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�

�� Introduction

Let S�n� denote the space of symmetric n � n matrices with entries in R and
O�n� the orthogonal group	 Consider the action�

� � O�n� � S�n� �� S�n�

�A�B� �� ABA�� � ABA t

If � is the space of all real diagonal matrices and Sn the symmetric group on n
letters� then we have the following

���� Theorem�

��� � meets every O�n��orbit�
��� If B � � � then ��O�n�� B� � �� the intersection of the O�n��orbit through

B with �� equals the Sn�orbit through B� where Sn acts on B � � by
permuting the eigenvalues�

�
� � intersects each orbit orthogonally in terms of the inner product hA�Bi �
tr�AB t� � tr�AB� on S�n��

��� R �S�n��
O�n�

� the space of all O�n��invariant polynomials in S�n� is isomor�

phic to R ���
Sn � the symmetric polynomials in � �by restriction��

��� The space C� �S�n��O�n� of O�n��invariant C��functions is isomorphic to

C� ���Sn � the space of all symmetric C��functions in � �again by restric�
tion�� and these again are isomorphic to the C��functions in the elementary
symmetric polynomials�

��� The space of all O�n��invariant horizontal p�forms on S�n�� that is the
space of all O�n��invariant p�forms � with the property iX� � � for all X �
TA�O�n��A�� is isomorphic to the space of Sn�invariant p�forms on ��

� p
hor�S�n��O�n� �� �p���Sn

Proof� ���	 Clear from linear algebra	
��� The transformation of a symmetric matrix into normal form is unique except

for the order in which the eigenvalues appear	
�
� Take an A in �	 For any X � o�n�� that is for any skew�symmetric X � let

�X denote the corresponding fundamental vector �eld on S�n�	 Then we have

�X �A� �
d

dt

����
t��

expe�tX�A expe�tX
t� �

� XAid � idAX t � XA�AX�
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� �	 Introduction� �	�

Now the inner product with � � TA� �� � computes to

h�X�A�� �i � tr��X �A��� � tr��XA�AX��� �

� tr�XA�� �z �
�X�A

�� tr�AX�� � tr�X�A�� tr�X�A� � ��

��� If p � R �S�n��
O�n�

then clearly �p �� pj� � R ���
Sn 	 To construct p from �p

we use the result from algebra� that R �Rn �
Sn is just the ring of all polynomials in

the elementary symmetric functions	 So if we use the isomorphism�

A ��

�BB�
a� � � � � �
� a� � � �
			

			
	 	 	

� � � � � an

�CCA �� �a�� a�� � � � � an� �� a

to replace Rn by �� we �nd that each symmetric polynomial �p on � is of the form

�p�A� � �p����A�� ���A�� � � � � �n�A���

it can be expressed as a polynimial �p in the elementary symmetric functions

�� � �x� � x� � � � � � xn

�� � x�x� � x�x� � � � �

� � �

�k � ����k
X

j������jk

xj� � � � xjk

� � �

�n � ����nX� � � � xn�

Let us consider the characteristic polynomial of the diagonal matrix X with eigen�
values x�� � � � � xn�

nY
i��

�t� xi� � tn � ���t
n�� � � � �� �n���t � �n

� det�t�Id�X�

�

nX
i��

ticn�i�X�� where

ck�Y � � tr��kY � �k
R
n � �k

R
n �

is the k�th characteristic coe�cient of a matrix A	 So the �i extend to O�n��
invariant polynomials ci on S�n�	 So we can now extend �p to a polynomial on S�n�
by

�p�H� �� �p�c��H�� c��H�� � � � � cn�H�� for all H � S�n��
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�	 Introduction� �	� �

and �p is an O�n��invariant polynomial on S�n�� and unique as such due to ���	

��� Again we have that f � C� �S�n��
O�n�

implies �f �� f j� � C� ���
Sn 	 Find�

ing an inverse map �f �� f as above is possible due to the following theorem by
Gerald Schwarz �see chapter 
� �

Let G be a compact Lie group with a �nite�dimensional representation G ��
GL�V �� and 	�� 	�� � � � � 	k generators for the algebra R �V �G of G�invariant polyno�
mials on V �this space is �nitely generated as an algebra due to Hilbert� see chapter

��� Then� for any smooth function h � C� �V �
G
� there is a function �h � C� �Rk 	

such that h�v� � �h�	��v�� � � � � 	k�v���
Now we can prove the assertion as in ��� above	 Again we take the sym�

metric polynomials ��� � � � � �n as generators of R ���Sn 	 By Schwarz theorem
�f � C� ���Sn can be written as a smooth function in ��� � � � � �n	 So we have
an �f � C� �Rn � such that

�f�A� � �f����A�� � � � �n�A�� for all A � �

If we extend the �i onto S�n� as in ���� we can de�ne

f�H� �� �f�c��H�� c��H�� � � � � cn�H�� for H � S�n��

f is again a smooth function and the unique O�n��invariant extension of �f 	
��� Consider � � ���� � � � � �n� � � � Rn and put J�x� �� det�d��x��	 For each


 � Sn we have

J�dx� 	 � � � 	 dxn � d�� 	 � � � 	 d�n
� 
�d�� 	 � � � 	 d�n
� �J 
 
��
�dx� 	 � � � 	 dxn
� �J 
 
�� det�
��dx� 	 � � � 	 dxn

J 
 
 � det�
����J���

From this we see �rstly that J is a homogeneous polynomial of degree

� � � � � � �� �n� �� � n�n���
� �



n

�

�
�

The mapping � is a local di�eomorphism on the open set U � � n J������ thus
d��� � � � � d�n is a coframe on U � i	e	 a basis of the cotangent bundle everywhere on
U 	 Let �ij� be the transpositions in Sn� let H�ij� �� fx � � � xi � xj � �g be
the re!ection hyperplanes of the �ij�	 If x � H�ij� then by ��� we have J�x� �
J��ij�x� � �J�x�� so J�X� � �	 Thus J jH�ij� � �� so the polynomial J is divisible

by the linear form xi � xj � for each i � j	 By comparing degrees we see that

��� J�x� � c�
Y
i�j

�xi � xj�� where � �� c � R�
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By the same argument we see that�

��� If g � C���� satis�es g 
 
 � det�
����g for all 
 � Sn� then g � J�h for
h � C����Sn 	

���� Claim ����� Let � � �p���Sn 	 Then we have

� �
X

j��j������jp

�j������jp d�j� 	 � � � 	 d�jp

on �� for �j������jp � C����Sn 	

To prove claim ���� recall that d��� � � � � d�n is an Sn�invariant coframe on the
Sn�invariant open set U 	 Thus

�jU �
X

j��j������jp

gj������jp� �z �
�C��U�

d�j� 	 � � � 	 d�jp

�
X

j��j������jp

�
�
n

X
��Sn


�gj������jp



� �z �
hj������jp�C

��U�Sn

d�j� 	 � � � 	 d�jp���	�

Now choose I � fi� � � � � � ipg � f�� � � � � ng and let �I � f�� � � � � ng n I � fip	� �
� � � � ing	 Then we have for a sign � � 
�

�jU 	 d�ip�� 	 � � � 	 d�in� �z �
d��I

� ��hI �d�� 	 � � � 	 d�n

� ��hI �J�dx
� 	 � � � 	 dxn�

On the whole of � we have

� 	 d� 
I � ��kI �dx
� 	 � � � 	 dxn

for suitable kI � C����	 By comparing the two expression on U we see from ���
that kI 

 � det�
����kI since U is dense in �	 So from ��� we may conclude that
kI � J��I for �I � C����Sn � but then hI � �I jU and � �

P
I �I d�

I as asserted
in claim ����	

Now we may �nish the proof	 By the theorem of G	 Schwartz there exist fI �
C��Rn � with �I � fI���� � � � � �n�	 Recall now the characteristic coe�cients ci �
R�S�n�� from the proof of ��� which satisfy cij� � �i	 If we put now

�� ��
X

i������ip

fi������ip�c�� � � � � cn� dci� 	 � � � 	 dcip � �p
hor�S�n��O�n�

then the pullback of �� to � equals �	 �
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�� Polynomial Invariant Theory

���� Theorem of Hilbert and Nagata� Let G be a Lie group with a �nite�
dimensional representation G �� GL�V � and let one of the following conditions be
ful�lled�

��� G is semisimple and has only a �nite number of connected components
��� V and hG�fi

R
are completely reducible for all f � R �V � �see Nagata	s

lemma�

Then R �V �
G
is �nitely generated as an algebra� or equivalently� there is a �nite set

of polynomials 	�� � � � � 	k � R �V �
G
� such that the map 	 �� �	�� � � � � 	k� � V �� Rk

induces a surjection

R
�
R
k
�

ww
	�

R �V �
G
�

Remark� The �rst condition is stronger than the second since for a connected�
semisimple Lie group� or for one with a �nite number of connected components�
every �nite dimensional representation is completely reducible	 To prove the the�
orem we will only need to know complete reducibility for the �nite dimensional
representations V and hG�fi

R
though �as stated in ����	

���� Lemma� Let A � �i��Ai be a connected graded R�algebra �that is A� � R��
If A	 �� �i��Ai is �nitely generated as an A�module� then A is �nitely generated
as an R�algebra�

Proof� Let a�� � � � � an � A	 be generators of A	 as an A�module	 Since they can
be chosen homogeneous� we assume ai � Adi for positive integers di	
Claim	 The ai generate A as an R�algebra� A � R�a� � � � � � an�

We will show by induction that Ai � R �a�� � � � � an� for all i	 For i � � the
assertion is clearly true� since A� � R	 Now suppose Ai � R �a�� � � � � an� for all
i � N 	 Then we have to show that

AN � R �a�� � � � � an�

as well	 Take any a � AN 	 Then a can be expressed as

a �
X
i�j

cijai cij � Aj

Since a is homogeneous of degree N we can discard all cijai with total degree

j � di �� N from the righthand side of the equation	 If we set ciN�di �� ci we get

a �
X
i

ciai
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 �	 Polynomial invariant theory� �	�

In this equation all terms are homogeneous of degree N 	 In particular� any occurring
ai have degree di � N 	 Consider �rst the ai of degree di � N 	 The corresponding ci

then automatically lie in A� � R� so ciai � R �a�� � � � � an�	 To handle the remaining
ai we use the induction hypothesis	 Since ai and ci are of degree � N � they are
both contained in R �a�� � � � � an�	 Therefore� ciai lies in R �a�� � � � � an� as well	 So
a �

P
ciai � R �a�� � � � � an�� which completes the proof	 �

Remark� If we apply this lemma for A � R �V �G we see that to prove �	� we only

have to show that R �V �
G
	� the algebra of all invariant polynomials of strictly positive

degree� is �nitely generated as a module over R �V �G	 The �rst step in this direction
will be to prove the weaker statement�

B �� R �V ��R �V �
G
	 is �nitely generated as an ideal	

It is a consequence of a well known theorem by Hilbert�

���� Theorem� �Hilbert	s ideal basis theorem� If A is a commutative Noetherian
ring� then the polynomial ring A �x� is Noetherian as well�

A ring is Noetherian if every strictly ascending sequence of left ideals I� � I� �
I� � � � � is �nite� or equivalently� if every left ideal is �nitely generated	 If we choose
A � R� the theorem states that R �x� is again Noetherian	 Now consider A � R �x��
then R �x� �y� � R �x� y� is Noetherian� and so on	 By induction� we see that R �V � is
Noetherian	 Therefore� any left ideal in R �V �� in particular B� is �nitely generated	

Proof of 
��� Take any ideal I � A �x� and denote by Ai the set of leading coe�cients
of all i�th degree polynomials in I 	 Then Ai is an ideal in A� and we have a sequence
of ideals

A� � A� � A� � � � � � A�

Since A is Noetherian� this sequence stabilizes after a certain index r� i	e	 Ar �
Ar	� � � � � 	 Let fai�� � � � � ainig be a set of generators for Ai �i � �� � � � � r�� and pij
a polynomial of degree i in I with leading coe�cient aij 	
Claim	 These polynomials generate I 	

Let P � hpijiA�x� � A �x� be the ideal generated by the pij 	 P clearly contains all
constants in I �A� � I�	 Let us show by induction that it contains all polynomials
in I of degree d 
 � as well	 Take any polynomial p of degree d	 We distinguish
between two cases	
��� Suppose d � r	 Then we can �nd coe�cients c�� � � � � cnd � A such that

�p �� p� c�pd� � c�pd� � � � �� cndpdnd

has degree � d	
��� Suppose d 
 r	 Then the leading coe�cients of xd�rpr�� � � � � x

d�rprnr � I
generate Ad	 So we can �nd coe�cients c�� � � � � cnr � A such that

�p �� p� c�x
d�rpr� � c�x

d�rpr� � � � �� cnrx
d�rprnr

has degree � d	
In both cases we have p � �p � P and deg �p � d	 Therefore by the induction

hypothesis �p� and with it p� lies in P 	 �

To prove theorem �	� it remains only to show the following
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�	 Polynomial invariant theory� �	� �

���� Lemma� Let G be a Lie group acting on V such that the same conditions as

in Hilbert and Nagata	s theorem are satis�ed� Then for f�� � � � � fk � R �V �
G
�

R �V �G � hf�� � � � � fkiR�V � � hf�� � � � � fkiR�V �G

where the brackets denote the generated ideal �module� in the speci�ed space�


��� Remark� In our case� if we take fi � 	i � R �V �
G
	 to be the �nite system of

generators of B as an ideal in R �V �� we get�

R �V �
G
	 � R �V �

G �B � h	�� � � � � 	kiR�V �G

That is� the 	i generate R �V �
G
	 as a R �V �

G
�module	 With lemma �	�� Hilbert and

Nagata s theorem follows immediately	


�
� Remark� The inclusion ��� in lemma �	� is trivial	 If G is compact� then the
opposite inclusion

R �V �
G � hf�� � � � � fkiR�V � � hf�� � � � � fkiR�V �G

is easily seen as well	 Take any f � R �V �
G�hf�� � � � � fkiR�V � 	 Then f can be written

as
f �

X
pifi pi � R �V ��

Since G is compact� we can integrate both sides over G using the Haar measure dg
to get

f�x� �

Z
G

f�g�x�dg �
X
i

Z
G

pi�g�x�fi�g�x�dg �
X
i

�

Z
G

pi�g�x�dg�� �z �
�
p�i �x�

fi�x��

The p�i are G�invariant polynomials� therefore f is in hf�� � � � � fkiR�V �G 	

To show the lemma in its general form we will need to �nd a replacement for
the integral	 This is done in the central

���� Lemma ����� Under the same conditions as theorem 
��� to any f � R �V �

there is an f� � R �V �
G � hG�fi

R
such that

f � f� � hGf �Gfi
R
�

Proof� Take f � R �V �	 Clearly� f is contained in Mf �� hG�fi
R

� where f� is
supposed to lie as well	 Mf is a �nite dimensional subspace of R �V � since it is
contained in

Mf �
M

i�deg f

R �V �i�

In addition we have that

hG�f �G�fi
R

�� Nf �Mf
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is an invariant subspace	 So we can restrict all our considerations to the �nite
dimensional G�space Mf which is completely reducible by our assumption	

If f � Nf � then we can set f� � � and are done	 Suppose f �� Nf 	 Then the f�

we are looking for must also lie in Mf nNf 	 From the identity

g�f � f � �g�f � f�� �z �
�Nf

for all g � G

it follows that
Mf � Nf � R�f�

In particular� Nf has codimension � in Mf 	
Since we require of f� to be G�invariant� R�f� will be a one dimensional G�

invariant subspace of Mf �not contained in Nf �	 As we just saw� Nf has codimen�
sion � in Mf � therefore R�f� will be a complementary subspace to Nf 	

If we now write Mf as the direct sum

Mf � Nf � P�

where P is the invariant subspace complementary to Nf guaranteed by the complete
irreducibility of Mf � then P is a good place to look for f�	

Now P �� Mf�Nf as a G�module� so let us take a look at the action of G on
Mf�Nf 	 Every element of Mf�Nf has a representative in R�f � so we need only
consider elements of the form �f � Nf �� � R�	 For arbitrary g � G we have�

g���f � Nf � � �g�f � Nf � �f � ��g�f � �f�� �z �
�Nf

�Nf � �f � Nf �

So G acts trivially on Mf�Nf and therefore on P 	 This is good news� since now
every f � � P is G�invariant and we only have to project f onto P �along Nf � to

get the desired f� � R �V �
G �Mf 	 �

Proof of lemma 
��� Recall that for arbitrary f�� � � � � fn we have to show

R �V �
G � hf�� � � � � fniR�V � � hf�� � � � � fniR�V �G �

We will do so by induction on n	 For n � � the assertion is trivial	

Suppose the lemma is valid for n � r � �	 Consider f�� � � � � fr � R �V �
G

and

f � R �V �
G � hf�� � � � � friR�V � 	 Then

f �
rX
i��

pifi pi � R �V ��

By Nagata s lemma �	�� we can approximate pi up to hG�pi �G�piiR by a p�i �
R �V �

G
	 So for some �nite subset F � G�G we have

pi � p�i �
X
s�t�F

�is�t�s�pi � t�pi� �is�t � R�
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Therefore we have

f �
rX
i��

p�i fi �
rX
i��

X
s�t�F

�is�t�s�pi � t�pi�fi � R �V �G �

It remains to show that the righthand side of this equation lies in hf�� � � � � friR�V �G 	

Notice that by the G�invariance of f �

rX
i��

�spi � tpi�fi � ��

For all s� t � G	 Therefore

r��X
i��

�s�pi � t�pi�fi � �t�pr � s�pr�fr�

Now we can use the induction hypothesis on

rX
i��

X
s�t�F

�is�t�s�pi � t�pi�fi �

�

r��X
i��

X
s�t�F

��is�t � �rs�t��s�pi � t�pi�fi � R �V �
G � hf�� � � � � fr��iR�V �

to complete the proof	 �


��� Remark� With lemma �	�� Hilbert and Nagata s theorem is proved as well	 So
in the setting of �	� we now have an exact sequence

� �� ker 	� �� R
�
R
k
� 	��� R �V �

G �� �

where ker 	� � fR � R �Rk � � R�	�� � � � � 	k� � �g is just the �nitely generated ideal
consisting of all relations between the 	i	

Since the action of G respects the grading of R �V � � �kR �V �k it induces an
action on the space of all power series� R ��V �� � "�

k��R �V �k� and we have the
following

���� Theorem� Let G �� GL�V � be a representation and 	�� � � � � 	k a system

of generators for the algebra R �V �G� Then the map 	 �� �	�� � � � � 	k� � V �� Rk

induces a surjection

R
��
R
k
�� 	��� R ��V ��G �

Proof� Write the formal power series f � R ��V ��
G

as the sum of its homogeneous
parts	

f�x� � f� � f��x� � f��x� � � � �
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Then to each fi�x� � R �V �
G
i there is a gi�y� � R �Rk � such that

fi�x� � gi�	��x�� � � � � 	k�x���

Before we can set
g�y� � g� � g��y� � g��y� � � � �

to �nish the proof� we have to check whether this expression is �nite in each degree	
This is the case� since the lowest degree �i that can appear in gi goes to in�nity
with i�

Write explicitly gi �
P

j� j�i Ai��y
� and take an Ai�� �� �	 Then deg fi � i �


�d� � � � � 
kdk where di � deg 	i and

�i � inffj
 j � i �
X


jdjg � � �i��� �

The following corollary is an immediate consequence	

���	� Corollary� If G is a Lie group with a �nite dimensional representation
G �� GL�V �� then under the same conditions as Hilbert and Nagata	s theorem

there is a �nite set of polynomials 	�� � � � � 	k � R �V �
G

such that the map 	 ��
�	�� � � � � 	k� � V �� Rk induces a surjection

R��Rk ��
	��� R��V ��G� �
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�� C��Invariant Theory of Compact Lie Groups

If G is a Lie group acting smoothly on a manifold M � then the orbit space M�G
is not generally again a smooth manifold	 Yet� it still has a functional structure
induced by the smooth structure on M simply by calling a function f � M�G �� R

smooth i� f 
 � � M �� R is smooth �where � � M �� M�G is the quotient map�	
That is� the functional structure on M�G is determined completely by the smooth
G�invariant functions on M 	 For compact Lie groups� the space of all G�invariant
C��functions on Rn is characterized in the theorem of Gerald Schwarz �������
which we already used in �	����	 In this chapter we will present the proof as found
in �
��� Chap	 IV	 In the following� let G always denote a compact Lie group�
� � G �� GL�V � a representation on V � Rn 	 Let 	�� � � � � 	k � R�V �G denote a
�nite system of generators for the algebra R�V �G� and let 	 denote the polynomial
mapping�

	 �� �	�� � � � � 	k� � V �� R
k �

���� De
nition� A mapping between two topological spaces f � X �� Y is called
proper� if K � Y compact implies f���K� � X is compact�

���� Lemma� Let G be a compact Lie group� Then we have

��� 	 is proper�
��� 	 separates the orbits of G�
�
� There is a map 	� � V�G �� Rk such that the following diagram commutes�

V w
	

uu
�

R
k

V�G

i
i
iij

	�

and 	� is a homeomorphism onto its image�

Proof�

��� Let r�x� � jx j� � hx� xi� where h � � � i is an invariant inner product on V 	

Then r � R �V �
G

	 By Hilbert s theorem there is a polynomial p � R
�
Rk
�

such that r�x� � p�	�x��	 If �xn� � V is an unbounded sequence� then
r�xn� is unbounded	 Therefore p�	�xn�� is unbounded� and� since p is a
polynomial� 	�xn� is also unbounded	 With this insight we can conclude
that any compact and hence bounded set in Rk must have a bounded inverse
image	 By continuity of 	� it must be closed as well	 So the inverse image
of a compact set under 	 is again compact� that is� 	 is proper	
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��� Choose two di�erent orbits G�x �� G�y �x� y � V � and consider the map�

f � G�x �G�y �� R f�v� ��

�
� for v � G�x
� for v � G�y

Both orbits are closed� so f is continuous	 Furthermore� both orbits and
with them their union are compact� since G is compact	 Therefore� by the
Weierstrass approximation theorem� there is a polynomial p � R�V � such
that

k p� f kG�x	G�y � supfj p�z�� f�z� j � z � G�x �G�yg � �

��

Now we can average p over the group using the Haar measure dg on G to
get a G�invariant function	

q�v� ��

Z
G

p�g�v�dg

Note that since the action of G is linear� q is again a polynomial	 Now let
us check that q approximates f equally well	 For v � G�x �G�y� we have����Z

G

f�g�v�dg� �z �
�f�v�

�
Z
G

p�g�v�dg

���� � Z
G

j f�g�v�� p�g�v� jdg � �

��

Z
G

dg� �z �
��

Recalling how f was de�ned� we get

j q�v� j � �

��
for v � G�x

j �� q�v� j � �

��
for v � G�y�

Therefore q�G�x� �� q�G�y�� and since q can be expressed in the Hilbert
generators� we can conclude that 	�G�x� �� 	�G�y�	

�
� Clearly� 	� is well de�ned	 By ��� 	� is injective and� with the quotient topol�
ogy on V�G� continuous	 So on every compact subset of V�G we know that
	� is a homeomorphism onto its image	 Now take any diverging sequence in
V�G	 It is the image under � of some equally diverging sequence in V 	 If
this sequence has an unbounded subsequence� then by ���� its image under
	 is unbounded as well� in particular divergent	 If the diverging sequence
in V �therefore its image under �� our starting sequence� is bounded� then
it is contained in a compact subset of V � our starting sequence is contained
in a compact subset of V�G� and here 	� is a homeomorphism	 Thereby� its
image under 	� is divergent as well	 So we have shown that a sequence in
V�G is convergent i� its image under 	� in Rk is convergent and� with that�
that 	� is a homeomorphism onto its image	 �
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���� Remark�

��� If f � V �� R is in C��V �G� then f factors over � to a continuous map
�f � V�G �� R	 By 
	��
� there is a continuous map �f � 	�V � �� R given by
�f � �f 
 	���	 It has the property f � �f 
 		 Since 	�V � is closed� �f extends
to a continuous function �f � C��Rk � �Tietze�Urysohn�	 So for continuous
functions we have the assertion that

	� � C��Rk � �� C��V �G is surjective	

��� 	�V � is a real semi algebraic variety� that is it is described by a �nite number
of polynomial equations and inequalities	 In the complex case� the image of
an algebraic variety under a polynomial map is again an algebraic variety�
meaning it is described by polynomial equations only	 In the real case this
is already disproved by the simple polynomial map� x �� x�	

���� Before we turn to Schwarz theorem� let us state here the extension theorem
of Whitney as found in ����� pp	 ��#��	 For K � Rn compact and m � N� assign
to each multi�index k � �k�� � � � � kn� � Nn� with j k j � j k� j � � � � � j kn j � m a
continuous function F k on K	 Then the family of functions �F k�j k j�m is called an
m�jet on K	 The space of all m�jets on K endowed with the norm

jF jKm �� sup
x�K�j k j�m

��F k�x�
��

shall be denoted by Jm�K�	 There is a natural map

Jm � Cm�Rn � �� Jm�K� � f �� �
�j k jf

�xk

����
K

�j k j�m�

By Whitney s �rst extension theorem its image is the subspace of all Whitney jets
de�ned as follows	 For each a � K there is a map Tm

a � Jm�K� �� R �Rn � given �in
multi�index notation� by

Tm
a F �x� �

X
j k j�m

�x � a�k

k$
F k�a�

which assigns to each m�jet its would�be Taylor polynomial of degree m	 With it
we can de�ne as the remainder term �an m�jet again��

Rm
a F �� F � Jm�Tm

a F ��

If F is the set of partial derivatives restricted to K of some Cm�function then in
particular

�W� �Rm
a F �k�y� � o�j a� y jm�j k j� for a� y � K� j k j � m and j a� y j � �

holds by Taylor s theorem	 We will call �W� the Whitney condition� and any m�jet
on K which satis�es �W� Whitney jet of order m on K	 The space of all Whitney
jets again forms a vector space and we endow it with the norm�

kF kKm � jF jKm � supf
�� �Rm

x F �k�y�
��

jx� y jm�j k j
� x� y � K� x �� y� j k j � mg

The space of all Whitney jets with the above norm is a Banach space and will be
denoted by Em�K�	
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Whitney�s Extension Theorem for Em�K�� For K � Rn compact� there is a
continuous linear map

W � Em�K� �� Cm�Rn �

such that for all Whitney jets F � Em�K� and for all x � K

DkW �F ��x� � F k�x� j k j � m

holds and the restriction of W �F � on Rn nK is smooth�

If we de�ne J��K� �resp	 E��K�� as the projective limit of the spaces Jm�K�
�Em�K�� we can extend the above theorem to the following

Whitney�s Extension Theorem for E��K�� For K � Rn compact� there is a
linear map

W� � E��K� �� C� �Rn �

such that for all Whitney jets F � E��K� and for all x � K

DkW��F ��x� � F k�x� for all k � Nn�

holds�

���� Remark� In general� the norm k � kKm generates a �ner topology on Em�K� than

j � jKm� yet there is a case when we can show that they are equal	 If K is connected
with respect to recti�able curves and the Euclidean distance on K is equivalent to
the geodesic distance �such a K is called ��regular�� then the two norms coincide	
This is shown roughly as follows	
By de�nition

jF jKm � kF kKm � jF jKm � supf
�� �Rm

x F �k�y�
��

jx� y jm�j k j
g�

So if we approximate supf j �R
m
x F �

k�y� j
jx�y jm�j k j

g by C�jF jKm� then we are done	 For a �xed

x � K let us denote

g �� Dk�W �F �� Tm
x F ��

Then g is in Cm�j k j�Rn � and !at of order m � j k j � � at x	 On K� g coincides
with �Rm

x F �k 	 Now� by a somewhat generalized mean value theorem� we have for
any recti�able curve � connecting x with y�

j g�y�� g�x� j � pnj� j supf��Djg���
�� � � � �� j j j � �g

Since Dkg�x� � � for all j k j � m� j k j we can iterate this inequality m� j k j � �
times� to get

j g�y� j � n
m�j k j

� j� jm�j k j supf��Djg���
�� � � � �� j j j � m� j k jg
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Furthermore� we can replace j� j by the geodesic distance ��x� y�� which is the
in�mum over all j� j� � as chosen above	 Now� if we choose x� y in K and substitute
back for g� then the above inequality implies��� �Rm

x F �k�y�
�� �

� n
m�j k j

� ��x� y�m�j k j supf��F j���� F j�x�
�� � � � K� j j j � mg �
� �n

m�jk j
� ��x� y�m�j k jjF jKm

Since ��x� y� � cjx� y j for all x� y � K� this gives us an approximation

supf
�� �Rm

x F �k�y�
��

jx� y jm�j k j
g � CjF jKm

which completes our proof	

So� for a ��regular K� we have that for every m � N� Em�K� carries the %usual&
topology of uniform convergence in each %derivative&	 In this case the assertion
that the operator W of the �rst Whitney extension theorem is continuous implies
that a sequence of functions in W �Em�K�� � Cm�Rk � which converges uniformly
in all derivatives on K does so on every other compact set as well	

If the j � jKm�topology coincides with the usual topology on Em�K� for all m as in
the above case� then the topology on the projective limit

�E��K� �� proj
m
�

�Em�K�� j � jKm�

coincides with the usual topology on E��K� as well	 So the topology on E��K� is

generated by the family of seminorms fj � jKm � m � N�g	 Although there is a natural
inclusion i � E��K� �� Em�K�� the restriction i�W of W � Em�K� �� Cm�Rn � does
not coincide with W�	 If it did� then W� would have to be continuous as well�
which is generally not the case	

There is one more result we will need	 It is a direct consequence of Whitney s
extension theorem if we take K � fxg �then E��K� �� R� �� but was discovered
and proved independently and much earlier ������ by Emile Borel	

Theorem of E� Borel� To any formal power series p � R ��Rn �� and x � Rn there
is a smooth function f � C� �Rn � with formal Taylor development p at x� �

Here we can see directly that the extension operator W� is not continuous�
because if it were� it would give an embedding of R� into C� �K� �where K � Rn

is any compact set containing x�	 But this is impossible� since R� has no continuous
norm	

��
� Theorem� Multidimensional Faa di Bruno formula� Let f � C��Rk ��
let g � �g�� � � � � gk� � C��Rn �Rk �� Then for a multiindex � � Nn the partial
derivative �
�f 
 g��x� of the composition is given by the following formula� where
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we use multiindex�notation heavily�

�
�f 
 g��x� �

�
X
��Nk

���f��g�x��
X

����i���N
k��Nnn��

P
�
�i���iP

i�
�i���


�$

�$

Y
��Nn

���



�


$

�P
i �i� Y

i����

���gi�x���i�

�
X

����i���N
k��Nnn��

P
i� �i���


�$

�$

Y
��Nn

���



�


$

�P
i
�i� �

�
P

� ��f
�

�g�x��
Y
i����

���gi�x���i�

This formula is attributed to Reinhold Hoppe ������ and in the form used above
to Faa di Bruno ������	

Proof� The proof of this goes roughly as follows	 The in�nite Taylor development
of the composition is the composition of the Taylor developments�

j��f 
 g��x� � j�f�g�x�� 
 jg�x��

j�f�y��z� �
X
��Rk

�

�$
��f�y�z�

�
X
��Rk

�

��$ � � � �k$
��f�y�z��� � � � z�kk

So we write down the Taylor series and compose them� using multinomial theorems�
and compute then one of the coe�cients	 The formula above comes up	 �

���� Theorem of Schwarz� � �
���
Let G be a compact Lie group� � � G �� O�V � a �nite�dimensional representation�

and 	�� 	�� � � � � 	k generators for the algebra R �V �G of G�invariant polynomials on
V �this space is �nitely generated as an algebra due to Hilbert� see chapter 
�� If
	 �� �	�� � � � � 	k� � V �� Rk � then

	� � C�
�
R
k
	 �� C� �V �G is surjective�

The actual proof of Gerald Schwarz theorem will take us the rest of this section	
But let us just begin now with some remarks and make some simpli�cations	

��� For the action of G � f
�g on R
� the result is due to Whitney ����	

��� If G � Sn acting on Rn by the standard representation it was shown by
G	Glaeser ����

�
� It is easy to see that 	�C�
�
Rk
	

is dense in C� �V �G in the compact
C��topology	 Therefore� Schwarz theorem is equivalent to the assertion�

	�C�
�
Rk
	

is closed in C� �V �
G

	 If 	�� � � � � 	k can be chosen algebraically
independent� then this follows from a theorem by Glaeser �see �����	

��� To start out with� notice that the Hilbert polynomials can be chosen homo�
geneous and of positive degree� Since the action of G is linear� the degree
of a polynomial p � R �V � is invariant under G	 Therefore� if we split
each Hilbert polynomial up into its homogeneous parts� we get a new set
of Hilbert polynomials	 Let us denote these by 	i and the corresponding
degrees by di 
 �	
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���� Corollary� Under the same conditions as ����

	� � C�� �Rk � �� C�� �V �G is surjective�

where C�� denotes the space of all germs at � of C��

Proof� C� �V �
G � ����� C�� �V �G is surjective� since for any f � C�� �V �G there is

a representative f � � C� �V �� and with it f �� ��
R
G ��g��f �dg � C� �V �

G
also

represents f 	 By Schwarz theorem� f �� � h 
 	 for some h � C� �Rk 		 �

���� Corollary� Under the same conditions as ���� also for spaces of smooth
functions with compact supports we have�

	� � C�c �Rk � �� C�c �V �G is surjective�

Proof� For f � C�C �V �G by 
	� there is an �f � C� �Rk 	 such that f � 	� �f � �f 
		

Since f � �f 
 	 has compact support it vanishes outside some large compact ball
B � V 	 Then 	�B� is contained in some larger ball B� � Rk 	 Take h � C�c �Rk �

with hjB� � �	 Then �h 
 	�jB � � and thus �h� �f� 
 rh � �f 
 	 � f 	 �

���	� Lemma� It su�ces to prove theorem ��� for representations with zero as
the only �xed point�

Proof� Decompose V into the subspace of all �xed points and its orthogonal com�
plement�

V � Fix�G�� �z �
�
U

�Fix�G��� �z �
�
W

Then W is an invariant subspace with only the one �xed point� �	 Let ��� � � � � �n be

generators of R�W �G such that �� � C� �Rn� �� C� �W �
G

is surjective	 Consider
the following diagram� where '� denotes projective tensor product	 Note� that in
this case it coincides with the injective tensor product� since C��V � is a nuclear
Fr(echet space	 From this it follows that the horizontal maps on the bottom and on
the top are homeomorphisms	

C��U� '�C��Rn �

u
C��U� '���

w
�� C��U � R

n �

u

C��U� '�C��W �G ww C� �U �W �G

C��U� '�C��W �

u

C��U� '� R
G
��g��dg

w
�� C��U �W �

uR
G

)��g��dg

Starting from the bottom� notice that C��U� '� RG ��g��dg and
R
G

)��g��dg are sur�
jective	 Therefore� the horizontal map in the center is surjective	 By our assump�
tion� C��U� '��� is also surjective� so we can conclude that the map on the top
right is surjective as well	 But this map is just 	� for 	 �� �idU � ��� and we are
done	 �
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����� We shall use the following notation� For a manifold M and a closed subman�
ifold K �M let

C��M *K� �� ff � C��M� � f is !at along Kg�

Lemma� For the proof of theorem ��� it su�ces to show that

C��V * ��G
	��� C��Rk * �� is surjective�

Proof� Consider the following diagram�

� ����� C� �Rn * ��
G i����� C� �Rn �

G t����� R ��V ��
G ����� �

	�
x�� 	�

x�� 	�
x��

� ����� C�
�
R
k * �

	 ����� C�
�
R
k
	 T����� R

��
R
k
�� ����� �

The right 	� is surjective by corollary �	��	 The map T on the lower righthand
side assigns to each function its formal Taylor series at zero	 It is surjective by
the theorem of E	 Borel	 The same goes for the map t above it	 Just take any

smooth function f � C� �Rn � with a given formal Taylor series in R ��V ��
G

and

integrate it over G	 The resulting function lies in C� �Rn �G and has the same
formal Taylor development since this was G�invariant to begin with	 Clearly� the

space C� �Rn * ��
G

embedded in C� �Rn �
G

is just the kernel of t	 So the top
sequence is exact	 The same goes for the bottom sequence	 Now suppose we knew
that the left 	� is surjective as well� then we could conclude that the 	� in the

middle is surjective by the following diagram chase	 Take any f � C� �Rn �
G

and

consider t�f�	 Then there is a power series p � R
��
R
k
��

with 	��p� � t�f� and a

smooth function g � C�
�
R
k
	

with T �g� � p	 Now f � 	�g � Ker t � Im i� and
by the surjectivity of the 	� on the lefthand side of the diagram� we can �nd an
h � C�

�
R
k
	

such that 	�h � f � 	�g	 So f � 	��g � h� and the central 	� is
surjective as well	 �

The proof will involve transforming everything into polar coordinates� so let us
start with the following lemma	

����� Lemma� Let � � ������Sn�� �� Rn be the polar coordinate transformation
��t� x� � tx� Then

C�������� Sn���

��� C��Rn �

satis�es

��� �� is injective�
��� ���C��Rn * ��� � C�������� Sn��* �� Sn����

Proof� ��� is clear since � is surjective	 Let us go on to ���	 Here it is easy to see
the inclusion

���C��Rn * ��� � C�������� Sn��* �� Sn����
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If f � Rn �� R is smooth and !at at zero� then ���f� � f 
 � is smooth and !at
at ������ � �� Sn��	 Now let us show the converse	 On ������ Sn��� � has an
inverse ��� � Rn nf�g �� ������Sn�� given by ����x� � �jx j� �

jx jx�	 Take a chart

�Ui� ui� of Sn�� and de�ne ���i � �idR� ui� 
 ���	 Then we can �nd C�� A� 
 �
such that �� �����i �x�

�� � C�jx j�A� �

Choose f � C� ������� Sn��* f�g � Sn��
	
� then since f is !at along f�g� Sn��

we have

��f�t� u��i �x�� � B�
�N�tN �N��
 � Nn �
All together this gives us via the Faa di Bruno formula 
	�

j�
�f 
 ���i ��x�j �

�

���� X
��i���N

k��Nnn��
P

i� �i���


�$

�$

Y
��Nn

���



�


$

�P
i
�i� �

�
P

� ��f
�

����i �x��
Y
i����

�������i ��x���i�
����

� C���N�jx jN

for jx j � �	 Therefore f 
 ��� can be extended at � to f � C� �Rn * f�g�	 �

����� Now let us extend the result of this lemma somewhat	 If G is a compact Lie
group acting orthogonally on Rn � then G acts on Sn�� and trivially on R� so it acts
on R � Sn��	 Consider the Z��action on R � Sn�� given by

�A � �t� �� �� ��t����

It clearly commutes with the G�action� so we get a Z� � G�action on R � Sn��	
Now consider

� � R � Sn�� �� R
n ��t� �� �� t�� �

Then � is Z��G�equivariant if we let Z� act trivially on Rn 	 Therefore� it induces
a homomorphism�

�� � C� �Rn �
Z��G �� C�

�
R � Sn��

	Z��G
�

and we have the following

Lemma�

��� �� is injective�

��� C�
�
R � Sn��* f�g � Sn��

	Z�
� ��C� �Rn * f�g�

C�
�
R � Sn��* f�g � Sn��

	Z��G
� ��C� �Rn * f�g�G

Remark� By ��� it is su�cient to prove 
	� in polar coordinates	 That is� we only

have to show that ��C� �Rn * f�g�G � ��	�C�
�
Rk * f�g		 The �rst step in this

direction is taken in ���	
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Proof�

��� As in 
	����� it is su�cient to note that � is surjective	
��� If we de�ne � � R � Sn�� �� ����� � Sn�� � �t� �� �� sgn t��t� �� �

�jtj� sgn�t����� then we have � � � 
 �� where � is the polar coordinate
transformation as in 
	��	 Therefore�

���C� �Rn * ��� � �� 
 ���C� �Rn * f�g��
� ���C�

�
������ Sn��* f�g � Sn��

	
� by 
	��

Now take any f � C�
�
������ Sn��* f�g � Sn��

	
	 Since � j������Sn��

and � j�������Sn�� are di�eomorphisms onto ������Sn��� ��f is smooth

on ���� ���Sn�� as well as on ������Sn��	 Since f is !at at f�g�Sn���
��f is smooth altogether	 Furthermore� ���f� is Z��invariant� since � is
Z��invariant	 So we have

��C�
�
������ Sn��* f�g� Sn��

	 � C�
�
R � Sn��* f�g � Sn��

	Z�
The opposite inclusion is clear� since any f � C� �R � Sn��* f�g � Sn��

	Z�
is the image under �� of its restriction to ������ Sn��	

The assertion with added G�invariance follows easily from this	 That
f �� �� �f is G�invariant with �f is clear� since � is G�equivariant	 Now if f
is G�invariant� then for all g � G we have �f�g���x�� � �f���x��� so by the

surjectivity of � we can conclude that �f is G�invariant as well	 �

����� The next step� roughly� is to translate the Z��action �A as well as the polar
coordinate transformation to the image of R � Sn�� under id � 		 This is done
in the following two diagrams� where r � Rn �� R stands for the polynomial map

x �� jx j�	
R � Sn��

u
R � 	

w
�A

R � Sn��

u
R � 	

R � 	�Sn��� w
A

R � 	�Sn���

R � Sn��

u
R � 	

w
�

R
n

u
r � 	

R � 	�Sn��� w
B

R � 	�Rn �

Recall that the 	i were chosen homogeneous of degree di	 With this� A and B are
given by�

A�t� y� �� ��t� ����d�y�� � � � � ����dkyk�

B�t� y� �� �t�� td�y�� � � � � t
dkyk�
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With this de�nition� we can let A and B have domain R � Rk 	 The choice of
�t� y� �� t� for the �rst component of B lets B retain the Z��invariance under the
Z��action given by A	 Indeed� B 
A � B�

B 
A�t� y� � B��t� ����d�y�� � � � � ����dkyk� �

�
�
��t��� ��t�d�����d�y�� � � � � ��t�dk����dkyk

	
�

� �t�� td�y�� � � � � t
dkyk� � B�t� y�

Now we can state the following

Lemma� The map B as de�ned above induces a mapping B� on C�
�
R � R

k * �
	

into C�
�
R � Rk * �� Rk

	Z�
such that

C�
�
R � R

k * �
	

w
B�

A
A
A
ACC

C�
�
R � R

k * �� R
k
	Z�

u
restr

C�
�
R � R

k * �� R
k
	Z����

R�	�Sn���

The map restr 
B� � C�
�
R � Rk * �

	 �� C�
�
R � Rk * �� Rk

	Z����
R�	�Sn���

is sur�

jective�

Proof� The inclusion B�C�
�
R � Rk * �

	 � C�
�
R � Rk * �� Rk

	Z�
is clear since�

�rst of all� B maps � � Rk to �� so if f is !at at �� then B�f is !at at � � Rk 	
Secondly� B�f is Z��invariant� since B is Z��invariant	

For the surjectivity� choose any h � C�
�
R � Rk * �� Rk

	Z�
	 Then we need to

�nd an H � C�
�
R � Rk * �

	
such that B�H j

R�	�Sn��� � hj
R�	�Sn���	 Formally�

that would give us

H�t� y� � h�t
�
� � t�

d�
� y�� � � � � t

�
d�
� y���

For t 
 �� this is well de�ned	 With the Z��symmetry� we know how to de�ne �h for
t � � as well	 To handle the case t � � we will need Whitney s extension theorem	

Let + be a k�dimensional cube in Rk with center � which contains 	�Sn���	
Consider K �� ���� ���+ � R �Rk and set L �� B�K� � R �Rk 	 More precisely�
L is a compact subset of ������ Rk 	 Now de�ne on ������ Rk � L the function

H��t� y�� � � � � yk� �� h
�

�t � ��
�
� � �t � ���

d�
� y�� � � � � �t � ���

dk
� yk

�
�

H� is smooth on ������ Rk � L� so J�H� � J��L� is a Whitney jet on L	 Now
we will have to study the behavior of H� for �� �	 Our strategy will be as follows�

��� Show that L is ��regular	 Referring back to 
	�� the topology on E��L� is

then generated by the family of seminorms fj � jLm � m � N�g	
��� Show that J�H� is a Cauchy sequence for �� � in terms of the family of

seminorms fj � jLm � m � N�g	
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�
� Since E��L� is complete� ��� and ��� together imply that J�H� converges
to some Whitney ��jetH � �H����Nk��

�
on L	 In this situation� Whitney s

extension theorem implies that H� is the restriction onto L of some smooth
function we will again call H � C� �R � Rk

	
	

��� Show that H is !at at zero and after some slight modi�cations satis�es
B�H � h on R � 	�Sn��� to �nish the proof	

Let us now go ahead and show ���	
Let distL�l� l�� denote the shortest length of any recti�able curve in L joining l

with l�	 Then we will show that

dist�l� l�� � distL�l� l�� � � dist�l� l��

The lefthand side of this inequality is clear	 To show the righthand side let l � �t� y�
and l� � �t�� y�� and suppose without loss of generality that t� � t	 Recall once more
how L was de�ned �L � B�K� where K � ���� �����	 Consider the line segments
��t� y�� �t� y��� and ��t� y��� �t�� y���	 Both are contained in L�

To see this� take any �s� y�� � ��t� y��� �t�� y���� that is t� � s � t	 Then

�s� y�� � B�
p
s� s�

d�
� y��� � � � � s

�
dk
� y�k�

Since �t�� y�� � L� we have �t�
�
d�
� y��� � � � � t

��
dk
� y�k� � �	 With t� � s� that is t�

�
dk
� �

s�
dk
� � this implies that �s�

d�
� y��� � � � � s

�
dk
� y�k� lies in � as well	 That

p
s � ���� ��

is clear from �t� y� � L	 In particular� we now have that �t� y�� lies in L	 Therefore�
by the linearity of B in the second variable� the �rst line segment ��t� y�� �t� y��� is
also contained in L	

Since the line segments �l� �t� y��� and ��t� y��� l�� are the sides of a right triangle
with hypotenuse �l� l��� this immediately implies

distL�l� l�� � dist�l� �t� y��� � dist��t� y��� l�� � � dist�l� l��

and ��� is proved	
Now let us turn to ���	 Write H� as composition H� � h 
 �� where the map

�� � R	 � Rk �� R	 � Rk is given by

�� � �t� y�� � � � � yk� �� ��t � ��
�
� � �t � ���

d�
� y�� � � � � �t � ���

dk
� yk��

By de�nition� every �t� y� � L is image under B of some ��� z� � K � ��� �� � �	
That is�

�t� y� � ���� �d�z�� � � � � �
dkzk�

which makes

���t� y� �

�
��� � ��

�
� �

�d�

��� � ��
d�
�

z�� � � � �
�dk

��� � ��
dk
�

zk



�

From this formula we see that for � � � there is a compact subset P of R � Rk

such that ���L� lies in P for all �	
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Now to h	 Since h is !at at ��Rk we have that for all compact P � R�Rk � 
 �
Nn and N 
 � there is a constant C � C�P� 
�N� such that

j ��h�t� y� j � C�P� 
�N�tN ��t� y� � P
Now we have all we need to approximate sup

�t�y��L
j�
�H��t� y��H��t� y��j	 If we

choose P as described above we may apply Faa di Bruno s formula 
	� and we see
that for �t� y� � L
j�
�h 
 ���t� y�� h 
 ���t� y��j �

�
X

����i���N
k��Nnn��

P
i� �i���


�$

�$

Y
��Nn

���



�


$

�P
i
�i� ������P�

��h
�

����t� y��
Y
���

������t� y�����

�
�
�
P

� ��h
�

����t� y��
Y
���

������t� y����
���� �

�
X

��i���N
k��Nnn��

P
i�
�i���


�$

�$

Y
��Nn

���



�


$

�P
i �i�

C�P�
P

� ��� N��

�
�����t � ��

N
�

Y
���

������t� y���� � �t � ��
N
�

Y
���

������t� y����
�����

At this point we must distinguish between two cases	
�t � � 
 �� In this case we choose C� �� C��� so that by the above considerations
we have

j�
�H��t� y��H��t� y��j �

�
X

��i���N
k��Nnn��

P
i� �i���


�$

�$

Y
��Nn

���



�


$

�P
i �i�

C�P�
P

� ��� ����

�
����Y
���

������t� y���� �
Y
���

������t� y����
�����

Since j �����t� y�� �����t� y� j � � for �� �� � we may conclude that the expres�
sion j�
�H��t� y��H��t� y��j goes to zero with � and � uniformly in �t� y� � L�ft �
�g
�� � t � �� In this case we have

j �
�H��t� y��H��t� y�� j �

�
X

��i���N
k��Nnn��

P
i� �i���


�$

�$

Y
��Nn

���



�


$

�P
i �i�

C�
P

� ��� N��

�
�����t � ��

N
�

Y
���

������t� y���� � �t � ��
N
�

Y
���

������t� y����
�����
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Recalling how �� was de�ned� we see that the sums on the righthand side are
basically polynomials in �t � ���� �resp	 �t � ����� and y	 So we only need to
choose N su�ciently large to have the above term converge to zero uniformly in
�t� y� for �� �� �	

This completes the proof that J�H� is a Cauchy sequence with regard to the

seminorms j � jLm	 By �
� it has a limit in the space of Whitney jets on L which we

extend to a smooth function H � C� �R � Rk
	

using Whitney s extension theorem	
We now turn to ���	

On L� �
H is the limit of �
H� for �� �	 Since � � L� it su�ces to show

�
H����� � for all � � Nk	�

to imply that H is !at at �	 This is seen as in ��� above� By setting �t� y� � � in

j �
�h 
 ����t� y� j �

�t � ��
N
�

X
��i���N

k��Nnn��
P

i� �i���


�$

�$

Y
��Nn

���



�


$

�P
i �i�

C�P�
P

� ��� N� �
����Q�����

����t� y����
�����

we get

j �
H���� j �

� �
N
�

X
��i���N

k��Nnn��
P

i� �i���


�$

�$

Y
��Nn

���



�


$

�P
i
�i�

C�P�
P

� ��� N�

����Q�����
���������

�����
Again� the righthand sum is a polynomial in ���� and if N is chosen large enough�
we see that the whole expression converges to zero with �� �	

Next and �nal point of the proof is to check inhowfar B� maps H to h	 On
L n f�g� �� converges to �� � L n f�g �� ��� ����	 So restricted to L n f�g� we have
H � h 
 ��	 By de�nition of ���

B�H � B��h 
 ��� � h on ��� �����
Therefore� by continuity� B�H � h on ��� ����* in particular

B�H j������	�Sn��� � h j������	�Sn��� �

Since h as well as B�H are A�invariant� their values on A���� �� � 	�Sn���� �
���� ��� 	�Sn��� are uniquely determined by their restriction to ��� ��� 	�Sn���	
So we even have

B�H j�������	�Sn��� � h j�������	�Sn��� �

Since B is a di�eomorphism on ������	�Sn��� as well as on ��������	�Sn���
we can change H outside of B����� ��� 	�Sn���� to

H �

�����
h 
Bj��������	�Sn��� on B������� 	�Sn����

H on B����� ��� 	�Sn����

h 
Bj����������	�Sn��� on B��������� 	�Sn����

This H is in C�
�
R � Rk * �

	
� and it has the desired property�

B�H j
R�	�Sn��� � h j

R�	�Sn��� � �
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����� The main part of the proof of Schwarz theorem will be carried out by induc�
tion	 To be able to state the induction hypothesis� we make the following de�nition�

For two compact Lie groups G and G� we will call G � G� if

�a� dimG � dimG� or

�b� if dimG � dimG�� then G has less connected components than G�	

We will continue the proof of 
	� under the following two hypotheses�

I �Induction hypothesis� The compact Lie group G is such that theorem 
	� is
valid for all compact Lie groups G� � G �and each orthogonal representation
of G��	

II The orthogonal representation has � as only �xed point �see 
	���	

The next step will be to prove the

Key lemma� Under the hypotheses I and II�

	�C�
�
R
k n f�g	 � C� �V n f�g�G �

In particular� �	jSn���� C�
�
Rk
	

� C�
�
Sn��

	G
�

Before we get involved in a complicated proof� let us draw some conclusions from
this	

���
� Corollary� Under the hypotheses I and II we have

�id� 	 jSn���
�
C��R � R

k * f�g � R
k � � C��R � Sn��* f�g � Sn���G

�a�

�id� 	 jSn���
�
C��R � R

k * f�g � R
k �Z� � C��R � Sn��* f�g � Sn���Z��G

�b�

where the Z��action on R � Rk is given by A and on R � Sn�� by �A�

Remark� 
	���b� is the missing link between 
	�
��� and 
	��	 Together the three
lemmas give the equation

��C��Rn * ��G � C��R � Sn��* f�g � Sn���Z��G by 
	�
���

� �id� 	 jSn���� C��R � R
k * f�g � R

k �Z� by �b�

� �id� 	 jSn����B�C��R � R
k * f�g� by 
	���

This is already a big step forward in the proof of Schwarz theorem	

Proof of the Corollary� In �a� as well as in �b� the inclusion %�& is clear	 So let us
just concern ourselves with the surjectivity of �id� 	 jSn���

�
in each case	

�a� is a consequence of the identity

C��R � R
k * f�g� R

k � �� C��Rk � C��R* f�g�� �� C��Rk � '�C��R* f�g�
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and the resulting commutative diagram

C��R* �� '� C��Rk �

uu
id'��	jSn����

w
�� C��R � R

k * �� R
k �

u
�id� 	jSn����

C��R* �� '� C��Sn���G ww C��R � Sn��* �� Sn���G

C��R* �� '� C��Sn���

u

u

id'� RG
w

�� C��R � Sn��* �� Sn���

u

uR
G

Here� the map on the upper lefthand side� id '��	jSn����� is surjective by 
	��	 The
surjectivity of the maps on the bottom is clear and implies that the horizontal map
in the middle is also surjective	 From this we can deduce that �id � 	jSn���� on
the upper righthand side is surjective as well	 This proves �a�	

�b� is now a consequence of �a�	 To any � � C��R � Sn��* f�g � Sn���Z��G

assertion �a� supplies a � � C��R � Rk * � � Rk � which is mapped to � under
�id� 	 jSn���

�
	 It remains to make � Z��invariant	 On R � 	�Sn��� � is automat�

ically Z��invariant�

�id� 	 jSn���
�

�� 
A� � � 
A 
 �id� 	 jSn��� �

� � 
 �id� 	 jSn��� 
 �A � � 
 �A � � � �id� 	 jSn���� �

Since A maps R	 �Rk onto R� �Rk and � is !at at f�g�Rk � we can change � on
R� � Rk to make it Z��invariant everywhere	 This way we retain its smoothness�
its !atness at f�g � Rk and since � isn t changed on R � 	�Sn��� we also retain
� � �id� 	 jSn���

�
�	 �

Notation� In the following we will sometimes write R �x� for R �Rn � where �x �
�x�� � � � � xn�� stands for the variable	 The linear subspace of homogeneous polyno�
mials of degree i will be denoted by R �x�i� so that we have

R �V � �
M
i��

R �x�i

R ��V �� �
Y
i��

R �x�i

Furthermore� we will abbreviate the ideal of all polynomials with no constant term
by M

i��

R �x�i �� R �x�	

����� De
nition� We will call a system of generators f��� � � � � �mg of an algebra
minimal� if there is no nontrivial polynomial relation of the type

�j � P ���� � � � � �j��� �j	�� � � � � �k��
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Remark� If an algebra is �nitely generated� then it automatically possesses a mini�
mal system of generators	 We only have to take an arbitrary �nite set of generators
and recursively drop any elements which can be expressed as polynomials in the
others	

Proof of ����� Let us get an idea of how this proof will work before we go into the
technical lemmas it requires	

Choose an arbitrary � � C��Rn nf�g�G and take p � Rn nf�g	 By hypothesis II�
p is not �xed under G	 Therefore Gp � G and Schwarz theorem is satis�ed for any
representation of Gp by the induction hypothesis	 In particular� take a slice S at p
small enough not to meet � �this also implies � �� G�S�	 S is contained in an a�ne
subspace p � L�Rq � � Rn � where L is a linear embedding L � Rq �� Rn 	 The slice

action gives a representation of Gp on Rq 	 Restrict p�L to L���S � p� �� �S � Rq

�open� to get the map �� � �S

��� S	 We then have ����� jS� � C�� �S�Gp 	 Consider

a minimal system of generators ��� � � � � �s of R �Rq �
Gp � then by Schwarz theorem

there is an 
 � C��Rs � such that

�����t� � 
����t�� � � � � �s�t�� for all t � �S

�since ���� can be extended to a Gp�invariant function on Rk �	 Now we require the
following

Lemma 
���� In the above situation �where here it is important that f�ig be a
minimal system of generators�� denote by ��i �resp� ��i� the germ of �i �resp� �i ��
	i 
 �p � L�� at �� Then there are germs of smooth functions �Bi � C�� �Rk � such
that

��j � �Bj����� � � � � ��k��

Let us �rst �nish the proof of 
	�� assuming the lemma and then return to it	
Recall that on �S we were able to express � 
 �� in the Hilbert generators ��� � � � � �s	

� 
 �� � 
���� � � � � �s�

In a su�ciently small neighborhood U� of � we can now replace �i by Bi 
�� where
Bi is a suitable representative of the germ �Bi and has domain Vp � ��U�� �notice
that ��U�� � 	�p � L�U��� � 	�G��p � L�U���� is open since 	 is open by 
	��
��	

� 
 �� jU�
� 
 
 �B� 
 � jU�

� � � � � Bk 
 � jU�
��

Since �� is a di�eomorphism and � j �S � 	 jS 
 ��� we can drop the �� on each side	

With �Up �� ���U�� this gives us�

� j �Up � 
 
 �B� 
 	 j �Up � � � � � Bk 
 	 j �Up�

Since both sides are G�invariant� we can extend the above equation to the tubular
neighborhood Up �� G� �Up of p	 To simplify the formula� we set

C��Vp� � �p � x �� 
�B��x�� � � � � Bk�x���
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So we get�

�,� � jUp � 	��p jUp

In this way we can assign to each p � Rn nf�g neighborhoods Up � p and Vp � 	�p�
as well as a map �p � C��Vp� with the above property	 Let us consider a partition
of unity �hp� of 	�Rn � n f�g which corresponds to the covering Vp	 Then we can
de�ne

� ��
X

hp�p � C��Rk n f�g��

Now 	�hp is a G�invariant partition of unity on Rn n f�g	 It corresponds to the
covering �Up� since 	�Up� � Vp and 	 separates the orbits by 
	����	 So with �,�
we get

	�� � 	��
X

hp�p� �
X

�	�hp��	
��p� �

X
�	�hp�� jUp � � �

Before we can prove the key lemma s key lemma �
	��� we need two supporting
lemmas�

����� Lemma� Let ��� � � � � �k be a system of homogeneous generators of R �x�
G
�

Then the following two conditions are equivalent�

��� f��� � � � � �kg is a minimal system� that is there is no nontrivial polynomial
relation of the type

	j � P �	�� � � � � 	j��� 	j	�� � � � � 	k�

��� 	�� � � � � 	k are an R�basis of R �x�G	 ��R �x�G	���

Proof�

��� Suppose there is a nontrivial relation	 It can be written as

	j �
X
i ��j

�i	i �
X

��	
�

where the second summation is taken over all multi�indices 
 � Nk with
j
 j � � and 
j � �	 This immediately implies

	j �
X
i��j

�i	i mod �R �x�
G
	���

So the 	j are linearly dependent mod �R �x�
G
	��	

��� Since the 	i generate R �x�G� they automatically generate R �x�G	 ��R �x�G	��

as a vector space	 So if we suppose ��� false� then there is a nontrivial
relation X

�i	i � � mod �R �x�
G
	���
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Order the 	i by degree� i � j � di � dj 	 Now let i� be the smallest i for
which �i �� �	 Then we can express 	i� as follows

	i� �
X
i��j

�j	j �
X
j� j��

��	
��

This equality still holds if we drop all terms of degree �� di� � and both sides
remain the same	 After doing so� we see that 	i� does not appear on the
righthand side of the equation	 Because if it did� then it would be in a term
��	

� with 
i� �� � in the sum on the far right and this term would have
degree 
 di� 	 So we have a nontrivial polynomial relation between the 	i
and a contradiction to ���	 �

����� Lemma ����� Consider U � Rn � V � Rm open� f � U �� V smooth and
f� � C��V � � C��U� with the compact C��topology on both spaces� Then for

each � � f�C� �V � and for all a � U there is a � � C� �V � such that

T�a � � T�f�a�� 
 T�a f�

where T�a � � R ��x� a�� denotes the formal Taylor series of � at a and by the
composition on the right we mean the insertion of T�a f � R ��x� a�� for y in
T�f�a�� � R ��y � f�a����

Proof� The assertion of the lemma is equivalent to the statement

T�a �f�C� �V �� � T�a �f�C� �V ���

since T�a �f�C� �V �� is simply the set of all jets which can be written as a com�
position like in the lemma	 Due to the fact that T�a is continuous� we have the
inclusions�

T�a �f�C� �V �� � T�a �f�C� �V �� � T�a �f�C� �V ���

Therefore� it is su�cient to show that T�a 
 f� has a closed image	 Since C� �V �
is a re!exive Fr(echet space� we can show instead that the dual map �T�a 
 f��� has
a closed image	

�T�a �� � R ��x� a��
� �� C� �V �

�

R ��x� a��� is the space of all distributions with support a	 Let
P

���
���
a be such a

distribution� and take any 
 � C� �V �	 ThenD

� �T�a 
 f���

X
���

���
a

E
�
D

�T�a 
 f���
��
X

���
���
a

E
�

�
X
�

���
 
 f�����a� �
X



�
�


�f�a�� �

D

�
X

�
�
�
�
f�a�

E
�

So the image of R ��x� a��� under �T�a 
 f��� is contained in the space of all distri�
butions concentrated at f�a� which is isomorphic to a countable sum of R with the
�nest locally convex topology	 But in this topology� every linear subspace is closed
�since every quotient mapping is continuous�� so �T�a 
 f����R ��x� a���� is closed
as well	 �

Now let us state again
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���	� Lemma� Consider � � �S
���� S �� G�S as in the proof of ����� and de�ne

� �� 	 jG�S 
 � � �S �� Rk � The �i form a minimal system of generators for R
�
Rk
�

and we denote the germ of �i �resp� �i� by ��i �resp� ��i�� Then there are germs of
smooth functions �Bi � C�� �Rk � such that

��j � �Bj����� � � � � ��k��

Proof of lemma ��
�� Since � is a Gp�invariant polynomial �or the restriction of
one�� we can express �i in the Hilbert generators as follows�

�,� �i � �i��� � Ai���� � � � � �s� Ai � R �Rs �

So our goal is to �nd a local inverse for A	 With the help of Glaeser s lemma 
	��
let us now try to construct a formal power series inverse	 � induces an isomorphism
by which

C�� �S�Gp � ��C��G�S�G�

Without loss of generality let us now assume S was chosen compact	 Then G�S is
compact as well and we can apply the Weierstrass approximation theorem to get

C��G�S�G � R �x� jG�SG � 	 j�G�SR �t� � 	 j�G�SC��Rk ��

If we use the fact that �� is a homeomorphism� the two equations taken together
yield

C�� �S�Gp � ���	jG�S��C��Rk � � ���	jG�S��C��Rk � � ��C��Rk ��

So we have that �i � C�� �S�Gp is %almost& some smooth function of �	 Now we

can use Glaeser s lemma	 Take �i and � � �S	 Then there is a smooth function
�i � C��Rk � such that

T�� �i � T������i 
 T�� ��

Since both �i and � are polynomials� we can disregard the T�� 	 T������i is a power

series in �t� �����	 If we take �i � R �t� to be the power series in t with the same
coe�cients� then the above formula turns into

�,,� �i � �i��� ������

Since �i is homogeneous of degree 
 �� �i has no constant term	 So we can write
it as

�i � Li � higher order terms Li � R �t��

In particular� if we insert �,� into �,,� this implies

�,,,� �i � Li�A����� � � � � Ak���� � �R �t�Gp

	 ���
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Since the �i were chosen to be a minimal system of generators� lemma 
	�� implies

that the �i � �R �t�
Gp

	 �� form a basis of R �t�
Gp

	 ��R �t�
Gp

	 ��	 Therefore we have a well
de�ned algebra isomorphism�

R �t�
Gp

	 ��R �t�
Gp

	 ��

��� A �� R �z�� � � � � zs�	�

�
z�
�

�i � �R �t�
Gp

	 �� �� �zi�

Now �,,,� translated to A gives

Li�A��z�� � � � � Ak�z�� � zi � O�z�� in R �z�

Therefore
DL��� 
DA��� � IdRk�

and by the inverse function theorem A has a local inverse	 So� locally� we can solve
the equation �,� in terms of �i� which proves the lemma	 �

This completes the proof of the key lemma	 So far� we have shown �see remark

	��� that under the hypotheses I and II

��C��Rn * f�g�G � �id� 	 jSn���
�
B�C��R � R

k * f�g�
holds	 We have been able to pull out 	� but the polar coordinate transformation
is now encoded in B	 We must now pull the B� out in front of the �id� 	 jSn���

�

where it will appear again as �� and then get rid of the excess dimension	
Recall that B was de�ned to satisfy the diagram�

R � Sn�� w
�

u
id� �	 jSn���

R
n

u
�r� 	�

R � R
k

w
B

R � R
k

where r denoted the polynomial map r�x� � jx j� on Rn 	 Thus B 
 �id� 	 jSn��� �
�r� 	� 
 �	 And therefore

��C��Rn * f�g�G � �id� 	 jSn���
�
B�C��R � R

k * f�g� �

� �� 
 �r� 	��C��R � R
k * f�g��

Since �� was injective� we can now discard it to get

C��Rn * f�g�G � �r� 	��C��R � R
k * f�g��

That takes care of B as well as �� so let us now tackle r	
r is an O�n��invariant polynomial� in particular it is G�invariant	 Therefore by

Hilbert�
r � � 
 	 for some � in C��Rk �	

So �r� 	� � ��� id� 
 	 and we get

C��Rn * f�g�G � 	� 
 ��� id��C��R � R
k * f�g��

Now we are just one easy lemma away from the desired result

C��Rn * f�g�G � 	�C��Rk * f�g�
under hypotheses I and II	 That is	
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����� Lemma�
��� id��C��R � R

k * f�g� � C��Rk * f�g�

Proof� Taking a closer look at ��� id�� we see that it is a composition of maps

��� id� � Rk

���
g

Graph�
i
�� R � R

k

where i is the embedding of the closed submanifold Graph� into R�Rk 	 Therefore

��� id��C��R � R
k * f�g� � g�i�C��R � R

k * f�g��
Since � � r��� � � 
 	��� � ����� we see that g��� � �	 So we also have

C��Rk * f�g� � g�C��Graph�* f�g��
Therefore it remains to prove that

i�C��R � R
k * f�g� � C��Graph�* f�g��

Now take an arbitrary f � C��Graph�* f�g�	 There is a smooth extension �f of f
on R � Rk but it need not be !at at zero	 So consider a submanifold chart ��� U�
of Graph� around � and de�ne

fU � U
��� R � R

k pr���� R
k ���id������ Graph�

f�� R�

Then fU is a smooth extension of f on U and is !at at zero	 Now �f and fU patched
together with a suitable partition of unity give a function �f � C��R � Rk * �� such
that i� �f � f 	 �

End of the Proof of ���� Recall from lemma 
	�� that it is su�cient to prove the
theorem of Schwarz� assuming hypothesis II	 We will now carry out induction over
G	 For G � fgid� 
	� holds trivially	 Now for any compact Lie group G satisfying
hypothesis II we showed above that under the induction hypothesis �I�

	�C��Rk * f�g� � C��Rn * f�g�G�
From this� together with our considerations from the beginning of the proof �
	����
we see that Schwarz theorem is valid for G	 �

There is one more Corollary to be gained from all of this	 Notice that up to now
we have not shown

�,� 	�C��Rk * f�g� � C��Rn * f�g�G

in general	 Although we worked on this throughout the proof of 
	�� we were
only able to show it under the hypotheses I and II	 Now that Schwarz theorem is
proved� the hypothesis I is automatically satis�ed so we can disregard it	 But we
have to look more deeply into the proof to be able to see whether �,� is satis�ed
for representations of compact Lie groups with more than one �xed point	 It turns
out that it is	
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����� Corollary� Let G be a compact Lie group with an orthogonal representation
on Rn and 	 � �	�� � � � � 	k� the corresponding Hilbert generators� homogeneous and
of positive degree� Then

	�C��Rk * f�g� � C��Rn * f�g�G�

Proof� Schwarz theorem implies that

�	 jSn���
�
C��Rk � � C��Sn���G�

By backtracing we see that before we knew theorem 
	� this was a consequence
of the key lemma 
	�� which was based on the two hypotheses	 In fact� it was
the only assertion of 
	�� that was needed to prove the corollary 
	��	 So we now
know that 
	�� does not require the hypotheses after all	 But the remainder of the
proof for 	�C��Rk * f�g� � C��Rn * f�g�G did not use 
	�� at all� it only used 
	��	
Therefore� it is independent of the hypotheses as well	 �

Further results in this direction were obtained by Luna who� among other things�
generalized the theorem of Schwarz to reductive Lie groups losing only the property
of the Hilbert generators separating the orbits �see �����	

Luna�s Theorem ����
�� Consider a representation of a reductive Lie group G
on Km � where K � C �R �� and let � � ���� � � � � �n� � Km �� Kn � where ��� � � � � �n
generate the algebra K �Km �

G
� Then the following assertions hold�

��� K � C � �� � H �C n � �� H �C m �G is surjective�
��� K � R � �� � C � �Rn � �� C � �Rm �G is surjective�
�
� K � R implies that

�� � C��Rn � �� �
f � C��Rm �G � f is constant on ����y� for all y � Rn�

is surjective�
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�� Transformation Groups

���� De
nition� Let G be a Lie group� M a C��manifold� A smooth map � �
G�M ��M �we will write �g�x�� �x�g� as well as g�x for ��g� x��� de�nes a smooth
action of G on M if it satis�es

��� e�x � x� for all x �M where e � G is the unit element�
��� �g� � g���x � g���g��x�� for all g�� g� � G� x �M �

We will also say G acts on M � M is a G�manifold or M is a smooth G�space�

���� De
nition�

��� For x �M the set G�x � fg�x � g � Gg is called the G�orbit through x�
��� A G�action on M is called transitive if the whole of M is one G�orbit�
�
� A G�action on M is called e�ective if the homorphism G� Di��M� into

the di�eomorphism group is injective� If g�x � x for all x �M then g � e�
��� A G�action on M is called free if �x � G�M is injective for each x �M �

g�x � x for one x �M already implies g � e�
��� A G�action on M is called in
nitesimally free if Te��

x� � g � TxM is
injective for each x �M �

��� A G�action on M is called in
nitesimally transitive if Te��
x� � g� TxM

is surjective for each x �M �
��� A G�action on M is called linear if M is a vector space and the action

de�nes a representation�
��� A G�action on M is called a�ne if M is an a�ne space� and every �g �

M ��M is an a�ne map�
��� A G�action on M is called orthogonal if �M��� is a Euclidean vector space

and �g � O�M��� for all g � G� �Then f�g � g � Gg � O�M��� is auto�
matically a subgroup��

���� A G�action on M is called isometric if �M��� is a Riemannian manifold
and �g is an isometry for all g � G�

���� A G�action on M is called symplectic if �M��� is a symplectic manifold
and �g is a symplectomorphism for all g � G �i�e� � �g preserves � ��

���� A G�action on M is called a principal 
ber bundle action if it is free
and if the projection onto the orbit space � � M � M�G is a principal
�ber bundle� This means that that M�G is a smooth manifold� and � is a
submersion� By ther implicit function theorem there exit then local sections�
and the inverse function theorem the mapping � � M �M�G M � G which
satis�es x � ��x� y��y for x and y in the same orbit� is smooth� This is a
central notion of di�erential geometry�
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���� De
nition� If M is a G�manifold� then M�G� the space of all G�orbits
endowed with the quotient topology� is called the orbit space�

���� Examples�

��� The standard action of O�n� on Rn is orthogonal	 The orbits are the con�
centric spheres around the �xed point � and � itself	 The orbit space is
Rn�O�n� �� �����	

��� Every Lie group acts on itself by conjugation� conj � G�G �� G is de�ned
by �g� h� �� conjg�h� �� g�h�g�� and is a smooth action of the Lie group on
itself	

�
� The adjoint action Ad � G �� GL�g� of the Lie group G on its Lie algebra
g is de�ned as the derivative of conj �interpreted as a map G �� Aut�G��

Ad�g� � X �� d

dt

����
t��

g� expG�tX��g�� � Te�conjg� � g �� g

It is clearly linear	 If G is compact� then it is orthogonal with respect to
the negative Cartan�Killing form�

�B � g� g �� R � �X�Y � �� � tr�ad�X� 
 ad�Y ���

which in this case de�nes an inner product on g	
��� In particular� the orthogonal group acts orthogonally on o�n�� the Lie al�

gebra of all antisymmetric n � n�matrices	 Not a special case of �
� is the
O�n��action on S�n� de�ned in chapter �	 Yet it is also orthogonal� Let
A � O�n� act on G�H � S�n� then

tr
�
AHA���AGA��� t

	
� tr�AHA���A��� tG tA t� �

tr�AHA��AG tA��� � tr�AHG tA��� � tr�HG t�

��� SU�n� acts unitarily on the hermitian n�n matrices by conjugation �anal�
ogous to ����	

���� De
nition�
Let M be a G�manifold� then the closed subgroup Gx � fg � G � g�x � xg of G is
called the isotropy subgroup of x�

Remark� The map i � G�Gx ��M de�ned by i � g�Gx �� g�x �M is a G�equivariant
initial immersion with image G�x	 ����� Theorem �	��

G w
�x

uu
p

M

G�Gx

h
h
hhji

If G is compact� then clearly i is an embedding	
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��
� Lemma� Let M be a G�manifold and x� y �M � then

��� Ggx � g�Gx�g
��

��� G�x �G�y �� � � G�x � G�y
�
� Tx�G�x� � Te��

x��g

Proof�

��� a � Ggx  ag�x � g�x g��ag�x � x !� g��ag � Gx  a � g Gxg
��	

��� z � G�x � G�y � z � g��x � g��y � x � g��� g�y �� g�y� therefore G�x �
G��g�y� � G�y	

�
� X � Tx�G�x�  X � d
dt

��
t��

c�t� for some smooth curve c�t� � gt�x � G�x

with g� � e	 So we have X � d
dt

��
t��

�x�gt� � Te��x��g	 �

���� Conjugacy Classes� The closed subgroups of G can be partitioned into
equivalence classes by the following relation�

H � H � �!� " g � G for which H � gH �g��

The equivalence class of H is denoted by �H�	
First consequence� � with lemma �	���� � The conjugacy class of an isotropy sub�
group is invariant under the action of G � �Gx� � �Ggx�	 Therefore we can assign
to each orbit G�x the conjugacy class �Gx�	 We will call �Gx� the isotropy type
of the orbit through x� and two orbits are said to be of the same type� if they have
the same isotropy type	

If G is compact� we can de�ne a partial ordering on the conjugacy classes simply
by transferring the usual partial ordering %�& on the subgroups to the classes�

�H� � �H �� �!� " K � �H��K � � �H �� � K � K �

This is equivalent to a shorter de�nition�

�H� � �H �� �!� " g � G � H � gH �g��

If G is not compact this relation may not be antisymmetric	 For compact G the
antisymmetry of this relation is a consequence of the following

���� Lemma ���� ���� Let G be a compact Lie group� H a closed subgroup of G�
then

gHg�� � H �� gHg�� � H

Proof� By iteration� gHg�� � H implies gnHg�n � H for all n � N	 Now let us
study the set A �� fgn � n � N�g	 We will show that g�� is contained in its closure	

Suppose �rst that e is an accumulation point of �A	 Then for any neighborhood
U of e there is a gn � U where n 
 �	 This implies gn�� � g��U � A	 Since the
sets g��U form a neighborhood basis of g��� we see that g�� is an accumulation
point of A as well	 That is� g�� � �A	

Now suppose that e is discrete in �A	 Then since G is compact� A is �nite	
Therefore gn � e for some n 
 �� and gn�� � g�� � A	

Since conj � G�G �� G is continuous and H is closed� we have

conj� �A�H� � H�

In particular� g��Hg � H which together with our premise implies that gHg�� �
H 	 �
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���� De
nition� Let M and N be G�manifolds� A smooth map f � M �� N is
called equivariant� if it satis�es f�g�x� � g�f�x� for all x in M and g in G�

���	� De
nition� Let M be a G�manifold� The orbit G�x is called principal
orbit� if there is an invariant open neighborhood U of x in M and for all y � U
an equivariant map f � G�x �� G�y�

Remark�

��� The equivariant map f � G�x �� G�y of the de�nition is automatically
surjective �
Let f�x� �� a�y	 For an arbitrary z � g�y � G�y this gives us
z � g�y � ga��a�y � ga��f�x� � f�ga���x�	

��� The existence of f in the above de�nition is equivalent to the condition �
Gx � aGya

�� for some a � G�
��� g � Gx � g�x � x � g�f�x� � f�g�x� � f�x� and for f�x� �� a�y
this implies ga�y � a�y � g � Gay � aGya

���by �	�����	
�!� De�ne f � G�x �� G�y explicitly by f�g�x� �� ga�y	 Then we have
to check that� if g��x � g��x i	e	 g �� g��� g� � Gx� then g�a�y � g�a�y or
g � Gay � aGya

��	 This is guaranteed by our assumption	
�
� We call x �M a regular point if G�x is a principal orbit	 Otherwise� x is

called singular	 The subset of all regular �singular� points in M is denoted
by Mreg � Msing �	

����� De
nition� Let M be a G�manifold and x � M then a subset S � M is
called a slice at x� if there is a G�invariant open neighborhood U of G�x and a
smooth equivariant retraction r � U �� G�x such that S � r���x��

����� Proposition� If M is a G�manifold and S � r���x� a slice at x � M �
where r � U �� G�x is the corresponding retraction� then

��� x � S and Gx�S � S
��� g�S � S �� � � g � Gx

�
� G�S � fg�s � g � G� s � Sg � U

Proof�

��� x � S is clear� since S � r���x� and r�x� � x	 To show that Gx�S � S�
take an s � S and g � Gx	 Then r�g�s� � g�r�s� � g�x � x� and therefore
g�s � r���x� � S	

��� g�S � S �� � � g�s � S for some s � S � x � r�g�s� � g�r�s� � g�x � g �
Gx	

�
� ��� Since r is de�ned on U only� and U is G�invariant� G�S � G�r���x� �
G�U � U 	
��� Consider y � U with r�y� � g�x� then y � g��g���y� and g���y � S�
since r�g���y� � g���r�y� � g��g�x � x so y � G�S	 �

����� Corollary� If M is a G�manifold and S a slice at x �M � then

��� S is a Gx�manifold�
��� Gs � Gx for all s � S�
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�
� If G�x is a principal orbit and Gx compact� then Gy � Gx for all y � S if
the slice S at x is chosen small enough� In other words� all orbits near G�x
are principal as well�

��� If two Gx�orbits Gx�s�� Gx�s� in S have the same orbit type as Gx�orbits in
S� then G�s� and G�s� have the same orbit type as G�orbits in M �

��� S�Gx
�� G�S�G is an open neighborhood of G�x in the orbit space M�G�

Proof�

��� This is is clear from �	�����	
��� g � Gy � g�y � y � S � g � Gx by �	�����	
�
� By ��� we have Gy � Gx� so Gy is compact as well	 Because G�x is principal

it follows that for y � S close to x� Gx is conjugate to a subgroup of
Gy� Gy � Gx � g�Gyg

��	 Since Gy is compact� Gy � g�Gyg
�� implies

Gy � g�Gyg
�� by �	�	 Therefore Gy � Gx� and G�y is also a principal

orbit	
��� For any s � S it holds that �Gx�s � Gs� since �Gx�s � Gs� and� conversely�

by ���� Gs � Gx� therefore Gs � �Gx�s	 So �Gx�s� � g�Gx�s�g
�� implies

Gs� � gGs�g
�� and the G�orbits have the same orbit type	

��� The isomorphism S�Gx
�� G�S�G is given by the map Gx�s �� G�s �it is an

injection by �	������	 Since G�S � U is an open G�invariant neighborhood
of G�x in M ��	���
��� we have G�S�G is an open neighborhood of G�x in
M�G	 �

����� Remark� The converse to �	�
��� is generally false	 If the two G�orbits G�s��
G�s� are of the same type� then the isotropy groups Gs� and Gs� are conjugate
in G	 They need not be conjugate in Gx	 For example� consider the compact
Lie group G �� �S� � S��sZ� with multiplication &
& de�ned as follows	 Let
��� ��� ��� �� � S� and 
� � � Z�	 Take on S� � S� the usual multiplication by
components� and as Z��action�

i ��� �� i� �� idS��S�

�� �� �i� � ���� ��� �� ���� �����

Then
���� ��� 
� 
 ���� ��� �� �� ����� ����i����� ���� 
 � ��

shall give the multiplication on �S� � S��sZ�	
Now we let G act on M �� V tW where V � W � R� � R� 	 For any element in
M we will indicate its connected component by the index �x� y�V or �x� y�W 	 The
action shall be the following

���� ��� �����x� y�V �� ����x� ���y�V

���� ��� �����x� y�V �� ����y� ���x�W

The action on W is simply given by interchanging the V  s and W  s in the above
formulae	 This really de�nes an action as can be veri�ed directly� for example�

���� ��� ��������� ��� �����x� y�V � � ���� ��� ��������y� ���x�W

� ������x� �����y�V � ������ ����� ����x� y�V

� ����� ��� ��� 
 ���� ��� ������x� y�V �
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Denote by H the abelian subgroup S� � S� � f��g	 H is the isotropy subgroup of
��� ��V � and V is a slice at ��� ��V 	 Now consider s� �� ��� v��V and s� �� �v�� ��V �
both not equal to zero	 Then let

H� �� Gs� � S� � fidg � f��g
H� �� Gs� � fidg � S� � f��g

H� and H� are conjugate in G by c � �id� id� ����

H� 
 c � ��� id� ��� 
 c � ��� id� ��� � c 
 �id� �� ��� � c 
H�

Yet they are clearly not conjugate in H since H is abelian	 So H�s� and H�s� have
di�erent orbit types in H while G�s� and G�s� are of the same G�orbit type	

����� Proposition� Let M be a G�manifold and S a slice at x� then there is a
G�equivariant di�eomorphism of the associated bundle G �S� onto G�S�

f � G �S� � G�Gx
S �� G�S

which maps the zero section G�Gx
fxg onto G�x�

Proof� Since ��gh� h���s� � g�s � ��g� s� for all h � Gx� there is an f � G�S� �� G�S
such that the diagram below commutes	

G� S w
�

uu
q

G�S

G�Gx
S

h
h
h
hjf

f is smooth because f 
 q � � is smooth and q is a submersion	 It is equivariant
since � and q are equivariant	 Also� f maps the zero section G �Gx

fxg onto G�x	
It remains to show that f is a di�eomorphism	 f is bijective� since with �	�����

g��s� � g��s� !� s� � g��� g��s� !�
g� � g�h

�� and s� � h�s� for h � g��� g� � Gx

and this is equivalent to
q�g�� s�� � q�g�� s���

To see that f is a di�eomorphism let us prove that the rank of f equals the dimen�
sion of M 	 First of all� note that

Rank��g� � dim�g�S� � dimS

and Rank��x� � dim�G�x�

Since S � r���x� and r � G�S �� G�x is a submersion �r jG�x � id� it follows that
dim�G�x� � codimS	 Therefore�

Rank�f� � Rank��� � Rank��g� � Rank��x� �

dimS � dim�G�x� � dimS � codimS � dimM�
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�

���
� Remark� The converse also holds	 If �f � G �Gx
S �� G�S is a G�equivariant

di�eomorphism� then for some �g � G� �s � S� �f ��g� �s� � x	 So f �g� s� �� �f �g�g� s� de�nes
a G�equivariant di�eomorphism with the additional property that x � f �e� �s�	

G�Gx
S

f����� G�S

pr�

��y r

��y
G�Gx

i����� G�x

If we de�ne r �� i 
 pr� 
 f�� � G�S �� G�x� then r is again a smooth G�equivariant
map� and it is a retraction onto G�x since

x
f��

��� �e� �s�
pr���� e�Gx

i�� e�x�

Furthermore� r���x� � S making S a slice	
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�� Proper Actions

In this section we describe and characterize %proper& actions of Lie groups	 We
will see that the following de�nition is tailored to generalize compact Lie group
actions while retaining many of their nice properties	

���� De
nition� A smooth action � � G�M ��M is called proper if it satis�es
one of the following three equivalent conditions�

��� ��� id� � G�M ��M �M � �g� x� �� �g�x� x�� is a proper mapping
��� gn�xn � y and xn � x in M � for some gn � G and xn� x� y � M � implies

that these gn have a convergent subsequence in G�
�
� K and L compact in M implies that fg � G � g�K � L �� �g is compact as

well�

Proof�
���� ��� is a direct consequence of the de�nitions	
��� � �
�� Let gn be a sequence in fg � G � g�K � L �� �g and xn � K such
that gn�xn � L	 Since K is compact� we can choose a convergent subsequence
xnk � x � K of xn	 Since L is compact we can do the same for gnk �xnk there	 Now
��� tells us that in such a case gn must have a convergent subsequence� therefore
fg � G � g�K � L �� �g is compact	
�
� � ���� Let R be a compact subset of M � M 	 Then L �� pr��R� and
K �� pr��R� are compact� and ��� id����R� � fg � G � g�K � L �� �g �K	 By �
��
fg � G � g�K � L �� �g is compact	 Therefore ��� id����R� is compact� and ��� id� is
proper	 �

��
� Remark� If G is compact� then every G�action is proper	 If � � G�M ��M is
a proper action and G is not compact� then for any unbounded H � G and x �M
the set H�x is unbounded in M 	 Furthermore� all isotropy groups are compact
�most easily seen from �	��
� by setting K � L � fxg�	
���� Lemma� A continuous� proper map f � X �� Y between two topological
spaces is closed�

Proof� Consider a closed subset A � X � and take a point y in the closure of f�A�	
Let f�an� � f�A� converge to y �an � A�	 Then the f�an� are contained in a
bounded subset B � f�A�	 Therefore an � f���B� � A which is now� since f is
proper� a bounded subset of A	 Consequently� �an� has a convergent subsequence
with limit a � A� and by continuity of f � it gives a convergent subsequence of f�an�
with limit f�a� � f�A�	 Since f�an� converges to y� we have y � f�a� � f�A�	 �
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���� Proposition� The orbits of a proper action � � G � M �� M are closed
submanifolds�

Proof� By the preceding lemma� ��� id� is closed	 Therefore ��� id��G� x� � G�x �
fxg� and with it G�x is closed	 Next let us show that �x � G �� G�x is an open
mapping	

Since �x is G�equivariant� we only have to show for a neighborhood U of e that
�x�U� � U�x is a neighborhood of x	 Let us assume the contrary� there is a sequence
gn�x � G�x � U�x which converges to x	 Then by �	����� gn has a convergent
subsequence with limit g � Gx	 On the other hand� since gn�x �� U�x � U�Gx�x
we have gn �� U�Gx� and� since U�Gx is open� we have g �� U�Gx as well	 This
contradicts g � Gx	

Now we see that the orbits of a proper action are closed submanifolds	

G w
�x

�
�
���
p

G�x

G�Gx

h
h
hhji

As the integral manifold of fundamental vector �elds� G�x is an initial submanifold�
and i is an injective immersion ����� Theorem �	��	 Since i
p � �x is open� i is open
as well	 Therefore it is a homeomorphism� and G�x is an embedded submanifold of
M 	 �

���� Lemma� Let �M��� be a Riemannian manifold and � � G �M �� M an
e�ective isometric action �i�e� g�x � x for all x � M � g � e�� such that ��G� �
Isom�M��� is closed in the compact open topology� Then � is proper�

Proof� Let gn � G and xn� x� y �M such that gn�xn � y and xn � x then we have
to show that gn has a convergent subsequence which is the same as proving that
fgn � n � Ng is relatively compact� since ��G� � Isom�M��� is closed	

Let us choose a compact neighborhood K of x in M 	 Then� since the gn act iso�
metrically� we can �nd a compact neighborhood L �M of y such that

S�
n�� gn�K is

contained in L	 So fgng is bounded	 Furthermore� the set of all gn is equicontinuous
as subset of Isom�M�	 Therefore� by the theorem of Ascoli�Arzela� fgn � n � Ng is
relatively compact	 �

��
� Theorem �Existence of Slices�� �
��� ��
�
Let M be a G�space� and x �M a point with compact isotropy group Gx� If for all
open neighborhoods W of Gx in G there is a neighborhood V of x in M such that
fg � G � g�V � V �� �g �W � then there exists a slice at x�

Proof� Let �� be any Riemann metric on M 	 Since Gx is compact� we can get a
Gx�invariant metric by integrating over the Haar�measure for the action of Gx	

�x�X�Y � ��

Z
Gx

���a����X�Y �da �

Z
Gx

���T�aX�T�aY �da

Now if we choose � 
 � small enough for exp
x � TxM � B �x��� �� M to be a
di�eomorphism onto its image� we can de�ne�

�S �� exp
x
�
Tx�G�x�� � B �x���

	 �M�
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�S is a submanifold of M and the �rst step towards obtaining a real slice	 Let us
show that �S is Gx�invariant	 Since Gx leaves � unchanged and Tx�G�x� is invariant
under Tx�g �for g � Gx�� Tx�g is an isometry and leaves Tx�G�x���B �x��� invariant	
Therefore�

Tx�G�x�� �B �x���
Tx�g����� Tx�G�x�� �B �x�����yexp�x ��yexp�x

�S
�g����� �S

What is not necessarily true for �S is that any g � G which maps some s � �S back
into �S is automatically in Gx	 This property is necessary for a slice� and we will
now try to attain it for a Gx�invariant subset S � �S	 At this point� the condition
that for every open neighborhood W of Gx in G� there is a neighborhood V of x in
M such that fg � G � g�V � V �� �g � W comes in	 The idea is to �nd a suitable

W and corresponding V such that V � �S has the desired property	
First we must construct a W �tting our purposes	 Choose an open neighborhood

U � G�Gx of e�Gx such that there is a smooth section � � U �� G of � � G �� G�Gx

with ��e�Gx� � e	 And let U and possibly �S be small enough for us to get an
embedding

f � U � �S ��M � �u� s� �� ��u��s�

Our neighborhood of Gx will be W �� ����U�	 Now by our assumption� there is a
neighborhood V of x in M such that fg � G � g�V � V �� �g �W 	

Next we will prove that V can be chosen Gx�invariant	 Suppose we can choose an
open neighborhood �W of Gx in G such that Gx� �W �W �we will prove this below�	

Then let V � be the neighborhood of x in M satisfying fg � G � g�V ��V � �� �g � �W 	
Now V �� Gx�V

� has the desired property� since�

fg � G � g�Gx�V
� �Gx�V

� �� �g �
�

g��g��Gx

fg � G � g�g��V
� � g��V � �� �g �

�
g��g��Gx

fg � G � g��� gg��V
� � V � �� �g �

�
g��g��Gx

g�fg � G � g�V � � V � �� �gg��� �

Gx�fg � G � g�V � � V � �� �g�Gx � Gx� �W�Gx �W�Gx �W

To complete the above argumentation� we have left to prove the
Claim	 To any open neighborhood W of Gx in G there is an open neighborhood
�W of Gx such that Gx� �W �W 	
Proof	 The proof relies on the compactness of Gx	 Choose for all �a� b� � Gx �
Gx neighborhoods Aa�b of a and Ba�b of b� such that Aa�b�Ba�b � W 	 This is
possible by continuity� since Gx�Gx � Gx	 fBa�b � b � Gxg is an open covering of

Gx	 Then since Gx is compact� there is a �nite subcovering
SN
j�� Ba�bj �� Ba � Gx	

Since Aa�bj �Ba�bj � W we must choose Aa ��
TN
j�� Aa�bj � to get Aa�Ba � W 	

Now since Aa is a neighborhood of a in Gx� the Aa cover Gx again	 Consider a
�nite subcovering A ��

Sn
j��Aaj � Gx� and as before de�ne B ��

Tn
j�� Baj � so

that A�B � W 	 In particular� this gives us Gx�B � W � so �W �� B is an open
neighborhood of Gx with the desired property	
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We have found a Gx�invariant neighborhood V of x� with fg � G � gV � V �� �g
contained in W 	 Now we de�ne S �� �S�V and hope for the best	 S is an open subset
of �S� and it is again invariant under Gx	 Let us check whether we have the converse�
fg � G � g�S�S �� �g � Gx	 If g�s� � s� for some s�� s� � S� then g �W � ����U�
by the above e�ort	 Therefore ��g� � U 	 Choose h � g������g�� � Gx	 Then

f���g�� h��s�� � ����g��h��s� � g�s� � s� � f���e�� s���

Since f is a di�eomorphism onto its image� we have shown that ��g� � ��e�� that
is g � Gx	

Now� it is easy to see that F � G �Gx
S �� G�S � �g� s� �� g�s is well de�ned�

G�equivariant and smooth	 We have the diagram

G� S w
�

�
�
����
q

G�S

G�Gx
S

h
h
h
hj

F

To �nish the proof� we have to show that F is a di�eomorphism ��	���	 F is injective
because�

F �g� s� � F �g�� s��� g�s � g��s� � g��g��s� � s

� g��g� � Gx � �g� s� � �g� g��g��s�� � �g�� s��

Next� we notice that ��W�S� � W�S � f�U� S� is open in M since f � U� �S ��M is
an embedding with an open image	 Consequently� G�S � ��G�W�S� is open� since
� is open� and F is a di�eomorphism	 �

���� Theorem� If M is a proper G�manifold� then for all x � M the conditions
of the previous theorem are satis�ed� so each x has slices�

Proof� We have already shown that Gx is compact ��	�����	 Now for every neigh�
borhood U of Gx in G� for every x �M � it remains to �nd a neighborhood V of x
in M such that

fg � G � g�V � V �� �g � U�

Claim	 U contains an open neighborhood �U with Gx
�U � �U � so we will be able to

assume GxU � U without loss of generality �	
In the proof of theorem �	� we showed the existence of a neighborhood B of

Gx such that Gx�B � U � using only the compactness of Gx	 So �U �� Gx�B �S
g�Gx

g�B is again an open neighborhood of Gx� and it has the desired properties	
Now we can suppose U � Gx�U 	 Next� we have to construct an open neigh�

borhood V � M of x� such that fg � G � g�V � V �� �g � U 	 This is the same as
saying �G�U��V �V should be empty	 So we have to look for V in the complement
of �G� U��x	

First we have to check that M���G�U��x� really contains an open neighborhood
of x	 Upon closer inspection� we see that M � ��G � U��x� is open altogether� or
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rather that �G � U��x is closed	 This is because �G � U��x � fxg � ��� id���G �
U� � fxg� is the image of a closed set under ��� id� which is a closed mapping by
lemma �	
	

Now let us choose a compact neighborhood W of x in M � ��G � U��x�	 Then
since G acts properly� it follows that fg � G � g�W � W �� �g is compact� in
particular K �� fg � G� U � g�W �W �� �g is compact	 But what we need is for
fg � G � U � g�V � V �� �g to be empty	 An x�neighborhood V contained in W
ful�lls this� if K�V �M �W 	 Let us �nd such a neighborhood	

Our choice of W guarantees K�x � M � W 	 But M �W is open� therefore
for each k � K we can choose a neighborhood Qk of k in G and Vk of x in W �
such that Qk�Vk �M �W 	 The neighborhoods Qk cover K� and we can choose a
�nite subcovering

Sm
j��Qj 	 Then V ��

Tm
j�� Vj has the desired property � K�V �

M �W 	 �

���� Lemma� Let M be a proper G�manifold � V a linear G�space and f � M �� V
smooth with compact support� then

�f � x ��
Z
G

g��f�g�x�d�r�g�

is a G�equivariant C��map with �f�x� � � for x �� G� supp f �where d�r stands for
the right Haar measure on G��

Proof� Since G acts properly� fg � G � g�x � supp fg is compact	 Therefore the

map g �� g��f�g�x� has compact support� and �f is well de�ned	 To see that �f
is smooth� let x� be in M � and U a compact neighborhood of x�	 Then the set
fg � G � g�U � supp f �� �g is compact	 Therefore� �f restricted to U is smooth� in

particular �f is smooth in x�	 �f is G�equivariant� since

�f�h�x� �

Z
G

g��f�gh�x�d�r�g� �

�

Z
G

h�gh���f�gh�x�d�r�g� � h�

Z
G

g��f�g�x�d�r�g� � h �f�x��

Furthermore� x �� G� supp f � f�g�x� � � for all g � G� �f�x� � �	 �

���� Corollary� If M is a proper G�manifold� then M�G is completely regular�

Proof� Choose F � M�G closed and �x� � ��x�� �� F 	 Now let U be a compact
neighborhood of x� in M ful�lling U � ����F � � �� and f � C� �M� ������ with
support in U such that f�x�� 
 �	 If we take the trivial representation of G on

R� then from lemma �	� it follows that �f � x �� R
G
f�g�x�d�r�g� de�nes a smooth

G�invariant function	 Furthermore� �f�x�� 
 �	 Since supp �f � G� supp f � G�U �

we have supp �f � ����F � � �	 Because �f � C� �M� ������
G

� f factors over � to a
map �f � C��M�G� ������� with �f��x�� 
 � and �f

��
F

� �	 �
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 �	 Proper actions� �	��

���	� Theorem� If M is a proper G�manifold� then there is a G�invariant Rie�
mann metric on M �

Proof� By �	� there is a slice Sx at x for all x �M 	 If � � M ��M�G is the quotient
map� then we will show the existence of a sequence xn � M such that ��Sxn� is a
locally �nite covering of M�G	 To do so� notice �rst that M�G is locally compact
�in particular Hausdor��� ��compact and therefore normal	

Since M�G is ��compact and Hausdor�� there is a countable locally �nite cov�
ering by compact sets Ci	 Each Ci� in turn� is covered by f��Sx� � x � ����Ci�g	
Since Ci is compact� there is a �nite subcovering� and these taken all together give
the desired covering of M�G	

Let us now construct a neighborhood Kn of xn in Sxn��� Sn� such that Kn has
compact closure in Sn and f��Kn�g is still a covering	

Take a Ci from above	 If f��Sj� � j � F � N� �niteg covers Ci� then consider the
complement of

S
j�Fnflg ��Sj� in Ci	 This is a compact set contained in Ci with

open neighborhood ��Sl�� so it has a relatively compact neighborhood Rl with
�Rl � ��Sl�� since M�G is normal	 Kl �� ����Rl� � Sl is relatively compact due to
the compactness of Gxl � Ki is a subset of Si� so �	�
��� states that Ri

�� Ki�Gxi �
so �Ri

�� �Ki�Gxi and with �Ri� �Ki must be compact� since Gxi is compact	
If we choose fn � C� �M� ������ with fn jKn


 � and supp�fn� � G�Sn com�
pact� then

�fn�x� ��

Z
G

fn�g�x�d�r�g� � C� �M� ������
G

is positive on G�Kn and has supp� �fn� � G�Sn	 The action of the compact group
Gxn on TM jSn is �ber linear� so there is a Gx�invariant Riemann metric ��n� on
the vector bundle TM jSn by integration	 To get a Riemann metric on TM jG�Sn
invariant under the whole group G� consider the following diagram	

G� TM jSxn w
T��

uu
q

TM jG�Sxn

u

G�Gxn
TM jSxn

h
h
hhjgT��

u

G�Gxn
Sxn w

�� G�Sxn

T�� � �g�Xs� �� Ts�g�Xs factors over q to a map gT��	 This map is injective� since
if T���g�Xs� � T���g

�� Xs��� then on the one side ��g�s� � ��g��s�� so g��g��s� �
s and g��g� � Gx	 On the other side� Ts�g �Xs � Ts��g� �Xs� 	 So �g�� Xs�� ��
g�g��g��� Ts��g��� Ts�g�Xs

	
	 And� therefore� q�g�� Xs�� � q�g�Xs�	

The Riemann metric ��n� de�nes a G�invariant vector bundle metric on G �
TM jSn �� G� Sn by

�n�g�Xs� Ys� �� ��n��Xs� Ys��

It is also invariant under the Gx�action h��g�Xs� � �gh��� T �h�Xs� and� therefore�
induces a Riemann metric ��n on G�Gx

TM jSn 	 This metric is again G�invariant�
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�	 Proper actions� �	�� ��

since the actions of G and Gx commute	 Now �gT������n �� ��n is a G�invariant
Riemann metric on TM jG�Sn � and

� ��

�X
n��

�fn�x���n

is a G�invariant Riemann metric on M 	 �

Remark� By a theorem of Mostow ������� if G is a compact Lie group� then any
G�manifold M with a �nite number of orbit types can be embedded into some
�higher dimensional� vector space V in such a way that the action of G on M can
be extended to a linear action on V �see ���� pp	���#����	 A more recent result is
the following theorem found in �
��	

����� Theorem� �
��
Let G be a matrix group� that is a Lie group with a faithful �nite dimensional
representation� and let M be a G�space with only a �nite number of orbit types�
Then there is a G�equivariant embedding f � M �� V into a linear G�space V�
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�� Riemannian G�manifolds


��� Preliminaries� Let �M��� be a Riemannian G�manifold	 If � � M �� M is
an isometric di�eomorphism� then

��� ��expMx �tX�� � expM
�x��tTx��X�	 This is due to the fact that isometries

map geodesics to geodesics� and the starting vector of the geodesic t ��
��expMx �t�X�� is Tx��X 	

��� If ��x� � x� then� in the chart �Ux� �expMx ����� � is a linear isometry
�where Ux is neighborhood of x so small� that �expMx ��� � Ux �� TxM is a
di�eomorphism onto a neighborhood of � in TxM� �

���X� �� �expMx ��� 
 � 
 expMx �X� � �expMx ��� expMx �Tx��X� � Tx��X

�
� Fix��� � fx �M � ��x� � xg is a totally geodesic submanifold of M �
If we choose X � Tx Fix���� then� since Tx��X � X and by ���� we have

��expMx �tX�� � expMx �Tx��tX� � expMx �tX��

So the geodesic through x with starting vector X stays in Fix���	
��� If H is a set of isometries� then Fix�H� � fx �M � ��x� � x for all � � Hg

is also a totally geodesic submanifold in M 	


��� De
nition� Let M be a proper Riemannian G�manifold� x �M � The normal
bundle to the orbit G�x is de�ned as

Nor�G�x� �� T �G�x��

Let Nor��G�x� � fX � Nor�G�x� � jX j � �g� and choose r 
 � small enough
for expx � TxM � Br��x� �� M to be a di�eomorphism onto its image and for
expx�Br��x�� � G�x to have only one component� Then� since the action of G is
isometric� exp de�nes a di�eomorphism from Norr���G�x� onto an open neighbor�

hood of G�x� so exp
�
Norr���G�x�

	
�� Ur���G�x� is a tubular neighborhood of G�x�

We de�ne the normal slice at x by

Sx �� expx
�
Norr���G�x�

	
x
�
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��� Lemma� Under these conditions we have

��� Sg�x � g�Sx�
��� Sx is a slice at x�

Proof�

��� Since G acts isometrically and by �	���� �

Sg�x � expg�x
�
Tx�g

�
Norr���G�x�

	
x

	
� �g expx

�
Norr���G�x�

	
x

� g�Sx

��� r � G�Sx �� G�x � expg�xX �� g�x de�nes a smooth equivariant retraction
�note that Sx and Sy are disjoint if x �� y�	 �


��� De
nition� LetM be a G�manifold and x �M � then there is a representation
of the isotropy group Gx

Gx �� GL�TxM� � g �� Tx�g

called isotropy representation� If M is a Riemannian G�manifold� then the
isotropy representation is orthogonal� and Tx�G�x� is an invariant subspace under
Gx� So Tx�G�x�� is also invariant� and

Gx �� O�Norx�G�x�� � g �� Tx�g

is called the slice representation�


��� Example� Let M � G be a compact Lie group with a biinvariant metric	
Then G�G acts on G by �g�� g���g �� g�gg

��
� � making G a Riemannian �G �G��

space	 The isotropy group of e is �G � G�e � f�g� g� � g � Gg� and the isotropy
representation coincides with the adjoint representation of G �� �G � G�e on g �
Te�G�	


�
� Example� Let G�K be a semisimple symmetric space �G compact� and
g � k � p the corresponding orthogonal decomposition of the Lie algebra g with
regard to the negative Cartan�Killing form �B	 Then Te�G�K� �� g�k �� p� and the
isotropy subgroup of G at e is K	 The isotropy representation is Ad�K�G � K �� O�p�	
The slices are points since the action is transitive	


��� Lemma� Let M be a proper Riemannian G�manifold� x � M � Then the
following three statements are equivalent�

��� x is a regular point�
��� The slice representation at x is trivial�
�
� Gy � Gx for all y � Sx for a su�ciently small slice Sx�

Proof� Clearly� ��� !� �
�	 To see �
� �� ���� let Sx be a small slice at x	 Then
U �� G�S is an open neighborhood of G�x in M � and for all g�s � U we have
Gg�s � gGsg

�� � gGxg
��	 Therefore G�x is a principal orbit	 The converse is true

by �	�
�
�� since Gx is compact	 �
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��� De
nition� Let M be a Riemannian G�manifold and G�x some orbit� then
a smooth section u of the normal bundle Nor�G�x� is called equivariant normal

eld� if

Ty��g��u�y� � u�g�y� for all y � G�x� g � G�


��� Corollary� Let M be a proper Riemannian G�manifold and x a regular point�

If X � Norx�G�x�� then 'X�g�x� �� Tx��g��X is a well de�ned equivariant normal
�eld along G�x in M �

Proof� If g�x � h�x then h��g � Gx � Tx
�
�h��g

	
�X � X � since the slice repre�

sentation is trivial by ��� above	 Now by the chain rule� Tx��g��X � Tx��h��X 	

Therefore 'X is a well de�ned� smooth section of Nor�G�x�	 It is equivariant by
de�nition	 �


��	� Corollary� Let M be a Riemannian G�manifold� G�x a principal orbit� and
�u�� � � � � un� an orthonormal basis of Norx�G�x�� By corollary 
��� each ui de�nes
an equivariant normal �eld 'ui� So �'u�� � � � � 'un� is a global equivariant orthonormal
frame �eld for Nor�G�x�� and Nor�G�x� is a trivial bundle� �

This follows also from the tubular neighborhood description G�Sx �� G�Gx
Sx�

where Sx is a normal slice at x with trivial Gx�action� see �	�	


���� De
nition� Let �M��� be a Riemannian manifold and rM its Levi�Civita
covariant derivative� If P is a submanifold of M and rP the induced covariant
derivative on P � then the second fundamental form S � C� �S�T �P �Nor�P �

	
is given by the so called Gauss equation�

rMX Y � rPXY � S�X�Y � for X�Y � X�P �

In other words� S�X�Y � is the part of the covariant derivative in M orthogonal to
P �


���� De
nition� Let �M��� be a Riemannian G�manifold and u an equivariant
normal �eld along an orbit P �� G�x�� Then Xx � TxP de�nes a linear form on
TxP by

Yx �� ��S�Xx� Yx�� u�x���

Therefore� there is a vector Su�x��Xx� � TxP such that

� jTP �Su�x��Xx�� Yx� � ��S�Xx� Yx�� u�x��

This assignment de�nes a linear map Su�x� � TxP �� TxP called the shape op�
erator of P in the normal direction u�x�� For hypersurfaces it is also known as
the Weingarten endomorphism� Its eigenvalues are called the main curvatures of P
along u�


���� Lemma� Let u be an equivariant normal �eld along an orbit P �� G�x��
then

��� Su�g�x� � Tx��g��Su�x��Tg�x��g���
��� The main curvatures of P along u are all constant�
�
� fexpM �u�x�� � x � P � G�x�g is another G�orbit�
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Proof�

��� Since � is G�invariant and S is G�equivariant�

�
�
Su�g�x� �Xg�x� � Yg�x

	
� � �S �Xg�x� Yg�x� � u�g�x�� �

� �
�
T�gS

�
T�g��Xg�x� T �g��Yg�x

	
� T �g�u�x��

	
�

� �
�
S
�
T�g��Xg�x� T �g��Yg�x

	
� u�x�

	
�

� �
�
Su�x� 
 T�g���Xg�x�� T �g��Yg�x

	
� �

�
T�g 
 Su�x� 
 T�g���Xg�x�� Yg�x

	
��� By ��� Su�g�x� results from Su�x� by a linear coordinate transformation�

which does not a�ect the eigenvalues	
�
� fexpM �u�x�� � x � P � G�x�g � G� expM �u�x���� since

g� expM �u�x��� � expM �T�g�u�x��� � expM �u�g�x����

�


���� Example� Let Nn�c� be the simply connected space form with constant
sectional curvature c� that is

Nn�c� � Sn� sphere with radius
�

c
if c 
 �

� R
n if c � �

� Hn� hyperbolic sphere with radius
�

jcj if c � ��

Let G be a closed subgroup of Isom�Nn�c��	 If P is a G�orbit� then so is the subset
fexp�u�x�� � x � Pg for any equivariant normal �eld u along P 	 For instance

��� If G � SO�n� � Isom�Rn �� then the G�orbits are the spheres with center �	
A radial vector �eld with constant length on each sphere� u�x� �� f�jxj��x�
de�nes an equivariant normal �eld on each orbit	 Clearly its !ow carries
orbits back into orbits	

��� Another example is the subgroup

G � ff � x �� x � �v � � � R� v � hv�� v�� � � � � vmig
of Isom�Rn � consisting only of a�ne translations in certain �xed directions	
Here the orbits of G are then parallel planes of dimension m	 An equi�
variant normal �eld on an orbit is a constant vector �eld orthogonal to
v�� v�� � � � � vm	


���� Theorem� Let M be a proper G�manifold� then the set of all regular points
Mreg is open and dense in M � In particular� there is always a principal orbit type�

Proof� Suppose x � Mreg	 By �	� there is a slice S at x� and by �	�
�
� S can be
chosen small enough for all orbits through S to be principal as well	 Therefore G�S
is an open neighborhood of x in Mreg �open by �	���
��	

To see that Mreg is dense� let U � M be open� x � U � and S a slice at x	 Now
choose a y � G�S � U for which Gy has the minimal dimension and the smallest
number of connected components for this dimension in all of G�S �U 	 Let Sy be a
slice at y� then G�Sy � G�S � U is open� and for any z � G�Sy � G�S � U we have
z � g�Sy � Sg�y� so Gz � Gg�y � gGyg

��	 By choice of y� this implies Gz � gGyg
��

for all z � G�Sy �G�S � U � and G�y is a principal orbit	 �
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��
� Theorem� Let M be a proper G�manifold and x � M � Then there is a
G�invariant neighborhood U of x in which only �nitely many orbit types occur�

Proof� By theorem �	�� there is a G�invariant Riemann metric on M 	 Let S be
the normal slice at x	 Then S is again a Riemannian manifold� and the compact
group Gx acts isometrically on S	 In �	�
��� we saw that� if Gx�s� and Gx�s� have
the same orbit type in S� then G�s� and G�s� have the same orbit type in M 	 So
the number of G�orbit types in G�S can be no more� than the number of Gx�orbit
types in S	 Therefore it is su�cient to consider the case where G is a compact Lie
group	 Let us now prove the assertion under this added assumption	 We carry out
induction on the dimension of M 	

For n � � there is nothing to prove	 Suppose the assertion is proved for dimM �
n	 Again� it will do to �nd a slice S at x with only a �nite number of Gx�orbit
types	 If dimS � dimM � this follows from the induction hypothesis	 Now suppose
dimS � n	 S is equivariantly di�eomorphic to an open ball in TxM under the slice
representation �by exp�	 Since the slice representation is orthogonal� it restricts to
a Gx�action on the sphere Sn��	 By the induction hypothesis� locally� Sn�� has
only �nitely many Gx�orbit types	 Since Sn�� is compact� it has only �nitely many
orbit types globally	 The orbit types are the same on all spheres r�Sn�� �r 
 ���
since x �� �

rx is G�equivariant	 Therefore� S has only �nitely many orbit types�

those of Sn�� and the ��orbit	 �


���� Theorem� If M is a proper G�manifold then the set Msing�G of all singular
G�orbits does not locally disconnect the orbit space M�G �that is to every point
in M�G the connected neighborhoods remain connected even after removal of all
singular orbits��

Proof� As in the previous theorem� we will reduce the statement to an assertion
about the slice representation	 By theorem �	��� there is a G�invariant Riemann
metric on M 	 Let S be the normal slice at x	 Then S is again a Riemannian
manifold� and the compact group Gx acts isometrically on S	 A principal Gx�orbit
is the restriction of a principal G�orbit� since Gx�s is principal means that all orbits
in a su�ciently small neighborhood of Gx�s have the same orbit type as Gx�s ��	��	
Therefore� by �	�
���� the corresponding orbits in G�U are also of the same type�
and G�s is principal as well	 So there are %fewer& singular G�orbits in G�S than
there are singular Gx�orbits in S	 Now cover M with tubular neighborhoods like
G�Sx� and recall that G�Sx�G �� Sx�Gx by �	�
���	 This together with the above
argument shows us that it will su�ce to prove the statement for the slice action	
Furthermore� like in the proof of theorem �	��� we can restrict our considerations
to the slice representation	 So we have reduced the statement to the following�

If V is a real� n�dimensional vector space and G a compact Lie group acting
on V � then the set Vsing�G of all singular G�orbits does not locally disconnect the
orbit space V�G �that is to every point in V�G the connected neighborhoods remain
connected even after removal of all singular orbits�	

We will prove this by induction on the dimension n of V 	 For n � �� that is
V � R� the only nontrivial choice for G is O��� �� Z�	 In this case� R�G � �����
and Rsing�G � f�g	 Clearly� f�g does not locally disconnect ������ and we can
proceed to the general case	
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Suppose the assertion is proved for all dimensions smaller than n	 Now for
G � O�n� we consider the induced action on the invariant submanifold Sn��	 For
any x � Sn�� we can apply the induction hypothesis to the slice representation
Gx �� O�NorxG�x�	 This implies for the Gx�action on Sx� that Sx�Gx

�� G�Sx�G
is not locally disconnected by its singular points	 As above� we can again cover
Sn�� with tubular neighborhoods like G�Sx� and we see that all of Sn���G is not
locally disconnected by its singular orbits	 Now we need to verify that the orbit
space of th unit ball Dn is not locally disconnected by its singular orbits	 Since
scalar multiplication is a G�equivariant di�eomorphism� the singular orbits in V
�not including f�g� project radially onto singular orbits in Sn��	 So if we view the
ball Dn as cone over Sn�� and denote the cone construction by coneSn��� then
Dn

sing � coneSn��sing 	 Furthermore� we have a homeomorphism

coneSn���G �� cone�Sn���G� � G��x� t� �� �G�x� t�

since G preserves the %radius& t	 Therefore

Dn�G � �coneSn����G �� cone�Sn���G�

and Dn
sing�G � coneSn��sing �G

�� cone
�
Sn��sing �G

�
�

Since Sn��sing �G does not locally disconnect Sn���G� we also see that

cone
�
Sn��sing �G

� �� Dn
sing�G

does not locally disconnect cone�Sn���G� �� Dn�G	 �


���� Corollary� Let M be a connected proper G�manifold� then

��� M�G is connected�
��� M has precisely one principal orbit type�

Proof�

��� Since M is connected and the quotient map � � M �� M�G is continuous�
its image M�G is connected as well	

��� By the last theorem we have that M�G�Msing�G � Mreg�G is connected	
On the other hand by �	�� the orbits of a certain principal orbit type form an
open subset of M�G� in particular of Mreg�G	 Therefore if there were more
than one principal orbit type� these orbit types would partition Mreg�G
into disjoint nonempty open subsets contradicting the fact that Mreg�G is
connected	 �


���� Corollary� LetM be a connected� proper G�manifold of dimension n and let
k be the least number of connected components of all isotropy groups of dimension
m �� inffdimGxjx �Mg� Then the following two assertions are equivalent�

��� G�x� is a principal orbit�
��� The isotropy group Gx� has dimension m and k connected components�
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If furthermore G is connected and simply connected� these conditions are again
equivalent to

�
� The orbit G�x� has dimension n�m and for the order of the fundamental
group we have� j���G�x��j � k�

Proof� Recall that we proved the existence of a principal orbit in �	�� just by taking
a Gx� as described above	 The other direction of the proof follows from the above
corollary	 Since there is only one principal orbit type� this must be it	

If moreover G is connected and simply connection we look at the �bration Gx� �
G � G�Gx� � G�x� and at the following portion of its long exact homotopy
sequence

� � ���G�� ���G�x��� ���Gx��� ���G� � �

from which we see that j���G�x��j � k if and only if the isotropy group Gx� has k
connected components	 �


��	� Theorem� �
�� Let � � G� O�V � be an orthogonal� real� �nite�dimensional
representation of a compact Lie group G� Let 	�� � � � � 	k � R�V �G be homogeneous
generators for the algebra R�V �G of invariant polynomials on V � For v � V � let
Norv�G�v� �� Tv�G�v�� be the normal space to the orbit at v� and let Norv�G�v�Gv

be the subspace of those vectors which are invariant under the isotropy group Gv�
Then grad 	��v�� � � � � grad	k�v� span Norv�G�v�Gv as a real vector space�

Proof� Clearly each grad	i�v� � Norv�G�v�Gv 	 In the following we will identify G
with its image ��G� � O�V �	 Its Lie algebra is then a subalgebra of o�V � and can
be realized as a Lie algebra consisting of skew�symmetric matrices	 Let v � V � and
let Sv be the normal slice at v which is chosen so small that the projection of the
tubular neighborhood �see �	��� pG�v � G�Sv � G�v from the diagram

G� Sv
q����� G�Gv

Sv
������ G�Sv

p

��y pG�v

��y
G�Gv

������

�

G�v

has the property� that for any w � G�Sv the point pG�v�w� � G�v is the unique
point in the orbit G�v which minimizes the distance between w and the orbit G�v	

Choose n � Norv�G�v�Gv so small that x �� v�n � Sv 	 So pG�v�x� � v	 For the
isotropy groups we haveGx � Gv by �	�
	���	 But we have also Gv � Gv�Gn � Gx�
so that Gv � Gx	 Let Sx be the normal slice at x which we choose also so small
that pG�x � G�Sx � G�x has the same minimizing property as pG�v above� but so
large that v � G�Sx �choose n smaller if necessary�	 We also have pG�x�v� � x since
for the Euclidean distance in V we have

jv � xj � min
g�G
jg�v � xj since v � pG�v�x�

� min
g�G
jh�g�v � h�xj for all h � G

� min
g�G
jv � g���xj by choosing h � g���
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For w � G�Sx we consider the local� smooth� G�invariant function

dist�w�G�x�� � dist�w� pG�x�w��� � hw � pG�x�w�� w � pG�x�w�i
� hw�wi � hpG�x�w�� pG�x�w�i � �hw� pG�x�w�i
� hw�wi � hx� xi � �hw� pG�x�w�i�

Its derivative with respect to w is

��� d�dist� � G�x����w�y � �hw� yi � �hy� pG�x�w�i � �hw� dpG�x�w�yi�

We shall show below that

��� hv� dpG�x�v�yi � � for all y � V�

so that the derivative at v is given by

�
� d�dist� � G�x����v�y � �hv� yi � �hy� pG�x�v�i � �hv � x� yi � ��hn� yi�

Now choose a smooth Gx�invariant function f � Sx � R with compact support
which equals � in an open ball around x and extend it smoothly �see the diagram
above� but for Sx� to G�Sx and then to the whole of V 	 We assume that f is
still equal to � in a neighborhood of v	 Then g � f� dist� � G�x�� is a smooth G�
invariant function on V which coincides with dist� � G�x�� near v	 By the theorem
of Schwarz �
	�� there is a smooth function h � C��Rk �R� such that g � h 
 	�
where 	 � �	�� � � � � 	k� � V � Rk 	 Then we have �nally by �
�

��n � grad�dist� � G�x����v� � gradg�v� �

� grad�h 
 	��v� �

kX
i��

�h

�yi
�	�v�� grad 	i�v��

which proves the result	
It remains to check equation ���	 Since TvV � Tv�G�v��Norv�G�v� the normal

space Norx�G�x� � ker dpG�x�v� is still transversal to Tv�G�v� if n is small enough*
so it remains to show that hv� dpG�x�v��X�vi � � for each X � g	 Since x � pG�x�v�
we have jv�xj� � ming�G jv�g�xj�� and thus the derivative of g �� hv�g�x� v�g�xi
at e vanishes� for all X � g we have

��� � � �h�X�x� v � xi � �hX�x� xi � �hX�x� vi � �� �hX�x� vi�

since the action of X on V is skew symmetric	 Now we consider the equation
pG�x�g�v� � g�pG�x�v� and di�erentiate it with respect to g at e � G in the direction
X � g to obtain in turn

dpG�x�v��X�v � X�pG�x�v� � X�x�

hv� dpG�x�v��X�vi � hv�X�xi � �� by ���� �
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���� Lemma� Let � � G � O�V � be an orthogonal representation� Let � �
�p
hor�V �G be an invariant di�erential form on V which is horizontal in the sense

that iw�x � � if w is tangent to the orbit G�x� Let v � V and let w � TvV be

orthogonal to the space Norv�G�v�G
�
v of those orthogonal vectors which are invariant

under the connected component G�
v of the isotropy group Gv�

Then iw�v � ��

Proof� We consider the orthogonal decomposition

TvV � Tv�G�v� �W �Norv�G�v�G
�
v �

We may assume that w � W since iu�v � � for u � Tv�G�v�	
We claim that each w � W is a linear combination of elements of the form X�u

for u � W and X � gv �� ker�d�� �v�	 Since G�
v is compact� the representation

space W has no �xed point other than zero and is completely reducible under G�
v

and thus also under its Lie algebra gv� and we may treat each irreducible component
separately� or assume that W is irreducible	 Then gv�W � is an invariant subspace
which is not �	 So it agrees with W � and the claim follows	

So we may assume that w � X�u for u �W 	 But then

�v � �
nu�X�u � nX��v � �

nu�� � Tv	 �
n
u�G��v � �

nu��

satis�es iX�u�v	u�n � � by horizontality and thus we have

iw�v � iX�u�v � lim
n
iX�u�v	u�n � �� �
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	� Riemannian Submersions

���� De
nitions� Let p � E �� B be a submersion of smooth manifolds� that is
Tp � TE �� TB surjective� Then

V � V �p� � V �E� �� Ker�Tp�

is called the vertical subbundle of E� If E is a Riemannian manifold with metric
�� then we can go on to de�ne the horizontal subbundle of E�

Hor � Hor�p� � Hor�E� � Hor�E� �� �� V �p��

If both �E� �E� and �B� �B� are Riemannian manifolds� then we will call p a Rie�
mannian submersion� if

Txp � Hor�p� �� Tp�x�B

is an isometric isomorphism for all x � E�
Some Simple Examples� For any two Riemannian manifolds M�N � the projection
pr� � M � N �� M is a Riemannian submersion	 Here Riemann metric on the
product M �N is given by� �M�N �X�Y � �� �M �XM � YM � � �N �XN � YN � �where
we use T �M �N� �� TM � TN to decompose X�Y � T �M �N��	 In particular�
R
m	n �� R

m with the usual metric� or pr� � Sn � R
	 �� R

	 are Riemannian
submersions	

���� G�manifold with single orbit type as 
ber bundle� Let �M��� be a
proper Riemannian G�manifold and suppose that M has only one orbit type� �H�	
We then want to study the quotient map � � M ��M�G	 Let us �rst consider the
orbit space M�G	 Choose x �M and let Sx denote the normal slice at x	 Then by
�	�
��� we have Gy � Gx for all y � Sx	 Since Gy must additionally be conjugate
to Gx and both are compact� they must be the same �by �	��	 So Gx � Gy and
therefore Gx acts trivially on Sx �this can also be seen as a special case of �	��	
From �	�
��� it follows that ��Sx� �� Sx�Gx � Sx� and with �	�� we have that
G�Sx is isomorphic to G�Gx � Sx	 Therefore� for any x � M �

�
��Sx�� exp��x jSx

	
can serve as a chart for M�G	

M

u
�

Sxu �

u
�

M�G ��Sx�u � Sx�Gx
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To make an atlas out of these charts� we have to check whether they are compatible
- which is obvious	 By �	� M�G is Hausdor�� and therefore it is a smooth manifold	

Now let us study the smooth submersion � � M �� M�G	 We want to �nd a
Riemannian metric on M�G which will make � a Riemannian submersion	

Claim� For Xx� Yx � Horx��� � Norx�G�x�� the following inner product is well
de�ned	

����x��T�Xx� T�Yx� �� �x�Xx� Yx�

Proof� Choose X �
gx� Y

�
gx � Horgx��� such that T��X �

gx � T��Xx and T��Y �
gx �

T��Yx	 Then we see that X �
gx � T ��g�Xx by the following argumentation� Clearly

T�
�
X �
gx � T ��g��Xx

	
� �� so the di�erence X �

gx � T ��g��Xx is vertical	 On the
other hand� X �

gx is horizontal� and so is T ��g��Xx�
�g leaves G�x invariant� consequently� T�g maps vertical vectors to vertical vectors
and since it is an isometry� it also maps horizontal vectors to horizontal vectors	
Therefore X �

gx � T ��g��Xx is horizontal as well as vertical and must be zero	
Now we can conclude� that

�gx
�
X �
gx� Y

�
gx

	
� �gx�T ��g�Xx� T ��g�Yx� � �x�Xx� Yx�� �

So we have found a Riemannian metric �� on M�G which makes � a Riemannian
submersion	

Let us �nally try to understand in which sense � � M � M�G is an associated
bundle	 Let x � M be such that Gx � H 	 By �	�	��� the set Fix�H� � fx �
M � g�x � x for all g � Hg is a geodesically complete submanifold of M 	 It is
NG�H��invariant� and the restriction � � Fix�H� � M�G is a smooth submersion
since for each y � Fix�H� the slice Sy is also contained in Fix�H�	 The �ber of
� � Fix�H� � M�G is a free NG�H��H�orbit� if ��x� � ��y� and Gx � H � Gy

then g � NG�H�	 So � � Fix�H� � M�G is a principal NG�H��H�bundle� and M
is the associated bundle with �ber G�H as follows�

Fix�H��G�H��
�����

�x� �g�� �� g�x

u

Fix�H��NG�H��H G�H w��

u

M

u

M�G M�G�

���� Another 
ber bundle construction� Let M again be a proper Riemannian
G�manifold with only one orbit type	 Then we can %partition& M into the totally
geodesic submanifolds Fix�gHg��� �� fx � M � ghg���x � x for all h � Hg where
H � Gx� �x� �M arbitrary� is �xed and g varies	 This is not a proper partitioning
in the sense that if g �� e commutes with H � for instance� then Fix�gHg��� �
Fix�eHe���	 We want to �nd out just which g give the same sets Fix�gHg���	

Claim�

Fix�gHg��� � Fix
�
g�Hg�

��
�

!� gN�H� � g�N�H�
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where N�H� denotes the normalizer of H in G	

Proof� First let us show the following identity�

N�H� � fg � G � gFix�H� � Fix�H�g

��� Let n � N�H� and y � Fix�H�	 Then n�y is H�invariant�

hn�y � nn��hn�y � n�n��hn��y � n�y

��� gFix�H� � Fix�H� implies that hg�y � g�y� or equivalently g��hg�y � y�
for any y � Fix�H� and h � H 	 Recall at this point� that H � Gx�

for some x� � M 	 Therefore� we have g��hg�x� � x� and consequently
g��hg � Gx� � H 	

Using this characterization for N�H� and the identity

g�fg � G � g Fix�H� � Fix�H�g � fg � G � g Fix�H� � g� Fix�H�g�

we can convert the righthand side of our equality� gN�H� � g�N�H�� to the follow�
ing�

fa � G � aFix�H� � g�Fix�H�g � fa � G � aFix�H� � g��Fix�H�g�

In particular� this is the case if

g�Fix�H� � g��Fix�H��

In fact� let us show that the two equations are equivalent	 Suppose indirectly that
g�y �� g��Fix�H� for some y � Fix�H�	 Then a � g has the property a�Fix�H� ��
g��Fix�H�� so fa � G � aFix�H� � g�Fix�H�g �� fa � G � aFix�H� � g��Fix�H�g	

So far we have shown that gN�H� � g�N�H�  g�Fix�H� � g��Fix�H�	 To
complete the proof it only remains to check whether

Fix�gHg��� � g Fix�H��

This is easily done �as well as plausible� since it resembles strongly the %dual&
notion Ggx � gGxg

���

y � Fix�gHg��� !� ghg���y � y for all h � H
!� hg���y � g��y for all h � H
!� g���y � Fix�H�

!� y � g Fix�H� �

Claim� The map �� � M �� G�N�H� de�ned by Fix�gHg��� � x �� g�N�H� is a
�ber bundle with typical �ber Fix�H�	
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Proof� To prove this� let us consider the following diagram	

G� Fix�H�

uu
q

w
� M

�
�

�
�

�
�

�
�

���

��G�N�H� Fix�H�
��

��
��

�����

uu

G�N�H�

Here we use the restricted action � � N�H� � Fix�H� �� Fix�H� to associate to
the principal bundle G �� G�N�H� the bundle G�Fix�H�� �� � G �N�H� Fix�H�	

It remains to show that �� is a di�eomorphism� since then �� has the desired �ber
bundle structure	

�� is smooth� since �� 
 q � � is smooth and q is a submersion	 Now let us show
that �� is bijective	
��� �� is surjective� Since H is the only orbit type� for every x � M there is a
g � G� such that Gx � gHg��� which implies x � Fix�gHg��� � gFix�H� �
��G � Fix�H��	 So � is surjective and� by the commutativity of the diagram� so is
��	
��� �� is injective� Suppose ��a� x� � a�x � b�y � ��b� y�� for some a� b � G� x� y �
Fix�H�	 Then b��a�x � y � FixH implies hb��a�x � y � b��a�x which im�
plies again �b��a���hb��a�x � x	 Since there is only one orbit type and all
isotropy groups are compact� we know that x � FixH � H � Gx �by �	��	 So
�b��a���hb��a is again in H � and b��a � N�H�	 In this case� q�a� x� � �a� x� �
�bb��a� x� � �b� b��a�x� � �b� y� � q�b� y�	

���� is smooth� since � is a submersion	 So �� is a di�eomorphism and �� a �ber
bundle with typical �ber Fix�H�	 �

���� Construction for more than one orbit type� Let �H� be one particular
orbit type �H � Gx�	 To reduce the case at hand to the previous one� we must
partition the points in M into sets with common orbit type�

M�H� �� fx �M � �Gx� � �H�g

Claim� For a proper Riemannian G�manifold� the space M�H� as de�ned above is
a smooth G�invariant submanifold	

Proof� M�H� is of course G�invariant as a collection of orbits of a certain type	
We only have to prove that it is a smooth submanifold	 Take any x in M�H��then�
without loss of generality� H � Gx�� and let Sx be a slice at x	 Consider the tubular
neighborhood G�S �� G�H Sx ��	���	 Then the orbits of type �H� in G�S are just
those orbits that meet Sx in SHx �where SHx shall denote the �xed point set of H
in Sx�	 Or� equivalently� �G�H Sx��H� � G�H SHx �

��� �g� s� � �G �H Sx��H� � g�s � G�S�H� � gHg�� � Gs � H � Gs � H �
s � SHx � �g� s� � G�H SHx

��� �g� s� � G �H SHx � s � SHx � H � Gs� but since s � Sx we have
Gs � Gx � H by �	�
���� therefore Gs � H and �g� s� � �G�H Sx��H�
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Now� let Sx � expx�Norr�G�x�� be the normal slice at x	 That is� r is chosen so
small that expx is a di�eomorphism on Norr�G�x� �� V 	 Notice� that V is not only
di�eomorphic to Sx� but G�equivariantly so� if we let G act on Norx�G�x� via the
slice representation	 Since the slice action is orthogonal� in particular linear� the
set of points �xed by the action of H is a linear subspace of Norx�G�x� and its
intersection with V � a %linear& submanifold	 Therefore SHx is also a submanifold of
Sx	 Now consider the diagram

G� SHx w
�

A
A
AACC
p

M

G�H SHx

�
�
�
��

i

The map i is well de�ned� injective and smooth� since p is a submersion and � is
smooth	 Furthermore� p is open� and so is �	 Just consider any open set of the
form U �W in G� SHx 	 Then ��U �W � is the union of all sets �u�W � for u � U 	
Since �u is a di�eomorphism� each one of these is open� so ��U �W � is open as
well	 Therefore� i must be open� and so i is an embedding and G�SH �� G�H SHx
an embedded submanifold of M 	 �

Let �H� be one particular orbit type �H � Gx�� then Fix�H� is again a closed�
totally geodesic submanifold of M �see �	��
��	

Claim� Fix��H� �� fx �M � Gx � Hg is an open submanifold of Fix�H�	

Remark� For one orbit type� x � Fix�H� implied H � Gx� and thus Fix��H� �
Fix�H�	 For more than one orbit type Fix�H� is not necessarily contained in M�H�	
Therefore� it is necessary to study Fix��H� � Fix�H� �M�H�	

Proof� In �	
 we saw that N�H� is the largest subgroup of G acting on Fix�H�	 It
induces a proper N�H��H�action on Fix�H�	 Now� Fix��H� is the set of all points
in Fix�H� with trivial isotropy group with respect to this action	 So by �	�� it is
simply the set of all regular points	 Therefore� by �	��� Fix��H� is an open� dense
submanifold of Fix�H�	 �

Now� M�H� can be turned into a �ber bundle over G�N�H� with typical �ber
Fix��H� just as before �Fix��H� is really the �xed point space of H in M�H��	 And�
on the other hand� M�H� is a �ber bundle over M�H��G with typical �ber G�H 	
The partition of M into submanifolds M�H� and that of M�G into the di�erent
orbit types is locally �nite by �	��	 So M and M�G are in a sense strati�ed� and
� � M ��M�G is a strati�ed Riemannian submersion �see also ��
��	

���� De
nition� Let p � E �� B be a Riemannian submersion�
A vector �eld � � X�E� is called vertical� if ��x� � Vx�p� for all x �i�e� if Tp ��x� �
���
� � X�E� is called horizontal� if ��x� � Horx�p� for all x� that is� if ��x� #
Vx�p� for all x�
� � X�E� is called projectable� if there is an � � X�B�� such that Tp�� � � 
 p
� � X�E� is called basic� if it is horizontal and projectable�
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Remark� The orthogonal projection � � TE �� V �E� with respect to the Riemann
metric is a �generalized� connection on the bundle �E� p� and de�nes a local parallel
transport over each curve in B �denoted by Pt��c� ��� as well as the horizontal lift�

C � TB �
B
E �� TE � �Xb� e� �� Ye� where Ye � Hore�p� with Tep�Ye � Xb

This map also gives us an isomorphism C� � X�B� �� Xbasic between the vector
�elds on B and the basic vector �elds	

��
� Lemma� Consider a Riemannian submersion p � �E� �E� �� �B� �B� with
connection � � TE �� V �p�� and c � ��� �� �� B� a geodesic� Let Lba�c� denote the
arc length of c from c�a� to c�b� in B� Then�

��� Lt��c� � Lt�Pt
��c� �� u�� where u � Ec��� is the starting point of the parallel

transport�
��� Pt��c� �� u� # Ec�t� for all t

�
� If c is a geodesic of minimal length in B� then we have L�
��Pt

��c� �� u�� �
dist

�
Ec���� Ec���

	
�

��� t �� Pt��c� t� u� is a geodesic in E �again for any geodesic c in B��

Proof�

��� Since
d

ds
P t��c� s� u� is a horizontal vector and by the property of p as Rie�

mannian submersion� we have

Lt�Pt
��c� �� u� �

Z t

�

�E



d

ds
P t��c� s� u��

d

ds
P t��c� s�u�

� �
�

ds

�

Z t

�

�B�c��s�� c��s��
�
� ds � Lt��c��

��� This is due to our choice of � as orthogonal projection onto the vertical
bundle in terms of the given metric on E	 By this choice� the parallel
transport is the unique horizontal curve covering c� so it is orthogonal to
each �ber Ec�t� it meets	

�
� Consider a �piecewise� smooth curve e � ��� �� �� E from Ec��� to Ec���� then
p 
 e is a �piecewise� smooth curve from c��� to c���	 Since c is a minimal
geodesic� we have L�

�c � L�
��p 
 e�	 Furthermore� we can decompose the

vectors tangent to e into horizontal and vertical components and use the
fact that Tp is an isometry on horizontal vectors to show� L�

�e � L�
��p 
 e�

�in more detail� e��t� � h�t� � v�t� � HE �E V E� and since p is a Rie�
mannian submersion �B�Tp�h�t�� T p�h�t�� � �E�h�t�� h�t�� and Tp�v�t� � �	
Therefore jTp�e��t� j � jTp�h�t� j � jh�t� j � jh�t� � v�t� j � j e��t� j� and
L�
�p 
 e � L�

�e	� Now with ��� we can conclude� L�
�Pt

��c� �� u� � L�
�c �

L�
�e for all �piecewise� smooth curves e from Ec��� to Ec���	 Therefore�

L�
��Pt

��c� �� u�� � dist
�
Ec���� Ec���

	
	

��� This is a consequence of �
� and the observation that every curve which
minimizes length locally is a geodesic	 �
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���� Corollary� Consider a Riemannian submersion p � E �� B� and let c �
��� ��� E be a geodesic in E with the property c��t�� # Ep�c�t��� for some t�� Then
c��t� # Ep�c�t�� for all t � ��� ���

Proof� Consider the curve d � t �� expBp�c�t����tTc�t��p�c
��t���	 It is a geodesic in

B and therefore lifts to a geodesic e�t� � Pt��d� t � t�� c�t��� in E �by �	�����	
Furthermore e�t�� � c�t�� and e��t�� � C�Tc�t��p�c

��t��� c�t��� � c��t�� since c��t�� #
Ep�c�t��� is horizontal	 But geodesics are uniquely determined by their starting point
and starting vector	 Therefore e � c� and e is orthogonal to each �ber it meets by
�	����	 �

���� Corollary� Let p � E �� B be a Riemannian submersion

��� If Hor�E� is integrable� then every leaf is totally geodesic�
��� If Hor�E� is integrable and S is a leaf� then pS � S �� B is a local isometry�

Proof� ��� follows from corollary �	�� while ��� is just a direct consequence of the
de�nitions	 �

���� Remark� If p � E �� B is a Riemannian submersion� then Hor�E�jEb
�

Nor�Eb� for all b � B and p de�nes a global parallelism as follows	 A section
�v � C��Nor�Eb�� is called p�parallel� if Tep��v�e� � v � TbB is the same point for
all e � Eb	 There is also a second parallelism	 It is given by the induced covariant
derivative� A section �v � C��Nor�Eb�� is called parallel if rNor�v � �	 The p�
parallelism is always !at and with trivial holonomy which is not generally true for
rNor	 Yet we will see later on that if Hor�E� is integrable then the two parallelisms
coincide	

����� Remark� Let M be a connected Riemannian G�manifold and �H� the prin�
cipal orbit type� then we saw in �	� that � � M�H� �� M�H��G is a Riemannian
submersion	 Now we can prove�

Claim� � � C��Nor�G�x��
�
x �Mreg � M�H�

	
is ��parallel i� � is G�equivariant	

�!� � ��g�x� � Tx�g���x� implies Tg�x����g�x� � Tg�x� 
 Tx�g���x� � Tx����x� for
all g � G	 Therefore � is ��parallel	

� �� � ��g�x� and Tx�g��x� are both in Norg�x�G�x�� and since � is ��parallel we
have�
Tg�x����g�x� � Tx����x� � Tg�x� 
 Tx�g ���x�	 So ��g�x� and Tx�g ���x� both
have the same image under Tg�x�	 Because Tg�x� restricted to Norg�x�G�x�
is an isomorphism� ��g�x� � Tx�g���x�	 �

����� De
nition� A Riemannian submersion p � E �� B is called integrable� if
Hor�E� � �KerTp�� is an integrable distribution�

����� Local Theory of Riemannian Submersions� Let p � �E� �E� �� �B� �B�
be a Riemannian submersion	 Choose for an open neighborhood U in E an or�
thonormal frame �eld

s � �s�� � � � � sn	k� � C��TEjU�n	k

in such a way that s�� � � � � sn are vertical and sn	�� � � � � sn	k are basic	 That way�
if we %project& sn	�� � � � � sn	k onto TBjp�U� we get another orthonormal frame
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�eld� �s � ��sn	�� � � � � �sn	k� � C��TBjp�U��k� since p� as Riemannian submersion�
is isometric on horizontal vectors	

In the following�
P

will always refer to the sum over all indices occurring twice
unless otherwise speci�ed	 Furthermore� we adopt the following index convention	
The listed indices will always run in the domain indicated�

� � i� j� k � n

n � � � 
� �� � � n � k

� � A�B�C � n � k

In this spirit� the orthogonal coframe corresponding to s is de�ned by the relation

�A�sB� � �AB

We will write its components in the form of a column vector and in general adhere
to the conventions of linear algebra so that� wherever possible� we can use matrix
multiplication to avoid having to write down indices	

� �

�� ��
			

�n	k

�A � ���U�n	k

Analogously� we have the orthonormal coframe ��� � ���p�U�� on p�U� � B� with

�����s�� � ��� �

It is related to �� by p���� � ��	 In terms of these� the Riemannian metrics �E
and �B take on the form

�E jU �
X
A

�A � �A

�B jp�U� �
X
�

��� � ����

Now let r denote the Levi�Civita covariant derivative on �E� �E�

r � X�E��X�E� �� X�E�� �X�Y � �� rXY�

In terms of the frame �eld we will write the covariant derivative as

rsA �
X
B

sB�
B
A � �BA � ���U��

If we view � as the matrix of ��forms ��BA �� then the above equation can be written
in terms of matrix multiplication�

rs � s��
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We get the following relation for �	

� � d�E�sA� sB� � �E�rsA� sB� � �E�sA�rsB� �

�E�
X

sC�
C
A � sB� � �E�sA�

X
sC�

C
B� � �BA � �AB

Therefore ��X� is a real skewsymmetric matrix for all X � X�U�� and we have

� � ���U� so�n � k���

An arbitrary vector �eld X on U can be written as X �
P

siu
i where ui �

C��U�R� can be regarded as the components of a column�vector�valued function
u so that we can write X � s�u	 Its covariant derivative can be calculated directly
using the derivation property	

r�s�u� � rs�u � s�du � s���u � s�du

Now let us calculate the curvature tensor in this setting	

R�X�Y �Z � ��rX �rY ��r�X�Y ��Z � rXrY Z �rYrXZ �r�X�Y �Z�

Let R�X�Y �s denote the row of vector �elds R�X�Y �sA	 Then we can go on to
calculate�

R�X�Y �s � rXrY s�rYrXs�r�X�Y �s �

� rX�s���Y ���rY �s���X��� s�� ��X�Y �� �

� �rXs����Y � � s�X���Y �� �rY s����X�� s�Y���X�� s�� ��X�Y �� �

� s���X����Y �� s���Y ����X� � s� �X���Y �� Y���X�� � ��X�Y ��� �

� s�� 	 ��X�Y � � s�d��X�Y � � s��d� � � 	 ���X�Y �

The notation � 	 � stands for �
P

�AC 	 �CB�AB � which has the form of a standard
matrix multiplication� only with the usual product on the components replaced by
the exterior product	 This leads to the de�nition � �� d� �� 	� � d�� �

� ��� ���	

Like with �� the orthonormality of s implies �j
i � ��i

j � so ���U� so�n � k��	 The
second Bianchi identity follows directly�

��	 Bianchi identity� d� � � 	 ��� 	 � � d� � ������ � �

Using the property that the Levi�Civita connection is free of torsion� we can derive
the so�called structure equation on �	 It determines the Levi�Civita connection
completely	

� � Tor�X�Y � � rX�s���Y ���rY �s���X�� � s�� ��X�Y �� �

� s���X����Y � � s�X���Y ��� s���Y ���X�� s�Y ���X��� s�� ��X�Y �� �

� s����X����Y �� ��Y ����X�� � s��X���Y ��� Y ���X��� � ��X�Y ��� �

� s��� 	 ��X�Y �� � s�d��X�Y � � s��� 	 � � d���X�Y �
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%structure equation&

� 	 � � d� � �

or
X
B

�AB 	 �B � d�A � �

As a direct consequence� the 
rst Bianchi identity takes on the following form	

��	 Bianchi identity� � 	 � � �

If we pull back the structure equation d�� � �� 	 �� � � from B to E� we can derive
some relations between the components ��A of ��

� � p�
�
d��� �

X
���� 	 ���

�
�

� dp���� �
X�

p�����
	 	 �p����

	
� d�� �

X�
p�����

	 	 ��
Together with the 
�component of the structure equation on E� d���

P
��� 	�� �P

��i 	 �i � �� this gives us�

�,�
X�

p�����
	 	 �� �

X
��� 	 �� �

X
��i 	 �i

The lefthand side of this equation contains no �i 	 ��� or �i 	 �j�terms	 Let us
write out ��� and ��i in this basis	

��� � ���� ��
X

q��
�

 �

X
b��i�

i

��i � ��i� ��
X

a�i��
� �

X
r�ij�

j

This gives us for the righthand side of �,�X
q��
�


 	 �� �
X

b��i�
i 	 �� �

X
a�i��

� 	 �i �
X

r�ij�
j 	 �i �X

q��
�

 	 �� �

X�
b��i � a�i�

	
�i 	 �� �

�

�

X�
r�ij � r�ji

	
�j 	 �i

So we have found

a�i� � b��i

r�ij � r�ji�

or� in other words�

��i �s�� � ��� �si�

��i �sj� � ��j �si�

That is� ��i �sA� � ��A�si�� and this just means that the horizontal part of �sA� si�
is �� or �sA� si� is always vertical�

� �
X

s��
�
i �sA��

X
s��

�
A�si� � �rsAsi �rsisA�

hor
�
�
�sA��si

	hor
�
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Now we will calculate the second fundamental form S � XEb�Eb
XEb �� Xhor�EjEb�

of Eb �� p���b� in E	 Let �r denote the Levi�Civita covariant derivative on Eb

corresponding to the induced metric i�g �where i � Eb �� E is the inclusion�	 Since
every vector �eld on Eb can be extended to a vertical vector �eld on E �do it in
charts� patch it up with a partition of unity and then compose with the connection
� to make it vertical�� we can determine r for vector �elds de�ned only on Eb by
extending them onto E	 We will denote the restriction of r onto Eb again by r	
It can easily be checked that this de�nition is independent of the extension chosen	
Now the second fundamental form is de�ned as�

S�Xver� Y ver� �� rXverY ver � �rXverY ver

If we express �r in terms of r� we get

S�Xver� Y ver� � rXverY ver � �rXverY ver�
ver

� �rXverY ver�
hor

Expressed in the local frame� it is�

�rXverY ver�hor �
�
rXver�

X
si�

i�Y ver��
�hor

�

�
�X

�rXversi��
i �Y ver� �

X
sid��i�Y ver���Xver

�hor
�

� �
X

sA�
A
i �Xver��i�Y ver��hor � � �

X
s��

�
i �Xver��i�Y ver� �

�
X

r�ijs� � �j � �i �Xver� Y ver�

So X
s��

��S� �
X

r�ij s� � �j � �i�

S is a symmetric tensor �eld as indeed the second fundamental form must always
be	 But in our special case we have already shown that r�ij � r�ji and thereby proved
this result directly	

Similarly to the covariant derivative on the vertical bundle� which was obtained
by taking the vertical part of the covariant derivative rXverY ver of two verti�
cal vector �elds� we can de�ne a covariant derivative on the the normal bundle
Nor�Eb� �� Eb by taking the horizontal part of the covariant derivative rXverY hor

of a horizontal vector �eld along a vertical vector �eld�

rNor � X�Eb�� C��Nor�Eb�� �� C��Nor�Eb��

rNor
XverY hor ��

�rXverY hor
	hor

�

In our frame �eld�

rNor
XverY hor �

�
rXver

�X
s��

��Y hor�
��hor

�

�
�X

�rXvers�����Y hor�
�hor

�
X

s�d�
��Y hor��Xver �

�
X

s��
�
� �Xver����Y hor� �

X
s�d�

��Y hor��Xver �

�
X

b��is� � �i � ���Xver� Y hor� �
X

s� � d���Y hor��Xver�
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or
rNorY hor �

X�
b��i�

��Y hor��i � d���Y hor�
	� s��

Like r itself� rNor is not a tensor �eld	 Yet in the decomposition

rXY �
�rXver	Xhor�Y ver � Y hor�

	ver	 hor

we can �nd two more tensor �elds �besides S�� the so called fundamental �or O Neill�
� tensor �elds	 �see �����

X�Y � X�E�

T �X�Y � �� �rXverY ver�hor �
�rXverY hor

	ver
A�X�Y � ��

�rXhorY hor
	ver

� �rXhorY ver�
hor

In fact each of of these four summands which make up A and T are tensor �elds
by themselves � the �rst one restricting to S on Eb	 Why they are combined to two
tensors in just this way we will see once we have expressed them in our local frame	
At the same time� we will see that they really are tensor �elds	

A�X�Y � �
�
rXhor

�X
s��

��Y �
��ver

�
�
rXhor�

X
si�

i�Y ��
�hor

�

�
X

si�
i
��Xhor����Y � � � �

X
s��

�
i �Xhor��i�Y � � � �

�
X

si
��a�i�	���X����Y � �

X
s�a

�
i��

��X��i�Y � �

�
�X

a�i�
�
�� � �i � s� � �� � �� � si

	
�X�Y �

�
Analogously�

T �
X

r�ij
�
�j � �i � s� � �i � �� � si

	
If Hor�E� is integrable� then every leaf L is totally geodesic by �	����� and the s�jL
are a local orthonormal frame �eld on L	 L being totally geodesic is equivalent
to its second fundamental form vanishing	 Now� in the same way we found S� the
second fundamental form of L is

SL�Xhor� Y hor� ��
�rXhorY hor

	ver
So it is a necessary condition for the integrability of Hor�E� that SL � �� that is

� � SL �s�� s�� � �rs�s��
ver

�

�
X

si�
i
��s�� �

X
si

�
�a�i


�
�
�s���

This is equivalent to the condition

a�i� � � for all �
i�

or
A � ��

Let us now prove the converse� If A vanishes� then the the horizontal distribution
on E is integrable	 In this case� we have � � A �s�� s�� � �rs�s��

ver
� �� as well as

� � A �s�� s�� �
�rs�s�	ver � �	 Therefore� �s���s� � rs�s� �rs�s� is horizontal�

and the horizontal distribution is integrable	
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����� Theorem� Let p � E �� B be a Riemannian submersion� then the following
conditions are equivalent�

��� p is integrable �that is Hor�p� is integrable��
��� Every p�parallel normal �eld along Eb is rNor�parallel�
�
� The O	Neill tensor A is zero�

Proof� We already saw ���!� �
� above	

�
� �� ��� Take s� for a p�parallel normal �eld X along Eb	 A � � implies A�s�� si� �

� � �rs�si�hor � �	 Recall that� as we showed above� �si� s�� is vertical	
Therefore�

rNor
si s� � �rsis��

hor
�
�
�si� s�� �rs�si

	hor
� �

Since for any e � Eb� TepjNorb�Eb�
is an isometric isomorphism� a p�parallel

normal �eld X along Eb is determined completely by the equation X�e� �P
X��e�s��e�	 Therefore it is always a linear combination of the s� with

constant coe�cients and we are done	
��� �� �
� By ��� rNor

si s� � �rsis��
hor

� �	 Therefore� as above� we have that�
�si� s�� �rs�si

	hor
� � � �rs�si�hor � A�s�� si� � �	 Thus ��A�s�� si� �

a��i � �� so A vanishes completely	 �
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In this chapter� let �M��� always denote a connected� complete Riemannian
G�manifold� and assume that the action of G on M is e�ective and isometric	

���� Lemma� Consider X � g� the Lie algebra of G� �X � the associated funda�
mental vector �eld to X� and c� a geodesic in M � Then ��c��t�� �X �c�t��� is constant
in t�

Proof� Let r be the Levi�Civita covariant derivative on M 	 Then

�t���c��t�� �X �c�t��� � � �r�tc��t�� �X �c�t��� � � �c��t��r�t ��X 
 c�� �
Since c is a geodesic� r�tc��t� � �� and so is the entire �rst summand	 So it remains
to show that � �c��t��r�t ��X 
 c�� vanishes as well	

Let s�� � � � � sn be a local orthonormal frame �eld on an open neighborhood U of
c�t�� and ��� � � � � �n the orthonormal coframe	 Then � �

P
�i � �i	 Let us use the

notation

�X jU ��
X

siX
i

r�X jU ��
X

Xj
i sj � �i�

Then we have
r�t��X 
 c� �

X
Xj
i �c�t��sj�c�t���

i�c��t���

So

� �c��t��r�t ��X 
 c�� �
X

�j�c��t���j �r�t��X 
 c�� �

�
X

Xj
i �c�t���j �c��t���i�c��t���

If we now show that Xj
i � X i

j � �� then � �c��t��r�t��X 
 c�� will be zero� and the
proof will be complete	 Since the action of G is isometric� �X is a Killing vector
�eld* that is L�X� � �	 So we haveX

L�X�i � �i �
X

�i �L�X�i � ��

Now we must try to express L�X�i in terms of Xj
i 	 For this� recall the structure

equation� d�k �
P

�kj 	 �j � �	 Now we have

L�X�i � i�Xd�
i � d

�
i�X�

i
	

� �i�X �
X

�ij 	 �j� � d��i��X �� �

� �i�X
X

�ij 	 �j � dX i �
X

�ij �X
j �

X
�ij��X��j � dX i�
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Since

r�X jU � r�
X

sjX
j� �

X
si��

i
j �X

j �
X

si � dX i �
X

X i
jsi � �j �

we can replace
P

�ij �X
j by

P
X i
j�

j � dX i	 Therefore�

L�X�i �
X

�X i
j�

j � �ij��X ��j� �
X

�X i
j � �ij��X ���j

Now� let us insert this into � � L�X ��

� �
X
L�X�i � �i �

X
�i �L�X�i �

�
X

�X i
j � �ij��X ���j � �i �

X
�X i

j � �ij��X ���i � �j �

�
X

�X i
j � Xj

i ��j � �i �
X

��ij��X � � �ji ��X ���j � �i �

�
X

�X i
j � Xj

i ��j � �i � �

since ��Y � is skew symmetric	 This implies X i
j � Xj

i � �� and we are done	 �

���� De
nition� For any x in Mreg we de�ne�

E�x� �� exp
x�Norx�G�x�� �M

Ereg�x� �� E�x� �Mreg

In a neighborhood of x� E�x� is a manifold� globally� it can intersect itself�

���� Lemma� Let x �Mreg then

��� g�E�x� � E�g�x� � g�Ereg�x� � Ereg�g�x��
��� For Xx � Nor�G�x� the geodesic c � t �� exp�t�Xx� is orthogonal to every

orbit it meets�
�
� If G is compact� then E�x� meets every orbit in M �

Proof�

��� This is a direct consequence of �	����� g� expx�t�X� � expg�x�t�Tx�g�X�	
��� By choice of starting vector Xx� the geodesic c is orthogonal to the orbit

G�x� which it meets at t � �	 Therefore it intersects every orbit it meets
orthogonally� by Lemma �	�	

�
� For arbitrary x� y � M � we will prove that E�x� intersects G�y	 Since G
is compact� by continuity of �y � G �� M the orbit G�y is compact as
well	 Therefore we can choose g � G in such a way� that dist�x�G�y� �
dist�x� g�y�	 Let c�t� �� expx�t�Xx� be a minimal geodesic connecting
x � c��� with g�y � c���	 We now have to show� that Xx � Norx�G�x��
Take a point p � c�t� on the geodesic very close to g�y-close enough so
that expp is a di�eomorphism into a neighborhood Up of p containing g�y
�it shall have domain V � TpM�	 In this situation the lemma of Gauss
states� that all geodesics through p are orthogonal to the %geodesic spheres&�
expp

�
k�Sm��

	
�where Sm�� �� fXp � TpM � ��Xp� Xp� � �g� and k 
 � is
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small enough for k�Sm�� � V to hold�	 From this it can be concluded that
c is orthogonal to G�y � Take the smallest geodesic sphere around p touching
G�y	 By the minimality of c� c must leave the geodesic sphere at a touching
point� and by Gauss lemma� it must leave at a right angle to the geodesic
sphere	 Clearly� the touching point is just g�y � c���� and there c also meets
G�y at a right angle	 By ���� c encloses a right angle with every other orbit
it meets as well	 In particular� c starts orthogonally to G�x	 Therefore� Xx

is in Norx�G�x�� and g�y � c��� � E�x�	 �

���� Remark� Let x � M be a regular point and Sx the normal slice at x	 If Sx
is orthogonal to every orbit it meets� then so are all g�Sx �g � G arbitrary�	 So
the submanifolds g�Sx can be considered as leaves of the horizontal foliation �local
solutions of the horizontal distribution-which has constant rank in a neighborhood
of a regular point�� and the Riemannian submersion � � Mreg �� Mreg�G is inte�
grable	 Since this is not always the case �the horizontal distribution is not generally
integrable�� it must also be false� in general� that the normal slice is orthogonal to
every orbit it meets	 But it does always meet orbits transversally	

Example� Consider the isometric action of the circle group S� on C � C �as real
vector spaces� de�ned by eit��z�� z�� ��

�
eit�z�� e

it�z�
	
	 Then p � ��� �� is a regular

point� Gp � f�g	 The subspace Norp�S
��p� of TpC � C takes on the following

form� Norp�S
��p� � h��� ��� �i� ��� ��� ��i

R
� C � R	 Therefore� we get� E��� �� �

f�u� ��r� � u � C � r � Rg	 In particular� y � ��� �� � E��� ��� but S��y � f�eit� eit	 �

t � Rg is not orthogonal to E��� ��	 Its tangent space� Ty�S��y� � h�i� i�i
R
� is not

orthogonal to C � R	

���� De
nition� A connected closed complete submanifold � � M is called a
section for the G�action if

��� � meets every orbit� or equivalently� G�� � M �
��� Where � meets an orbit� it meets it orthogonally�

The second condition can be replaced by the equivalent

�� � x � �� Tx� � Norx�G�x� or
��&� x � �� X � g� �X �x� # Tx��

Remark� If � is a section� then so is g�� for all g in G	 Since G�� � M � there is a
section through every point in M 	 We say %M admits sections&	

The notion of a section was introduced by Szenthe ����� ��
�� in slightly di�erent
form by Palais and Terng in �
��� �

�	 The case of linear representations was con�
sidered by Bott and Samelson ���� Conlon ����� and then by Dadok ���� who called
representations admitting sections polar representations �see �	��� and completely
classi�ed all polar representations of connected Lie groups	 Conlon ��� considered
Riemannian manifolds admitting !at sections	 We follow here the notion of Palais
and Terng	

��
� Example� For the standard action of O�n� on R
n the orbits are spheres� and

every line through � is a section	

���� Example� If G is a compact� connected Lie group with biinvariant metric�
then conj � G�G �� G� conjg�h� � ghg�� is an isometric action on G	 The orbits
are just the conjugacy classes of elements	
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Proposition� Every maximal torus H of a compact connected Lie group G is a
section�

A torus is a product of circle groups or equivalently a compact connected abelian
Lie group* a maximal torus of a compact Lie group is a toral subgroup which is not
properly contained in any larger toral subgroup �cf	 ���� chapter ��	�

Proof� ��� conj�G��H � G� This states that any g � G can be found in some to
H conjugate subgroup� g � aHa��	 This is equivalent to ga � aH or gaH � aH 	
So the conjecture now presents itself as a �xed point problem� does the map �g �
G�H �� G�H � aH �� gaH have a �xed point	 It is solved in the following way�

The 
xed point theorem of Lefschetz �see ����� ��	�	�� p	���� says that

a smooth mapping f � M � M from a connected compact manifold to
itself has no �xed point if and only if

dimMX
i��

����i Trace�H i�f� � H i�M�� H i�M�� � ��

Since G is connected� �g is homotopic to the identity� so

dimG�HX
i��

����i Trace�H i��g� � H i�G�H�� H i�G�H�� �

�

dimG�HX
i��

����i Trace�H i�Id�� �

dimG�HX
i��

����i dimH i�G�H� � ��G�H��

the Euler characteristic of G�H 	 This is given by the following theorem ��
��� Sec	
�
� Theorem �� p	����

If G is a connected compact Lie group and H is a connected com�
pact subgroup then the Euler characteristic ��G�H� � �� Moreover
��G�H� 
 � if and only if the rank of G equals the rank of H � In
case when ��G�H� 
 � then ��G�H� � jWGj�jWH j� the quotient of the
respective Weyl groups�

Since the Weyl group of a torus is trivial� in our case we have ��G�H� � jWGj 
 ��
and thus there exists a �xed point	

��&� h � H�X � g� �X�h� # ThH �
�X�h� � d

dt

��
t��

exp�tX�h exp��tX� � Te�
h�X�Te�h�X 	 Now choose Y � h	 Then

we have Te�h�Y � ThH � and

�h�Te�h�Y� Te�
h�X � Te�h�X� � �e�Y�Ad�h��X �X� �

� �e�Y�Ad�h��X�� �e�Y�X� � �e�Ad�h��Y� Ad�h��X� � �e�Y�X� � �

by the right� left and therefore Ad�invariance of � and by the commutativity of
H 	 �
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���� Example� Let G be a compact semisimple Lie group acting on its Lie algebra
by the adjoint action Ad � G � g �� g	 Then every Cartan subalgebra h of g is a
section	

Proof� Every element of a semisimple Lie algebra g is contained in a Cartan sub�
algebra� and any two Cartan subalgebras are conjugated by an element g � G�
since G is compact	 This is a consequence of �	� above� since the subgroup in G
corresponding to a Cartan subalgebra is a maximal torus	 Thus every AdG�orbit
meets the Cartan subalgebra h	 It meets orthogonally with respect to the Cartan
Killing form B� Let H�� H� � h and X � g	 Then d

dt j� Ad�exp�tX���H� � ad�X�H�

is a typical vector tangent to the orbit through H� � h� and H� is tangent to h	
Then

B�ad�X�H�� H�� � B��X�H��� H�� � B�X� �H�� H��� � �

since h is commutative	 �

���� Example� In Theorem �	� we showed that for the O�n��action on S�n� by
conjugation the space � of all diagonal matrices is a section	

���	� Example� Similarly as in �	�� when the SU�n� act on the Hermitian ma�
trices by conjugation� the �real� diagonal matrices turn out to be a section	

����� De
nition� The principal horizontal distribution on a Riemannian

G�manifold M is the horizontal distribution on Mreg
���Mreg�G�

����� Theorem� If a connected� complete Riemannian G�manifold M has a sec�
tion �� then

��� The principal horizontal distribution is integrable�
��� Every connected component of �reg is a leaf for the principal horizontal

distribution�
�
� If L is the leaf of Hor �Mreg� through x � Mreg� then �jL � L �� Mreg�G is

an isometric covering map�
��� � is totally geodesic�
��� Through every regular point x � M there is a unique section� E�x� �

exp
x�Norx�G�x��
��� A G�equivariant normal �eld along a principal orbit is parallel in terms of

the induced covariant derivative rNor�

Proof�

��� The submanifolds g��reg of Mreg are integral manifolds to the horizontal
distribution� since they are orthogonal to each orbit and by an argument of
dimension	

��� clear	
�
� see �	����	
��� see �	����	
��� This is a consequence of ���	 Namely� for x � M choose g � G such that

g�x � � � G�x� then g���� is a section through x	 By ��� and ��� we have
E�x� � g����	 The converse can be seen as follows� Let y � g���� and
choose a minimal geodesic from x to y	 By the argument given in the proof
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of �	
	�
� this gedesic is orthogonal to the orbit through x and thus lies in
E�x�	 So y � E�x�	

��� see �	�
 ��� !� ��� and recall that by remark �	�� a normal �eld is
G�equivariant i� it is ��parallel� where � � M ��M�G is the orbit map	 �

����� Remark� The converse of �	����� is not true	 Namely� an integral manifold
of Hor�Mreg� is not� in general� a section	

Example� Consider the Lie group G � S��f�g� and let it act on M �� S��S� by
translation	 Let � � ��� �� denote the fundamental vector �eld of the action� and
choose any � � Lie�S� � S�� � R �R which generates a one�parameter subgroup c
which is dense in S��S� �irrational ascent�	 Now� endow S��S� with a Riemannian
metric making � and � an orthonormal frame �eld	 Any section of M would then
have to be a coset of c� and therefore dense	 This contradicts the assumption that
a section is a closed embedded submanifold	

����� De
nition� A symmetric space is a complete� connected Riemannian
manifold M such that for each x � M there is an isometry Sx �de�ned globally�
which locally around x takes on the form�

expx tX �� expx��tX�

In particular� x is an isolated �xed point�

Remark� Equivalent to this de�nition is the following one� A symmetric space is a
quotient space M � G�H of a Lie group G with a subgroup H together with an
automorphism � � G �� G which satis�es two conditions

��� � 
 � � id
��� �G��o � H � G� �� fg � G � ��g� � gg

An indication for this is that the �rst de�nition of a symmetric space implies that the
group of isometries must act transitively	 For any x� y �M � take a geodesic joining
the two� then the re!ection Sc at the central point between x and y on the geodesic
carries x into y	 Now if we identify G �� Isom�M� and let H �� Gx� for some point
x� in M � then M � G�H � and � can be de�ned as ��g� �� Sx� 
 g 
 Sx� 	 It clearly
ful�lls � 
� � id	 Let us check ���	 Take any h � H 	 Since Tx�Sx� � �IdTx�M and
h�x� � x�� we get Tx���h� � Tx�h by the chain rule	 This su�ces to prove that
��h� � h �cf	 ����� Lemma � p	����	 So we have H � G� 	 To see �G��o � H � take
a one�parameter subgroup gt of G� with g� � id	 Then ��gt� � gt implies that
Sx� 
 gt � gt 
 Sx� 	 So Sx� 
 gt�x�� � gt�x��� and since g��x�� � x� and x� is an
isolated �xed point of Sx� � gt�x�� � x� for the other t as well� so gt � H 	

����� Theorem� � ����� Ch�XI� ���� If �G�H� �� is a symmetric space� then the
totally geodesic connected submanifolds N of G�H through e � G�H correspond
exactly to the linear subspaces TeN � m� � m �� TeG�H �� fX � g � ���X� � �Xg
which ful�ll ��m��m���m�� � m��

Remark� This implies that a locally totally geodesic submanifold of a simply con�
nected symmetric space can be extended uniquely to a complete� totally geodesic
submanifold	 Here we mean by locally geodesic submanifold that a geodesic can
leave the submanifold only at its %boundary&	 In other words� the second funda�
mental form must be zero	
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���
� Corollary� LetM � G�H be a simply connected� complete symmetric space�
K � G� a subgroup� Then the action of K on G�H admits sections i� Hor�Mreg�
is integrable� In particular� if the principal K�orbits have codimension �� there are
always sections�

����� Theorem� Consider any Riemannian G�manifold M � Then the following
statements are equivalent�

��� Hor�Mreg� is integrable�
��� Every G�equivariant normal �eld along a principal orbit is rNor�parallel�
�
� For x � Mreg� S the normal slice at x and X � g and s � S arbitrary�

�X�s� # Ts�S��

Proof� The equivalence of ��� and ��� is a direct consequence of �	�
 and remark
�	��	 Furthermore� suppose ���� then there is an integral submanifold H of the
horizontal distribution going through x	 H is totally geodesic by �	����� and so
S � expx�Norr�G�x�� is contained in H 	 Therefore� �
� holds� The fundamental
vector �eld �X is tangent to the orbit G�s and with that perpendicular to the
horizontal distribution and to Ts�S�	 Now if we suppose �
�� then S is an integral
submanifold of Hor�Mreg�� and ��� holds	 �

����� Remark� We already saw in �	�� that NorG�x is a trivial bundle	 Now we
even have a parallel global frame �eld	 So the normal bundle to a regular orbit is
!at	

����� Corollary� Consider an orthogonal representation V of G� G �� O�V �� Let
x � V be any regular point and � the linear subspace of V that is orthogonal to the
orbit through x� Then the following statements are equivalent�

��� V admits sections
��� � is a section
�
� for all y � � and X � g� �X�y� # �

Proof� �
� implies that the horizontal bundle is integrable ��	���	 In this case �	��
implies ���	 ���� ��� is clear with �	�����	 ���� �
� is trivial	 �

���	� De
nition� An orthogonal representation of G is called polar represen�
tation if it admits sections�

������ Corollary� Let � � G � O�V � be a polar representation� and let v � V be
a regular point� Then

� �� fw � V � �g�w� � �g�v�g
is the section through v� where �g�w� �� f�X�w� � X � gg � V �

Proof� Since �g�v� � Tv�G�v� and by �	��� a section through v is given by �� ��
�g�v��	 If z � ��� then �g�z� � ������ which in our case implies that �g�z� � �g�v�	
So z � �	

Conversely� suppose z is a regular point in �	 Consider the section ��� � �g�z��

through z	 Then� since �g�z� � �g�v�� we also have that �� � �g�v�� � �g�z�� �
���	 Therefore �� � ��� and� in particular� z � ��	 �
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�� The Generalized Weyl Group of a Section

Consider a complete Riemannian G�manifold M which admits sections	 For any
closed subset S of M we de�ne the largest subgroup of G which induces an action
on S�

N�S� �� fg � G � �g�S� � Sg
and the subgroup consisting of all g � G which act trivially on S�

Z�S� �� fg � G � �g�s� � s� for all s � Sg�

Then� since S is closed� N�S� is closed� hence a Lie subgroup of G	 Z�S� �
T
s�S Gs

is closed as well and is a normal subgroup of N�S�	 Therefore� N�S��Z�S� is a Lie
group� and it acts on S e�ectively	

If we take for S a section �� then the above constructed group is called the
generalized Weyl group of � and is denoted by

W ��� � N����Z����

���� Remark� For any regular point x � �� Gx acts trivially on the normal slice
Sx at x �by �	��	 Since � � expx Norx�G�x� by �	������ Sx is an open subset of ��
and we see that Gx acts trivially on all of �	 So we have Gx � Z���	 On the other
hand� Z��� � Gx is obvious� therefore

Z��� � Gx for x � � �Mreg�

Now� since Z��� is a normal subgroup of N���� we have N��� � N�Gx� where the
second N stands for the normalizer in G	 So we have

W ��� � N�Gx��Gx for x � � �Mreg�

���� Proposition� Let M be a proper Riemannian G�manifold and � a section�
then the associated Weyl group W ��� is discrete� If �� is a di�erent section� then
there is an isomorphism W ��� ��W ���� induced by an inner automorphism of G�
It is uniquely determined up to an inner automorphism of W ����

Proof� Take a regular point x � � and consider the normal slice Sx	 Then Sx � �
open	 Therefore� any g in N��� close to the identity element maps x back into Sx	
By �	����� g then lies in Gx � Z���	 So Z��� is an open subset of N���� and the
quotient W ��� is discrete	
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If �� is another section� then �� � g�� where g � G is uniquely determined up
to N���	 Clearly� conjg � G �� G induces isomorphisms

conjg �N���

��� N����

Z���

��� Z����

and therefore it factors to an isomorphism W ���

���W ����	 �

���� Example� Any �nite group is a generalized Weyl group in the appropriate
setting	 That is� to an arbitrary �nite group W we will now construct a setting in
which it occurs as a Weyl group	 Let G be a compact Lie group and H a closed
subgroup such that W � N�H��H �this is always possible since any �nite group can
be regarded as a subgroup of O�V � �� G so we need only choose H � feg�	 Next�
take a smooth manifold � on which W acts e�ectively	 Consider the inverse image of
W under the quotient map � � N�H� �� N�H��H � K �� ����W �	 Then the action
of W induces a K�action on � as well	 The smooth manifold M �� G�K � has a
left G�action	 Let �B denote the G�invariant Riemann metric on G induced by the
Cartan�Killing form on the semisimple part and any inner product on the center�
and let �� be a W �invariant Riemann metric on �	 Then the Riemann metric
�B � �� on G � � induces a G�invariant Riemann metric on the quotient space
G�K�	 With this� G�K� is a Riemannian G�manifold� and if q � G�� �� G�K�
is the quotient map� then q�feg ��� �� � meets every G�orbit orthogonally	 So it
is a section	 The largest subgroup of G acting on � is K and the largest acting
trivially on � is H 	 Therefore� W ��� � K�H � W is the Weyl group associated
to the section �	

���� Theorem� Let M be a proper Riemannian G�manifold with sections� Then�
for any x � M � the slice representation Gx �� O� Norx�G�x�� is a polar represen�
tation� If � is a section through x in M � then Tx� is a section in Norx�G�x� for
the slice representation� Furthermore�

W �Tx�� � W ���x�

Proof� Clearly Tx� � Norx�G�x�	 We begin by showing that it has the right codi�
mension	 Take a � � Norx�G�x� close to �x� then �Gx�� � Gy for y � exp
x ��
since expx is a Gx�equivariant di�eomorphism in a neighborhood of �x	 So Gx�� ��
Gx��Gx�� � Gx�Gy	 Let us now calculate the codimension of Gx�� in Norx�G�x��

dim Norx�G�x� � dimGx�� � dim Norx�G�x� � dimGx � dimGy �

� dim Norx�G�x� � dimG�Gx� �z �
�dimM

� �dimG� dimGy�� �z �
�dimG�Gy

� codimM G�y�

Since the regular points lie dense� we can choose � � Tx� regular by assuming that
y � exp
x�X� is regular in �	 Then y is regular as well and we get�

codimNorx�G�x�Gx�� � codimM G�y � dim � � dimTx��
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So Tx� is a linear subspace of NorxG�x with the right codimension for a section	
Therefore� if we show that Tx� is orthogonal to each orbit it meets� then it is
already the entire orthogonal complement of a regular orbit� and by corollary �	��
�
� �� ���� we know that it meets every orbit	

Denote the G�action on M by � � G �� Isom�M�	 If � � Tx� is arbitrary� then it
remains to prove that for all � � Tx� and X � gx�

�x

�
�� �

T� j
Gx

X ���
�

� ��

To do this� choose a smooth one�parameter family ��t� � Texp�t��� such that ���� �
� and r�t� � �	 Since � is a section in M we know for each single t that

�exp�t��
�
��X �exp
�t���� ��t�

	
� ��

If we derive this equation we get

� �
d

ds

����
s��

�
�
��X�exp
�s���� ��s�

	
� �

�r�s��X�exp
�s���� ����
	
�

So it remains to show that r�s��X�exp
�s��� is the fundamental vector �eld of X
at � for the slice representation	

r�s��X �exp
�s��� � r���X � K 
 T��X �� �

� K 
 T ��tj��expG�tX����sj� exp
x�s���

� K��sj���tj��expG�tX��exp
x�s���

� K��M ��tj���sj��expG�tX��exp
x�s���

� K��M ��tj��T ��expG�tX�����

Here� K denotes the connector and �M the canonical !ip between the two structures
of TTM � and we use the identity K
� � K� which is a consequence of the symmetry
of the Levi�Civita connection	 The argument of K in the last expression is vertical
already since X � gx	 Therefore we can replace K by the vertical projection and
get

r�s��X�exp
�s��� � vpr
d

dt

����
t��

Tx��expG�tX���� � �
T�� jGx
X ����

So �
T�� jGx
X ��� intersects Tx� orthogonally� and therefore Tx� is a section	

Now consider NGx
�Tx���� � fg � Gx � Tx��g��Tx� � Tx�g	 Clearly� NG��� �

Gx � NGx
�Tx����	 On the other hand� any g � NGx

�Tx���� leaves � invariant as
the following argument shows	

For any regular y � � we have � � expy Nor�G�y�	 Therefore x � expy �
for a suitable � � Ty�� and conversely� y can be written as y � expx � for � �

� d
dt

��
t��

expy t� � Tx�	 Now g�y � g� expx � � expx Tx�g �� lies in �� since Tx�g ��
lies in Tx�	 So g maps all regular points in � back into �	 Since these form a dense
subset and since �g is continuous� we get g � NG���	
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We have now shown that

NGx
�Tx�� � NG��� �Gx�

Analogous arguments used on ZGx
�Tx�� give

ZGx
�Tx�� � ZG����

and we see that

WGx
�Tx�� � �N��� �Gx��Z��� � W ���x� �

����� Corollary� Let M be a Riemannian G�manifold admitting sections and let
x �M � Then for any section � through x we have

Norx�G�x�G
�
x � Tx��

where G�
x is the connected component of the isotropy group Gx at x�

Proof� By theorem �	� the tangent space Tx� is a section for the slice representation
Gx � O�Norx�G�x��	 Let � � Tx� be a regular vector for the slice representation	
By corollary �	�� we have Tx� � f� � Norx�G�x� � �gx��� � �gx���g	 Since

Norx�G�x�G
�
x consists of all � in Norx�G�x� with �gx��� � �� the result follows	 �

��
� Corollary� Let M be a proper Riemannian G�manifold with sections and
x �M � Then Gx acts transitively on the set of all sections through x�

Proof� Consider two arbitrary sections �� and �� through x and a normal slice Sx
at x	 By theorem �	�� Tx�� is a section for the slice representation	 Since expx
can be restricted to a Gx�equivariant di�eomorphism onto Sx� �� � Sx is a section
for the Gx�action on Sx	 Next� choose a regular point y � �� � Sx	 Its Gx�orbit
meets the section �� � Sx� that is we can �nd a g � Gx such that g�y � ��	 Now
�� and g��� are both sections containing the regular point g�y	 Therefore they are
equal	 �

���� Corollary� Let M be a proper G�manifold with sections� � a section of M
and x � �� Then

G�x � � � W ����x

Proof� The inclusion ��� is clear	 Now we have

y � G�x � � !� y � g�x � � for some g � G�

Take this g and consider the section �� �� g��	 Then � and �� are both sections
through y� and by �	� there is a g� � Gy which carries �� back into �	 Now
g�g�� � �� that is g�g � N���� and g�g�x � g��y � y	 So y � N����x � W ����x	 �
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���� Corollary� If M is a proper G�manifold with section �� then the inclusion
of � into M induces a homeomorphism j between the orbit spaces�

� y w
i

uu
��

M

uu
�M

��W ��� w
j

M�G

�but it does not necessarily preserve orbit types� see remark ������

Proof� By the preceding corollary there is a one to one correspondence between the
G�orbits in M and the W �G��orbits in �� so j is well de�ned and bijective	 Since
j 
 �� � �M 
 i and �� is open� j is continuous	

Consider any open set U � ��W ���	 We now have to show that

���M j�U� � G����� �U�

is an open subset of M �since then j�U� is open and j�� continuous�	 Take any
x � ���M j�U�	 We assume x � � �otherwise it can be replaced by a suitable g�x � ��	

So x � ���� �U�	 Let Sx be a normal slice at x� then � � Sx is a submanifold of
Sx of dimension dim �	 In Sx� x has arbitrarily small Gx�invariant neighborhoods�
since the slice action is orthogonal and Sx G�equivariantly di�eomorphic to an open
ball in Norx�G�x�	 Let Vx be such an open neighborhood of x� small enough for
Vx �� to be contained in ���� �U�	 Vx is again a slice� therefore G�Vx is open in M

��	���
��	 Now we have to check whether G�Vx is really a subset of ���M j�U�	 Using
corollary �	� we get

G��Vx � �� � G�Gx�Vx � �� � G��Vx �Gx��� � G�Vx�

Therefore� G�Vx � G����� �U� � ���M j�U� where it is an open neighborhood of x	 So

���M j�U� is an open subset of M � j�U� is open in M�G� and j�� is continuous	 �

���� Corollary� Let M be a proper Riemannian G�manifold and � �M a section
with Weyl group W � Then the inclusion i � � ��M induces an isomorphism

C��M�G
i��� C����W �

Proof� By corollary �	� we see that every f � C����W has a unique G�equivariant

extension �f onto V 	 If we consider once more the diagram

� y w
i

uu
��

M

uu
�M

��W ��� w
j

M�G

we see that f factors over �� to a map f � � C����W ����� and since j is a homeo�

morphism ��	�� we get for the G�invariant extension �f of f �

�f � f � 
 j�� 
 �M � C��M�G� �
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���	� Theorem� �
��� �	��� or ����� theorem D� Let G � GL�V � be a polar
representation of a compact Lie group G� with section � and generalized Weyl
group W � W ����

Then the algebra R�V �G of G�invariant polynomials on V is isomorphic to the
algebra R���W of W �invariant polynomials on the section �� via the restriction
mapping f �� f j��
����� Remark� This seemingly very algebraic theorem is actually a consequence of
the geometry of the orbits	 This already becomes evident in the case of a �rst degree

homogeneous polynomial	 To see that the G�invariant extension of p � R ���
W
� to V

is again a polynomial �and again of �rst degree�� we we must assume the following
convexity result of Terng	

Under the conditions of the theorem� for every regular orbit G�x the orthogonal
projection onto �� pr�G�x�� is contained in the convex hull of G�x � � �this is a
�nite subset of � by �	� since G is compact and W ��� discrete�	

Let us make this assumption	 Denote by �p the unique G�invariant extension of
p� then clearly �p is homogeneous	 Now� notice that for any orbit G�x� p is constant
on the convex hull of G�x �� �� fg��x� g��x� � � � � gk�xg	 Just take any s �

P
�igi�x

with
P

�i � �� then

p�s� �
X

�ip�gi�x� � p�g��x�
X

�i � p�g��x��

With this and with our assumption we can show that for regular points u� v � M �
�p�u � v� � �p�u� � �p�v�	 Suppose without loss of generality that u � v � �� then

p�u � v� � p�pr�u� � pr�v�� � p�pr�u�� � p�pr�v��

At this point� the convexity theorem asserts that pr�u� and pr�v� can be written
as convex combinations of elements of G�u � �� respectively G�v � �	 If we �x an
arbitrary gu �resp	 gv� in G such that gu�u �resp	 gv�v� lie in �� then by the above
argument we get

p�pr�u�� � p�gu�u� and p�pr�v�� � p�gv�v��

So we have

p�u � v� � p�gu�u� � p�gv�v� � �p�u� � �p�v��

and �p is linear on Vreg	 Since the regular points are a dense subset of V � and �p is
continuous by �	�� �p is linear altogether	

A proof of the convexity theorem can be found in ���� or again in �

�� pp	 ���#
���	 For a proof of theorem �	�� we refer to ����	 In both sources the assertions
are shown for the more general case where the principal orbits are replaced by
isoparametric submanifolds �i	e	 submanifolds of a space form with !at normal
bundle and whose principal curvatures along any parallel normal �eld are constant*
compare �	�
 and �	���	 To any isoparametric submanifold there is a singular
foliation which generalizes the orbit foliation of a polar action but retains many of
its fascinating properties �cf	 �

��	

July ��� ���� P	 Michor� �	��



�	 The generalized Weyl group of a section� �	�� ��

���
� Remark� In connection with the example we studied in chapter �� the con�
vexity theorem from above yields the following classical result of Schur �
��� ���
�

Let M � S�n� be the subset of all matrices with �xed distinct eigenvalues
a�� � � � � an and pr � S�n� �� Rn de�ned by

pr ��xij�� �� �x��� x��� � � � � xnn�

then pr�M� is contained in the convex hull of Sn�a where a � �a�� � � � � an�	

����� Theorem� Let M be a proper Riemannian G�manifold with section � and
Weyl group W � Then the inclusion i � � ��M induces an isomorphism

C� �M�G
i��� C� ���W ��� �

Proof� Clearly f � C� �M�
G

implies i�f � C����W 	 By �	� we know that every

f � C� ���
W

has a unique continuous G�invariant extension �f 	 We now have to

show that �f � C� �M�G	

Let us take an x �M and show that �f is smooth at x	 Actually� we can assume
x � �� because if �f is smooth at x then �f 
 �g�� is smooth at g�x� so �f is smooth
at g�x as well	 Now let Sx denote a normal slice at x	 Then we have

G�SxA
A
AAC

G�Gx
Sxu

I

�
�

�
��

A
A
AAC�f 
 I

G� Sxuu
q

�
�

�
��

�f jSx 
 pr�

G�Gx R

Since in the above diagram I is an isomorphism and q a submersion� it is su�cient
to show that �f jSx 
 pr� or equivalently �f jSx is smooth at x	 Let B � TxSx be a
ball around �x such that B �� Sx and Tx� � B �� � � Sx	 Then� by theorem �	��
the Gx�action on Sx is basically a polar representation �up to di�eomorphism�	 So
it remains to show the following�
Claim	 If � is a section of a polar representation Gx �� O�V � with Weyl group
Wx and f is a smooth Wx�invariant function on �� then f extends to a smooth
Gx�invariant function �f on V 	

In order to show this� let 	�� � � � � 	k be a system of homogeneous Hilbert gener�

ators for R ���
Wx 	 Then� by Schwarz theorem� there is an f � � C� �Rk 	 such that

f � f �
�	�� � � � � 	k�	 By theorem �	��� each 	i extends to a polynomial �	i � R �V �
Gx 	

Therefore we get
�f �� f � 
 ��	�� � � � � �	k� � V �� R

is a smooth Gx�invariant extension of f 	 �

July ��� ���� P	 Michor� �	��



��

��� Basic Di
erential Forms

Our aim in this section is to show that pullback along the embedding � � M
induces an isomorphism �p

hor�M�G �� �p���W ��� for each p� where a di�erential
form � on M is called horizontal if it kills each vector tangent to some orbit	 For
each point x in M � the slice representation of the isotropy group Gx on the normal
space Tx�G�x�� to the tangent space to the orbit through x is a polar representation	
The �rst step is to show that the result holds for polar representations	 This is
done in theorem ��	� for polar representations whose generalized Weyl group is
really a Coxeter group� is generated by re!ections	 Every polar representation of
a connected Lie group has this property	 The method used there is inspired by
Solomon ����	 Then the general result is proved under the assumption that each
slice representation has a Coxeter group as a generalized Weyl group	 This result
is from ����	

�	��� Basic di�erential forms� Let G be a Lie group with Lie algebra g� mul�
tiplication � � G � G � G� and for g � G let �g� �

g � G � G denote the left and
right translation	

Let � � G�M �M be a left action of the Lie group G on a smooth manifold M 	
We consider the partial mappings �g � M �M for g � G and �x � G�M for x �M
and the fundamental vector �eld mapping � � g� X�M� given by �X �x� � Te��

x�X 	
Since � is a left action� the negative �� is a Lie algebra homomorphism	

A di�erential form � � �p�M� is called G�invariant if ��g�
�� � � for all g � G

and horizontal if � kills each vector tangent to a G�orbit� i�X� � � for all X � g	
We denote by �p

hor�M�G the space of all horizontal G�invariant p�forms on M 	 They
are also called basic forms	

�	��� Lemma� Under the exterior di�erential �hor�M�G is a subcomplex of ��M��

Proof� If � � �hor�M�G then the exterior derivative d� is clearly G�invariant	 For
X � g we have

i�Xd� � i�Xd� � di�X� � .L�X� � ��

so d� is also horizontal	 �

�	��� Main Theorem� ����� and ����� Let M � G � M be a proper isometric
right action of a Lie group G on a smooth Riemannian manifold M � which admits
a section ��

Then the restriction of di�erential forms induces an isomorphism

�p
hor�M�G


��� �p���W ���
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between the space of horizontal G�invariant di�erential forms on M and the space
of all di�erential forms on � which are invariant under the action of the generalized
Weyl group W ��� of the section ��

The proof of this theorem will take up the rest of this section	

Proof of injectivity� Let i � � � M be the embedding of the section	 It clearly
induces a linear mapping i� � �p

hor�M�G � �p���W ��� which is injective by the
following argument� Let � � �p

hor�M�G with i�� � �	 For x � � we have iX�x � �
for X � Tx� since i�� � �� and also for X � Tx�G�x� since � is horizontal	 Let
x � ��Mreg be a regular point� then Tx� � �Tx�G�x��� and so �x � �	 This holds
along the whole orbit through x since � is G�invariant	 Thus �jMreg � �� and since
Mreg is dense in M � � � �	

So it remains to show that i� is surjective	 This will be done in ��	�� below	 �

�	��� Lemma� Let � � V � be a linear functional on a �nite dimensional vector
space V � and let f � C��V�R� be a smooth function which vanishes on the kernel
of �� so that f j������ � �� Then there is a unique smooth function g such that
f � ��g

Proof� Choose coordinates x�� � � � � xn on V with � � x�	 Then f��� x�� � � � � xn� � �

and we have f�x�� � � � � xn� �
R �
�
��f�tx�� x�� � � � � xn�dt�x� � g�x�� � � � � xn��x�� �

�	��� Question� Let G� GL�V � be a representation of a compact Lie group in a
�nite dimensional vector space V � Let 	 � �	�� � � � � 	m� � V � Rm be the polynomial
mapping whose components 	i are a minimal set of homogeneous generators for the
algebra R�V �G of invariant polynomials�

We consider the pullback homomorphism 	� � �p�Rm �� �p�V �� Is it surjective
onto the space �p

hor�V �G of G�invariant horizontal smooth p�forms on V �

See remark ��	� for a class of representations where the answer is yes	
In general the answer is no	 A counterexample is the following� Let the cyclic

group Zn � Z�nZ of order n� viewed as the group of n�th roots of unity� act on
C � R

� by complex multiplication	 A generating system of polynomials consists of
	� � jzj�� 	� � Re�zn�� 	� � Im�zn�	 But then each d	i vanishes at � and there is
no chance to have the horizontal invariant volume form dx 	 dy in 	���R� �	

�	�
� Theorem� ����� and ����� Let G � GL�V � be a polar representation of a
compact Lie group G� with section � and generalized Weyl group W � W ����

Then the pullback to � of di�erential forms induces an isomorphism

�p
hor�V �G


��� �p���W ����

According to Dadok ����� remark after proposition �� for any polar representation
of a connected Lie group the generalized Weyl group W ��� is a re!ection group	
This theorem is true for polynomial di�erential forms� and also for real analytic
di�erential forms� by essentially the same proof	

Proof� Let i � � � V be the embedding	 It is proved in ��	
 that the restriction
i� � �p

hor�V �G � �p���W �G� is injective� so it remains to prove surjectivity	
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Let us �rst suppose that W � W ��� is generated by re!ections �a re!ection
group or Coxeter group�	 Let 	�� � � � � 	n be a minimal set of homogeneous generators
of the algebra R���W of W �invariant polynomials on �	 Then this is a set of
algebraically independent polynomials� n � dim �� and their degrees d�� � � � � dn are
uniquely determined up to order	 We even have �see �����

��� d� � � � dn � jW j� the order of W �
��� d� � � � �� dn � n � N � where N is the number of re!ections in W �
�
�

Qn
i���� � �di � ��t� � a� � a�t � � � � � ant

n� where ai is the number of
elements in W whose �xed point set has dimension n� i	

Let us consider the mapping 	 � �	�� � � � � 	n� � � � Rn and its Jacobian J�x� �
det�d	�x��	 Let x�� � � � � xn be coordinate functions in �	 Then for each � � W we
have

J�dx� 	 � � � 	 dxn � d	� 	 � � � 	 d	n � ���d	� 	 � � � 	 d	n�

� �J 
 �����dx� 	 � � � 	 dxn� � �J 
 �� det����dx� 	 � � � 	 dxn��

J 
 � � det�����J����

If J�x� �� �� then in a neighborhood of x the mapping 	 is a di�eomorphism by
the inverse function theorem� so that the ��forms d	�� � � � � d	n are a local coframe
there	 Since the generators 	�� � � � � 	n are algebraically independent over R� J �� �	
Since J is a polynomial of degree �d� � �� � � � � � �dn � �� � N �see ����� the set
U � � n J����� is open and dense in �� and d	�� � � � � d	n form a coframe on U 	

Now let ������������N be the set of re!ections in W � with re!ection hyperplanes
H�	 Let �� � �� be a linear functional with H� � ������	 If x � H� we have
J�x� � det����J����x� � �J�x�� so that J jH� � � for each 
� and by lemma ��	�
we have

��� J � c��� � � � �N �

Since J is a polynomial of degree N � c must be a constant	 Repeating the last
argument for an arbitrary function g and using ���� we get�

��� If g � C����R� satis�es g
� � det�����g for each � �W � we have g � J�h
for h � C����R�W 	

��� Claim� Let � � �p���W 	 Then we have

� �
X

j������jp

�j����jpd	j� 	 � � � 	 d	jp �

where �j����jp � C����R�W 	

Since d	�� � � � � d	n form a coframe on the W �invariant dense open set U � fx �
J�x� �� �g� we have

�jU �
X

j������jp

gj����jpd	j� jU 	 � � � 	 d	jp jU
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 ��

for gj����jp � C��U�R�	 Since � and all d	i are W �invariant� we may replace gj����jp
by

�
jW j

X
��W

gj����jp 
 � � C��U�R�W �

or assume without loss that gj����jp � C��U�R�W 	
Let us choose now a form index i� � � � � � ip with fip	� � � � � � ing �

f�� � � � � ng n fi� � � � � � ipg	 Then for some sign � � 
� we have

�jU 	 d	ip�� 	 � � � 	 d	in � ��gi����ip �d	� 	 � � � 	 d	n
� ��gi����ip �J�dx

� 	 � � � 	 dxn� and

� 	 d	ip�� 	 � � � 	 d	in � ��ki����ipdx
� 	 � � � 	 dxn���

for a function ki����ip � C����R�	 Thus

��� ki����ip jU � gi����ip �J jU�

Since � and each d	i is W �invariant� from ��� we get ki����ip 
 � � det�����ki����ip
for each � � W 	 But then by ��� we have ki����ip � �i����ip �J for unique �i����ip �
C����R�W � and ��� then implies �i����ip jU � gi����ip � so that the claim ��� follows
since U is dense	

Now we may �nish the proof of the theorem in the case that W � W ��� is a
re!ection group	 Let i � � � V be the embedding	 By theorem �	�� the algebra
R�V �G of G�invariant polynomials on V is isomorphic to the algebra R���W of W �
invariant polynomials on the section �� via the restriction mapping i�	 Choose
polynomials �	�� � � � �	n � R�V �G with �	i 
 i � 	i for all i	 Put �	 � ��	�� � � � � �	n� �
V � Rn 	 In the setting of claim ���� use the theorem 
	� of G	 Schwarz to �nd
hi������ip � C��Rn �R� with hi������ip 
 	 � �i������ip and consider

�� �
X

j������jp

�hj����jp 
 �	�d�	j� 	 � � � 	 d�	jp �

which is in �p
hor�V �G and sati�es i��� � �	

Thus the mapping i� � �p
hor�V �G � �p

hor���W is surjective in the case that
W � W ��� is a re!ection group	

Now we treat the general case	 Let G� be the connected component of G	 From
�	��	�
� one concludes�

A subspace � of V is a section for G if and only if it is a section for
G�� Thus 	 is a polar representation for G if and only if it is a polar
representation for G��

The generalized Weyl groups of � with respect to G and to G� are related by

W �G�� � NG�����ZG���� �W �G� � NG����ZG����

since ZG��� �NG���� � ZG����	
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Let � � �p���W �G� � �p���W �G��	 Since G� is connected the generalized Weyl
group W �G�� is generated by re!ections �a Coxeter group� by ���� remark after
proposition �	 Thus by the �rst part of the proof

i� � �p
hor�V �G�


��� �p���W �G��

is an isomorphism� and we get � � �p
hor�M�G� with i�� � �	 Let us consider

� ��

Z
G

g��dg � �p
hor�V �G�

where dg denotes Haar measure on G	 In order to show that i�� � � it su�ces to
check that i�g�� � � for each g � G	 Now g��� is again a section of G� thus also
of G�	 Since any two sections are related by an element of the group� there exists
h � G� such that hg��� � �	 Then hg � NG��� and we denote by �hg� the coset
in W �G�� and we may compute as follows�

�i�g���x � �g���x��
pT i � �g�x���

pTg��pT i

� �h���g�x���
pTg��pT i� since � � �p

hor�M�G�

� �hg�x���
pT �hg���pT i � �i�hg��x���

pT i��pT ��hg��

� �i�hg��x���
pT i��pT ��hg�� � �i����hg��x���

pT ��hg��

� ��hg��x���
pT ��hg�� � �hg��� � �� �

�	��� Remark� The proof of theorem ��	� shows that the answer to question ��	�
is yes for the representations treated in ��	�	

�	��� Corollary� Let 	 � G� O�V� h � i� be an orthogonal polar representation
of a compact Lie group G� with section � and generalized Weyl group W � W ����
Let B � V be an open ball centered at ��

Then the restriction of di�erential forms induces an isomorphism

�p
hor�B�G


��� �p�� � B�W ����

Proof� Check the proof of ��	� or use the following argument	 Suppose that B �
fv � V � jvj � �g and consider a smooth di�eomorphism f � ��� �� � ����� with

f�t� � t near �	 Then g�v� �� f�jvj�
jvj v is a G�equivariant di�eomorphism B � V

and by ��	� we get�

�p
hor�B�G

�g��������� �p
hor�V �G


��� �p���W ��� g��� �p�� �B�W ���� �

�	��� Let us assume that we are in the situation of the main theorem ��	
� for the
rest of this section	 For x �M let Sx be a �normal� slice and Gx the isotropy group�
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which acts on the slice	 Then G�Sx is open in M and G�equivariantly di�eomorphic
to the associated bundle G� G�Gx via

G� Sx
q����� G�Gx

Sx

������ G�Sx��y ��yr

G�Gx

������ G�x�

where r is the projection of a tubular neighborhood	 Since q � G�Sx � G�Gx
Sx is

a principal Gx�bundle with principal right action �g� s��h � �gh� h���s�� we have an
isomorphism q� � ��G�Gx

Sx�� �Gx�hor�G�Sx�Gx 	 Since q is also G�equivariant
for the left G�actions� the isomorphism q� maps the subalgebra �p

hor�G�Sx�G ��
�p
hor�G�Gx

Sx�G of ��G�Gx
Sx� to the subalgebra �p

Gx�hor
�Sx�Gx of �Gx�hor�G�

Sx�Gx 	 So we have proved�

Lemma� In this situation there is a canonical isomorphism

�p
hor�G�Sx�G


��� �p
Gx�hor

�Sx�Gx

which is given by pullback along the embedding Sx � G�Sx�

�	��	� Rest of the proof of theorem �	�
� Let us consider � � �p���W ���	
We want to construct a form �� � �p

hor�M�G with i��� � �	 This will �nish the
proof of theorem ��	�	

Choose x � � and an open ball Bx with center � in TxM such that the Riemann�
ian exponential mapping expx � TxM �M is a di�eomorphism on Bx	 We consider
now the compact isotropy group Gx and the slice representation 	x � Gx � O�Vx��
where Vx � Norx�G�x� � �Tx�G�x��� � TxM is the normal space to the orbit	 This
is a polar representation with section Tx�� and its generalized Weyl group is given
by W �Tx�� �� NG��� � Gx�ZG��� � W ���x �see �	��	 Then expx � Bx � Vx � Sx
is a di�eomorphism onto a slice and expx � Bx�Tx�� �x � � is a di�eomorphism
onto an open neighborhood �x of x in the section �	

Let us now consider the pullback �exp jBx � Tx���� � �p�Bx � Tx��W �Tx��	
By corollary ��	� there exists a unique form �x � �p

Gx�hor
�Bx � Vx�Gx such that

i��x � �exp jBx � Tx����� where ix is the embedding	 Then we have

��exp jBx � Vx���� $ �x � �p
Gx�hor

�Sx�Gx

and by lemma ��	� this form corresponds uniquely to a di�erential form �x �
�p
hor�G�Sx�G which satis�es �ij�x���x � �j�x� since the exponential mapping com�

mutes with the respective restriction mappings	 Now the intersection G�Sx � � is
the disjoint union of all the open sets wj��x� where we pick one wj in each left
coset of the subgroup W ���x in W ���	 If we choose gj � NG��� projecting on wj
for all j� then

�ijwj��x����x � ��gj 
 ij�x 
 w��j ���x

� �w��j ���ij�x����gj�
x

� �w��j ���ij�x���x � �w��j ����j�x� � �jwj��x��
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so that �ijG�Sx � ����x � �jG�Sx � �	 We can do this for each point x � �	
Using the method of �	� and �	�� we may �nd a sequence of points �xn�n�N in

� such that the ���xn� form a locally �nite open cover of the orbit space M�G ��
��W ���� and a smooth partition of unity fn consisting of G�invariant functions
with supp�fn� � G�Sxn 	 Then �� ��

P
n fn�

xn � �p
hor�M�G has the required

property i��� � �	 �
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��� Basic versus equivariant cohomology

����� Basic cohomology� For a Lie group G and a smooth G�manifold M � by
��	� we may consider the basic cohomology Hp

G�basic�M� � Hp���
hor�M�G� d�	

����� Equivariant cohomology� Borel model� For a topological group and
a topological G�space the equivariant cohomology was de�ned as follows� see �
��
Let EG � BG be the classifying G�bundle� and consider the associated bundle
EG �G M with standard �ber the G�space M 	 Then the equivariant cohomology
is given by Hp�EG�G M *R�	

����� Equivariant cohomology� Cartan model� For a Lie group G and a
smooth G�manifold M we consider the space

�Skg� ��p�M��G

of all homogeneous polynomial mappings 
 � g � �p�M� of degree k from the Lie
algebra g of G to the space of k�forms� which are G�equivariant� 
�Ad�g���X� �
��g
�X� for all g � G	 The mapping

dg � Aq
G�M�� Aq	�

G �M�

Aq
G�M� ��

M
�k	p�q

�Skg� ��p�M��G

�dg
��X� �� d�
�X�� � i�X
�X�

satis�es dg 
 dg � � and the following result holds	

Theorem� Let G be a compact connected Lie group and let M be a smooth G�
manifold� Then

Hp�EG�G M *R� � Hp�A�G�M�� dg��

This result is stated in ��� together with some arguments� and it is attributed to
���� ��� in chapter � of ���	 I was unable to �nd a satisfactory published proof	

������ Let M be a smooth G�manifold	 Then the obvious embedding j��� � ���
gives a mapping of graded di�erential algebras

j � �p
hor�M�G � �S�g� ��p�M��G �

M
k

�Skg� ��p��k�M��G � Ap
G�M��
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On the other hand evaluation at � � g de�nes a homomorphism of graded di�eren�
tial algebras ev� � A�G�M� � ���M�G� and ev� 
j is the embedding ��

hor�M�G �
���M�G	 Thus we get canonical homomorphisms in cohomology

Hp���
hor�M�G�

J������ Hp�A�G�M�� dg� ����� Hp����M�G� d���� ��� ���
Hp
G�basic�M� ����� Hp

G�M� ����� Hp�M�G�

If G is compact and connected we have Hp�M�G � Hp�M�� by integration and
homotopy invariance	
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