) is
proper. [

5.2. Remark. If G is compact, then every G-action is proper. If £ : G x M — M is
a proper action and G is not compact, then for any unbounded H C G and © € M
the set H.r is unbounded in M. Furthermore, all isotropy groups are compact
(most easily seen from 5.1(3) by setting K = L = {z}).

5.3. Lemma. A continuous, proper map f : X — Y between two topological
spaces is closed.

Proof. Consider a closed subset A C X, and take a point y in the closure of f(A).
Let f(an,) € f(A) converge to y (a, € A). Then the f(a,) are contained in a
bounded subset B C f(A). Therefore a,, C f~!(B) N A which is now, since f is
proper, a bounded subset of A. Consequently, (a,) has a convergent subsequence
with limit @ € A, and by continuity of f, it gives a convergent subsequence of f(a,,)
with limit f(a) € f(A4). Since f(ay) converges to y, we have y = f(a) € f(A). O
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42 5. Proper actions, 5.4

5.4. Proposition. The orbits of a proper action ¢ : G x M — M are closed
submanifolds.

Proof. By the preceding lemma, (¢,id) is closed. Therefore (¢,id)(G,z) = G.x X
{z}, and with it G.z is closed. Next let us show that ¢* : G — G.z is an open
mapping.

Since ¢* is G-equivariant, we only have to show for a neighborhood U of e that
¢*(U) = U.z is a neighborhood of z. Let us assume the contrary: there is a sequence
gn-x € G.x — U.x which converges to . Then by 5.1(2), g, has a convergent
subsequence with limit ¢ € G,. On the other hand, since g,.x ¢ U.x = U.G,.x
we have g, ¢ U.G,, and, since U.G, is open, we have g ¢ U.G, as well. This
contradicts g € G.

Now we see that the orbits of a proper action are closed submanifolds.

q £ G

\‘ /
G/G,

As the integral manifold of fundamental vector fields, G.z is an initial submanifold,
and 7 is an injective immersion [19], Theorem 5.14. Since iop = ¢ is open, i is open
as well. Therefore it is a homeomorphism, and G.z is an embedded submanifold of
M. O

5.5. Lemma. Let (M,~) be a Riemannian manifold and £ : G x M — M an
effective isometric action (i.e. gx ==z for allx € M = g = e), such that {(G) C
Isom(M,~) is closed in the compact open topology. Then { is proper.

Proof. Let g, € G and x,,,z,y € M such that g,.x,, — y and x,, = z then we have
to show that g, has a convergent subsequence which is the same as proving that
{gn : n € N} is relatively compact, since £(G) C Isom(M,~) is closed.

Let us choose a compact neighborhood K of x in M. Then, since the g, act iso-
metrically, we can find a compact neighborhood L C M of y such that |J72, g,.K is
contained in L. So {gy} is bounded. Furthermore, the set of all g,, is equicontinuous
as subset of Isom(M). Therefore, by the theorem of Ascoli-Arzela, {g,, : n € N} is
relatively compact. O

5.6. Theorem (Existence of Slices). [31], 1961

Let M be a G-space, and x € M a point with compact isotropy group G,. If for all
open neighborhoods W of G, in G there is a neighborhood V of x in M such that
{g€G:gV NV #0} CW, then there exists a slice at x.

Proof. Let 4 be any Riemann metric on M. Since G, is compact, we can get a
G -invariant metric by integrating over the Haar-measure for the action of G.

Y2 (X,Y) :Z/

(Ao = [ X TEY)do
Ga

Ga

Now if we choose € > 0 small enough for exp) : T,M D By, (¢) — M to be a
diffeomorphism onto its image, we can define:

§ = exp] (T(G.x)* N By, (e)) C M.
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S is a submanifold of M and the first step towards obtaining a real slice. Let us
show that S is Gp-invariant. Since G, leaves v unchanged and T, (G.z) is invariant
under T/, (for g € G,), Tx{, is an isometry and leaves T (G.z) - NB, () invariant.
Therefore:

T,(G.z)* N Bo, (€) —2%3 T,(G.x)* N B, (¢)

lexp;’ lexpl

S — S

What is not necessarily true for S is that any g € G which maps some s € S back
into S is automatically in G,. This property is necessary for a slice, and we will
now try to attain it for a G,-invariant subset S C S. At this point, the condition
that for every open neighborhood W of G, in G, there is a neighborhood V of z in
M such that {g€ G : 9.V NV # 0} CW comes in. The idea is to find a suitable
W and corresponding V such that V N S has the desired property.

First we must construct a W fitting our purposes. Choose an open neighborhood
U C G/G, of e.G, such that there is a smooth section x : U — Gof 7 : G — G/G,
with x(e.G,) = e. And let U and possibly S be small enough for us to get an
embedding

f:Ux8 — M:(u,s) = x(u).s.

Our neighborhood of G, will be W := 7~ (U). Now by our assumption, there is a
neighborhood V of z in M such that {g € G: g.V NV #0} CW.

Next we will prove that V' can be chosen G, -invariant. Suppose we can choose an
open neighborhood W of G, in G such that G,.W C W (we will prove this below).
Then let V' be the neighborhood of z in M satisfying {g € G : g.V'NV' # 0} C W.
Now V := G,.V' has the desired property, since:

{9€G:9.G,. V' NG, V' £0} = U {9eG: 9.1V NV £0} =
91,92€G
U {9€G:g'90.V' 0V 20} = |J gg€G:gV' 0V £} =
91,92€G 91,92€G

Go{geG:gV' NV #0}.G, CG,.W.G, CW.G, CW

To complete the above argumentation, we have left to prove the

Claim: To any open neighborhood W of G, in G there is an open neighborhood
W of G, such that G,. W C W.

Proof: The proof relies on the compactness of G,. Choose for all (a,b) € G, x
G, neighborhoods A, of a and B, of b, such that A,4.B,s C W. This is
possible by continuity, since G;.Gy = Gy. {Bap : b€ G} is an open covering of
G;. Then since G, is compact, there is a finite subcovering Ujvzl Bap, = B, 2 G.
Since Agp;.Bap; € W we must choose A, := ﬂ;vzl Aqp,, to get Ag.B, C W.
Now since A, is a neighborhood of @ in G, the A, cover G, again. Consider a
finite subcovering A := U;-lzl Aq; D Go, and as before define B := ﬂ?:l By, so

that A.B C W. In particular, this gives us G,.B C W, so W := B is an open
neighborhood of G, with the desired property.
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We have found a G -invariant neighborhood V of z, with {g € G : gV NV # 0}
contained in . Now we define S := SNV and hope for the best. S is an open subset
of S, and it is again invariant under G,. Let us check whether we have the converse:
{9€ G:9.5NS # 0} CG,. If g.s; = s, for some 51,55 € S, then g € W = 7 1(U)
by the above effort. Therefore 7(g) € U. Choose h = g 'x(n(g)) € G,. Then

f(m(g),h " s1) = x(w(g))h~ sy = g.s1 = 52 = f(m(e), s2).

Since f is a diffeomorphism onto its image, we have shown that 7(g) = m(e), that
is g € G.

Now, it is easy to see that F' : G xg, S — G.S : [g,s] — g¢.s is well defined,
G-equivariant and smooth. We have the diagram

GxS ¢ G.S

N

GXGES

To finish the proof, we have to show that F is a diffeomorphism (4.16). F is injective
because:

Flg,s]=Flg',s'| = gs=9g.s =g '¢g.s =5
=g ' eG,=>gsl=1lg9 'gs1=1d,5]

Next, we notice that £(W, S) = W.S = f(U, S) is open in M since f : Ux S — M is
an embedding with an open image. Consequently, G.S = ¢(G,W.S) is open, since
{ is open, and F' is a diffeomorphism. O

5.7. Theorem. If M is a proper G-manifold, then for all £ € M the conditions
of the previous theorem are satisfied, so each x has slices.

Proof. We have already shown that G, is compact (5.2(2)). Now for every neigh-
borhood U of G, in G, for every x € M, it remains to find a neighborhood V of z
in M such that

{9eG: gV NV £P}CU.

Claim: U contains an open neighborhood U with G,U = U ( so we will be able to
assume G,U = U without loss of generality ).

In the proof of theorem 5.6 we showed the existence of a neighborhood B of
G, such that G,.B C U, using only the compactness of G,. So U:=G,.B =
U geG, 9-B is again an open neighborhood of GG, and it has the desired properties.

Now we can suppose U = G,.U. Next, we have to construct an open neigh-
borhood V' C M of x, such that {g € G:g.V NV # (0} C U. This is the same as
saying (G—U).V NV should be empty. So we have to look for V' in the complement
of (G—-U).x.

First we have to check that M —((G—U).z) really contains an open neighborhood
of z. Upon closer inspection, we see that M — ((G — U).z) is open altogether, or
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rather that (G — U).x is closed. This is because (G — U).x x {z} = (¢,id)((G —
U) x {z}) is the image of a closed set under (¢,id) which is a closed mapping by
lemma 5.3.

Now let us choose a compact neighborhood W of z in M — ((G — U).xz). Then
since G acts properly, it follows that {g € G : ¢W NW # @} is compact, in
particular K :={g € G —U : g W NW # } is compact. But what we need is for
{g€ G—=U:gV NV # 0} to be empty. An z-neighborhood V' contained in W
fulfills this, if K.V C M — W. Let us find such a neighborhood.

Our choice of W guarantees K.x C M — W. But M — W is open, therefore
for each k£ € K we can choose a neighborhood @ of k in G and Vj, of x in W,
such that Qr.Vyx € M — W. The neighborhoods @ cover K, and we can choose a
finite subcovering J_, Q;. Then V := /L, V; has the desired property : K.V C
M-W. O

5.8. Lemma. Let M be a proper G-manifold , V a linear G-space and f : M — V
smooth with compact support, then

f:mH/Ggflf(g-w)dur(g)

is a G-equivariant C*°-map with f(a:) =0 for x ¢ G.supp f (where du,. stands for
the right Haar measure on G).

Proof. Since G acts properly, {g € G : g.x € supp f} is compact. Therefore the
map g — ¢~ 'f(g.z) has compact support, and f is well defined. To see that f
is smooth, let ¢ be in M, and U a compact neighborhood of xzg. Then the set
{g€ G:g.UnNsupp f # 0} is compact. Therefore, f restricted to U is smooth, in

particular f is smooth in xg. f is G-equivariant, since

F(ha) = /G g7 Fgh.)due(g) =
=/ h(gh)~" f(gh.x)dp.(g) =h-/ 97" f(g.x)dur(g) = hf(z).
G G

Furthermore, 2 ¢ G.supp f = f(g.x) =0 forallge G = f(z) =0. O
5.9. Corollary. If M is a proper G-manifold, then M /G is completely regular.

Proof. Choose FF C M/G closed and Zy = 7(zo) ¢ F. Now let U be a compact
neighborhood of zq in M fulfilling U N7~ (F) = 0, and f € C* (M, [0,0)) with
support in U such that f(zg) > 0. If we take the trivial representation of G on
R, then from lemma 5.8 it follows that f : z — fG f(g.z)dp,(g) defines a smooth
G-invariant function. Furthermore, f(a:o) > 0. Since supp f C G.supp f C G.U,
we have supp f N 7 L(F) = (). Because feCc= (M, [0, oo))G, f factors over 7 to a
map f € C°(M/G,[0,00)), with f(Zo) > 0 and f|F =0. O

July 31, 1997 P. Michor, 5.9



46 5. Proper actions, 5.10

5.10. Theorem. If M is a proper G-manifold, then there is a G-invariant Rie-
mann metric on M.

Proof. By 5.7 thereis aslice S, at  forallz € M. If 7 : M — M /G is the quotient
map, then we will show the existence of a sequence x,, € M such that 7(S,,) is a
locally finite covering of M/G. To do so, notice first that M /G is locally compact
(in particular Hausdorff), o-compact and therefore normal.

Since M /G is o-compact and Hausdorff, there is a countable locally finite cov-
ering by compact sets C;. Each Cj, in turn, is covered by {7 (S,) : = € 7= 1(C})}.
Since C; is compact, there is a finite subcovering, and these taken all together give
the desired covering of M/G.

Let us now construct a neighborhood K, of z,, in S, (=: S,) such that K,, has
compact closure in S,, and {n(K},)} is still a covering.

Take a C; from above. If {n(S;) : j € F C N, finite} covers C;, then consider the
complement of ;¢ gy 7(S;) in Cj. This is a compact set contained in C; with
open neighborhood 7(S;), so it has a relatively compact neighborhood R; with
R; C 7(S)), since M/G is normal. K; := m~1(R;) N S is relatively compact due to
the compactness of G,: K; is a subset of S;, so 4.13(5) states that R; = K;/G,,,
so R; = K;/G,, and with R;, K; must be compact, since G, is compact.

If we choose f, € C> (M,[0,00)) with f, | > 0 and supp(f,) C G.S, com-
pact, then

Fule) = /G fa(g-2)dun(g) € C (M, [0, 00))°

is positive on G.K, and has supp(f,) C G.S,. The action of the compact group
G, on TM|g is fiber linear, so there is a G, -invariant Riemann metric (") on
the vector bundle T'M| s, by integration. To get a Riemann metric on 7'M le s,
invariant under the whole group G, consider the following diagram.

GxTMl, —20 1M,

¢ To

GXG

Tn

TMls,

~

G xqa,, S;, ——G.S,,

: (g9,X5) — Tsly. X, factors over ¢ to a map T»¢. This map is 1nJect1ve since
1f T2 (g ,XS) = Tol (g X,), then on the one side £(g.s) = £(g'.s") so g 'g'.s' =
s and ¢g7'¢g’ € G,. On the other side, Tsly.X; = Tyly.Xy. So (g’,st) =
(9(97"9g"), Tszéglfl Tsly.Xs). And, therefore, q(g', Xs') = q(g, Xs)-

The Riemann metric ¥ defines a G-invariant vector bundle metric on G x
TM|g — G xSy by
'Yn(g:XSa Ys) = ’Y(n) (X87YS)'
It is also invariant under the G -action h.(g, Xs) = (gh~ !, T¥,.Xs) and, therefore,
induces a Riemann metric 4, on G xg, TM| S, - This metric is again G-invariant,
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since the actions of G and G, commute. Now (T2€).¥, =: ¥, is a G-invariant
Riemann metric on TM]|, g , and

V= Z Fo(@)Tn
n=1

is a G-invariant Riemann metric on M. O

Remark. By a theorem of Mostow (1957), if G is a compact Lie group, then any
G-manifold M with a finite number of orbit types can be embedded into some
(higher dimensional) vector space V in such a way that the action of G on M can
be extended to a linear action on V' (see [5], pp.110-112). A more recent result is
the following theorem found in [31].

5.11. Theorem. [31]

Let G be a matriz group, that is a Lie group with o faithful finite dimensional
representation, and let M be a G-space with only a finite number of orbit types.
Then there is a G-equivariant embedding f : M — V into a linear G-space V.
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6. Riemannian GG-manifolds

6.1. Preliminaries. Let (M,~) be a Riemannian G-manifold. If ¢ : M — M is
an isometric diffeomorphism, then
(1) p(expM(tX)) = expgf(z) (tTpp.X). This is due to the fact that isometries
map geodesics to geodesics, and the starting vector of the geodesic ¢ +—
o(expM(t.X)) is Tpp. X.
(2) If (x) = z, then, in the chart (U,,(expM)~1), ¢ is a linear isometry
(where U, is neighborhood of x so small, that (exp)~!: U, — T, M is a
diffeomorphism onto a neighborhood of 0 in T, M) :

@(X) := (exp)~ o poexpM(X) = (exp) ! expM (T, 0. X) = Tpp. X

(3) Fix(p) = {z € M : p(x) = z} is a totally geodesic submanifold of M:
If we choose X € T, Fix(y), then, since T,0.X = X and by (1), we have

p(exp,! (tX)) = expy! (Top tX) = expy! (£X).

So the geodesic through z with starting vector X stays in Fix((p).
(4) If H is a set of isometries, then Fix(H) = {x € M : p(z) =« for all p € H}
is also a totally geodesic submanifold in M.

6.2. Definition. Let M be a proper Riemannian G-manifold, x € M. The normal
bundle to the orbit G.x is defined as

Nor(G.z) := T(G.x)*

Let Nor.(G.z) = {X € Nor(G.z) : | X | < ¢}, and choose r > 0 small enough
for exp, : T,M D B,(0,) — M to be a diffeomorphism onto its image and for
exp,(Br(0;)) N G.x to have only one component. Then, since the action of G is
isometric, exp defines a diffeomorphism from Nor, 5(G.x) onto an open neighbor-
hood of G.x, so exp (Norr/Q(G.:r)) =:U,/2(G.x) is a tubular neighborhood of G.x.
We define the normal slice at x by

Sy 1= exp, (Norr/z(G.x))I .
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6.3. Lemma. Under these conditions we have

(1) Sy =9-Se.
(2) Sy is a slice at x.

Proof.
(1) Since G acts isometrically and by 6.1(1) :

Sg.e =exp, , (Tuly (Norr/g(G.x))I) =/{4exp, (Norr/2(G.:r))I =9.5;

(2) r: G.S: = G.x:exp,, X = g.x defines a smooth equivariant retraction
(note that S, and S, are disjoint if  #y). O

6.4. Definition. Let M be a G-manifold and x € M, then there is a representation
of the isotropy group G,

Gy = GL(T,M) : g — Tyl,

called isotropy representation. If M is a Riemannian G-manifold, then the
isotropy representation is orthogonal, and T,(G.x) is an invariant subspace under
G:. So T,(G.x)* is also invariant, and

Gy — O(Nory(G.x)) : g — Tyl,

is called the slice representation.

6.5. Example. Let M = G be a compact Lie group with a biinvariant metric.
Then G x G acts on G by (g1,92).9 := 9199, ', making G a Riemannian (G x G)-
space. The isotropy group of e is (G x G). = {(g,9) : g € G}, and the isotropy
representation coincides with the adjoint representation of G = (G x G), on g =
T.(G).

6.6. Example. Let G/K be a semisimple symmetric space (G compact) and
g = t + p the corresponding orthogonal decomposition of the Lie algebra g with
regard to the negative Cartan-Killing form —B. Then T.(G/K) = g/t = p, and the
isotropy subgroup of G at e is K. The isotropy representation is Adll(’G : K — O(p).
The slices are points since the action is transitive.

6.7. Lemma. Let M be a proper Riemannian G-manifold, x € M. Then the
following three statements are equivalent:

(1) z is a regular point.

(2) The slice representation at x is trivial.

(3) Gy = G, for ally € S, for a sufficiently small slice S,.

Proof. Clearly, (2) <= (3). To see (3) = (1), let S, be a small slice at z. Then
U := G.S is an open neighborhood of G.xz in M, and for all g.s € U we have
Gys = 9Gs97" = gGrg™". Therefore G.z is a principal orbit. The converse is true
by 4.13(3), since G is compact. O
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6.8. Definition. Let M be a Riemannian G-manifold and G.x some orbit, then
a smooth section u of the normal bundle Nor(G.z) is called equivariant normal
field, if

Ty(ly)-uly) = u(g.y) forally e G.z,g €G.

6.9. Corollary. Let M bfz a proper Riemannian G-manifold and x a regular point.
If X € Nor,(G.x), then X(g.x) := Tp({y).X is a well defined equivariant normal
field along G.x in M.

Proof. If g.x = h.x then h™lg € G, = T, (lh—1g) .X = X, since the slice repre-
sentation is trivial by (2) above. Now by the chain rule: T,(¢;).X = T,({p).X.
Therefore X is a well defined, smooth section of Nor(G.z). It is equivariant by
definition. O

6.10. Corollary. Let M be a Riemannian G-manifold, G.x a principal orbit, and
(u1,...,uy) an orthonormal basis of Nor, (G.xz). By corollary 6.9, each u; defines
an equivariant normal field G;. So (U1,...,Uy) is a global equivariant orthonormal
frame field for Nor(G.z), and Nor(G.x) is a trivial bundle. O

This follows also from the tubular neighborhood description G.S; = G xg, Sa,
where S, is a normal slice at z with trivial G -action, see 6.7.

6.11. Definition. Let (M,~) be a Riemannian manifold and VM its Levi-Civita
covariant derivative. If P is a submanifold of M and VF the induced covariant
derivative on P, then the second fundamental form S € C* (S?T*P ® Nor(P))
is given by the so called Gauss equation:

V8Y =VEY + S(X,Y)  for X,Y € X(P)

In other words, S(X,Y) is the part of the covariant derivative in M orthogonal to
P.

6.12. Definition. Let (M,~y) be a Riemannian G-manifold and u an equivariant
normal field along an orbit P := G.xg. Then X, € T, P defines a linear form on
T.P by

Ve = v(S(Xa, Ya), u(x)).

Therefore, there is a vector Sy(,)(Xz) € Ty P such that

This assignment defines a linear map Sy(,) : TeP — T, P called the shape op-
erator of P in the normal direction u(x). For hypersurfaces it is also known as
the Weingarten endomorphism. Its eigenvalues are called the main curvatures of P
along u.

6.13. Lemma. Let u be an equivariant normal field along an orbit P := G.xo,
then

(1) Sugg.e) = Te(ly)-Sua)-Ty.e(ly-1)
(2) The main curvatures of P along u are all constant.
(3) {expM(u(x)):x € P=G.x0} is another G-orbit.
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Proof.
(1) Since « is G-invariant and S is G-equivariant:
Y (Sutge) Xga) s Yor) =7 (S (Xgas Vo) u(g-
=y (T, S (Tl Xy 0, Tly1Y, ) , Tly(u(z))
= (S (Tlg_ng,z,Téqug,I) ,u(a:))
3 (Sute) 0 Tty 1 (X0, Ty 1Yy) =7 (T8, 0 Sua) 0 Ty +(X,.0), Vp0)

(2) By (1) Sy(g.e) results from S, by a linear coordinate transformation,
which does not affect the eigenvalues.
(3) {expM(u(z)):x € P=G.20} = G.expM (u(zp)), since

g-exp™ (u(wo)) = exp™ (Tty.u(xo)) = exp™ (u(g-x0)).

) =

) =

O

6.14. Example. Let N™(c) be the simply connected space form with constant
sectional curvature c, that is

1
N™(c) = S™, sphere with radius - ife>0
=R"ifec=0
1
= H", hyperbolic sphere with radius H if ¢ <0.
Let G be a closed subgroup of Isom(N™(c)). If P is a G-orbit, then so is the subset
{exp(u(x)) : € P} for any equivariant normal field v along P. For instance
(1) If G = SO(n) C Isom(R™), then the G-orbits are the spheres with center 0.
A radial vector field with constant length on each sphere, u(x) := f(|z|).z,
defines an equivariant normal field on each orbit. Clearly its flow carries

orbits back into orbits.
(2) Another example is the subgroup

G={f:z—mz+w:XeERvE (v1,v2,...,0n)}
of Isom(R™) consisting only of affine translations in certain fixed directions.
Here the orbits of G are then parallel planes of dimension m. An equi-
variant normal field on an orbit is a constant vector field orthogonal to
V1,V2,...,Um.

6.15. Theorem. Let M be a proper G-manifold, then the set of all reqular points
Mg is open and dense in M. In particular, there is always a principal orbit type.

Proof. Suppose © € M;es. By 5.7 there is a slice S at x, and by 4.13(3) S can be
chosen small enough for all orbits through S to be principal as well. Therefore G.S
is an open neighborhood of z in M,e, (open by 4.12(3)).

To see that M,eg is dense, let U C M be open, v € U, and S a slice at . Now
choose a y € G.SNU for which Gy has the minimal dimension and the smallest
number of connected components for this dimension in all of G.SNU. Let S, be a
slice at y, then G.S, NG.SNU is open, and for any z € G.S, N G.SNU we have
z € g.Sy = Sg.y,80 G, C Gy, = gGyg9~*. By choice of y, this implies G. = gG,g~*
forall z € G.S, NG.SNU, and G.y is a principal orbit. O
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6.16. Theorem. Let M be a proper G-manifold and x € M. Then there is a
G-invariant neighborhood U of x in which only finitely many orbit types occur.

Proof. By theorem 5.10 there is a G-invariant Riemann metric on M. Let S be
the normal slice at . Then S is again a Riemannian manifold, and the compact
group G, acts isometrically on S. In 4.13(4) we saw that, if G,.s; and G.s2 have
the same orbit type in S, then G.s; and G.s2 have the same orbit type in M. So
the number of G-orbit types in G.S can be no more, than the number of G ,-orbit
types in S. Therefore it is sufficient to consider the case where G is a compact Lie
group. Let us now prove the assertion under this added assumption. We carry out
induction on the dimension of M.

For n = 0 there is nothing to prove. Suppose the assertion is proved for dim M <
n. Again, it will do to find a slice S at x with only a finite number of G -orbit
types. If dim S < dim M, this follows from the induction hypothesis. Now suppose
dim S = n. S is equivariantly diffeomorphic to an open ball in T, M under the slice
representation (by exp). Since the slice representation is orthogonal, it restricts to
a Gy-action on the sphere S™~'. By the induction hypothesis, locally, S*~! has
only finitely many G -orbit types. Since S™~! is compact, it has only finitely many
orbit types globally. The orbit types are the same on all spheres r.S""1 (r > 0),
since z — %:r is G-equivariant. Therefore, S has only finitely many orbit types:
those of S™~! and the 0-orbit. O

6.17. Theorem. If M is a proper G-manifold then the set Ming /G of all singular
G-orbits does not locally disconnect the orbit space M /G (that is to every point
in M /G the connected neighborhoods remain connected even after removal of all
singular orbits).

Proof. As in the previous theorem, we will reduce the statement to an assertion
about the slice representation. By theorem 5.10, there is a G-invariant Riemann
metric on M. Let S be the normal slice at . Then S is again a Riemannian
manifold, and the compact group G, acts isometrically on S. A principal G;-orbit
is the restriction of a principal G-orbit, since G, .s is principal means that all orbits
in a sufficiently small neighborhood of G .s have the same orbit type as G.s (6.7).
Therefore, by 4.13(4), the corresponding orbits in G.U are also of the same type,
and G.s is principal as well. So there are “fewer” singular G-orbits in G.S than
there are singular G,-orbits in S. Now cover M with tubular neighborhoods like
G.S;, and recall that G.S, /G =2 S, /G, by 4.13(5). This together with the above
argument shows us that it will suffice to prove the statement for the slice action.
Furthermore, like in the proof of theorem 6.18, we can restrict our considerations
to the slice representation. So we have reduced the statement to the following:

If V is a real, n-dimensional vector space and G a compact Lie group acting
on V, then the set Viing /G of all singular G-orbits does not locally disconnect the
orbit space V/G (that is to every point in V/G the connected neighborhoods remain
connected even after removal of all singular orbits).

We will prove this by induction on the dimension n of V. For n = 1, that is
V =R, the only nontrivial choice for G is O(1) = Z,. In this case, R/G = [0, 00)
and Rsing /G = {0}. Clearly, {0} does not locally disconnect [0, 0), and we can
proceed to the general case.
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Suppose the assertion is proved for all dimensions smaller than n. Now for
G C O(n) we consider the induced action on the invariant submanifold S"~*. For
any x € S™ ' we can apply the induction hypothesis to the slice representation
G — O(Nor, G.x). This implies for the G,-action on S,, that S, /G, = G.S, /G
is not locally disconnected by its singular points. As above, we can again cover
S7~1 with tubular neighborhoods like G.S,, and we see that all of S"1/G is not
locally disconnected by its singular orbits. Now we need to verify that the orbit
space of th unit ball D™ is not locally disconnected by its singular orbits. Since
scalar multiplication is a G-equivariant diffeomorphism, the singular orbits in V'
(not including {0}) project radially onto singular orbits in S™~1. So if we view the
ball D™ as cone over S ! and denote the cone construction by coneS™ !, then
Dg,e = coneSg;gl. Furthermore, we have a homeomorphism

coneS" /G — cone(S"/G) : G.[x,t] = [G.x,1]

since GG preserves the “radius” ¢t. Therefore

D"/G = (coneS™')/G = cone(S" ! /G)
and DI /G = coneS" !/G = cone (S"fl/G) .

sing sing sing

Since Sji,, /G does not locally disconnect S™~! /G, we also see that

cone (S”_l/G) = Ding/G

sing

does not locally disconnect cone(S"~!'/G) 2 D"/G. O

6.18. Corollary. Let M be a connected proper G-manifold, then

(1) M/G is connected.
(2) M has precisely one principal orbit type.

Proof.

(1) Since M is connected and the quotient map 7 : M — M/G is continuous,
its image M /G is connected as well.

(2) By the last theorem we have that M/G — Ming/G = Myeg /G is connected.
On the other hand by 6.7, the orbits of a certain principal orbit type form an
open subset of M /G, in particular of Meg/G. Therefore if there were more
than one principal orbit type, these orbit types would partition M;es/G
into disjoint nonempty open subsets contradicting the fact that M,e/G is
connected. [

6.19. Corollary. Let M be a connected, proper G-manifold of dimension n and let
k be the least number of connected components of all isotropy groups of dimension
m = inf{dim G|z € M}. Then the following two assertions are equivalent:

(1) G.zg is a principal orbit.

(2) The isotropy group G, has dimension m and k connected components.
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If furthermore G is connected and simply connected, these conditions are again
equivalent to

(3) The orbit G.xzo has dimension n —m and for the order of the fundamental
group we have: |7 (G.xo)| = k.

Proof. Recall that we proved the existence of a principal orbit in 6.15 just by taking
a G, as described above. The other direction of the proof follows from the above
corollary. Since there is only one principal orbit type, this must be it.
If moreover G is connected and simply connection we look at the fibration G, —
G - G/G,, = G.zp and at the following portion of its long exact homotopy
sequence
0=m (G) — T (Gl‘o) — ’/T()(Gzo) — ’/T()(G) =0

from which we see that |7 (G.20)| = k if and only if the isotropy group G, has k
connected components. [

6.20. Theorem. [37] Let m : G — O(V') be an orthogonal, real, finite-dimensional

representation of a compact Lie group G. Let py,...,pr € RV]Y be homogeneous

generators for the algebra RV |% of invariant polynomials on V. For v € V, let

Nor, (G.v) := T, (G.v)* be the normal space to the orbit at v, and let Nor,(G.v)%

be the subspace of those vectors which are invariant under the isotropy group G,.
Then grad py (v), ..., grad p(v) span Nor,(G.v)% as a real vector space.

Proof. Clearly each grad p;(v) € Nor,(G.v)%. In the following we will identify G
with its image 7(G) C O(V). Its Lie algebra is then a subalgebra of o(V) and can
be realized as a Lie algebra consisting of skew-symmetric matrices. Let v € V', and
let S, be the normal slice at v which is chosen so small that the projection of the
tubular neighborhood (see 4.15) pg., : G.S, = G.v from the diagram

GxS, —— Gxg, Sy —— G.S,

| pen |

G/G, —Z— Guw

o

has the property, that for any w € G.S, the point pg.,(w) € G.v is the unique
point in the orbit G.v which minimizes the distance between w and the orbit G.v.

Choose n € Nor, (G.v)% so small that = :=v+n € S,. So pg.,(z) = v. For the
isotropy groups we have G, C G, by 4.13.(2). But we have also G,, C G,NG,, C G,
so that G, = G,. Let S, be the normal slice at x which we choose also so small
that pg., : G.S; — G.r has the same minimizing property as pg., above, but so
large that v € G.S, (choose n smaller if necessary). We also have pg ,(v) = x since
for the Euclidean distance in V' we have

|v — 2| = min |g.v — z| since v = pg.o(x)
geG
=min |h.gv —hx| forallheG
geG
1

=min|v — g '.z| by choosing h = g~'.
9€EG
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For w € G.S; we consider the local, smooth, G-invariant function

dist(w, G.x)* = dist(w, pg.. (w))? = (W — pa.o (W), w — pg..(w))
= <U),U)> + <sz(’LU),sz(’LU)> - 2(w,sz(w)>
= <U),U)> + <1‘,1‘> - 2<U’,PG.z(w)>-

Its derivative with respect to w is

(1) ddist( ,G.2)*)(w)y = 2(w,y) = 2(y, pe.2(w)) = 2(w, dpe. . (w)y).
We shall show below that

(2) (v,dpG.(v)yy =0 forally eV,

so that the derivative at v is given by

(3)  d(dist( ,G.2)*)(v)y =2(v,y) = 2(y,pc.0 (v)) = 2(v — z,y) = —2(n, y).

Now choose a smooth G,-invariant function f : S, — R with compact support
which equals 1 in an open ball around z and extend it smoothly (see the diagram
above, but for S;) to G.S; and then to the whole of V. We assume that f is
still equal to 1 in a neighborhood of v. Then g = f.dist( ,G.z)? is a smooth G-
invariant function on V which coincides with dist( ,G.z)? near v. By the theorem
of Schwarz (3.7) there is a smooth function h € C*°(R¥ R) such that g = ho p,
where p = (p1,...,pr) : V — RE. Then we have finally by (3)

—2n = grad(dist( G.x)2)(v) =gradg(v) =

= grad(h o p)( Z ) grad p;i(v),

ayz

which proves the result.

It remains to check equation (2). Since T,V = T,(G.v) & Nor, (G.v) the normal
space Norg (G.x) = kerdpg . (v) is still transversal to T,,(G.v) if n is small enough;
so it remains to show that (v, dpg . (v).X.w) = 0 for each X € g. Since = = pg..(v)
we have [v—z|? = mingeq |v—g.2|?, and thus the derivative of g = (v—g.z,v—g.z)
at e vanishes: for all X € g we have

4) 0=2(—X.z,v—2z)=2(Xz,2) —2(X.z,0) =0— 2(X.2,0),

since the action of X on V is skew symmetric. Now we consider the equation
PG.z(9.v) = g.pa..(v) and differentiate it with respect to g at e € G in the direction
X € g to obtain in turn

dpG..(v). X.v = X.pg..(v) = X.m,
(v,dpg..(v).Xv)y =(v,X.x) =0, by (4). O
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6.21. Lemma. Let 7 : G — O(V) be an orthogonal representation. Let w €
QF (V)Y be an invariant differential form on V which is horizontal in the sense
that iyww, = 0 if w is tangent to the orbit G.x. Let v € V and let w € T,V be
orthogonal to the space Nor, (G.U)G2 of those orthogonal vectors which are invariant
under the connected component G2 of the isotropy group G,.

Then iywy, = 0.

Proof. We consider the orthogonal decomposition
T,V =Ty (G.v) & W & Nor,(G.v)°".

We may assume that w € W since i,w, = 0 for u € T,(G.v).

We claim that each w € W is a linear combination of elements of the form X.u
for u € W and X € g, := ker(dr( )v). Since G is compact, the representation
space W has no fixed point other than zero and is completely reducible under G2
and thus also under its Lie algebra g,,, and we may treat each irreducible component
separately, or assume that W is irreducible. Then g,(W) is an invariant subspace
which is not 0. So it agrees with W, and the claim follows.

So we may assume that w = X.u for u € W. But then

(v+ tu, Xu=nX.(v+ Lu) € Tyy14(G.(v+ Lu))
satisfies ix.yWy4u/n = 0 by horizontality and thus we have

LWy = IX.uWy = hTIln Z-X.u“‘)qH-u/n =0. O
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7. Riemannian Submersions

7.1. Definitions. Let p : E — B be a submersion of smooth manifolds, that is
Tp:TE — TB surjective. Then

V =V(p) =V(E) := Ker(Tp)

is called the vertical subbundle of E. If E is a Riemannian manifold with metric
v, then we can go on to define the horizontal subbundle of E.

Hor = Hor(p) = Hor(E) = Hor(E,~) :=V(p)*

If both (E,vE) and (B,vB) are Riemannian manifolds, then we will call p a Rie-
mannian submersion, if

Typ : Hor(p) — Ty B

is an isometric isomorphism for all x € E.

Some Simple Examples. For any two Riemannian manifolds M, N, the projection
pri : M x N — M is a Riemannian submersion. Here Riemann metric on the
product M x N is given by: vaxn(X,Y) := vy (Xnr, Yr) + Y8 (X, YN) (where
we use T(M x N) 2TM @& TN to decompose X,Y € T(M x N)). In particular,
R™t" — R™ with the usual metric, or pro : S® x Rt — RT are Riemannian
submersions.

7.2. G-manifold with single orbit type as fiber bundle. Let (M,v) be a
proper Riemannian G-manifold and suppose that M has only one orbit type, (H).
We then want to study the quotient map 7 : M — M /G. Let us first consider the
orbit space M/G. Choose z € M and let S,, denote the normal slice at . Then by
4.13(2) we have G, C G, for all y € S,. Since G, must additionally be conjugate
to G, and both are compact, they must be the same (by 4.8). So G, = G, and
therefore G, acts trivially on S, (this can also be seen as a special case of 6.7).
From 4.13(5) it follows that w(S;) = S;/G, = Si, and with 4.15 we have that
G.S, is isomorphic to G/G, x S,. Therefore, for any = € M, (W(SI),exp;1 |52)
can serve as a chart for M/G.

M———S,

M/G———n(S,) = Su/G.
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To make an atlas out of these charts, we have to check whether they are compatible

— which is obvious. By 5.9 M /G is Hausdorff, and therefore it is a smooth manifold.
Now let us study the smooth submersion 7 : M — M/G. We want to find a

Riemannian metric on M /G which will make 7 a Riemannian submersion.

Claim. For X,,Y, € Hor,(r) = Nor,(G.z), the following inner product is well
defined.
V(@) (T Xy, TTYy) i= 72(Xa, Y2)

Proof. Choose X,,Y,, € Hory(m) such that Tm. X, = Tw.X, and T1.Y, =
T7.Y,. Then we see that X, = T({;) X, by the following argumentation: Clearly
Tr(X,, —T(ly).X,) = 0, so the difference X], — T(¢,).X, is vertical. On the
other hand, X/, is horizontal, and so is T'(£,).X,:
{4 leaves G.z invariant, consequently, 7'¢, maps vertical vectors to vertical vectors
and since it is an isometry, it also maps horizontal vectors to horizontal vectors.
Therefore X/, —T'({,).X, is horizontal as well as vertical and must be zero.
Now we can conclude, that

Yo (X;zv Yg,ac) = Yga (T(KQ)XM T(ég)Yw) =72 (Xa, Ya). g

So we have found a Riemannian metric 4 on M /G which makes 7 a Riemannian
submersion.

Let us finally try to understand in which sense 7 : M — M /G is an associated
bundle. Let & € M be such that G, = H. By 6.1.(4) the set Fix(H) = {z €
M : gx = x forall g € H} is a geodesically complete submanifold of M. It is
N¢g(H)-invariant, and the restriction 7 : Fix(H) — M/G is a smooth submersion
since for each y € Fix(H) the slice S, is also contained in Fix(H). The fiber of
7 : Fix(H) —» M/G is a free Ng(H)/H-orbit: if m(z) = n(y) and G, = H = G,
then g € Ng(H). So m: Fix(H) — M/G is a principal Ng(H)/H-bundle, and M
is the associated bundle with fiber G/H as follows:

Fix(H) x G/H
J (z,[9]) = g.x

| |

M/G —— M/G.

7.3. Another fiber bundle construction. Let M again be a proper Riemannian
G-manifold with only one orbit type. Then we can “partition” M into the totally
geodesic submanifolds Fix(¢Hg™!) := {z € M : ghg='.xz = z for all h € H} where
H =G, (zo € M arbitrary) is fixed and g varies. This is not a proper partitioning
in the sense that if g # e commutes with H, for instance, then Fix(gHg ') =
Fix(eHe™!). We want to find out just which g give the same sets Fix(gHg™").

Claim.
Fix(gHg ') = Fix (g'Hg'_l) & gN(H)=g¢N(H)

July 31, 1997 P. Michor, 7.3



7. Riemannian submersions, 7.3 59

where N(H) denotes the normalizer of H in G.

Proof. First let us show the following identity:

N(H) = {g € G : gFix(H) C Fix(H)}

(C) Let n € N(H) and y € Fix(H). Then n.y is H-invariant:
hn.y =nn " thny =n(n"thn).y =n.y

(D) gFix(H) C Fix(H) implies that hg.y = g.y, or equivalently g~ thg.y = y,
for any y € Fix(H) and h € H. Recall at this point, that H = G,,
for some xo € M. Therefore, we have g~ 'hg.zy = o and consequently
g thge G,, = H.

Using this characterization for N(H) and the identity

g'{g € G:gFix(H) CFix(H)} ={g € G : gFix(H) C ¢' Fix(H)},
we can convert the righthand side of our equality, gN(H) = ¢’ N(H), to the follow-
ing:

{a € G:aFix(H) Cg.Fix(H)} = {a € G : aFix(H) C ¢'.Fix(H)}.
In particular, this is the case if

g.Fix(H) = ¢'. Fix(H).

In fact, let us show that the two equations are equivalent. Suppose indirectly that
gy ¢ g'.Fix(H) for some y € Fix(H). Then a = g has the property a.Fix(H) ¢
g .Fix(H), so {a € G:aFix(H) C g.Fix(H)} # {a € G : aFix(H) C ¢'. Fix(H)}.

So far we have shown that gN(H) = ¢'N(H) < ¢.Fix(H) = ¢'.Fix(H). To
complete the proof it only remains to check whether

Fix(gHg™ ') = g Fix(H).

This is easily done (as well as plausible, since it resembles strongly the “dual”
notion Gy, = gG.g7 ")
y € Fix(9gHg ') <<= ghg ty=y forallhe H
< hgly=g 'y forallhe H
< ¢ 'y €Fix(H)
< ye€gFix(H) O

Claim. The map 7@ : M — G/N(H) defined by Fix(gHg™!) 2 z — g.N(H) is a
fiber bundle with typical fiber Fix(H).
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Proof. To prove this, let us consider the following diagram.

G x Fix(H) ¢ M

| =

|

G/N(H)

Here we use the restricted action ¢ : N(H) x Fix(H) — Fix(H) to associate to
the principal bundle G — G/N(H) the bundle G[Fix(H),{] = G X () Fix(H).
It remains to show that ¢ is a diffeomorphism, since then # has the desired fiber
bundle structure.

? is smooth, since £ o ¢ = ¢ is smooth and ¢ is a submersion. Now let us show
that £ is bijective.
(1) lis surjective: Since H is the only orbit type, for every z € M there is a
g € G, such that G, = gHg !, which implies € Fix(gHg ') = gFix(H) C
(G x Fix(H)). So £ is surjective and, by the commutativity of the diagram, so is
‘.
(2) { is injective: Suppose L a,z) = a.x = by = £(b,y), for some a,b € G, z,y €
Fix(H). Then b~'a.x = y € Fix H implies hb~la.z = y = b~'a.r which im-
plies again (b='a)~'hb~'a.x = z. Since there is only one orbit type and all
isotropy groups are compact, we know that z € FixH = H = G, (by 4.8). So
(b~ta)"thb~la is again in H, and b~'a € N(H). In this case, q(a,z) = [a,z] =
[bb 'a,z] = [b,b ta.z] = [b,y] = q(b,y).

(1 is smooth, since ¢ is a submersion. So £ is a diffeomorphism and 7 a fiber
bundle with typical fiber Fix(H). O

7.4. Construction for more than one orbit type. Let (H) be one particular
orbit type (H = G;). To reduce the case at hand to the previous one, we must
partition the points in M into sets with common orbit type:

M) = {z € M : (G,) = (H)}

Claim. For a proper Riemannian G-manifold, the space Mgy as defined above is
a smooth G-invariant submanifold.

Proof. My is of course G-invariant as a collection of orbits of a certain type.
We only have to prove that it is a smooth submanifold. Take any x in Mg (then,
without loss of generality, H = G, ), and let S, be a slice at . Consider the tubular
neighborhood G.S = G x g S; (4.15). Then the orbits of type (H) in G.S are just
those orbits that meet S, in S¥ (where S¥ shall denote the fixed point set of H
in S;). Or, equivalently, (G Xu Sq)(m) = G xu SE:
(Q) [9,s1 € (G xu Se) )y = 9s € G.Swy =>gHg ' =G, CH =G, =H =
s€SH = [g,s] € Gxy SH
(D) [9,8] € Gxuy SH = s € S = H C Gy, but since s € S, we have
Gs C G, = H by 4.13(2), therefore Gy = H and [g,s] € (G X Sz) ()
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Now, let S, = exp,(Nor,(G.z)) be the normal slice at . That is, r is chosen so
small that exp, is a diffeomorphism on Nor,.(G.z) =: V. Notice, that V' is not only
diffeomorphic to S,, but G-equivariantly so, if we let G act on Nor,(G.z) via the
slice representation. Since the slice action is orthogonal, in particular linear, the
set of points fixed by the action of H is a linear subspace of Nor,(G.xz) and its
intersection with V, a “linear” submanifold. Therefore S is also a submanifold of
Sz. Now consider the diagram

G x SH ¢ M

ANyd

GXHSE

The map 7 is well defined, injective and smooth, since p is a submersion and £ is
smooth. Furthermore, p is open, and so is . Just consider any open set of the
form U x W in G x SH. Then ¢(U x W) is the union of all sets £, (W) for u € U.
Since £, is a diffeomorphism, each one of these is open, so £(U x W) is open as
well. Therefore, i must be open, and so i is an embedding and G.S¥ = G xy S2
an embedded submanifold of M. O

Let (H) be one particular orbit type (H = G,), then Fix(H) is again a closed,
totally geodesic submanifold of M (see 6.1(3)).

Claim. Fix*(H):={z € M : G, = H} is an open submanifold of Fix(H).

Remark. For one orbit type, ¢ € Fix(H) implied H = G, and thus Fix"(H) =
Fix(H). For more than one orbit type Fix(H) is not necessarily contained in Mg .
Therefore, it is necessary to study Fix*(H) = Fix(H) N M(g).

Proof. In 7.3 we saw that N(H) is the largest subgroup of G acting on Fix(H). It
induces a proper N(H)/H-action on Fix(H). Now, Fix*(H) is the set of all points
in Fix(H) with trivial isotropy group with respect to this action. So by 6.19 it is
simply the set of all regular points. Therefore, by 6.15, Fix*(H) is an open, dense
submanifold of Fix(H). O

Now, Mgy can be turned into a fiber bundle over G/N(H) with typical fiber
Fix"(H) just as before (Fix"(H) is really the fixed point space of H in My). And,
on the other hand, Mg is a fiber bundle over Mg /G with typical fiber G/H.
The partition of M into submanifolds Mgy and that of M/G into the different
orbit types is locally finite by 6.16. So M and M /G are in a sense stratified, and
w: M — M/G is a stratified Riemannian submersion (see also [13]).

7.5. Definition. Let p: E — B be a Riemannian submersion.
A vector field € € X(E) is called vertical, if £(x) € Vi (p) for all x (i.e. if Tp&(x) =

0).

¢ € X(E) is called horizontal, if {(x) € Hor,(p) for all x, that is, if &(x) L
Vz(p) for all x.

& € X(E) is called projectable, if there is an n € X(B), such that Tp.{ =nop

& € X(E) is called basic, if it is horizontal and projectable.
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7. Riemannian submersions, 7.6

Remark. The orthogonal projection ¢ : TE — V(E) with respect to the Riemann
metric is a (generalized) connection on the bundle (E, p) and defines a local parallel
transport over each curve in B (denoted by Pt?(c,.)) as well as the horizontal lift:

C:TBxE —TE: (Xp,e) — Y., where Y, € Hor.(p) with T.p.Y, = X,
B

This map also gives us an isomorphism C, : X(B) — Xpasic between the vector
fields on B and the basic vector fields.

7.6. Lemma. Consider a Riemannian submersion p : (E,vg) — (B,vB) with
connection ¢ : TE — V(p), and c : [0,1] — B, a geodesic. Let L%(c) denote the
arc length of ¢ from c(a) to c¢(b) in B. Then:

(1)

(4)

July 31,

Li(c) = LEPt?(c, . u), where u € E,) is the starting point of the parallel
transport.

Pt?(c,.,u) L E.() for all t

If c is a geodesic of minimal length in B, then we have L(Pt®(c,.,u)) =
dist (EC(O), Ec(l)) .

t = Pt%(c,t,u) is a geodesic in E (again for any geodesic c in B).

. d . . .
Since d—Pt¢(c, s,u) is a horizontal vector and by the property of p as Rie-
s
mannian submersion, we have

t 3

d d
t P16 — =2 pyd — pt?
Ly Pt?(c,.,u) /0 VE <dsPt (c,s,u),dsPt (c,s.u)) ds
t
= [ (e (o), (o) hds = Lifo)
0

This is due to our choice of ¢ as orthogonal projection onto the vertical
bundle in terms of the given metric on E. By this choice, the parallel
transport is the unique horizontal curve covering ¢, so it is orthogonal to
each fiber E.(;) it meets.

Consider a (piecewise) smooth curve e : [0,1] — E from E, () to E,1), then
poeis a (piecewise) smooth curve from ¢(0) to ¢(1). Since ¢ is a minimal
geodesic, we have Lic < Li(poe). Furthermore, we can decompose the
vectors tangent to e into horizontal and vertical components and use the
fact that T'p is an isometry on horizontal vectors to show: Lie > Li(poe)
(in more detail: €'(t) = h(t) + v(t) € HE ®g VE, and since p is a Rie-
mannian submersion yg(T'p.h(t), Tp.h(t)) = ye(h(t), h(t)) and Tp.v(t) = 0.
Therefore |Tp.e'(t)| = |Tp.h(t)| = |h(t)| < |h(t) +v(t)| = |€'(t)], and
Lipoe < Lie.) Now with (1) we can conclude: L{Pt%(c,.,u) = Lic <
Lie for all (piecewise) smooth curves e from E.o) to Ey. Therefore,
L[l) (Pt¢ (¢,.,u)) = dist (Ec(O); Ec(l))-

This is a consequence of (3) and the observation that every curve which
minimizes length locally is a geodesic. O
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7.7. Corollary. Consider a Riemannian submersion p : E — B, and let ¢ :
[0,1] = E be a geodesic in E with the property c'(to) L Ep(c(ty)) for some to. Then
cd(t) L Ep(c(t)) for all t € ]0,1].

Proof. Consider the curve d : ¢t — expf(c(to))(tTC(tO)p.c’(to)). It is a geodesic in
B and therefore lifts to a geodesic e(t) = Pt?(d,t — to,c(tp)) in E (by 7.6(4)).
Furthermore e(to) = c(to) and €' (to) = C(T,1,)p-c'(to),c(to)) = c'(to) since ' (to) L
Ey(c(ty)) 18 horizontal. But geodesics are uniquely determined by their starting point
and starting vector. Therefore e = ¢, and e is orthogonal to each fiber it meets by
7.6(2). O

7.8. Corollary. Letp: E — B be a Riemannian submersion

(1) If Hor(E) is integrable, then every leaf is totally geodesic.
(2) IfHor(E) is integrable and S is a leaf, then ps : S — B is a local isometry.

Proof. (1) follows from corollary 7.7, while (2) is just a direct consequence of the
definitions. O

7.9. Remark. If p : E — B is a Riemannian submersion, then Hor(E)|g, =
Nor(Ep) for all b € B and p defines a global parallelism as follows. A section
0 € C°°(Nor(Ep)) is called p-parallel, if Tep.o(e) = v € TpB is the same point for
all e € Ey. There is also a second parallelism. It is given by the induced covariant
derivative: A section & € C*°(Nor(Ej)) is called parallel if VN'g = 0. The p-
parallelism is always flat and with trivial holonomy which is not generally true for
VNor Yet we will see later on that if Hor(E) is integrable then the two parallelisms
coincide.

7.10. Remark. Let M be a connected Riemannian G-manifold and (H) the prin-
cipal orbit type, then we saw in 7.4 that = : M) — Mg)/G is a Riemannian
submersion. Now we can prove:
Claim. & € C*(Nor(G.z)) (z € Mreg = Myy)) is w-parallel iff £ is G-equivariant.
(<) &(g-x) = Tply.&(x) implies Ty ,m.£(g.x) = Ty om0 Tply.E(x) = Tpm.&(z) for
all g € G. Therefore ¢ is w-parallel.
(=) &(g.x) and Tl ¢(x) are both in Nor, ,(G.x), and since § is m-parallel we
have:
Ty.m.b(g.x) =Tymé(x) = TyamoTly.&(x). So &(g.x) and T,¢,.(x) both
have the same image under T, ;7. Because T, ;7 restricted to Nor, ,(G.x)
is an isomorphism, £(g.x) = Tply.((x). O

7.11. Definition. A Riemannian submersion p : E — B is called integrable, if
Hor(E) = (Ker T'p)* is an integrable distribution.

7.12. Local Theory of Riemannian Submersions. Let p: (E,vg) — (B,vB)
be a Riemannian submersion. Choose for an open neighborhood U in E an or-
thonormal frame field

5= (81,-..,5n4k) € C®(TE|U)"**

in such a way that si,...,s, are vertical and s,,41,...,S,+r are basic. That way,
if we “project” Sp+y1,-...,Snt+k onto TB|p(U) we get another orthonormal frame
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field, 5 = (3n11,.-.,8n0:k) € C®(TB|p(U))*, since p, as Riemannian submersion,
is isometric on horizontal vectors.

In the following, >~ will always refer to the sum over all indices occurring twice
unless otherwise specified. Furthermore, we adopt the following index convention.
The listed indices will always run in the domain indicated:

1<i,j,k<n
n+l<a,pB,y<n+k
1<ABC<n+k

In this spirit, the orthogonal coframe corresponding to s is defined by the relation
o(sp) =0n

We will write its components in the form of a column vector and in general adhere
to the conventions of linear algebra so that, wherever possible, we can use matrix
multiplication to avoid having to write down indices.

0.1

o=| 1 |e@Utt

UnJrk

Analogously, we have the orthonormal coframe ¢ € Q! (p(U)) on p(U) C B, with
% (55) = 65-

It is related to 0% by p*c® = o®. In terms of these, the Riemannian metrics vg
and g take on the form

VEly = ZO‘A ® o
A

bl = Y 00"
[e3

Now let V denote the Levi-Civita covariant derivative on (E,vg)
V:X(E) x X(E) — X(E), (X,Y)— VxY.
In terms of the frame field we will write the covariant derivative as

VsA:Zstf, wh e Q' U).
B

If we view w as the matrix of 1-forms (w%), then the above equation can be written
in terms of matrix multiplication:

Vs =s.w
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We get the following relation for w.

0= d’)/E(SA,SB) = ’YE(VSA;SB) +'7E(5A’VSB) =
ny(Z scw9,s8) + VB (54, ZSng) =wh +W§

Therefore w(X) is a real skewsymmetric matrix for all X € X(U), and we have
w € QN U,s0(n + k)).

An arbitrary vector field X on U can be written as X = Y s;u’ where u’ €
C>*(U,R) can be regarded as the components of a column-vector-valued function
u so that we can write X = s.u. Its covariant derivative can be calculated directly
using the derivation property.

V(s.u) = Vs + s.du = sw.u+ s.du
Now let us calculate the curvature tensor in this setting.
R(X,Y)Z = ([Vx,Vy] = Vixy))Z =VxVyZ - VyVxZ — Vix y|Z.

Let R(X,Y)s denote the row of vector fields R(X,Y)s4. Then we can go on to
calculate:

R(X, Y)S =VxVys—-—VyVxs— V[X Y]S =
= U (sw(Y)) = Vy (sw(X)) — 5.0 ([X,Y]) =
=(Vxs)wl)+s.Xwl)— (Vys)w(X) —s. Yw( )—sw([X,Y]) =
=s.w(X)wl) —sw@)wX)+s. (Xw@l) - YwX) -w(X,Y]) =
=swAw(X,Y)+ s.dw(X,Y) =s.(dw+wAw)(X,Y)

The notation w A w stands for (3" w& A w§)4, which has the form of a standard
matrix multiplication, only with the usual product on the components replaced by
the exterior product. This leads to the definition  := dw +wAw = dw + 3w, w]".

Like with w, the orthonormality of s implies } = —Q;-, so Q?(U,s0(n + k)). The
second Bianchi identity follows directly:

(2. Bianchi identity) dA+wAQ = QAw=dQ+ [w, Q" =

Using the property that the Levi-Civita connection is free of torsion, we can derive
the so-called structure equation on w. It determines the Levi-Civita connection
completely.

0=Tor(X,Y)=Vx(s.0(Y)) — Vy(s.o(X)) —s.0([X,Y]) =
=s5w(X).oY)+5.X(0(Y)) —swl)o(X) —s.Y(o(X)) —s.0([X,Y]) =
= 4{(X).7(0) = ()90 + (X0 =¥ (1) =0 ((X,VD) =
swAo(X,Y))+sdo(X,Y)=s(wAo+do)(X,Y)
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wAo+do=0

13 M ”»
structure equation or ng AoB +dod =0
B

As a direct consequence, the first Bianchi identity takes on the following form.
(1. Bianchi identity) QAo =0

If we pull back the structure equation d + © A& = 0 from B to E, we can derive
some relations between the components w9 of w:

0=p* (d&“+2@§/\65) =
=dp*a® + > (p'@g) A (p°57) =do® + > (p*@g) Ao’

Together with the a-component of the structure equation on E, do®+ Y w3 AoP +
S w® Aot =0, this gives us:

*) Z(p*@é‘)/\aﬁ:ZwE‘/\Uﬁ-i—Zwi”/\ai

The lefthand side of this equation contains no o¢ A 6% or o¢ A o7-terms. Let us
write out wj and wy* in this basis.

wg = —wg

: Z 43,07 + Z bgfiai
wi = —wé =: Zaf‘ﬁaﬁ + er‘jaj
This gives us for the righthand side of (*)
Zq5707 AoP + Zbgﬁiai Aab + Za%aﬁ Ao+ er'jaj ANo' =
quvav/\aﬁ +Z (b3 — agy) ai/\aﬁ—l-%z (rey —r%) o’ Ao
So we have found
agz = b,

« «

Ti; = Tji

or, in other words,

That is: w(sa) = w%(s;), and this just means that the horizontal part of [s4, s;]
is 0, or [s4, s;] is always vertical:

0= Z Sawia(SA) - Z Sawj(si) = (VSASi - VSiSA)hor = ([SA],si)hor-
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Now we will calculate the second fundamental form S : XEj x g, XEj, — XM (E| Ej)
of By := p~'(b) in E. Let V denote the Levi-Civita covariant derivative on Ej
corresponding to the induced metric i*g (where i : B, — E is the inclusion). Since
every vector field on Ej can be extended to a vertical vector field on E (do it in
charts, patch it up with a partition of unity and then compose with the connection
¢ to make it vertical), we can determine V for vector fields defined only on Ej, by
extending them onto E. We will denote the restriction of V onto Ej again by V.
It can easily be checked that this definition is independent of the extension chosen.
Now the second fundamental form is defined as:

S(Xver’ Yver) — vaeryver _ @Xveryver
If we express V in terms of V, we get
S(Xver, Yver) = Vyxve YV — (vaeerer)ver — (vaeerer)hor

Expressed in the local frame, it is:

hor

(V xver YVERYROT — (VXVH(Z Siai(yver))) _

. . hor
= (DX (Txersi)o! (V) + Y sid(o (Y¥en). X7 ) =
— (Z SAwlA(Xver)Ui(Yver))hor +0= Z Sawéx(Xver)gi(Yver) _
_ ZT%SQ ® (fj ® O'i (Xver’ Yver)
So _ .
Z sq0%(S) = Zr% S5q @ 0! ®0'.
S is a symmetric tensor field as indeed the second fundamental form must always
be. But in our special case we have already shown that r; = rJ; and thereby proved
this result directly.
Similarly to the covariant derivative on the vertical bundle, which was obtained
by taking the vertical part of the covariant derivative V xverY V" of two verti-
cal vector fields, we can define a covariant derivative on the the normal bundle

Nor(E}p) — Ej by taking the horizontal part of the covariant derivative V xver Y 10T
of a horizontal vector field along a vertical vector field:

VNer . 2(Ey) x C*(Nor(E,)) — C*(Nor(FEy))
V?ﬂithor = (vxveryhor)hor .

In our frame field:
VAR = (Ve (3 5507 (Yhor)))hmr —

hor
= (Z (Vxversg) UB(Yhor)) + Z spdo” (Yhor) X ver =
= Z SaW§ (Xver)aﬁ (Yhor) + Z SBdO'B (Yhor).XVer =
— Z bgisa ® O_i ® O.B(Xver, Yhor) + Z Sq @ dgﬁ(yhor)(Xver)
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or '
VNoryhor — Z (bgigﬁ(yhor)gz + do® (Yhor)) ® 5.
Like V itself, VN°" is not a tensor field. Yet in the decomposition
VxY = (Vxver g xnor (Y 4 Y1OT))

we can find two more tensor fields (besides S), the so called fundamental (or O’Neill-
) tensor fields. (see [28])

X,Y € X(E)
T(X,Y) := (VXveryver)hor n (vaeryhor)
A(X,Y) = (thothor)ver " (lemryver)hor

In fact each of of these four summands which make up A and T are tensor fields
by themselves - the first one restricting to S on Ep. Why they are combined to two
tensors in just this way we will see once we have expressed them in our local frame.
At the same time, we will see that they really are tensor fields.

ver + hor

ver

hor

ver .
AX,Y) = (vth (Zsaaa(y))) + (VXhm(Zsial(Y))) -
=D siwh (XM (V) + 0+ sawf (X2)o! (V) + 0 =
= si(—ags) o’ (X))o (V) + Y saafye’(X)a' (V) =
= (Za?ﬁ (P @0 @sq —0" ®0*®s;) (X,Y))
Analogously:
T:er‘j (0j®ai®sa—oi®a”®si)
If Hor(E) is integrable, then every leaf L is totally geodesic by 7.8(1), and the so|;
are a local orthonormal frame field on L. L being totally geodesic is equivalent

to its second fundamental form vanishing. Now, in the same way we found S, the
second fundamental form of L is

SL(XPT,YPT) = (V xner YO
So it is a necessary condition for the integrability of Hor(E) that S;, = 0, that is

)ver

0=SL (Sa,88) = (vsasﬁ)ver =
= Z siwé(sa) = Z S (—afw) 07 (Sa).
This is equivalent to the condition
a3 =0 for all 75

or

A=0.
Let us now prove the converse: If A vanishes, then the the horizontal distribution
on E is integrable. In this case, we have 0 = A (s,,53) = (Vs 55)" +0, as well as
0=A(sg,54) = (Vsﬁga)ver + 0. Therefore, [sa]’sﬁ = V5,83 — Vs, 84 is horizontal,
and the horizontal distribution is integrable.
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7.13. Theorem. Let p: E — B be a Riemannian submersion, then the following
conditions are equivalent.

(1) p is integrable (that is Hor(p) is integrable).
(2) Every p-parallel normal field along Ey is VN -parallel.
(3) The O’Neill tensor A is zero.

Proof. We already saw (1) <= (3) above.
(3) = (2) Take s, for a p-parallel normal field X along Ej. A = 0 implies A(sq, s;) =

0+ (Vs, si)hOr = 0. Recall that, as we showed above, [s;, s, is vertical.
Therefore,

Viorsa = (Vs, sa)hor = ([sl, Sa] + Vs, si)hor =0

Since for any e € Ej, Tep|N0rb(Eb) is an isometric isomorphism, a p-parallel
normal field X along Ej is determined completely by the equation X (e) =
> X*(e)sq(e). Therefore it is always a linear combination of the s, with
constant coefficients and we are done.

(2) = (3) By (2) Viors, = (Vs,50)™" = 0. Therefore, as above, we have that
([si,sa] + Vsasi)hor =0+ (Vsasi)hor = A(sa,s;) = 0. Thus aﬁA(sa,si) =
a,; =0, so A vanishes completely. O
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8. Sections

In this chapter, let (M,v) always denote a connected, complete Riemannian
G-manifold, and assume that the action of G on M is effective and isometric.

8.1. Lemma. Consider X € g, the Lie algebra of G, (x, the associated funda-
mental vector field to X, and ¢, a geodesic in M. Then v(c'(t), {(x (c(t))) is constant
i t.

Proof. Let V be the Levi-Civita covariant derivative on M. Then
Ory(c'(t), Cx (e(t)) =7 (Va, ' (), Cx (e(t))) +7('(), Vo, (Cx 0 0)) .

Since c¢ is a geodesic, Vg, ' (t) = 0, and so is the entire first summand. So it remains
to show that v (c'(t), Vs, ({x o c)) vanishes as well.

Let s1,...,5, be a local orthonormal frame field on an open neighborhood U of
c(t), and o,...,0" the orthonormal coframe. Then v = }_ 0! ® o?. Let us use the
notation

x|y =: ZSiXi
Vexly = Y X5y 0t
Then we have
Va(Cx 00) =Y X (e(t))s;(c(t)o’ (¢ (1))
So
Y (t),Va,(Cx o) =Y o/ (¢ (t)0? (Vo,(Cx o)) =
= X(c(t))o’ c(t))ai(c’(t)).

If we now show that X7 + X1 =0, then v (¢(t), Vg, (Cx o c)) will be zero, and the
proof will be complete. Since the action of G is isometric, (x is a Killing vector
field; that is L£¢ v = 0. So we have

Y Leot®wo'+) 0@ Lot =0.

Now we must try to express L¢yo? in terms of X;. For this, recall the structure
equation: do* + Y wk Ao/ = 0. Now we have

ECXO'i = iCXdUi +d (iCXUi) = —icy (Zw; A O'j) +d(0’i(CX)) =
= —icy Zw; Aol +dXt = Zw;.Xj - Zwé((x)aj +dX*".
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vCX|U = V(ZSij) = Zszw;X] + Zsz ®dXi = ZXJZSl ®0’j,

we can replace Zw;:.Xj by > X]’faj — dX'. Therefore,

Lol =Y (Xl —wi(Cx)o?) = D (Xi —wilCx))o?

Now, let us insert this into 0 = L¢, :

0= Zﬁgx(fi ® o' +Zai ®E§Xoi =
= S (X - wi(Cx))e? @ ot + Y (K] - wil(x))o' @l =
= Z(ij + Xij)gj ® ol — Z(w;(CX) + wg(CX))Uj ot =
=N (Xi+ X))ol 0ol —0

since w(Y) is skew symmetric. This implies XJ’: + Xg =0, and we are done. [

8.2. Definition. For any x in M.e; we define:

E(z) := exp)(Nor, (G.z)) C M
Ereg(x) := E(x) N Myeg

In a neighborhood of x, E(x) is a manifold; globally, it can intersect itself.

8.3. Lemma. Let x € Moz then

(1)
2)

(3)
Proof.

(1)
2)

(3)

July 31,

9.E(z) = E(9.2), g.Ereg(t) = Ereg(g.2).

For X, € Nor(G.x) the geodesic ¢ : t — exp(t.X,) is orthogonal to every
orbit it meets.

If G is compact, then E(x) meets every orbit in M.

This is a direct consequence of 6.1(1): g.exp, (t.X) = exp, , (t.T2€;.X).
By choice of starting vector X, the geodesic ¢ is orthogonal to the orbit
G.z, which it meets at t = 0. Therefore it intersects every orbit it meets
orthogonally, by Lemma 8.1.

For arbitrary z,y € M, we will prove that E(z) intersects G.y. Since G
is compact, by continuity of /¥ : G — M the orbit G.y is compact as
well. Therefore we can choose g € G in such a way, that dist(z,G.y) =
dist(z,g.y). Let ¢(t) := exp,(t.X,) be a minimal geodesic connecting
z = ¢(0) with g.y = ¢(1). We now have to show, that X, € Nor,(G.z):
Take a point p = ¢(t) on the geodesic very close to g.y—close enough so
that exp,, is a diffeomorphism into a neighborhood U, of p containing g.y
(it shall have domain V' C T,M). In this situation the lemma of Gauss
states, that all geodesics through p are orthogonal to the “geodesic spheres”:
exp, (k.S™™1) (where ™! := {X, € T,M : v(X,,X,) =1}, and k > 0 is
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small enough for £.S™~1 C V to hold). From this it can be concluded that
c is orthogonal to G.y : Take the smallest geodesic sphere around p touching
G.y. By the minimality of ¢, ¢ must leave the geodesic sphere at a touching
point, and by Gauss’ lemma, it must leave at a right angle to the geodesic
sphere. Clearly, the touching point is just g.y = ¢(1), and there ¢ also meets
G.y at aright angle. By (2), ¢ encloses a right angle with every other orbit
it meets as well. In particular, ¢ starts orthogonally to G.xz. Therefore, X,
is in Nor,(G.z), and g.y = ¢(1) € E(z). O

8.4. Remark. Let x € M be a regular point and S, the normal slice at z. If S,
is orthogonal to every orbit it meets, then so are all ¢g.S, (g € G arbitrary). So
the submanifolds ¢.S, can be considered as leaves of the horizontal foliation (local
solutions of the horizontal distribution—which has constant rank in a neighborhood
of a regular point), and the Riemannian submersion 7 : Mg — Mieg /G is inte-
grable. Since this is not always the case (the horizontal distribution is not generally
integrable), it must also be false, in general, that the normal slice is orthogonal to
every orbit it meets. But it does always meet orbits transversally.

Example. Consider the isometric action of the circle group S on C x C (as real
vector spaces) defined by e™.(z1,22) := (e*.21,e".23). Then p = (0,1) is a regular
point: G, = {1}. The subspace Nor,(S'.p) of T,C x C takes on the following
form: Nor,(S'.p) = ((1,0),(,0),(0,1))y = C x R. Therefore, we get: E(0,1) =
{(u,1+7) :uw € C,r € R}. In particular,y = (1,1) € E(0,1), but St.y = {(e’,e") :
t € R} is not orthogonal to E(0,1). Its tangent space, T, (S'.y) = ((i,i))g, is not
orthogonal to C x R.

8.5. Definition. A connected closed complete submanifold ¥ C M is called a
section for the G-action if

(1) X meets every orbit, or equivalently: G.X = M.
(2) Where ¥ meets an orbit, it meets it orthogonally.

The second condition can be replaced by the equivalent
(2) z € ¥=T,% C Nor,(G.x) or
(27) z e, X €g=(x(x) LT,X.

Remark. If ¥ is a section, then so is g.X for all g in G. Since G.X = M, there is a
section through every point in M. We say “M admits sections”.

The notion of a section was introduced by Szenthe [42], [43], in slightly different
form by Palais and Terng in [32], [33]. The case of linear representations was con-
sidered by Bott and Samelson [4], Conlon [10], and then by Dadok [11] who called
representations admitting sections polar representations (see 8.20) and completely
classified all polar representations of connected Lie groups. Conlon [9] considered
Riemannian manifolds admitting flat sections. We follow here the notion of Palais
and Terng.

8.6. Example. For the standard action of O(n) on R™ the orbits are spheres, and
every line through 0 is a section.

8.7. Example. If GG is a compact, connected Lie group with biinvariant metric,
then conj: G x G — G, conj,(h) = ghg~! is an isometric action on G. The orbits
are just the conjugacy classes of elements.
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Proposition. FEvery mazimal torus H of a compact connected Lie group G is a
section.

A torus is a product of circle groups or equivalently a compact connected abelian
Lie group; a maximal torus of a compact Lie group is a toral subgroup which is not
properly contained in any larger toral subgroup (cf. [5], chapter 6).)

Proof. (1) conj(G).H = G: This states that any g € G can be found in some to
H conjugate subgroup, g € aHa~'. This is equivalent to ga € aH or gaH = aH.
So the conjecture now presents itself as a fixed point problem: does the map £, :
G/H — G/H : aH ~ gaH have a fixed point. It is solved in the following way:
The fixed point theorem of Lefschetz (see [41], 11.6.2, p.297) says that

a smooth mapping f : M — M from a connected compact manifold to
itself has no fixed point if and only if

dim M

> (=1)! Trace(H'(f) : H'(M) — H*(M)) = 0.

i=0

Since G is connected, ¢, is homotopic to the identity, so

dim G/H ' ' ' '
Z (—1)! Trace(H'(¢,) : H(G/H) — H'(G/H)) =
. dimG/H ) ) dimG/H ) '
= Z (—1)! Trace(H*(Id)) = Z (=1)'dim H(G/H) = x(G/H),

the Euler characteristic of G/H. This is given by the following theorem ([30], Sec.
13, Theorem 2, p.217)

If G is a connected compact Lie group and H is a connected com-
pact subgroup then the Euler characteristic x(G/H) > 0. Moreover
X(G/H) > 0 if and only if the rank of G equals the rank of H. In
case when x(G/H) > 0 then x(G/H) = |W¢|/|WH|, the quotient of the
respective Weyl groups.

Since the Weyl group of a torus is trivial, in our case we have x(G/H) = |W¢g| > 0,
and thus there exists a fixed point.

(2”) he H, X € g=(x(h) L TpH:
(x(h) = £|,_, exp(tX)hexp(—tX) = T,u". X —Topp.X . Now choose Y € h. Then
we have Toup.Y € T H, and

Vi (Topen.Y, Topt". X — Topi. X) = 7.(Y, Ad(h).X — X) =
= Ye (Y, Ad(h)X) — e (Y, X) = Ve (Ad(h).Y, Ad(h)X) — Ve (Y, X) =0

by the right, left and therefore Ad-invariance of v and by the commutativity of
H. O
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8.8. Example. Let G be a compact semisimple Lie group acting on its Lie algebra
by the adjoint action Ad : G x g — g. Then every Cartan subalgebra h of g is a
section.

Proof. Every element of a semisimple Lie algebra g is contained in a Cartan sub-
algebra, and any two Cartan subalgebras are conjugated by an element g € G,
since GG is compact. This is a consequence of 8.7 above, since the subgroup in G
corresponding to a Cartan subalgebra is a maximal torus. Thus every Adg-orbit
meets the Cartan subalgebra ). It meets orthogonally with respect to the Cartan
Killing form B: Let Hy, H> € h and X € g. Then <|o Ad(exp(tX)).H; = ad(X)H,;
is a typical vector tangent to the orbit through H; € h, and H» is tangent to b.
Then
B(ad(X)H., H2) = B([X, H,], H>) = B(X,[H1,H>]) =0

since f is commutative. O

8.9. Example. In Theorem 1.1 we showed that for the O(n)-action on S(n) by
conjugation the space X of all diagonal matrices is a section.

8.10. Example. Similarly as in 8.9, when the SU(n) act on the Hermitian ma-
trices by conjugation, the (real) diagonal matrices turn out to be a section.

8.11. Definition. The principal horizontal distribution on a Riemannian
G-manifold M is the horizontal distribution on Meg 5 M,eg/G.

8.12. Theorem. If a connected, complete Riemannian G-manifold M has a sec-
tion X, then

(1) The principal horizontal distribution is integrable.

(2) Ewvery connected component of Yeg is a leaf for the principal horizontal
distribution.

(3) If L is the leaf of Hor (Myeg) through € Myeg, then |, : L — M;eg /G is
an isometric covering map.

(4) X is totally geodesic.

(5) Through every regular point x € M there is a unique section: E(x) =
expy(Nor, (G.x))

(6) A G-equivariant normal field along a principal orbit is parallel in terms of
the induced covariant derivative VN°T,

(1) The submanifolds g.Xeg of M;eg are integral manifolds to the horizontal
distribution, since they are orthogonal to each orbit and by an argument of
dimension.

(2) clear.

(3) see 7.8(2).

(4) see 7.8(1).

(5) This is a consequence of (4). Namely, for z € M choose g € G such that
g.x € ENG.z, then g~ 1.¥ is a section through z. By (2) and (4) we have
E(x) C g~ 1.3. The converse can be seen as follows: Let y € ¢~ 1. and
choose a minimal geodesic from z to y. By the argument given in the proof
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of 8.3.(3) this gedesic is orthogonal to the orbit through z and thus lies in
E(z). Soy € E(x).

(6) see 7.13 (1) <= (2) and recall that by remark 7.10 a normal field is
G-equivariant iff it is w-parallel, where 7 : M — M /@ is the orbit map. O

8.13. Remark. The converse of 8.12(1) is not true. Namely, an integral manifold
of Hor(M,eg) is not, in general, a section.

Example. Consider the Lie group G = S* x {1}, and let it act on M := S' x S* by
translation. Let & = (1,0) denote the fundamental vector field of the action, and
choose any 7 € Lie(S' x S') = R x R which generates a one-parameter subgroup c
which is dense in S* x S! (irrational ascent). Now, endow S! x S with a Riemannian
metric making ¢ and 7 an orthonormal frame field. Any section of M would then
have to be a coset of ¢, and therefore dense. This contradicts the assumption that
a section is a closed embedded submanifold.

8.14. Definition. A symmetric space is a complete, connected Riemannian
manifold M such that for each x € M there is an isometry S, (defined globally)
which locally around x takes on the form:

exp, tX — exp, (—tX)

In particular, x is an isolated fized point.

Remark. Equivalent to this definition is the following one: A symmetric space is a
quotient space M = G/H of a Lie group G with a subgroup H together with an
automorphism o : G — G which satisfies two conditions

(1) goo =1id

(2) (G7)o CHCG" :={g9€G:0(g) =g}
An indication for this is that the first definition of a symmetric space implies that the
group of isometries must act transitively. For any z,y € M, take a geodesic joining
the two, then the reflection S, at the central point between x and y on the geodesic
carries x into y. Now if we identify G := Isom(M) and let H := G, for some point
xo in M, then M = G/H, and o can be defined as o(g) := Sz, 0 g 0 Sy,- It clearly
fulfills 0 0o = id. Let us check (2). Take any h € H. Since Ty,Sz, = —Idr, v and
h.xg = o, we get T, 0(h) = Ty, h by the chain rule. This suffices to prove that
o(h) = h (cf. [17], Lemma 4 p.254). So we have H € G,. To see (G,), C H, take
a one-parameter subgroup ¢; of G, with go = id. Then o(g;) = ¢; implies that
Seo © Gt = gt © Szo- SO Sy, 0 gi(x0) = g:(x0), and since go(zg) = xo and zp is an
isolated fixed point of S,,, g+(xo) = zo for the other ¢ as well, so g; € H.

8.15. Theorem. ([18], Ch.XI, 4.8) If (G/H, o) is a symmetric space, then the
totally geodesic connected submanifolds N of G/H through e € G/H correspond
exactly to the linear subspaces TN =m/ Cm:=T.G/H =2 {X €g:0'(X) =-X}
which fulfill [[m', m'],m’'] C m'.

Remark. This implies that a locally totally geodesic submanifold of a simply con-
nected symmetric space can be extended uniquely to a complete, totally geodesic
submanifold. Here we mean by locally geodesic submanifold that a geodesic can
leave the submanifold only at its “boundary”. In other words, the second funda-
mental form must be zero.
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8.16. Corollary. Let M = G/H be a simply connected, complete symmetric space,
K C G, a subgroup. Then the action of K on G/H admits sections iff Hor(M;eg)
is integrable. In particular, if the principal K -orbits have codimension 1, there are
always sections.

8.17. Theorem. Consider any Riemannian G-manifold M. Then the following
statements are equivalent.
(1) Hor(M;eg) is integrable.
(2) Every G-equivariant normal field along a principal orbit is VN°"-parallel.
(3) For x € Myeg, S the normal slice at x and X € g and s € S arbitrary,
Cx(s) L T (S).

Proof. The equivalence of (1) and (2) is a direct consequence of 7.13 and remark
7.10. Furthermore, suppose (1), then there is an integral submanifold H of the
horizontal distribution going through z. H is totally geodesic by 7.8(1), and so
S = exp,(Nor,(G.z)) is contained in H. Therefore, (3) holds: The fundamental
vector field (x is tangent to the orbit G.s and with that perpendicular to the
horizontal distribution and to T(S). Now if we suppose (3), then S is an integral
submanifold of Hor(M;eg), and (1) holds. O

8.18. Remark. We already saw in 6.10 that Nor G.x is a trivial bundle. Now we
even have a parallel global frame field. So the normal bundle to a regular orbit is
flat.

8.19. Corollary. Consider an orthogonal representation V of G, G — O(V). Let
x € V be any regular point and X the linear subspace of V' that is orthogonal to the
orbit through x. Then the following statements are equivalent:

(1) V admits sections
(2) X is a section
(3) forallyeX and X €g, (x(y) L X

Proof. (3) implies that the horizontal bundle is integrable (8.17). In this case 8.15
implies (1). (1) = (2) is clear with 8.12(5). (2) = (3) is trivial. O

8.20. Definition. An orthogonal representation of G is called polar represen-
tation if it admits sections.

8.21.. Corollary. Let 7 : G — O(V) be a polar representation, and let v € V be
a reqular point. Then

Li={weV:((w) C(v)}
is the section through v, where (y(w) := {{x(w) : X € g} C V.

Proof. Since (4(v) = T,(G.w) and by 8.19, a section through v is given by ¥’ :=
()t If z € ¥/, then (4(2) C (£')*, which in our case implies that (z(2) C (y(v).
So z € X.

Conversely, suppose z is a regular point in . Consider the section X" = (4(z)*
through z. Then, since (4(z) C (4(v), we also have that X' = (4(v)t C (4(2)*F =
¥". Therefore ¥’ = X" and, in particular, z € ¥'. 0O
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9. The Generalized Weyl Group of a Section

Consider a complete Riemannian G-manifold M which admits sections. For any
closed subset S of M we define the largest subgroup of G which induces an action

on S:
N(S):={geG:£4,5) =S}

and the subgroup consisting of all g € G which act trivially on S:
Z(S) ={9€G:Ly(s) =s, forall s e S}

Then, since S is closed, N (S) is closed, hence a Lie subgroup of G. Z(S) = [5G
is closed as well and is a normal subgroup of N(S). Therefore, N(S)/Z(S) is a Lie
group, and it acts on S effectively.

If we take for S a section X, then the above constructed group is called the
generalized Weyl group of ¥ and is denoted by

W(E) = N(Z)/Z(5).

9.1. Remark. For any regular point x € ¥, G, acts trivially on the normal slice
Se at z (by 6.7). Since ¥ = exp, Nor,(G.x) by 8.12(5), S, is an open subset of ¥,
and we see that G, acts trivially on all of £. So we have G, C Z(X). On the other
hand, Z(X¥) C G, is obvious, therefore

Z(X) =G, for £ € ¥ N Myeg.

Now, since Z(X) is a normal subgroup of N(X), we have N(X) C N(G,) where the
second N stands for the normalizer in G. So we have

W(X) C N(G:)/G, for x € ¥ N Miyeg.

9.2. Proposition. Let M be a proper Riemannian G-manifold and X a section,
then the associated Weyl group W (X) is discrete. If X' is a different section, then
there is an isomorphism W (X) — W (X') induced by an inner automorphism of G.
It is uniquely determined up to an inner automorphism of W(X).

Proof. Take a regular point x € ¥ and consider the normal slice S,. Then S, C X
open. Therefore, any g in N(X) close to the identity element maps x back into S,.
By 4.12(2) g then lies in G, = Z(X). So Z(X) is an open subset of N(X), and the
quotient W (X) is discrete.
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If ¥ is another section, then ¥’ = g.¥ where g € G is uniquely determined up
to N(X). Clearly, conj, : G — G induces isomorphisms

conj, :N(X)
Z(%)

N(X)
Z(¥)

lIIZ l”z

and therefore it factors to an isomorphism W (%) = w(xh). O

9.3. Ezample. Any finite group is a generalized Weyl group in the appropriate
setting. That is, to an arbitrary finite group W we will now construct a setting in
which it occurs as a Weyl group. Let G be a compact Lie group and H a closed
subgroup such that W C N(H)/H (this is always possible since any finite group can
be regarded as a subgroup of O(V') =: G so we need only choose H = {e}). Next,
take a smooth manifold ¥ on which W acts effectively. Consider the inverse image of
W under the quotient map m: N(H) — N(H)/H, K := 7~ (W). Then the action
of W induces a K-action on ¥ as well. The smooth manifold M := G xg ¥ has a
left G-action. Let —B denote the G-invariant Riemann metric on G induced by the
Cartan-Killing form on the semisimple part and any inner product on the center,
and let vx be a W-invariant Riemann metric on . Then the Riemann metric
—B x 5 on G x ¥ induces a G-invariant Riemann metric on the quotient space
G x g X. With this, G X g 3 is a Riemannian G-manifold, and if ¢ : GXX — Gxg ¥
is the quotient map, then g({e} x ¥) =2 ¥ meets every G-orbit orthogonally. So it
is a section. The largest subgroup of G acting on ¥ is K and the largest acting
trivially on ¥ is H. Therefore, W(X) = K/H = W is the Weyl group associated
to the section X.

9.4. Theorem. Let M be a proper Riemannian G-manifold with sections. Then,
for any x € M, the slice representation G, — O(Nor,(G.x)) is a polar represen-
tation. If ¥ is a section through z in M, then T, X is a section in Nor,(G.x) for
the slice representation. Furthermore,

W(T,%) = W(2),.

Proof. Clearly T, C Nor,(G.z). We begin by showing that it has the right codi-
mension. Take a { € Nor,y(G.z) close to 0,4, then (Gg)e = Gy for y = exp] ¢,
since exp, is a G-equivariant diffeomorphism in a neighborhood of 0,. So G,.§ =
G2 /(Gs)e = G2 /Gy. Let us now calculate the codimension of G,.£ in Nor, (G.x):

dim Nor, (G.z) — dim G,.§ = dim Nor,(G.z) — dim G, +dim G, =
= dim Nor,(G.z) + dim G/G,; — (dim G — dim G,) = codimas G.y.

=dim M =dim G/ G,

Since the regular points lie dense, we can choose £ € T, X regular by assuming that
y = exp2(X) is regular in ¥. Then y is regular as well and we get:

codimyer, (G.0) Ge-§ = codimpy Gy = dim ¥ = dim 7, 3.
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So T, X is a linear subspace of Nor, G.x with the right codimension for a section.
Therefore, if we show that T, X is orthogonal to each orbit it meets, then it is
already the entire orthogonal complement of a regular orbit, and by corollary 8.19
(3) = (2), we know that it meets every orbit.

Denote the G-action on M by £: G — Isom(M). If £ € T, X is arbitrary, then it
remains to prove that for all n € T, ¥ and X € g,:

T,

Ve (n,CX (E)) =0.

To do this, choose a smooth one-parameter family 7)(%) € Texp(t¢)E such that 5(0) =
1 and Vg, = 0. Since ¥ is a section in M we know for each single ¢ that

Yexp(te) (C (exp™ (£€)), m(t)) = 0.

If we derive this equation we get

0=—| 7 (Ck(exp"(s€)),n(s)) =7 (Vo.(x (exp” (s£)), 1(0)) -

ds|,_,

So it remains to show that V(% (exp”(s€)) is the fundamental vector field of X
at ¢ for the slice representation.

Vo, (& (exp?(s€)) = VeCx = K o T(§ £ =
= K o T'(O¢|olexpe (¢x))-Os|o expy (s£))
= K.0s]0-0t[olexpe (1 x) (expy (5€))
= K.£1.0t]0.05 |olexpe (1x) (expy (5£))
= K.k0-0¢|0-T (Lexpe (¢x)) (§)

Here, K denotes the connector and k,; the canonical flip between the two structures
of TT M, and we use the identity Kok = K, which is a consequence of the symmetry
of the Levi-Civita connection. The argument of K in the last expression is vertical
already since X € g,. Therefore we can replace K by the vertical projection and
get

Tal|q,

d
Vo, Cg( (exp”(s§)) = Vvpr % T, (ZexpG (tX))£ =0x
t=0

(&)-
So C?l e (&) intersects T, X orthogonally, and therefore T, X is a section.

Now consider Ng, (T,(X)) = {g € G, : T ({,). T,X = T, X}. Clearly, Ng(X) N
G C Ng, (T (X)). On the other hand, any g € Ng, (T:(X)) leaves ¥ invariant as
the following argument shows.

For any regular y € ¥ we have ¥ = exp, Nor(G.y). Therefore z = exp,n
for a suitable n € Ty, and conversely, y can be written as y = exp, & for £ =
— %|t:1 exp, tn € T, ¥. Now g.y = g.exp, § = exp, T;{;.€ lies in X, since T,(,.§
lies in T, %.. So g maps all regular points in 3 back into ¥. Since these form a dense
subset and since £, is continuous, we get g € Ng(X).
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We have now shown that
Ne, (TX) = Na(2) N G,.
Analogous arguments used on Zg, (T.X) give
Zo,(T.%) = Za(S),
and we see that

We, (T,X) = (N(X)NG.)/Z(X) =W(E),. O

9.5.. Corollary. Let M be a Riemannian G-manifold admitting sections and let
x € M. Then for any section ¥ through x we have

Nor, (G.ar:)G2 CT,x,

where GY is the connected component of the isotropy group G, at z.

Proof. By theorem 9.4 the tangent space T, ¥ is a section for the slice representation
Gy — O(Nor,(G.x)). Let &€ € T, be a regular vector for the slice representation.
By corollary 8.21 we have T,X = {n € Nor,(G.z) : (5, (1) C (. (&)} Since
Nor, (G.z)% consists of all 5 in Nor,(G.z) with Cg. (1) = 0, the result follows. O

9.6. Corollary. Let M be a proper Riemannian G-manifold with sections and
x € M. Then G, acts transitively on the set of all sections through x.

Proof. Consider two arbitrary sections ¥; and s through z and a normal slice S,
at . By theorem 9.4, T, 3> is a section for the slice representation. Since exp,
can be restricted to a G-equivariant diffeomorphism onto S,, Y2 NS, is a section
for the G -action on S,. Next, choose a regular point y € 31 N S,. Its G;-orbit
meets the section Y5 N S,, that is we can find a g € G, such that g.y € ¥y. Now
Y5 and g.%; are both sections containing the regular point g.y. Therefore they are
equal. O

9.7. Corollary. Let M be a proper G-manifold with sections, ¥ a section of M
and x € ¥. Then
GzNI=W(Z).x

Proof. The inclusion (D) is clear. Now we have
yeGxNY <<= y=g.x€cXforsomegceqd.
Take this ¢ and consider the section ¥/ := ¢.¥. Then ¥ and ¥’ are both sections

through y, and by 9.6 there is a ¢’ € G, which carries ¥’ back into ¥. Now
g'9.X =3, thatisg'g € N(X),and g'g.x = ¢'.y =y. Soy € N(X).x =W (X).xz. O
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9.8. Corollary. If M is a proper G-manifold with section X, then the inclusion
of ¥ into M induces a homeomorphism j between the orbit spaces.

Z(Z—>M

Wzl WML
S/ (E) —L— M/G

(but it does not necessarily preserve orbit types, see remark 4.14).

Proof. By the preceding corollary there is a one to one correspondence between the
G-orbits in M and the W(G)-orbits in X, so j is well defined and bijective. Since
joms = m o4 and 7y is open, j is continuous.

Consider any open set U C £/W(X). We now have to show that

T i(U) = G (U)

is an open subset of M (since then j(U) is open and j~! continuous). Take any

x € Ty j(U). We assume z € X (otherwise it can be replaced by a suitable g.z € X2).
So z € m5'(U). Let S, be a normal slice at x, then ¥ N S, is a submanifold of
S; of dimension dim X. In S;, x has arbitrarily small G, -invariant neighborhoods,
since the slice action is orthogonal and S, G-equivariantly diffeomorphic to an open
ball in Nor,(G.z). Let V, be such an open neighborhood of x, small enough for
Ve NX to be contained in wgl(U). V. is again a slice, therefore G.V,, is open in M
(4.12(3)). Now we have to check whether G.V} is really a subset of 7, j(U). Using
corollary 9.6 we get

G.(VNX)=G.G,(VNX)=G.(V NG,.X) =G.V,.
Therefore, G.V, C G.my.' (U) = m,, 5 (U) where it is an open neighborhood of z. So
7y j(U) is an open subset of M, j(U) is open in M/G, and j~' is continuous. O
9.9. Corollary. Let M be a proper Riemannian G-manifold and ¥ C M a section
with Weyl group W. Then the inclusion ¢ : ¥ — M induces an isomorphism

co(M)¢ L ot m)”.

Proof. By corollary 9.7 we see that every f € C°(Z)" has a unique G-equivariant
extension f onto V. If we consider once more the diagram

Ecl4>M

Wzl WMl
/W (S) —— MG

we see that f factors over mx to a map f' € C°(Z/W (X)), and since j is a homeo-

morphism (9.8) we get for the G-invariant extension f of f:

f=fojtomy e (M)©C. O

July 31, 1997 P. Michor, 9.9



82 9. The generalized Weyl group of a section, 9.10

9.10. Theorem. [32], 4.12, or [44], theorem D. Let G — GL(V) be a polar
representation of a compact Lie group G, with section X and generalized Weyl
group W =W (X).

Then the algebra R[V'|“ of G-invariant polynomials on V is isomorphic to the
algebra R[Z]W of W -invariant polynomials on the section X, via the restriction

mapping f — f|.

9.11. Remark. This seemingly very algebraic theorem is actually a consequence of
the geometry of the orbits. This already becomes evident in the case of a first degree
homogeneous polynomial. To see that the G-invariant extension of p € ]R[Z]YV toV
is again a polynomial (and again of first degree), we we must assume the following
convexity result of Terng.

Under the conditions of the theorem, for every regular orbit G.z the orthogonal
projection onto X, pr(G.x), is contained in the convex hull of G.z N X (this is a
finite subset of ¥ by 9.7 since G is compact and W (X) discrete).

Let us make this assumption. Denote by p the unique G-invariant extension of
p, then clearly p is homogeneous. Now, notice that for any orbit G.z, p is constant
on the convex hull of G.zNXE =: {¢1.2,92.%,...,gx.x}. Just take any s = > \;g;.x
with Y~ A; = 1, then

p(s) = > Aip(gi-x) = plgi-x) Y Ai = plg1-@).

With this and with our assumption we can show that for regular points u,v € M,
p(u + v) = p(u) + p(v). Suppose without loss of generality that u + v € X, then

p(u +v) = p(pr(u) + pr(v)) = p(pr(u)) + p(pr(v))

At this point, the convexity theorem asserts that pr(u) and pr(v) can be written
as convex combinations of elements of G.u N X, respectively G.v N X. If we fix an
arbitrary g, (resp. g,) in G such that g,.u (resp. g,.v) lie in X, then by the above
argument we get

p(pr(u)) = p(gu-u) and  p(pr(v)) = p(gy-v).

So we have
p(u +v) = p(gu-u) + p(go-v) = p(u) + p(v),

and p is linear on Vieg. Since the regular points are a dense subset of V, and p is
continuous by 9.9, p is linear altogether.

A proof of the convexity theorem can be found in [45] or again in [33], pp. 168-
170. For a proof of theorem 9.10 we refer to [44]. In both sources the assertions
are shown for the more general case where the principal orbits are replaced by
isoparametric submanifolds (i.e. submanifolds of a space form with flat normal
bundle and whose principal curvatures along any parallel normal field are constant;
compare 6.13 and 8.18). To any isoparametric submanifold there is a singular
foliation which generalizes the orbit foliation of a polar action but retains many of
its fascinating properties (cf. [33]).
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9.12. Remark. In connection with the example we studied in chapter 1, the con-
vexity theorem from above yields the following classical result of Schur [39], 1923:

Let M C S(n) be the subset of all matrices with fixed distinct eigenvalues
ai,...,a, and pr: S(n) — R" defined by

pr ((l’zg)) = (T11, %22, -, Tnn)

then pr(M) is contained in the convex hull of &,.a where a = (a4, ..., an).

9.13. Theorem. Let M be a proper Riemannian G-manifold with section ¥ and
Weyl group W. Then the inclusion i : ¥ — M induces an isomorphism

o (M)¢ 5 o ()T

Proof. Clearly f € C*° (M)G implies i* f € C>(X)". By 9.9 we know that every
f € Cc>®(2)" has a unique continuous G-invariant extension f. We now have to
show that f € C° (M)“.

Let us take an = € M and show that f is smooth at z. Actually, we can assume
z € ¥, because if f is smooth at z then f o £4—1 is smooth at g.x, so f is smooth
at g.x as well. Now let S, denote a normal shce at . Then we have

G xg, Sa G xSy

S, !
G/G

Since in the above diagram [ is an isomorphism and ¢ a submersion, it is sufficient
to show that f |g, o pry or equivalently f |g, is smooth at z. Let B C TS, be a
ball around 0, such that B 2 S, and T, XN B =2 ¥ N S,. Then, by theorem 9.4,
the G -action on S, is basically a polar representation (up to diffeomorphism). So
it remains to show the following:

Claim: If ¥ is a section of a polar representation G, — O(V) with Weyl group
W, and f is a smooth W,-invariant function on X, then f extends to a smooth
G,-invariant function f on V.

In order to show this, let p1,..., pr be a system of homogeneous Hilbert gener-
ators for R[X]"*. Then, by Schwarz’ theorem, there is an f' € C*° (R¥) such that
f=f'o(p1,...,pr). Bytheorem 9.10, each p; extends to a polynomial p; € ]I\‘i[V]Gm
Therefore we get

f::flo(le:'-':ﬁk):‘/_>]1g

is a smooth G-invariant extension of f. O
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10. Basic Differential Forms

Our aim in this section is to show that pullback along the embedding ¥ — M
induces an isomorphism QF (M)% = QP(Z)"(®) for each p, where a differential
form w on M is called horizontal if it kills each vector tangent to some orbit. For
each point = in M, the slice representation of the isotropy group G, on the normal
space T,,(G.z)* to the tangent space to the orbit through = is a polar representation.
The first step is to show that the result holds for polar representations. This is
done in theorem 10.6 for polar representations whose generalized Weyl group is
really a Coxeter group, is generated by reflections. Every polar representation of
a connected Lie group has this property. The method used there is inspired by
Solomon [40]. Then the general result is proved under the assumption that each
slice representation has a Coxeter group as a generalized Weyl group. This result
is from [24].

10.1. Basic differential forms. Let GG be a Lie group with Lie algebra g, mul-
tiplication 4 : G x G = G, and for g € G let pg, ¢ : G — G denote the left and
right translation.

Let £ : G x M — M be aleft action of the Lie group G on a smooth manifold M.
We consider the partial mappings {; : M — M forg € Gand ¢* : G — M forz € M
and the fundamental vector field mapping ¢ : g — X(M) given by (x (z) = T.(£*)X.
Since £ is a left action, the negative —( is a Lie algebra homomorphism.

A differential form ¢ € QP (M) is called G-invariant if ({;)*p = ¢ for all g € G
and horizontal if ¢ kills each vector tangent to a G-orbit: i¢c, = 0 for all X € g.
We denote by QF_ (M) the space of all horizontal G-invariant p-forms on M. They
are also called basic forms.

10.2. Lemma. Under the exterior differential Quor(M)% is a subcomplex of Q(M).

Proof. If ¢ € Qpor(M )G then the exterior derivative dyp is clearly G-invariant. For
X € g we have

icxdp =i¢ydp +dicyp =Leyp =0,
so dyp is also horizontal. O

10.3. Main Theorem. ([24] and [25]) Let M x G — M be a proper isometric
right action of a Lie group G on a smooth Riemannian manifold M, which admits
a section X.

Then the restriction of differential forms induces an isomorphism

Qp

hor

(M) S ar(n)W )
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between the space of horizontal G-invariant differential forms on M and the space
of all differential forms on X which are invariant under the action of the generalized
Weyl group W (X) of the section X.

The proof of this theorem will take up the rest of this section.

Proof of injectivity. Let i : ¥ — M be the embedding of the section. It clearly
induces a linear mapping i* : Q7 (M)% — QP(Z)W®) which is injective by the
following argument: Let w € QF (M) with i*w = 0. For z € ¥ we have ixw, =0
for X € T,X since i*w = 0, and also for X € T,(G.x) since w is horizontal. Let
x € ¥ N M,eg be a regular point, then T, = (T,(G.z))* and so w, = 0. This holds
along the whole orbit through « since w is G-invariant. Thus w|M;eg = 0, and since
M:eg is dense in M, w = 0.

So it remains to show that i* is surjective. This will be done in 10.10 below. O

10.4. Lemma. Let { € V* be a linear functional on a finite dimensional vector
space V', and let f € C*(V,R) be a smooth function which vanishes on the kernel
of £, so that f|¢=1(0) = 0. Then there is a unique smooth function g such that
f=tg

Proof. Choose coordinates z',...,z" on V with £ = z'. Then f(0,2%,...,2") =0
and we have f(z!,...,2") = fol O f(tat, 22, ... x)dt.xt = g(at,...,2").2t. O

10.5. Question. Let G — GL(V) be a representation of a compact Lie group in a
finite dimensional vector space V. Let p = (p1,.-.,pm) : V — R™ be the polynomial
mapping whose components p; are a minimal set of homogeneous generators for the
algebra R[V'|¥ of invariant polynomials.

We consider the pullback homomorphism p* : QP (R™) — QP (V). Is it surjective

onto the space Qﬁor(V)G of G-invariant horizontal smooth p-forms on V ?

See remark 10.7 for a class of representations where the answer is yes.

In general the answer is no. A counterexample is the following: Let the cyclic
group Z, = Z/nZ of order n, viewed as the group of n-th roots of unity, act on
C = R? by complex multiplication. A generating system of polynomials consists of
p1 = |z|%, p2 = Re(z"), p3 = Im(2™). But then each dp; vanishes at 0 and there is
no chance to have the horizontal invariant volume form dx A dy in p*Q(R?).

10.6. Theorem. ([24] and [25]) Let G — GL(V) be a polar representation of a
compact Lie group G, with section ¥ and generalized Weyl group W = W ().
Then the pullback to ¥ of differential forms induces an isomorphism

Qp

hor (V)¢ = 22(2)VE).

According to Dadok [11], remark after proposition 6, for any polar representation
of a connected Lie group the generalized Weyl group W (X) is a reflection group.
This theorem is true for polynomial differential forms, and also for real analytic
differential forms, by essentially the same proof.

Proof. Let i : ¥ — V be the embedding. It is proved in 10.3 that the restriction

QP (V)G = QP(2)W(E) s injective, so it remains to prove surjectivity.
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Let us first suppose that W = W (X) is generated by reflections (a reflection
group or Coxeter group). Let py, ..., p, be a minimal set of homogeneous generators
of the algebra R[X]" of W-invariant polynomials on . Then this is a set of
algebraically independent polynomials, n = dim ¥, and their degrees dy, ..., d, are
uniquely determined up to order. We even have (see [16])

(1) dy...d, = |W|, the order of W,
(2) di+---+d, =n+ N, where N is the number of reflections in W,
(3) TI, (1 + (d; — 1)t) = ap + ait + -+ + ant™, where a; is the number of
elements in W whose fixed point set has dimension n — i.
Let us consider the mapping p = (p1,-.-,pn) : ¥ — R* and its Jacobian J(z) =
det(dp(z)). Let x',..., 2" be coordinate functions in ¥. Then for each 0 € W we
have

J.da:l/\---/\da;”:dpl/\---/\dpnza*(dpl/\---/\dpn)
= (Joa)o*(dz* A--- Ndz™) = (J o o) det(o)(dx* A--- Adz™),
(4) Joo =det(ch)J.

If J(z) # 0, then in a neighborhood of z the mapping p is a diffeomorphism by
the inverse function theorem, so that the 1-forms dpy,...,dp, are a local coframe
there. Since the generators p1,. .., p, are algebraically independent over R, J # 0.
Since J is a polynomial of degree (dy — 1) + -+ + (d, — 1) = N (see (2)), the set
U =13\ J71(0) is open and dense in ¥, and dpx, ..., dp, form a coframe on U.
Now let (04)a=1,....n be the set of reflections in W, with reflection hyperplanes
H,. Let {, € ¥* be a linear functional with H, = ¢~1(0). If z € H, we have
J(z) = det(0q)J(04.2) = —J(x), so that J|H, = 0 for each a, and by lemma 10.4

we have
(5) J:C.gl...gN.

Since J is a polynomial of degree N, ¢ must be a constant. Repeating the last
argument for an arbitrary function g and using (5), we get:

(6) If g € C° (2, R) satisfies goo = det(oc~!)g for each ¢ € W, we have g = J.h
for h e C=°(Z,R)W.
(7) Claim. Let w € QP(X)". Then we have

w = Z wj1~~~jpdpj1 A=A dpjp,

J1<<Jp

where wj, . ;, € C®(Z,R)W.

Since dp,...,dp, form a coframe on the W-invariant dense open set U = {z :
J(x) # 0}, we have

wlU=" > g jdpi|UA---Adp;,|U

J1<-<Jp
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for gj,..;, € C*°(U,R). Since w and all dp; are W-invariant, we may replace g;, ...
by

Jp

ﬁ Z 9ir..j, 00 € C(URW,
oeWw

or assume without loss that g;,.. ; € C(U,R)W.
Let us choose now a form index i1 < -+ < ip with {ipy1 < -+ < i} =
{1,...,n}\ {i1 <--- <ip}. Then for some sign ¢ = +1 we have

wlU Ndpi, o, N+ Ndp;, = €.9i,..i,-dpr N -+ Ndpy,
=€.9,..i, Jdzt A - Adz™, and
(8) wAdpi, ., N+ Ndpi, = ek i dzt A+ Ada"

for a function k;, .5, € C*°(%,R). Thus
(9) kiy..ip|U = giy..i-J|U.

Since w and each dp; is W-invariant, from (8) we get k;,. ;, 00 = det(ail)kilmip
for each 0 € W. But then by (6) we have k;,. 5, = wi,..4,-J for unique w;, . ;, €
C>(Z,R)", and (9) then implies Wiy ...i,|U = gi,...i,» 50 that the claim (7) follows
since U is dense.

Now we may finish the proof of the theorem in the case that W = W(X) is a
reflection group. Let ¢ : ¥ — V be the embedding. By theorem 9.10 the algebra
R[V']¢ of G-invariant polynomials on V is isomorphic to the algebra R[X]" of W-
invariant polynomials on the section X, via the restriction mapping ¢*. Choose
polynomials jy,...p, € R[V]¥ with p; 0i = p; for all i. Put g = (p1,...,pn) :
V — R". In the setting of claim (7), use the theorem 3.7 of G. Schwarz to find
hiy,....i, € C°(R",R) with h;, .. ;, o p = wj,,.. 4, and consider

P

D= (hjy.j, 0 Pdpjy A Ndpy,,

J1<<Jp

which is in QF (V)¢ and satifies i*® = w.
Thus the mapping i* : Q) (V)¢ — QF
W =W(X) is a reflection group.
Now we treat the general case. Let G be the connected component of G. From
8.19.(3) one concludes:

()W is surjective in the case that

A subspace X of V' is a section for G if and only if it is a section for
Go. Thus p is a polar representation for G if and only if it is a polar
representation for Gy.
The generalized Weyl groups of ¥ with respect to G and to Gy are related by
W(Go) = N, (X)/Z6,(X) C W(G) = Ng(X)/Za (X)),
since Z(;(Z) N Ng, (Z) =Zg, (Z)
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Let w € QP(Z)V(&) c QP(2)W(Go) | Since Gy is connected the generalized Weyl
group W (Gy) is generated by reflections (a Coxeter group) by [1], remark after
proposition 6. Thus by the first part of the proof

it QP

hor

(V)Go = QP(E)W(GO)

is an isomorphism, and we get ¢ € Qﬁor(M)GO with "¢ = w. Let us consider

P = /Gg*wdg e Qb (M),

where dg denotes Haar measure on G. In order to show that i*¢ = w it suffices to
check that i*g*¢p = w for each g € G. Now ¢(X) is again a section of G, thus also
of Gy. Since any two sections are related by an element of the group, there exists
h € Gy such that hg(¥X) = X. Then hg € Ng(X) and we denote by [hg] the coset
in W(G), and we may compute as follows:

(i*9")e = (970)a-A'Ti = py(q) AT g.APTi
= (h*Q) () APTg.APTi, since p € QP (M)

hor

= Phg(a) AT (hg) APTi = @ifng)(a) AP Ti-APT ([hg])
= Pilhg)(a)- AP TN T ([hg]) = (i" @) ng)(z)-A"T ([hg])
= Wing)(x)-A'T([hg]) = [hg]'w =w. O

10.7. Remark. The proof of theorem 10.6 shows that the answer to question 10.5
is yes for the representations treated in 10.6.

10.8. Corollary. Letp:G — O(V,{ , )) be an orthogonal polar representation
of a compact Lie group G, with section ¥ and generalized Weyl group W = W (X).
Let B C 'V be an open ball centered at 0.

Then the restriction of differential forms induces an isomorphism

Qp

hor

(B)YY S ar(znB)WO),

Proof. Check the proof of 10.6 or use the following argument. Suppose that B =
{v € V:|v] <1} and consider a smooth diffeomorphism f : [0,1) — [0,00) with
f(t) = t near 0. Then g(v) := %v is a G-equivariant diffeomorphism B — V
and by 10.6 we get:

B¢ % qr (118 2 s Ly orsn )W, O

hor

QP

hor

10.9. Let us assume that we are in the situation of the main theorem 10.3, for the
rest of this section. For z € M let S, be a (normal) slice and G, the isotropy group,
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which acts on the slice. Then G.S, is open in M and G-equivariantly diffeomorphic
to the associated bundle G — G/G, via

GxSy —1 Gxg, S —— G.S,

! &

G/G, —— G.m,

where r is the projection of a tubular neighborhood. Since ¢ : G x S; = G x¢g, Sz is
a principal G;-bundle with principal right action (g, s).h = (gh, h™!.s), we have an
isomorphism ¢* : Q(G x@, Sz) = Qa, —hor(G X Sz)%=. Since ¢ is also G-equivariant
for the left G-actions, the isomorphism ¢* maps the subalgebra Qﬁor(G.Sw)G &
QP (Gxa, S2)% of UG x¢, S;) to the subalgebra 7, (S2)% of Qa, nor (G X
S2)%. So we have proved:

»—hor

Lemma. In this situation there is a canonical isomorphism
G = G
oy (G.Sy) —)Q’C’;Fhor(Sm)

which is given by pullback along the embedding S, — G.S,.

10.10. Rest of the proof of theorem 10.6. Let us consider w € Q(Z)W ),
We want to construct a form @ € QF (M)“ with i*& = w. This will finish the
proof of theorem 10.6.

Choose z € ¥ and an open ball B, with center 0 in T, M such that the Riemann-
ian exponential mapping exp, : T, M — M is a diffeomorphism on B,. We consider
now the compact isotropy group G, and the slice representation p, : G, — O(V,),
where V,, = Nor,(G.z) = (T,(G.z))* C T, M is the normal space to the orbit. This
is a polar representation with section 7,3, and its generalized Weyl group is given
by W(T,X) =2 Ng(X) NGy /Za(E) = W(E), (see 9.4). Then exp, : B, NV, = S,
is a diffeomorphism onto a slice and exp,, : B,NT,X = X, C X is a diffeomorphism
onto an open neighborhood ¥, of z in the section X.

Let us now consider the pullback (exp|B, N T,X)*w € QP(B, N T,T)W(T=>),
By corollary 10.8 there exists a unique form @* € ng—hor(BI N V,)% such that
i*¢® = (exp|B; N T3 X)*w, where i, is the embedding. Then we have

((exp|B, NV,) H) % o® € 979 (S,)Ce

»—hor

and by lemma 10.9 this form corresponds uniquely to a differential form w® €
QF (G.S,)¢ which satisfies (i|X,)*w” = w|XE,, since the exponential mapping com-
mutes with the respective restriction mappings. Now the intersection G.S, N X is
the disjoint union of all the open sets w;(X;) where we pick one w; in each left
coset of the subgroup W (%), in W(X). If we choose g; € Ng(X) projecting on w;
for all j, then

(105 (52)) " = (b, 0 1[5, 0 w7 ) w?
= (w;l)*(i|2x)*€;jw””
= (W) (Za) " = (wj)* (W]Bs) = wlwi(E),
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so that (i|G.S; N X)*w® = w|G.S,; N E. We can do this for each point z € X.

Using the method of 5.8 and 5.10 we may find a sequence of points (z,)nen in
¥ such that the 7(X,, ) form a locally finite open cover of the orbit space M /G =
Y /W(Z), and a smooth partition of unity f, consisting of G-invariant functions
with supp(f,) C G.S;,. Then @ = ), fow®™ € QF (M)% has the required
property i*wo =w. 0O
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11. Basic versus equivariant cohomology

11.1. Basic cohomology. For a Lie group G and a smooth G-manifold M, by
10.2 we may consider the basic cohomology HY_,...(M) = HP(Q, . (M)9,d).

hor

11.2. Equivariant cohomology, Borel model. For a topological group and
a topological G-space the equivariant cohomology was defined as follows, see [3]:
Let EG — BG be the classifying G-bundle, and consider the associated bundle
EG xg M with standard fiber the G-space M. Then the equivariant cohomology
is given by HP(EG x¢g M;R).

11.3. Equivariant cohomology, Cartan model. For a Lie group G and a
smooth G-manifold M we consider the space

(S*e* ® QF(M))“

of all homogeneous polynomial mappings « : g — QP(M) of degree k from the Lie
algebra g of G to the space of k-forms, which are G-equivariant: a(Ad(g~!)X) =
{;a(X) for all g € G. The mapping

dg : AL(M) = AG™ (M)
ALM) = P (S*g" 0P (M)9

2k+p=q
(dga)(X) := d(a(X)) —icxa(X)

satisfies dg o dg = 0 and the following result holds.

Theorem. Let G be a compact connected Lie group and let M be a smooth G-
manifold. Then
HP(EG xg M;R) = HP (AL (M), dy).

This result is stated in [1] together with some arguments, and it is attributed to
[6], [7] in chapter 7 of [2]. I was unable to find a satisfactory published proof.

11.4.. Let M be a smooth G-manifold. Then the obvious embedding j(w) = 1®w
gives a mapping of graded differential algebras
hor

(M) — (S @ QP(M))Y — P(S*g™ @ Q7 *F(M))“ = AL (M).
k
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On the other hand evaluation at 0 € g defines a homomorphism of graded differen-
tial algebras evy : A% (M) — Q*(M)%, and evgoj is the embedding Q. (M)Y —
Q*(M)%. Thus we get canonical homomorphisms in cohomology

HP(Q5,,(M)%) —L— HP(A5(M),dy) —— HP(Q*(M)%,d)
Hg—basic(M) — Hg‘(M) E— H‘D(M)G

If G is compact and connected we have HP(M)“ = HP(M), by integration and
homotopy invariance.
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