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PREFACE

Soaps are among the most interesting molecules. Soap-making was known as
early as 2800 bc. A soap-like material has been found in clay cylinders from
excavations in ancient Babylon. Inscriptions on these cylinders indicate that fats
were boiled with ashes, which is a method of making soap. The purpose of this
product, however, has not been clearly established by archeologists. In the Ebers
Papyrus (1500 bc), Egyptians describe the combination of animal and vegetable
oils with alkaline salts in order to form a soap-like material, which was then used
for washing and for therapeutic procedures in skin diseases.

The use of soaps for washing is directly related to some fundamental concepts
at the level of molecular length scales: self-assembling and ordering. Soaps belong
to the class of amphiphilic molecules. An amphiphile or surfactant molecule is
formed by a hydrophilic, water-soluble, part, chemically bounded to a hydro-
phobic, oil-soluble, part. Mixtures of amphiphilic molecules and solvents, under
suitable conditions of temperature, pressure and relative concentrations of the
different components, are known to display a host of lyotropic mesophases. The
basic units of these mesophases are molecular aggregates, spontaneously formed
mainly due to hydrophobic–hydrophilic effects.

Lyotropic systems give spectacular examples of polymorphism and phase
transformations depending on changes of temperature, pressure and other
physico-chemical parameters.

The use of amphiphilic molecules in everyday life was originally due to the
empirical properties of mixtures of these molecules with polar and non-polar
solvents. In the last decades, however, there was an enormous improvement of
experimental techniques, as the scattering and diffraction of light, neutrons,
and X-rays, nuclear magnetic resonance, electron microscopy and fluorescence,
atomic force microscopy, nonlinear optical techniques, which are among the
most powerful tools of condensed matter physics. These techniques lead to the
establishment of additional and more precise information on the structure, local
ordering, and phase transitions, of the phase diagrams of lyotropic mixtures.
The Landau–Ginzburg theory of phase transitions, as well as many-body and
renormalization-group techniques, which were important advances of statistical
physics, have provided a number of models and concepts for accounting to the
experimental features of phase diagrams and critical behavior in lyotropic sys-
tems. There is today a unifying view of different sorts of “self-assembled” systems
(lyotropics, microemulsions, polymers, gels, membranes, thin films), which are
forming the new area of “complex fluids.”

In the beginning of the twentieth century, on the basis of investigations of the
behavior of physico-chemical parameters (detergency, electric conductivity, and
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interfacial tension) of a mixture of amphiphiles and water, McBain proposed
the idea of a micelle as an aggregate of surfactant molecules. In 1949, Debye
recognized the existence of a critical micellar concentration, and the groups of
Ekwall, Luzzati, and Winsor, performed outstanding investigations of a num-
ber of basic phase diagrams, and established the main features of the structure
of lyotropic phases. These investigations, summarized in a review by Ekwall in
1975, were stimulated by the practical application of amphiphilic compounds in
the production of cosmetics, in the pharmaceutical and oil industries, and also as
an interface with biological membranes in living cells. Connections and analogies
were established with microemulsions (isotropic mixtures of amphiphiles, water,
and oil), surfactant layers (as Langmuir–Blodgett films), biological membranes,
block copolymers, colloidal suspensions, among several other systems. The inter-
face with biology was deeply emphasized by the modelling of cell membranes as
amphiphilic bilayers.

The discovery of a nematic phase in a lyotropic mixture of sodium decyl-
sulfate and water, by Lawson and Flautt in 1967, opened up the opportunity
to use similar concepts for analyzing different sorts of liquid crystalline systems,
thermotropics, and lyotropics.

Although the physics of thermotropic liquid crystals is vastly discussed in
the literature, for example, in the outstanding book of de Gennes, the physics of
lyotropic liquid crystals has not been sufficiently discussed. We then believe that
it is relevant to have a text describing the basic structures and phase transitions
in lyotropic mesophases, and collecting information from different experimental
techniques, which were fundamental for the characterization of molecular self-
assembled structures. This book is planned to give a unifying presentation of
the structures and physical properties of lyotropic liquid crystalline systems. We
present a comprehensive set of experimental results, published so far in several
specialized journals, and we discuss the characterization of different structures
and the corresponding phase transitions.

This book contains eight chapters. In Chapter 1, we present the main exper-
imental facts and techniques related to the characterization of the lyotropic
mesophases. All of the structures of these systems are discussed on the basis of
complementary experimental results, obtained by several groups and using dif-
ferent techniques. Besides introducing the basic nomenclature and properties of
lyotropic mixtures, we also refer to technological applications and to the interface
with biology. In Chapter 2, we present a pedagogical discussion of basic theoret-
ical notions of phase transitions and critical phenomena in simple magnetic and
liquid crystalline systems. We take advantage of simple models, and of standard
mean-field calculations and Landau expansions, for providing an overview and
some illustrations of the main concepts in this area. In Chapter 3, we discuss
phase diagrams and the Gibbs phase rule, and present the main experimental
phase diagrams of binary, ternary and multicomponent lyotropic mixtures. We
also refer to theoretical attempts to account for the phase diagrams of a binary
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mixture. In Chapter 4, we discuss phase diagrams and phase transitions in lyo-
tropic liquid crystals from the point of view of the symmetry transformations
between periodically ordered mesophases. This chapter was written in collabor-
ation with Dr Bruno Mettout, to whom we are deeply grateful. In Chapter 5,
we present the isotropic micellar and bicontinuous phases, their main features,
structure and location in the experimental phase diagrams. We also mention
some models and theoretical calculations for the sponge phase. In Chapter 6,
we discuss nematic and cholesteric phases. We present experimental phase dia-
grams and phase structures, as well as an overview of some calculations, with
emphasis on the need of introducing an additional non-critical order parameter
in order to account for the experimental phase diagrams. In Chapter 7, we
present experimental results for one-, two-, and three-dimensionally ordered
lyotropic structures. Finally, in Chapter 8, we refer to some recent extensions
and neighboring topics of the general area of lyotropic mixtures. We include
brief surveys of research on ferrofluids, microemulsions, diblock copolymers, and
Langmuir–Blodgett films.

This book comes from years of collaboration among the authors and many
colleagues at different laboratories and theoretical groups around the world in
the areas of lyotropic liquid crystals and phase transitions in condensed matter
physics. We hope that these collaborators, which are deeply acknowledged, have
been suitably quoted in the extensive bibliography at the end of each chapter.
We wish to express our special indebtedness to Dr Bruno Mettout, who helped
us to write Chapter 4, and to Professor Pierre Tolédano, who encouraged us in
the early stages of this project. We are also indebted to Dr Sonke Adlung, from
the Oxford University Press, who gave us strong support during all of the stages
of the project, and to Mr Carlos E. Siqueira and Mr Carlos R. Marques, for
helping us draw most of the figures. Our research work has been supported by
the Brazilian agencies Fapesp and CNPq.

Antônio M. Figueiredo Neto and
Silvio R. A. Salinas

São Paulo, May 2004.
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1

LYOTROPIC SYSTEMS: MAIN EXPERIMENTAL

FACTS AND TECHNIQUES

1.1 Introduction

Liquid crystals [1] are intermediate states of matter or mesophases, halfway
between an isotropic liquid and a solid crystal. In nature, some substances,
or even mixtures of substances, present these mesomorphic states. This picture
leads to the concept of ordering. In a solid crystal, the basic units display transla-
tional long-range order, with the center of mass of atoms or molecules located on
a crystal lattice; in some cases, the basic units also display orientational order.
In an isotropic liquid, the basic units do not present either positional or ori-
entational long-range order. From one ordering limit (solid crystal) to the other
(isotropic liquid), there may exist many different situations. In plastic crystals,
the basic units (globular molecules, e.g.) are located on a lattice but without any
orientational order. In liquid crystals, the basic units display orientational order
and even positional order along some directions. These materials flow like an
isotropic fluid and have characteristic optical properties of solid crystals. Liquid
crystals were firstly classified as thermotropics and lyotropics, depending on the
physico-chemical parameters responsible for the phase transitions.

In thermotropic liquid crystals the basic units are molecules, and phase trans-
itions depend on temperature and pressure. A pronounced shape anisotropy (in
other words, the anisometry) is the main feature of the molecules which give rise
to a thermotropic mesophase. Rods, disks, and banana-shaped are examples of
molecular geometries associated with thermotropic liquid crystals. Besides pure
substances, mixtures of molecules can also present thermotropic mesomorphic
properties. Thermotropics are widely used in displays of low energy cost and in
many sensor devices.

Lyotropic liquid crystals, shortly called lyotropics or lyomesophases, are mix-
tures of amphiphilic molecules and solvents at given temperature and relative
concentrations. The mesomorphic properties change with temperature, pressure
and the relative concentrations of the different components of the mixture. An
important feature of lyotropics, turning them different from thermotropics, is the
self-assembly of the amphiphilic molecules as supermolecular structures, which
are the basic units of these mesophases. Although there are not many devices
based on lyotropics, their physico-chemical properties have an interesting inter-
face with biology, and the understanding of these properties has been relevant
for improving some technological aspects of cosmetics, soaps, food, crude oil
recovery, and detergent production.
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It is interesting to point out that there is a family of complex isotropic fluids,
which have been called microemulsions [2], whose characteristics [3], in some
respects, overlap with those of lyotropics. Microemulsions are mixtures of oil,
water and amphiphile molecules, which behave as an optically isotropic and
thermodynamically stable liquid solution [4]. These systems differ from the emul-
sions, which are kinetically stable. In microemulsions, the typical size of the basic
units (self-assembled molecular aggregates) is about 10 nm, which makes the
mixture transparent to visible light. On the other hand, emulsions diffuse vis-
ible light, displaying a milky or cloudy aspect, which indicates that their basic
units are larger, typically, of micrometer dimensions. The conceptual boundar-
ies between lyotropics, in particular the isotropic phases, and microemulsions
are not sharp; sometimes, the isotropic phases of the same mixture, with oil as
one of the components, are included in different sides of this border. In order
to differentiate them, we point out that microemulsions are two-phase systems
and lyotropics are one-phase systems. In this book, we always refer to lyotropics
and use their nomenclature to describe the isotropic micellar and bicontinuous
phases, even if oil is present in the mixture.

Another family involving characteristics of lyotropics and thermotropics has
been recently investigated. These systems are made of a mixture of thermotropic
liquid crystals and solvents. This mixture does not present molecular aggregates,
as micelles or other supermolecular structures, but the polymorphism of the
phase diagram depends on temperature and the relative concentrations of the
different components. Since new phases appear as a function of the concentration
of the solvent, these mixtures are different from those which give rise to the
swelled thermotropic phases. They will be discussed in Chapter 8 of this book.

1.1.1 The hydrophobic and hydrophilic effects

Water is present in almost all of the lyotropic mixtures. The behavior of a
molecule of a given substance with respect to the water molecules plays a crucial
role in the formation of a lyomesophase.

In the field of complex and supermolecular fluids, the concepts hydrophobic
(hates water) and hydrophilic (loves water) refer to the affinity of a partic-
ular molecule with respect to the water molecules. Sometimes these effects
are treated as interactions, but this is not the case. The involved interac-
tions are of electrostatic nature, since water molecules have a permanent dipole
moment [5] p = 6.2 × 10−30 C m. From the point of view of electrostatic dipole–
dipole interactions, similar molecules, or even parts of molecules, tend to be
together. Therefore, polar molecules are easily dissolved in water, and non-polar
substances (e.g., paraffin) are difficult to be dissolved in water.

The mechanism of ordering the water molecules, based on the hydrogen
bonds, plays an essential role in these effects [6]. At room temperatures (∼25◦C),
the water molecules arrange themselves as an isotropic liquid. A distortion of this
structural arrangement, which costs energy, takes place upon the introduction
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of a solute. If the solute is polar, some energy compensation occurs and the
dilution becomes possible. On the other hand, if the solute is nonpolar, no
energy compensation occurs and the dilution is difficult.

1.1.2 Amphiphilic molecules

Amphiphilic molecules are always present in the composition of lyotropic liquid
crystals. They may be synthesized for different purposes, ranging from interests
in basic science to technological applications in various branches of industry.

The name amphiphilic comes from the Greek prefix amphi, which means
both or double, and the word phile, which means like or love. This word is
applied to a compound that displays a double “preference,”“loving both,” from
the electrostatic point of view. It is used to name a molecule with a polar water-
soluble group attached to a water-insoluble hydrocarbon chain. An example
of this type of molecule, sodium decylsulfate (NadS or SdS), is illustrated in
Fig. 1.1. These molecules are surfactants (from surface active agent), since they
can modify the properties of surfaces and interfaces between different media, as
solid–liquid or liquid–gas interfaces.

There are different types of natural and chemically synthesized amphiphilic
molecules: anionic amphiphiles (soaps of fatty acids; e.g., potassium laur-
ate), detergents (e.g. sodium decylsulfate); cationic amphiphiles (e.g. hexadecyl
trimethylammonium bromide); nonionic amphiphiles (e.g. pentaethyleneglycol
dodecyl ether); and zwitterionic amphiphiles (which develop an electric dipole in
the presence of water; e.g., lysolecithin). In Fig. 1.2, we sketch some examples.
Another type of surfactant molecules that give rise to a lyotropic mesophase
are the anelydes. These molecules are able to selectively complex some metallic
ions [7], which are then incorporated in their structure.

In addition to these so-called classical amphiphiles, there are molecules with
a more complex topology, with more than one polar group, which also give rise
to lyotropic mesophases. For example, we mention the gemini surfactants [8],
the rigid spiro-tensiles, and phospholipids [9], with molecules of the hydro-
philic group grafted in a position lateral to a rod-like rigid core [10]. The facial
amphiphiles [11] (Fig. 1.2(g)) are block molecules in which two alkyl chains
are placed in both sides of a calamitic core and the polar group is attached
to the core, perpendicular to the stick-like molecule. In the bolaamphiphiles
(Fig. 1.2(h)), there are two polar heads in both sides of the stick-like molecule

C

(NadS)

O–S–O –Na+

O

HH

O

Fig. 1.1. Amphiphilic molecule of sodium decylsulfate.
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Fig. 1.2. Examples of different amphiphiles: (a) anionic, KL-potassium
laurate; (b) detergent, SLS-sodium laurylsulfate; (c) cationic, HTAB or
CTAB-hexadecyl trimethylammonium bromide; (d) nonionic, pentaoxyethyl-
ene dodecyl ether; (e) zwitterionic; (f) anelydes; (g) facial amphiphile;
(h) bolaamphiphile.
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and the alkyl chain is perpendicularly attached to the core [12]. In the presence
of polar and non-polar solvents, these molecules form lyotropic mesophases, with
nanosegregation properties [12,13].

As a final remark, it is important to note that a polar group is not always
required to be hydrophilic (nor is a non-polar group always hydrophobic).
The topology of the molecule and its insertion into the water network is also
important to characterize the solubility in water [14].

1.1.3 Definition of a lyotropic mixture

Under suitable conditions of temperature and relative concentrations, mixtures
of amphiphilic molecules and solvents can give rise to a lyotropic mesophase. In
this type of system, amphiphilic molecules form self-assembled super-structures
of several shape anisotropies and sizes.

Let us firstly classify lyotropics into three big families:

(a) Micellar systems, with molecular aggregates, called micelles, of small
shape anisotropy, as sketched in Fig. 1.3(a). These micelles are aggregates
of amphiphilic molecules, with typical dimensions of about 10 nm and
shape anisotropy of order 1 : 2 in linear dimensions.

(b) Systems with aggregates of large shape anisotropy, of typical order 1 : 100
in terms of linear dimensions. These aggregates are sometimes called infin-
ite, but we do not use this nomenclature. In Fig. 3(b), we sketch a long
cylindrical aggregate.

(a) (b)

(c)

Fig. 1.3. Amphiphilic molecular aggregates. The polar head and the paraffinic
chain of the molecules are represented by a sphere and a line, respect-
ively: (a) sketch of an orthorhombic micelle. The cut in the right-down side
shows the paraffinic chains in its inner part; (b) large anisotropic cylindrical
aggregate; (c) sketch of a bicontinuous molecular aggregate with a cubic
symmetry.
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(c) Bicontinuous systems, in which the amphiphilic molecules self-assemble
as a three-dimensional continuous structure at large scales (larger than
103 nm). Fig. 1.3(c) shows a sketch of a bicontinuous molecular aggregate
with cubic symmetry.

1.1.4 Self-assembled systems

We now discuss the self-assembling properties of amphiphilic molecules in
lyotropic mixtures.

In the case of mixtures of amphiphilic molecules and a solvent, one interesting
concept is the critical micellar concentration, CMC, [6,15,16]. It is defined as
the concentration of amphiphilic molecules above which they self-assemble into
micelles. Let c be the concentration of amphiphilic molecules in the solution
of amphiphiles and a solvent. For c < CMC, the amphiphilic molecules remain
isolated, without the formation of micelles. For c > CMC, the fraction of isolated
amphiphilic molecules remains almost constant, and the concentration of micelles
increases with c (Fig. 1.4). The hydrophobic/hydrophilic effects are the most
important mechanisms of micelle formation [6]. In water-based mixtures, the
formation of micelles can also be understood in terms of the entropy of the
structured water, since, for concentrations larger than CMC, the aggregation of
amphiphilic molecules increases the water entropy [6,17].

Different theoretical approaches have been used for the understanding of the
micellization process [6,14,18–22].

From the experimental point of view, some physico-chemical properties of
these solutions, as detergency, equivalent conductivity, high-frequency con-
ductivity, surface tension, osmotic pressure and interfacial tension, present
remarkable behavior as c approaches CMC [15]. In actual mixtures, there is
no well-defined concentration of amphiphiles at which all of these properties

CMC

cm

ci

c

Fig. 1.4. Concentration of isolated amphiphilic molecules (ci) and micelles (cm)
around CMC as a function of the concentration amphiphilic molecules (c) [14].
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present a drastic modification in their behavior. It should be noted that CMC
is a function of temperature [23] and that the lifetime of an amphiphile in a
molecular aggregate is of the order of 10−5–10−3 s [24]. At a given temperature,
a good estimate of CMC, in terms of the chain length of the surfactant [25,26],
is given by

log10 CMC = 1.6 − 0.3nc (1.1)

where nc is the number of carbon atoms in the chain.
Recently, nonlinear optical properties of amphiphilic solutions were investig-

ated at amphiphile concentrations around CMC. Using a mixture of potassium
laurate [COOK(CH2)10CH3] and water, it has been shown [27] that the pres-
ence of micelles in the solution, in a concentration range up to 102 × CMC,
does not significantly modify the thermal conductivity, κ ∼ 0.3 W K−1 m−1, of
this solution with respect to a solution of isolated amphiphilic molecules. On
the other hand, the presence of micelles in the solution changes the behavior
of the thermooptic coefficient, ∂n/∂T , where n is the index of refraction of the
solution and T is the temperature, as a function of amphiphile concentration.
For c�CMC, the thermooptic coefficient is almost constant and small (about
−2.5 × 10−5 K−1). Also, it is always negative in the domain of this investig-
ation. Increasing c, the absolute value of ∂n/∂T increases almost linearly and
reaches ∂n/∂T ∼ −27 × 10−5 K−1 at c ∼ 0.8 M. The behavior of the nonlinear
index of refraction n2 in terms of amphiphile concentration is strongly affected
by the presence of the micelles in the solution. For c � CMC, n2 is negative and
almost constant, n2 ∼ −0.02 × 10−7 esu. For c > CMC, two tendencies were
observed: from CMC until 10 × CMC, there is a linear decrease of n2 with c,
which reaches about −0.12×10−7 esu; for larger values of c, n2 tends to stabilize
at n2 ∼ − 0.13 × 10−7 esu, at concentrations of about 102 × CMC. Comparing
these results with the known dependence of the different physical parameters
of amphiphilic solutions at concentrations around CMC [15,28], the absolute
values of the thermooptic coefficient, |∂n/∂T |, and of the nonlinear refractive
index, |n2|, present the same qualitative behavior of the high-frequency electric
conductivity, σHF, and the inverse of the equivalent electric conductivity, σEQ.
The mobility of counterions in the double layer around the micelles seems to be
strongly related to the nonlinear response of the medium to an electric field.

Besides the critical micellar concentration, CMC, the critical micellar tem-
perature, CMT, is another concept that plays a similar role in the self-assembly
of amphiphilic molecules [29,30]. The critical micellar temperature CMT is the
lower temperature limit between the hydrated solid phase and the micellar phase.
This temperature depends on the particular amphiphilic molecule and on the
ionic strength of the mixture. As a working example, consider a mixture of
sodium dodecylsulfate (SDS), NaCl and water [30]. At a 6.9 × 10−2 M concen-
tration of SDS, CMT increases from about 15◦C in a mixture without the salt
to about 25◦C in a sample with 0.6 M NaCl. Also, CMT was shown to present
a small dependence on the SDS concentration, for a fixed salt concentration.
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1.1.5 Direct and inverted polymorphism

Depending on temperature, type and concentration of the solvents, there may
exist direct or inverted molecular aggregates in the lyotropic mesophases (see
Fig. 1.5). Although commonly used in the field of colloidal systems, this nomen-
clature is obviously ad hoc. Geometrical parameters of the amphiphilic molecules,
as the relation between the surface per polar head and the volume of the carbonic
chain in the structure, affect the polymorphism in a lyotropic mixture, specially
the direct and inverted forms [14].

Let us consider molecular aggregates, excluding the bicontinuous structures.
In direct mesophases, the polar solvent is a continuous medium, in which the
amphiphilic molecular aggregates are present. The paraffinic chains, as well as
other non-polar solvents in the mixture, are confined inside the isolated aggreg-
ates (Fig. 1.5(a)). On the other hand, in the case of inverted mesophases, the
polar solvent is confined in closed regions and the non-polar material is the
continuous external medium.

In bicontinuous structures, the characterization of confined, polar or non-
polar, material is not straightforward. Usually, in this case, the terminology of
direct or inverted structures refers to the relative concentrations of polar and
non-polar solvents with respect to the concentration of the principal amphiphile.
In direct structures, the polar solvents have the largest concentration; in inverted
structures, the largest concentration is of non-polar solvents. In Fig. 1.5(b), we
sketch direct and inverted sponge phase structures.

Direct

(a) (b)

Direct

Inverted

Inverted

Fig. 1.5. Examples of direct and inverted structures: (a) micelles; in the
sketch of the direct micelle, we draw a cut to show the paraffinic chains;
(b) bicontinuous direct and inverted sponge phase structures.
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1.1.6 Lyotropic liquid crystalline phases

In a micellar solution, there appears anisotropic liquid crystalline phases if we
increase the concentration of amphiphilic molecules to values much larger than
CMC. The typical concentration of amphiphilic molecules in a liquid crystal-
line mesophase is larger than 102 × CMC. For example, in the case of the
potassium laurate/water mixture, CMC = 0.008 M [31], and liquid crystalline
phases are present for c � 2 M [32], in a temperature range from approximately
20 to 350◦C.

In a temperature versus amphiphile concentration phase diagram, the liquid
crystalline region, at high temperatures, is limited by a domain with an iso-
tropic solution of isolated molecules or even micelles. If micelles are present, this
is called a micellar isotropic phase. At lower temperatures, it is limited by a
crystalline-type region [32] (see Fig. 1.6). The Krafft line defines the function
CMC(T ) in the phase diagram.

If the temperature of the mixture is lowered, at a given amphiphile concen-
tration, there may appear an intermediate gel phase [33–36], before the system
reaches a solid crystalline state. This phase is stable but, if the temperature
continues to be lowered, it becomes metastable and spontaneously transforms to
a coagel and later to a crystalline phase [37].
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Fig. 1.6. Phase diagram of the potassium laurate/water mixture, in the temper-
ature versus concentration plane (ref. [32]). The phases shown in the figure
are discussed in the following sections.
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Lyotropic liquid crystalline phases display long-range orientational order and,
in some cases, long or medium-range positional order in one or two dimensions.
There may even exist medium-ranged structures of three-dimensional character.
Unlike the thermotropic mesophases, lyotropic nematics and cholesterics may
also present short-range positional order among micelles, giving rise to a pseudo-
lamellar structure.

In general, the paraffinic chains inside the molecular structures are in a
liquid-like state, without positional order [33]. The order parameter of the dif-
ferent segments of the paraffinic chain, measured by nuclear magnetic resonance
(NMR) technique with selectively deuterated samples [38], displays a decreas-
ing profile from the polar head nearest-neighbor carbon towards the CH3 end
group (Fig. 1.7). Besides molecular diffusion, the paraffinic chains in the molecu-
lar aggregate describe several movements, as twist, bend, and rotations around
particular axes [39].

The polymorphism in a mixture of amphiphilic molecules and solvents
depends on different parameters of the amphiphile itself, as the ionic charac-
ter of the polar head, the size and volume occupied by the head with respect
to the parameters of the chain, the presence or absence of another surfactant
(usually called cosurfactant) or of salt in the mixture, the pH and ionic strength
of the solution, the purity of the compounds, and the temperature, among other
factors. In some cases, these parameters are difficult to be controlled experi-
mentally, which explains that reproducibility in some experiments in lyotropics
is not easy to be achieved, specially if only temperature and concentrations of the
different compounds of the mixture are taken into account. A salt, an alcohol,
as well as other solvents, can be added to a binary lyotropic mixture in order
to produce a reconstruction of the phase diagram, introducing new phases and
modifying the topology. Another surfactant can also be added to binary or even
ternary mixtures, already having an alcohol, in order to produce a reconstruction
of the phase diagram.
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Fig. 1.7. Order parameter of the different CD (carbon-deuteron) bonds in the
paraffinic chain inside a micelle (from DMR measurements of quadrupolar
splittings [38]).
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Fig. 1.8. Disodium chromoglycate (DSCG) molecule, which leads to a
chromonic mixture.

Water, which is present in most of the lyotropic mixtures, plays a significant
role in the stability of the different mesophases. Water molecules take part in
ion–dipole and dipole–dipole interactions, and in hydrogen bonds, involving the
hydrophilic groups of the amphiphilic molecules. We may say that there is always
a certain amount of bounded water in the structure of amphiphilic molecules,
giving rise to a hydration layer around them [32]. The lifetime of these bonds
depends on the hydration number, defined as the number of water molecules
orientationally bounded to an ion [14], and ranging from 1 to about 6. For
example, in the case of commonly used materials in lyotropics (Na+, K+, and
Cs+), the exchange time between bounded and unbounded water molecules is
about 10−10–10−9 s [14].

Another type of lyotropic-like mixture is the chromonic [40], in which more
complex molecules, as DSCG [C23H14O11Na2], as sketched in Fig. 1.8, are
mixed with a solvent (water). This type of mixture presents a polymorphism
that depends on the concentration of solvent. The structures in the phase dia-
gram show some characteristics of the lyotropic phases and also of thermotropic
columnar phases.

Depending on time and length scales, different experimental techniques can
be used for studying lyotropic liquid crystals. Some of the most common of these
techniques are NMR, for systems with 1H and 2H nuclei, and counterions as Li,
Na and Cs [41–43], light scattering [44,45], neutron [46,47] and X-ray [33,37,48]
scattering and diffraction, polarized light optical microscopy [49–51], conoscopy
[52,53], and electric conductimetry [54,55].

1.1.7 Structures and terminology

The lyotropic liquid crystals provide perhaps the richest examples of polymorph-
ism among complex fluids.

The micellar isotropic phase (labeled L1 and L2, for direct and inverted struc-
tures, respectively; see Fig. 1.9) can be found in different regions of the lyotropic
phase diagrams (not only at higher temperatures, as it is usually expected).
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Fig. 1.9. Surface of the phase diagram of a mixture of potassium laurate,
decanol (at 6.24 wt%) and water; L1, NC, NB, and ND represent the micellar
isotropic, calamitic nematic, biaxial nematic, and discotic nematic phases,
respectively (from ref. [82]).

This is due to the possibility of changing the shape anisotropy of micelles
depending on temperature and relative concentrations of the compounds [56].
At low amphiphilic molecular concentrations (c � CMC), micelles are mostly
spherical in shape. At larger concentrations of amphiphiles (typically, of order
c ∼ 102 × CMC), although randomly oriented in space and in isotropic phases,
micelles may have non-spherical shapes. In some particular lyotropic mixtures,
isolated micelles have orthorhombic symmetry, and are piled up (locally) in small
correlation volumes with a pseudo-lamellar structure, although these correlation
volumes are randomly oriented in space [56]. This self-arrangement may also lead
to an isotropic phase.

Three types of lyotropic nematic phases were identified, two of them of uni-
axial character [57–61], NC (calamitic nematic) and ND (discotic nematic), and a
third phase of biaxial character, NB [61,62]. Figure 1.9 shows a particular section
of the phase diagram of a mixture of potassium laurate, decanol and water. These
mesophases are composed by micelles with short-range positional and long-range
orientational order. The shape of the micelles depends on the particular mixture.
Mixtures with only one amphiphile (e.g., decylammonium chloride/NH4Cl/water
and potassium laurate/KCl/water) form disk-like or cylinder-like micelles. A
better picture of them could be an oblate (see Fig. 1.10(a)) or a prolate (see
Fig. 1.10(b)) ellipsoid. These mixtures do not have the biaxial NB phase. On
the other hand, mixtures with more than one amphiphile (e.g. potassium laur-
ate/decanol/water; sodium decylsulfate [CH3(CH2)9OSO2ONa]/decanol/water;
potassium laurate/decylammonium chloride/water) display the three nematic
phases. In these cases, micelles have an orthorhombic (brick-like) symmetry, as
sketched in Fig. 1.3(a), or the shape of a flattened prolate ellipsoid [56].

Micelles are piled up in a pseudo-lamellar structure at short-range scales [61],
and orientationally ordered depending on the particular nematic structure. In
Fig. 1.11, we sketch the orientational fluctuations of brick-like micelles. The dots
represent a particular surface of the micelles. In Fig. 1.11(a), the orientational
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(a) (b)
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→

Fig. 1.10. Sketch of micelles in lyotropic mixtures with one amphiphile only;
→
n

is the director, or axis of symmetry, of the phase. The cuts show the paraffinic
chains in inner part of micelles: (a) oblate ellipsoid or disk-shaped; (b) prolate
ellipsoid or cylinder-shaped.

(c) NBNC
(a) n (b) ND

n

Fig. 1.11. Sketch of the micellar order in the context of the intrinsically biaxial
(brick-like) micelles model. The dots represent a particular surface of the

micelles and
→
n is the director: (a) NC phase; (b) ND phase; (c) NB phase.

fluctuations are full rotations around the long axes of the micelles, which gives
rise to the NC phase; in Fig. 1.11(b), the fluctuations are around the axes perpen-
dicular to the largest surface of the micelles, originating the ND phase; finally, in
Fig. 1.11(c), there are small amplitude fluctuations around the three orthogonal
axes of the micelles, which leads to the NB phase.

A cholesteric phase can be formed if a nematic phase is doped with a chiral
molecule or if a mixture contains a chiral amphiphilic molecule, as chiral soaps,
detergents or alcohols [63–66]. In Fig. 1.12, we sketch an example of a cholesteric
arrangement. As in the case of nematics, three types of lyotropic cholesterics
were identified [66], a calamitic cholesteric phase, ChC, a discotic cholesteric
phase, ChD, and a biaxial cholesteric phase, ChB. The typical concentration of
chiral molecules in a cholesteric mesophase is 0.05 M%. The micelles spontan-
eously organize into a helical structure with a pitch that depends on different
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Fig. 1.12. Sketch of a sequence of micelles in a cholesteric structure. The ori-
entation of a prolate ellipsoidal micelle rotates around an axis perpendicular
to the infinite-fold symmetry axes of the micelles (represented by the black
arrow inside the micelles).

Fig. 1.13. Sketch of the lamellar Lα structure.

parameters, as temperature, pressure, concentration of chiral molecules [63], and
the shape anisotropy of the micelles [67,68].

In the lamellar phase, amphiphilic molecules are organized as supermolecular
aggregates, forming layers with a large shape anisotropy (see Fig. 1.13).

Comparing the thickness of the lamellae with any dimensions in the plane
of the lamellae, the shape anisotropy is typically larger than 1 : 50. Usually, the
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(a) (b)

Fig. 1.14. Sketch of lamellar phase structures: (a) ripple phase Pβ′ ; (b) Lβ′

phase.

thickness of the layers is of the order of almost twice the length of the main
amphiphilic molecule (in some particular mixtures, single-layered structures,
called Ls, were observed). However, this length can increase due to the addi-
tion of a non-polar solvent. The thickness also depends on the temperature of
the sample [33]. The length of a carbonic chain in a trans configuration (unfolded
state) can be obtained from the empirical expression [69]

l = 0.15 + 0.127nc,

where l is given in nanometers, and nc is the number of carbons in the chain,
excluding the last carbon atom in the CH3 ending group. If the layers are flat and
the paraffinic chains are in a liquid-like state, the phase is called Lα (although the
name “neat soap” has also been used [32]). On the other hand, if the chains are
stiff and have positional order, different lamellar structures can be formed [70,71].
In the Lβ phase, the chains are packed in a two-dimensional hexagonal ordering,
with rotational disorder. Phase Lγ is formed by a sequence of layers with Lα and
Lβ structures. If the surface of the lamellae has an undulated topology [71], the
phase is named ripple-Pβ′ (see Fig. 1.14(a)); if there is an ordering of hexatic
type, the phase is named Lβ′ [72] (see Fig. 1.14(b)).

In the hexagonal phase, the amphiphilic molecules are packed as long cylinder-
like aggregates, with a large shape anisotropy (see Fig. 1.15). The diameter of
the cylinders is of the order of twice the length of the main amphiphilic molecule
of the mixture, and the typical lengths are at least 50 times larger than the
diameter. Parallel cylinders are packed on a two-dimensional hexagonal lattice,
in the plane perpendicular to the axes. In direct structures (see Fig. 1.15(a)),
the hydrocarbon chains inside the cylinders display a liquid-like ordering and the
phase is labeled Hα. This phase was also called “middle soap” and labeled E or
H1 [32]. In the case of an inverted structure, which is present in mixtures with
a large concentration of nonpolar solvents, the polar solvent is placed inside
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(b)(a)

Fig. 1.15. Sketch of the hexagonal phase structure: (a) direct; (b) inverted.

br

(a) (b)ar

Fig. 1.16. Sketch of two-dimensional phase structures: (a) rectangular;
(b) square.

the cylinders and the carbonic chains point outwards (see Fig. 1.15(b)). This
phase was also labeled F or H2 [32]. We will use the nomenclature Hα and Hi

α

for direct and inverted phases, respectively. The subscript α indicates that the
carbonic chains have a liquid-like ordering; the superscript i denotes the inverted
configuration.

These large cylindrical molecular aggregates can also pack as a two-
dimensional rectangular (Fig. 1.16(a)) or square (Fig. 1.16(b)) lattice, perpen-
dicular to the axes of the cylinders. The rectangular and the square phases were
labeled R and C (or K in the case of inverted aggregates), respectively [32].

Other mesophases displaying hexagonal lattices have been identified in lyo-
tropics, such as the “complex” hexagonal phase, Hc [73], and the R3m phase, in
which case X-ray diffraction patterns indicate the existence of a rhombohedral
lattice, of space group R3m, and which will be called Rh.
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Another example of polymorphism in lyotropics, as far as these lower-
symmetry phases are concerned, is a system of molecular aggregates with the
form of long unfolded ribbons [74]. These ribbons can be sketched as flattened
cylindrical aggregates and packed on a two-dimensional lattice in the plane per-
pendicular to the axes of the ribbons. Ribbon phases usually appear in phase
diagrams of mixtures with at least two amphiphiles (e.g. an alcohol and a
soap).

Lyotropics may also display medium-ranged three-dimensionally ordered
phases. One of them is the cubic micellar phase, Qm [75,76], with micelles
packed on a cubic (face-centered or body-centered) lattice (see Fig. 1.17).
In the hexagonal micellar phase, Hm, micelles are packed on a hexagonal
three-dimensional lattice (hcp structure) [77].

The polymorphism of lyotropics presents bicontinuous structures. In this case,
amphiphilic molecules self-assemble in a three-dimensional structure. The bicon-
tinuous character means that a molecule, with its head in the aggregate surface,
can diffuse continuously through all of the structure without the need of going to
the bulk in which the solvent is present. This characteristic feature of the bicon-
tinuous structure is not present in phases with aggregates as micelles, cylinders
or lamellae, in which case a molecule needs to go through the solvent in order to
diffuse from one aggregate to another. Bicontinuous cubic phases (called Qb; see,
e.g., Figure 1.3(c)) were also identified in lyotropic mixtures [76]. Another bicon-
tinuous structure found in lyotropics is the sponge phase, called L3, as sketched
in Fig. 1.18. Experimental observations of this phase indicate a microstructure
with a surfactant bilayer of multiply connected topology separating two solvent
domains over macroscopic distances [78,79].

Other lyotropic mesophases with lower symmetries were identified [32,80],
as the so-called “white phase” or square phase (direct, C, or inverted, K),
in which long cylinders with predominantly quadratic cross section pack in a
two-dimensional tetragonal symmetry.

Fig. 1.17. Sketch of the direct micellar cubic (bcc) phase.
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Fig. 1.18. Sketch of the sponge phase structure.

As a final remark about the polymorphism of lyotropics, we point out that
there may be regions of phase coexistence, in some cases with more than two
coexisting phases. Some of these coexisting phases can have a lower symmetry as
compared with the cases discussed in this section. From the experimental point
of view, mechanical procedures, as high-speed centrifugation, are commonly used
to separate the different phases of the mixture.

1.2 An introductory example

1.2.1 How to prepare a lyotropic mixture (specially for experimentalists)

Each experimentalist develops his or her own method of preparation of the mix-
ture, which obviously changes and improves with time. Some advice, however,
should be relevant, in special for those who are beginning to work in this field.

The weighting procedure is very important. Attention should be paid to the
precision of the equipment (a precision of at least 0.02 wt% is recommended)
and to the weighting sequence of the different compounds of the mixture. It is
recommended to prepare the mixture in a small tube with screw cap which leads
to a very good closing. The volume of the tube depends on the quantity of the
mixture to be prepared. However, as most of the experiments do not require large
quantities of sample, a tube with a volume of about 10 ml can be used to prepare
about 3 ml of the mixture. In order to guarantee the process of homogenization,
it is important to let a large free space inside the tube.

The typical weight percentages of the lyotropic mixture sodium decyl-
sulfate/decanol/water are 37.68/7.43/54.89, corresponding to the molar percent-
ages 4.47/1.45/94.08.

We should begin by weighing the powder compounds. Then, we weigh the
small liquid quantities, and the main solvent (just water, in this example). This
solvent should be used to wash the walls of the tube, removing traces from the
other components. After the weighting process, the tube is closed with its cap
and sealed with paraffin in order to avoid any loss of mass.
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The homogenization starts with the manual rotation of the tube around its
axis (tilted with respect to the vertical direction by about 45◦), for a few minutes,
and after a sequence of shakes in a vortex and mechanical centrifugation. After
a visual inspection indicates that the homogenization has been achieved, it is
important to let the mixture rest, at about 25◦C, for at least 24 h, before using
it in the experiments.

1.2.2 The potassium laurate (KL) lyotropic mixtures

This soap is one of the most used compounds for the preparation of lyotropic
mixtures. It is easily prepared from lauric acid, with a relatively cheap and
straightforward synthesis. Binary, ternary and multicomponent mixtures with
KL were shown to display lyotropic mesophases. As they lead to very rich
phase diagrams, with many examples of lyotropic polymorphism, we pay special
attention to these binary and ternary mixtures.

1.2.2.1 The binary potassium laurate/water mixture The potassium laurate
molecule, with the carbonic chain in a trans (unfolded) geometry, is about 2.0 nm
long and its surface per polar head is about 0.5 nm2 at 100◦C (with values
depending on temperature and the phase under consideration [73]).

The phase diagram of this mixture [81], in terms of temperature T and the
concentration c of amphiphiles, between the low-temperature crystallization line
and the high-temperature isotropic phase transition, presents two lyotropic meso-
phases, Hα and Lα, and regions of phase coexistence (see Fig. 1.6). Changing
the temperature at a fixed value of c, there is no transition between Hα and Lα.
On the other hand, changing c at a given temperature, there may be a transition
between Hα and Lα. The Hα region, also called “middle soap phase domain,”
is located at soap concentrations of about 50 wt% (where wt% means weight
percent), in the middle of the phase diagram. The Lα phase, also called “neat
soap phase,” is located at a region of larger soap concentration of the phase
diagram.

1.2.2.2 The ternary potassium laurate/1-decanol/water mixture A ternary
mixture of potassium laurate, 1-decanol, and water is one of the most extens-
ively studied lyotropic systems. We restrict the description to the neighborhoods
of the regions of nematic phases. The polymorphism of this system is par-
ticularly rich. Also, it has led to the first identification of a biaxial nematic
phase [62,82].

The topology of a section of the phase diagram, in terms of temperature
and concentration of potassium laurate, at given concentration of 1-decanol,

presents a low-temperature isotropic micellar phase, L
(l)
1 , a high-temperature

isotropic micellar phase, L
(h)
1 , and three nematic phases, NC, NB, and ND. The

NB phase is located between the two uniaxial phases (see Fig. 1.9).
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The boundaries between the nematic–isotropic and nematic–nematic phase
transitions are of first and second order, respectively [53]. The Landau point,
at the convergence of a first-order and two second-order transition lines, is
experimentally accessible in the case of this mixture [83].

From the analysis of early X-ray [59,60] and neutron [47] diffraction res-
ults, the micelles in the NC and ND nematic phases were assumed to be prolate
and oblate ellipsoids, respectively. These conclusions were also based on the
equivalence between the frame axes of the laboratory, where the diffraction pat-
terns were actually obtained, and the frame axes attached to the micelles. It
is important to note that in the time-scale of these diffraction experiments (at
least minutes, for X-rays from synchrotron radiation) all the orientational and
dynamical fluctuations of the micelles are averaged. The bare coherence length
measured by Rayleigh scattering [84] is about 12 nm, larger than the typical
dimensions of a micelle, of about 9 nm [61,85]. Therefore, no drastic modifica-
tions of the shape of the micelles are expected at the uniaxial–biaxial nematic
phase transitions.

More recently, a different picture has been proposed on the basis of the ana-
lysis of detailed investigations of the profile of the X-ray diffraction bands for the
three nematic phases [61,85]. All the available experimental results (diffraction,
NMR, and light-scattering measurements, including the behavior in the pres-
ence of a magnetic field) can be explained if we assume the existence of similar
(direct) micelles in the three nematic phases. These micelles are supposed to
have a biaxial symmetry, as a flattened prolate ellipsoid, with three symmetry
axes of order two, mutually orthogonal as in a “brick-like” geometry. The three
nematic phases are a consequence of orientational fluctuations of these micelles
(see Figs 1.11(a)–(c)).

The typical dimensions of a brick-like, orthorhombic, micelle are of the order
A′ = 8.5 nm, B′ = 5.5 nm, and C ′ = 2.6 nm, where C ′ is associated with
the potassium laurate bilayer, and A′ and B′ are dimensions in the plane per-
pendicular to the bilayer. The shape anisotropy of the micelles is about 3 : 2 : 1
(A′ :B′ :C ′). These dimensions undergo slight changes with temperature, but
no drastic variations were detected at the nematic–nematic phase transitions.
The orientational fluctuations which degenerate the symmetry axis (the director
of the phase, which is represented by the unit vector n) perpendicular to the
largest surface of the micelles give rise to the ND phase (see Fig. 1.11(b)). The
orientational fluctuations which degenerate the symmetry axis in the plane of
the largest surface of the micelle, along the largest axis of the flattened ellipsoid,
give rise to the NC phase (see Fig. 1.11(a)). Small amplitude orientational fluc-
tuations along the three symmetry axes of the micelles give rise to the NB phase
(see Fig. 1.11(c)).

The model of intrinsically biaxial micelles in the three nematic phases was fur-
ther confirmed by neutron diffraction measurements with contrast variation [86].
Neutron diffraction patterns of different samples (one of them with protonated
KL and 1-decanol, and another one with perdeuterated KL and protonated
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Fig. 1.19. Phase diagram of the potassium laurate/decylammonium chloride
(DaCl)/water mixture (from ref. [90]).

1-decanol) in the NC phase, with n parallel to the neutron incident beam,
indicated a local biaxial ordering in this phase, in agreement with the model
of intrinsically biaxial micelles.

The modification of the shape anisotropy of the micelles as a function of
temperature seems to be the mechanism responsible for the presence of the
low-temperature isotropic phase in the phase diagrams [87,88]. As the tem-
perature decreases, the probability of cis configurations in the carbonic chains
decreases and the bilayer thickness tends to increase, reducing the micellar shape
anisotropy and favoring the appearance of an isotropic phase.

This particular polymorphism of the phase diagram, with three nematic
phases, was only encountered in mixtures with at least two amphiphiles. Mix-
tures with only one amphiphile have only uniaxial nematic phases (discotic or
calamitic, depending on the system); in these mixtures, there are no observations
of transitions with an intermediate biaxial phase.

Other ternary lyotropic mixtures presenting a similar polymorphism are
sodium decylsulfate (SdS or NadS), 1-decanol and water [89], and potassium
laurate, decylammonium chloride (DaCl) and water [90], as sketched in Fig. 1.19.

1.3 The lyotropic mesophases

We now discuss some features of several lyotropic mesophases. In particular, we
present a number of experimental results obtained with complementary tech-
niques, which lead to a better characterization of phase structures and phase
transitions.
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1.3.1 Micellar isotropic phases

Micellar isotropic phases are optically isotropic, with a single index of refraction.
In a polarizing light microscope (crossed polarizers), a sample holder filled with
a lyotropic mixture in this micellar phase displays a black homogeneous and
isotropic texture. The characteristic X-ray diffraction pattern of this phase
presents a small-angle scattering due to the individual micelles at a typical
value s ∼ 2 × 10−2 nm−1 (s is the modulus of the scattering vector, given
by s = (2 sin θ)/λx, where 2θ is the scattering angle and λx is the X-ray
wavelength [91]). An isotropic band can be present at s ∼ 2.0 × 10−1 nm−1,
due to the inter-micellar correlations; at high-angles, due to the carbonic chains
intercorrelations, there is an isotropic band at s ∼ 2.2 nm−1.

Depending on the particular region of the phase diagram, micelles can present
different shapes and shape anisotropies. First, consider the case of direct micelles.
In binary mixtures, at low concentrations of amphiphiles, just above CMC, dir-
ect micelles are spherical in shape, with typical diameter of about twice the
length (carbonic chains in trans conformation) of the amphiphile. At larger con-
centrations of amphiphiles, particularly in the neighborhood of the domain of
nematic phases, micelles can keep the same shape of the nematic phase (intrins-
ically biaxial, for mixtures with more than one amphiphile, oblate or prolate
ellipsoids, for binary mixtures). In mixtures with more than one amphiphile, at
small angles, intrinsically biaxial micelles present local ordering (pseudo-lamellar
structure), which is also present in the nematic phases [85]. In this case of aniso-
tropic micelles, the correlation volumes with about three micelles each, forming
the so-called pseudo-lamellar structure, do not present the typical long-range ori-
entational order of the neighboring nematics. In some cases, these anisometric
micelles (or correlation volumes) can be oriented by means of a velocity gradient
imposed to the sample [92]. The typical time-scale of the relaxation process of the
shear-induced birefringence in the mixture of potassium laurate/1-decanol/water
in the isotropic phase, in the neighborhood of the domain of the nematic phases,
is of the order of 15 ms.

Under favorable conditions, the NMR technique provides a direct meas-
urement of the magnetic surroundings of the counterion nuclei in the electric
double-layer around the micelles. The main information is provided by the NMR
line shape and its different rigid lattice contributions (spin–spin interactions and
quadrupolar effects). The various microscopic environments of the nuclei give
essentially two types of line broadening, homogeneous and inhomogeneous. In
the first case, all contributions to the resonance line are centered around the
Larmor frequency of a particular resonant nucleus, which is usually observed in
systems with an isotropic distribution of local fields, as in the case of liquids. In
the second case, systems show an inhomogeneous line broadening, and the reson-
ance profile is composed by a distribution of lines around the Larmor frequency,
but not centered on it [93]. Therefore, if it is possible to identify an inhomogen-
eous resonance line, the line shape is formed by the overlapping of individual
peaks, such that the spectrum becomes a sort of histogram of distributions of
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local electric and magnetic fields in each one of the counterion nuclei. Consider,
e.g., the micellar phase of a mixture of sodium lauryl sulfate (SLS) and water.
This phase is characterized by strong dipolar-coupled 23Na nuclei with an aniso-
tropically broadened resonance line. Such anisotropy is characteristic of isotropic
micellar structures. It also causes the appearance of rotational echoes [94]. The
weak peak in the spectrum is identified as arising from quadrupolar-coupled 23Na
with a non-vanishing electric field gradient (EFG) at the resonant sites. Con-
sequently, the motions of the SLS molecules are not fast enough to completely
average out the EFG at the sites of sodium nuclei.

Cubic micellar phases are also optically isotropic and will be described in
Section 1.3.6.

1.3.2 Nematic phases

The first classification of lyotropic uniaxial nematics was proposed about thirty
years ago [58]. Based upon NMR experiments [95], measurements of the optical
birefringence [49], and on the sign of the anisotropy of the diamagnetic suscept-
ibility (∆χ = χ‖ − χ⊥, where χ‖ and χ⊥ are the susceptibilities parallel and
perpendicular to the director of the phases), the lyotropic nematics were classi-
fied as type I and type II (no biaxial phases had yet been observed at that time).
Type I mesophases have ∆χ > 0, negative optical anisotropy (n‖−n⊥ < 0, where
n‖ and n⊥ are the indices of refraction parallel and perpendicular to the director,
respectively) and, in the presence of a strong enough magnetic field (B � 10 kG),
the director n aligns parallel to the field. Note that n, which is also called “optical
axis,” is the symmetry axis of the phase; in the case of uniaxial nematics, it is an
infinite-fold axis. Type II mesophases have ∆χ < 0, positive optical anisotropy
and, in the presence of a strong magnetic field, n aligns perpendicular to B.
It is important to note that this classification cannot be directly applied to all
lyotropic mixtures, since there are type II systems with ∆χ > 0 [55]. Perfluor-
ated amphiphiles were shown to present lyomesophases where the signs of ∆χ
are inverted with respect to those of the carbonated amphiphiles [96].

Taking into account that the long axis of the paraffinic chains of the
amphiphilic molecules tend to align perpendicular to the applied magnetic field
B, and considering the macroscopic symmetry of the phases, it was proposed
[97] that the micelles are cylinders and disks in type I and type II phases,
respectively. The X-ray diffraction patterns of these phases [59] lead to the
determination of the reciprocal space structures of uniaxial nematics. They can
be depicted as a torus with the major axis parallel to n, and as an elongated
hollow circular cylinder with an axis parallel to n, in type I and type II phases,
respectively. This interpretation is consistent with the picture of cylindric and
discotic micelles, but these micellar shapes are not the only configurations that
could lead to the reciprocal space images obtained in the X-ray experiments.
Hendrikx and Charvolin [60] proposed to label type I and type II mesophases as
NC (calamitic nematic phase) and ND (discotic nematic phase), respectively.
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When the biaxial nematic phase was identified [62], there was a question
referring to what happens at the micellar level: Do the micelles change to a
biaxial shape? Is there a mixture of disks and cylinders in the biaxial phase? Both
possibilities account for almost all of the experimental results accumulated so far.
Nevertheless, it is important to note that there is no direct experimental evidence
of the presence of either cylinders or disks in lyotropic mixtures which display
the three nematic phases. On the contrary, neutron scattering experiments [86]
in NC phases of ternary mixtures (with two amphiphiles) have clearly shown
that there are no cylinders in this phase, supporting the model of intrinsically
biaxial micelles discussed in Section 1.3.2. In binary mixtures, with only one
(always uniaxial) nematic phase, symmetry reasons can be evoked to justify the
existence of objects of higher symmetry, as disks and cylinders, but in mixtures
with more than one amphiphile this argument cannot be directly applied.

A nematic phase of inverted micelles does not seem to have been characterized
experimentally.

1.3.2.1 The order parameter The nematic phases of thermotropic liquid crys-
tals are characterized [98,99] by a second-rank, traceless, symmetric tensor order
parameter. In uniaxial (biaxial) phases, there are two (three) different eigenval-
ues. These eigenvalues are the symmetric invariants of the tensor. For example,
the optical dielectric tensor

↔
ǫ , which has the same symmetry of the phases, can

be chosen as the order parameter [1]. The anisotropic part of
↔
ǫ can be written

in a diagonal form,

←→ǫ a =

⎛
⎝

ǫax 0 0
0 ǫay 0
0 0 ǫaz

⎞
⎠ , (1.2)

where x, y, and z are the three orthogonal axes of the laboratory frame of
reference, and the diagonal elements depend on the experimentally measured
optical birefringences [53]. The birefringences are then proportional to the order
parameters of the distinct phases. Optical birefringences are obtained as the
difference between two of the refraction indices along the principal directions of
the phase. In a uniaxial phase, there are only two different refraction indices.
In a biaxial phase, however, there are three different refraction indices. Calling
∆n and δn the birefringences that vanish in the uniaxial ND and NC phases,
respectively, we have [53]

ǫax =
4〈n〉

3

(
∆n +

δn

2

)
,

ǫay = −2〈n〉
3

(∆n − δn),

ǫaz = −4〈n〉
3

(
∆n

2
+ δn

)
,

(1.3a)

where 〈n〉 is the average index of refraction of the mixture.
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Since the birefringence of lyotropic nematics is of the order of 10−3, thick
samples usually have to be used to measure both ∆n and δn. For example, using
laser conoscopy [52,53], liquid crystalline films of about 2 mm have to be used
to allow the observation of a reasonable number of conoscopic fringes (about six,
three along each direction in the plane perpendicular to the laser beam), in order
to measure birefringence with an accuracy of about 10−5.

In the case of lyotropics, however, this simple definition of the order para-
meter does not seem enough, since the shape anisotropy of the micelles changes
as a function of temperature and relative concentration of the compounds.
This brings the need to introduce an additional non-critical order parameter
for obtaining a complete description of the experimental nematic phase dia-
gram [100]. This novel formulation will be introduced and developed in the
forthcoming chapters.

1.3.2.2 The calamitic nematic phase NC In mixtures based on amphiphiles
with carbonic chains, the nematic phase NC is characterized by ∆χ > 0, a
negative optical anisotropy, and by a director n aligned parallel to the applied
magnetic field B.

Usually, fields of about 10 kG are needed in order to orient samples 100 µm
thick. However, an elegant method proposed by Brochard and de Gennes [101]
allowed the orientation of samples in small (of the order of 100 G) magnetic
fields. This procedure consists in introducing in the liquid crystal small magnetic
grains (doping elements), which orient themselves in the magnetic field and, by
a mechanical coupling with the director, turn out to orient the liquid crystal.
In order to activate this mechanism, there should exist a minimum concentra-
tion of magnetic grains, which are supposed to promote a collective response
of the liquid crystalline media to the small applied field [101,102]. Water based
ferrofluids, also named magnetic fluids, which are colloidal suspensions of nano-
metric magnetic grains of typical dimensions of about 10 nm, dispersed in water,
are the obvious candidates to be used. Liébert and Martinet reported the first
experimental realization of a ferronematic lyotropic liquid crystal [103]. The typ-
ical concentration of magnetic grains for orienting liquid crystals, using samples
about 200µm thick, is of order 1012 grains/cm3. At these concentrations, there
are in the mixture about 106 micelles per ferrofluid grain, which corresponds, in
a given direction of space, to about 100 micelles per grain. It has been observed
that these concentrations of dopants do not lead to any modifications of the
topology of the phase diagrams and of the values of the transition temperatures
(at least, within 0.1◦C). Nonlinear optical properties of the mixture, however,
can be strongly affected by the doping. We will come back to this point in the
sections of this book referring to nematic structures.

Textures and NMR identification A sample in the NC phase, freshly prepared in
a flat glass capillary (microslide), 200 µm thick, shows a typical schlieren texture
in a polarizing light microscope (sample between crossed polarizers), as shown
in Fig. 1.20. Applying a magnetic field B = 8.4 kG during 1 min, the texture
presents inversion walls whose periodicity scales with the sample thickness [104].
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300 µm

Fig. 1.20. Typical schlieren texture of a NC phase (with a sample of thickness
200 µm of a potassium laurate/1-decanol/water mixture) in a polarizing light
microscope, between crossed polarizer. The line in this figure corresponds to
300 µm.

This structure is unstable and, after some time in the field, there appear
closed walls (ellipses), which relax to a final planar texture, with n parallel
to B (see Fig. 1.21). However, since the process of alignment is slow, with a
typical time scale of a few hours, it is possible to obtain the ratio between the
bend elastic constant [105], k33, and the anisotropy of diamagnetic susceptibility,
∆χ, by measuring the periodicity of the textures of the inversion walls [60–
108]. Under some particular conditions, using ferrofluid doping, it is possible to
obtain k33 and ∆χ separately. For a potassium laurate/decanol/water mixture,
k33 ∼ 2 × 10−6 dyn and ∆χ ∼ 0.7 × 10−8 cgs units.

Deuteron (2H or D) NMR measurements of HDO (water molecules with H
and 2H), oriented in the NC phase, show a typical quadrupolar splitting, which
depends on temperature and the relative concentrations of the components of
the mixture. For a ternary mixture of sodium decylsulfate, sodium sulfate and
heavy water, this splitting is of the order of 600 Hz [109]. NMR measurements of
some of the counterions of the mixture can also give information about the local
ordering at the micellar length scale. If the sample with ∆χ > 0 spins around
an axis perpendicular to the magnetic field, the NMR spectra is typical of a
two-dimensional system, since the effect of the field is to spread the director in
the plane perpendicular to the spinning axis.

Scattering and diffraction results At small angles, the typical X-ray diffraction
pattern of the NC phase, represented as a cut of the reciprocal space image of
the phase, is shown in Fig. 1.22(b).

Let us define the laboratory frame of reference. The x axis is parallel to the
applied magnetic field; the y axis is along the direction of the incident X-ray
beam (the x and y axes define the horizontal plane). The z axis is parallel to the
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Fig. 1.21. Typical texture of a NC phase in a polarizing light microscope,
between crossed polarizer, about 1 h after the application of a magnetic
field B, in a sample 100 µm thick. The arrows represent the directions of the
polarizer and analyzer.
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Fig. 1.22. Typical X-ray diffraction pattern of oriented sample (from ref. [61]):
(a) ND phase; (b) NC phase; (c); and (d) NB phase.
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vertical direction. As discussed above, for samples with ∆χ > 0, the director n
aligns parallel to the applied magnetic field B (consequently, along the x axis).

The reciprocal space image of this phase, obtained from a rotation of the
pattern of Fig. 1.22(b) around n, is a hollow cylindrical barrel, with the axis
parallel to n and with more intense sides. A strong diffraction band is present
along the direction perpendicular to n (that is, along the z axis). This band
is due to the intermicellar positional correlation along this direction. For the
potassium laurate/decanol/water mixture, this band gives a spacing C ∼ 4.9 nm.
An interesting feature in this pattern is the existence of a second-order band
along the z axis, which was interpreted as originated from a pseudo-lamellar
ordering [61] of the intrinsically biaxial micelles. In this structure, micelles pack
along the direction perpendicular to the largest surface, with a typical mean-
correlation distance, obtained from the width at half-height of the first-order
diffraction band along the z axis, ξC ∼ 24 nm, which corresponds to about
6 spacing distances for the potassium laurate mixture. In the direction parallel to
the director (along the x axis), there is a broad and weaker band. This band has a
structure that depends on temperature and on the particular nematic phase, and
a maximum that moves in reciprocal space as a function of temperature [85]. This
profile was used to describe other profiles in uniaxial and biaxial nematic phases.
The diffraction band profiles of oriented ND and NB phases, in the x–y plane,
were analyzed as a convolution product of the basic density profile of the band
obtained for NC with an ellipsoid of axes 1/A, 1/B, and 1/C, where A, B, and
C represent the orthogonal linear dimensions of the biaxial-like available volume
per micelle. For the potassium laurate mixture, the broad band is associated with
a characteristic distance A ∼ 10 nm and a mean-correlation distance ξA ∼ 6 nm
(which corresponds to approximately A/2). This indicates a large polydispersity
of the micellar dimensions in the direction parallel to n. The difference between
ξC and ξA can be understood taking into account that along the z axis a smaller
polydispersity is expected since the length of the principal amphiphilic molecule
defines a length scale for the structure, corresponding to the bilayer thickness.
On the other hand, in the directions perpendicular to z (where the molecules
pack side by side) there is no particular length scale, and the micelles can display
a larger polydispersity. Besides the diffraction pattern in the NC phase, we also
need the patterns of all the three nematic phases in order to determine the
complete set of distances of the available micellar volume in the context of the
intrinsically biaxial micelles model.

At high angles, there is a broad band, almost isotropically oriented with
respect to the y axis, at about 0.45 nm. It is interpreted as the mean distance
between carbonic chains inside the micelles, due to the so-called “liquid-like”
state of the chains.

1.3.2.3 The discotic nematic phase ND In mixtures based on amphiphiles with
carbonic chains, the discotic nematic phase is characterized by ∆χ < 0 and
positive optical anisotropy. The director n aligns perpendicular to the applied
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magnetic field B. Usually, fields of about 10 kG are necessary for orienting
samples of 100 µm of thickness, but ferrofluid doping reduces this field to about
100 G, as in the case of the NC phase.

Different procedures can be used to obtain a well oriented ND phase. One
of them consists in rotating the sample around an axis perpendicular to the
magnetic field (e.g. the z axis of the laboratory frame defined in the previous
section), in order to have the director n oriented parallel to the z axis. Another
possibility, mostly for thin samples (smaller than 100 µm), consists of using a
combination of the magnetic field with a surface treatment which breaks the
degeneracy of the field. A surface condition that orients n perpendicular to the
surface, and a simultaneously application of B in this plane, will be enough to
orient all the sample (bulk and surface layer).

Textures and NMR identification A sample in the ND phase, inside a freshly
filled flat glass capillary, between crossed polarizers, displays the texture shown
in Fig. 1.23.

A sample with the director n along the z axis (which can be obtained by one
of the procedures described before) presents a pseudo-isotropic texture under the
polarizing microscope (observed along the z axis). This texture has an isotropic
appearance, but this is due to the orientation of the director parallel to the direc-
tion of light propagation. This texture is typical of the homeotropic alignment of
the director. If the sample orients with n in the x–y plane, the texture will show
the usual planar alignment. A tip to distinguish between ND, oriented in the
homeotropic configuration, and a usual isotropic phase, in the case of samples
placed in a flat glass microslide, is the observation of the borders of the flat

300 µm

Fig. 1.23. Typical texture of an ND phase in a 200 µm thick sample of a freshly
prepared mixture of potassium laurate, 1-decanol, and water, in a polarizing
light microscope, between crossed polarizers.
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(a) (b)

110 µm110 µm

Fig. 1.24. Typical textures of ND and L1 phases in a polarizing light micro-
scope, between crossed polarizers. Samples are placed in rectangular glass
microslides sample-holders. The white arrows represent the directions of
the polarizer and analyzer. (a) Pseudo-isotropic texture of a ND phase in a
homeotropic orientation of the director (see the bright borders of the sample
holder). In the detail, in the right down corner of the figure, the microslide
is sketched and the rectangle shows the corresponding region in the picture.
(b) Micellar isotropic phase (L1) in the same conditions of (a).

capillary under crossed polarizers, with the long axis of the capillary oriented
at 45◦ of the light polarizing direction. In the ND phase, these borders appear
bright (Fig. 1.24(a)); in the isotropic phase, they remain black (Fig. 1.24(b)).
This happens because it is usual that n tends to align perpendicular to the glass
surfaces and, in the case of the borders of the flat capillary, the semi-cylindrical
geometry forces n to turn 180◦ from the upper to the lower capillary surface
(and assuming a planar orientation).

The 2H magnetic resonance of oriented HDO in the ND phase gives a typical
quadrupolar splitting (e.g. of about 250 Hz in a mixture of decylammonium
chloride, ammonium chloride and water [51]). In contrast to the NC phase, if a
sample in the ND phase, with ∆χ < 0, spins around an axis perpendicular to
the magnetic field, it aligns with n parallel to the spinning axis, leading to the
typical spectra of an oriented sample.

Scattering and diffraction results At small angles, the typical X-ray diffraction
pattern of the ND phase, represented as a cut of the reciprocal space image of the
phase, is shown in Fig. 1.22(a). As discussed before, for samples with ∆χ < 0, the
director n aligns perpendicular to the applied magnetic field B (in the pattern
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shown in Fig. 1.22(a), n is parallel to the z axis). The reciprocal space image
of this phase, obtained by rotating the pattern of Fig. 1.22(a) around n, is a
hollow cylindrical barrel, with the axis parallel to n and with more intense caps.
A strong diffraction band is present along the direction parallel to n (z axis).
This band is due to the intermicellar positional correlation along this direction.
For the potassium laurate/decanol/water mixture, this band is associated with
a spacing distance C ∼ 4.9 nm. As in the case of the NC phase, a second-order
band along the z axis is observed, which indicates the presence of the same
pseudo-lamellar ordering [61]. In the context of the intrinsically biaxial micelles
model, the micelles pack in a direction perpendicular to the bilayer plane, with a
typical mean-correlation distance (obtained from the width at half-height of the
first-order diffraction band along the z axis) ξC ∼ 30 nm (which corresponds to
about six spacing distances). In a direction perpendicular to the director (along
the x axis), there is a broad and considerably weaker band, which also has some
structure [85]. Its profile was described as discussed before. For the potassium
laurate mixture, the broad band is associated with a characteristic distance
B ∼ 8.5 nm and a mean-correlation distance ξB ∼ 6 nm, which indicates a
large polydispersity of the sizes of the micelles in the plane perpendicular to
n. According to the intrinsically biaxial micelles model, besides the diffraction
pattern in the ND phase, we also need the patterns in all of the three nematic
phases in order to determine the complete set of distances of the available micellar
volume. The complete description of the micelles in the three nematic phases will
be presented in the next section.

At high angles, there is a broad band, almost isotropically oriented with
respect to the y axis, at about 0.45 nm. It is interpreted as the mean distance
between carbonic chains inside the micelles, due to the “liquid-like” state of these
chains.

1.3.2.4 The biaxial nematic phase NB The biaxial nematic phase NB has three
mutually orthogonal two-fold symmetry axes and two optical axes [52,53]. The
experimental procedure to orient a sample inside a flat capillary, suitable for
optical measurements, or a cylindrical capillary tube, for X-ray scattering and
diffraction experiments, consists in applying a magnetic field, which is strong
in usual samples and small in ferrofluid doped samples, and then, at typical
time intervals of about 2 min, turning the samples, at alternate angles of ±45◦,
around an axis perpendicular to the field B, and returning again to the original
position. For example, consider the case of a cylindrical glass capillary, with the
axis parallel to the z direction, filled with a sample in the NB phase. Initially,
the sample is subjected to a magnetic field B parallel to the x axis. After some
minutes in this configuration, the capillary is turned +45◦ around the z axis and
stays there for about 2 min. After these 2 min, the sample is turned back to the
original orientation, and continuously turned to −45◦, where it stays about 2 min
also. After these operations, the sample turns back again, staying about 5 min
in the initial orientation. This procedure is repeated until achieving a complete
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orientation of the sample. A good check of the quality of this alignment consists in
observing the texture and the conoscopic figure. Symmetric conoscopic patterns
and a homogeneous texture are signatures of a well-oriented sample. For the
potassium laurate mixtures, the largest sides of the micelles orient parallel to
the field B.

NMR spectroscopy experiments of 2H, performed in a mixture of sodium
dodecylsulfate, decanol and water, were explained with the assumption of two
types of biaxial nematic phases, N+

Bx and N−
Bx, in the partial isotherm of the

phase diagram between the NC and ND phases [110]. In order to characterize the
behavior in the presence of an external magnetic field, we can use the anisotropy
of the diamagnetic susceptibility,

∆χ = χ33 − 1

2
(χ11 − χ22), (1.4)

where the subscripts refer to the three orthogonal directions in the orthorhombic
basic unit. If ∆χ > 0, a biaxial phase aligns with the axis of the largest dia-
magnetic susceptibility parallel to the magnetic field (N+

Bx). If ∆χ < 0, a biaxial
phase aligns with the axis of the smallest diamagnetic susceptibility perpendicu-
lar to the magnetic field (N−

Bx). According to the formulation of the NMR theory,
the N+

Bx and N−
Bx phases align with the largest residual electric field gradient

component along and perpendicular to the applied magnetic field, respectively.
On the basis of NMR quadrupole splitting measurements, Quist [110] con-
cluded that the transitions between the nematic phases of this system are of
first order. A similar study has been recently performed in another lyotropic
mixture, tetradecyltrymethylammonium bromide/n-decanol/water [111].

Textures and NMR identification A sample in the NB phase, placed in a flat
and freshly filled glass capillary, presents a texture resembling the pattern of
the NC phase. An oriented sample, according to the techniques which have been
described, displays a planar-type texture. In these conditions of orientation, both
optical axes of the phase are oriented in a plane perpendicular to the x–y plane,
which contains the z axis and the field B, with each axis forming an angle θ
with respect to the z axis. This angle depends on temperature in the region of
the NB phase; it approaches 0◦ in the vicinity of the NB–ND phase transition,
and 90◦ in the vicinity of the NB–NC phase transition. Only the measurements
of the order parameters, proportional to ∆n and δn, can identify the NB phase
unambiguously. As the conoscopic patterns of the NC and the NB phases are
similar [53], measurements of birefringence become fundamental for establishing
a distinction between these phases. However, the simple inspection of the cono-
scopic patterns of the NB phase is not enough for a clear identification. Usually,
the conoscopic fringes are thinner and more clearly defined in the NB phase.

In a mixture of potassium laurate (KL), 1-decanol and D2O, the temperat-
ure dependence of the 2H magnetic resonance splittings of oriented samples in
the nematic phases displays some anomalies (strong discontinuities of the first
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derivatives with respect to temperature) at the uniaxial–biaxial phase transitions
[62,112]. The values of the splitting increase from the boundaries of the uniaxial–
biaxial phase transitions towards the middle of the biaxial region. In the uniaxial
phases, the splitting curves as a function of temperature present a smooth convex
shape; in the NB phase, this convex shape is more pronounced.

Scattering and diffraction results The small-angle X-ray diffraction patterns
of the NB phase, corresponding to two cuts of the reciprocal space image, are
shown in Figs 1.22(c) and (d). For potassium laurate samples, the large axis of the
micelles orients parallel to the field B. The reciprocal space image of this phase is
a hollow barrel of elliptical cross section in a plane perpendicular to its long axis
(i.e., a flattened ellipsoid), with more intense caps. Along the direction parallel
the z axis, there is a strong diffraction band, due to intermicellar positional
correlations. For a KL/decanol/water mixture, this band is associated with a
spacing distance C ∼ 4.9 nm. As in the case of the NC and ND phases, a second-
order band along the z axis is observed, which indicates the presence of the
same pseudo-lamellar ordering [61]. In the context of the intrinsically biaxial
micelles model, the micelles pack in the direction perpendicular to their largest
surface, with a typical mean-correlation distance, defined by the width at half-
height of the first-order diffraction band along the z axis, ξB ∼ 30 nm (which
corresponds to about 6 spacing distances for the potassium laurate mixture).
Along the x (parallel to B) and y axes, there appear broad and weaker structured
bands, associated with different characteristic distances [85]. These profiles can
be described as we have already done in a previous section. In the potassium
laurate mixture, the broad bands are associated with the characteristic distances
B ∼ 8.5 nm and A ∼ 11.0 nm (where A is along a direction parallel to B) and
mean-correlation distances ξA,B ∼ 6 nm, also indicating a large polydispersity of
the sizes of the micelles in the plane perpendicular to the direction of the bilayer.

Now we have the complete set of distances of the available micellar volume
in a potassium laurate mixture, A ∼ 11.0 nm, B ∼ 8.5 nm, and C ∼ 4.9 nm,
within the context of the intrinsically biaxial micelles model. In order to calculate
micellar dimensions and the associated shape anisotropy, we assume that the
micelle symmetry is the same of the available volume per micelle in the NB

phase and that water is equally covering all the surfaces of the micelles. For the
potassium laurate mixture, this assumption [85] leads to micellar dimensions
A′ ≃ 8.5 nm, B′ ≃ 6.5 nm, and C ′ ≃ 2.6 nm, from which we have the micellar
shape anisotropy 3 : 2 : 1.

At high angles, a broad band, almost isotropically oriented with respect to
the y axis, is observed at about 0.45 nm. It is interpreted as the mean distance
between carbonic chains inside the micelles, due to the “liquid-like” state of these
chains.

It is interesting to make a comment about thermotropic biaxial nematics.
In the published literature, despite the efforts of many investigators, there is
no convincing result to clearly support the existence of a thermotropic biaxial
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phase. Comparing micelles with the molecules that are usually employed in the
search for a thermotropic biaxial phase [113], the shape anisotropy of these
molecules is always much larger than the values obtained for the micelles. This
could be one of the reasons for the failure to find a thermotropic biaxial nematic
phase. Molecules with a much smaller shape anisotropy should be necessary to
provide reliable tests. On the other hand, micelles of the lyotropic mixtures
are capable of undergoing continuous changes of shape anisotropy as a function
of concentrations and temperature. These changes are a sort of tuning of the
shape anisotropy required to break the symmetry of one of the uniaxial phases.
Indeed, micelles undergo orientational fluctuations which can degenerate the axis
of the director; if only small amplitude orientational fluctuations are allowed,
the biaxial phase is stabilized. This property, however, has not been observed in
molecules of thermotropic liquid crystals.

In a recent publication [114], Acharya and coworkers presented some experi-
mental evidence, on the basis of X-ray diffraction measurements, supporting the
existence of a biaxial nematic phase in bent-core thermotropic mesogens.

1.3.2.5 Nematic–isotropic phase transition The nematic–isotropic phase trans-
ition is of first order, associated with a jump in the birefringence (order
parameter) measurements. In the potassium laurate mixture, the jumps from the
NC and the ND phases to the isotropic phase are given by 10−3 and 0.4 × 10−3,
respectively [53]. Other mixtures (e.g. DaCl and SdS) present the same beha-
vior and typical values for the jumps. In the phase diagrams, at a first-order
transition, there are regions of coexistence of phases. The range of temperatures
of this coexistence depends on the relative concentrations and the type of the
components of the mixture. A typical texture of this coexistence region is shown
in Fig. 1.25.

The existence of a high-temperature nematic–isotropic phase transition is
expected for entropic reasons. However, some lyotropic mixtures also present a
low-temperature transition to an isotropic phase [62]. This transition is attrib-
uted to the changes of the shape anisotropy of the micelles as a function of
temperature. In particular, the parameter C ′ of the micelles is known to increase
for decreasing temperatures [83,87].

The experimental behavior of the nonlinear refractive indices and birefrin-
gences in the neighborhood of the nematic–isotropic phase transition has been
recently investigated [115]. The nonlinear optical birefringence shows a discon-
tinuity at the transition temperature, in agreement with the linear birefringence
measurements, which further supports the first-order nature of this phase
transition.

1.3.2.6 Nematic–nematic phase transition This is one of the most interest-
ing phase transitions in lyotropic mixtures, specially due to the presence of a
biaxial phase between the two uniaxial phases. The temperature range of the
NB phase depends on the relative concentrations and type of the components of



THE LYOTROPIC MESOPHASES 35

300 µm

Fig. 1.25. Typical texture of coexisting nematic and micellar isotropic phases
(for a 200 µm thick sample of a potassium laurate/1-decanol/water mixture)
in a polarizing light microscope, between crossed polarizers. The isotropic
phase domain is located at the upper left side of the figure.

the mixture. From the experimental point of view, at least two amphiphiles are
necessary in order to give rise to a biaxial phase.

Mean-field approach In a temperature range of about ∆T/Tc � 10−3, where
∆T = T − Tc, and Tc is the transition temperature, the nematic–nematic phase
transition was shown to be behave smoothly, as a second-order transition [53].
As it will be shown in Chapter 2, the invariants of a tensor order parameter,
I0, I1, and I2, can be written in terms of the diagonal elements of the dielectric
tensor [98],

I0 = ǫax + ǫay + ǫaz = 0,

I1 =
2

3
(ǫ2ax + ǫ2ay + ǫ2az),

I2 = 4ǫaxǫayǫaz,

(1.5)

where the first invariant is zero, since we are considering a traceless tensor. It
should be noted, however, that this assumption does not account for changes in
the micellar shape anisotropy, and thus may not be enough for the description
of the lyotropic mixtures.
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Fig. 1.26. Invariant I2 of the dielectric tensor as a function of temperature, at
the uniaxial–biaxial phase transition in a potassium laurate/decylammonium
chloride (DaCl)/water mixture (from ref. [90]).

From measurements of optical birefringences, Galerne and Marcerou [53] have
shown that these tensor invariants display a linear behavior in the uniaxial and
biaxial nematic regions, in the vicinity of the phase transitions, with a precision
of about 0.02◦C between successive measurements. In Fig. 1.26, we show the I2

invariant as a function of temperature for the potassium laurate/decylammonium
chloride (DaCl)/water mixture [90].

Saupe and coworkers [83,112] used a mean-field approach in order to account
for the available experimental results for these transitions in lyotropic mixtures.
The measurements of one of the birefringences of the NB and NC phases, with a
temperature precision of about 1 mK, already indicated small deviations of the
uniaxial–biaxial transition from the predictions of this mean-field approach.

As in the case of the nematic–isotropic phase transition, the behavior of
the nonlinear refractive indices and birefringences was also investigated in the
neighborhood of the nematic–nematic phase transition [115]. In the vicinity of
the transition temperature Tc, the nonlinear birefringence was shown to behave
as |T − Tc|−0.5 in both uniaxial and biaxial regions. The symmetry invariants
of the order-parameter were shown to be linear functions of temperature in the
uniaxial nematic domain, in good agreement with the mean-field prediction.

Critical behavior The uniaxial–biaxial phase transition was investigated from
both theoretical [98,116] and experimental [117–119] points of view. The
critical properties are supposed to belong to the universality class of the three-
dimensional XY model [120]. Deviations from the mean-field behavior were
observed [118,119] in measurements of the optical birefringence in the temperat-
ure range ∆T/Tc ∼ 10−4 from the transition temperature of the uniaxial–biaxial



THE LYOTROPIC MESOPHASES 37

transition. The critical exponents associated with the order parameter, β, and
the susceptibility, γ, of the potassium laurate mixture were found to be β =
0.38 ± 0.03 and γ = 1.29 ± 0.06 (as compared with the theoretical predictions for
the XY model [120], β = 0.38 and γ = 1.35).

1.3.3 Cholesteric phases

Cholesteric lyotropic phases, also named lyocholesterics, can be obtained by
adding a chiral molecule to a mixture that displays a nematic phase. Maybe we
should say doping, instead of adding, since it is usual that small amounts of a
dopant molecule are already enough to produce a cholesteric mesophase. This
procedure can be implemented in two ways: (a) by adding to the mixture an
amphiphilic chiral molecule, which gives rise to an intrinsic cholesteric phase,
and (b) by adding a non-amphiphilic chiral molecule, which gives rise to an
extrinsic cholesteric.

Three types of lyotropic cholesterics were identified [63,65,66], ChC, ChD,
and ChB. The labels C, D, and B refer to the original nematic phases (calam-
itic, discotic, and biaxial), which were cholesterized by the addition of the chiral
dopant. As in the case of nematics, mixtures with only one amphiphile give rise
to only one of the cholesteric phases, ChC or ChD. Mixtures with at least two
amphiphiles can give rise to the three cholesteric phases. In this case (e.g. in a
mixture of sodium decylsulfate, 1-decanol, water and brucine sulfate heptahy-
drate, C46H68N4O19S, [66]), it has been observed that micelles spontaneously
pack in a helicoidal structure, keeping however their short-range pseudo-lamellar
ordering.

Let us consider mixtures in which the principal amphiphile has carbon chains,
that is, molecules which tend to have tails aligned perpendicular to the applied
magnetic field. In the presence of a strong enough magnetic field (or of small
fields, if the mixtures are doped with ferrofluids), the helical axes of ChD and
ChB biaxial phases align parallel to the magnetic field. On the other hand, under
the same conditions, ChC phases unwind in the presence of a field, giving rise to a
planar alignment of the director. The director of the former nematic phase (which
was the origin of the cholesteric phase) orients perpendicular to the helicoidal
axis in both cases of the ChC and ChD phases. In the ChB phase, the largest
dimension of the micelles orients along the helicoidal axis.

The pitch P = 2π/q of the helicoidal structure, where q is the wave number,
depends on different physico-chemical parameters [1,67,121], as temperature,
concentration of the chiral dopant, cm, and micellar shape anisotropy, Sa. In the
context of the intrinsically biaxial micelles model, we write

P−1 ∝ cm Sa, (1.6)

where Sa = A′/C ′. From this equation, we see that, at fixed micellar shape
anisotropy, the concentration of chiral molecules is inversely proportional to the
pitch. On the other hand, at fixed concentration of chiral molecules, the pitch
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decreases with increasing micellar shape anisotropy. In actual cholesterics, the
typical length scale of the pitch is of the order of micrometers. A generalized
Landau–Ginzburg–de Gennes theory, introducing the basic features of lyotropics,
as the changing of the micellar shape anisotropy in terms of temperature and
relative concentrations, has been developed to account for the dependence of P
on the geometrical parameters [68].

Some features of the topology of the phase diagrams of the lyotropic cho-
lesteric mixtures are fundamentally different from the corresponding lyotropic
nematics [122–124]. No Landau points have been clearly observed, and large
polyphasic regions surround the cholesteric domains (see Fig. 1.27).

1.3.3.1 Intrinsic cholesterics Intrinsic cholesterics are obtained by adding a
chiral amphiphilic molecule to a nematic lyotropic liquid crystal. These molecules
take part in the micellar structure as a non-chiral amphiphile. Examples of
chiral molecules used to this purpose are l-n-lauroyl potassium alaninate [124],
2-sodium decylsulfate [125], and l,d-octanol.

1.3.3.2 Extrinsic cholesterics Extrinsic cholesterics are obtained by adding
a chiral non-amphiphilic molecule to a lyotropic nematics. Depending on the
electrostatic characteristics of the molecule (polar or nonpolar), it can be accom-
modated either in the inner or in the outer part of the micelle. Examples of
chiral molecules used to this purpose are brucine sulfate heptahydrate, tartaric
acid [63], cholesterol [63], l-sorbose, diacetone-sorbose, and diacetone-2-ceto
potassium gulonate.

1.3.3.3 Texture and NMR identification Under the polarizing microscope
(between crossed polarizers), a film of lyotropic cholesterics presents fingerprint,
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Fig. 1.27. Surface of the phase diagram of the lyotropic cholesteric mixture
of potassium laurate (KL)/1-decanol/water/l-N -lauroyl potassium alaninate
(l-LAK) [124]; POL and S refer to the polyphasic and gel regions, respectively.
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100 µm

Fig. 1.28. Typical texture of an oriented cholesteric ChD lyomesophase (for
a 200 µm thick sample of a sodium decylsulfate/1-decanol/water/brucine
sulfate heptahydrate mixture) in a polarizing light microscope, between
crossed polarizers. Black arrows represent the directions of the polarizer
and analyzer. White arrows show some homeotropic regions in the center
of fingerprint stripes.

chevron, focal conic or Grandjean textures [123], as shown in Fig. 1.28. A
sequence of parallel stripes, with different colors (in the case of high birefrin-
gent samples and white light illumination) or different gray tonalities (in the
case of samples with a small birefringence) can be identified in the texture.

ChC and ChD mesophases show, in the middle of the stripes of the (helicoidal)
fingerprint texture, a pseudo-isotropic region (see Fig. 1.28), where the director is
oriented in a homeotropic configuration. In the ChB type of cholesteric, however,
this region is not present [66] (see Fig. 1.29).

The deuteron NMR spectra of the HDO mixture oriented in the ChC phase
(non-spinning sample) shows an evolution of the quadrupolar splitting as a func-
tion of time due to the unwinding of the helix in the presence of the magnetic
field. This happens, e.g., in a mixture based on potassium l-N -lauroylserinate,
which has ∆χ > 0 [126]. Initially, a powder-type spectrum is observed and,
after a few minutes in the presence of the magnetic field of the spectrometer, the
intensity of the wings of the spectrum start to increase. After about 30 min in the
spectrometer, a doublet with a quadrupole splitting becomes well defined and
the splitting remains constant. Turning the sample by 90◦ in the spectrometer,
the splitting is reduced to 1/2 of its value in the previous configuration. This
is an indication that the cholesteric helix was unwound and the director is now
oriented parallel to the magnetic field. In ChD samples, after some minutes in
the magnetic field, the NMR spectra of 2H show the typical doublet associated
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100 µm

Fig. 1.29. Typical texture of an oriented cholesteric ChB lyomesophase (for a
200 µm thick sample of sodium decylsulfate/1-decanol/water/brucine sulfate
heptahydrate mixture) in a polarizing light microscope, between crossed
polarizers. Black arrows represent the directions of the polarizer and ana-
lyzer. White arrows show some planar regions in the center of fingerprint
stripes.

with the quadrupolar splitting of an oriented sample (for samples with ∆χ > 0,
the cholesteric helix orients parallel to the magnetic field) [127]. Turning the
sample by 90◦ in the spectrometer, the spectra show two-dimensional character-
istics immediately after the rotation [127]. A powder-type spectrum is observed
if the samples spin around an axis perpendicular to the magnetic field.

1.3.3.4 X-ray diffraction results The structure and local ordering of the
micelles in lyocholesterics, at length scales of nanometers (the typical length
scale of P is micrometers), can be investigated by X-ray diffraction. It is inter-
esting to ask how the chiral molecules modify the local order of the nematics to
form a long-range cholesteric structure. In particular, it is interesting to investig-
ate how the pseudo-lamellar order observed in some lyotropic nematics is affected
by the presence of chiral molecules.

Two mixtures were studied with respect to their local order and structure
in nanometric length scales [128]: sodium decylsulfate, 1-decanol, water, and
brucine sulfate heptahydrate, called BS; and potassium laurate, 1-decanol, water,
and d-2-octanol. The phase diagram of these mixtures display a ChC phase that
unwinds the cholesteric helix in the presence of sufficiently strong magnetic fields.
Comparing the diffraction patterns of field-unwind ChC mesophases with those
of the corresponding NC phases, it was possible to check that the pseudo-lamellar
order observed in nematics is still present in cholesterics.
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Although the general features of the diffraction patterns in nematics and
cholesterics remain essentially unchanged, in the particular case of the extrinsic
cholesteric mixture with BS the shape of the strong first-order band is slightly
different with respect to the corresponding nematics (the edges of the diffraction
band are bent towards small scattering vector intensities [128]). These results
were interpreted as an indication of micellar deformations, with the correspond-
ing swelling of the pseudo-lamellar order near their edges, due to the presence of
large BS molecules (the available parallelepiped volume per BS molecule being
about 1×1.6×0.7 nm3). Within the resolution of the experiments, this modifica-
tion of the band shape has not been detected in the intrinsic cholesteric mixtures,
which is an indication that the incorporated chiral molecules do not lead to a
swelling of the pseudo-lamellar structure.

1.3.3.5 The cholesteric–cholesteric phase transition From the experimental
point of view, the inspection of the texture evolution of a lyocholesteric sample
under crossed polarizers as a function of temperature indicates that the Ch–
Ch phase transitions are continuous [119,123]. From the theoretical point of
view, there are a number of mean-field calculations to describe these transitions
[68,129,130].

The chiral field Cholesteric phases provide an interesting topic of research
since the micelles at the helicoidal structures are subjected to an elastic field.
In contrast to the nematic phase in a magnetic field B, which couples to the
(long-range) collective orientational modes of the director [1], the elastic field
acts at the (much smaller) micellar scale. In cholesterics, this elastic field is the
chiral field. The effect of this field in the Ch–Ch phase transition is a chirality-
induced biaxiality [119,131], qualitatively equivalent to the induced biaxiality at
the uniaxial–biaxial transition in nematics, but with a smaller amplitude.

In the mean-field approach, the induced biaxial order parameter ζ in the
ChC,D phases is proportional to the square of the wave number, q = 2π/P , and
inversely proportional to the reduced temperature,

ζ ∝
q2

T − Tc
. (1.7)

Measurements of the optical birefringences (δn and ∆n) lead to the determin-
ation of ζ (since ζ ∝ δn/∆n). Interferometric measurements performed in the
ChD–ChB transition for different cholesteric mixtures [119,131] show that the
order of magnitude of ζ2 at Tc is 10−2, at a concentration of chiral molecules
of about 10−2 M% (see Fig. 1.30). The corresponding susceptibility coefficient,
which is essentially a ratio between the Landau coefficients of the free-energy
expansion [131], was shown to be of the order of 10−10 cm2 K, and the bare cor-
relation length calculated from this estimate for the susceptibility is ξ0 ∼ 10 nm.
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Fig. 1.30. Square of the induced biaxial order parameter (ζ) as a function of
temperature in the neighborhood of the ChD–ChB phase transition, for a
potassium laurate/decylammonium chloride/water/brucine sulfate heptahy-
drated mixture [119]. The line is a fitting from the minimization of the
characteristic free-energy density.

These values are consistent with Rayleigh scattering measurements for nemat-
ics [84]. The experimental results of ζ versus T in the neighborhood of Tc show
that the Ch–Ch transition becomes continuous (second-order) in a chiral field.

Critical behavior If we assume the picture of an elastic chiral field as an external
field applied to a nematic medium, the uniaxial–biaxial nematic phase trans-
ition can be studied by using cholesterics with different concentrations of chiral
molecules. The variation of the concentration of chiral dopants in a set of differ-
ent mixtures simulates the application of fields of different strengths. In analogy
with the Cotton–Mouton coefficient [1,118], the cholesteric susceptibility [119]
CM can be defined by the relation CM ∝ ζq−2. The experimental critical expo-
nent of the chiral susceptibility, in the temperature range ∆T/Tc ∼ 10−4, in the
neighborhood of the Ch–Ch phase transition in a mixture of potassium laurate,
decylammonium chloride, water and BS, is γ = 1.35, in good agreement with
theoretical results for the three-dimensional XY model (see Fig. 1.31).

1.3.4 Lamellar phases

Different types of lamellar phases, Lα, Lβ , Lγ , Lβ′ , Lδ, Pβ′ , and Ls, have been
observed in lyotropic mixtures [70,71]. Some examples of this polymorphism can
be found in the lyotropic mixtures of phosphatidylcholine (usually called lecithin)
and water [70,71], dimiristoyl-phosphatidylcholine (DMPC) and water [132], and
dipalmitoyl-phosphatidylcholine (DPPC) and water [71]. Figure 1.32 presents
the phase diagram of the mixture DMPC/water [133]. Note the presence of the
phase sequence Lα →Pβ′ →Lβ′ as the temperature decreases, at a fixed water
concentration. Also, note that the phases are separated by regions of phase
coexistence.
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Fig. 1.31. Double logarithmic plot of the inverse of the cholesteric susceptibility,
C−1 ∝ ζ−1q2, versus reduced temperature, (Tc − T )/Tc [119]. The symbols
△, •, and ◦ represent different concentrations of chiral molecules, from the
smallest (◦) to the largest (△). The chiral doping represents the elastic field.
The line is a linear fitting.
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Fig. 1.32. Phase diagram of the mixture DMPC/water (ref. [133]).

The Lα phase is characterized by a one-dimensional periodicity. It is
sometimes called neat soap, being usually found in regions of the phase dia-
grams with a high concentration of amphiphiles [32]. The carbonic chains
are in a liquid-like state. The Lα phase is present in many lyotropic mix-
tures, e.g., potassium laurate/decanol/water, sodium caprylate/nonanol/water,
potassium laurate/KCl/water, sodium octylsulfate/decanol/water, potassium
laurate/water, and many others. At a given temperature, in ternary mixtures,



44 LYOTROPIC SYSTEMS

the Lα phase is located almost in the middle of a triangular phase diagram (in
which the vertices of the base, at left and right, represent 100 wt% of the solvent
and of the principal amphiphile, respectively). In other words, the lamellar phase
has about 30 wt% of the solvent and 60 wt% of the principal amphiphile [32].
In binary mixtures, these proportions are also observed. The cosurfactant (e.g.
an alcohol in a ternary mixture), with a carbonic chain of smaller length than
the chain of the principal amphiphile, acts to increase the radius of curvature
of the surface of the supermolecular aggregate, which favors flatter interfaces.
As we will see in the following sections, the domain of the lamellar phase in the
triangular phase diagrams is located in regions with increasing amounts of the co-
surfactant with respect to the location of the hexagonal phase. The Lα phase has
the smallest surface per polar head with respect to other lyotropic structures.
For the potassium laurate/water mixture, this parameter is a function of the
temperature of the sample, reaching values of the order of 0.4 nm2 [39]. DMR
(deuterium magnetic resonance) studies performed with the lyotropic binary
mixture of potassium laurate and D2O show that the longitudinal and trans-
verse relaxation times are also small as compared with those of the cubic and
hexagonal phases. Different regimes of time were identified in this experiment
with the Lα phase: a fast molecular reorientation of the O–D bonds, with a time
scale of 10−11 s; a slow motion, with a time scale of 10−6 s; and short- and long-
range diffusion, with time scales of 10−9 s and 10−7–10−8 s, respectively [134].
These results suggest an important correlation between the paraffinic and the
aqueous media around the (direct) amphiphilic aggregates.

The Lβ phase differs from the Lα phase by the state of the carbonic chains.
These chains remain stiff, perpendicular to the plane of the lamellae, with the
axes organized on a two-dimensional hexagonal lattice. There is orientational
disorder along the chain axes. The Lγ phase is formed by a sequence of layers
with Lα and Lβ structures.

The Lβ′ phase (see Fig. 1.14(b)) differs from the Lβ phase by the tilt of the
axes of the carbonic chains with respect to the normal to the lamellae. Tilt angles
from about 15◦ to 40◦ were observed in lipid–water mixtures [71].

In the Lδ phase, the carbonic chains remain stiff, perpendicular to the plane
of the lamellae, with their axes organized as a two-dimensional square lattice.
The chains, as in the case of the Lβ phase, present orientational disorder with
respect to their long axes.

The Pβ′ phase presents rippled lamellae with the characteristics of the Lβ′

phase (see Fig. 1.14(a)). The surface undulations of the lamellae, suggested by
X-ray diffraction experiments, were observed by transmission electron micro-
scopy (TEM) in a freeze-fracture replica of a sample of DMPC/water mixture
[135]. The amplitude and wavelength of the observed undulations are about
4.5 and 16 nm, respectively. This wavelength presents a weak dependence on
temperature and water content in the sample [136]. Symmetric and asymmet-
ric undulations were observed in lyotropic mixtures with chiral amphiphiles,
regardless of the chirality of the lipid molecules forming the bilayer [137,138].
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In contrast to the Lα phase, NMR experiments in Lβ′ and Pβ′ phases of
lyotropic mixtures indicate the same ordering of the carbonic chains in both
phases [139].

Phase sequences involving lamellar–cubic–hexagonal sequences of structures
were observed in some lyotropic mixtures (e.g. in mixtures of dodecyltrimethyl-
ammonium chloride and water, and hexaethylene glycol mono-n-dodecyl ether
and water [140]). Sequences involving lamellar–rectangular–hexagonal phases
were also identified in binary (Na laurylsulfate and water) and ternary (Na
decylsulfate, decanol and water [60]) lyotropic mixtures.

Single-layered Ls phases were also observed in some lyotropic mixtures, e.g.,
Na caprylate/octan-1,8-diol/water [32], almost in the center of the triangular
phase diagram. In this phase, the thickness of the lamellae and the length of the
principal amphiphile are of the same order.

Another lamellar-type phase found in ternary lyotropic mixtures, in the
water-rich region of the phase diagram, is the so-called mucous woven phase.
It is made of a double-layered structure, as in the usual Lα phase, but with
a smaller optical anisotropy. An example of lyotropic mixture with this phase
is given by sodium caprylate/caprylic acid/water, at relative concentrations of
about 10/10/80 wt% [141].

1.3.4.1 Textures The observation of a thin (∼100 µm) non-oriented sample
in the Lα phase shows a typical mosaic-like texture (see Fig. 1.33), with many
defects and birefringence colors. In contrast to the case of nematics, there are
sharp boundaries between different colors. Under particular conditions of the
surfaces of the sample holder, it is possible to orient the lamellae parallel to
these surfaces, and produce a pseudo-isotropic texture.

Pseudo-isotropic textures with oily streaks and terrace edges [142,143],
bâtonnets [33], and Maltese crosses [144], can also be found in lamellar Lα

lyomesophases. The texture of the Pβ′ phase confined in a flat glass capillary
presents typical oil streak patterns [145], similar to the Lα phase.

250 µm

Fig. 1.33. Typical mosaic-like texture of a lamellar phase for a 100 µm thick
sample of a potassium laurate/water mixture in a polarizing light microscope,
between crossed polarizers.
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1.3.4.2 Scattering and diffraction results At small angles, X-ray diffraction
patterns of oriented lamellar Lα phases display a typical one-dimensional peri-
odic structure, characterized by the presence of Bragg spots along the direction
perpendicular to the lamellae. These spots have a half-height width which is
essentially due to the experimental resolution of the diffraction setup, indicating
that the order of the structure (correlation length) spreads over distances larger
than 100 nm. The characteristic distances associated with the spots in the recip-
rocal space keep the ratios 1 : 2 : 3 : 4 . . .. The repeating distance in the direct
space, associated with the first-order peak, scales with the length of the principal
amphiphilic molecule of the mixture and the amount of solvent between layers.
For a mixture of approximately 80 wt% of potassium laurate and water, this
repeating distance is about 3 nm. However, in order to sketch the structure in
direct space, it is necessary to have additional information about the mixture
(e.g., relative concentrations, volume occupied by the solvent, arrangement of
the amphiphiles in monolayers or bilayers, etc). In this example, the thickness of
the layers is about 2 nm [73]. At high angles, the diffraction pattern shows the
typical band due to the mean distances between carbonic chains (∼0.5 nm) in a
liquid-like state.

In Lβ and Lδ phases, at high angles, X-ray diffraction patterns indicate the
organization of the carbonic chains as two-dimensional hexagonal (with typical
lattice parameter of about 0.42 nm) and square (with typical lattice parameter
of about 0.47 nm) lattices, respectively.

X-ray diffraction experiments performed in freely suspended hydrated DMPC
multimembrane films [72] show that the commonly observed Lβ′ phase is, in fact,
composed by three different regions, with distinct phases, LβF, LβL, and LβI (see
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Fig. 1.34. Phase diagram of the mixture DMPC/water as a function of tem-
perature and relative humidity (ref. [72]). P and P0 are partial water-vapor
pressure over the film, and vapor pressure of pure water over pure water,
respectively.
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Fig. 1.34). These three phases have tilted distorted hexagonal two-dimensional
lattices, differing among them with respect to the values of the angle φa between
the molecular tilt direction and the nearest-neighbor bond direction. LβF and
LβI phases are associated with φa = 0◦ and φa = 30◦, respectively. In the LβL

phase, φa increases continuously from 0◦ to 30◦.
X-ray scattering and diffraction experiments were performed to investigate

the behavior of the inter-layer distance (lattice parameter) of the lamellar phase
as a function of the concentration of amphiphiles. This process is usually called
swelling of the lamellar phase, although this terminology is also used to describe
the introduction of nonpolar solvents in the lamellar structure. If φ is the volume
fraction of amphiphiles in the mixture, the experimental small-angle X-ray data
yield qm = 2πφ/δ, where qm is the position of the first-order maxima of the
scattering curve, and δ is the thickness of the bilayer [146].

1.3.4.3 The ND–Lα phase transition In some phase diagrams of lyotropic
mixtures, as cesium perfluorooctanoate (CsPFO) and water [147], and decyl-
ammonium chloride (DaCl), NH4Cl and water [148], a nematic region separates
the lamellar from the isotropic phases. Measurements [149] of the splay (k11)
and bend (k33) elastic constants [105], and of the rotational viscosity (γ1) in
the ND phase, in the vicinity of the ND–Lα phase transition, show that k33 and
γ1 diverge at the transition, as the temperature approaches the lamellar phase
from the nematic region, and that k11 is smooth and well behaved as a func-
tion of temperature. In the mixture DaCl/NH4Cl/water, the critical exponent
associated with the divergence of k33 depends on the relative concentrations of
the components. The reported experimental values [150], in a range from 0.87 to
1.07, do not agree with either mean-field predictions (1/2) or calculations based
on the analogy proposed by de Gennes [1] between liquid crystals and super-
fluid helium (2/3). For the CsPFO/water mixture, however, in a phase diagram
in terms of temperature and relative concentration of amphiphiles, the ND–Lα

transition changes from second to first order at a tricritical point [96,147].
Electric conductivity (ac field) measurements [55,151] performed in the

DaCl/NH4Cl/water mixture indicate that, as a function of temperature, there
is no discontinuity across the ND–Lα transition of the values of the conductivity
anisotropy, defined as (κ� − κ⊥)/(κ� + κ⊥), where κ� and κ⊥ are the conductiv-
ities parallel and perpendicular to n in the ND phase. This result is consistent
with the picture that the Lα structure has many holes or channel-like defects,
estimated as occupying about 30% of the total area of the lamellae in some
cases [152].

In the vicinity of the phase transition, small-angle X-ray and neutron scat-
tering results for a mixture of pentadecafluorooctanoate and water [153] indicate
the occurrence of a transformation from disk-like to elongated-flattened micelles,
which is a precursor of the defect lamellar structure. The Lα–ND transition, as
a function of temperature or relative concentrations of the compounds, should
be regarded as a process of continuous growth of defects and holes, until there
appear independent micelles, and the nematic structure is finally established.
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In contrast to this picture, measurements of conductivity and density in a
CsPFO/water mixture across the Lα–ND transition [154] seem to indicate that
there is no relevant modifications of the basic units (molecular aggregates)
in both phases. This transition just involves the onset of translational order
of the micelles, being equivalent to the nematic–smectic phase transitions in
thermotropics [1].

An interesting effect is observed if a polymer is solubilized in a water-based
lyotropic mixture presenting a Lα–ND transition. Above a critical concentration,
depending on the polymer molecular weight, the replacement of water by the
polymer leads to a suppression of the lamellar phase [155]. The polymer network
acts to disrupt the lamellar order, which favors the appearance of the nematic
structure.

1.3.5 Hexagonal and other two-dimensional ordered phases

These phases are characterized by the two-dimensional periodicity of the high
anisometric molecular aggregates. These long cylindrical-like aggregates are
sometimes called infinite aggregates, since one of their dimensions can be larger
than 100 nm. The monoclinic M phase will be discussed in Chapter 7.

1.3.5.1 The hexagonal phase Three types of lyotropic hexagonal phases were
identified, direct (Hα), inverted (Hi

α), and complex (Hc) hexagonal phases. The
viscosity and fluidity of the hexagonal phase are larger than in the lamellar
phases.

The Hα phase is present in many lyotropic mixtures, as potassium
laurate/decanol/water, sodium caprylate/p-xylene/water, sodium octylsulfate/
decanol/water, potassium caprate/ocatanol/water, sodium myristate/water,
potassium laurate/water, among several others. In ternary mixtures, at a given
temperature, the Hα phase is located almost in the middle, near the base, of a
triangular phase diagram [32], at about 50 wt% of solvent and about 45 wt% of
the principal amphiphile (recall that the vertices of the base of the triangle, at
left and at right, represent 100 wt% of the solvent and of the main amphiphile,
respectively). In binary mixtures, these approximate concentrations are also
observed.

In some lyotropic mixtures, there is a hexagonal phase in the neighborhood
of a calamitic nematic phase. In the potassium laurate/KCl/water mixture, the
NC–Hα transition has been shown to be of first order, since there is phase coex-
istence as a function of temperature [156]. The Hα phase has a larger surface
per polar head than the lamellar phase. For the potassium laurate/water mix-
ture, this parameter is a function of temperature, reaching values of the order of
0.55 nm2 [39].

DMR studies for the lyotropic binary mixture of potassium laurate/D2O
show that the longitudinal and transverse (with respect to the symmetry axis
of the structure, the optical axis) relaxation times are also larger as compared
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with those of the cubic and lamellar phases. Different time regimes were also
identified in experiments with the Hα phase, with the same order of magnitude
of the corresponding regimes in the lamellar phase [134].

On the other hand, the Hi
α phase has been observed in a more restrict set

of lyotropic mixtures, as octyl ammonium chloride, p-xylene and water, aerosol
OT, p-xylene and water, aerosol OT, decanol and water, and aerosol OT, caprylic
acid and water. In ternary mixtures, at a given temperature, the Hi

α phase is
located at the right corner of the triangular phase diagram, near the base, at
about 10 wt% of the polar solvent and 80 wt% of the main amphiphile [32].

The Hc phase was identified in some binary aqueous lyotropic mixtures with
amphiphiles of large carbonic chains, as Na and K palmitates and stearates,
in a small region between Hα and Lα phases [32]. The amphiphilic molecular
aggregates seem to be made of a hollow cylinder formed by a bend double layer
configuration, as an open vesicle, with water both inside and outside of the
hollow cylinder. The lattice parameter is larger than in the Hα phase. Inverted
Hc structures were also reported.

The shape and geometry of the supermolecular aggregates in the hexagonal
phases depend on the relative concentrations of the principal amphiphile and
cosurfactant and of the structure of the amphiphile itself. In particular, there is
a dependence on the relation between the surface area per polar head and the
volume occupied by the non-polar part of the molecule.

Textures A non-oriented thin (∼100 µm) sample observed between crossed
polarizer shows a typical fan-like texture (see Fig. 1.35). As in the textures
of lamellar phases, there are sharp and well-defined boundaries between regions

220 mm

Fig. 1.35. Typical fan-like texture of a hexagonal phase for a 100 µm thick
sample of a potassium laurate/decanol/water mixture, in a polarizing light
microscope, between crossed polarizers.
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with different birefringence colors. Focal conics and non-geometric textures are
also observed in some mixtures [142,143].

Diffraction results Small-angle X-ray diffraction patterns of an oriented Hα

phase present Bragg peaks, with the characteristic distance ratios 1 :
√

3 :
√

4 :
. . ., of a hexagonal two-dimensional structure in direct space. At high angles,
the diffraction pattern shows a typical band due to the mean distances between
carbonic chains (∼0.5 nm) in a liquid-like structure.

As in the previous cases, additional information about the composition of
the mixture is also necessary in order to allow a calculation of the dimensions
of the molecular aggregates. For direct mesophases, we usually assume that
the diameter of the cylinder is twice the principal amphiphilic molecular length.
This assumption has to be checked self-consistently, with the data for the relative
concentrations of the compounds of the mixture. In direct space, the image of the
(direct) Hα phase is a two-dimensional hexagonal array of long parallel cylinders,
each of them with the aliphatic chains in the inner part. In binary mixtures, the
cylinders have a circular cross section. For a mixture of approximately 50 wt%
of potassium laurate and water, the lattice parameter of the hexagonal array is
about 4 nm and the cylinders have a diameter of about 3 nm [73].

If a cosurfactant is added to a binary lyotropic mixture, the cross section of
the amphiphilic molecular aggregates, in a direction perpendicular to the long
cylindrical axis, does not display a circular symmetry. The molecular aggregates
loose their cylindrical shapes in order to form ribbon-like aggregates [74]. This
result suggests that the addition to the original binary mixture of a cosurfact-
ant with smaller chain favors the existence of flat surfaces in the amphiphilic
aggregates.

The inverted hexagonal structure is formed by a hexagonal packing of cyl-
indrical regions with the polar solvent inside the cores and the aliphatic chains
pointing outwards of the cylinders. An eventual nonpolar solvent added to the
mixture presenting this inverted phase will be inserted in the continuous medium
of the chains, outside of the cylinders.

In the complex hexagonal phase Hc, the characteristic distances obtained
from the Bragg peaks in the X-ray diffraction pattern keep the ratios [73] 1 :√

3 :
√

4 :
√

7 :
√

9 :
√

12. The structure of this phase can be modeled by a set
of high anisometric (long) cylinders, arranged on a two-dimensional hexagonal
lattice in the plane perpendicular to the cylinder axes. There is a bending of an
amphiphilic double layer in order to close these cylinders, keeping the solvent
inside and outside of them.

1.3.5.2 The rectangular R phase The rectangular phase is characterized
by a two-dimensional orthorhombic array of high anisometric (long)
parallel parallelepipeds of rectangular cross section on the plane per-
pendicular to the largest dimension of these aggregates (which are also
called “ribbons”) [157,158]. The R phase is located between lamellar
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and hexagonal phases. Examples of lyotropic mixtures showing this phase
are KC16 (potassium palmitate, CH3(CH2)14COOK)/water [32], NaC18

(sodium stearate, CH3(CH2)16COONa)/water, KC18 (potassium stearate,
CH3(CH2)16COOK)/water, and Na decylsulfate/decanol/water [60]. In some
lyotropic mixtures, the rectangular phase is in coexistence with the hexagonal
phase.

Textures The rectangular phase is birefringent. Non-oriented samples of the
R phase, between crossed polarizers, present a mosaic-like texture with many
pseudo-isotropic regions and defects [32].

Diffraction results The array of long parallel parallelepipeds of the R phase
forms a rectangular two-dimensional lattice on the plane perpendicular to the
largest dimension of the molecular aggregate, with lattice parameters ar and br.
In the diffraction pattern, the positions of the Bragg diffraction peaks associated
with the lattice parameters correspond to ar : br : 2ar : 2br : 3ar : 3br. For the
potassium laurate/water mixture, (ar/br) ∼ 1.4 , and the diffraction data were
explained in terms of long parallel rods of rectangular cross section, arranged
with an orthorhombic symmetry [73].

1.3.5.3 The square phase This birefringent phase is characterized by a two-
dimensional tetragonal array of highly anisometric parallel parallelepipeds of
square cross section on the plane perpendicular to the largest dimension of the
aggregate. The direct and inverted structures were labeled C and K, respectively.
The C phase is found in the left corner of the triangular phase diagrams of
some aqueous ternary lyotropic mixtures, as Na caprylate/nonan-1-ol/water, Na
caprylate/octan-1-ol/water, Na caprylate/heptan-1-ol/water, and Na caprylate/
hexan-1-ol/water [32]. The neighboring phases are L1 and the lamellar phase.
In many cases, the square phase is not found isolated, but in coexistence with
L1 and lamellar phases. Using NMR techniques, Tiddy [159] has shown the
presence of two types of water molecules in this structure, essentially bounded
to the amphiphilic aggregates.

Textures The textures observed in non-oriented samples in the square phase,
placed between crossed polarizers, are of bâtonnet type. Many defects with well-
defined borders and some regions with the pseudo-isotropic texture [32] are also
present.

Diffraction results Long parallel parallelepipeds self-organize as a two-
dimensional array in the plane perpendicular to the largest dimension of the
molecular aggregates, with lattice parameter as. The characteristic distances
associated with the Bragg peaks in the diffraction pattern keep the ratios
1 : 2 : 3 : 4. In the particular case of the C phase, the thickness of the water
layer between amphiphilic aggregates, calculated from diffraction results and tak-
ing into account the relative concentrations of the components of the mixtures,
ranges from about 0.8 to 5 nm, for increasing water concentrations. Although the
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borders of the square-section aggregates are rounded in order to accommodate
the polar heads at the surface, and minimize the contact of water with the
inner parts of the aggregate, the scattering results lead to this particular square
symmetry, different from the circular cross-sections of the aggregates.

1.3.6 Three-dimensionally ordered phases

There are two types of molecular aggregates, micelles and bicontinuous struc-
tures, with organized arrangements in three dimensions.

1.3.6.1 Cubic phases Cubic micellar phases are not so common in the area
of lyotropic mixtures. They are usually located in narrow regions of the phase
diagrams, between lamellar and hexagonal phases. Six cubic phases, two of them
of micellar nature, have been identified so far [76,160]. All of them are optically
isotropic but present shear-induced birefringence [140].

In terms of the location in the phase diagrams, cubic phases are found in
the vicinity of micellar solutions, between lamellar and hexagonal phases. The
viscosity and fluidity of these phases are larger than in lamellar and hexagonal
phases.

Cubic micellar phase Two types of micellar cubic phases were identified in
lyotropic mixtures: Q223

m , with a primitive unit cell and a homogeneous lipid
composition, and Q227

m , with a fcc (face centered cubic) unit cell [76] of Fd3m
space group and heterogeneous lipid composition. Q223

m was observed in chemic-
ally pure mixtures of lipids and solvents; Q227

m requires mixtures of water-miscible
and water-immiscible lipids and a solvent [76]. In the fcc structure, the character-
istic distances associated with the Bragg peaks of the X-ray diffraction patterns
keep the ratios 1 :

√
4/

√
3 :

√
8/

√
3 :

√
11/

√
3.

Depending on the mixture, micelles in these phases can be spherical or ani-
sometric (for instance, prolate ellipsoids). Examples of mixtures presenting micel-
lar cubic phases are dodecyltrimethylammonium chloride (DTAC) and water,
N, N, N -trimethylamino dodecanoimide and water, palmitoyllyso phosphatidyl-
choline (PLPC), and water, and dioleoylphosphatidylcholine, dioleoylglycerol
and water.

The unit cell of the Q223
m phase has six direct (disk-type) micelles of sym-

metry 42m, and 2 spherical micelles of symmetry m3. The ratio between area
and volume of these micelles is the same. The lattice parameters of the Q223

m

phase observed in DTAC/water and PLPC/water mixtures are 8.5 and 13.7 nm,
respectively, always larger (about twice) than the lattice parameter of the
neighboring hexagonal phase.

In the reverse cubic phase, Q227
m , instead of micelles, spherical liquid globules

composed by the solvent are packed in a cubic symmetry. This phase is observed,
e.g., in the phase diagrams of a mixture of phosphatidylcholine, diacylglycerol
and water, between the inverse hexagonal and inverse micellar isotropic phases,
and coexists with another phase with excess water [161]. The unit cell of this
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phase is composed by two types of inverted micelles [161]: eight larger micelles in
a tetrahedral diamond-like lattice and 16 smaller micelles in tetrahedral clusters
at the four octants of the cell. The large and small micelles have different ratios
between area and volume. The lattice parameter of the Q227

m phase in PFL/water,
where PFL is a lipid extracted from Pseudomonas fluorescens [162], is 14.6 nm,
about three times larger than the lattice parameter of the neighboring hexagonal
phase.

Bicontinuous cubic phases The structural description of the bicontinuous cubic
phases can be discussed from two different points of view. We may consider
either a structure of folded surfaces occupying the three-dimensional space or a
network of rod-like aggregates.

The cubic bicontinuous structures identified in lyotropic mixtures are of the
space groups Ia3d, Im3m, and Pn3m [163]. The first structure is a bicontinu-
ous structure of amphiphilic layer, which divides the space into two independent
and unconnected solvent regions. The second structure is built by two independ-
ent networks of amphiphilic aggregates, without any connections, forming a
labyrinth-type structure with cubic symmetry. The phases which were identified
so far are Q230 (Ia3d) [164], Q224 (Pn3m) [165] and Q229 (Im3m) [166]. Another
cubic phase, labeled Q212, shows a complex intermediate character between the
bicontinuous and the micellar phases, with a three-dimensional network of rods,
enclosing micelles in the structure [166].

The Q230 phase was observed with both direct and inverted topology. This
phase consists of interconnected rods, linked three-by-three, forming two three-
dimensional networks intertwined and disconnected. It has been observed [167]
in anhydrous fatty acid salts of divalent cations. It is also present in the water-
rich region of the phase diagram of some lyotropic mixtures, as octaethylene
glycol dodecyl ether (C12EO8) and water, and can be described in terms of
a complex bicontinuous three-dimensional surface (the convoluted polar/non-
polar interfaces) called gyroid infinite periodic minimal surface, G-IPMS, with
space group Ia3d [168]. The microstructure of this phase can be modeled in
terms of three-dimensional periodic minimal surfaces, free from self-intersections.
These surfaces, generically called triply periodic minimal surfaces, TPMS, are
characterized by a mean curvature that vanishes at every point [169]. Luzzati
et al. [76] introduced the concept of chaotic zones, defined as the locus where
the short-range disorder is maximal. The CH3 end-groups of the hydrocarbon
chains are located in the non-polar chaotic zones of the (direct) structure, which
coincides with the G-IPMS.

The Q224 and Q229 phases, however, were observed in the inverted topo-
logy only. The Q224 phase consists of interconnected rods, tetrahedrally linked,
forming two three-dimensional networks intertwined and disconnected. The Q229

phase seems to be formed by rods which are linked six-by-six and oriented along
the sides of a cube. The convoluted surfaces (IPMS) of the Q224 and Q229 phases
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are the D-surface, with space group symmetry Pn3m, and the P-surface, with
symmetry Im3m [170].

The X-ray diffraction patterns of these phases present Bragg peaks which
lead to the identification of the cubic symmetry of the structures in direct
space. Examples of mixtures presenting bicontinuous cubic phases are [171]
dodecyltrimethylammonium chloride/water and monoolein/oleic acid/water.

DMR studies carried out with the lyotropic binary mixture of potassium
laurate and D2O in the cubic phase show that the longitudinal relaxation time
is intermediate with respect to the lamellar and hexagonal phases. On the other
hand, the transverse relaxation time is larger than in the lamellar and hexagonal
phases. Different regimes of time were also identified in this experiment: a
fast molecular reorientation of the O–D bonds (with time scale of the order of
10−11 s), a slow motion (time scale of 10−6 s), and short- and long-range diffu-
sion (with time scales of the order of 10−9 and 10−7–10−8 s, respectively) [134].
The diffusion coefficient of the soap molecules in this cubic structure was found
to be D = 2 × 10−6cm 2/s, at 90◦C.

1.3.6.2 Bicontinuous sponge phase (L3) In the L3 phase, which is optically
isotropic and does not display any long-range order, experimental observations
indicate the existence of a microstructure in which a surfactant layer, of thickness
δ, of multiply connected topology, separates two solvent regions over macro-
scopic distances, as illustrated in Figs 1.5(b) and 1.18 [172]. The bilayer presents
local principal curvatures of opposite signs, which characterize a saddle-like
topology. The structure of the sponge phase can be locally modeled with an
IPMS [173]. This structural shape, which can be sketched as a melted cubic
structure [174,175], has been confirmed by freeze-fracture electron microscopy
observations [176]. From this point of view, an important difference between the
L3 and the cubic phase is the lack of space order and periodicity.

Structural aspects of the sponge phases have been investigated by a number
of experimental techniques, including freeze-fracture electron microscopy, X-ray
[146] and neutron [177] diffraction scattering, NMR [175], and light scattering
[178], besides measurements of transport properties [179]. This phase is classified
as symmetric or asymmetric, depending on the mean curvature at the center of
the bilayer. Symmetric and asymmetric phases have zero and non-zero mean
curvatures, respectively [180].

Sponge phases were observed in both water-rich and oil-rich mixtures, mostly
in the vicinity of swollen lamellar phase domains. Some examples of mixtures
presenting sponge phases are sodium bis-2-ethylhexyl sulfosuccinate (known as
AOT), dodecanol and water [175], sodium dodecylsulfate (SDS), 1-pentanol, cyc-
lohexane and water [181], AOT and brine (water and salt) [178], n-dodecylbetain,
pentanol and water [178], and cetylpyridinium chloride, hexanol and brine [178].

Measurements of reduced electric conductivity (as compared with the con-
ductivity of the same volume of water and ions) [179] in an oil-rich lyotropic
mixture with L1, L3, and Lα phases lead to values about 10−2, 0.65, and 1,
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respectively, where the conductivity has been measured in a direction parallel to
the layers of the lamellar phases. These results are consistent with a picture of
a labyrinth-like structure in the sponge phase.

X-ray and neutron scattering patterns of the sponge phase can be analyzed
in different ranges of the intensity q of the scattering vector. For small values
of q, patterns present a broad peak due to the correlation between pieces of
the lamellae [146,175,179,182,183]. In q space, assuming a locally lamellar-type
structure, the position of the peak is given by

qm =
2π

d
=

2πφ

γqδ
,

where d is the inter-layer repeating distance, φ is the volume fraction of
amphiphile, and γq ∼ 1.5 is a number larger than 1 [184]. In mixtures of SDS,
pentanol, water and NaCl, and SDS, pentanol, dodecane and water [179], the val-
ues of the bilayer thickness obtained from SANS experiments are 2.9 and 3.1 nm,
respectively. The thickness of the lamellae, α, in the neighboring lamellar phases
are 1.9 and 2.1 nm, respectively, which gives γq ∼1.5. In the lamellar phase, it
has been shown that α depends on φ as α ∝ φ−1, although a more accurate
analysis of the diffraction data suggests corrections to this dependence [180].
As in the case of the lamellar phase, this procedure for the L3 phase is called
swelling of the bilayer structure. In the range of high values of q (q > qm), the
patterns present the typical form factors of a flat bilayer. In mixtures with car-
bonic chain tails, the patterns also present the typical broad band due to the
mean distance between the chains (at about 0.5 nm). In direct sponge phases,
the layer thickness is about twice the length of the main amphiphile. In inverse
water-based sponge phases, δ is the water layer which, as a rule, does not have a
typical length scale and can vary according to the relative concentrations of the
components of the mixture. A crossover from a behavior of the form 1/q2, for
q < 2π/d, to 1/q4, for q > 2π/d, which are typically associated with the scatter-
ing of a flat bilayer with random orientation and a thin interface, respectively,
is observed in the curves of the scattering intensity versus q.

The NMR technique is a powerful tool to check the bicontinuous character of
the sponge structure [175]. For example, in the AOT/dodecanol/water mixture,
the resonance spectrum of 23Na shows a dispersion of the internuclear distances,
which is not compatible with an isotropic micellar system, and thus becomes a
signature of the L3 phase.

The technique of fluorescence recovery after fringe pattern photobleaching
was also used to investigate the topology of the sponge phase by studying the
self-diffusion of guest fluorescent probes (amphiphilic molecules with fluores-
cent polar heads) embedded in the sponge structure host. In the particular case
of a mixture of tetradecyldimethyl aminoxide (known as C14DMAO), hexanol
and water [146], Ds/Do ∼ 0.65, where Ds is the self-diffusion coefficient of the
molecule in the structure, and Do is the diffusion coefficient of the molecule in
the lamellar phase. This ratio is almost constant in the dilute regime, decreasing
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with the volume fraction φ. This dependence with the volume fraction allows a
comparison with predictions of different topological configurations for the host
sponge structure.

One of the most spectacular properties of the L3 phase is the flow-induced
birefringence [178,185]. Under shear, there appears a velocity gradient and a
transient flow birefringence, which relax with a characteristic time, depending
on the system and relative concentrations. Given the shear rate γ̇, this induced
birefringence was shown to be proportional to γ̇φ−2 [178]. Also, it has been
shown that this birefringence becomes larger as the water content increases in
the L3 phases.

Let us look at some aspects of the phase transitions between the sponge and
its neighboring phases, in particular the cubic and lamellar neighbors.

In the vicinity of the sponge–cubic transition, the NMR technique was used
to measure the diffusion coefficient of the amphiphile (Da) and water (Dw) in
the AOT/NaCl/water mixture. The transition is of first order, with a large
coexistence region of cubic and sponge phases. The ratio between Dw and the
diffusion coefficient of water in NaCl brine of the same salinity (Do

w) presents
a linear dependence with 1/φ [174] throughout the sponge and cubic regions.
A single linear function can be fitted to the experimental data, without regard
to the particular phase. In the sponge phase, Dw/Do

w ∼ 0.5 at φ ∼ 0.2; in the
cubic phase, Dw/Do

w ∼ 0.15 at φ ∼ 0.65. The measurements of Da versus φ
in this lyotropic mixture also show a monotonic behavior, independently of the
particular phase. In the sponge phase, Da ∼ 2.8×10−11 cm2/s at φ ∼ 0.1; in the
cubic phase, Da ∼ 1 × 10−11 cm2/s at φ ∼ 0.6. These results suggest that there
is a topological similarity between the structures of the cubic and the sponge
phases.

The Lα–L3 transition is also of first order, with coexistence regions in the
partial isotherms of the phase diagrams [177,184]. SANS experiments show that
locally both the (swollen) Lα and L3 phases have similar morphology, with
changes at large scales only. The structural transformation from one phase
to the other seems to be triggered by modifications of the saddle and splay
rigidity of the bilayer, induced by temperature or relative concentrations of the
components [177].

1.3.7 Lower-symmetry phases

There are experimental evidences of the existence of lyotropic phases with lower
symmetries, which are sometimes called “intermediate phases.” Usually, they
are observed in mixtures with long chain amphiphiles [186] or amphiphiles
with restricted flexibility [187]. For example, a rhombohedral phase [188] was
identified in the sodium dodecylsulfate/water mixture.

Another structure, called “mesh,” in which the lamellae present pores or
holes filled up with the solvent [189], has been identified in aqueous mixtures of
long-chain nonionic surfactants, as poly-oxyethylene. These holes may or may
not be correlated from one layer to the other. A mixture of nonaethylene glycol
mono (11-oxa-14,18,22,26-tetramethylheptacosyl) ether (known as C30EO9) and
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(a) (b)

Fig. 1.36. Lower symmetry lyotropic phase structures: (a) sketch of one layer
of the centered tetragonal mesh structure [190]; (b) sketch of one layer of the
rhombohedral mesh structure [189].

water [189] presents intermediate phases between the lamellar and the hexagonal
phases. The X-ray diffraction patterns of these phases present Bragg peaks that
can be indexed in different ways, since the number of peaks is not enough to
clearly identify the structure. Structural models of rods and boxes, with the
hydrocarbon–water interface located in the surfaces of these elements, have been
proposed to account for these structures [189]. For example, we have the following
possibilities: (a) a centered tetragonal mesh (see Fig. 1.36(a)); (b) a bicontinuous
centered tetragonal structure; (c) one layer of a type a hexagonal mesh from
which a rhombohedral mesh and bicontinuous structures can be constructed; (d)
the same model as in (c), but for a type b hexagonal structure. In the particular
case of the C30EO9/water mixture, the structure of the intermediate phase seems
to be a rhombohedral mesh of type b (see Fig. 1.36(b)).

The geometrical characteristics of the amphiphile are important parameters
to define the topology of the phase diagram, particularly in the case of these
intermediate structures. A common surfactant parameter is defined as Sp =
υ/Sal, where υ, Sa and l are the volume of the alkyl chain, the interfacial area
of the chain, and the chain length perpendicular to the interface, respectively.
The parameter Sp ranges from 1/2 to 1 [190], with Sp = 1/2 for a hexagonal
structure, 1/2 < Sp < 2/3 for a mesh intermediate phase, 2/3 < Sp < 1 for
cubic phases, and Sp = 1 for a lamellar phase. The physical concept underlying
the definition of Sp is the idea of minimizing the interfacial curvature energy for
a given structure, taking into account the characteristics of the amphiphiles, the
temperature, and the relative concentrations of the components of the mixture.

1.4 Wetting of lyotropic phases

Wetting [191] with complex fluids, as liquid crystals and ferrofluids, is a rich
field of research from both the fundamental point of view and the implications
in technological aspects of the interaction between fluids and solids in interfaces.

Unlike the thermotropic liquid crystals, lyotropic mesophases seem to present
some peculiarities, due to the presence of isolated amphiphilic molecules and the
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existence of molecular aggregates, which could lead to shape transformations
at the interface. The selective adsorption of molecules of the mixture by the
surface in contact with the fluid imposes a molecular concentration gradient
from the interface to the bulk, which may lead to surface phase transitions with
modifications of the topology of the molecular aggregates. In this section, we
discuss two examples of wetting involving nematic and sponge phases in contact
with solid substrates.

1.4.1 Nematic phase

The strength of the anchoring of thermotropic liquid crystals at a surface is
measured by the extrapolation length b. If b is comparable to the molecular
dimensions, the anchoring is strong; in the opposite case, if b is much larger than
the molecular dimensions, the anchoring is weak [1]. In the absence of additional
forces or torques, the director of the liquid crystalline phases is aligned along
an “easy direction” associated with the surface. Therefore, the characterization
of the anchoring refers to the behavior of the orientational angle of the director
with respect to a given axis from the surface to the bulk of a certain phase.

In the treatment of nematic thermotropic liquid crystals, it is commonly
assumed that the surface forces of the solid substrate are strong enough to impose
a well-defined orientation of the phase director. In lyotropic mixtures, since
the basic units are not isolated molecules, there is the possibility of a different
behavior. Indeed, optical transmittance experiments [192] performed at the NC

phase of a mixture of decylammonium chloride, NH4Cl and water in contact with
amorphous non-treated glass surfaces were explained with the assumption of a
gliding director of the NC phase on the solid–liquid interface. Specifically, these
experimental results were explained assuming the existence of an amphiphilic
bilayer, that is, a kind of lamellar structure, which is stabilized by the glass
surface. In contrast to the case of thermotropic nematic phases, there is no
easy direction at the interface. Instead, there is only an easy plane, due to
the azimuthal degeneracy at the cell walls (substrate) with respect to the bilayer
symmetry of the lamellar-type structure stabilized at the interface. Experimental
investigations of the NC phase in contact with Langmuir–Blodgett (LB) films
of lignin, cadmium stearate and behenic acid, with various numbers of layers,
and with non treated glass surfaces, subjected to a magnetic field, have shown
gliding movements of the orientation of the local director throughout the surface.
These experiments were performed with samples at the NC phase, with ∆χ > 0,
oriented in a planar geometry, in applied magnetic fields along the plane of
the interface. Regardless of the surface treatment, in the presence of a field, the
director rotates around an axis perpendicular to the surface [192,193]. Also, the
bulk orientation of the NC director does not depend on the surface treatment. A
possible explanation of these results is the stabilization on top of the glass surface,
with or without any treatment, of a lamellar layer or bylayer of the amphiphilic
molecules of the mixture. The micelles in the bulk feel essentially this layer and
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do not feel the bare glass surface covered by the LB film. This lamellar layer can
be interpreted as a self-surface-treatment, created by the mixture itself, due to
the role of adhesion properties [193]. It seems that this layer completely screens
the effects of any possible LB film deposited onto the substrate.

1.4.2 Sponge phase

The wetting of lyotropic phases with bicontinuous structures includes new fea-
tures which are not observed in the wetting of phases formed by simple micelles.
Wetting a solid surface with a mixture of sodium dodecylsulfate (SDS), 1-
pentanol, cyclohexane and water, in the L3 phase, has been shown to induce
an anisotropic structure at the interface [181]. A layer of the mixture, of about
10 nm from the surface, in contact with an anisotropic solid substrate, as a
glass, with or without surface treatments, and beryllium sheets, undergoes a
phase transition to an anisotropic phase. The experimental optical phase shift of
this anisotropic phase, of the order of 0.1 rad for the SDS mixture, depends on
the relative concentrations. This effect can be amplified by making a deposit of
teflon over a glass surface and rubbing the surface along a certain direction. The
uniaxial oriented surface in contact with a L3 phase has been shown to induce
a birefringent layer with an optical phase shift five times larger than in surfaces
without this particular deposit [194]. The optical axis of the anisotropic phase
at the interface, or the projection of this axis in the plane of the substrate, is
oriented almost parallel to the direction of rubbing at the surface.

This wetting-induced birefringence has a static character, different from the
usual shear-induced birefringence in complex fluids [1,195]. The self-screening
process identified in the wetting of substrates with nematics is probably present
in the case of the L3 phase in contact with solid substrates.

Grazing X-ray scattering experiments [194,196], performed with synchrotron
radiation and L3 samples, in mixtures of SDS, 1-pentanol, cyclohexane (C6H12)
and water, in contact with beryllium sheets, have shown the presence of a tetra-
gonal phase with typical lattice parameters a ∼ 5 nm and 5 � c � 13 nm, in a
layer at about 10 nm from the surface to the bulk. At high angles, the diffraction
pattern shows an isotropic broad band with typical distances of 0.5 nm, due to
the liquid state of the carbon chains. A L3–tetragonal phase transition occurs
at the surface, induced by what should be called a “surface field.” The topology
of the substrate defines the orientation of the symmetry axis of this induced
surface layer.

1.5 Technological and industrial applications

Soaps and detergents, which are the basic elements of a lyotropic mixture, have
many technological applications in industry, and are a common element of every-
day life [197]. If someone has grease (a nonpolar material) in the hands, it
is useless to use only water (a polar solvent) in order to remove the grease.
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The addition of some drops of detergent (amphiphilic molecules) is necessary
to clean up the hands (which should be well rubbed in the presence of the
mixture between water and detergent). This process works because there appear
amphiphilic molecular aggregates that are able to involve and imprison the grease
molecules, so that the water finishes the job.

Some of the properties of micellar solutions make them very useful in practical
applications [198]: (i) direct (inverted) micelles have a non-polar (polar) interior,
in which non-polar (polar) groups can be solubilized; (ii) the available surface
in these systems is very large (e.g. in a 0.05 M SDS/water mixture, it is about
1.5×108 cm2 per liter of solution); (iii) dynamic processes are fast; (iv) transport
processes, in particular diffusion of molecules in micellar systems, depend on the
characteristics of surfactant.

In industry, the “neat phase” of surfactants (the lamellar phase, in our ter-
minology) is the starting system for many different detergent products and
processes, as spray-drying, chilling, and milling [142,143]. Lyotropic mixtures
with hexagonal and isotropic phases have been used in the automobile industry
and in the manufacture of textile soaps. The viscosity and fluidity of the lyo-
tropic phases, which have an intrinsic connection with the structure of the phase,
are important parameters of the transport processes for all sorts of pumping in
industrial plants.

The knowledge of the physico-chemical properties of lyotropics is very useful
in the technological applications of emulsions. An emulsion is a dispersed phase
of droplets with typical sizes ranging from 0.1 to 10 µm [199]. An example of
these applications is the use of oil in water, in food emulsions, and of oil in
brine, in environmental accidents, as the spilling of oil. In this last case, the
knowledge of properties of soaps mixed with water, salt and oil is fundamental
in the cleaning processes.

Food industry also benefits from the accumulated research on lyotropic mix-
tures. This is particularly relevant in the case of lipids [200], including the new
field of molecular gastronomy [201]. In a basically empirical fashion, the art of
preparing sauces uses the knowledge of properties of amphiphiles in the presence
of polar and nonpolar substances. An expert chef changes the relative amount of
egg yolks, water, salt, milk and cream in the sauce, in order to control the fluidity
and the “velvet texture” of the final products. The texture of the sauce strongly
depends on the state of molecular aggregation and on the different length scales
(from nanometers to millimeters).

Enhanced oil recovery, via micellar flooding of crude oil reservoirs, is one
of the most important technological applications of lyotropic-like systems [202].
The commercial use of surfactants for this purpose started in the late 1920s
with the patents of De Groot [203]. The introduction of amphiphiles in oil wells
provokes the decreasing of the interfacial tension, which enhances oil recovery. In
1968, Gogarty and Tosch [204] suggested that the addition of cosurfactants and
electrolytes, besides the commonly used surfactant, contributes to improving oil
recovery processes.
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The effectiveness in stabilizing a microemulsion under the particular con-
ditions of an oil reservoir is a crucial criterion to choose a surfactant
for this application [205]. Since the microemulsion is the most interesting
type of phase for oil recovery, the presence of liquid crystalline phases in
some lyotropic phase diagrams limits the application of some amphiphiles
to this purpose [206]. Examples of lyotropic mixtures used in oil recov-
ery are: SDS/1-butanol/water/NaCl/heptane, hexanol/hexadecane/potassium
oleate/water, and pentanol/hexadecane/potassium oleate/water.

The industry of foams also benefits form the knowledge of properties of lyo-
tropics and their basic components. In particular, it is relevant to know the
conditions for the stability of thin films [207]. Studies of the lamellar–nematic
transition and of surface instabilities in lamellar phases have direct consequences
on the stability of thin films of foams.

The cosmetics industry is also an important activity using the knowledge of
the physico-chemical properties of lyotropics, particularly in the case of surfact-
ant emulsifying agents [208]. In cosmetics, these amphiphilic molecules are used
as wetting, cleanser, foaming, solubilizer and modifier agents, which change the
feelings of the human skin in contact with cosmetics. The thermodynamic stabil-
ity of a molecular aggregate (in micellar isotropic phases or microemulsions) is a
crucial problem for the preparation of new cosmetic products. The topology of
the phase diagram of lyotropic mixtures, typically including water, a surfactant
and a cosurfactant, at different temperatures, should also be known in order to
design the final product.

Some of the parameters that play an important role in the process of formu-
lating a cosmetic product, besides the stability of the system itself, are viscosity,
“texture,”effectiveness to make foam, and temperature dependence [209]. In
some of the applications, in particular if we need viscous fluids, lyotropic mix-
tures and microemulsions are used as a starting system in order to obtain the final
emulsion state. Moreover, lyotropics and microemulsions are widely used in for-
mulating cosmetic products, particularly for the solubilization of fragrances and
flavor oils in aqueous systems. A crucial problem in this industrial application is
the usual need of low viscosity products. If a new component is added to the lyo-
tropic mixture (in order to reduce viscosity), the topology of the phase diagram
may change drastically, with alterations of relevant mesomorphic properties.

Two types of lyotropic mixtures, water/ionic surfactant/alcohol, which is
the basis of the preparation of emulsion and microemulsion, and water/nonionic
surfactant/hydrocarbon, are the mostly used systems in the formulation of cos-
metics. In the particular case of micellar systems, the property of leading to
the solubilization of otherwise insoluble compounds characterizes the lyotropic
mixtures as a good dispersion medium. Properties of emulsion systems can
be strongly affected by the presence in the mixture of liquid crystalline struc-
tures [144]. For example, the stability of emulsion droplets against flocculation
processes depends on the nature of the amphiphilic layer of separation. If the lay-
ers of the lamellar-type structure come into contact, depending on the strength
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of the interfacial tension, the onset of fluctuations may turn the system unstable,
with the coalescence of droplets and the formation of micelles. From the empir-
ical point of view, the stability of an emulsion with water and oil is improved
(from minutes to years) upon the addition of a liquid crystalline material to the
original emulsion [210].

Applications of lyotropic-type systems in the biological area are very prom-
ising. Drug delivery processes, using vesicles as the transporting medium, are an
important example of these applications. In these processes, drugs are dispersed
inside vesicles, which are protected from body enzymes. Due to the addition of
molecules incorporated to the amphiphilic bilayer, there is a selective interaction
with particular materials from the digestive or circulatory system, so that the
drugs are liberated according to the prescription of a physician.

A new interesting example of a self-assembled structure of amphiphilic
molecules is the tubule, designed for encapsulating solids and liquids. This struc-
ture consists of a hollow phospholipid bilayer cylinder with a typical length of
tens or hundreds of microns and a diameter from 0.1 to about 0.7 mm. The wall
thickness ranges from less than 10 nm to well over 50 nm. Numerous applica-
tions, as miniature microwave circuits and absorptive filters, are under evaluation
from the commercial point of view. Tubules [211] with 0.5 µm of diameter and
a characteristic length in a range from 50 to 200 µm are formed by some syn-
thetic phospholipids [212] with diacetilenic moieties in the acyl chains. Circular
dichroism experiments show that tubules have a chiral structure [213,214].

Amphiphilic metal complexes have been used to form templates for meso-
porous silicates in cathalitic processes [215,216], which are also examples of
applications of these molecules.

1.5.1 Velocity gradient sensors

We know at least three technological devices using the property of shear-
induced birefringence of micellar isotropic and sponge lyomesophases: a vibration
detector [217], a monitoring device for the blood pumps in hemodialysis [218],
and a lyotropic stethoscope [219]. These devices are based on effect that optically
isotropic, micellar and sponge, phases become birefringent under the action of a
velocity gradient.

As these devices are based on the same working principle, we only discuss
the details of the monitors for the blood pumps used in hemodialysis.

In an actual pump, the blood goes through pipes that are progressively and
periodically squeezed by hard plastic arms (with the number and shape depend-
ing on the particular machine) against the inner metal body of the pump. With
a peristaltic-type movement, the fluid is pumped through the artificial kidney
to be cleaned and then sent back to the body. The time variation of the flux of
fluid, before, during and after each squeezing cycle, is an important parameter
of the pump.
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Fig. 1.37. (a) Sketch of the monitoring device for hemodialysis blood pumps
using a lyotropic sponge mesophase. The angles in the figure are measured
with respect to the vertical direction. (b) Optical transmittance as a function
of time in the hemodialysis blood pump device.

In Fig. 1.37(a) we sketch a monitoring device. The liquid crystal, which
simulates the blood in actual machines, is placed in the reservoir and fills the
flexible pipes (which pass through the pump) and the glass cell. The glass cell is
positioned along the trajectory of the polarized laser beam. The linearly polar-
ized laser beam reaches a photoelastic modulator (PEM), at a fixed frequency,
and then reaches the cell, the linear analyzer, with the optical axis perpen-
dicular to the orientation of the polarized laser beam, and finally reaches the
photodetector. The signal is detected by a lock-in amplifier, at the frequency of
the PEM. The transmittance as a function of time is registered in a computer
(Fig. 1.37(b)). In the absence of the velocity gradient, the sample is isotropic and
no transmittance is measured by the photodiode. As the velocity gradient is gen-
erated by squeezing the pipe, the sample becomes birefringent, with the optical
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axis oriented along the direction of the liquid crystal flow, and a finite trans-
mittance is measured by the photodiode. This happens because the direction of
the flow is at 45◦ with respect to the optical axis of the linear analyzer. The
relaxation time of the birefringence has to be smaller than the time between two
successive squeezings. The shape of the time dependent transmittance function
is related to the time variation characteristics of the liquid crystal flow.

Since the relaxation time of the induced birefringence depends on the partic-
ular mixture and phase (L1 or L3), it is interesting to develop different sensors,
adapted to several frequencies. The typical relaxation times of the birefringence
in L1 and L3 phases are of the order of 10−2 and 3 s, respectively.

1.6 Interfaces with biology

Amphiphilic and water molecules are important components of the human body.
The structures formed by amphiphilic molecules in the human body, and the pro-
cesses involving the connections with water, other polar and nonpolar molecules,
are essential ingredients for the existence of life. As some of these processes are
essential for the stability of lyotropic mixtures, there is a large interface between
research in lyotropics and in biological sciences [220]. We now present some
examples of this interface.

A lipid is an important structural component of the living tissues in plants,
animals and microorganisms. Lipid molecules may be neutral, phosphatides,
sphingolipids, glycolipds, and terpenoids [221]. Phospholipids have polar and
nonpolar parts; under dispersion in an aqueous medium, they self-organize in
micelles and more complex structures, depending on relative concentrations
and temperature. In the presence of water, porphyrins, which are essential for
life, also form liquid crystalline structures. In particular, phospholipids in the
presence of increasing amounts of water, were shown to reduce their marked
endothermic transition, usually observed in differential thermal analysis exper-
iments [222], corresponding to the melt of the hydrocarbon chains. Mixtures
of natural phospholipids, with highly unsaturated chains, and water display a
transition between crystalline and liquid crystal phases at temperatures lower
than in the biological environment [223]. At room temperature, the chains of
these molecules have a high mobility, which improves the permeability of the
membranes that are formed.

One of the most expressive similarities between the living systems and lyo-
tropics, specially in the case of water-based mixtures, is the dominant presence
of water which, in some mixtures, reaches concentrations larger than 96 M%. If
water is mixed with suitable solvents, biological compounds or even molecules
commonly found in the human body may present liquid crystalline phases. An
interesting example of liquid crystalline polymorphism with biological lipids is
a mixture of the mitochondrial lipid and water [224]; there were observations of
three lamellar and one hexagonal phases, depending on temperature and relative
concentrations of lipid and water. Polypeptides are systems containing two or
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more aminoacids and one or more peptide groups, as poly-γ-benzyl-l-glutamate
(PBLG); if they are mixed with different solvents, polypeptides may present
liquid crystalline phases [225]. Cholesterol and fatty acids form esters, which
also have liquid crystalline properties. In particular, cholesterol is used to induce
cholesteric mesophases in originally lyotropic nematic structures (Section 1.3.3).

Micellar solutions of amphiphiles also play an important role in biological
processes [198]: (i) the digestion of fats by the human body requires solubilization
by bile salt micelles, which act as the detergent of the body through the digestive
tract; (ii) the micellar catalysis, which exploits the large surface available in
micellar systems (an ester hydrolysis by an acid, e.g.). Particularly in the case
of the fat solubilization problem, in vitro micellar solutions of lyotropics are
used to study the temperature dependence of solubilization rate of fat acids in
micelles. It was shown that in actual lyotropic mixtures this rate can increase by
a factor of 4 at temperatures above the penetration temperature (at which the
liquid crystalline phases appear).

Phospholipids and proteins are the basic structural blocks of the cell mem-
brane [221]. About 50% of the mass of most animal cell plasma membranes are
made of lipidic membranes. Lipids form a bimolecular layer (bilayer) which con-
trols the traffic of substances to and from the inner part of the cell (Fig. 1.38).
Despite the differences between the liquid crystalline structures and the living
cell, lyotropics can be used as models to study some aspects of the cell mem-
branes. These studies of cellular models started in the beginning of the twentieth
century; the models refer to animal and vegetal membranes (as the example of
soybean lecithin [226]).

Biological membranes inside cells serve to different purposes, as dividing com-
partments with different functions, and regulators of the flux of substances with
different electric properties. These membranes usually have encrusted proteins.

Hydrophobic
α-helix Oligosaccharide

Cholesterol

Phospholipid

Glycolipid

Integral
protein

Fig. 1.38. Sketch of a cellular membrane of a living cell.
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Investigations of the permeability of macromolecules through a lyotropic model
membrane, in a lamellar-type phase, brings important insights into prob-
lems regarding the form (structure) versus functionality in actual membranes.
Amphiphilic molecules of biological membranes usually have two hydrocarbon
chains from glycerol derivatives. The membrane prevents transport from one
compartment to the other, without a biological command. From this point of
view, the equilibrium in terms of the concentration gradients of different sub-
stances is not passively achieved. In plants and bacteria, the dominant lipid
membranes are glycolipids. In animals, the most common membranes are phos-
pholipids. In the human body, molecular species with multiple positive charge are
rather rare, and biological membranes have a net negative surface charge. The
diffusion coefficients of molecules across the membrane and on its surface can be
very different. As this behavior resembles the similar behavior of a lamellar liquid
crystals, it is one of the reasons why lyotropics can be used as a model system to
study diffusion processes in biological membranes. For example, the permeability
to both strongly polar (water) and non-polar (hydrocarbons) molecules by the
stratum corneum (the outer part of the human skin) can be studied by using
lyotropic lamellar model systems [198].

One of the most interesting and important problems in living systems is
the investigation of the interaction between lipids and proteins. According to
a current view on this problem, proteins and cholesterol are incorporated into
the bilayer structure, with its consequent disruption. Cholesterol molecules are
interdigitated between lipid molecules of the bilayer, with the hydroxyl groups
in the external water layer. The bilayer is conceived as a dispersion medium for
the proteins and cholesterol. The stability of the structure and the permeability
properties if the bilayer is in contact with hosts, as proteins and cholesterol,
can also be investigated in lyotropic model membranes and in cholesteric phases
(in the particular case of chiral molecules incorporated into micelles or even in
bicontinuous structures). The presence of cholesterol in lipid bilayers (Fig. 1.38)
was shown to lower the transition temperature between gel and liquid crystal-
line phases [227]. It disturbs the crystalline arrangement of the hydrocarbon
chains in the gel phase structure. This process can be studied in vitro by using
a lipid/cholesterol/water mixture.

Another aspect of the similarity between lyotropics and living systems is
related to the process of aging of the cell. As the living system becomes older, it
is known that the cell membrane becomes stiffer, with a drift towards crystallin-
ity [221]. In a typical binary lyotropic water-based mixture, at fixed temperature
and for increasing concentration of amphiphiles, there is a phase sequence from
micellar isotropic to hexagonal, and then lamellar, and finally to a crystalline
phase [32]. The aging of a cellular membrane keeps some similarities with the
concentration-driven phase transition sequences of lyotropic systems. In lyotrop-
ics, the loss of water is the way to crystallinity. In human cell membranes,
the aging process is certainly more complex than a simple loss of water, so that
many other aspects have to be taken into account. However, the role of the water
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molecules and their interactions with the membrane structure can certainly be
one of the main aspects of this problem. For example, the investigation of the
role of the hydration layers around different amphiphilic molecular aggregates
in lyotropics, from micelles to the lamellae, can provide relevant insights on the
time dependence of the characteristics of membranes of living systems [6].

Shape transformations in biological lyotropic-like systems play a key role in
many processes in the human body. For example, in the propagation of nerve
impulses over the synaptic clef separating nerve cells by vesicles [198]. Vesicles,
which are a blister-type bylayered structure ranging in diameter from micromet-
ers to millimeters, undergo a transformation and participate in this propagation
under the action of an electric excitation. This process is reversible and, due
to the hydrolysis by an appropriate enzyme, the system is ready to receive and
deliver new signals.

Amphiphilic biocompatible molecular aggregates are used as drug vectors.
Medicines can be encapsuled inside micelles or vesicles and injected in the living
system. These closed structures are used, e.g., as simple containers to transport
drugs within the blood system.

Cell membranes in living systems are usually in contact with excess water.
Therefore, due to topology and stability in the presence of excess water, the
bicontinuous cubic phases Q224 and Q227

m are also good systems in order to
investigate typical processes in living cells. There are some proposals about
biological similarities between the Q224 phase and the plasma membranes of
thermoacidophilic archae-bacteria [228], in particular with respect to the diges-
tion of fats [166]. The Q227

m phase was observed in mixtures with lipids commonly
present in biological membranes, as phosphatidylcholine and phosphatidyl eth-
anolamine. The stability of the structure in the presence of fatty acids can lead
to interesting information about the leaking processes (disruption of the mem-
brane) in living systems [76]. Cubic phases can also be used as templates for
synthesizing nanoporous materials and nanocomposites. An important property
of these phases is the large bilayer surface area (about 100 m2/g). Biosensors
should be developed by employing the immobilization of proteins by covalent
attachment to the head group or by incorporation into the bilayer.

A promising field of research in the interface between lyotropics and bio-
logy, which may give relevant information in both areas, is the investigation of
radiation-induced phase transitions. Recently [229], it was observed that lyo-
tropic liquid crystalline samples (KL/1-decanol/water mixture), originally in
the NC nematic phase, subjected to irradiation with protons (doses of the order
of 10 Gy), undergo a phase transition to a hexagonal phase. Fan-like textures
(Fig. 1.39) were observed after the irradiation. At smaller doses (∼1 Gy) no
phase transition was observed. The microscopic process responsible for this phe-
nomenon is not yet known. The radiation seems to destabilize the micelles in the
solution, favoring the presence of large molecular aggregates.

A deeper understanding of the biological processes in living systems will
certainly reveal other similarities between apparently disjoint fields of research.
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90 µm

Fig. 1.39. Typical fan-like texture of a phase induced by radiation (protons of
40 Gy) in a sample of a previously nematic phase, in a polarizing light micro-
scope, between crossed polarizers (for a 200 µm thick sample of a potassium
laurate/decanol/water mixture).

Interfaces will become more frequent an much larger in this truly multidisciplin-
ary subject. Research in lyotropic mixtures is expected to play a privileged role
in this new context.
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[166] P. Mariani, V. Luzzati, and H. Delacroix (1988). J. Mol. Biol. 204, 165.
[167] V. Luzzati, A. Tardieu, and T. Gulik-Krzywicki (1968). Nature 217, 1028.
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[194] M. Magalhães (2002). PhD Thesis, Institute of Physics, University of São

Paulo, Brazil.
[195] L. Landau and E. M. Lifchitz (1969). Électrodynamique des Milieux
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2

BASIC CONCEPTS OF PHASE TRANSITIONS

2.1 Introduction

In the following sections, we discuss a number of examples of phase transitions
and critical phenomena in simple magnetic and liquid crystalline systems. We
take advantage of these systems, and of standard mean-field calculations and
Landau expansions, in order to give an overview and some illustrations of the
main concepts in this area. Although there are many reviews of the work in
the area [1]–[3], we first describe second-order transitions, critical and mul-
ticritical behavior in magnetic model systems. We then discuss first-order
nematic–isotropic transitions, which have been observed in both thermotropic
and lyotropic liquid crystals, and the transitions to a biaxial phase, as observed
in lyotropic systems [4]. Finally, we refer to non-ordering parameters and to the
reconstruction of phase diagrams, which are useful concepts to understand the
behavior of lyotropic mixtures in terms of temperature and concentration.

Although the Landau theory of phase transitions discards local fluctuations,
and does not give an accurate picture of the critical behavior, it does give a
unifying, overwhelmingly simple, and qualitative overview of phase transitions
and phase diagrams of all sorts of physical systems. It is particularly useful to
describe the rich structures in the temperature–concentration phase diagrams of
lyotropic mixtures. It will be used throughout this book as the basic theoretical
framework for understanding phase transitions in lyotropic liquid crystals.

2.2 Critical and tricritical behavior in simple uniaxial
ferromagnetic systems

According to the Landau theory of “second-order” phase transitions, the free-
energy density of a system can be written as a power series in terms of
the invariants of a fundamental quantity known as the “order parameter.”For
example, in zero external field, the order–disorder transition of a simple uniaxial
ferromagnet is described by the free-energy density

f = f0(T ) +
1

2
A(T )m2 +

1

4
C(T )m4 + · · · , (2.1)

where the magnetization per ion m is the order parameter, and f0(T ), A(T ), and
C(T ), are smooth functions of temperature. Due to the up-down symmetry of the
magnetization of this uniaxial system, the invariants of the order parameter are
even powers of m. For positive coefficients, A, C > 0, the free energy is minimum
at m = 0, which corresponds to the disordered (paramagnetic) phase. For A < 0,
with C > 0, m = 0 becomes a maximum of the free energy, but there appears
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A, C > 0
A < 0

C > 0

f
f

m m

(a) (b)

Fig. 2.1. Free-energy density f versus magnetization m for (a) A, C > 0, and
(b) A < 0 and C > 0.

two symmetric, stable, minima, at ±m0 (see Fig. 2.1). The critical temperature
is given by A(Tc) = 0.

If we drop the regular term f0(T ), the neighborhood of this simple critical
point is fully described by the truncated expansion,

f =
1

2
a0(T − Tc)m

2 +
1

4
m4, (2.2)

where a0 is a positive constant, Tc is the critical temperature, and the coefficient
C(Tc) has been set to unit. For T < Tc, we have the order parameter

m0 = ±√
a0(Tc − T )1/2, (2.3)

whose (continuous) behavior near Tc leads to the definition of the (classical)
critical exponent β = 1/2. This is an example of a continuous (second-order)
transition, which is characterized by the smooth (continuous) variation of the
order parameter with temperature.

If we include an external magnetic field, and consider the field (H) versus
temperature (T ) phase diagram, the Landau free-energy density may be
written as

g = −mH +
1

2
a0(T − Tc)m

2 +
1

4
m4, (2.4)

with the external (applied) field in suitable units. In the H–T space, there is
a line of first-order transitions, at H = 0 and T < Tc, with the coexistence
of two phases, characterized by opposite values of m0 and the same value of
the free energy (see Fig. 2.2). It is important to remark that the order of a
phase transition depends on the choice of the thermodynamic path in the phase
diagram.

We now give an example of a multicritical point (and of a phase diagram with
lines of first- and second-order transitions). In zero field, keeping terms up to
sixth order, and still considering a uniaxial ferromagnet, we write the truncated
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H

Tc

T

Fig. 2.2. Phase diagram, in terms of external field H and temperature T , of
a simple uniaxial ferromagnet. The first-order boundary (solid line) ends at
the critical temperature Tc.

a

0
b

Fig. 2.3. Phase diagram in terms of the Landau coefficients a and b. The first-
order boundary (heavy solid line; given by a = 3b2/16 with b < 0) meets the
critical line (given by a = 0 with b > 0), with zero slope, at a tricritical point
(a = b = 0). The dashed line is the stability limit of the ordered solution.

expansion

f =
1

2
am2 +

1

4
bm4 +

1

6
m6, (2.5)

where a and b can change sign (depending on temperature and an extra field
variable, as pressure or chemical potential, for example), but the coefficient of
the sixth-order term is positive. It is straightforward to draw the a − b phase
diagram sketched in Fig. 2.3. We have to look for solutions of the equation

∂f/∂m = am + bm3 + m5 = 0. (2.6)

Although there is a disordered solution, m = 0, for all values of the parameters,
it is a stable minimum of the free energy for a > 0 only. The ordered phase
(m �= 0) is a stable minimum for: (i) b > 0 and a < 0 and (ii) b < 0 and
a < b2/4. These results lead to a line of continuous (second-order) transitions at
a = 0, for b > 0, and a region of coexistence of two stable solutions, m = 0 and
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m �= 0, for b < 0, with 0 < a < b2/4. A comparison between the values of the
free energy associated with each one of these solutions leads to the location of a
line of coexistence of phases (first-order transitions) at a = 3b2/16, with b < 0
(see Fig. 2.3). Both the second-order and the first-order boundaries meet, with
the same (zero) slope, at the so-called tricritical point [5] (which is located at
the origin in the a–b phase diagram of this simple example).

2.3 Phase diagrams with bicritical and tetracritical points

Phase diagrams with bicritical or tetracritical points are associated with sys-
tems with two distinct order parameters. A well-known example is given by the
field versus temperature phase diagram of an anisotropic two-sublattice anti-
ferromagnetic crystal [6] (with the external field applied along the easy axis
of magnetization). A convenient order parameter is a staggered magnetization,
in other words, a magnetization per site that points along a certain direction in
sublattice A, and along the opposite direction in sublattice B, giving rise to the
characterization of the typical, staggered, antiferromagnetic alignment. Below
the Néel transition temperature, and for sufficiently weak fields, the ordered anti-
ferromagnetic phase is associated with a non-zero staggered magnetization along
the easy axis (and no perpendicular component of the staggered magnetization).
As the field is increased, there may be a (first-order) transition to a spin-flop
phase, with a net magnetization along the crystal axis, and a component of the
staggered magnetization along a perpendicular direction (see Fig. 2.4). Let us call
m1 and m2 the distinct components of the staggered magnetization along and
perpendicular to the easy axis, respectively. The Néel phase, at smaller fields, is
characterized by m1 �= 0 and m2 = 0, and the spin-flop phase is associated with
m1 = 0 and m2 �= 0. At the disordered paramagnetic phase, we have m1 = 0 and

H

(a) (b)

T

H

T

B

T4

m1 = 0
m2 ≠ 0

m1 = 0
m2 = 0

m1 ≠ 0
m2 = 0

m1 ≠ 0
m2 ≠ 0

m1 = 0
m2 ≠ 0

m1 = 0
m2 = 0

m1 ≠ 0
m2 = 0

Fig. 2.4. Phase diagram of a two-sublattice anisotropic antiferromagnet in
terms of the external field along the easy direction, H, and the temperat-
ure T : (a) the heavy solid line indicates a first-order boundary that ends at
a bicritical point B; the light solid lines represent second-order transitions;
(b) there are four lines of second-order transitions meeting at the tetracritical
point T4.
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m2 = 0. The bicritical point is the terminus of the first-order boundary (and the
meeting point of the second-order lines between the ordered and the disordered
regions of the phase diagram). In the case of some antiferromagnetic crystals,
however, instead of a first-order transition, there may be an intermediate phase,
with m1 �= 0 and m2 �= 0, and a tetracritical point of confluence of four lines of
second-order transitions.

The Landau free energy for a magnetic system with two scalar order
parameters, m1 and m2, is written as

f = f0 +
1

2
am2

1 +
1

2
bm2

2 +
1

4

[
cm4

1 + 2dm2
1m

2
2 + em4

2

]
+ · · · , (2.7)

where a and b may change sign, but c, d, and e are positive parameters. Taking
into account up to fourth-order terms, we have to look for solutions of the
equations

∂f

∂m1
= am1 + cm3

1 + dm1m
2
2 = 0, (2.8)

and

∂f

∂m2
= bm2 + em3

2 + dm2
1m2 = 0. (2.9)

In the a–b phase diagram, there are four possibilities:

(i) There is always a disordered solution, m1 = 0 and m2 = 0, which is a
minimum of the free energy (i.e. a stable solution) for a > 0 and b > 0
only (see Fig. 2.5).

(ii) The Néel ordered phase,

m2
1 = −a

c
> 0 and m2 = 0, (2.10)

which is stable for a < 0 and a < b(c/d) (see Fig. 2.5).

(iii) The spin-flop phase,

m1 = 0 and m2
2 = − b

e
> 0, (2.11)

which is stable for b < 0 and a > b(d/e) (see Fig. 2.5).

(iv) The mixed phase, given by

m2
1 =

−ae + bd

ce − d2
> 0 and m2

2 =
−cb + ad

ce − d2
> 0, (2.12)

which requires a more detailed analysis of stability.
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c

d
a = b

a = b
d

e

a

b

Fig. 2.5. Regions of stability of the Néel ordered phase [a < 0, and a < b(c/d);
vertical hatches] and of the spin-flop phase [b < 0, and a > b(d/e); horizontal
hatches].

m1 = m2 = 0 m1 = m2 = 0

a a(a) (b)

M

bb

Fig. 2.6. (a) Phase diagram for ce − d2 > 0. There is a mixed phase (M)
and four lines of second-order transitions meeting at the origin (tetracritical
point); (b) Phase diagram for ce − d2 < 0. There is no mixed phase. The
first-order line, drawn as a heavy solid line, given by a = b(c/e)1/2, meets the
second-order lines (a = 0 and b = 0) at the origin (which is now a bicritical
point).

The regions of existence and stability of the mixed solution depend on the
sign of the denominator of Eqs. (2.12):

(a) If ce − d2 > 0, the mixed solutions exist and are stable for a < b(d/e)
and a < b(c/d). In Fig. 2.6(a), we see that there are common limits of
stability and no coexistence of phases. All transition lines are second-order
and a = b = 0 is a tetracritical point.



MODULATED PHASES AND LIFSHITZ MULTICRITICAL POINTS 83

(b) If ce − d2 < 0, the mixed solutions exist for a > b(d/e) and a < b(c/d),
which also corresponds to the region of coexistence of the Néel and spin-
flop phases. However, if we look at the second derivatives, it is easy to
see that these solutions are not stable. We then compare the free energies
associated with the Néel and spin-flop solutions in order to show that
there is a first-order boundary at a = b(c/e)1/2 (see Fig. 2.6(b)).

2.4 Modulated phases and Lifshitz multicritical points

Modulated structures are experimentally found in a large number of quite dif-
ferent systems, ranging from helimagnets to cholesteric liquid crystals. The
description of these structures requires the introduction of a space-dependent
order parameter and its associated free-energy density.

Consider a simple layered magnetic system, with uniform behavior on the
x–y planes and spacial dependence of the magnetization along the z direction.
The Landau free energy, F = Fb + Fgrad, may be written [7] as the sum of a
bulk term,

Fb =

∫
dz
{
am2

z + m4
z + · · ·

}
, (2.13)

and a gradient term,

Fgrad =

∫
dz

{
b

(
dmz

dz

)2

+

(
d2mz

dz2

)2

+ · · ·
}

, (2.14)

where mz is the magnetization per ion along the z direction, a and b can change
sign, but we are setting to unit the coefficients of the second derivative and the
quartic terms. The description of cholesteric liquid crystals also involves the split-
ting of the free energy into bulk and gradient contributions, which are however
considerably more complicated. We now transform to the Fourier representation,

mz =
∑

q

mq exp (iqz) , (2.15)

where the sum is over the first Brillouin zone. We then have

F = N
∑

q

Λ(q)mqm−q + N
∑

q1,q2,q3

mq1
mq2

mq3
m−q1−q2−q3

+ · · · , (2.16)

where N is the number of sites along the z direction, and

Λ(q) = a + bq2 + q4. (2.17)

As the coefficient of the quartic term is positive, the analysis of the (second-
order) transition depends on the behavior of Λ(q). There are two possibilities:

(i) If b > 0,Λ(q) as a function of the wave number q has a minimum at
q = 0. If this minimum, Λ(0) = a, is positive there is just a disordered
phase (mq = 0 for all q). For a = 0 , however, there is a phase transition
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between a disordered (mq = 0 for all q) and a uniformly ordered phase
(m0 �= 0, and mq = 0 for q �= 0).

(ii) If b < 0, the coefficient Λ(q) is a minimum at

q2
c = −1

2
b. (2.18)

Thus, if

Λ(qc) = a − 1

4
b2 > 0, (2.19)

there is just a disordered phase. At a = b2/4, there is a (second-
order) phase transition to a modulated structure (with a main harmonic
component associated with the wave number qc).

In Fig. 2.7 we draw the a–b phase diagram. Note that qc = 0 along the
uniform-disordered critical line (a = 0 and b > 0), and that qc = (−b/2)1/2

along the modulated-disordered critical line (a = b2/4 with b < 0). The special
point a = b = 0 is known as the Lifshitz multicritical point [8].

We now turn to the analysis of the ordered region of this a–b phase diagram.
In the neighborhood of the Lifshitz point, it should be enough to consider the
main harmonic components of the magnetization. Thus, instead of using the
complete Fourier representation, we write

mz = M1 cos(qcz) + M3 cos(3qcz) + · · · , (2.20)

where the coefficients M1, M3, . . . are supposed to be real, symmetry arguments
are invoked to discard even harmonic components, and we are also discarding
an arbitrary phase factor. Inserting this expression into the Landau free energy,

a

Modulated Uniform

L
b

a =
b2

4

a = –
b2

8

Fig. 2.7. Phase diagram with disordered, modulated, and uniform phases.
At the Lifshitz point L, the first-order boundary (heavy solid line), meets
smoothly with the second-order lines.



THE NEMATIC–ISOTROPIC PHASE TRANSITION 85

we have

f =
1

2
Λ(qc)M

2
1 +

1

2
Λ(3qc)M

2
3 +

3

8
(M4

1 + M4
3 ) +

3

2
M2

1 M2
3 + · · · . (2.21)

As Λ(3qc) > Λ(qc), the third harmonic component plays the role of a higher-order
correction, and can be dropped in the immediate neighborhood of the transition.
Thus, close to the Lifshitz point we can write the truncated form

f =
1

2
Λ(qc)M

2
1 +

3

8
M4

1 . (2.22)

In the modulated phase, we have qc = (−b/2)1/2 �= 0, and

M2
1 = −2

3
Λ(qc). (2.23)

In the uniform phase, we have

M2
1 = −2

3
Λ(0) = −2

3
a. (2.24)

Comparing the associated expressions for the free energy, we calculate the asymp-
totic form of the first-order boundary in the immediate neighborhood of the
Lifshitz point,

a = −1

8
b2, (2.25)

for b < 0, as drawn in Fig. 2.7. We note that, close to the transition, higher-order
harmonic components can generally be neglected.

2.5 The nematic–isotropic phase transition and
the Maier–Saupe model

A simple order parameter with up-down symmetry, as the magnetization per
ion of a uniaxial ferromagnet, or the staggered magnetization of the antiferro-
magnets, is no longer adequate for describing the long-range order in uniaxial
nematic liquid crystals [4, 9]. In fact, rigid rod molecules tend to align with
respect to a preferred direction (of a director axis). A possible candidate for the
status of an order parameter is the dipole moment m = cos θ, where θ is the
angle between the rods and a director axis (which will be chosen along the z
direction). However, as there is no arrow associated with the rigid rods, there
should be no distinctions between positive and negative values of cos θ, and the
dipole m cannot work as an order parameter. It turns out that a suitable order
parameter is the quadrupole moment,

S = P2(cos θ) =
1

2
(3 cos2 θ − 1), (2.26)

where P2 stands for the second Legendre polynomial. At high temperatures,
there should be no preferred direction, so that 〈cos2 θ〉 = 1/3, and S = 0. At low
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temperatures, θ = 0, so that S = 1, according to the anticipated behavior of an
order parameter.

We now review the pioneering approach of Maier and Saupe for the uni-
axial nematic–isotropic first-order transitions [10]. It was published about 50
years ago, and can be regarded as the counterpart of the Curie–Weiss mean-field
formulation for the phase transition in ferromagnetic systems.

Consider a pair of rigid rods, at positions i and j, characterized by the angles
θi and θj with respect to the z direction. We can always write a multipole expan-
sion for the interaction energy. If we only keep the lowest order, cylindrically
symmetric, part of the angular interaction, we may write the pair potential

uij = −ASiSj , (2.27)

where Si = (3 cos2 θi − 1)/2, and A is a positive coefficient (which may depend
on volume or concentration, for example). In a mean-field approximation, we
replace this pair potential by a single-particle term,

ui = −ASi〈Sj〉 = −ASiS, (2.28)

where the thermal average 〈Si〉 = S is given by the self-consistent condition

S = 〈Si〉 =

∫
dΩiSi exp(βASiS)∫
dΩi exp(βASiS)

, (2.29)

and we are using the standard notation of statistical physics (dΩi refers to the
integration over the solid angle, and 1/β = kBT , where kB is the Boltzmann
constant and T is the absolute temperature). It is easy to see that S = 0 (dis-
ordered phase) is a solution for all temperatures. Below a certain temperature,
however, there appears a nematic, S > 0, solution, which is shown schematically
in Fig. 2.8. A complete analysis of the stability of these solutions requires the
knowledge of the free energy associated with the Maier–Saupe equation of state.
Anyhow, the graph in Fig. 2.8 indicates the existence of three solutions below
a certain temperature, so that there should be an intermediate temperature at
which the ordered and disordered solutions correspond to the same free energy,
which leads to a first-order transition (with coexistence of phases).

In the standard mean-field treatments, the Maier–Saupe equation of state
(2.29) is used to write an expression for the free energy, which should then be
minimized with respect to the order parameter S. In the following paragraphs
we adopt an alternative, but equivalent, point of view, which consists in the
definition of the exactly soluble Maier–Saupe model.
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S

0.2 Tt Tm
kBT

A

Fig. 2.8. Graph of the Maier–Saupe order parameter S versus temperature (in
suitable dimensionless units). We indicate the temperature Tm = 0.22284 . . .
below which there is a solution S �= 0. From thermodynamic considera-
tions, the first-order phase transition in this mean-field model occurs at
Tt = 0.22019 . . ., which is very close to Tm.

2.5.1 The Curie–Weiss model

Let us first give an example of a simple statistical mechanics calculation. Consider
the Curie–Weiss version of the ferromagnetic Ising model, given by the energy

HCW = − J

2N

N∑

i,j=1

σiσj , (2.30)

where J > 0 is the exchange parameter, and σi = ±1 for all sites i = 1, . . . , N .
Note that there are (equal) interactions, of order −J/N , between all pairs of sites.
This kind of expression is supposed to mimic the standard mean-field require-
ments of very long-range and very weak interactions (in the thermodynamic limit,
N → ∞). The canonical partition function associated with this Curie–Weiss
model is given by

ZCW = Tr exp

⎡
⎣ βJ

2N

(
∑

i

σi

)2
⎤
⎦ , (2.31)

where Tr is a sum over all spin configurations. Using a Gaussian identity,

∫ +∞

−∞

exp(−x2 + 2ax)dx =
√

π exp(a2), (2.32)

we can also write

ZCW = Tr

∫ +∞

−∞

dx√
π

exp

[
−x2 + 2x

(
βJ

2N

)1/2 N∑

i=1

σi

]
dx. (2.33)
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As the spin variables are linear in the argument of the exponent, it is now trivial
to calculate the trace (sum over spin configurations). With a suitable change of
variables, we finally have

ZCW =

(
NβJ

2π

)1/2 ∫ +∞

−∞

dm exp [−NβJf(m)], (2.34)

where the “free-energy functional” is given by

f(m) =
1

2
m2 − 1

βJ
ln [2 cosh(βJm)]. (2.35)

In the thermodynamic limit, N → ∞, we use Laplace’s method of asymptotic
integration in order to write the thermodynamic free energy as the minimum of
f(m) with respect to m (which is just the thermal average of the spin variable).
The first derivative of f(m) leads to the well-known Curie–Weiss equation,

m = tanh(βJm), (2.36)

which has a disordered solution, m = 0, for all temperatures, and a pair of
ordered, ferromagnetic solutions, ±m0 �= 0, for kBT < J (where Tc = J/kB is
the critical temperature). In the immediate neighborhood of the transition, we
have the asymptotic result

m2
0 ∼ 3(Tc − T )/Tc, (2.37)

where ∼ means T → Tc = J/kB, and which shows the continuous (second-order)
character of the ferromagnetic transition.

In order to analyze the stability of these results, and to make contact with a
Landau expansion, we now perform an expansion of f(m) about m = 0,

f(m) = − 1

βJ
ln 2 +

1

2
(1 − βJ)m2 +

(βJ)3

12
m4 + · · · . (2.38)

As it should be anticipated from the up-down symmetry of the model, and in full
agreement with the Landau expansion, this series is restricted to even powers
of m. Also, note that the coefficient of the quartic term is always positive.
Therefore, the disordered solution, m = 0, is indeed a minimum of the free
energy at high temperatures, but becomes a maximum (and unstable solution)
for T < Tc. In this low-temperature range, the sketchy plot of f(m), shown in
Fig. 2.1(b), indicates the existence of two stable minima, corresponding to the
pair of symmetric ordered solutions, ±m0 �= 0.

As we have already pointed out, a more general expansion, in terms of
the “invariants of the order parameter,” is the basis of the Landau theory of
(second-order) phase transitions [4]. In the case of the uniaxial ferromagnet,
these invariants of the order parameter are just the even powers of m. Indeed,
according to Landau, in the neighborhood of the phase transition of any uniaxial
ferromagnetic system we can always write Eq. (2.1), where the coefficients A(T )
and C(T ), related to the details of the particular system under consideration, are
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supposed to display the same and suitable dependence on temperature. From this
point of view, Landau’s theory, which should work for small m, in the immediate
neighborhood of the transition, is a very useful tool to deal with experimental
data, and goes beyond any particular model calculation.

2.5.2 The Maier–Saupe model

We now go back to the Maier–Saupe model, given by the energy

HMS = − A

2N

N∑

i,j=1

SiSj , (2.39)

which leads to the canonical partition function

ZMS =

N∏

i=1

∫
dΩi exp

⎡
⎣βA

2N

(
N∑

i=1

Si

)2
⎤
⎦ (2.40)

Using the same Gaussian identity, we linearize the exponent so that the angular
integrations factorize into single-particle terms. Thus, we have

ZMS =

(
NβA

2π

)1/2 ∫ +∞

−∞

dS exp[−NβAf(S)], (2.41)

with

f(S) =
1

2
S2 − 1

βA
ln z, (2.42)

where

z =

∫
dΩi exp(βASi) =

∫
dΩ exp

[
βAS

2
(3 cos2 θ − 1)

]
. (2.43)

It is easy to see that the extrema of f(S) lead to the self-consistent expression
of Maier and Saupe, given by Eq. (2.29). Although it is not difficult to carry
out a detailed analysis of the thermodynamic behavior of this model, it is much
more interesting, and experimentally relevant, to look at the expansion of the
free-energy functional in terms of the order parameter S, and to make contact
with the Landau theory of phase transitions.

If we write βAS = ω, it is easy to calculate the first few terms of an expansion
of ln z in powers of ω,

ln z = ln(4π) +
1

10
ω2 +

1

105
ωss3 − 1

700
ω4 + · · · , (2.44)

such that we have

f(S) = − 1

βA
ln(4π) +

1

2

(
1 − βA

5

)
S2 − (βA)2

105
S3 +

(βA)3

700
S4 + · · · . (2.45)
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The presence of the cubic term, with a negative coefficient, which is not forbidden
by symmetry arguments, is the striking difference with respect to the analogous
expansion for the Curie–Weiss model. Note that T0 = A/(5kB) is no longer a
critical temperature. It is just a characteristic value, below which the disordered
solution becomes a maximum of the free energy.

Now we show that the cubic term is indeed responsible for the discontinu-
ous (first-order) character of the nematic–isotropic transition. In the context of
Landau’s theory of phase transitions, let us write a truncated expansion of the
free energy,

f = f0 +
1

2
aS2 +

1

3
bS3 +

1

4
S4, (2.46)

where the coefficient of the quartic term has been set to 1/4. Note that, if we
adopt a general phenomenological point of view, besides depending on temper-
ature, the coefficients a and b may depend on additional variables as well. The
extrema of the free energy are given by

S[a + bS + S2] = 0. (2.47)

There is always a disordered solution, S = 0. For a < b2/4, there are also two
ordered solutions, which have the same sign, for a > 0, and different signs, for
a < 0. Looking at the second derivative of g(S), we see that the disordered
solution is stable for a > 0 only. Also, we see that there is always a stable
ordered solution for a > b2/4 (see Fig. 2.9). In the common region of stability of
both disordered and ordered solutions, 0 < a < b2/4, we have to calculate the
respective free energies. As the physical solution is associated with the absolute
minimum of the free energy, it is easy to see that there is a line of coexistence of
phases (first-order transitions) at a = 2b2/9.

a

b

Disordered

Ordered

Fig. 2.9. The heavy solid line (a = b2/4) is the first-order boundary between
the nematic and the disordered phase. The dashed line (a = 2b2/9) is the
limit of stability of the ordered solution.
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2.6 The uniaxial–biaxial phase transition

The description of a biaxial phase, in which we break the cylindrical symmetry
of rigid rod structures, requires the choice of a more complex order parameter
[4, 9, 11].

Macroscopic tensor properties, as the diamagnetic or the dielectric suscept-
ibilities, express the typical distinctions between an isotropic liquid and the

nematic phase. The magnetic moment
−→
M in terms of the applied field

−→
H may

be written as

Mα = χαβHβ , (2.48)

where α, β = x, y, z, and we are using the summation convention over
repeated indices. In the uniaxial (cylindrically symmetric) nematic phase, the
susceptibility tensor may be written in the diagonal, but entirely general, form

χ =

⎛
⎝

χ⊥ 0 0
0 χ⊥ 0
0 0 χ‖

⎞
⎠ , (2.49)

where χ⊥ and χ‖ refer to the susceptibilities perpendicular and parallel to the
preferred axis, respectively. For the uniaxial nematic phase, χ⊥ �= χ‖. For the
isotropic liquid, χ⊥ = χ‖. However, since it does not vanish in the isotropic
phase, this tensor form cannot be taken as a suitable order parameter.

Now we extract the anisotropic part of χ, and define the traceless tensor

χa
αβ = χαβ − 1

3
χγγδαβ , (2.50)

where χγγ = (2χ⊥ + χ‖). In a matrix form, we have

χ
a =

2

3
(χ‖ − χ⊥)

⎛
⎝

−1/2 0 0
0 −1/2 0
0 0 1

⎞
⎠ , (2.51)

which shows that this new tensor vanishes in the (high-temperature) isotropic
phase, and is thus a suitable candidate for the role of order parameter. We then
define the tensor order parameter,

Qαβ = P2(cos θ)

⎛
⎝

−1/2 0 0
0 −1/2 0
0 0 1

⎞
⎠ , (2.52)

where the Legendre polynomial P2(cos θ) =
[
3 cos2 θ + 1

]
/2 had already been

used as the (scalar) order parameter in the Maier–Saupe model.
A symmetric and traceless matrix Q turns out to be a useful order para-

meter for a wide class of liquid crystalline phases, including nematic and biaxial
structures. If the axes are properly chosen, Q can be written in the (general)
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diagonal form

Qαβ =

⎛
⎝

− 1
2 (S + η) 0 0

0 − 1
2 (S − η) 0

0 0 S

⎞
⎠ , (2.53)

where η �= 0 is associated with a biaxial phase.

2.6.1 An extension of the Maier–Saupe model

First, we discuss a generalization of the Maier–Saupe model for molecules
(or molecular aggregates if we refer to lyotropic mixtures) without cylindrical
symmetry. Although there are a number of much more complete and detailed
treatments in the literature [12, 13], we assume that the angular part of the pair
potential between molecules i and j can be written as

uij = −B
∑

α

Sαα(i)Sαα(j), (2.54)

where B is a positive parameter, and the elements of the tensors Sαβ(i) and
Sαβ(j) are given by Eq. (2.53), with S and η replaced by the local values Si

and ηi, respectively. This type of interaction leads to a slight generalization of
the (mean-field) Maier–Saupe model,

HB = − B

2N

N∑

i,j=1

∑

α

Sαα(i)Sαα(j), (2.55)

which is associated with the canonical partition function,

ZB =
∏

i

∫
dΩi exp

⎧
⎨
⎩

βB

2N

∑

α

[
∑

i

Sαα(i)

]2
⎫
⎬
⎭ , (2.56)

where Ωi stands for the Euler angles that define the direction cosines of a single
molecule. If we rewrite this expression,

ZB =
∏

i

∫
dΩi exp

⎡
⎣βB

2N

3

2

(
∑

i

Si

)2

+
βB

2N

1

2

(
∑

i

ηi

)2
⎤
⎦ , (2.57)

and use twice the Gaussian identity of Eq. (2.32), it is easy to obtain the
final form

ZB = C

∫∫
dS dη exp {−βBNf(S, η)}, (2.58)

where C is an irrelevant prefactor, and

f =
1

4
(3S2 + η2) − 1

βB
ln z, (2.59)
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with

z =

∫
dΩi exp

[
βB

1

2
(3SSi + ηηi)

]
=

∫
dΩi exp

[
βB
∑

α

SααSαα(i)

]
. (2.60)

Now it is convenient to define the second- and the third-order invariants of
the traceless tensor order parameter,

δ =
∑

α

(Sαα)2 =
1

2
(3S2 + η2), (2.61)

and

∆ =
∑

α

(Sαα)3 =
3

4
S(S2 − η2), (2.62)

respectively. In terms of these quantities, we have

f =
1

2
δ − 1

βB
ln z. (2.63)

Also, we note that ln z can be written as an expansion in powers of the parameter
ω = βB,

ln z = ln z(0) +
1

2z(0)

(
d2z

dω2

)

ω=0

+
1

6z(0)

(
d3z

dω3

)

ω=0

+ · · · , (2.64)

where the first derivative vanishes,

1

z(0)

(
dz

dω

)

ω=0

=
1

z(0)

∫
dΩi

1

2
(3SSi + ηηi) = 0, (2.65)

since we have to calculate a fully isotropic angular integral (i.e. at infinite
temperature). Consider the second term,

(
d2z

dω2

)

ω=0

=

∫
dΩi

[
∑

α

SααSαα(i)

]2

=
∑

α,β

SααSββ

∫
dΩiSαα(i)Sββ(i). (2.66)

Again, we have to perform a fully isotropic integration, so that only the invariants
of the tensor will survive this process. Therefore, it is not difficult to obtain the
first few terms of an expansion of f in terms of the powers of the invariants of
the tensor order parameter,

f =
1

2
δ − 1

βB

[
ln z(0) +

1

10

3 + a2

2
δ +

2

35

3(1 − a2)

4
∆ + · · ·

]
, (2.67)

where a is assumed to gauge the degree of biaxiality in the molecular frame of
reference, in which Sαβ(i) is diagonal. In this particular model, if a2 = 1, the
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cubic term vanishes, and the system undergoes a (second-order) transition to
a biaxial phase.

It is not so relevant to carry out the calculation of the specific forms of
the coefficients associated with this expansion. Even at this mean-field level,
these calculations are feasible for very simple and schematic models only (and
do depend on the details of the particular molecular model under consideration).
A general Landau expansion, in terms of the invariants of the tensor order para-
meter, with coefficients to be phenomenologically determined from fittings to the
available experimental data, turns out to be much more relevant for accounting
to the biaxial transition. In fact, it should be remarked that there is no exper-
imental evidence of a biaxial transition in thermotropic liquid crystals (which
are usually associated with relatively simple rigid-rod molecules). On the other
hand, as pointed out in Chapter 1, biaxial phases have been found in a number
of lyotropic mixtures. The molecules in these lyotropic systems tend to aggregate
in micelles, with shapes depending on temperature and relative concentrations.
The Landau expansion, with temperature and concentration-dependent coeffi-
cients, becomes particularly suitable for describing phase transitions in these
lyotropic liquid crystals.

2.6.2 Maier–Saupe model for a mixture of prolate and oblate micelles

Although there is no experimental evidence supporting the picture of a mixture
of prolate and oblate micellar aggregates in the nematic biaxial phase, it is very
instructive to consider simplified versions of the Maier–Saupe model for this
kind of mixture [14]. We then present a further generalization of the mean-field
Maier–Saupe model.

Given the director of a molecular aggregate, −→n i = (nix, niy, niz), with
|−→n i| = 1 , the local order parameter can be written as a traceless quadrupolar
tensor,

Sµν(i) =
1

2
λi(3niµniν − δµν), (2.68)

where µ, ν = x, y, z. Note that this form is invariant under the change
−→n i → −−→n i. Also, the usual form of the order parameter, in the reference frame
of the molecular aggregate, can be recovered if we perform an average over the
standard spherical coordinate φ. In the uniform case, which has been discussed
so far, λi = λ for all values of i (in other words, all the molecular aggregates
have the same shape). If we wish to treat a mixture of aggregates, with different
shapes, it is necessary to consider a distribution of values of the parameter λ.
Note that λi > 0 (λi < 0) favors a cylinder-like (disk-like) aggregate. There-
fore, we keep this dependence on the aggregates, and write the Maier–Saupe
interaction in the form

uij = −B Tr[S(i)S(j)] = −B
∑

µ,ν

Sµν(i)Sµν(j), (2.69)
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which leads to a slightly more general Maier–Saupe model,

HM = − B

N

∑

1≤i<j≤N

∑

µ,ν

Sµν(i)Sµν(j), (2.70)

where the subscript M refers to mixture, and the first sum is over all pairs of
distinct molecular aggregates.

We may now write

HM = − B

N

∑

1≤i<j≤N

3

4
λiλj

⎡
⎣3

(
∑

µ

niµnjν

)2

− 1

⎤
⎦ , (2.71)

which can also be written in the usual mean-field form,

HM = − 3B

8N

⎧
⎨
⎩3
∑

µ,ν

(
N∑

i=1

λiniµniν

)2

−
(

N∑

i=1

λi

)2
⎫
⎬
⎭ . (2.72)

The partition function is given by

ZM = Tr exp

⎧
⎨
⎩

3βB

8N

⎡
⎣3
∑

µ,ν

(
N∑

i=1

λiniµniν

)2

−
(

N∑

i=1

λi

)2
⎤
⎦

⎫
⎬
⎭ , (2.73)

where the initial trace is a sum (integration) over all possible states of the
director.

According to the work of Henriques and Henriques [14], we further simplify
the problem by assuming that the director −→n i can point along the Cartesian
axes only. A similar discretization of states has been used in other contexts
(e.g. by Zwanzig in order to simplify the analysis of Onsager’s model of hard
cylinders [15]). It is known that it drastically simplifies the calculations, without
introducing significant changes in the qualitative results. Therefore, we restrict
the analysis to six configurations of the director, −→n i = (±1, 0, 0), −→n i = (0,±1, 0),
and −→n i = (0, 0,±1), which lead to an effective three-state model (and to some
interesting connections with spin systems).

In this discrete version of the Maier–Saupe model, we can discard crossed
terms, of the form niµniν , with µ �= ν. The partition function is then written as

ZM =
∑

{−→n i}

exp

⎧
⎨
⎩

3βB

8N

⎡
⎣3
∑

µ,ν

(
N∑

i=1

λin
2
iµ

)2

−
(

N∑

i=1

λi

)2
⎤
⎦

⎫
⎬
⎭ . (2.74)

This expression can be further simplified if we take into account that |−→n i| = 1.
Instead of working with the components of the director, it is now interesting
to make contact with the elements of the traceless tensor order parameter.
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Considering Eq. (2.53), we introduce new variables, Si and ηi, given by

−1

2
(Si + ηi) =

1

2

(
3n2

ix − 1
)
, (2.75)

−1

2
(Si − ηi) =

1

2

(
3n2

iy − 1
)
, (2.76)

and

Si =
1

2

(
3n2

iz − 1
)
. (2.77)

In terms of these new variables, the partition function is written as

ZM =
∑

{−→n i}

exp

⎧
⎨
⎩

3βB

8N

⎡
⎣2

3

(
N∑

i=1

λiηi

)2

+ 2

(
N∑

i=1

λiSi

)2
⎤
⎦

⎫
⎬
⎭ . (2.78)

We can now use the Gaussian identity, given by Eq. (2.32), and perform the
sum over configurations of the director. With a convenient change of variables,
we have

ZM = C

∫∫
dSdη exp{−βBNfM(S, η)}, (2.79)

where C is a well-behaved factor, and

fM = (3S2 + η2) − 1

βBN

N∏

i=1

[
2 exp(3βBSλi)

+ 4 exp

(
−3

2
βBSλi

)
cosh

(
3

2
βBηλi

)]
. (2.80)

Let us assume that we have a (quenched) mixture of prolate (λi > 0) and
oblate (λi < 0) molecular aggregates. Thus, {λi} may be taken as a set of
independent, identical, and identically distributed, random variables, associated
with a probability distribution p(λi). In the thermodynamic limit (N → ∞), we
can invoke the law of large numbers in order to write

fM = (3S2 + η2) − t ln 2 − tE

{
ln

[
exp

(
3Sλi

t

)

+2 exp

(
−3Sλi

2t

)
cosh

(
3ηλi

2t

)]}
, (2.81)

where t = 1/(βB) is the temperature in convenient units, and the expectation
value E{· · · } is taken with respect to the probability distribution p(λi).
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In the uniform case, λi = λ, we have

f =
(
3S2 + η2

)
− t ln 2 − t ln

[
exp

(
3Sλ

t

)
+ 2 exp

(
−3Sλ

2t

)
cosh

(
3ηλ

2t

)]
.

(2.82)

This expression can be easily written as an expansion in terms of the invariants
of the traceless order parameter,

f = −t ln 6 + 2

(
1 − 3λ2

4t

)
δ − 3λ3

2t2
∆ +

9λ4

16t3
δ2 +

9λ5

16t4
δ∆

− 99λ6

320t5
δ3 +

81λ6

80t5
∆2 + · · · , (2.83)

where δ = (3S2 + η2)/2 and ∆ = 3(S3 − Sη2)/4 are given by Eqs. (2.61)
and (2.62). Since the coefficient of the cubic invariant ∆ cannot vanish, the
transition is always of first order. Indeed, for η = 0, we have

f(η = 0) = −t ln 6 + 4

(
1 − 3λ2

4t

)
S2 − 9λ3

8t2
S3 +

27λ4

64t3
S4 + · · · , (2.84)

from which we recover the well-known results predicted by the standard
Maier–Saupe model for the isotropic–uniaxial transition.

The behavior of a mixed system is much more interesting. For example,
consider a bimodal distribution of prolate and oblate molecular aggregates,
given by

p(λi) = cδ(λi − λ) + (1 − c)δ(λi + λ). (2.85)

It is easy to see that the expansion of the free energy fM can be written as

fM = −t ln 6 + 2

(
1 − 3λ2

4t

)
δ − 3λ3

2t2
(2c − 1)∆ +

9λ4

16t3
δ2 + · · · . (2.86)

Thus, at least if c = 1/2, we do have a continuous, second-order, transition to
a biaxial phase, with η �= 0. A detailed analysis of this system, for bimodal and
Gaussian distributions, has been performed by Henriques and Henriques [14].
A typical phase diagram, in terms of t and c, with second-order boundaries
between the uniaxial nematic phases (N1 and N2) and a biaxial phase (BI)
is sketched in Fig. 2.10.

We now turn to the (much more general) Landau phenomenological expansion
in terms of the invariants δ and ∆.
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t

ISO

N1 N2

c1
2

BI

3�2

4

Fig. 2.10. Typical phase diagram for a mixture of prolate and oblate molecular
aggregates. The heavy solid line represents a first-order transition (between
an isotropic phase, ISO, and the uniaxial–nematic phases, N1 and N2). There
are second-order transitions between the uniaxial nematic phases and the
biaxial phase (BI).

2.6.3 Landau theory of the uniaxial–biaxial transition

The Landau expansion associated with the traceless tensor order parameter
(2.53) can be written as [4]

F = F0 +
1

2
A TrQ2 +

1

3
B TrQ3 +

1

4
C(TrQ2)2

+
1

5
D(TrQ2)(TrQ3) +

1

6
E(TrQ2)3 +

1

6
E′(TrQ3)2 + · · · , (2.87)

where F0 is a regular function, and the coefficients may depend on temperature
and concentration, for example. The invariants of the tensor Q are given by
Eqs. (2.61) and (2.62),

TrQ2 = δ =
1

2
(3S2 + η2), (2.88)

and

TrQ3 = ∆ =
3

4
S(S2 − η2). (2.89)

Note that, due to symmetry requirements, we have to include two distinct sixth-
order terms in this expansion for the free energy. Also, note that the definitions
of δ and ∆ lead to the inequality

(TrQ3)2 ≤ 1

6
(TrQ2)3, (2.90)

which is fulfilled as an equality in the uniaxial case (η = 0).
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In the uniaxial case (η = 0), this Landau free energy is reduced to an
expansion in terms of even and odd powers of a scalar order parameter,

F = F0 +
3

4
AS2 +

1

4
BS3 +

9

16
CS4

+
9

40
DS5 +

9

16

(
E +

1

6
E′

)
S6 + · · · . (2.91)

Therefore, with D = E = E′ = 0, and C > 0, we recover Eq. (2.46), and make
contact with the description of the (uniaxial) nematic–isotropic transition. If
we choose A = a(T − T0), with a > 0, the isotropic phase is stable for T > T0.
According to all of the experimental data, for thermotropic and lyotropic systems
as well, the nematic–isotropic transition is weakly first order (as compared to
the strong first-order melting transition, for example). The transition takes place
for temperatures slightly above T0, and the inclusion of additional terms in the
free energy expansion (C < 0 and D > 0, for example) may lead to interesting
(pseudo-tricritical) behavior. However, if we keep C > 0, the inclusion of higher-
order terms has no qualitative effects on this phase transition.

We now turn to the description of the biaxial phase [16]. It is known that the
inclusion of the coefficient E′, associated with the sixth-order invariant ∆2, is
essential for giving rise to a biaxial phase (since the expansion has to be carried
out up to terms of order η4). For simplicity, we choose E = 0 and E′ > 0, which
allows the truncation of the expansion at sixth order. Also, we choose C > 0,
in order to guarantee the stability of the uniaxial structure, and D = 0, just for
convenience. Thus, we work with the simple form

FBU = F0 +
1

2
A TrQ2 +

1

3
B TrQ3 +

1

4
C(TrQ2)2 +

1

6
E′(TrQ3)2, (2.92)

where C, E′ > 0. The phase diagram will be drawn in terms of the coefficients
A and B, which depend on temperature and concentration, in the case of lyo-
tropic liquid crystals. The Landau free energy FBU can be minimized in terms
of δ = TrQ2 and ∆ = TrQ3, if we take into account the restrictions imposed by
the inequality (2.90), ∆2 ≤ δ3/6 (and noting that the equality gives the bound-
aries of the biaxial phase). We can also parametrize the tensor Q in terms of
new (polar) variables. For example, we can write

Qxx = r cos

(
θ +

2π

3

)
; Qyy = r cos

(
θ − 2π

3

)
; Qzz = r cos θ, (2.93)

so that S = r cos θ and η =
√

3r sin θ; with this parametrization, the uniaxial
phases correspond to θ = nπ/3, with even n, and the inequality (2.90) holds for
cos 3θ < 1. Although these parametrizations are very convenient, and do make
contact with group-theoretical arguments, in this section it is easier to keep using
the variables S and η.
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It is straightforward to write the truncated free energy (2.92) in the form

FBU = FBU(S, η) = F0 + α(S) + β(S)η2 +
1

2
γ(S)η4, (2.94)

where

α(S) =
3

4
AS2 +

1

4
BS3 +

9

16
CS4 +

9

96
E′S6, (2.95)

which should be compared with Eq. (2.91),

β(S) =
1

4
A − 1

4
BS +

3

8
CS2 − 9

48
E′S4, (2.96)

and

γ(S) =
1

8
C +

9

48
E′S2. (2.97)

The extremization with respect to η leads to the equation

2η(β + γη2) = 0, (2.98)

so that there is always a “uniaxial solution,” η = 0, associated with the free
energy

FU = F0 + α(S). (2.99)

There is also the possibility of a biaxial solution,

η2 = −β(S)

γ(S)
, (2.100)

which exists for β(S) < 0 (since γ(S) > 0 for our choice of coefficients), and
which is associated with the biaxial free energy,

FB = F0 + α(S) − 1

2γ(S)
[β(S)]

2
. (2.101)

We now note that γ(S), given by Eq. (2.97), is always positive. Therefore,
FB(S) < FU(S), which shows that the biaxial phase is a stable minimum of the
free energy throughout the region of existence of a “biaxial solution.” In order
to finally solve the problem, we have to search for the minima of the following
functions:

(i) The uniaxial free energy FU(S), given by Eq. (2.99), if β(S) > 0;

(ii) The biaxial free energy FB(S), given by Eq. (2.101), if β(S) < 0.

Let us consider the uniaxial–isotropic border. From the conditions

∂FU

∂S
= 0 and FU = F0, (2.102)
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we have

A =
3

4
CS2 +

3

8
E′S4, (2.103)

and

B = −9

2
CS − 3

2
E′S3. (2.104)

The elimination of S leads to the first-order boundary of Fig. 2.10. If E′ = 0, we
have the trivial result

A =
1

9C
B2. (2.105)

We now consider the biaxial–uniaxial transition line. From the conditions

∂FB

∂S
= 0 and β(S) = 0, (2.106)

we have

A = −3

2
CS2 and B = −3

4
E′S3. (2.107)

If E′ �= 0, we do have a biaxial phase in the A–B phase diagram. The second-
order biaxial–nematic borders are given by

A = −
[

C3

6 (E′)
2

]1/3

|B|2/3
, (2.108)

as it is sketched in Fig. 2.11. The special point at the origin of this phase diagram
has been called a Landau multicritical point.

Finally, it should be mentioned that, with the exception of less symmetric
transition lines, no qualitative changes in the topology of this phase diagram will

A

B

NE1

(a) (b)

NE2

A

B

NE1 NE2

ISOISO

BI

Fig. 2.11. Phase diagrams in terms of the Landau parameters A and B. The
heavy solid lines are first-order boundaries. In (a), for E′ > 0, there is a
biaxial (BI) and two uniaxial nematic phases (NE1 and NE2). In (b), for
E′ = 0, there is no nematic biaxial phase.
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be produced if we include the remaining coefficients D > 0 and E > 0. Of course,
there will be qualitative changes, including the appearance of tricritical points,
if we allow for either higher-order terms or coefficients with wrong (negative)
signs.

2.7 The smectic A phase transition

The smectic phases provide some examples of phase transitions from a layered
structure. In the smectic A phases the center of mass of the rigid-rod molecules
sit on planes perpendicular to the preferred axis. There is nematic-type order
within planes and a layered structure along the z direction. The symmetry axis
of the smectic structure is parallel to the layers. These smectic phases are still
optically uniaxial, but the X-ray pictures display a characteristic sharp ring
corresponding to an interlayer spacing d.

The normalized distribution of the centers of mass of the rigid rods may be
written as a Fourier expansion,

ρ (z) =
∞∑

n=0

αn cos

(
2πnz

d

)
, (2.109)

where

αn =
2

d

∫ d

0

cos

(
2πnz

d

)
ρ (z) dz =

〈
2

d
cos

(
2πnz

d

)〉
. (2.110)

There is a disordered phase, for αn = 0, which corresponds to a uniform dis-
tribution, ρ (z) = 1/d. On the other hand, perfect order is obtained if αn = 1
for all n. However, as the smectic phase displays both orientational and trans-
lational order, the molecular distribution function must describe the tendency
of the molecules to align along the z direction and to form layers perpendicular
to z. We then introduce a more complete distribution function,

ρ (cos θ, z) =
∑

l even

AlPl (cos θ) cos

(
2πnz

d

)
, (2.111)

with the normalization
∫ π

0

∫ d

0

ρ (cos θ, z) dz sin θ dθ = 1. (2.112)

Keeping terms of lowest degree, we define the order parameters

η = 〈P2 (cos θ)〉 , τ =

〈
cos

2πz

d

〉
, σ =

〈
P2 (cos θ) cos

2πz

d

〉
. (2.113)

Therefore, we have: (i) η = τ = σ = 0, in the disordered phase; (ii) η �= 0,
τ = σ = 0, in the nematic phase; and (iii) η, τ, σ �= 0, in the smectic phase.
According to this view of the smectic phase, we can write the one-body molecular
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potential

V1(cos θ, z) = u0 + u1τ cos

(
2πz

d

)

+

[
w0η + w1 cos

(
2πz

d

)]
P2(cos θ). (2.114)

If we further simplify this potential, by choosing τ = 0, it is still possible to
explain the smectic–nematic transition. We then introduce the MacMillan model
[17], given by the mean-field Hamiltonian

H = − w0

2N

(
∑

i

ηi

)2

− w1

2N

(
∑

i

σi

)2

, (2.115)

where ηi = P2 (cos θi) and σi = cos (2πzi/d) P2 (cos θi) are local variables. It is
straightforward to write

Z = Tr exp

⎡
⎣βw0

2N

(
∑

i

ηi

)2

+
βw1

2N

(
∑

i

σi

)2
⎤
⎦

=
βN

2π
(w0w1)

1/2
∫ ∫

dη dσ exp (−βNf) , (2.116)

where

f =
1

2
w0η

2 +
1

2
w1σ

2 − 1

β
lnZ1, (2.117)

with

Z1 =

∫ π

0

sin θ dθ

∫ d

0

dz exp

{
β

[
w0η + w1σ cos

(
2πz

d

)]
P2(cos θ)

}
. (2.118)

The equations of state are given by

∂f

∂η
= w0η − 1

βZ1

∂Z1

∂η
= 0, (2.119)

from which we have η = 〈P2(cos θ)〉, and

∂f

∂σ
= w1σ − 1

βZ1

∂Z1

∂σ
= 0, (2.120)

which leads to σ = 〈cos(2πz/d)P2(cos θ)〉. A numerical treatment of this problem
leads to a phase diagram in terms of temperature, T = 1/(βw0), versus the ratio
α = w1/w2, with isotropic (η = σ = 0), nematic (η �= 0, σ = 0) and smectic
(η, σ �= 0) phases (see Fig. 2.12).
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Fig. 2.12. Phase diagram of the McMillan model, with isotropic, uniaxial
nematic and smectic A phases. The heavy solid lines are first-order bound-
aries. There is also a second-order line that ends at the tricritical point T3.

According to an elegant approach of de Gennes [4], the smectic phase can be
characterized by a complex order parameter,

ψ(z) = ρ(z) exp[iφ(z)], (2.121)

which leads to a connection with the Landau–Ginzburg description of superfluid
helium. In terms of this complex order parameter, we can write the free energy
expansion

fs =
1

2
a|ψ|2 +

1

4
|ψ|4 + b

∣∣∣∣
∂ψ

∂z

∣∣∣∣
2

+ · · · , (2.122)

where a = a0(T − T0) and b > 0.
The Landau theory for transitions from layered structures in lyotropic

mixtures is discussed in Chapter 4.

2.8 Non-critical order parameters and the reconstruction
of the phase diagrams

A few years ago, Tolédano and Figueiredo Neto [18, 19] proposed a phenomen-
ological mechanism to explain the experimentally observed reentrant behavior
of the isotropic phase in the temperature–concentration phase diagram of lyo-
nematic liquid crystals (see the sketch in Fig. 2.13). The standard Landau free
energy, given by Eq. (2.87), for example, which is used to describe a phase dia-
gram with isotropic as well as nematic uniaxial and nematic biaxial phases, can
be completed by the inclusion of an extra non-critical parameter, associated with
the change in micellar form.

Before looking at the specific problem of lyonematic liquid crystals, let us
give two examples of the introduction of non-critical order parameters in some
magnetic model systems.
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ISO

T

ISO

KL (wt%)

ND NB NC

Fig. 2.13. Sketch of the typical temperature versus concentration (in this case,
the potassium laurate KL amphiphile, at fixed concentration of decanol)
experimental phase diagram of a ternary lyotropic mixture (KL, decanol,
water). Note the reentrance of the disordered region at low temperatures.

2.8.1 Compressible Ising model

A simple compressible Ising model [20] is given by the Hamiltonian

H = −J(v)
∑

(i,j)

σiσj +
1

2
kN(v − v0)

2, (2.123)

where σi = ±1, for all i = 1, . . . , N , the sum is over nearest-neighbor sites of a
crystal lattice, and v is the specific volume. For simplicity, we assume a quadratic
elastic energy term, where v0 and k > 0 are constant factors. Also, we assume
that the exchange interaction is given by the linear form

J(v) = J0 − J1(v − v0), (2.124)

where J0 and J1 are arbitrary constants.
At fixed volume, the canonical partition function is given by

Z = exp

[
1

2
βkN(v − v0)

2

]
ZI, (2.125)

where

ZI = Tr exp

⎡
⎣βJ(v)

∑

(i,j)

σiσj

⎤
⎦ . (2.126)

The mean-field approximation can be obtained from the variational inequality

G(HI) ≤ G0 (H0) + 〈H − H0〉0 = Φ, (2.127)
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where G(HI) = − lnZI/β, G(H0) = − lnZ0/β,

H0 = −η

N∑

i=1

σi (2.128)

is a free trial Hamiltonian, the average 〈· · · 〉0 is to be taken with respect to this
trial Hamiltonian, and

Z0 = Tr exp

[
βη

N∑

i=1

σi

]
= (2 cosh βη)N . (2.129)

Thus, we have

Φ = − 1

β
N ln[coshβη] − 1

2
J(v)qNm2 + ηNm, (2.130)

where

〈σi〉0 = tanhβη = m, (2.131)

and q is the coordination of the lattice.
From these equations, with the elimination of the parameter η, we finally

write

f(T, v, m) =
1

2
kN(v − v0)

2 +
1

N
Φ

=
1

2
k(v − v0)

2 +
1

β

∫
dm tanh−1 m − 1

2
J(v)qm2, (2.132)

which is the basis for a Landau expansion in terms of the order parameter m.
Note that there are just linear and quadratic volume-dependent terms. Also
note that the coefficient of the quadratic elastic term is always positive, which
indicates the non-critical character of the specific volume. Keeping up to fourth-
order terms in the magnetization per spin, we have the Landau expansion for
the free-energy density,

f = f(T, m, v) = f0(T ) +
1

2
k(v − v0)

2 +
1

2β
m2 − 1

2
J(v)qm2

+
1

12β
m4 + O(m6). (2.133)

Note that the coefficient of v2 is positive, and that there are no higher-order
terms in the specific volume v, which excludes the occurrence of qualitative
differences as compared with the critical behavior of a simple ferromagnet. Also,
note that, due to symmetry arguments, the spin–lattice coupling is given by a
term of the form vm2. If we introduce the pressure p, it may be more convenient
to write a Gibbs potential,

g = g(T, m, p) = f + pv, (2.134)
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which should be minimized with respect to the thermodynamic densities m and v.
Keeping the most relevant terms to describe the critical behavior, we can

write a Landau expansion for the Gibbs density,

g = am2 + m4 + vm2 + bv + v2, (2.135)

where a and b depend on the thermodynamic fields (temperature and pressure),
and some of the coefficients have been set to unity. Now it is easy to see that
the usual second-order transition, at a = 0, with b = 0, turns into a line of
second-order transitions, a = b/2, in the a–b phase diagram (see Fig. 2.14). This
is an example of a reconstruction of the phase diagram in terms of an extra
parameter b. In this case, the transition remains of second order. However, if we
describe the system in terms of temperature and pressure (instead of a and b),
and include a sixth-order term, it is easy to see the presence of a tricritical point,
beyond which the continuous transition changes to first order [20].

2.8.2 Ferromagnet in a staggered field

Another example of the effects of a non-ordering field, associated with a non-
critical order parameter, is given by a ferromagnet in a staggered field (or the
analogous problem of a two-sublattice antiferromagnet in a uniform field). The
spin Hamiltonian is given by

H = −J
∑

(i,j)

σiσj − H
∑

i∈A

σi + H
∑

j∈B

σj , (2.136)

where σi, σj = ±1 are Ising spin variables, J > 0, and the first sum is over
nearest-neighbor sites, i and j, belonging to different sublattices, A and B,
respectively. Note that H is an external (staggered) magnetic field, pointing up
in sublattice A and down in sublattice B. Also, note that we are not including
a uniform (physical) external field, which is coupled to the magnetization order
parameter.

a

b

Fig. 2.14. Phase diagram, in terms of the Landau parameters a and b, of a
compressible ferromagnetic model. The second-order line is given by a = b/2
(the hatched region corresponds to the ferromagnetically ordered phase).
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We now perform a variational mean-field calculation. Using the trial
Hamiltonian

H0 = −ηA

∑

i∈A

σi − ηB

∑

j∈B

σj , (2.137)

it is straightforward to write the mean-field potential

f(T, H, mA, mB) = − 1

2β
ln[2 coshβηA] − 1

2β
ln[2 coshβηB ]

− 1

2
HmA − 1

2
HmB +

1

2
ηAmA +

1

2
ηBmB − 1

2
JqmAmB , (2.138)

where

mA = tanhβηA and mB = tanhβηB . (2.139)

Using the definitions of the uniform magnetization, m, and the staggered
magnetization, ms, given by

m =
1

2
(mA + mB) and ms =

1

2
(mA − mB) , (2.140)

and making the simplifying assumption that H is a sufficiently weak field, it is
not difficult to obtain the conveniently truncated (Landau) expansion

f = f0(T ) +

(
1

β
− Jq

)
m2 +

1

6β
m4

− 2Hms +

(
1

β
+ Jq

)
m2

s +
1

β
m2

sm
2 + · · · , (2.141)

which should be compared with Eqs. (2.133) and (2.135), for the compressible
Ising model.

In the free energy (2.141), with J > 0 for a ferromagnetic system, the coef-
ficient of m2

s is always positive, which shows that the staggered magnetization
ms is a non-critical parameter (and which gives support to the truncation of
the expansion at terms of quadratic order in ms). In agreement with symmetry
requirements, there is now a biquadratic coupling between m and ms, which
leads to symmetrical transition lines under the change H → −H. From the
minimization of this Landau expansion, we obtain the asymptotic behavior (for
H → 0) of the critical line in the H–T phase diagram,

kBTc

Jq
= 1 − 1

4

(
H

Jq

)2

+ · · · , (2.142)

with the well-known quadratic depression of the critical temperature. Along
this second-order transition line, the critical behavior remains unchanged with
respect to the zero-field case.



NON-CRITICAL ORDER PARAMETERS AND RECONSTRUCTION 109

2.8.3 Reconstruction of the lyonematic phase diagrams

We are now prepared to discuss the phenomenological ideas of Tolédano and
Figueiredo Neto [18]. As we pointed out before, the experimental phase diagrams
of lyotropic nematic liquid crystals usually display a low-temperature reentrant
isotropic phase, which has not been explained by the Maier–Saupe model and
its various extensions. On the basis of the preceding ideas about the effects of
non-critical order parameters, let us introduce a phenomenological mechanism
to account for the reentrant behavior.

In the context of a model of intrinsically biaxial micelles [21], as presented
in Chapter 1 in order to account for the three nematic phases (NC, NB, and
ND), micelles are assumed to have the same orthorhombic symmetry in all of
the nematic phases. The shape anisotropy of the micelles depends on temper-
ature and relative concentrations of the compounds of the lyotropic mixture.
The macroscopic uniaxial or biaxial character of each phase is associated with
orientational fluctuations of micelles as a function of temperature and relative
concentrations. For example, we may sketch a micelle as a flat ellipsoid, with
three different axes; the distribution of the shape anisotropies is assumed to
change with temperature and relative concentrations.

In order to take into account these changes in form of the micellar aggreg-
ates, let us call nB and nS the number densities of “less spherical” and “more
spherical” aggregates, respectively, and introduce the (non-critical) parameter

τ =
nB − nS

nB + nS
. (2.143)

This scalar non-critical parameter is supposed to represent the continuous
change of shape anisotropy of the micellar population as a function of tem-
perature. As in the examples of the compressible model and of the ferromagnet
in a staggered field, this parameter preserves the existing singularities and leads
to their multiplication (along a line of transitions).

Consider the Landau expansion, given by Eq. (2.92), used in our previous
treatment of the biaxial–uniaxial nematic transition,

FBU = F0 +
1

2
Aδ +

1

3
B∆ +

1

4
Cδ2 +

1

6
E′∆2, (2.144)

where C and E′ are positive parameters, and δ and ∆ have their usual meanings
(traces of the square and the cube of the tensor order parameter, respectively).
From a phenomenological point of view, the non-ordering parameter τ can be
introduced by redefining δ (δ → δ + τ2), keeping the same form of the higher-
order invariant ∆, and introducing new linear and quadratic terms in τ . We then
write the Landau expansion

FBU(δ, ∆, τ) = F0 +
1

2
A(δ + τ2) +

1

3
B∆

+
1

4
C(δ + τ2)2 +

1

6
E′∆2 + C1τ +

1

2
C2τ

2. (2.145)
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Fig. 2.15. Section of the phase diagram, in terms of the coefficients C1 and B,
with two uniaxial and a biaxial nematic phase. The heavy solid lines cor-
respond to first-order boundaries. The biaxial–uniaxial transition remains
second order. Note the re-entrance of the isotropic phase and the occurrence
of two Landau points (L1 and L2).

The new parameter τ is non-critical if the coefficient of the quadratic term τ2 is
positive.

Assuming that A + C2 > 0, we can discard quartic terms in τ , and minimize
the truncated potential as usual. With the notation already used for discussing
the biaxial transition, we write

FBU = F0 + α(S) +
3

4
CS2τ2 + β(S)η2 +

1

4
Cη2τ2 +

1

2
γ(S)η4

+ C1τ +
1

2
C2τ

2 +
1

2
Aτ2. (2.146)

The minimization with respect to τ leads to the relation

τ = −C1

[
C2 + A +

1

2
C
(
3S2 + η2

)]−1

. (2.147)

In the Landau potential, the biquadratic form of the coupling terms, S2τ2 and
η2τ2, indicates that all transition lines are invariant under the change C1 → −C1,
which gives rise to the phenomenon of reconstruction of the phase diagram. The
coefficient C1, which is strongly dependent on temperature, gauges the changes
in micellar shape. We then draw a symmetric C1–B phase diagram, as shown
schematically in Fig. 2.15.
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3

PHASE DIAGRAMS OF LYOTROPIC MIXTURES

3.1 Introduction

We have already emphasized that polymorphism is one of the main features of
lyotropic liquid crystals. Phase diagrams of lyotropics, in terms of temperature
and relative concentrations of the components, display a wealth of stable
structures and regions. Changes of pressure can also lead to stable lyotropic
phases [1]. In this chapter, we initially review some general features of phase
diagrams, with emphasis on phase stability and the Gibbs phase rule. We
then describe the topology of the best-known and investigated phase diagrams
of binary, ternary and multi-component lyotropic mixtures. Finally, we refer
to phenomenological calculations for obtaining some features of these phase
diagrams.

3.2 General features of phase diagrams

The thermodynamic state of equilibrium of an isotropic system with r com-
ponents is characterized by the internal energy U , the volume V , and
the number of moles of each component, N1, N2, . . . , Nr [2]. The entropy
S = S(U, V, N1, . . . , Nr) is a homogeneous function of first degree of these
variables. We then write the entropy per mole,

s =
1

N
S = s(u, v, x1, . . . , xr−1), (3.1)

where u = U/N and v = V/N , with N = N1 + · · · + Nr, are the energy per
mole and the specific volume, respectively, and xi = Ni/N is the molar relative
concentration of component i = 1, . . . , r. Note that

x1 + x2 + · · · + xr = 1, (3.2)

and that we need only r+1 variables to fully characterize the equilibrium thermo-
dynamic state of a simple r-component system. Usually, it is more convenient
to work in the Gibbs representation, in which temperature T and pressure p,
instead of u and v, are taken as the independent variables. For example, in the
Gibbs representation, with r = 2 components (let us call them A and B), we need
three independent variables (besides T and p, we may choose the relative molar
concentration xA = NA/(NA + NB) of component A).

We now consider a composite system of several simple subsystems (see
Fig. 3.1). At given values of temperature and pressure, if the walls of this com-
posite system are not restrictive, the chemical potential associated with each
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NA
I , NB

I

NA
II, NB

II

NA
III, NB

III

Fig. 3.1. Composite system with three subsystems (I, II, and III) of two
components (A and B) each. The system is in equilibrium at fixed values
of temperature and pressure. The walls between subsystems are dia-
thermal, moveable, and permeable to all components. The outer border is
impermeable.

p

pt

Tt T

Solid
Gas

Liquid

Fig. 3.2. Sketch of a T–p phase diagram of a one-component system. Solid lines
indicate first-order transitions (coexistence of phases). At the triple point, Tt,
pt, there is coexistence among solid, liquid, and gas phases.

component is required to assume the same (equilibrium) value in all subsystems
(phases).

For example, consider the equilibrium between a solid (S) and a liquid (L)
phase of a simple system of one component only (r = 1). The chemical potential,
which is the Gibbs free energy per mole, is a function of T and p only. It assumes
the values µS(T, p) and µL(T, p) in the solid and liquid phases, respectively. In
equilibrium, we have

µS(T, p) = µL(T, p), (3.3)

which leads to a relation between temperature and pressure. Therefore, there
may be coexistence between two distinct phases along a line in a T–p phase
diagram (see Fig. 3.2, which illustrates the phase diagram of a pure fluid; along
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the solid lines there is coexistence between two distinct phases). We now look at
the equilibrium among three different phases (liquid L, solid S, and gas G). In
this case, there are two equations, given by

µS(T, p) = µL(T, p) = µG(T, p), (3.4)

which lead to the location of the triple point, at well-defined values of
temperature and pressure.

As another example, consider the equilibrium between solid (S) and liquid
(L) phases in a simple system of r = 2 components. Note that we have r +1 = 3
independent variables. The chemical potential of component i (i = A,B) may
be written as µL

i = µL
i (T, p, xL

A) and µS
i = µS

i (T, p, xS
A), in the liquid and solid

phases, respectively. We then write the equilibrium conditions,

µL
A

(
T, p, xL

A

)
= µS

A

(
T, p, xS

A

)
(3.5)

and

µL
B

(
T, p, xL

A

)
= µS

B

(
T, p, xS

A

)
, (3.6)

from which we find xL
A and xS

A in terms of T and p (note that xL
A + xL

B = 1 and
xS

A + xS
B = 1). In equilibrium, the coexistence between solid and liquid phases

takes place for a certain range of independently assigned values of temperature
and pressure. In Fig. 3.3, we draw a graph of T versus the molar concentration

Gas

Liquid

Gas + Liquid

0
xL

A

T

xG
A 1

Fig. 3.3. Temperature versus concentration phase diagram, at fixed pressure,
for a system with two components (A and B). The tie line (at given values of
T and p) indicates the coexistence between a liquid phase, with relative molar
concentration xL

A, and a gas phase, with molar concentration xG
A. Note that

f = 3, in the pure liquid and pure gas phases, and f = 2 in the coexistence
region.
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xA = NA/(NA + NB) for a binary solution of components A and B at a given
value of pressure. We now assume that there are three phases, S, L, and G, in
equilibrium. We then have

µL
A

(
T, p, xL

A

)
= µS

A

(
T, p, xS

A

)
= µG

A

(
T, p, xG

A

)
, (3.7)

and

µL
B

(
T, p, xL

A

)
= µS

B

(
T, p, xS

A

)
= µG

B

(
T, p, xG

A

)
, (3.8)

from which we obtain the compositions and a relation between temperature and
pressure. In this example of three-phase coexistence in a binary system, it is
still feasible to freely change one of the thermodynamic variables (temperature,
for example), without moving out of the region of coexistence among the three
phases. In this system of two components, it is easy to see that coexistence
among four different phases is restricted to well-defined values of all variables
(temperature, pressure, and compositions).

3.2.1 The Gibbs phase rule

The Gibbs phase rule is a generalization of these arguments. Suppose that
we have equilibrium among M phases in a system with r components. Each
phase may be characterized by temperature, pressure, and relative molar
concentrations, xα

1 , xα
2 , . . . , xα

r−1, with α = 1, . . . , M . There is a total of
2 + M(r − 1) variables, and M − 1 equations for the chemical potential of each
component. Therefore, in this system with r components and M coexisting
phases, the number f of independently assigned thermodynamic variables is
given by

f = [2 + M(r − 1)] − r(M − 1) = r − M + 2. (3.9)

This number f may be regarded as the “number of thermodynamic degrees of
freedom” which can be independently assigned if we still keep the coexistence
among the M phases of the r-component system. Consider again the phase
diagram for a binary system (r = 2) as sketched in Fig. 3.3. In the gas (G) and
liquid (L) phases, which are associated with r = 2 and M = 1, we have f = 3
(temperature, pressure, and molar fraction of component A, for instance, can be
freely changed). In the coexistence region, associated with r = 2 and M = 2, we
have f = 2. Within this liquid-gas coexistence region, given the values of T and
p, we determine the molar concentration xL

A and xG
A uniquely (see the tie lines

in Fig. 3.3).
In Fig. 3.4, we sketch a section of constant pressure of a typical phase diagram

for a liquid–solid two-component system, with the presence of two solid phases
(α and β) of distinct crystal structures. The curve BDA is called a liquidus
curve, and the curves BEL and ACJ are solidus curves. Point G corresponds
to a two-phase system (a liquid of relative molar concentration xL

A = xH and
a solid of molar concentration xα

A = xF). Point K corresponds to α-solid at J



116 PHASE DIAGRAMS OF LYOTROPIC MIXTURES

T

B

E

L K J

D C

GH
F

A

Liquid

β
Solid

α
Solid

xL
A

xA

0 1
xα

A

Fig. 3.4. Constant pressure section of a typical temperature versus concentra-
tion phase diagram of a binary system.

in equilibrium with β-solid at L. A liquid with composition xL
A = xD is called

eutectic.

3.2.2 Ternary systems

The equilibrium state of a ternary system is characterized by four thermo-
dynamic variables. At fixed temperature and pressure, these systems can be
represented by an equilateral triangle (see Fig. 3.5). From point P, we draw
lines parallel to the sides of this triangle. The length of these lines represents the
relative molar fractions xA, xB, and xC of the three components (it is straightfor-
ward to show that xA +xB +xC = 1). The vertices of the triangle correspond to
pure substances. A line parallel to a side of the triangle corresponds to a series of
ternary systems in which one of the molar fractions remains fixed. The variation
of some property of a ternary system may be represented by a three-dimensional
graph, in which the base is the compositional triangle, and the height is the
particular thermodynamic property.

In order avoid any ambiguity, it is usual to construct an oriented triangle,
which is known as a “partial isotherm” of the phase diagram (see Fig. 3.6). From
each vertex of the triangle, there is an increase of the concentration of a given
compound, according to the counter-clockwise direction. The compositions at
a particular point are given by the (oriented) lines parallel to the sides of the
triangle. Each of these lines is now oriented according to the same counter-
clockwise direction of the original axes. The positions at which the arrows touch
the axes give the concentrations of each component of the mixture. In Fig. 3.6,
point P is associated with the concentrations (in 100 M%) xA = 0.7, xB = 0.1,
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Fig. 3.5. Equilateral triangle for representing the relative molar concentrations
of a ternary system (note that xA + xB + xC = 1). The vertices correspond
to pure phases.
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Fig. 3.6. Sketch of a triangular phase diagram (also known as partial isotherm)
of a hypothetical mixture with three components. The axes are represented
in molar percentages, M%.
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and xC = 0.2, of the three components. This representation of the axes in molar
percentages, M%, is sometimes changed to a weight percentage, wt%, of each
component. The topology of the phase diagrams is obviously unchanged in these
two representations; only the loci of the different phases may be strongly changed
from one representation to another.

In the following sections we give a number of examples of experimental
realizations of these phase diagrams.

3.3 Experimental phase diagrams

Experimentalists use different, and complementary, techniques, in special X-ray
and neutron scattering and diffraction, NMR spectroscopy, electrical and optical
measurements, in order to obtain the phase diagrams of lyotropic liquid crystals.
As we are dealing with multi-variable complex systems, the graphical represent-
ations are usually reduced to partial isotherms (for mixtures with more than two
components) and surfaces of temperature versus relative concentrations.

3.3.1 Phase diagrams of binary lyotropic mixtures

Binary lyotropic mixtures are generally composed of one amphiphilic molecule
and a (polar or non-polar) solvent. As an introductory example, consider the
potassium palmitate (C16H31KO2)/water mixture [3]. The phase diagram is
usually represented in an isobaric surface of temperature versus relative concen-
tration of the amphiphile, as shown in Fig. 3.7. Other binary mixtures composed
by soaps and water display similar phase diagrams. The liquid crystalline phases
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Fig. 3.7. Phase diagram of the potassium palmitate/water mixture, in terms of
temperature versus concentration [3].
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are in a region between the crystalline-type phases (at low temperatures) and the
isotropic solution (at high temperatures). For lyotropic mixtures, we note that
low and high temperatures refer to about 10 and 200◦C, although these limits
are highly dependent on the relative concentrations of the components; usually,
larger concentrations of solvents lead to smaller values of the high-temperature
limit of the liquid crystalline domain. At high temperatures, we have an iso-
tropic micellar phase, which is formed by micelles in the solvent. However, the
disordered phase can also be a mixture of isolated amphiphilic molecules and the
solvent.

In the low temperature region of the phase diagram, just below the crystalliza-
tion line, called Tc in Fig. 3.7, there is a region, named curd, with peculiar optical
and structural behavior. At very high amphiphile concentrations, it gives rise to
a sequence of phases named curd fibers, waxy, with sub- and super-waxy variants.
These waxy and super-waxy phases were shown to present rectangular centered
and rectangular centered/orthorhombic body-centered lattice symmetry of the
amphiphiles, respectively [4,5]. This region below Tc is also characterized as the
locus of the gel and the coagel phases. The gel phase is located just below Tc,
where soap molecules form monolayers with an interdigitated molecular struc-
ture. Its structure is intermediate between the liquid crystalline state, where
(in general) carbonic chains are in a liquid-like state, and the crystalline phase,
with ordered carbonic chains. The coagel state is formed by poorly developed
domains of the gel phase. Above Tc, in most of these systems, the alkyl chains of
the amphiphilic molecules are in a melted state, without positional ordering. The
orientational parameters of the different carbon atoms in the chain, measured by
NMR, indicate that there is a decreasing degree of order from the atom located
near the amphiphile head towards the CH3 ending group [6].

The lamellar Lα and hexagonal Hα phases occupy a region between the Tc

line and the high-temperature isotropic phase. The Hα phase is also named
middle phase because it is located approximately in the middle (about 50 wt%
of water) of the phase diagram. The lamellar phase, also called neat phase,
is stable at a larger concentration of the amphiphile. A deformed hexagonal
phase, sometimes characterized as a ribbon phase, and other intermediate phases
may be present between the Lα and the Hα phases [7]. Three-dimensionally
ordered phases, as micellar and bicontinuous cubic phases [8], and phases showing
a mesh structure [9], have been identified in the so-called transition domains,
between the isotropic phase and the Lα and Hα phases. A striking feature of
these phase diagrams is the presence of many two-phase, or even multi-phase,
domains, with the coexistence of different phases, and the associated first-order
transition boundaries.

Besides these phases, which are the most common structures in bin-
ary soap/solvent mixtures, there may appear other phases in more complex
amphiphile mixtures [10], as aqueous monoglycerides, mixtures of sodium
bis-2-ethylhexyl sulfosuccinate (known as AOT) and water, and aqueous sys-
tems of amphiphiles of biological origin (e.g. lecithin, mitochondrial lipids,
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phospholipids). Some of these mixtures display phases with an inverted
polymorphism. The topology of the amphiphilic molecules which favors the
appearance of inverted phases is such that the polar head tends to occupy a
smaller area than the alkyl chains (in some cases, two or more chains may be
attached to a polar head). An inverted hexagonal phase (Hi

α) was found in
the phase diagram of a mixture of sodium bis-2-ethylhexyl sulfosuccinate and
water [11] (see Fig. 7.3). Uniaxial nematic phases were found in binary mix-
tures of Cs perfluoroctanoate and D2O [12]. A mixture of pentaethylenglychol
n-dodecyl ether (known as C12E5) and water [13] presents lamellar (Lα), direct
(L1) and inverted (L2) micellar, sponge (L3), hexagonal (Hα), and cubic (Q)
phases, as a function of temperature and relative concentrations of the com-
pounds (see Fig. 3.8). A mixture of octaethylene glycol dodecyl ether (C12EO8)
and water [14] presents a bicontinuous Ia3d cubic phase at about 24◦C.

A mixture of sodium dodecylsulfate (SDS) and water presents one of the
richest phase diagrams associated with a lyotropic liquid crystal (see Fig. 3.9)
[15,16]. One-dimensional (lamellar Lα), two-dimensional (hexagonal Hα and
monoclinic Mα) and three-dimensional (tetragonal Tα, cubic Q, and rhombo-
hedral Rh) phases are present in this phase diagram. Between the lamellar and
the direct hexagonal phase structures, the amphiphilic aggregates change their
form and spacial arrangement, giving rise to intermediate phases. If we look at
decreasing SDS concentrations, from the Lα phase structure, with flat lamellae,
there are periodic corrugations of the bilayers, leading to the formation of rods,
of ribbon type, organized in tetragonal, cubic and rhombohedral phases. In the
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Fig. 3.8. Phase diagram of the binary C12E5/water mixture [13]. Labels refer
to lamellar (Lα), direct and inverted micellar (L1 and L2), sponge (L3),
hexagonal (Hα), and cubic (Q) phases.
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Fig. 3.9. Phase diagram of a mixture of sodium dodecylsulfate (SDS) and
water [16]. Labels refer to one-dimensional lamellar (Lα), two-dimensional
hexagonal (Hα), and monoclinic (Mα), three-dimensional tetragonal (Tα),
cubic (Q) and rhombohedral (Rh) phases; Cr represents the SDS crystalline
hydrates.

region of low SDS concentration, cylinders have a circular cross section, and the
hexagonal phase is stabilized.

There are some lyotropic mixtures with more than two components, in par-
ticular with salts, which are called pseudo-binary mixtures, since the third
component is not an amphiphile or a solvent [17–19]. A mixture of salt and
water, named brine, is commonly used in order to prepare lyotropic liquid crys-
tals. Mixtures of potassium laurate (known as KL, COOK(CH2)10CH3), KCl and
water; Cs decylsulfate, CsNO3 and water; and decylammonium chloride, NH4Cl
and water, are examples of this type of system. At particular values of temper-
ature and relative concentrations, these mixtures also present uniaxial nematic
phases. However, no biaxial nematic phases were ever observed in these mixtures.
A mixture of cetylpyridinium chloride (known as CPCl), hexanol (C6H14O) and
brine (0.2 M of NaCl) [20] shows a radial-type topology of the L1,Lα and L3

phases, with the transition lines converging towards the vertices of the trian-
gular isothermal section of the phase diagram, with small CPCl and hexanol
concentrations. Besides Lα and L3 phases, the AOT/brine (water with NaCl)
mixture [21] also presents a cubic bicontinuous phase, Q. There is a coexistence
region (Q + L3) separating the sponge from the cubic phase.

3.3.2 Phase diagrams of ternary lyotropic mixtures

Although the polymorphism of binary lyotropic mixtures is already very rich,
the addition of a third component (a solvent or another amphiphile, which
is called cosurfactant) introduces new phases and topologies. Phase diagrams
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of these systems are usually represented in terms of the equilateral triangles of
concentrations (partial isotherms), as described in the introductory section of
this chapter. Also, we may use particular surfaces for constructing alternative
representations of the four-dimensional phase diagram of ternary mixtures. For
example, we may fix the molar (or weight) percentage of one of the components
(usually the cosurfactant). In this partial iso-concentration representation, we
draw a rectangular plot, in which temperature and concentration of the main
amphiphile are the two coordinates.

We now consider three examples of ternary mixtures: (a) Na octylsulfate
[CH3(CH2)7SO3Na], 1-decanol [CH3(CH2)9OH, known as DeOH] and water
[22], (b) K laurate [COOK(CH2)10CH3], 1-decanol and water [23], and (c) Na
decylsulfate [CH3(CH2)9OSO2 ONa, known as SdS], 1-decanol and water [24].

In Fig. 3.10, we sketch a partial isotherm, at 20◦C, of a mixture of Na octyl-
sulfate, 1-decanol and water. The role of the alcohol in the “skeleton” formed by
the main amphiphile consists in reducing the interfacial curvature of the surfaces.
In the middle of the triangle (for DeOH and water concentrations of about 40 and
50 wt%, respectively), there is a large region of a lamellar Lα phase, extending
towards larger concentrations of water. The Hα phase region is located at con-
centrations of about 60 and 10 wt% of Na octylsulfate and DeOH, respectively.
Direct and inverse micellar isotropic phases are present at relative concentra-
tions of about 8 wt% DeOH and 80 wt% water, in the case of the L1 phase,
and 80 wt% DeOH and 10 wt% water, for the L2 phase. Other lyotropic phases
may appear if we change temperature and relative concentrations of the different
components of the mixture. In general, the same features are present in most
of the partial isotherms of ternary mixtures composed by a soap, or detergent,
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Fig. 3.10. Partial isothermal representation, at 20◦C, of a ternary mixture of
Na octylsulfate, 1-decanol, and water [22].
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an alcohol and water. If the main amphiphile is a molecule whose topology
favors the formation of inverted structures, as aerosol OT (di-2-ethylhexyl
Na sulfosuccinate), there may appear lower-symmetry inverted phases, as the
reversed hexagonal structure.

A K laurate/1-decanol/water mixture is one of the most interesting and stud-
ied lyotropic system. This system was used by Yu and Saupe [23] to show the
existence of a biaxial nematic phase (NB) located between the known uniaxial
calamitic (NC) and discotic (ND) phases. The phase diagram, at partial iso-
concentration of 6.24 wt% DeOH has already been sketched and discussed in
Chapter 1. A similar topology has been observed in other lyotropic mixtures
with a surfactant, a cosurfactant and water, as the SdS/DeOH/water mixture,
for example [25]). The range of existence of the NB phase is strongly dependent
on the ratio between the molar concentrations of surfactant and cosurfactant. It
is important to remark that the only observations of a biaxial nematic phase have
been reported in mixtures of this nature, with at least two amphiphiles. Micellar
(direct) isotropic phases can be present at higher or even lower temperatures,
with respect to the nematic domains, in partial iso-concentration diagrams of
ternary lyotropic mixtures. The low-temperature isotropic phase is explained
in terms of modifications of the shape anisotropy of micelles, which tend to
increase the thickness of the double layer as the temperature decreases. This is
a consequence of the reduction of the probability of gauche configurations of the
alkyl chains for decreasing temperatures. Usually, the nematic domain in the
partial isotherm of the phase diagram of ternary mixtures is very small. In other
partial iso-concentration diagrams, we can also find different phases with lower
symmetries.

The partial isotherm of the SdS/DeOH/water mixture, at 23◦C, with the
localization of a nematic domain, is sketched in Fig. 3.11. This nematic region is
located at relative concentrations of SdS/DeOH/water of about 40/10/50 wt%
(see Fig. 3.11(a); see the zoom view sketched in Fig. 3.11(b)). This region is lim-
ited by the following phases: Lα, at the upper right side; Rα and Hα, at the lower
right side; L1 at the lower left side. There are large coexistence domains between
the nematic phases and their neighboring phases. In many cases, there is a coex-
isting isotropic micellar phase. As we pointed out before, the increase of DeOH
concentrations favors flatter surfaces of the amphiphilic structure. This explains
the Hα → Rα → Lα phase sequence along the line at a fixed concentration of
SdS, of about 0.45 wt%, as we decrease the concentration of water.

In analogy with the case of pseudo-binary mixtures, there are also pseudo-
ternary mixtures, in which a salt is added to the original ternary mixture. A
mixture of Na dodecylsulfate (known as SDS), dodecane (C12H26), pentanol
(C5H12O) and a brine (water with NaCl) [26] displays a L3 phase in the oil and
water rich domains of the phase diagram. A mixture of SDS, pentanol and brine
(water NaCl) [27,28] displays an interesting topology on a surface of the phase
diagram at constant temperature and NaCl concentration. Besides regions of
Lα phase, sponge phase regions have also been observed, with a second-order
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Fig. 3.11. Sketch of the partial isothermal representation, at 23◦C, of the
SdS/DeOH/water mixture [24]: (a) localization of the nematic domain;
(b) zoom of the nematic domain and its neighboring phases (micellar
isotropic, L1, hexagonal, Hα, rectangular, Rα, and lamellar, Lα).

symmetric–asymmetric phase transition. This concept of symmetric state is
related to the sponge phase, in which case the inside and the outside volumes
occupied by the solvent, and separated by the amphiphilic bicontinuous struc-
ture, are identical; the asymmetric state is the situation in which this symmetry
is broken. Regions of two and three coexisting phases are also present in this
phase diagram.

Pseudo-ternary mixtures, with at least one chiral component, give rise to
lyotropic cholesteric phases (ChC or ChD). As examples, we mention mixtures
of KL, KCl, water, and cholesterol (C27H45OH) [29], and di-sodium N -lauroyl
aspartate, NH4Cl, water, and DeOH [30].
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3.3.3 Phase diagrams of quaternary lyotropic mixtures

One of the striking features of lyotropics is the possibility of mixing a large
number of components. In most of these cases, the topology of the phase dia-
grams changes with each new addition. Let us look at the phase diagrams
of some quaternary mixtures. A complete description of these systems with
r = 4 components requires the use of five independent thermodynamic vari-
ables. Therefore, we are forced to introduce several types of constraints in order
to draw two-dimensional representations of the phase diagrams.

In Fig. 3.12(a), we sketch a surface of the phase diagram of a mixture of SDS,
1-pentanol (known as POH), cyclohexane (C6H12, known as C6) and water [31].
There are large Lα and isotropic domains. A triangular representation is sketched
in Fig. 3.12(b) [32]. Besides Lα and isotropic phases, of micellar or microemul-
sion character, there is a hexagonal phase in the left corner of the triangle (at
small pentanol concentrations, not shown in Fig. 3.12(b)). The phase sequence
hexagonal → lamellar, for increasing concentrations of pentanol, has already
been observed in other lyotropic mixtures, which reinforces the proposal that
the presence of alcohol reduces the interfacial curvature of the surfaces. Another
interesting surface of this phase diagram, at 21.5◦C and at a molar ratio 0.17
between the partial molar concentrations of SDS and pentanol, is sketched in
Fig. 3.12(c) [33]. In this representation, at a molar concentration [SDS+POH] ∼
7.5 M%, there is an almost linear domain of the L3 phase. At [SDS + POH] ∼
15 M%, there is an extensive inverted micellar isotropic phase, L2, parallel to
the sponge domain. Near the left vertex of the triangular representation, there
are several two-phase coexistence regions, always involving an isotropic micellar
phase and either L3, a microemulsion, or a (thermodynamically unstable) emul-
sion phase. In the left corner of the triangle, in the neighboring region of the
L3 phase, there is coexistence between a microemulsion and a micellar isotropic
phase.

Another interesting quaternary system is a mixture of SDS, dodecane,
pentanol, and water [34,35]. A particular partial isotherm, at room temper-
ature and at [water wt%] /[ SDS wt%] = 1.2, is sketched in Fig. 3.13. Again, the
sides of the triangle represent POH, with increasing weight percentage concen-
trations from the bottom to the top of the figure. In the poor-dodecane region,
there is a phase sequence hexagonal → lamellar → L1 for increasing amounts of
POH. A small domain of the L3 phase is found in the dodecane-rich vertex of the
triangle.

If one of the components of the quaternary mixture is an optically
active molecule, there may exist cholesteric phases in the phase dia-
gram. Examples of particular surfaces of these phase diagrams are given in
Fig. 3.14(a), for KL/DeOH/water/brucine sulfate heptahydrate (C46H68N4O19S,
known as BS) [36], and in Fig. 3.14(b), for KL/DeOH/water/l-N -lauroyl
potassium alaninate (known as l-LAK) [37]. There are cholesteric phases,
ChC,ChD, and ChB, in these surface phase diagrams. Cholesteric phases



126 PHASE DIAGRAMS OF LYOTROPIC MIXTURES

5
Oil/water (swelling ratio)

m
/C

o
-s

u
rf

ac
ta

n
t 

(1
-p

en
ta

n
o

l)

0

Iso
tro

pic

0

1

2(a)

10
Cyclohexane (wt%)

30

20ISO

10

70 80 90

Pentanol (wt%)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.01.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.9

0.8

0.7

0.6

0.5

L3

L2

0.4

0.3

0.2

0.1

0.0

ISO + µ

ISO + µ

ISO + E

ISO + L3

[H
2
O

] 
(1

00
 M

%
)

[C
6 ] (100M

%
)

[�m] (100 M%)

(b)

(c)

Lamellar
Lα

Fig. 3.12. Sketch of a particular surface of the phase diagram of a quatern-
ary mixture of SDS, 1-pentanol (POH), cyclohexane and water: (a) at room
temperature, the water volume is fixed, and the volume ratio of water/SDS
is 2.5 [31]; (b) the volume ratio of water/SDS is fixed at 2.5 [32]. The sides
of the triangle represent the pentanol concentration, which increases from
the bottom towards the upper vertex; Lα and ISO stand for the lamellar
and isotropic phases, respectively; (c) representation at 21.5◦C and molar
ratio [SDS]/[POH] = 0.17. The labels Iso, E, µ, L2 and L3 refer to isotropic,
emulsion, micro-emulsion, inverted micellar, and sponge phases, respectively;
φm = [SDS + POH] is the molar concentration of SDS and POH.
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Fig. 3.13. Sketch of a particular partial isotherm, at room temperature and
[water wt%] /[SDS wt%] = 1.2, of a mixture of SDS, dodecane, pentanol,
and water [35].

were also found in pseudo-quaternary phase diagrams of mixtures of SdS,
Na2SO4, water, cholesterol, and glycine (NH2CH2COOH), and cesium decyl-
sulfate, Na2SO4, water, tartaric acid [HOOCCH (OH)CH(OH)COOH], and
glycine [29].

3.3.4 Specific features of the topology of phase diagrams of
lyotropic mixtures

The analysis of the different phase diagrams described in the previous sec-
tions, together with the examples of lyotropic mixtures displaying specific phase
sequences, lead to some interesting conclusions about the polymorphism in these
systems.

In Chapter 1 we described almost 30 different phases that may be displayed by
lyotropic mixtures. Almost all of these structures are already observed in binary
mixtures. However, there are some particular phases that have been observed
in mixtures with a surfactant and a cosurfactant only. One of these exceptions
is the biaxial nematic phase, which has been found in phase diagrams of some
ternary mixtures only. The two-dimensional tetragonal phases have also been
found in mixtures with at least three components. The cholesteric phases require
the addition of a chiral compound to a previously nematic phase. They exist in
pseudo-ternary and quaternary mixtures.

Lyotropic phase diagrams are also characterized by the remarkable possibil-
ity of reconstructive phase transitions between ordered structures [38,39]. In this
kind of transition, molecular aggregates can drastically modify their geometry
and organization in space, as a function of relative concentrations of the different
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compounds of the mixture, temperature and pressure. These modifications of
shape of the aggregates may lead to strong first-order phase transitions, with
large phase coexistence domains between isolated phases. Another important
feature of the phase diagrams of lyotropic liquid crystals is the stabilization of
inverted (or reverse) phases [10]. In the direct–inverted transition, there may
occur an interchange of roles of the polar and nonpolar parts of the struc-
ture. For example, in the case of direct micellar phases, we can define the
inner and outer parts of the micelles, and the nonpolar medium is located
inside the micelles. In the case of inverted structures, the nonpolar medium
is outside of the micelles. We may apply to lyotropics a symmetry operation,
named fluid-reversal symmetry [39], which transforms a direct to an inverted
phase.
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3.4 Calculations for the phase diagrams of
binary lyotropic mixtures

Consider a binary lyotropic mixture formed by a solvent (W) and a surfactant
(S). Let us call xW = NW/N , and xS = NS/N , with N = NW + NS, the
relative molar concentrations of solvent and surfactant, respectively, and define
the dimensionless relative density

ρ = xS − xW. (3.10)

Assuming that the volume and the total number of moles are fixed, the internal
energy per mole can be written as

u = u(s, ρ), (3.11)

where s is an entropy per mole. We then write

du = Tds + µdρ, (3.12)

where µ is a (relative) chemical potential associated with the density ρ.
It is now convenient to use a Legendre transformation in order to define a

Helmholtz free energy per mole,

f = f(T, ρ) = u − Ts, (3.13)

where

df = −sdT + µdρ, (3.14)

so that

µ =

(
∂f

∂ρ

)

T

. (3.15)

A second Legendre transformation leads to the grand thermodynamical potential
per mole,

ϕ = ϕ(T, µ) = f − µρ. (3.16)

At a given temperature, two distinct phases are in equilibrium if they have
the same chemical potential. We then write the equilibrium condition

[(
∂f

∂ρ

)

T

]

1

=

[(
∂f

∂ρ

)

T

]

2

, (3.17)

where the subscripts 1 and 2 refer to the distinct phases. In order to guarantee
a continuous thermodynamic potential, we also require that

ϕ1(T, µ) = ϕ2(T, µ), (3.18)
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Fig. 3.15. Graph of the Helmholtz free energy per mole f versus the density
ρ for sufficiently low temperatures. Note that convexity is recovered by the
double-tangent construction. The curly line indicates the unstable solutions.

which is equivalent to
[
f(T, ρ) −

(
∂f

∂ρ

)

T

ρ

]

1

=

[
f(T, ρ) −

(
∂f

∂ρ

)

T

ρ

]

2

. (3.19)

If we draw a graph of f in terms of ρ, it is an easy exercise to see that these
equations correspond to the well-known double-tangent construction (see the
illustration in Fig. 3.15).

3.4.1 Simple example of a binary phase diagram

According to Tolédano, et al. [41], we now assume that f(T, ρ) can be written
as an expansion in powers of the dimensionless relative density ρ,

f(T, ρ) =

p∑

n=2

1

n
anρn, (3.20)

which is very much reminiscent of the Landau expansions of Chapter 2 (since ρ
can be associated with the order parameter). Also, for a simple binary system,
and still being quite general, we assume that a2 = a = T − T0, a3 = −1, a4 = 1,
and an = 0 for n ≥ 5. Thus, we have

f(T, ρ) =
1

2
(T − T0)ρ

2 − 1

3
ρ3 +

1

4
ρ4. (3.21)

At sufficiently large temperatures, f(T, ρ) is a convex function of ρ, with a
minimum at ρ = 0, which prevents the possibility of coexistence between two
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phases (with different values of ρ). Looking at the second derivative of f ,

∂2f

∂ρ2
= T − T0 − 2ρ + 3ρ2, (3.22)

we see that there is a violation of convexity, ∂2f/∂ρ2 < 0, if T − T0 < 1/3, and

1

3
− 1

3

√
1 − 3(T − T0) ≤ ρ ≤ 1

3
+

1

3

√
1 − 3(T − T0), (3.23)

which leads to the existence of a critical point at T − To = 1/3, with ρ1 = ρ2 =
1/3, and which corresponds to ∂2f/∂ρ2 = 0.

The ρ–T phase diagram of Fig. 3.16 comes from the solutions of Eqs (3.17)
and (3.19), which can be written as

aρ1 − ρ2
1 + ρ3

1 = aρ2 − ρ2
2 + ρ3

2, (3.24)

and

−1

2
aρ2

1 +
2

3
ρ3
1 − 3

4
ρ4
1 = −1

2
aρ2

2 +
2

3
ρ3
2 − 3

4
ρ4
2, (3.25)

where a = T − T0. Discarding the trivial homogeneous (unstable) solutions,

ρ1 = ρ2 =
1

3
(1 −

√
1 − 3a), (3.26)

T

T0 + 1/3

T0
W + S

CMC CMC�1/3�1 �2

�

Fig. 3.16. Phase diagram, in terms of density ρ and temperature T , for the
simple solvent–surfactant model; CMC and CMC′ indicate critical micellar
concentrations for direct and inverted micelles.
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it is easy to find a pair of physical non-trivial solutions,

ρ1 =
1

3

[
1 −
√

3(1 − 3a)] and ρ2 =
1

3
[1 +

√
3(1 − 3a)

]
. (3.27)

In Fig. 3.15, we give an illustration of the double-tangent construction. Besides
indicating the physical solutions ρ1 and ρ2, we also indicate the region of instabil-
ity. The simple phase diagram in Fig. 3.16 can be trivially obtained from these
solutions. Also, it is not difficult to consider a negative term −a3 �= −1. We then
have the exact solutions

ρ1,2 =
1

3

[
a3 ±

√
3(a2

3 − 3a)

]
. (3.28)

3.4.2 Additional examples

A phase diagram with a eutectic point (Fig. 3.17) can be obtained from the
expansion

f(T, ρ) =
1

2
(T − TE)(ρ − ρE)2 +

1

3
a3(ρ − ρE)3 +

1

4
a4(ρ − ρE)4, (3.29)

where TE is the eutectic temperature, and the coefficients a3 and a4 > 0 should
be chosen to fit the slopes of T (ρ) at the eutectic and the limit compositions.
Using the same approach, with the inclusion of higher-order powers of the density
ρ, we can draw much more complex phase diagrams.

Anisotropic liquid crystalline phases can be described by the inclusion of
additional symmetry-breaking order parameters. For example, we can write a
free energy of the form

ϕ(T, µ) = −µρ + f(T, ρ) + fL(T, η) + fGL(ρ, η), (3.30)

T

E

CMC CMC��E

�

Isotropic

Fig. 3.17. Section of the phase diagram, in terms of temperature versus density,
for a binary system with a eutectic point (E).
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where

fL(T, η) =
1

2
(T − Tc)η

2 +

p′∑

n=3

1

n
αnηn, (3.31)

and

fGL(ρ, η) = δ12ρη2 + δ22ρ
2η2 + · · · + δmnρmηn. (3.32)

In order to illustrate this procedure, consider the example

ϕ(T, µ) = −µρ +
1

2
(T − T0)ρ

2 +
1

4
ρ4+

+
1

2
(T − Tc)η

2 +
1

4
η4 + δ12ρη2, (3.33)

in which the cubic term has been eliminated by a shift of the density ρ.

3.4.3 An illustrative example: Phase diagram of a mixture of
sodium laurate and water

The phase diagram of a mixture of sodium laurate (C12H23NaO2) and water,
which is topologically similar to the previously described diagram of a mix-
ture of potassium palmitate and water, is sketched in Fig. 3.18 [40]. The liquid
crystalline phases are in a region between the crystalline-type phases (at low-
temperatures) and the isotropic solution (at high temperatures). For smaller
water concentrations, there are larger temperature domains of the liquid crystal-
line phase. The isotropic micellar phase is formed by the micelles in the solvent.
At high temperatures, however, the isotropic phase is a mixture of isolated
amphiphilic molecules and the solvent. In the low-temperature region, below
the crystallization line (Tc in Fig. 3.18), there is a curd domain. At high con-
centrations of amphiphiles, of about 90 wt%, there appear supercurd, waxy, and
superwaxy phases. The lamellar Lα and hexagonal Hα phases are located between
the Tc line and the high-temperature isotropic phase. The Hα phase is located
at about 50 wt% of water. The domain of the lamellar phase, which extends to
higher temperatures, is stable at larger concentrations of amphiphile. The trans-
itions between the different liquid crystalline phases and between them and the
isotropic phase are characterized by large phase coexistence regions. In the Hα

and Lα phases, the carbon chains are in a liquid-like state.
A phenomenological description of some of the main features of this phase

diagram can be obtained as follows [41]. First, we note that the equilibrium
transition line T(ρ) separating the isotropic micellar region from the ordered
lyotropic phases displays two maxima and an intermediate eutectic-type min-
imum. Therefore, a power series expansion of ρ should include terms up to third
order in (ρ − ρE), where ρE is the eutectic density, and the expansion for the
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free-energy density should be carried out up to the fifth-order term,

fG(T, ρ) =
1

2
(T − TE)(ρ − ρE)2 +

1

3
a3(ρ − ρE)3

+
1

4
a4(ρ − ρE)4 +

1

5
a5(ρ − ρE)5. (3.34)

From the double-tangent construction, we have ∂T/∂ρ = −a3, at ρ = ρE, which
shows that the coefficient a3 can be determined from the slope of T (ρ). The
effective values of the remaining coefficients come from the slopes of T (ρ) at the
minimum and maximum values of the density ρ.

A second step consists in choosing the symmetry-breaking parameters which
are suitable for describing the transitions from the isotropic micellar to the
Lα, Hα, and, eventually, to the Rα phases. We then make the following
considerations:

(i) The isotropic–lamellar transition may be characterized by a pair of wave

vectors,
−→
k ±, with |−→k ±| = π/d, where d is the period along the lamellae.

In equilibrium, we should have k+ = k− = η, which is associated with
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the effective free energy

fLα
=

1

2
(T − Tc)η

2 +
1

3
α3η

3 +
1

4
α4η

4. (3.35)

(ii) The two-dimensional cylindrical mesophases Hα and Rα require two pairs

of wave vectors, ±−→
k 1 and ±−→

k 2, with |−→k 1| = |−→k 2|. Thus, if we call γ

the angle between vectors
−→
k 1 and

−→
k 2, we have hexagonal (γ = 120◦) or

C-centered rectangular (γ = 90◦) possibilities (space groups). In equilib-
rium, all the four components of the order parameter assume the same
value (ζ for the Hα phase, and ζ ′ for the Rα phase). The corresponding
free energy densities, fHα

and fRα
, are given by Eq. (3.35), with η and

Tc replaced by ζ and Tc1, and ζ ′ and Tc2, respectively. We then describe
the phase diagram with the free energy

ϕ(T, µ) = −µρ + fG(T, ρ) + fLα
(T, η) + fHα

(T, ζ) + fRα
(T, ζ ′)

+ ρ[δ1η
2 + δ2ζ

2 + δ3ζ
′2] + µ1η

2ζ2 + µ2η
2ζ ′2 + µ3ζ

2ζ ′2. (3.36)

In Fig. 3.19, we sketch some diagrams which come from this approach if we
assume different values for the free parameters. Of course, we are still far from
a closer contact with the enormous variety of experimental possibilities.
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�

Fig. 3.19. Some theoretical predictions from a phenomenological approach to
the description of the mixture of sodium laurate and water [41].
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4

PHASE TRANSITIONS BETWEEN PERIODICALLY

ORGANIZED LYOTROPIC PHASES

4.1 Introduction

We now discuss phase diagrams and phase transitions in lyotropic liquid crystals
from the point of view of the symmetry transformations between periodically
ordered mesophases. The presentation in this chapter is based on two articles by
Mettout et al., “Symmetry breaking interface undulation for reconstructive phase
transitions in complex fluids” [1], and “Theory of reconstructive phase trans-
ition in lyotropic complex fluids” [2], and an article by Tolédano and Mettout,
“Symmetry aspects of reconstructive phase transitions in lyotropic complex
fluids” [3].

One of the key features of lyotropics is the possibility of changing the structure
and shape anisotropy of self-assembled amphiphilic aggregates, including bicon-
tinuous structures, depending on external variables as temperature and relative
concentrations of the components.

In some particular cases, amphiphilic aggregates exhibit discontinuous
modifications of geometry, with a drastic reorganization of the aggregates, which
leads to strong first-order phase transitions. These reconstructive phase trans-
itions, commonly observed in atomic or molecular crystals, are characterized by
the absence of a group–subgroup relationship between the newly formed and
the initial structures. In lyotropic mixtures, there are examples of reconstructive
phase transitions between lamellar, hexagonal, cubic, and sponge phases [4,5].
In other cases, amphiphilic aggregates (specially micelles) may undergo con-
tinuous modifications of their shape anisotropy. The equilibrium structures
are related by a group–subgroup relationship, and the transitions may be of
(weak) first or second order, as in the respective cases of nematic–isotropic and
nematic–nematic transitions [6].

Second-order and weak first-order transitions are quite well described within
the classical framework of the Landau theory of phase transformations. Accord-
ing to this approach, the phase of lowest symmetry is characterized by the
onset of a few measurable quantities, which cancel in the phase of highest
symmetry. These quantities are the order-parameter components and have
well-defined transformation properties with respect to the parent-phase sym-
metry group. The order parameter may have either macroscopic or micro-
scopic interpretations. For instance, at the transition between a square phase
(formed by micellar-type cylindrical aggregates located at the nodes of a two-
dimensional lattice) and a rectangular phase, in which the quadratic unit cell
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becomes slightly orthorhombic, the order parameter is a second-rank tensor.
It can be interpreted as the (macroscopic) strain tensor of the square lat-
tice. On the other hand, it can also be regarded as a geometrical parameter
describing the (microscopic) orthorhombic deformation of a single cylindrical
aggregate.

Due to the lack of a high-symmetry phase, the standard Landau approach is
not enough for describing reconstructive phase transitions. A common ingredient
of a number of treatments which have been proposed to deal with this problem is
the key role attributed to the microscopic form of the amphiphile–solvent inter-
face. For instance, in the random surface model [7], the statistical average of the
position and form of the interface is driven by its surface tension and curvature
energy. In the frustrated surface model [8], the geometry and the topology of
the interface result from the compromise between the surface curvature and
the inter-surface distance. In these treatments, there are predictions of several
stable high-symmetry phases, although symmetry considerations do not play an
important role.

In contrast to these treatments, there is the possibility of an extension of the
Landau approach, as presented in this chapter, based on a symmetry analysis
of the interfacial deformations, and overlooking the microscopic origin of the
free energy terms. The order parameter consists of a small number of variables
which account for the main features of the interface. In the simplest (scalar)
cases, these variables describe the shape of the surface; in the general (vec-
tor or tensor) case, they can also take into account the internal structure.
The changes of the order-parameter components with temperature and con-
centration describe the modifications of geometry, symmetry, and topology in
lyotropic periodic systems. In addition, the characteristic self-assembling prop-
erty of amphiphiles in solvents gives rise to remarkable structures. Depending
on the external variables, the drastic change of curvature of an amphiphile–
solvent interface inverts the structure completely. These structures are then
called reversed or inverted. Transitions between direct and reversed phases
are typically reconstructive phase transitions which are naturally explained
in terms of this extension of the Landau theory for reconstructive phase
transitions.

4.2 The lamellar–tetragonal transition

From a theoretical point of view, the lyotropic systems can be regarded as being
composed of two regions, A and S, referring to the amphiphilic aggregates and
the solvent, respectively. These regions are separated by characteristic interfaces.
In the lamellar phase the interfaces are parallel planes; in the tetragonal phase
they form a two-dimensional periodic lattice of almost cylindrical closed surfaces.
Changing the external variables, as temperature and relative concentrations,
there appear modifications in these interfaces, which trigger the transitions from
the lamellar to the tetragonal structures. In the phase diagram, along the path



140 TRANSITIONS IN LYOTROPIC PHASES

from the lamellar to the tetragonal phases, the change in the form of the interface
(see Fig. 4.1) is characterized by two main features :

1. A two-step modification of the symmetry groups. In the first step, the
deformation of the lamellae breaks the continuous translational symmetry
of the planar interface. In the second step, the formation of the cylinders
increases the rotational symmetry of the system. Therefore, no group–
subgroup relationship can be found between the two phases. In addition,
there appears a third (intermediate) phase when the lamellar symmetry is
broken and the tetragonal symmetry has not yet been established in the
system;

2. A topological modification of the system which transforms from a bicon-
tinuous lamellar structure (called connected state) to a structure of
cylindrical aggregates (disconnected state).

In order to choose an order parameter for this transition, let us give a pictorial
description of the interface deformation. Starting from the lamellar phase, the
symmetry-breaking mechanisms, responsible for the onset of the transition, are
represented by periodic undulations of the interfaces. In Fig. 4.1 we sketch a

A

z

x yS

Lα

Fig. 4.1. Sketch of the lamellar–tetragonal phase transition generated by
undulations of the lamellae in the x–y plane.
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lamellar structure on the x–y plane and the undulations which generate the tet-
ragonal phase [9–11]. For weak undulation amplitude, the continuous translations
along the lamellae are broken, but the topology of the interface remains bicon-
tinuous. At larger values of the amplitude, there is a merging of two adjacent
lamellae, and the topology of the system becomes disconnected. At a certain large
value of the amplitude, the symmetry of the disconnected aggregates changes to
tetragonal.

This simple process can be easily formalized if we consider the equation of
the interface on the x–y plane, Ψ(x, y) = 0, where Ψ is assumed to be positive
in the A region and negative in the S region. The function Ψ can be expanded
as a Fourier series,

Ψ(x, y) =
+∞∑

n,p=−∞

Ψnp exp

[
2iπ

a
(nx + py)

]
, (4.1)

where n and p are integers, and a is the lattice parameter of the tetragonal
phase structure. The four components of the order parameter associated with
the transitions between the lamellar and tetragonal phases are the coefficients
of the first harmonics of this Fourier series. In terms of Goldstone variables, θ1

and θ2, we write

Ψ10 = ρ1 exp(iθ1), Ψ01 = ρ2 exp(iθ2), Ψ1̄0 = Ψ∗
10, Ψ01̄ = Ψ∗

01, (4.2)

where ρ1 and ρ2 represent the two effective components of the order parameter.
The free energy of this system can be written as

F (ρ1, ρ2) = a1I1 + a2I
2
1 + · · · + b1I2 + b2I

2
2 + · · · + c12I1I2 + · · · , (4.3)

where I1 and I2 are the two invariants of the order parameter, given by

I1 = ρ2
1 + ρ2

1 and I2 = ρ2
1ρ

2
2, (4.4)

and the phenomenological coefficients, a1, a2, b1, b2, and c12, depend on
temperature and concentration. As usual, the equations of state are obtained
from

∂F

∂ρ1
= 0 and

∂F

∂ρ2
= 0. (4.5)

The stability regions of the phases associated with the solutions of these
equations are given by the conditions

∂2F

∂ρ2
1

≥ 0 and
∂2F

∂ρ2
1

∂2F

∂ρ2
2

−
(

∂2F

∂ρ1∂ρ2

)2

≥ 0. (4.6)

A typical phase diagram [12], obtained from the minimization of the free
energy (4.3) with respect to ρ1 and ρ2, for c12 < 0, is shown in Fig. 4.2. The
lamellar phase, L, is stable for ρ1 �= 0, ρ2 = 0 (or ρ1 = 0, ρ2 �= 0); the tetragonal
phase, C, is stable for ρ1 = ρ2 �= 0; the intermediate phases, which we call IP,
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L b1

a1

C

Fig. 4.2. Typical phase diagram [12] obtained from the minimization of
Eq. (4.3) with respect to ρ1 and ρ2; L and C are lamellar and tetragonal
phases. The locus of the intermediate phases corresponds to the region
between dashed lines. Dashed and full lines represent second- and first-order
transitions, respectively.

corresponds to ρ1 �= 0, and ρ2 �= 0 (region between dashed lines in Fig. 4.2).
Dashed and full lines in this figure correspond to second- and first-order phase
transitions, respectively. The lamellar–tetragonal phase transition takes place
either across the intermediate phase, through two second-order transitions, or
across a strong first-order boundary, depending on the sign of c12.

The main symmetry and topological aspects of the interface are well described
by Eq. (4.1), even if we take into account first harmonic components only. In
this approximation, the equation of the interface is given by

Ψ(x, y) = Ψ00 + ρ1 cos

(
2πx

a

)
+ ρ2 cos

(
2πy

a

)
= 0, (4.7)

which describes the interface in the stable domain defined by the conditions
θ1 = (θ2, π). For small values of ρ1 and ρ2, the interface disappears and the
system contains a single region, either A or S, according to the sign of Ψ00. This
simple approach, however, cannot account for the stability of this region and the
corresponding phase transitions. Indeed, for a1 > 0, the phase diagram of Fig. 4.2
is non-physical. In general, the interpretation of this abstract phase diagram in
terms of physical quantities requires the establishment of relationships between
the order parameter and the concentration. The following sections are devoted
to this question.

4.2.1 The effective thermodynamic potential

We now assume that the temperature of the system is fixed. Changes of relative
concentrations of the amphiphilic molecules and the solvent are then responsible
for the phase transitions. In the previous approach, the concentration c of the
amphiphile depends on the order parameter components ρ1 and ρ2. Thus, a term
of the form µc(ρ1, ρ2), where µ is related to the chemical potential of oil in water,
and c = c(ρ1, ρ2), cannot be neglected in the expression of the free energy to
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be minimized, even at fixed concentration, where µ plays the role of a Lagrange
multiplier.

An expression for the concentration c can be obtained from a calculation, on
the x–y plane, of the ratio between the area of the amphiphilic region, SA, and
the total area of the domains, St. Thus, we have

c =
SA

St
=

(
2

a

)2 ∫ a/2

0

x(y)dy, (4.8)

where x(y) comes from Eq. (4.7),

x(y) =
a

2π
arccos

{
− 1

ρ1

[
1 + ρ2 cos

(
2πy

a

)]}
. (4.9)

We then have

c(ρ1, ρ2) = 1 − 1

π2

∫ z0

−1

arccos

{
(1 + ρ2z

ρ1

}
(1 − z2)−1/2 dz, (4.10)

with

z = cos

(
2πy

a

)
and z0 =

ρ1 − 1

ρ2
, (4.11)

if ρ1 − ρ2 > 1, whereas z0 = 1, if ρ1 − ρ2 < 1.
The thermodynamic potential of this system can be finally written as

Φ(ρ1, ρ2) = F (ρ1, ρ2) − c̃(ρ1, ρ2)(µ − µ0), (4.12)

where c̃ = c − 1/2 is the reduced concentration, µ is the exchange chemical
potential of regions A and S in the solution [13], and µ0 is the exchange chemical
potential of the independent fluids at the same temperature and densities.

4.3 Phase transitions between direct and reversed mesophases

The formalism introduced in the last section, on the basis of an order parameter
derived from the equation describing the form of the interface, provides a natural
description of the transitions between direct and reversed mesophases. If we
change the sign of Ψ00 for identical values of ρ1 and ρ2 in Eq. 4.7, there is
an interchange of regions A and S; in other words, there is a transformation
from a direct to an inverted phase. Indeed, we can define a symmetry operation,
Fr, called fluid-reversal symmetry, which transforms a direct mesophase into its
inverted analog,

Fr(Ψ00, ρ1, ρ2) = (−Ψ00, ρ1, ρ2). (4.13)

We now discuss the effects of Fr on the thermodynamical potential Φ, given
by Eq. (4.12). It is more convenient to express the order-parameter components
in terms of spherical coordinates,

ρ1/Ψ00 = tan(θ) cos(ϕ) and ρ2/Ψ00 = tan(θ) sin(ϕ). (4.14)
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The action of Fr on the angles θ and ϕ, which fully determine the shape of the
interface, is given by

Fr(θ, ϕ) → (π − θ, π + ϕ). (4.15)

Assuming that the free energy is invariant under Fr, we can construct two
independent invariants,

I ′
1(θ, ϕ) = cos2 θ and I ′

2(θ, ϕ) = sin2 2ϕ, (4.16)

which lead to the interfacial free energy

F (θ, ϕ) = a1 cos2 θ + a2 cos4 θ + · · · + b1 sin2 2ϕ + · · ·
+ c12 cos2 θ sin2 2ϕ + · · · (4.17)

If the free energy is not invariant under Fr, I ′
1 has to be replaced by cos θ, and

F contains odd powers of cos θ. In real space, since Fr exchanges the volume of
the amphiphilic part of the system into the volume of the solvent, Fr(VA) = VS,
the concentration is not invariant under the fluid reversal symmetry,

Fr(c) = 1 − c, (4.18)

and the reduced concentration c̃ is antisymmetric with respect to Fr,

Fr(c̃) = Fr(c) − 1

2
− c = −c̃. (4.19)

Note that c̃ can actually be written in the general form

c̃ = G(I ′
1, I

′
2) cos θ, (4.20)

where G is an integral function depending on I ′
1 and I ′

2 only. Thus, in spherical
coordinates, the thermodynamic potential can be expressed as

Φ(θ, ϕ) = F (I ′
1, I

′
2) − (µ − µ0)G(I ′

1, I
′
2) cos θ. (4.21)

4.3.1 Fr-non-invariant systems

In general, a lyotropic system is not invariant with respect to the fluid reversal
symmetry, because the two sides of the interface are not equivalent (in contrast,
for instance, with a bilayer membrane within a single fluid). This property yields
the spontaneous curvature of an isolated membrane towards only one of the A or
S regions. The minimization of the thermodynamic potential with respect to θ
and ϕ gives the same stable states obtained from the minimization of Eq. (4.3).
Each phase is determined by specific values of ϕ, whereas the values of θ distin-
guish between two configurations with different interfacial shapes within a single
phase. Thus, we have L, with ϕ = (0, π/2), C, with ϕ = π/4, and intermediate
phases, with ϕ �= 0, π/4, π/2.

It is possible to obtain stable phases with concentrations ranging from c = 0,
for pure solvent, to c = 1, for the pure amphiphile (θ < π/2 and θ > π/2 yield
c < 1/2 and c > 1/2, respectively). Each solvent-rich configuration, characterized



PHASE TRANSITIONS, DIRECT AND REVERSED MESOPHASES 145

20 80

40 60

60 40

80 C

Q Qi

Hi
α

Lα

Hα

L1

L2

20 40 60 80

C12H25O (C2H4O)10H (wt%)

W
at

er
 (

w
t%

)
O

leic acid (w
t%

)

Fig. 4.3. Partial isothermal section, at 20◦C, of the phase diagram of a mixture
of decaoxyethylene glycol monolauryl ether, oleic acid, and water [14].

by θ < π/2, is associated with its reversed amphiphile-rich image, θ > π/2.
However, these two configurations are energetically non-equivalent. In general,
they will not be simultaneously present in the temperature–concentration phase
diagram of this system. The absence of direct and reversed mesophases in the
same phase diagram is the signature of a non-invariant fluid. However, there may
exist exceptions in which the two phases are present. An illustrative example
of a Fr-non-invariant system is the mixture of decaoxyethylene glycol mono-
lauryl ether [C12H25O(C2H4O)10H], oleic acid and water [14], in which there
appear direct and reversed cubic phases, Q and Qi, as shown in Fig. 4.3. The
phase domains are located almost symmetrically with respect to the water con-
centration (of about 40 wt%). The non-invariant character is clear because the
stability domains of the reversed and direct phases have different form (and area);
also, at concentrations c and 1 − c, direct and inverse interfaces have different
forms.

4.3.2 Fr-invariant systems

Both sides of the interface of an invariant system are equivalent. In an infinite
system with concentration c = 1/2, if an isolated interface is spontaneously
curved, it can be indifferently curved towards the A or the S regions. In other
words, if a flat interface undergoes a process of spontaneous curvature, the two
possible curvatures (towards A or S) have the same energy and can happen with
the same probability. Within this scheme, the direct and reversed mesophases
correspond to two domains of the same equilibrium phase, transforming into
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each other by the application of Fr. In this case, the minimization of Φ, given by
Eq. (4.21), with respect to θ and ϕ shows that, besides L, C, and IP, there are
other phases, L∗, corresponding to θ = π/2, φ = (0, π/2), and C∗, corresponding
to θ = π/2, φ = π/4. In these “starred” phases, half of the symmetry operations
come from Fr, so that their concentration is necessarily c = 1/2. In the µ–T
phase diagrams, all the phases have extended domains of stability separated by
second or first-order transition lines. In the corresponding c–T phase diagrams,
the starred phases appear either on the c = 1/2 line or within two-phase regions
at concentrations c �= 1/2. These latter regions are associated with first-order
transition borders in the µ–T diagram. In the phase diagram of Fr-invariant
systems, the direct and reversed mesophases appear in distinct regions, sym-
metrically located with respect to c = 1/2. Since they correspond to the same
equilibrium state, their phase boundaries are symmetric with respect to this
value of the concentration.

We now give two illustrative examples of this type of system in ternary
mixtures. The presence of a third component brings new ingredients to the prob-
lem. Note that we have been describing systems with only two types of molecules,
so that there may be deviations from the predicted theoretical behavior if we
add a third component. Consider the mixtures of sodium caprylate, decanol and
water, and sodium caprylate, nonanol and water [4], shown in Fig. 4.4, with
the presence of hexagonal direct (H) and reversed (Hi) mesophases around an
alcohol concentration of about 40 wt%. Also, note that the regions limiting the
H and Hi phases are almost symmetric with respect to the this concentration.

Fr can never be an exact symmetry. An Fr-invariant system is in fact defined
by the weakness of the non-invariant terms (proportional to cos θ in the interfacial
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Fig. 4.4. Partial isothermal section, at 20◦C, of the phase diagram of a mixture
of sodium caprylate, nonanol, and water [14].
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energy). Taking into account these small terms, we have to change the preceding
considerations: (i) phase transitions between starred and non-starred phases
must be replaced by fast but smooth variations of the interface configuration;
(ii) at concentrations c and 1−c, the direct and reversed mesophases have slightly
different shapes; (iii) the phase diagram is not exactly symmetric with respect
to the c = 1/2 axis.

In order to summarize this discussion, we point out that the existence of
reversed mesophases in lyotropic fluids can be understood by considering the
additional fluid-reversal symmetry operation Fr. We have predicted the existence
of new types of mesophases, in which half of the symmetry elements are combined
with Fr.

4.3.3 Influence of the Fr-symmetry on some experimental phase diagrams

We have been considering a lamellar–tetragonal transformation that corresponds
to a realistic situation for a number of ternary systems [4], such as mixtures of
sodium caprylate, water and decanol, sodium caprylate, water, caprylic acid and
water, and decaoxyethylene glycol monolauryl ether, oleic acid and water. The
L and C phases are separated by an undulated lamellar phase corresponding to
the IP mesophase in our model. Analogously, the IP phase of the disconnected
type, shown in Fig. 3.8, is similar to the rectangular phase reported in potassium
oleate/water/p-xylene mixtures [4].

In Chapter 3, we have already given a general view of binary and ternary
phase diagrams in lyotropic mixtures. We now check the effects of the Fr-
symmetry on the topology of the phase diagrams reported in Ekwall’s review [4].
There is no example of binary, amphiphilic/water, phase diagram with the coex-
istence of a direct ordered mesophase and its reverse analog. The experimental
situation supports the proposal that a crossover from direct to reversed micel-
lar ordered phases is considerably improved if a third suitable component is
added to the amphiphilic/water system. However, note that direct, L1, and
reversed, L2, micellar phases are found to coexist in a number of binary com-
pounds such as Aerosol OT/water at 100◦C, Emu 09/water at 20◦C (Emu 09 is
a commercial product, probably decaoxyethylene glycol monylphenol ether [4]),
and decaoxyethilene glycol monolauryl ether/water at 20◦C. We cannot exclude
the coexistence of direct and reversed ordered mesophases in these compounds.

The analysis of the ternary phase diagrams reported by Ekwall leads to the
characterization of three main classes of phase diagrams. In the first class, L1

and L2 micellar phases occupy equivalent areas in the phase diagram. In this
case, there may appear both direct and reverse mesophases, located almost sym-
metrically with respect to an axis from the middle of the amphiphilic-water side
of the triangular phase diagram to the solute apex. The loci of the direct and
reversed phases can be symmetrically or asymmetrically shaped with respect
to this axis; from the point of view of our theoretical approach, this property
reflects the influence or absence of the fluid-reversal symmetry Fr. A second class
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of phase diagrams corresponds to the existence of a single micellar phase with
a continuous crossover between direct and reversed micelles. In the context of
our treatment, it corresponds to Fr-invariant systems, with direct and reversed
mesophases within the same sequence. In the third class of phase diagrams, one
of the L1 or L2 micellar phase regions is predominant, and there exist either
direct or reversed micelles, but not both of them simultaneously.

4.4 Lyotropic phases with oriented interfaces

We have implicitly assumed that, as an average, the amphiphilic stick-like
molecules are perpendicular to an interface. Strictly speaking, this happens only
in the lamellar phase, in which the alkyl chain configurations correspond to a
two-dimensional isotropic liquid-like state. In these configurations, the interface
presents no spontaneous internal structure, except the amphiphile/solvent struc-
ture as described above for non-Fr-invariant systems. If this structureless planar
surface curves during the phase transition, molecules can tilt with respect to
the surface layer without breaking the symmetry of the curved interface. For
instance, in the orthorhombic phase described above, molecules remain normal
to the interface, at positions with local symmetry C2v (at the intersection of the
interface with the orthorhombic mirror planes). Indeed, they are slightly tilted
at non-symmetric positions. This tilting process is a secondary effect, induced by
the primary deformation of the interface. Taking into account these secondary
processes, our theoretical treatment leads to a more detailed description of the
interface, without any changes of the stable phases, of their symmetry groups
or of their thermodynamic properties and phase diagrams. Actually, as shown
in Chapter 1, this corresponds to the most usual case of ordered mesophases
in lyotropic fluids. However, there are some examples, as the rippled phases
found in lipid membranes [15], where molecules are found to be tilted with
respect to the surface in a smectic-C type configuration [16]. In these cases, the
interface presents a spontaneous internal structure, even in the lamellar phase,
with a homogeneous interface, but loses its isotropic symmetry. If this surface
is curved, the average molecular orientation is affected by the interface deform-
ation and by its underlying spontaneous structure. This process can no longer
be accounted for by a simple scalar interface function, Ψ(x, y, z), but needs vec-
tor or tensor functions describing the coupled deformations of both shape and
structure of the interface. Figure 4.5 shows examples of tilting which may occur
in the amphiphilic molecules within a lamella, that is, with the same orienta-
tion for the two molecular layers (Fig. 4.5(a)) or with a chevron-type ordering
(Fig. 4.5(b)).

The rank of the tensor function taking into account the internal structure
of the interface depends on the molecular symmetry. The simplest case occurs
for polar molecules (with symmetry group Cn). In an orthogonal configuration,
the dipoles are normal to the planar interface for non-Fr-invariant systems, and
cancel for invariant systems. In a structured interface, there may appear a dipole
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(a) (b)

Fig. 4.5. Sketch of two tilted lamellar phases, with oriented interfaces: (a) anti-
parallel surfaces in a lamellae; (b) parallel surfaces or chevron-type.

component parallel to the interface if the molecules are tilted. A polar vector
function is then necessary for the description of the curvature. For molecules
with symmetry Cnh, that is, forbidding polarization, the tilting process may
give rise to the onset of an axial vector parallel to the molecular axis (as in the
smectic-C phase). In this case, the interface curvature requires the definition of
an axial-vector function. For each molecular symmetry, various types of tensors
are possible, leading to a rich variety of structured interfaces.

4.4.1 Symmetry-breaking undulation mechanism

The undulation of the interfaces sketched in Fig. 4.1 presents the following prop-
erties: (i) two neighboring surfaces limiting the same, A or S, region are dephased
by π; (ii) two consecutive A (or S) regions behave identically, that is, they
are in phase, with a minimal period a along the direction perpendicular to the
interfaces.

These two features are not arbitrary and represent necessary conditions for
the occurrence of the sequence of phases shown in Fig. 4.1. The absence of
dephasing between two consecutive regions would not allow a symmetry-breaking
mechanism, giving rise to the tetragonal configuration. The requirement that A
and S regions play a symmetric role is also a necessary condition for the existence
of the fluid-reversal symmetry.

There is a different situation if the interfaces are oriented. An identical ori-
entation for two consecutive A and S regions excludes a phase opposition in these
neighboring regions. In order to obtain this dephasing, we have to double the
periodicity along a direction perpendicular to the interfaces. Note that, in this
case, A and S regions do not behave symmetrically. It then follows the absence
of Fr-symmetry for systems with oriented interfaces.

4.4.2 Field lines and oriented domains

Let us use an academic example, as sketched in Fig. 4.5(a), in order to give an
illustration of field lines and oriented domains. The interface is oriented by the
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projection of the molecular vector (which is oriented from the alkyl chain towards

the head of the amphiphile). We then consider a vector field �Ψ(x, y), which
corresponds to the projection of the molecular vector onto a given interface. A
unit molecular vector measures the tilt angle with respect to the normal to the
interfaces. The infinite set of field lines of �Ψ represent the possible positions of the
interface. Since these lines form a one-parameter family, we need an additional
scalar degree of freedom for determining which line corresponds to the actual
interface. The symmetry of the vector function �Ψ can be analyzed by expanding
its components Ψx(x, y) and Ψy(x, y) in a Fourier series,

Ψx(x, y) =

+∞∑

n,p=−∞

Ψx
np exp

[
2iπ

a
(nx + py)

]
, (4.22)

and

Ψy(x, y) =

+∞∑

n,p=−∞

Ψy
np exp

[
2iπ

a
(nx + py)

]
. (4.23)

In analogy with our previous treatment of the scalar quantity Ψ(x, y), we consider
the first harmonic components only, Ψ∗

01, Ψy
10, Ψx

01̄ = (Ψx
01)

∗, and Ψy
1̄0

= (Ψy
10)

∗.
Also, we write Ψx

01 = ρ1 exp(iθ1) and Ψy
10 = ρ2 exp(iθ2). In a stable region, these

equations are reduced to

Ψx
01 = ρ1 cos

2πy

a
and Ψy

01 = ρ2 cos
2πx

a
. (4.24)

The equations of the field lines are given by

ρ2 sin

(
2πx

a

)
− ρ1 sin

(
2πy

a

)
= ±k, (4.25)

where the value of the constant k fulfills the condition

−(ρ1 + ρ2) ≤ k ≤ ρ1 + ρ2. (4.26)

Note that the field lines corresponding to the same absolute values of k, but
with opposite signs, are oriented in opposite directions, and determine the same
A or S regions. Therefore, the full set of stable structures and their orientations
are determined by the values of ρ1 and ρ2 and by the absolute value of the
constant k.

4.4.3 Symmetry of the mesophases with oriented interfaces

The interfacial energy F depends on three invariants, I1 = ρ2
1 + ρ2

2, I2 = ρ2
1ρ

2
2,

and I3 = k2. The minimization of F with respect to ρ1, ρ2, and k, gives the same
equilibrium conditions as obtained for non-oriented interfaces, L (ρ1 = 0, ρ2 �= 0,
or ρ1 �= 0, ρ2 = 0), C (ρ1 = ρ2 �= 0), and IP (ρ1 �= ρ2 �= 0). However, due to
the orientation of the surfaces, these phases have different symmetries. The two-
dimensional space groups of the oriented interfaces are non-symmorphic: P2gm
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for phase L, P2gg for phase IP, and P4gm for phase C, where g represents glide
reflection planes.

4.5 The lamellar–hexagonal phase transition

Hexagonal phases are often present in phase diagrams of lyotropic mixtures. In
the preceding chapters we have shown a number of examples with this type of
stable mesophase. The most general phase sequence in which the H phase appears
involves the L phase. These sequences are usually separated by phase coexistence
domains, that is, by a first-order reconstructive transition, or by intermedi-
ate mesophases (of rectangular, monoclinic, or cubic symmetries). Three types
of hexagonal phases were identified in phase diagrams of lyotropic mixtures:
direct, Hα, inverted, Hi

α, and complex, Hc, hexagonal phases. In this section
we show that the same phenomenological model leads to a description of the
lamellar–hexagonal transition and to the prediction of the possible types of
related intermediate mesophases. Also, we show that the assumption of oriented
interfaces provides a basis for the description of tilted hexagonal mesophases.

4.5.1 Phenomenological description of the lamellar–hexagonal transition

In Fig. 4.6 we sketch a two-dimensional view of a transition from the lamellar
L to the hexagonal H phase structures. As in the lamellar–tetragonal case, the
symmetry-breaking mechanism of this transition consists of a periodic undu-
lation of the interfaces. The L–H transition takes place through two types of
intermediate phases, which are separated by a topological transition. According
to the phenomenological treatment of this chapter, the equation of the interface
can be written as

Ψ(x, y) =
+∞∑

n,p=−∞

Ψnp exp

[
2iπ

a
(nx + py)

]
, (4.27)

where n and p are integers, and x and y represent hexagonal coordinates. The
complex components of the order parameter associated with the undulation
mechanism are the first harmonics of this Fourier expansion, Ψ10 = ρ1 exp(iθ1),
Ψ01 = ρ2 exp(iθ2), Ψ1,1̄ = ρ3 exp(iθ3), Ψ∗

01 = Ψ01̄, Ψ∗
10 = Ψ1̄0, and Ψ∗

11̄ = Ψ1̄1.
They can be split into two Goldstone angles, θ1 and θ2, and four energetic
components, ρ1, ρ2, ρ3, and θ = θ1 − θ2 + θ3.

We then construct four independent polynomial invariants,

I1 = ρ2
1 + ρ2

2 + ρ2
3, (4.28)

I2 = ρ4
1 + ρ4

2 + ρ4
3, (4.29)

I3 = ρ2
1ρ

2
2ρ

2
3, (4.30)

and

I4 = ρ1ρ2ρ3 cos θ. (4.31)
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Fig. 4.6. Two dimensional sketch of the transition from the lamellar, L, to the
hexagonal, H, phase, generated by undulations of the lamellae on the x–y
plane.

The corresponding free-energy expansion is written as

F (ρi, θ) = a1I1 + a2I
2
1 + · · · + b1I2 + b2I

2
2 + · · · + c1I3 + · · ·

+ d1I4 + d2I
2
4 + · · · + e12I1I2 + e13I1I3 + e14I1I4 + · · · . (4.32)

The minimization of F with respect to ρi and θ yields at most seven possible
stable states [12]. In addition to the L, H, L̃, and R phases, we may have
four additional intermediate stable mesophases (of rhombohedral and monoclinic
nature).
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This approach accounts for the topological modifications when the interface
undergoes a lamellar to hexagonal transition. If the hexagonal phase results
from a direct first-order transformation, there is a sudden topological change,
which is triggered by the phase transition. On the other hand, if the hexagonal
phase is stabilized after a series of second-order transformations through a set of
intermediate low-symmetry phases, the topological change is smooth and hap-
pens at a given temperature, within an intermediate structure, as two adjacent
interfaces get into contact. The same changes may take place between direct and
reverse hexagonal phases when the micelles form a compact hexagonal structure.
In this case, the symmetry breakdown of the undulation is not involved in the
topological process.

Modifications in the topology of the interface can be described by keeping
only the first harmonic components in Eq. (4.27). Fixing the global position of
the interface lattice by assuming θ1 = θ2 = 0, we then write

Ψ(x, y) = Ψ00

{
η1 cos

(
2πx

a

)
+ η2 cos

(
2πy

a

)
+ η3 cos

[
2π

a
(x − y) + θ

]
+ 1

}

= 0, (4.33)

where ηi = ρi/Ψ00, for i = 1, 2, 3. In the hexagonal phase, the equilibrium con-
ditions are given by ρ1 = ρ2 = ρ3 and θ = 0. Since ρ1 depends on concentration,
the topology of the interface changes at a concentration corresponding to ρ1 = 1.

The undulation can produce topological modifications without changing the
symmetry of the phases, which is an indication of the connections between sym-
metry and the geometric aspects of this mechanism. However, although the
symmetry breakdown is fairly well described at the thermodynamic level, with
this approach we do not explain the singularities of the free energy associated
with topological modifications. Indeed, the free energy given by Eq. (4.27) dis-
plays a regular behavior at the topological boundaries in the order-parameter
space (e.g. as ρ1 = 1, in the hexagonal phase for instance), although the
curvature of the interfaces diverges at the points of contact. This is the main
limitation of this global Landau-type approach with respect to local theories.

4.5.2 Tilted hexagonal phases

We now turn to the description of hexagonal and lamellar phases with oriented
interfaces. A possible scenario in this type of topological evolution of the
amphiphile aggregate is a transition from an oriented lamellar phase structure
to vesicles forming a hexagonal array.

The orientation of the interfaces can be expressed by the vector field

�Ψ(�r) = Ψa(x, y)�a + Ψb(x, y)�b, (4.34)

where �r = x�a + y�b is written in terms of hexagonal coordinates. The vector �Ψ
is either polar or axial, depending on the (polar or non-polar) symmetry of the
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molecules. The components Ψa and Ψb can be expressed as a Fourier series,

Ψa,b(x, y) =

+∞∑

n,p=−∞

Ψa,b
n,p exp

[
2iπ

a
(nx + py)

]
. (4.35)

As in the case of untilted systems, the symmetry of the ordered phases is com-
pletely determined by the first harmonics of Ψa and Ψb, and their complex
conjugates, Ψa

01 = ρ1 exp(iθ1), Ψb
10 = ρ2 exp(iθ2) and Ψa

1̄1 + Ψb
1̄1 = ρ3 exp(iθ3).

The angles θ1 and θ2 indicate the position of the two dimensional lattice. If they
are set to zero by a suitable choice of the origin of coordinates, we have the
truncated expressions for polar and axial vector fields,

i�Ψ(�r) =

{
ρ2 sin

(
2πy

a

)
+ ρ3 sin

(
2π

a
(y − x) − θ

)}
�a

+

{
−ρ1 sin

(
2πx

a

)
+ ρ3 sin

(
2π

a
(y − x) − θ

)}
�b, (4.36)

i�Ψ(�r) =

{
ρ1 sin

(
2πx

a

)
− ρ3 sin

(
2π

a
(y − x) − θ

)}
�a

+

{
ρ2 sin

(
2πy

a

)
+ ρ3 sin

(
2π

a
(y − x) − θ

)}
�b. (4.37)

Using group-theoretical arguments, it is possible to show [2] that the
transverse polar vector field, given in Eq. (4.36), and the longitudinal axial vector
field, given by Eq. (4.37), are the only tensor waves inducing a reconstruction of
the lamellar structure into a hexagonal array. In the polar case, the field parallel
to the interface represents the projection of the molecular polarization. The axial
field is normal to the interface. It may represent the projection (onto the surface
normal) of a vector lying along the two-fold axis of a molecule with, for instance,
symmetry C2h. In both cases, the equation of the interfaces is given by

{
ρ1 cos

(
2πx

a

)
+ ρ2 cos

(
2πy

a

)
+ ρ3 sin

2π

a
(y − x) − θ

}2

= K, (4.38)

where K is a constant representing an additional degree of freedom of the sys-
tem. This parameter K is a secondary, non-symmetry-breaking, order parameter
which describes the form of the interfaces. In this case, it is possible to construct
four independent invariants, I1, I2, I3, and I

′

4 = ρ2
1ρ

2
2ρ

2
3 cos (θ), which give rise

to the free energy

F (ρi, θ) = a1I1 + · · · + b1I2 + · · · + c1I3 + · · · + d1I
′

4 + · · · + e12I1I2 + · · · .
(4.39)

The minimization of this expression with respect to the order parameters,
supplemented by the stability conditions, leads to eight stable states with dif-
ferent forms and orientations of the interfaces [12]: (i) tilted lamellar, L, and
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undulated tilted lamellar, L̃, configurations; (ii) an orthorhombic cylindrical
phase; (iii) cylindrical phases; and (iv) either a cylindrical or a lamellar
configuration with a monoclinic symmetry.

4.6 The lamellar–cubic phase transition

Cubic phases, called Q in Chapter 1, are present in many phase diagrams of
lyotropic mixtures, in the vicinity of micellar isotropic, hexagonal, and lamellar
phases (see, e.g. Fig. 4.3). The lamellar–cubic phase transition is a remarkable
example of a crossover between one-, two-, and three-dimensional spatially organ-
ized structures. There are several theoretical proposals to describe the cubic to
isotropic micellar transition on the basis of scalar order parameters, as the shape
of interfaces and density fluctuations [7,17–19]. These proposals, however, do not
take into account the reconstructive aspects of this phase transition.

The same scheme of the preceding sections can also be used to describe the
transitions between the cubic phases and their neighboring structures. Most
of the cubic phases [20] can be obtained from a lamellar phase using a single
symmetry-breaking order parameter which consists in a vector or a tensor field.
Also, a full description of the cubic configurations requires the consideration of
the interface undulations as a secondary (non-symmetry breaking) scalar order
parameter.

4.6.1 Symmetry basis of the model

Consider the transition between a lamellar and a simple cubic mesophase.
The symmetry-breaking undulation of the interfaces produces both the high-
symmetry cubic phase and a set of intermediate configurations. We then have the
undulated lamellar phase L̃, a micellar tetragonal phase, a cylindrical phase with
a two-dimensional tetragonal lattice, a micellar orthorhombic phase, cylindrical
orthorhombic and cylindrical undulated phases.

In analogy with the case of two-dimensional mechanisms, we introduce an
interface equation, Ψ(x, y, z) = 0, where the real scalar field Ψ is assumed to be
positive in the A regions and negative in the S regions. We then have the Fourier
series,

Ψ(x, y, z) =
+∞∑

n,p,q=−∞

Ψnpq exp

[
2iπ

a
(nx + py + qz)

]
, (4.40)

where n, p, and q are integers, and the coefficients of the first harmonics are
written as Ψ001 = ρ1 exp(iθ1), Ψ001̄ = Ψ∗

001, Ψ010 = ρ2 exp(iθ2),Ψ01̄0 = Ψ∗
010,

and Ψ100 = Ψ∗
100 = ρ3 exp(iθ3). As usual, θ1, θ2, and θ3, are Goldstone vari-

ables, and ρ1, ρ2, and ρ3, represent the three effective components of the order
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parameter. We now write three independent invariants,

I1 = ρ2
1 + ρ2

2 + ρ2
3, (4.41)

I2 = ρ2
1ρ

2
2 + ρ2

1ρ
2
3 + ρ2

2ρ
2
3, (4.42)

and

I3 = ρ2
1ρ

2
2ρ

2
3, (4.43)

and the corresponding expansion for the free energy,

F (ρ1, ρ2, ρ3) = a1I1 + a2I
2
1 + a3I

3
1 + · · ·

+ b1I2 + · · · + c1I3 + · · · + d12I1I2 + · · · . (4.44)

The minimization of this free energy with respect to the components of the
order parameter, supplemented by the requirements of stability, leads to seven
different structures, with cubic, tetragonal, and orthorhombic space groups. The
structures of the corresponding interfaces are obtained by assuming θ1 = θ2 =
θ3 = 0 and replacing the equilibrium values of ρ1, ρ2, and ρ3, in the interface
equation,

Ψ(ρ1, ρ2, ρ3) = Ψ000

[
1 + η1 cos

(
2πz

a

)
+ η2 cos

(
2πy

a

)
+ η3 cos

(
2πx

a

)]
= 0,

(4.45)

where ηi = ρi/Ψ000, for i = 1, 2, 3. In the cubic phase, given by ρ1 = ρ2 = ρ3

and θ = 0, the shape and the topology of the interface is determined by ρ1,
which depends on concentration but is almost independent of temperature. At
low concentrations, direct micelles filled with oil are located at the nodes of
a simple cubic lattice. At intermediate concentrations, micelles merge into a
single labyrinth, usually called plumber’s nightmare; at higher concentrations,
water remains located inside the micelles, forming the inverted image of the
low-concentration structure.

4.6.2 Group-theoretical considerations

The parent symmetry Go of the model discussed in the preceding section is
Oh×R3. If we recall that the parent symmetry is the minimum space group which
contains all the symmetry operations leaving invariant the stable phases and
their domains, Go contains all the three-dimensional continuous translations and
the point symmetries of the cube. The order parameter spans a representation
of Go associated with the wave vector �k1 = (2π/a, 0, 0). The corresponding

star �k∗
1 has six branches, which are formed by the three pairs ±�k1, ±�k2 =

(0,±2π/a, 0), and ±�k3 = (0, 0,±2π/a). The ordered structures are obtained
if we consider a periodic behavior along one direction (lamellar phase), two
directions (cylindrical phase with a two-dimensional tetragonal lattice) or three
directions (tetragonal and cubic phases); in other words, there is a freezing of
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the fluctuations corresponding to one, two, or three pairs of branches of �k∗
1 . The

irreducible representation A1(�k
∗
1) which induces the Pm3m cubic symmetry is

constructed from the identity representation of the tetragonal invariance group
of �k1, Gk1

= C4v. This representation corresponds to the scalar field presented
in Eq. (4.40). Also, there are four additional representations of Go, called A2, B1,
B2, and E, which can be deduced from the non-identity representations of Gk1

.
They lead to different primitive cubic space groups, which are listed in column
(5), in the upper part of Table 4.1. We have Pn3n, Pm3n, and Pn3m symmetries
for the six-dimensional representations A2, B1, and B2, respectively, whereas
the 12-dimensional representation E is associated with the enantiomorphous-
symmetries P4132 and P4332.

Face-centered (fcc) and body-centered (bcc) cubic symmetries can also be

obtained from the consideration of the wave vectors �k2 = (2π/a, 2π/a, 2π/a)

and �k3 = (2π/a, 2π/a, 0). The fcc and bcc space groups, corresponding to the

irreducible representations (IR) of Go for the 8- and 12-branch stars �k∗
2 and �k∗

3 ,
are listed in the middle and lower sections of Table 4.1. Note that only the cubic
space groups are indicated in column (5). According to the IR of Go, there may
appear other stable structures, associated with lower symmetries, correspond-
ing to various intermediate phases between the lamellar an cubic structures. In
column (6) of Table 4.1, we list the tensorial character of the order parameter
associated with the transformation to the cubic phases. Hence, we have scalar
(0+), axial (1+) or polar (1−) vectors, and second-rank symmetric (2+) or anti-
symmetric (2−) tensors. The simplest cases of scalar waves (e.g. the case treated
in the last section) are associated with structureless interfacial configurations.
The resulting phases form vector or tensor fields, with internal structures arising
from the ordering of the molecular units within the interface.

Seven different cubic symmetries have been observed in lyotropic fluids:

1. The Pn3m space group corresponds to the bicontinuous cubic phase in
lipid/water monoglycerides [21] and systems of tetraether lipids [22].

2. The Pm3n micellar cubic phase is observed in several lipid/water and
lipid/water/oil systems [23,24], in a concentration range between hexagonal
and micellar solutions.

3. The P4332 micellar cubic phase has been found in monoglyceride/water
systems [25].

4. The Fd3m micellar cubic structure is also observed in monoglyceride (fatty
acid)/water systems, and in a glycolipid/water mixture [20].

5. The Fm3m symmetry was recently found in a physical gel [25], resulting
from the aggregation process of the association of triblock copolymers into
spherical micelles.

6. The Im3m space group is associated with the structure of several monogly-
ceride (protein salt)/water mixtures [20]. The I 4̄3m and Im3 space groups,
also proposed for these systems, are listed in column (5) of Table 4.1.
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Table 4.1 Order-parameter symmetries corresponding to the different
cubic structures. Columns give the following indications: (1) the Bravais
lattices and the wave vectors ki; (2) the labels of the IRs; (3) the dimen-
sions of the IRs; (4) the effective order-parameter components in the cubic
phases; (5) the cubic space groups; the underlined groups correspond to
experimentally reported symmetries; (6) the rank and parity of the tensor
fields spanning each IR; φi, φ

′
1 and ρi, ρ

′
i are the phases and moduli of the

order-parameter components

(1) (2) (3) (4) (5) (6)

A1 6 ρ1, ρ2, ρ3 Pm3m 0+
P A2 6 ρ1, ρ2, ρ3 Pn3n 1+
k1 B1 6 ρ1, ρ2, ρ3 Pm3n 2±

B2 6 ρ1, ρ2, ρ3 Pn3m 2±
E 12

{
ρi, ρ

′
i, i = 1 − 3

ωi = φi − φ′
i

P4132(ωi = −π/2)
P4332(ωi = π/2)

1±
1±

F A1 8

{
ρ1, ρ2, ρ3, ρ4

φ = ρ1 − ρ2 + ρ3 − ρ4

{
Fm3m(φ = 0)
Fd3m(φ = π)

}
0+

k2 A2 8

{
ρ1, ρ2, ρ3, ρ4

φ = ρ1 − ρ2 + ρ3 − ρ4

{
Fd3c(φ = 0)
Fm3c(φ = π)

}
1+

E 16 No cubic phases 1±

I A1 12 ρi, i = 1 − 6

{
Im3m(ωi = 0)
I4132(ωi = π/2)

}
0+

k3 A2 12 ω1 = φ1 − φ4 − φ5

{
Ia3d(ωi = π/2)
I432(ωi = 0)

}
1+

B1 12 ω2 = φ2 + φ3 + φ5

{
Im3(ωi = 0)
I 4̄3d(ωi = π/2)

}
1±

B2 12 ω3 = −φ1 − φ2 + φ6

{
Ia3(ωi = π/2)
I 4̄3m(ωi = 0)

}
1±

However, unlike Im3m (A1), they are identical to other representations
of Go (A2 and B1). Therefore, it is important to take into the physical
mechanisms for establishing distinctions among the three cubic symmetries.

7. The Ia3d space group has been the first observed example of a bicon-
tinuous lipid/water structure [26]. It is found in a large variety of
systems: hydrous soaps of divalent cations [27], soap and detergent/water
in the intermediate region between the lamellar and hexagonal phase,
diacil lipid/water mixtures at low hydration and high-temperature [28],
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monoglycerides/water [19] and tetraether diacilated lipids/water mixtures,
at large water content [22].

4.6.3 The bicontinuous cubic phase

We now use a bicontinuous (gyroid) cubic mesophase, of symmetry Ia3d, in
order to illustrate the connection between a given order-parameter symmetry
and the corresponding cubic configurations. The microstructure of this phase
can be modeled in terms of three-dimensional periodic minimal surfaces, free
from self-intersections, as the Schoen gyroid surface [29,30]. In Table 4.1, we
see that the Ia3d space group is associated with a 12-dimensional order para-
meter corresponding to an axial vector field. The real scalar function defined
by Eq. (4.37) is then replaced by an imaginary axial vector field which can be
expressed as the sum of 12 longitudinal waves,

�Ψ(�r) =

6∑

j=1

[
ηj exp

(
−i�kj · �r

)
− η∗

j exp
(
i�kj · �r

)]
�k′j , (4.46)

where ±kj , j = 1, . . . , 6, are the 12 branches of the star �k∗
3 , and �k′j is an

axial vector proportional to �kj . The equilibrium relationships between the order-
parameter components ηi in the Ia3d phase, given in column (4) of Table 4.1,

lead to the effective form of �Ψ in the natural orthonormal frame of axial vectors,

�Ψ = iη

⎛
⎝

− cos x sin z + sin x sin y
sin y cos z − cos x cos y
cos y sin z − sin x cos z

⎞
⎠ , (4.47)

with space coordinates in units of a/2π. This function describes the orientational
order of the molecules within the curved interfaces. For example, in the case of
molecules of individual symmetry C2, the oriented molecular axis, as an average,
is parallel to the imaginary part of �Ψ. For a molecule of symmetry CS, this
molecular axis is replaced by an oriented axis perpendicular to the molecular
mirror symmetry. By contrast, a non-axial molecular symmetry (as D2 or Cnv)
is incompatible with the order parameter and cannot induce the Ia3d structure.

The primary, symmetry-breaking, vector-field order parameter �Ψ expresses
the molecular ordering within the interfaces and allows the determination of
the symmetries of the induced phases. However, it is not enough to describe
the concrete structures. In order to determine the form of the interfaces, we
have to introduce a scalar field Ψ̄(x, y, z), which can be regarded as a secondary,
non-symmetry-breaking, order parameter. In equilibrium, the values of Ψ̄ are
induced by the coupling with the vector field �Ψ. For the Ia3d symmetry, and
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restricting to the first three harmonic components, we can write

Ψ̄ = 1 + ξ1{sin 2z sin x cos y + sin 2x sin y sin z + sin 2y cos x cos z}
+ ξ2{cos 2x cos 2y − cos 2x cos 2z − cos 2y cos 2z}, (4.48)

where the effective components of the secondary order parameters, ξ1 and
ξ2, transform as scalar waves, respectively associated with the wave vectors
(2π/a, 2π/a, 2π/a) and (4π/a, 4π/a, 0). The physical structures of the stable
phases depend on the values of both primary and secondary order parameters.
However, the shape of the interface depends only on ξ1 and ξ2. Thus, the sym-
metry of the shape is higher than the symmetry of the phase. For instance, in
the cubic stable state, the symmetry of the phase is Ia3d while the symmetry
of the interface shape is Im3m, with an interface distance twice smaller than
the lattice parameter of the full structure. There is a wide variety of struc-
tures associated with the Ia3d symmetry, which depend on the values of ξ1

and ξ2 in Eq. (4.48). For example, if we assume that |ξ1| ≫ |ξ2|, there are five
different topologies which are determined by the parameter ζ = −1/ξ1, with
−1 < ζ < 3/2. For 1 < ζ < 3/2, the structure is micellar, with 16 micelles in
the conventional cubic cell. For 0 < ζ < 1, the micelles connect and form two
separated crossed labyrinths, in agreement with a model proposed by Luzzati
and collaborators [20]. For −0.64 < ζ < 0, these labyrinths merge into a single
labyrinth, which coexists with a single water labyrinth. For −0.81 < ζ < −0.64,
the preceding water labyrinth splits into two disconnected parts. Finally, for
−1 < ζ < −0.81, there is an inverse micellar structure with 24 water micelles in
the cubic unit cell.

The lamellar phase can be described within the same framework, in the limit
where ξ1 = 0 in Eq. (4.48), and with Ψ̄(x, y, z) = 1 + ξ2 cos[2(x + y)]. This limit
corresponds to a non-symmorphic orthorhombic symmetry, D2h, with molecules
of consecutive lamellae along opposite directions, which doubles the periodicity
normal to the lamellae.

For |ξ1| ≪ |ξ2|, each cubic unit cell contains 16 micelles, half of which are
non-equivalent. Changes of the parameter ζ = − 1/ξ2, from −1 to 3, lead to cubic
micellar structures with water labyrinths, for −1 < ζ < 0, and to bicontinuous
structures, for 0 < ζ < 3. The molecular aggregates form three-dimensional
labyrinths surrounding 16 inverted micelles.

In conclusion, depending on the cubic symmetry, the order parameter describ-
ing the transformation of a lamellar into a cubic structure can be a scalar, a
vector or a second-rank tensor field. In the vector or tensor cases, we have to
introduce, as a secondary order parameter, a scalar quantity reflecting the form
of the cubic interfaces. The connections between the symmetry of the order
parameters and of the actual cubic configurations, which have been illustrated
in the case of the gyroid structure, show that bicontinuous and micellar cubic
structures do not correspond to qualitatively different systems. There exists a
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crossover between the two types of topologies for specific values of the secondary
order parameters.
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5

THE ISOTROPIC MICELLAR AND BICONTINUOUS

PHASES

5.1 Introduction

From the point of view of optical measurements, isotropic phases of lyotropic
mixtures may be grouped according to the packing of amphiphilic molecules. If
the amphiphilic molecules form micelles, we have the micellar direct and inver-
ted isotropic phases, L1 and L2, and the micellar cubic phases. If they form
bicontinuous structures, we have the L3 sponge phase and the cubic bicontinu-
ous phase. In this chapter both categories will be discussed, particularly L1, L2,
and L3 phases.

5.2 The micellar L1 and L2 isotropic phases: Experimental facts

L1 and L2 isotropic micellar phases are found in phase diagrams of binary,
ternary, and quaternary lyotropic mixtures. Consider the example of a mixture
of an amphiphile, water, and an organic solvent. In the L1 phase, there are direct
micelles, and the polar solvent (water) is in the intermicellar medium. The polar
heads of the amphiphilic molecules are located on the surface of the micelles,
in contact with the polar solvent, and the aliphatic chains are kept inside the
micelles. In the inverted (or reverse) L2 phase, the intermicellar medium is the
organic solvent, and the polar heads of the amphiphilic molecules enclose polar
solvent droplets. In the phase diagrams, at about 25◦C, L1 and L2 phases are
usually located at specific regions of a triangular representation; the L1 phase is
located at the organic solvent-poor (�10 wt%) and water-rich (�60 wt%) region;
L2 is located at a water-poor (�50 wt%) and an organic solvent-rich (�30 wt%)
region [1]. This topology, including re-entrant domains, depends on the particular
mixture and the temperature.

A schematic representation of a partial isotherm of an amphiphile/water/oil
mixture is drawn in Fig. 5.1, where LC represents liquid crystalline phases [2].
The L2 phase is located near the lower-right vertex of the triangular represent-
ation (oil-rich and amphiphile-poor region), but it can also be found near the
upper vertex (amphiphile-rich region) of the representation.

The shape of the micelles is strongly dependent on the type and concentration
of the components. Spherical micelles are found in the dilute regime of binary
mixtures (for concentrations of amphiphile c � CMC, where CMC is the critical
micellar concentration [3,4]). Ternary mixtures with amphiphile concentrations
near the nematic domain (c≫ CMC) may have micelles with orthorhombic
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Amphiphile

L2

LCLC

LC

LC

Water Oil

L1 L2

Fig. 5.1. Sketch of the partial isothermal representation of a mixture of an
amphiphile, water, and oil [2]. The symbol LC represents liquid crys-
talline phases; the lateral sides of the triangle represent the amphiphile
concentration.

symmetry, locally piled up in small, randomly oriented [5], correlation volumes
with a pseudo-lamellar structure, leading to the isotropic phase.

5.2.1 Self-assembling of amphiphiles in dilute solutions

As we have already mentioned, amphiphiles display a double character from
the electrostatic point of view. Amphiphilic molecules have a polar water-
soluble group attached to a water-insoluble hydrocarbon chain. For amphiphilic
concentrations c < CMC, the amphiphilic molecules remain isolated in the
solution of amphiphiles and a solvent. Above CMC, amphiphilic molecules
begin to self-organize as micelles; the fraction of isolated amphiphilic molecules
remains almost constant, and the concentration of micelles increases with c. The
hydrophobic–hydrophilic effect is the most relevant mechanism associated with
micellar formation [4]. For c � CMC, we have a dilute regime, in which the
micelles can still be treated as isolated objects. Several parameters, as aggrega-
tion number (mean number of amphiphilic molecules in a micelle), micellar size,
and micellar shape, are strongly dependent on temperature, pH, ionic strength,
and amphiphile concentration.

Micelles are dynamic objects, forming and dissociating at time scales ranging
from microseconds to milliseconds [6,7]. There are different types of equilibrium
processes in micellar solutions: monomer exchange (if a molecule moves from the
micelle to the bulk or vice versa); formation–dissociation; partial breakdown;
size redistribution, keeping the number of micelles changed or unchanged [8].
The height of the free-energy barrier for the extraction of an amphiphile from a
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micelle is of the order of 5kBT , where kB is the Boltzmann constant and T is the
temperature [7]. The energy cost for the insertion of an amphiphile in a micelle
has been estimated at about kBT , so the amphiphile association rate is controlled
by diffusion.

5.2.1.1 Transformation from a molecular to a micellar solution: The critical
micellar concentration From the experimental point of view, some physico-
chemical properties (as detergency, equivalent conductivity, HF conductivity,
surface tension, osmotic pressure, and interfacial tension) of amphiphile–
solvent solutions are characterized by a peculiar behavior as the concen-
tration c approaches CMC [3] (see Fig. 5.2). In actual mixtures, there
is no unique concentration of amphiphiles at which all of these properties
display drastic changes. Usually, CMC is defined in an interval of con-
centrations of about 0.02 M. For c�CMC, the concentration of isolated
amphiphilic molecules remains almost constant, but the concentration of micelles
increases with c. For example, in the case of the potassium laurate/water
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Fig. 5.2. Sketch of the behavior of some physico-chemical properties of the
SDS/water mixture around CMC [3]. The hatched region corresponds to the
range of CMC.
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mixture, we have CMC = 0.008 M [9]; for a mixture of N -dodecyl-N ,N
dimethyl-N -[3-(β-methyl-β-nitrovinyl)-6-methoxybenzyl] ammonium chloride
and water, CMC = 0.2 mM, with an enthalpy of micellization ∆H0 =
−11.3 kJ/mol [10]. In the case of surfactants and lipids, CMC decreases with
the increase of the number of carbon atoms of the amphiphile [11]. For example,
at 25◦C, CMC is 33.2 mM, for SdS, 8.1 mM, for SDS, and 2.0 mM, for tetradecyl
sodium sulfate, CH3(CH2)13 OSO2ONa.

Although some physico-chemical properties of the solution behave differently
above and below CMC, this behavior cannot be characterized as a phase trans-
ition. Monte Carlo simulations indicate that the micellar phase can be regarded
as an intermediate region between a microscopically homogeneous molecular
solution and a solid phase [12].

Even in this regime of low amphiphile concentration, if the temperature is
raised above a critical mixing temperature Tcm, which depends on amphiphile
concentration, the single micellar system undergoes a phase separation between
two isotropic phases. This behavior was observed, for example, in a mixture of
pentaethylene glycol-mono-n-dodecyl ether (C12E5) and water [13]. The static
and dynamic critical behavior of this system, in the neighborhood of Tcm,
were investigated by measurements of viscosity, intensity of scattered light, and
relaxation rate of the order-parameter fluctuations [14]. These experimental res-
ults show differences with respect to the behavior of both simple or molecular
binary fluids.

5.2.1.2 Molecular organization of the aggregates; equilibrium micellar
configurations and distributions Consider a mixture of a soap and water. Just
after mixing, the soap molecules are pushed towards the free surface, with
the polar heads in contact with the solvent (water), and with the aliphatic,
non-polar, chains sticking upwards into the atmosphere, according to a topo-
logy which reduces the surface tension. Increasing the amount of amphiphilic
molecules, the need to keep a reduced surface tension leads to a transition from
a system of isolated amphiphilic molecules to a self-organized micellar system.
Usually, this micellar system presents aggregates of different sizes. This poly-
dispersity is reflected by the aggregation number n, defined as the number of
amphiphilic molecules per micelle. In Fig. 5.3, at given values of temperature
and amphiphile concentration, for c � CMC, we illustrate the typical behavior
of the size distribution of micelles [15–17]. This distribution has a maximum for
small values of n; as we increase the aggregation number, it has a minimum
at n1 followed by a local maximum at n2 > n1. The region n < n1 is called
submicellar. Micellar polydispersity can be obtained from measurements of the
diffusion coefficient (from quasielastic light scattering experiments, for example).
For a SDS/brine mixture, with concentrations of NaCl ranging from 0.15 to
0.6 M, the width of the distribution of aggregation numbers is ±70% of the
mean value [18], which indicates the high degree of polydispersity of this micellar
phase.
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Fig. 5.3. Schematic representation of the micellar population as a function of
the aggregation number, at fixed temperature and for c � CMC.

At lower amphiphile concentrations, we anticipate a spherical, or almost
spherical, shape for the micelles. The diameter of the aggregates is about twice
the amphiphile length l in the trans (extended) configuration. This length l and
the volume v occupied by the chain can be obtained from the expressions

l(nm) ∼ (0.15 + 0.13nc),

and

v(nm3) ∼ (27.4 + 26.9nc) × 10−3,

where nc is the number of carbons in the saturated hydrocarbon chain, with the
exclusion of the CH3 ending group [4].

The most common experimental techniques to investigate sizes and shape of
micelles are light scattering, tracer diffusion [19], ultracentrifugation [20], and
X-ray scattering and diffraction. Most of the amphiphiles with charged head
groups form spherical micelles. This tendency is attributed to the electrostatic
repulsion between heads, which leads to large values of the surface per head. The
addition of ions (from a salt, for example) can reduce the surface per amphiphile
head, inducing the stabilization of non-spherical micellar shapes, as cylindrical,
spherocylindrical, and prolate and oblate ellipsoidal forms [11,17].

5.2.1.3 Thermodynamics of micellization We now look at the basic
thermodynamic ideas underlying the process of micellization [11,21]. Consider a
solution of a fixed number of Na amphiphilic and Nw water (solvent) molecules in
a volume V . There are many micellar aggregates, with different sizes (number of
amphiphilic molecules), associated with the size distribution {Nn;n = 1, 2, . . .},
and subjected to the constraint

∑

n=1,2,...

nNn = Na. (5.1)
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The free energy of this system may be written in terms of three terms,

F = Fmix + Fmic + Fw. (5.2)

The free energy of mixing is given by the (ideal gas) expression,

Fmix =
1

β

[
Nw ln Xw +

∑

n=1,2,...

Nn ln Xn + Nw +
∑

n=1,2,...

Nn

]
, (5.3)

with kBT = 1/β, Xw = Nw/V , and Xn = Nn/V . The free energy of the micelles
is written as

Fmic =
∑

n=1,2,...

NnFn, (5.4)

where Fn is the free energy of a single micellar aggregate of size n. The
contribution of water, given by Fw, is not so relevant at this point.

The equilibrium concentrations come from the minimization of the total free
energy, F = F ({Nn}), with the constraint, given by Eq. (5.1), of fixed number
of amphiphiles. We then introduce a Lagrange multiplier, and minimize the
function

F̃ ({Nn}) = F ({Nn}) + α
∑

n=1,2,...

nFn, (5.5)

from which we have

µn = −αn = µ1n, (5.6)

where α = −µ1, and µn is the chemical potential of a micellar aggregate of size n,

µn =
∂F

∂Nn
=

1

β
ln Xn + Fn. (5.7)

Using these equations, we have

Xn = exp[−β(Fn − nµ1)], (5.8)

which can also be written as a “law of mass action,”

Xn = Xn
1 exp[−β∆G(n)], (5.9)

where ∆G(n), given by

∆G(n) = Fn − nF1, (5.10)

can be regarded as the difference between the free energies of amphiphiles
belonging to a micellar aggregate and free amphiphiles in water.

The quantity ∆G(n) depends on several ingredients [11,21]: the energy of
binding within the micelles; the surface tension; the arrangements of the hydro-
phobic tails. Different forms of ∆G(n) have been proposed in the literature, even



MICELLAR L1, L2 ISOTROPIC PHASES 169

in very recent publications [22]. In order to keep calculations at a very simple
level, let us assume that

−β∆G(n) = (n − n0)ǫ, (5.11)

where n0 and ǫ are fixed parameters, and which is supposed to account for the
amount of energy necessary for filling a hydrophobic core [11]. We then have

Xn = Xn
1 exp[ǫ(n − n0)], (5.12)

and

Xa =
Na

V
=

X1 exp[ǫ(1 − n0)]

[1 − X1 exp(ǫ)]2
, (5.13)

which can also be written as

X1 =
2Xa exp(ǫn0) + 1 − [4Xa exp(ǫn0) + 1]1/2

2Xa exp(ǫn0 + ǫ)
. (5.14)

Eq. (5.14) shows that Xa ∼ X1 in the regime of low dilution (Xa ≪ 1). At large
amphiphile concentrations, Xa exp(ǫn0) ≫ 1, we reach an asymptotic regime,
X1 ∼ exp(−ǫ), which suggests that the critical micellar concentration should be
given by

Xa(CMC) ∼X1 ∼ exp(−ǫ). (5.15)

In a recent publication, Chandler and coworkers [22] obtained excellent fit-
tings of the temperature dependence of the critical micellar concentration with
an expression of the form

−β∆G(n) = nβ∆µ − βgn2/3 + hn5/3, (5.16)

which accounts for several stages of the formation of micelles. We should
also mention the existence of several numerical simulations of the processes of
micellization. For example, a Monte Carlo simulation of a schematic model
of amphiphiles and water molecules [21], represented by three- and one-site
molecules on a square lattice, already leads to all of the characteristic properties
of micellization (including polydipersity and a critical micellar concentration).

5.2.2 Self-organization of amphiphiles in semi-dilute and
concentrated regimes

We now consider semi-dilute and concentrated micellar regimes, with amphiphile
concentrations larger than CMC but far from the liquid crystalline region of the
phase diagram.

5.2.2.1 Changes in size and shapes of micelles Size and shape of micelles
depend on concentration of amphiphiles, temperature and ionic strength of the
mixture. The mean aggregation number of micelles has been shown [11] to
behave as n ∝ √

c, where c is the concentration of amphiphiles. Parameters
as concentration, temperature, and ionic strength, affect the competition
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between attractive and repulsive forces, which characterize the intermolecular
interactions. The competition between different interactions defines the surface
per amphiphile head, which gives some information about the permeability of the
micellar surface with respect to the solvent. For larger values of the surface per
amphiphile head, the molecules of the solvent have a larger probability of penet-
rating into the micelles. Different types of micellar aggregates have typical values
of the surface per amphiphile head. As a rule, the sequence spheres → cylinders
→ disks presents decreasing values of the surface per amphiphile head. The par-
ticular shape of the micelles also depends on other features of the amphiphile,
as the length of the alkyl chain and the volume occupied by the chain.

As an introductory example, we consider the case of a mixture of SDS and
brine (with NaCl), studied by quasielastic light scattering spectroscopy [23], with
amphiphile and NaCl concentrations ranging from 1.7 × 10−2 to 6.9 × 10−2 M
and from 0.15 to 0.6 M, respectively, and temperatures between 10 and 85◦C
[16]. Spherical micelles, with a typical radius of about 2.5 nm, were shown to
be stabilized at high temperatures and for all values of NaCl concentration,
almost independently on the SDS concentration. As the temperature increases,
the mean hydrodynamic radius of the micelles tends to the asymptotic value
2.5 nm. At fixed NaCl concentration, larger than 0.3 M, the sizes of the micelles
grow as the temperature decreases. These micelles approach a prolate ellipsoidal
shape with a minor axis of about 5.0 nm and a major axis increasing with salt
concentration but decreasing with temperature. A typical value of this major
axis is about 130 nm. The ellipsoidal shape, however, is not the only possibility
for representing a non-spherical micelle; another proposal is a spherocylindrical
shape [24]. The mean diffusion coefficient, D, has been shown to depend on both
temperature and NaCl concentration. Typical values of D range from about 10−7

to 10−6 cm2/s, decreasing with concentration of NaCl (at constant temperature)
and increasing with temperature (at constant NaCl concentration). At fixed
values of salt concentration and temperature, D decreases about 10% as the
concentration of SDS increases by a factor of 2. The mean aggregation number
of the micelles ranges from about 60, for spherical micelles, to 1500, for highly
anisotropic ellipsoidal micelles.

The size growth of micelles in the presence of electrolytes is heavily dependent
on the type of counterion of the system. For example, small-angle neutron scat-
tering investigations of the cetyltrimethyl ammonium chloride/water mixture
with the addition of KCl and KBr have shown that the diameter of the micelles
increases with the concentration of KBr (from 0.03 to 1 M), but remains at about
the same typical value with increasing amounts of KCl (from 0.05 to 1 M) [25].
According to this result, the presence of the counterion is relevant, but the effects
of the co-ion are negligible. Micellar growth is enhanced in the presence of larger
hydrated counterions.

Steady-state fluorescence quenching is another experimental technique for
investigating the size of micelles [26]. Considering again the SDS/water mixture
as a working example, the presence of additives (ethanol, n-propanol, n-butanol,



MICELLAR L1, L2 ISOTROPIC PHASES 171

Table 5.1 Micellar radius (R) and
surface per amphiphile head (s) for the
SDS/water mixture in the presence of
additives [26]

Additive (M) R (nm) s (nm2)

Ethanol
0.685 1.82 0.632
1.712 1.66 0.662
3.082 1.50 0.756
n-Propanol
0.535 1.81 0.801
1.338 1.70 1.032
n-Butanol
0.873 1.78 1.225
1.091 1.87 1.127
2.182 2.59 1.247
tert-Butanol
0.425 1.77 0.721
0.851 1.73 0.863
1.916 1.70 1.195
n-Pentanol
0.461 1.83 1.206
0.923 2.62 1.307
1.108 2.82 1.407

tert-butanol, n-pentanol, n-hexanol, n-heptanol) has been shown to modify the
value s of the surface per amphiphile head. Since s depends on the concentration
of the additives, it does have influence on the spherical micellar size [26]. In
Table 5.1, we give values of the micellar radius R and the surface per amphiphile
head for SDS/water micelles in the presence of some additives [26].

Values of s typically increase with concentration of additives. However,
depending on the additive, the micellar radius may decrease (ethanol, propanol,
tert-butanol) or increase (n-butanol and n-pentanol) with the concentration of
an additive. The behavior of R as a function of the concentration of additive can
also be non-monotonic, decreasing up to a minimum value, and then increasing
with concentration. This behavior seems to be related to the hydrophobic volume
that is needed to accommodate the additive in the micellar medium.

5.2.2.2 Interactions between micelles and local structures in the concentrated
regime In the semi-dilute and concentrated regimes, the interactions between
micelles cannot be neglected. Indeed, these interactions should be responsible
for the onset of ordered anisotropic liquid phases and even give rise to more
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complex amphiphilic non-micellar structures. As the concentration of amphiphile
increases, the interactions between micelles are accounted for by electrostatic
van der Waals attractions, as well as steric and hydration repulsive forces [11],
depending on various physico-chemical parameters, as ionic strength and pH of
the solution, type of solvent, and temperature. The competition among these
interactions leads to the transition from the micellar isotropic phase, and defines
the sequence of possible ordered structures.

Quasielastic light scattering experiments have been performed to measure
micellar diffusivity of several surfactant/brine mixtures (e.g. CTAB, cetyltri-
methyl ammonium bromide; MyTAB, myristyltrimethyl ammonium bromide;
and DoTAB, dodecyltrimethyl ammonium bromide, and SDS), over a wide range
of surfactant concentrations, but in a range of salt concentration such that the
electrostatic interactions are still dominant [27]. It has been shown that the beha-
vior of the diffusivity of micelles scales as the ratio of the surfactant to the salt
concentrations.

Interactions between inverted micelles have been calculated by Monte Carlo
simulations and then compared with experimental results of small-angle neutron
scattering of a mixture of sodium di-2-ethylhexyl sufosuccinate (AOT) and
water [28]. The dispersion force, coming from the correlated fluctuations in the
ionic distribution inside micelles, is comparable to the classical van der Waals
interaction.

In micelles of mixtures with two amphiphiles, with bilayer structures, there
have been observations of a local pseudo-lamellar ordering in the micellar
isotropic phase, in the neighborhood of the nematic phases.

5.2.2.3 Direct and inverted isotropic micellar phases We now discuss some
properties of direct L1 phases in the neighborhood of liquid crystalline regions.
Examples of phase diagrams presenting micellar isotropic phases in this neigh-
borhood are given in Figs 1.6, 1.9, 1.19, 3.8, and 3.10. In particular, there are
several measurements of electric conductivity [29–31], density [32,33], resistance
and resistivity [34], as a function of temperature and relative concentrations of
the different components of the mixture, in the vicinity of nematic domains. In
the nematic region, the principal electrical conductivities (parallel and perpen-
dicular to the director) assume distinct values, but tend continuously to a unique
limit at the nematic–L1 transition. Measurements of mass density d as a func-
tion of temperature show a monotonic decrease in the nematic region, a small
increase at the nematic–L1 transition temperature TNI, and small monotonic
decrease for T > TNI. A similar behavior is displayed by the electric resistance
through the nematic–L1 transition. On the other hand, resistivity as a function
of temperature, in both nematic and L1 phases, decreases linearly with T , but
with a different angular coefficient (which is smaller in the L1 phase).

In the neighborhood of the discotic nematic phase, micelles of binary mixtures
in the L1 phase are expected to have disk-like shapes, with thickness of about
twice the length of the amphiphile, 2l, and diameter of about 4l. In ternary



MICELLAR L1, L2 ISOTROPIC PHASES 173

mixtures, however, micelles were shown to present lower-symmetry shapes.
A KL/DeOH/water mixture, in the L1 phase, has been shown to display the same
pseudo-lamellar local ordering of micelles in the neighboring nematic phases [35].
This indicates that micelles in the L1 phase, in this particular region of the phase
diagram, have a biaxial symmetry, as a flattened prolate ellipsoid, with three
mutually orthogonal two-fold symmetry axes. Also, the isotropic characteristics
of this phase are a consequence of orientational fluctuations of these micelles. The
typical dimensions of these micelles were estimated as A′ = 8.5 nm, B′ = 5.5 nm,
and C ′ = 2.6 nm, where C ′ refers to the potassium laurate bilayer and A′ and
B′ are dimensions in the plane perpendicular to the bilayer.

Inverted isotropic micellar systems have been shown to present remark-
able static and dynamic properties. In the L2 phase, viscoelasticity is strongly
dependent on the volume fraction of micelles φ (in other words, the volume
fraction of the amphiphile) [36]. For example, in the range 0.05 � φ � 0.5, a
mixture of sodium di-2-ethylhexyl sufosuccinate (AOT) and decane has inverted
micelles of radius 1.5 nm and aggregation number of about 22. The dynamics of
the interaction among micelles in the L2 phase was investigated by time-of-flight
ultrasonic measurements, for frequencies between 2 and 45 MHz, and Brillouin
techniques, at higher frequencies. At low frequencies, micelles behave as isolated
objects. At higher frequencies, however, there is a typical behavior of an instant-
aneous micellar network. Electrical conductivity depends on φ2, for small values
of φ, but deviates from this behavior at larger values of φ [37]. This deviation
comes together with the appearance of a secondary slow dielectric relaxation
process, which coexists with the typical faster relaxation of single particles.
Sound velocity measurements for the AOT/decane mixture, with φ � 0.2, give
increasing values with φ, but are almost frequency independent (about 1230 m/s;
increasing slightly with frequency).

An inverted micellar structure in a mixture of the n-decyl octaoxyethylene
glycol monoether (C10E8) and dodecane was investigated by static light scatter-
ing measurements in the vicinity of the consolute point, defined by the critical
solution temperature (28.05◦C, in the case of this mixture) and critical composi-
tion (30 wt%, in this mixture) on a temperature–composition phase diagram [38].
This consolute point is an extremum if we draw a graph of temperature versus
φ for a binary mixture; at this point, the homogeneous liquid begins to separ-
ate into two immiscible liquid volumes. The scaling behavior of the correlation
length and the osmotic compressibility of this system near the consolute point
were shown to be compatible with critical indices belonging to the universality
class of the three-dimensional Ising model.

An interesting pressure-induced phenomenon was observed in infrared spec-
troscopy experiments for the micellar reversed phase of the 1,2-dioleoyl phos-
phatidylethanolamine/water mixture [39]. At about 9 kbar, the reversed micellar
phase transforms into a lamellar phase.

The phase diagrams of some of the lyotropic mixtures, for instance, mix-
tures of sodium 4-(1′-heptylnonyl) benzenesulfonate (SHBS), isobutyl alcohol,
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n-dodecane, and a brine (with NaCl) [40], display a stable bicontinuous struc-
ture separating regions of L1 and L2 phases. On the basis of the analysis of
small-angle X-ray scattering, viscosity, and electrical conductivity experiments,
it has been suggested the existence of a continuous progression, from the bicon-
tinuous structure towards the buildup of direct or inverse micelles, depending on
the location in the phase diagram.

5.3 The sponge L3 phase

Sponge or L3 phases are one of the most interesting structures in the phase
diagram of lyotropic mixtures. They are optically isotropic and do not display any
long-range order. Experimental observations of sponge phases indicate the exist-
ence of a microstructure with a surfactant bilayer, with a bicontinuous structure,
separating two solvent domains over macroscopic distances [41].

Sponge phases in multidimensional phase diagrams were observed in both
water-rich and oil-rich regions, mostly in the vicinity of swollen lamellar
phases. For example, there are sponge phases in the following mixtures:
cetylpyridinium chloride (CPCl), n-hexanol, and brine (0.2 M NaCl) [42];
cetylpyridinium bromide, n-hexanol, and brine (0.2 M NaCl) [42]; sodium bis
2 ethylhexyl sulfosuccinate (AOT) and brine [43]; n-dodecylbetain, pentanol,
and water [43]; AOT, dodecanol, and water [44]; sodium dodecylsulfate (SDS),
1-pentanol, cyclohexane, and water [45]; didodecyldimethylammonium bromide,
tetradecane, and water [46]; Na-octylbenzene sulfonate, n-pentanol, and brine
(0.5 M NaCl) [47]; and SDS, pentanol, dodecane, and water [48].

Different experimental methods and techniques have been used to investigate
the structure and physico-chemical properties of sponge phases: freeze-fracture
electron microscopy, measurements of transport properties [49], X-ray (SAXS)
[50] and neutron (SANS) [51] scattering and diffraction, NMR [44], and light
scattering [43]. In the following sections, we discuss some physico-chemical,
dynamical, and structural properties of these phases.

5.3.1 Light scattering experiments: Osmotic compressibility,
diffusion, and relaxation times

Elastic and quasi-elastic light scattering experiments give information on the
correlation length ξ of the mean curvature fluctuations of the bicontinuous
structure, the behavior of the osmotic compressibility, and the coefficient of
cooperative diffusion Dc.

Consider the case of diluted samples. The scattered intensity as a function
of the modulus of the scattering wave vector q may be written as [41]

Il(q) = C1

[
C2 +

tan−1(qξ/2)

qξ/2

]
, (5.17)

where C1 and C2 depend on the form of the interactions. Fluctuations of the
local volume fraction of amphiphiles in the lyotropic mixture have essentially two
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origins: (i) thermal fluctuations of the local cell size of the structure; (ii) thermal
fluctuations of the mean curvature of the structural amphiphilic membrane
locally averaged over a volume of dimensions comparable to the cell. However, it
is important to note that there is no cell as in the usual case of solid state phys-
ics. To some extent, the structure of the L3 phase can be sketched as a melted
cubic structure of lattice parameter d [44,52]. In contrast to a cubic phase, in
the L3 phase there is no positional long-range order and periodicity.

We now use some thermodynamic and scaling arguments in order to write an
expression for the free energy of a system of (non-intersecting) membranes [43].
First, let us recall that the bending elastic energy dE of an area element dA of
a bilayer membrane is given by the quadratic form

dE =

[
1

2
K(c1 + c2)

2 + Kc1c2

]
dA, (5.18)

where c1 and c2 are two principal curvatures, K is the mean curvature modulus,
and K is the Gaussian curvature modulus (which has no counterpart in one
dimension). The rigidity moduli, K/kBT and K/kBT , are pure numbers; a dila-
tion λ changes c1 and c2 into c1/λ and c2/λ, and dA into λ2dA, so that the elastic
energy dE remains unchanged under the dilation. We now consider two mem-
brane systems of areas A and A′ = λ2A, within the volumes V and V ′ = λ3V ,
respectively. The ratio V/A = V ′/A′ represents the characteristic distance d
between membranes. Apart from small fluctuations, any membrane configura-
tion of the first system should correspond to a (dual) membrane configuration of
the second system. These dual configurations have the same elastic energy, and
therefore contribute with the same weight to the expression of the free energy.
This means that the contribution of these large-scale configurations to the free
energy, as well as the elastic energy itself, are scale invariant under the dilation
by any factor λ. The free energy, including the contribution of small ripples,
given by a term of the form µAA, is written as

F = µAA + BA(K, K, T )
A3

V 2
, (5.19)

where the second term is invariant under dilation. Using the definition of the
volume fraction, φ = (Aδ)/V , and taking into account that the partition function
depends on K, K, and T through the ratios K/T and K/T only, we have the
free-energy density,

f =
F

V
= µϕφ + Tβ

(
K

T
,
K

T

)
φ3. (5.20)

Note that we are assuming non-intersecting membranes, and that these
arguments do not account for the effects of disconnected subunits.
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From Eq. (5.20), we obtain the osmotic pressure,

π = −f + φ
∂f

∂φ
∼ φ3, (5.21)

so that the intensity scattered at zero wave vector is given by

Il(q → 0) ∼ φ

(
∂π

∂φ

)−1

∼ φ−1. (5.22)

Using these equations in order to fit the experimental data, it is possible to obtain
ξ and d as a function of φ [53]. For a mixture of AOT, D2O, and NaCl, Skouri and
coworkers found d ∼ 50 nm, and ξ ∼ 102 nm, both depending on φ. However,
the ratio ξ/d ≃ 3.2 was shown to be independent of φ. From Eq. (5.22), the
osmotic compressibility is expected to be proportional to φ−1 [41,43], although
there are experimental results indicating deviations from this behavior [53]. The
presence of small wavelength curvature fluctuations renormalizes both rigidity
moduli of the structure, associated with the mean and Gaussian curvatures of the
lipid membrane, and the parameter A [43]. In the particular case of the osmotic
compressibility, the corrections introduced by this renormalization lead to

[Il(q → 0)φ]−1 ∝ ln φ. (5.23)

This behavior was observed in several multicomponent mixtures with sponge
phases, as AOT/brine, n-dodecylbetain/pentanol/water, and cetylpyridinium
bromide/n-hexanol/brine. Although there is still some controversy [54], data for
the pseudo-binary mixtures AOT/NaNO3/water and AOT/NaCl/water seem to
be well accounted for without the need of this logarithmic correction [55,56].

Quasi-elastic light scattering allows measurements of the relaxation of con-
centration fluctuations, which is a single exponential function with a typical
time τD [43],

τ−1
D (q, φ) = Dc(φ)q2, (5.24)

where Dc(φ) is the diffusion coefficient, which was shown to be proportional to
the volume fraction φ. Typical values of Dc in mixtures based on AOT range
from ∼ 0.2×10−7 to ∼ 1.1×10−7 cm2/s for φ ∼ 0.05 and φ ∼ 0.38, respectively.

Static light scattering experiments performed with samples from different
regions of the multidimensional phase diagrams of lyotropic mixtures with a
sponge phase show evidences of a second-order symmetric–asymmetric phase
transition [57,58]. In the symmetric situation, the surfactant layer divides the
space into two equal volumes (inside and outside); the asymmetric case corres-
ponds to a division into two different volumes (e.g. less inside than outside). The
usual expansion of the free energy, with only one (density) order parameter, does
not account for both symmetric and asymmetric phases, and a phase transition.
Coulon and coworkers [57] explained the problem by introducing an additional
order parameter, which takes into account the difference between the inside and
the outside volumes of the structure.



THE SPONGE L3 PHASE 177

5.3.2 Small-angle X-ray and neutron scattering experiments

Small-angle X-ray (SAXS) and neutron (SANS) diffraction techniques give
essential information on the local ordering and structure of the sponge phase.
The analysis of these scattering experiments leads to the possibility of building
structural models. X-ray experiments are sensitive to electronic density contrasts
in the bicontinuous structure, coming from different electronic distributions of
polar heads of the amphiphilic molecules, of the solvent, and of the carbonic
chains. Neutron experiments are sensitive to the cross section of atoms in the
lyotropic mixture, being particularly useful if the same mixture has both 2H and
1H isotopes in different parts of the bicontinuous structure. In a certain sense,
both X-ray and neutron diffraction techniques give essentially complementary
information about the structure at nanoscales, referring to different ranges of
the modulus q of the scattering vector.

We now analyze the scattering patterns of the sponge phase at small and high
scattering angles. In the small-q range, patterns present [44,49,50,53,59] a broad
peak due to correlations between pieces of lamellae. In q space, the position of
this peak can be written as a function of the inter-layer repeating distance d
(assuming a locally lamellar-type structure) and the relative volume φ,

qm =
2π

d
=

2πφ

γqδ
, (5.25)

where γq is a number larger than 1 (usually, γ ∼ 1.5) [42] and δ is the thickness
of the bilayer. Typical values of δ, obtained from SANS experiments, are 2.9 and
3.1 nm, for mixtures of SDS, pentanol, water, and NaCl, and of SDS, pentanol,
dodecane, and water, respectively [49]. Comparing these values to the thick-
ness α of the lamellae of the neighboring lamellar phases in the phase diagrams
of the SDS/pentanol/water/NaCl and SDS/pentanol/dodecane/water mixtures,
we have α = 1.9 nm and α = 2.1 nm, respectively. These results give δ/α ∼ 1.5,
which corresponds to the value of γq in the expression for qm. In the neighboring
lamellar phase, it was shown that α ∝ φ−1, although a more accurate analysis of
the diffraction data suggests corrections to this dependence [60]. As in the case
of the lamellar phases, this process of introducing solvents in the structure of
the L3 phase is called swelling of the bilayer structure. In the high-q range, pat-
terns present the typical form factor of a flat bilayer. In mixtures with carbonic
chain tails, patterns also present the typical broad band due to the distance
between chains (of about 0.5 nm). At large values of q, from the point of view of
local structures, Lα and L3 phases present bilayers with the same morphology.
In direct sponge phases, the “layer thickness” is about twice the length of the
principal amphiphile. In inverse water-based sponge phases, the layer thickness
is related to the water layer, which in general does not have a typical length
scale and changes according to the relative concentrations of the components of
the mixture. The scattering curves display a crossover from a behavior of the



178 ISOTROPIC MICELLAR AND BICONTINUOUS PHASES

d(a) (b)




Fig. 5.4. Sketch of the sponge phase structure. Parameters δ and d represent the
thickness of amphiphilic bilayer (water layer, for an inverted phase) and the
mean distance between channels: (a) direct structure; (b) inverted structure.

form 1/q2, for q < 2π/d, to a form 1/q4, for q > qm = 2π/d, which characterize
the scattering of a flat bilayer with random orientation and a thin interface,
respectively.

In a very dilute regime, the sponge phase of a mixture of Na-octylbenzene
sulfonate, n-pentanol, and a brine (0.5 M NaCl) [47] presents an interesting
behavior. Neutron scattering intensity is given by

In(q) ∼ q−2 exp(−δ2q2/12), (5.26)

with δ = 1.5 nm, which is a characteristic behavior of a random dispersion of
a large lamellar-type structure of thickness δ. This mixture presents a micellar
isotropic phase, L1, in the vicinity of the L3 region, with long cylindrical micelles
of radius about 1.5 nm. The analysis of the scattered intensity as a function of
q, along a path in the phase diagram from the L3 to the L1 phase, indicates that
the transition should be mediated by the appearance of microscopic defects,
probably edges, in the bilayer-type structure of the former sponge phase.

In summary, the available scattering results indicate that a direct L3 phase
structure can be modeled as a microstructure in which a surfactant bilayer,
of thickness δ and multiply connected topology, separates two solvent regions,
symmetric and asymmetric, over macroscopic distances [41] (see Fig. 5.4(a); as
shown in Fig. 5.4(b), there have been observations of inverted structures).

5.3.3 Electrical conductivity and viscosity measurements

Electrical conductimetry, referring to measurements of the electrical conductivity
σ of the mixture, is another experimental technique widely used to investigate
the structural properties of the L3 phase. Usually, this type of measurement is
made with a Wayne Kerr Autobalance Universal Bridge operating at frequencies
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in the kilohertz range. The mobility of the ions in the mixture is expected to
depend on the topology of the amphiphilic structure. Conductivity measurements
can then be compared with theoretical calculations from different structural
arrangements of amphiphilic molecules in the L3 phase, which indicates the most
probable structural model, compatible with the experimental observations.

We now discuss some examples of experimental results supporting the bicon-
tinuous character of the sponge phase structure. Porte and coworkers [42]
measured σ as a function of the volume fraction of brine, φw, in a mixture
of cetylpyridinium bromide, n-hexanol, and brine (0.2 M NaCl), and found an
almost constant value, slightly increasing as (1 − φw) increases from 0 to about
0.2. For (1 − φw) = φa → 0, that is, if the volume fraction of surfactants goes to
zero, we have

σs = lim
φa→0

σ ∼ 2

3
σ0, (5.27)

where σ0 is the conductivity of the brine only. This indicates that the structure of
the surfactant in the sponge phase, even in a very dilute regime, imposes a con-
stant finite obstruction to the mobility of ions. This “obstruction factor,” defined
as σr = σs/σ0, can be calculated from microscopic structural models; in the case
of a flat bilayer with random orientation, Jonsson et al. [61] found σr = 2/3, in
agreement with experimental observations. A similar result was obtained for a
quasi-binary mixture of pentaethylenglychol n-dodecyl ether (C12E5) and water,
with the addition of 0.1 wt% of NaCl [62]. It was shown that the relative (with
respect to the brine) conductivity in the L3 phase is smaller than in the L1

phase. Defining the reduced conductivity, σ′ = σ/(σ0φw), it was observed that
σ′ decreases from about 0.8 to about 0.5 in the range 0 � φ < 0.18. This decrease
is more pronounced in the range 0 � φ � 0.02; moreover, in the limit of large φ,
the value of σ′ agrees with theoretical calculations and experimental values for
σr in the cubic bicontinuous phase. The abrupt increase of σ′ at φ � 0.02 could
indicate the disruption of the bicontinuous structure, giving rise to fragments of
bilayers or even to the formation of micelles in a very dilute regime of the mix-
ture. This abrupt increase of the reduced conductivity as a function of solvent
concentration in highly diluted L3 phases, which was also observed in a mixture
of SDS, pentanol, water, and NaCl [49], seems to be a general feature of the
sponge phases.

As a general conclusion, conductivity measurements are consistent with the
bicontinuous character of the L3 phase structure. Measurements of the relative
viscosity, defined as the ratio ηr = η/ηs, where η is the viscosity of the solu-
tion and ηs is the viscosity of the solvent, are also consistent with this picture.
Porte and coworkers [42] measured ηr as a function of φa in the cetylpyridinium
bromide/n-hexanol/brine mixture, along a path of the partial phase diagram
from the micellar isotropic phase to the sponge phase. An abrupt increase of ηr,
by almost a factor 3, was observed in the transition from the micellar phase
to the L3 phase, which is consistent with the bicontinuous character of the
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sponge phase structure. An interesting result was recently reported by Porcar and
coworkers [63] when studying the behavior of the L3 phase of the cetylpyridinium
chloride/hexanol/brine mixture under shear in a Couette cell. The measurements
of ηr as a function of the shear rate γ̇ show three different regions: (i) at low
values of γ̇, a typical Newtonian behavior with constant ηr; (ii) at high values of
γ̇, another region with constant ηr, but a factor 3 smaller than in the previous
region; (iii) an intermediate region in which ηr decreases continuously. These
results indicate that shear can impose local modifications of the sponge-type
structure, with a possible shear-induced phase transition.

5.3.4 Flow-induced birefringence

One of the most spectacular properties of the L3 phase is flow-induced birefrin-
gence [43,63,64]. Under shear, or even under a gentle shaking, there appears a
velocity gradient and a transient flow birefringence, which relax with a charac-
teristic time, from some seconds up to minutes, depending on the system and
relative concentrations. For example, the AOT/dodecanol/water mixture shows
a relaxation time of about 250 s [44]. Induced birefringence was shown to be
proportional to γ̇φ−2 [43]; also, it increases with the water content of the mix-
ture. Samples of the L3 phase of a mixture of SDS, pentanol, dodecane, and
water, placed in a Couette cell, show the existence of a critical shear rate γ̇c, as
a function of φ, above which there is flow birefringence [64]. This critical shear
rate was shown to behave as [65]

γ̇c ∝ kBT

ηs

(
φ

δ

)3

. (5.28)

Fusion of membranes has been suggested as a microscopic mechanism in the
sponge structure in the presence of shear. Above the critical shear rate, the
deformation imposed to membranes could lead to a local fusion process, forming
anisometric structures responsible for the observed birefringence. Yamamoto and
Tanaka [66] reported experimental evidences of a shear-induced sponge–lamellar
first-order phase transition in the C12E5/water mixture. Shear seems to narrow,
and finally suppress, the region of coexistence of lamellar and sponge phases.
More recently, it has been shown that both dynamic and static processes, as
wetting [45], can induce the appearance of an anisotropic, probably lamellar,
phase.

Porte and coworkers proposed that shear-induced optical birefringence should
be written as [43]

∆n = Bflowγ̇, (5.29)

where Bflow, with dimension of time, expresses a dynamical feature of the
medium. This parameter can be positive or negative, depending on the sign
of the induced birefringence. In terms of the volume fraction of amphiphile in
the lyotropic mixture, it should behave as Bflow ∼ φ−2. In the linear regime
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(small values of γ̇), the optical axis of the shear-induced anisotropic structure is
expected to orient at about 45◦ off the direction of the velocity gradient, on the
plane of both velocity and velocity gradient. Measurements of Bflow as a function
of φ for the CPCl/hexanol/brine mixture indicate the existence of corrections to
this simple scaling law. Indeed, a better representation is given by

Bflow ∼ Λ1φ
−2 + Λ2φ

−1, (5.30)

where Λ1 and Λ2 are constants. In the range 0.03 � φ � 0.3, Bflow changes from
approximately 720 × 10−10 to −5 × 10−10 s.

5.4 Calculations for the sponge phase

A random surface model was first proposed by Cates and coworkers [58,67], and
later developed by Golubovic and Lubensky [68], for explaining a symmetry-
breaking transition within the sponge phase, as well as the transition from the
sponge to the neighboring swollen lamellar phase. The idea consists in consider-
ing the configurations of non-intersecting, defect free, random surfaces, defined
by Ising spin variables on a lattice of (cubic) cells. It is difficult, however, to
carry out any analysis of this random-surface model beyond the mean-field
level, which makes it interesting to resort to a Landau phenomenological expan-
sion of the free energy. In this section, we briefly review these two types of
treatment.

5.4.1 The lattice model of random surfaces

Consider a cubic lattice of Ising (up or down) spin variables. A spin configuration
of the lattice corresponds to a collection of up and down domains of spins. We
now imagine the bilayers along the interfaces between domains of opposite spins
(and smooth out any sharp corners that may arise). Removing the spins and
keeping the bilayers, the resulting surface has no defects and divides the space
into continuous regions of identical material, which may be called I (inside) and
O (outside). Ising-type Hamiltonians are invariant under changes of up and down
spins, which is equivalent to the symmetry between I and O domains of space.
The spontaneous breaking of this I/O symmetry may lead to a (second-order)
phase transition in the context of the random surface model.

According to this proposal [58], the space is coarse grained by cubic cells of
size ξ, of the order of the distance d between bilayers, and each cell is associated
with a two-state variable, φi = 0, 1. A part of the surface is drawn between
neighboring sites i and j with φi �= φj . We then construct spin Hamiltonians in
order to mimic bending and Gaussian elastic energy terms [68]. For example, in
a crude approximation, we may use the spin Hamiltonian

H = a(K)
∑

(i,j)

Nij , (5.31)
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where a(K) depends on the mean curvature modulus K, the sum is over
nearest-neighbor pairs of cells, and we take into account pair interactions only,

Nij = φi(1 − φj) + (1 − φi)φj . (5.32)

Note that Nij = 1 if φi �= φj , and Nij = 0 otherwise, such that it is equivalent to
an “occupation number of broken bonds.” The prefactor a(K), which should be
linearly dependent on K, comes from considerations of the local elastic energy.

A standard mean-field analysis can be developed on the basis of the
well-known inequality

F ≤ F0 + 〈H − H0〉0 = FMF, (5.33)

where F is the free energy, H0 is a trial Hamiltonian,

H0 = −
∑

i

ηφi, (5.34)

η is a variational parameter, 〈· · · 〉0 is an average with respect to an ensemble
defined by H0, and the free energy in the mean-field approximation, FMF, is an
upper bound to F . The trial free energy is given by

1

V
F0 = −kBT

V
ln Tr exp(−βH0) = −kBT

ξ3
ln[1 + exp(βη)],

where kBT = 1/β. Now it is convenient to introduce the definition

ψ = 〈φi〉0, (5.35)

which may be interpreted as the probability of occupancy of a cell, and to write η
in terms of ψ. It is thus straightforward to obtain the (coarse-grained) mean-field
expression

1

V
FMF = Fbend − TSmix, (5.36)

where

Fbend =
3

ξ3
a(K)ψ(1 − ψ) =

1

ξ3
8πKψ(1 − ψ) (5.37)

is an elastic free-energy density, with a suitable choice of a(K), and

Smix = −kB

ξ3
[(1 − ψ) ln(1 − ψ) + ψ lnψ] (5.38)

is the standard form of the entropy of a mixture. The mean-field solutions come
from the minimization of FMF with respect to ψ.

Calculations for this simple model already lead to some interesting results.
Let us assume that the free energy of the swollen lamellar phase Lα is given by
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Helfrich’s expression [58],

FLα
=

3π2

128

φ

δ

(kBT )2

Kα2
, (5.39)

where α is the interlamellar spacing. Then we have:

(i) at large values of the ratio between the mean curvature modulus and
the temperature, K/T , the lamellar swollen phase Lα is stable. Upon
lowering K/T , there is a transition to a symmetric sponge L3 phase (with
ψ = 1 − ψ = 1/2);

(ii) upon further lowering the ratio K/T , the system undergoes a symmetry-
breaking transition (ψ �= 1/2).

As pointed out by different authors, a more complete representation of the
elastic interactions requires the inclusion of at least four-spin interactions in the
expression of the spin Hamiltonian [58,68]. For example, in the coarse-grained
mean-field treatment, the free energy should include terms of the form

FG =
1

ξ3
4πKψ(1 − ψ){1 − 16ψ(1 − ψ)[ψ2 + (1 − ψ)2]}, (5.40)

where K is the Gaussian curvature modulus. At small values of the ratio K/T ,
we still have a symmetric sponge phase. Also, in this phase, it has been shown
that the free energy obeys the thermodynamic scaling form, given by Eq. (5.20),
with the addition of a logarithmic correction.

Although lattice models are fascinating, and may lead to a number of inter-
esting results, we now turn to the much more general (yet phenomenological)
Landau approach.

5.4.2 Landau expansion and phase diagrams

The Landau expansion for the free energy of a lyotropic mixture with a sponge
phase is usually written in terms of two order parameters [58]. One of them is
chosen as

ρ = φ − φ∗, (5.41)

where φ is the volume fraction of surfactant and φ∗ is a reference value (note
that φ and φ∗ play a similar role as the specific volume and the critical spe-
cific volume of an ordinary fluid near the critical point). The underlying I/O
symmetry of the random-surface models suggests the introduction of the second
order parameter, η, so that η = 0 in the symmetric phase, and η �= 0 if the
symmetry is spontaneously broken.

An expansion for the grand thermodynamic potential, Φ = f − µρ, where
f is a density of Helmholtz free energy and µ is a chemical potential, may be
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written as

Φ = −µρ +
1

2
aρ2 +

1

4
ρ4 +

1

2
Aη2 +

1

4
η4 +

1

2
ρη2, (5.42)

where we keep the most relevant, lowest-order, terms only. Note that, as in a
usual fluid, we can always shift ρ, and eliminate a ρ3 term. Also, the presence
of even powers of η, and the form of the coupling, ρη2, are chosen to preserve
the I/O symmetry (the coefficient of this coupling term can be conveniently set
to a positive value without any loss of generality). Given the chemical potential
µ, and the coefficients a and A, the thermodynamic solutions come from the
minimization of this grand potential with respect to the order parameters ρ
and η.

As pointed out by Roux and coworkers [58], the same form of Landau expan-
sion for the thermodynamic potential also appears in the context of the spin-1
Blume–Emery–Griffiths model, which was originally proposed to describe the
tricritical behavior in mixtures of 3He and 4He. Phase diagrams associated with
this form of thermodynamic potential are known to display a number of dis-
tinct topologies, including tricritical and higher-order multicritical behavior. In
Fig. 5.5(a) and (b), we sketch two typical phase diagrams, in terms of field vari-
ables (the coefficient a, usually associated with temperature, and the chemical
potential µ) at fixed values of the coefficient A; in Fig. 5.5(c) and (d), the cor-
responding diagrams are drawn in terms of the coefficient a and the density ρ
(which may be experimentally more relevant).

It is relatively easy to use Eq. (5.42) in order to derive analytic expressions
for the second-order lines and the tricritical points. For example, we have

∂Φ

∂ρ
= −µ + aρ + ρ3 +

1

2
η2 = 0, (5.43)

from which we can write the expansion of ρ in terms of even powers of η,

ρ = C1 + C2η
2 + C4η

4 + · · · , (5.44)

where C1 comes from the solution of the equation

−µ + aC1 + C3
1 = 0, (5.45)

C2 = −1/(2a + 6C2
1 ), and so on. Inserting this expansion for ρ into the Landau

expansion, we have

Φ = Φ0 +
1

2
(A + C1)η

2 + A4η
4 + · · · , (5.46)

where it is not difficult to write an expression for the coefficient A4. The line of
second-order transitions is given by A + C1 = 0, with A4 > 0, which leads to

µ + Aa + A3 = 0, (5.47)
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Fig. 5.5. Sketch of some phase diagrams associated with the Landau expan-
sion for the free energy of lyotropic mixtures with a sponge phase: (a) and
(c) correspond to A = −0.2; (b) and (d) correspond to A = 0.2. We indicate
the symmetric (S) and ordered (A) sponge phases. In (a) and (b), heavy
solid lines represent first-order transitions; continuous transitions are repres-
ented by dashed lines. C, TR, and CEP, label critical, tricritical, and critical
end points, respectively. In (c) and (d), we draw the corresponding phase
diagrams in terms of field and density variables, and indicate some tie lines
of phase coexistence.

supplemented by the stability condition

a(2a − 1) + 6A2(a − 1) > 0. (5.48)

In the particular case A = 0, the second-order line is given by µ = 0, and
a > 1/2; if the expansion is carried out to the next-order term, it is possible to
show that µ = 0 and a = 1/2 is a double critical endpoint. Also, we can do some
simple numerical calculations to draw the first-order lines sketched in Fig. 5.5.

We now turn to the calculation of correlations functions, which can be experi-
mentally measured by small-angle light-scattering techniques. It is then necessary
to add appropriate gradient terms to the Landau expansion. Let us include the
simplest of these gradient terms only, and use a Gaussian approximation for the
treatment of fluctuations. For a particular soluble case [58], we write

Φ = −µρ +
1

2
aρ2 +

1

2
ρη2 + g0(η), (5.49)
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where

g0(η) =
1

2
Aη2 +

1

4
η4 +

1

2
γη|∇η|2. (5.50)

Note that there is no gradient coupling between the surfactant density ρ(x)
at different spatial positions, so that it is possible to integrate out this order
parameter. We then have

Φ(η) =
1

2
A′η2 +

1

4
λη4 +

1

2
γη|∇η|2, (5.51)

where A′ = A + µ/a, and λ = 1 − a/2. In the Gaussian approximation, for small
values of λ, we have the Ornstein–Zernicke form,

〈η0ηr〉 =
1

4πγηr
exp

[
− r

ξη

]
, (5.52)

where ξ2
η = γη/A′. As pointed out by Roux and coworkers [58], this beha-

vior cannot be measured directly, since there is no contrast between I and O
regions which contain an identical solvent. However, fluctuations of η affect the
surfactant density–density correlation function,

g(r) = 〈δρ(0)δρ(r)〉, (5.53)

where δρ(x) = ρ(x) − ρ(0). From Eqs. (5.49) and (5.50), we can see that the
probability distribution for ρ(x) is a Gaussian with mean value µ/a − η(x)2/2a
and variance 1/a. Thus, we have

g(r) =
1

4a2

[
〈η(r)2η(0)2〉 − 〈η(r)2〉2

]
+

1

a
δ(r). (5.54)

Since we are assuming Gaussian distributions, we also have

〈η(r)2η(0)2〉 = 〈η(r)2〉2 + 2〈η(r)η(0)〉2, (5.55)

from which we write the density–density correlation for the surfactant,

g(r) =
1

4a2(4πγηr)2
exp

[
−2r

ξη

]
+

1

a
δ(r), (5.56)

whose Fourier transform, given by Eq. (5.17),

I(q) = C1

[
C2 +

tan−1(qξη/2)

qξη/2

]
, (5.57)

where C1 = ξη/(16πa2γ2
η) and C2 = (16πaγ2

η)/ξη, can be measured by static
small-angle light-scattering experiments. As we have already mentioned, this
characteristic 1/q behavior has indeed been observed close to the transitions
(in the symmetric phase).
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6

THE NEMATIC AND CHOLESTERIC PHASES

6.1 Introduction

We now discuss nematic and cholesteric phases in lyotropic mixtures. Both
uniaxial and biaxial phases have been characterized in the extensively invest-
igated phase diagram of a mixture of potassium laurate (KL), decanol (DeOH),
and water (W or D, for H2O and D2O), which we use as an example of the
rich polymorphism of these lyotropic mixtures. Lyotropic cholesteric phases can
be obtained by doping with chiral molecules a lyotropic mixture with nematic
phases.

Modifications of the shape anisotropy of micelles as a function of temperature
and relative concentrations of the components, observed by X-ray scattering
measurements, are an essential ingredient to account for the experimental phase
diagrams. The reentrant features of the topology of these phase diagrams can
be explained by the introduction of an extra non-critical order parameter,
besides the usual order parameter related to the breaking of uniaxial and biaxial
symmetries.

6.2 The potassium laurate/decanol/water mixture

The existence of uniaxial nematic phases in a mixture of potassium laurate,
1-decanol, and water, KL/DeOH/W, in particular the presence of a discotic
nematic ND phase, is known since the beginning of the 1970s. Long [1]
already reports the existence of the ND phase in the mixture KL/potassium
chloride/decanol-OD/D. The topology of the phase diagram of the KL/DeOH/D
mixture was well established in the seminal work of Yu and Saupe [2]. Besides the
identification of the calamitic nematic NC and the discotic nematic ND phases,
in this work there is a clear characterization of a biaxial nematic NB phase.

In the following sections, we mainly use this particular mixture to discuss
several features of phase transitions in lyotropic nematics.

6.2.1 Identification of the nematic structures by
various experimental techniques

Nematic phases were characterized by the complementary use of different
experimental techniques, as light polarized optical microscopy (LPOM), laser
conoscopy, nuclear magnetic resonance (NMR), X-ray and neutron scattering
and diffraction.

In the LPOM experiments, we observe the temperature dependence of the
phase textures of a liquid crystalline mixture located inside a transparent sample
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holder and forming a thin film of tenths of micrometers. Each phase is expected
to display a typical texture characterized by the orientation of a symmetry axis
with respect to the direction of the electric field of light, and affected by the
presence of typical defects. This technique is particularly useful to determine the
phase sequence of a mixture as a function of temperature. Also, with suitable
conoscopic illumination, it is useful to carry out measurements of birefringence in
oriented samples [3], which lead to unequivocal determinations of either uniaxial
or biaxial phases. However, LPOM alone is not conclusive about the structure
of the liquid crystalline sample.

Laser conoscopy [3,4] is a powerful technique used to measure birefringences
of lyotropic nematics in a more precise way. As birefringences of lyotropic mix-
tures are very small (of order 10−3), we usually need thick samples, of the order of
millimeters, in order to have precise measurements. Also, this technique requires
good quality of the sample alignment, which is reflected in symmetrical and
well-formed interference fringes.

NMR experiments can provide more detailed information about the structure,
local ordering, and symmetry of the phases. Studies of the deuteron resonance
splitting of D2O, in particular if samples are rotated in the spectrometer, give
important information on the characteristics of the samples in terms of the
orientation with respect to the applied magnetic field.

Scattering and diffraction techniques (X-ray and neutrons) complete the ana-
lysis of the problem and lead to the determination of the structure of the samples.

6.2.2 The calamitic, discotic, and biaxial phases

Let us consider texture observations in KL-based mixtures inside flat glass capil-
laries (microslides), about 10 µm thick, in a polarizing light microscope, with
the sample between crossed polarizers [5, 6].

Freshly prepared NC samples present a typical schlieren texture. Applying
a magnetic field B ∼ 10 kG, during about 1 min, the texture presents inver-
sion walls whose periodicity scales with the sample thickness [7]. This structure,
however, is not stable; after a certain time in the field, there appear closed walls
(ellipses); finally, it relaxes to a planar texture, with the director n (optical or
symmetry axes) parallel to B.

An ND sample placed inside a freshly filled flat glass capillary, between
crossed polarizers, also presents a schlieren-type texture. Usually, the nematic
director n orients perpendicular to the flat glass walls of the sample holder. This
orientation gives rise to a pseudo-isotropic texture under the polarizing micro-
scope, which has an isotropic appearance, due to the orientation of the director
parallel to the direction of light propagation. This is typical of a homeotropic
alignment of the director, which can be improved by the application of a magnetic
field in the plane of the wall surface (that is, perpendicular to n).

An NB sample placed in a freshly filled flat glass capillary presents a texture
that resembles the texture of the NC phase. After being oriented, according to the
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procedure described in Chapter 1, samples in the NB phase present a planar-type
texture. In this orientational condition, both optical axes of the phase are ori-
ented in a plane perpendicular to the flat glass surface (which contains the light
propagation direction, the vertical axis, and the vector B), each axis forming an
angle θ with respect to the vertical axis. In the NB region, this angle θ depends
on temperature and relative concentrations.

Although it is possible to measure the optical birefringence of liquid crystal-
line samples in most of the modern optical microscopes with a conoscopic facility
[3], laser conoscopy [4] is preferentially used to measure both birefringences
of biaxial lyotropics in the same experiment. Since birefringences of lyotropic
nematics are small, thick samples are usually required for providing measure-
ments of both ∆n and δn (where ∆n and δn refer to the birefringences that
vanish in the uniaxial ND and NC phases, respectively). Usually, liquid crystal-
line films of about 2 mm have to be used to allow the observation of a reasonable
number of conoscopic fringes (about six, three along each direction in the plane
perpendicular to the laser beam direction), which are needed in order to meas-
ure the birefringences with an accuracy of about 10−5. Figure 6.1 shows typical
birefringence curves of a lyotropic mixture (KL/DeOH/D) as a function of tem-
perature [4]. Three different regions are observed: for 10.5 < T < 18◦C, there is
an ND phase (∆n = 0 and δn �= 0); for 18 < T < 20◦C, there is an NB phase
(∆n �= 0 and δn �= 0); for 20 < T � 45◦C, there is an NC phase (∆n �= 0 and
δn = 0). These measurements of the symmetry-breaking order parameter lead
to an unambiguous characterization of the phases, to the determination of trans-
ition temperatures, and to the characterization of an eventual critical behavior
across the uniaxial–biaxial phase transition.

NMR experiments are extremely useful for the characterization of distinct
nematic mesophases. Deuteron NMR measurements of HDO in the NC phase,
with D standing for 2H, show a typical quadrupolar splitting, depending on tem-
perature and relative concentration of the components of the mixture. Samples
of the KL/DeOH/D mixture in the NC phase have an anisotropic diamagnetic
susceptibility, ∆χ > 0. In a NMR experiment, if the sample rotates around
an axis perpendicular to the magnetic field, the observed spectra are typical of
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Fig. 6.1. Optical birefringences, ∆n and δn, as a function of temperature,
obtained from laser conoscopy measurements for a KL/DeOH/D mixture,
with weight percentage composition 26/6.24/67.76 [4].



THE POTASSIUM LAURATE/DECANOL/WATER MIXTURE 193

a two-dimensional sample (since the field leads to the spread of the director in
the plane perpendicular to the spinning axis). The 2H magnetic resonance of
oriented HDO in the ND phase, associated with ∆χ < 0, gives a typical quadru-
polar splitting. In this case, if the sample rotates around an axis perpendicular
to the magnetic field, n orients perpendicular to B, with the typical spectra of
a homogeneously oriented sample. The temperature dependence of 2H magnetic
resonance splittings of oriented samples of HDO in the three nematic phases
shows strong discontinuities (of the first derivative with respect to temperature)
at the uniaxial–biaxial phase transitions [2, 6]. Values of the splitting increase
from the borders of the uniaxial–biaxial phase transitions towards the middle
of the region of the biaxial phase. In the uniaxial phases, the splitting curves
have a smooth convex shape; in the NB phase, this convex shape is even more
pronounced.

Structures of the three nematic phases were determined by X-ray [8, 9] and
neutron [10,11] diffraction experiments in oriented samples. The reciprocal space
image of the NC phase is a hollow cylindrical barrel, with the axis parallel to n
and with more intense sides. There is a strong diffraction band along the direction
perpendicular to n, which is attributed to the intermicellar positional correlations
along this direction. A second-order band along the axis perpendicular to n is
observed in the diffraction pattern. The reciprocal space image of the ND phase is
a hollow cylindrical barrel, with the axis parallel to n and with more intense caps.
There is a strong diffraction band and a second-order band along the direction
parallel to n. The reciprocal space image of the NB phase is a hollow barrel of
elliptical cross section in a plane perpendicular to its long axis, in other words,
aflattened ellipsoid, with more intense caps. A strong diffraction band and a
second-order band, related to intermicellar positional correlations, are observed
along the direction perpendicular to the long ellipsoidal axis.

A model of intrinsically biaxial micelles was proposed on the basis of the
detailed analysis of the profile of the X-ray diffraction bands obtained in all
of the nematic phases [8, 9]. This model is consistent with the NMR results
for the nematic mixtures and with the behavior of the optical birefringences as
a function of temperature in the neighborhood of the nematic–nematic phase
transitions. Available experimental results (diffraction and NMR measurements,
behavior in the presence of a magnetic field, light scattering measurements)
can be interpreted assuming that there are similar, direct, micelles in the three
nematic phases. These micelles have a biaxial symmetry, as a flattened prolate
ellipsoid, with three mutually orthogonal two-fold symmetry axes, and the three
nematic phases can be regarded as consequences of orientational fluctuations of
these micelles.

Estimates for typical dimensions of an orthorhombic micelle are of the order
A′ = 8.5 nm, B′ = 5.5 nm, and C ′ = 2.6 nm, where C ′ represents the thick-
ness of the potassium laurate bilayer, and A′ and B′ are dimensions in the
plane perpendicular to the bilayer. The shape anisotropy of the micelles is about
A′ : B′ : C ′ = 3 : 2 : 1. These dimensions change slightly with temperature,
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but no drastic variations are observed at the nematic–nematic phase transitions.
Orientational fluctuations that degenerate the symmetry axis of the phase, per-
pendicular to the largest micellar surface, give rise to the ND phase. Orientational
fluctuations that degenerate the symmetry axis in the plane of the largest micel-
lar surface, along the largest axis of the flattened ellipsoid, give rise to the NC

phase. Small amplitude orientational fluctuations along the three axes of sym-
metry of the micelles give rise to the NB phase. The continuous modification
of the shape anisotropy of micelles as a function of temperature is the driven
mechanism of the observed phase transitions.

6.2.2.1 The experimental phase diagram Due to the presence of three
components, the representation of the thermodynamic states of mixtures of
potassium laurate, decanol and water, leads to a multidimensional phase dia-
gram. It is usual to indicate the stability of different phases in a surface of this
phase diagram, at constant alcohol concentration. In Fig. 6.2, we show a par-
ticular surface of the phase diagram of the KL/DeOH/D2O mixture, at a fixed
concentration of DeOH (6.24 wt%) [2, 12].

In this surface phase diagram, depending on temperature and concentra-

tion of KL, there is a low-temperature isotropic micellar phase L
(ℓ)
1 , a high-

temperature isotropic micellar phase L
(h)
1 , and three nematic phases, NC, NB,

and ND [2]. The NB phase is located between the two uniaxial phases. Nematic
phases are found at temperatures 10 � T � 45◦C. The temperature range of
the NB phase depends on the relative concentrations of the compounds of the
mixture.

Nematic–isotropic and nematic–nematic transitions are of first and second
order [4], respectively. In this particular lyotropic mixture, it is possible to
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Fig. 6.2. Sketch of the surface of the phase diagram of the potassium laurate/
1-decanol/D2O mixture [2]. Concentration of DeOH is fixed at 6.24 wt%.
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experimentally determine the Landau point, at which two critical lines meet
a first-order border [13].

It is remarkable to observe the existence of a low-temperature nematic–
isotropic phase transition. This transition is a consequence of the change of
shape anisotropy of the micelles as a function of temperature. In this particular
case, the parameter C ′ of the micelles increases for decreasing temperatures.

This polymorphism of the phase diagram, with three distinct nematic phases,
has been observed in mixtures with at least two amphiphiles. Mixtures with
only one amphiphile have uniaxial nematic phases only (discotic or calamitic,
depending on the system), and no transitions mediated by a biaxial phase [14,15].

The experimentally observed topology of these phase diagrams is only par-
tially described by the (mean-field) model developed by Freiser [16] and Alben
[17]. The Landau point and its neighborhood are explained by the Freiser–Alben
model, but it does not describe the low-temperature regions of the phase dia-
grams (in particular, the existence of an additional, low-temperature, Landau
point).

6.2.2.2 The uniaxial–biaxial phase transition The uniaxial–biaxial phase
transition is one of the most interesting features of lyotropic mixtures. Galerne
and Marcerou [4] measured the temperature dependence of ∆n and δn with a
precision of about 0.02◦C, and obtained the invariants of the dielectric tensor
associated with the mixture of potassium laurate, decanol, and water (see
Chapters 1 and 2). Since this dielectric tensor is traceless, one of the invariants
is trivially zero. The other two invariants, I1 and I2, have a linear dependence
on temperature in the neighborhood of the phase transition, in the uniaxial and
in the biaxial regions. In Fig. 6.3, we show the invariants I1 and I2 as a function
of temperature [4].

In Chapter 2, we have already discussed the Landau–de Gennes phenomen-
ological theory of the uniaxial–biaxial phase transition. The free energy can be
written in terms of the invariants of the traceless order parameter,

F = aI1 + bI2 + cI2
1 + dI2

2 + eI1I2 + · · ·, (6.1)

where the coefficients a and b may be chosen as linear functions of temperature,
and c, d, and e are fixed constants. The minimization of this free energy with
respect to I1 and I2 leads to the equations of state in the neighborhood of the
transitions. It is easy to see that the equilibrium values of I1 and I2 are linear
functions of temperature, which is the expected critical behavior predicted by
the mean-field approximation.

Saupe and coworkers [6, 13] used a mean-field approach in order to account
for the experimental data. Measurements of one of the birefringences at the NB

and NC phases, with a temperature precision of about 1 mK, indicate small
deviations from the mean-field behavior at the uniaxial–biaxial phase transition.
This critical behavior has indeed been claimed to belong the universality class of a
three-dimensional XY model [18]. Deviations from the mean-field behavior were



196 THE NEMATIC AND CHOLESTERIC PHASES

10–5

l1

l2

5 × 10–8

–5 × 10–8

0

10 20 30 40

T (°C)

(a)

(b)

0

18 19 20

T (°C)

21

Fig. 6.3. Invariants of the symmetry-breaking order parameter (anisotropic part
of the dielectric tensor) as a function of temperature, in the nematic region
of the KL/DeOH/D mixture [4]: (a) I1 invariant; b) I2 invariant.

also observed [19] in measurements of the optical birefringence, in a temperature
range ∆T/Tc ∼ 10−4 from the uniaxial–biaxial transition temperature Tc. The
critical exponents associated with the order-parameter, β, and the susceptibility,
γ, of the KL mixture were found to be β = 0.38±0.03 and γ = 1.29±0.06, which
can be compared with theoretical predictions [18] for the three-dimensional XY
model, β ≈ 0.38 and γ ≈ 1.35.

The Z-scan technique [20], in the neighborhood of the nematic–nematic phase
transition [21], has also been used to investigate the behavior of the nonlinear
refraction indices and of the birefringence. In the vicinity of the transition tem-
perature Tc, the nonlinear birefringence was shown to behave as |T − Tc|−0.5 in
both uniaxial and biaxial regions (see Fig. 6.4). The symmetry invariants of the
order parameter were shown to be linear functions of temperature in the uniaxial
nematic region, in good agreement with mean-field predictions.

6.2.3 Phenomenological calculations for the nematic transitions

The early mean-field calculations of Freiser [16] and Alben [17] have provided
an explanation for the main features of the temperature-concentration phase
diagrams of lyotropic mixtures, including the existence of a Landau multicritical
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Fig. 6.4. Nonlinear birefringence, ∆n2 = n2‖ − n2⊥, for a sample of potassium
laurate, decanol, and water [21]. The subscripts ‖ and ⊥ refer to the config-

urations of the electric field
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E of the probe laser beam with respect to the
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→

B used to orient the nematic NC phase. The refraction index
can be written as n = nL +n2I0, where nL is the linear index of refraction, I0

is the intensity of the incident light, and n2 is the nonlinear index of refrac-
tion. The dashed line corresponds to Tc1 = 25.02◦C. The solid and dotted
lines correspond to the fitting function ∆n2 ∝ |T − Tc1|−β

, with βC = 0.55(3)
and βB = 0.50(1) for the NC and NB phases, respectively.

point. The Freiser–Alben model is summarized by the Landau–de Gennes expan-
sion of the free energy in terms of the invariants of the tensor order parameter,
as discussed in considerable detail in Chapter 2.

We now recall the Landau–de Gennes expansion of the free energy,

F = F0 +
1

2
AI1 +

1

3
BI2 +

1

4
CI2

1 +
1

5
DI1I2 +

1

6
EI3

1 +
1

6
E′I2

2 + · · · , (6.2)

where F0 is a regular function, I1 = δ = TrQ2 and I2 = ∆ = TrQ3 are the
invariants of the traceless tensor order parameter

Q =

⎛
⎝

− 1
2 (S + η) 0 0

0 − 1
2 (S − η) 0

0 0 S

⎞
⎠ , (6.3)
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and the coefficients depend on temperature and concentration. As we have
pointed out in Chapter 2, a truncated expansion of the form

FU = F0 +
1

2
AI1 +

1

3
BI2 +

1

4
CI2

1 , (6.4)

with C > 0, provides an explanation for the first-order isotropic–nematic
transition (with B �= 0), but it is unable to account for the biaxial phase.

We can still discard some of the higher-order coefficients in the full expansion
of the free energy, given by Eq. (6.2). However, it is essential to assume E′ �= 0
in order to predict a stable biaxial phase. In Chapter 2, we have shown that
the minimization of this free energy with respect to the components of the order
parameter leads to some typical phase diagrams, with a Landau multicritical
point, as sketched in Fig. 2.11.

Despite predicting a biaxial phase and a Landau multicritical point, the
Freiser–Alben model (or the equivalent Landau–de Gennes approach) provides
only a partial description of the experimentally observed topology of the nematic
phase diagrams. It does not account for the low-temperature reentrant regions,
in particular for the existence of an additional, low-temperature, Landau point.
Tolédano and Figueiredo Neto [22,23] were then motivated to propose the inclu-
sion of an extra non-critical order parameter associated with changes of shape
anisotropy of the molecular aggregates. This scalar non-critical order parameter,
which we call τ , is associated with the distribution of micellar shape anisotropies
as a function of temperature and concentration.

Although it is possible to use symmetry arguments in order to make an
attempt at deriving an expression for τ in the context of the model of intrinsically
biaxial micelles [8, 9], we just assume that τ is phenomenologically introduced
in order to take into account the effects of the changes of shape anisotropy of
the micellar aggregates. The parameter τ is supposed to describe the continuous
configurational change of the micellar population as a function of temperature.
In particular, it should reflect the tendency to a more isotropic shape at lower
temperatures, which explains the reentrant low-temperature isotropic phase.

Consider the Landau–de Gennes free energy, given by Eq. (6.2), with D =
E = 0, C > 0, and E′ �= 0, which is already sufficient for explaining the existence
of a nematic biaxial phase,

F = F0 +
1

2
AI1 +

1

3
BI2 +

1

4
CI2

1 +
1

6
E′I2

2 + · · · . (6.5)

The non-critical order parameter τ is introduced according to the following pre-
scriptions: the lowest-order invariant of the original order parameter is redefined
as I1 → I1 + τ2 (but we keep terms up to order τ2 only); the higher-order
invariant I2 is unchanged; new linear and quadratic terms in τ are added to
the expansion. If we discard the regular term, the modified phenomenological
free-energy is given by

Fm = a1

(
I1 + τ2

)
+ b1I2 + a2

(
I2
1 + 2I1τ

2
)

+ b2I
2
2 + c1τ + c2τ

2 + · · · , (6.6)
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where the coefficients are functions of temperature and concentration. Note that
we are changing the notation (a1 = A/2, b1 = B/3, a2 = C/4, b2 = E′/6) in
order to make closer contact with the calculations of Tolédano et al. [23]. Using
the expressions of the tensor invariants, I1 = (3S2+1)/2 and I2 = 3S(S2−η2)/4,
we may write

Fm = Fm0 + Fmτ , (6.7)

where

Fm0 = α(S) + β(S)η2 +
1

2
γ(S)η4, (6.8)

and

Fmτ = c1τ + [a1 + c2 + a2(3S2 + η2)]τ2. (6.9)

Note that the polynomial functions α(S), β(S), and γ(S) are given by the same
expressions already obtained in Chapter 2. The τ -independent part of the free
energy, Fm0, leads to the well-known results of the Freiser–Alben model, includ-
ing a stable biaxial phase and a Landau multicritical point. The minimization
of the total free energy with respect to the parameter τ leads to the relation

τ = −1

2
c1

[
a1 + c2 + a2

(
3S2 + η2

)]−1
, (6.10)

which shows that the equilibrium value of τ is linearly dependent on the coef-
ficient c1. As we have pointed out in Chapter 2, since τ is proportional to c1,
the transition lines are invariant under the change c1 → −c1, which explains the
reentrant low-temperature topology of the nematic phase diagrams [23]. The phe-
nomenon of reconstruction of the Freiser–Alben model is represented in a graph
of c1 versus b1, as sketched in Fig. 2.15 (in this figure, c1 ≡ C1 and b ≡ B),
with regions of high- and low-temperature isotropic phases. From a more formal
point of view, it is important to remark that Tolédano and Figueiredo Neto have
shown that Eq. (6.10) may be obtained from a much more general scheme of
minimization of a quadratic form, as the free energy Fm, given by Eq. (6.6).

Although this discussion has been restricted to the context of the Landau
phenomenology, it should be mentioned that there are some recent attempts at
devising microscopic statistical models to account for the nematic transitions.
In particular, we mention the work of Henriques and Henriques [24], based in
part on a previous proposal of Oliveira and Figueiredo Neto [15]. As we have
shown in Chapter 2, at the mean-field level the model of a random distribution
of interacting prolate and oblate micelles accounts for the biaxial phase and the
Landau multicritical point. The explanation of reentrance phenomena, however,
still needs some extra ingredient, as the phenomenological non-critical order
parameter τ .
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6.3 Nematic phases in other lyotropic mixtures

There are two main groups of lyotropic mixtures with nematic phases: (a) mix-
tures with uniaxial phases (NC, ND) only; (b) mixtures with the three nematic
phases (NC, NB, and ND). Particular surfaces of the phase diagrams of some
of these mixtures can be found in the literature. In many cases, however,
experimental investigations as a function of the relative concentrations of the
components have been carried out at room temperature only.

From the experimental point of view, it is important to remark that the NB

phase has never been found alone, without the vicinity of NC and ND phases.
Moreover, as we have already pointed out, all mixtures presenting the NB phase
have at least two amphiphiles (a surfactant and a cosurfactant).

We now review and list the main lyotropic mixtures with nematic phases. An
extensive review of mixtures with lyotropic nematics can be found in the work
of Forrest and Reeves [25].

6.3.1 Binary mixtures

As we have already mentioned, binary mixtures present only one type of uniaxial
nematic phase, NC or ND, depending on temperature and relative concentrations.
The components are necessarily an amphiphilic molecule and (heavy or light)
water. In Table 6.1, we list some common binary lyotropic mixtures, and give
some references about investigations of their physico-chemical properties.

Let us present some examples of typical phase diagrams. In Fig. 6.5, we
sketch the phase diagram of the mixture CsPFO/water [26]. There is a nematic
ND phase between lamellar (L) and isotropic (ISO) phases, and a coexistence
region (POL). In Fig. 6.6, we sketch the phase diagram of the TP6EO2M/water
mixture [27]. This diagram displays a nematic NC phase, columnar phases CH,
and coexistence regions. The NC phase is located near the region of a colum-
nar hexagonal phase (in Fig. 6.5, note the presence of a lamellar phase in the
neighborhood of the ND region).

Table 6.1 Binary mixtures presenting uniaxial nematic (NC or ND)
phases. The label water means that both heavy (D) and light (W)
water were used to prepare the lyotropic mixture

Mixture Reference

Cesium perfluoro-octanoate (CsPFO)/water [26]
2,3,6,7,10,11-Hexa-(1,4,7-trioxaoctyl)-triphenylene/water [27]
Disodium cromoglycate/water [28,29]
Tetradecyltrimethylammonium bromide (MTAB)/D [30]
Ammonium perfluoro-nonanoate/W [26]
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Fig. 6.5. Sketch of the phase diagram of a mixture of cesium perfluoro-octanoate
and water [26].
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Fig. 6.6. Sketch of the phase diagram of a mixture of 2,3,6,7,10,11-hexa-(1,4,7-
trioxaoctyl)-triphenylene and water [27].

6.3.2 Multicomponent mixtures

Nematic lyomesophases have also been found in multicomponent mixtures. The
presence of one amphiphilic molecule and water is a necessary condition to
observe nematic structures. The other components may be another amphiphile
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(a cosurfactant) or a salt. We have already mentioned the example of the
KL/decanol/water ternary mixture. The three nematic phases have also been
clearly identified in multicomponent lyotropic mixtures of sodium decylsulfate-
(SdS)/1-decanol/water [31], and KL/decylammonium chloride-DaCl/water [32].
In Table 6.2, we list some multicomponent lyotropic mixtures, and give some
references about investigations of their physico-chemical properties.

The multidimensional phase diagrams of these mixtures are generally com-
plicated and not completely known. The characterization of an equilibrium state,
at given values of temperature and pressure, requires the determination of the
amount of each component of the mixture. In the best cases, some particular sur-
faces of these phase diagrams have been investigated. Also, it is not an easy task
to clearly determine regions of different nematic phases and the associated phase
boundaries. Detailed measurements of the temperature dependence of suitable
order parameters are always essential for constructing these phase diagrams.

Some of the phase diagrams in the literature were drawn on the basis of
optical microscopic observations of textures and X-ray diffraction patterns of
some samples in a particular phase domain. These procedures, however, just
give a coarse view of a particular surface of the phase diagram; they are not

Table 6.2 Multicomponent (from three up to six components) mixtures
presenting nematic phases. The label water means that both heavy (D)
and light (W) water were used to prepare the lyotropic mixture. The three
nematic phases, NC, NB and ND, have been found in mixtures marked with
the tag #

Mixture Reference

SdS/1-decanol/water (#) [31]
KL/DaCl/water (#) [32]
Sodium dodecylsulfate (SLS)/DeOH/W [33]
C8 or C10 alkyl sulfates/corresponding alcohol/Na2SO4/water [34–36]
Sodium decylsulfate (SdS)/DeOH water [10,37]
DaCl/NH4Cl/water [38,39]
Disodium cromoglycate/NaCl/water [29]
Cetyltrimethylammonium bromide-CTAB/NaBr/KL/water [40]
CTAB/DeOH/NaBr/KL/water [40]
CTAB/decanol/NaBr/water [40]
Decyltrimethylammonium bromide-DTAB/NaBr/KL/water [40]
DTAB/CTAB/DeOH/NaBr/KL/water [40]
DTAB/DeOH/NaBr/KL/water [40]
MTAB/DeOH/water [41]
KL/KCl/water [42]
SdS/Na2SO4/water [42]
Cesium decylsulfate (CsdS)/Na2SO4/water [42]
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sufficient for the determination of complete phase sequences. Taking into account
these limitations, we now describe some phase diagrams of these multicomponent
lyotropic mixtures.

In Fig. 6.7, we sketch a surface of the phase diagram of the SLS/DeOH/W
mixture [33]. This surface was obtained by optical observations, without meas-
urements of the order parameter. Therefore, phase boundaries are approximately
marked only. Two uniaxial phases were identified as a function of DeOH con-
tent (at fixed concentrations of SLS). No biaxial phase was observed. However,
since the order parameter was not measured, the existence of a biaxial phase
between the two uniaxial phases cannot be ruled out. The labels POL, ISO, COA
refer to polyphasic, isotropic and coagel domains, respectively. Complementary
experiments are still needed to answer a number of questions about this phase
diagram.

In Fig. 6.8, we show a surface of the phase diagram of the
MTAB/DeOH/water mixture [41]. As in the previous case, there seems to be a
transition between two uniaxial nematic phases.

In Fig. 6.9, we show a surface of the phase diagram of the SdS/
1-decanol/water mixture [31]. In this case, there were optical birefringence meas-
urements. The NB phase was clearly characterized between the two uniaxial
nematic phases. It is interesting to note the existence of hexagonal and lamellar
regions in the neighborhood of the NC and ND phases, respectively.

In Fig. 6.10, we show a surface of the phase diagram of the KL/DaCl/water
mixture [32]. Different and complementary techniques (optical microscopy, laser
conoscopy, and X-ray diffraction) have been used to draw this phase diagram.
The NB region was clearly identified between the two uniaxial nematic phases.
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Fig. 6.7. Sketch of the phase diagram of the SLS/DeOH/W mixture [33]. Labels
POL, ISO and COA refer to polyphasic, isotropic and coagel regions, respect-
ively. In the horizontal axis, the parameter Md represents the relative molar
ratio of DeOH with respect to SLS.
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Fig. 6.8. Sketch of a surface of the phase diagram of the MTAB/DeOH/water
mixture [41], at the molar ratio [MTAB + DeOH]/[D] = 0.032. Labels POL,
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Fig. 6.9. Sketch of a surface of the phase diagram of the SdS/1-decanol/water
mixture [31]. Labels ISO, Lα, and Hα refer to isotropic, lamellar, and
hexagonal phases, respectively. The width of the NB domain is restricted
to about 0.1 wt% of the concentration of SdS. The water concentration is
fixed at 57 wt%.

There is a puzzling result from NMR spectroscopy measurements for the
sodium dodecylsulphate/decanol/water mixture. The 2H resonance data were
explained with the assumption of two types of biaxial nematic phases, N+

Bx and
N−

Bx, in the partial isothermal representation, between the NC and ND phases
[43]. In order to characterize the behavior in the presence of an external magnetic
field, we write the anisotropy of the diamagnetic susceptibility,

∆χ = χ33 − 1

2
(χ11 − χ22), (6.11)
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Fig. 6.10. Sketch of a surface of the phase diagram of the KL/DaCl/water
mixture [32]. Labels ISO and Hα refer to isotropic and hexagonal phases,
respectively. The horizontal axis represents the relative molar ratio of DaCl
with respect to KL. The molar ratio [DaCl + KL]/[water] = 5 × 10−2 is kept
fixed.

where the subscripts refer to the three orthogonal directions in space. If ∆χ > 0,
a biaxial phase aligns along the axis of the largest diamagnetic susceptibility par-
allel to the magnetic field (N+

Bx). If ∆χ < 0, a biaxial phase aligns along the axis
with the smallest diamagnetic susceptibility perpendicular to the magnetic field
(N−

Bx). In the context of the NMR techniques, we say that phases N+
Bx and N−

Bx

align the largest residual electric field gradient component along and perpen-
dicular to the magnetic field, respectively. Based on NMR quadrupole splitting
measurements, Quist [43] concluded that the transitions between the nematic
phases of this system are first order. A similar study was recently performed for
another lyotropic mixture composed by tetradecyltrymethylammonium bromide
(TTAB), n-decanol, and water [44]. An isothermal surface of the phase diagram
of this mixture is sketched in Fig. 6.11.

6.4 Lyotropic cholesteric mixtures

Cholesteric lyomesophases can be obtained by adding a chiral molecule to a
lyotropic mixture with nematic phases. The addition of an amphiphilic chiral
molecule gives rise to an intrinsic cholesteric phase. Alternatively, the addition
of a non-amphiphilic chiral molecule gives rise to an extrinsic cholesteric.

Three types of lyotropic cholesterics are known, ChC, ChD, and ChB. [45]–
[47]. The subscripts C, D, and B refer to the original nematic phases, calamitic,
discotic and biaxial, which have been cholesterized by the addition of the chiral
dopant. As in the case of nematics, mixtures with only one amphiphile give rise
to only one of the cholesteric phases (ChC or ChD). Mixtures with at least two
amphiphiles can give rise to the three cholesteric phases.
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Fig. 6.11. Sketch of the surface of the phase diagram of a mixture of TTAB
(tetradecyltrymethylammonium bromide), n-decanol and water (at 10 wt%
of D2O), at room temperature (22◦C) [44].

6.4.1 An introductory example

As a typical example of a cholesteric lyotropic, we now discuss the behavior
of a mixture of potassium laurate, decanol, brucine sulfate, and water,
KL/DeOH/BS/D2O [48]. Since the molecules of brucine sulfate (BS) are not
amphiphilic, this is an example of an extrinsic cholesteric. Typical ratios of molar
concentrations of brucine sulfate and potassium laurate molecules are given by
[BS]/[KL] ∼ 10−3.

6.4.1.1 The uniaxial and biaxial cholesteric phases Observations of textures
of cholesteric lyotropic phases in an optical polarized microscope show a typical
fingerprint pattern. It is possible to identify a sequence of parallel stripes, with
different colors, for high birefringent samples and white light illumination, and
with different gray tonalities, for samples with small birefringence. In the middle
of the stripes of the helicoidal fingerprint textures, ChC and ChD mesophases
show a pseudo-isotropic region, with the director oriented in a homeotropic con-
figuration (in other words, at these positions, the director that is twisting along
the helical axis becomes parallel to the direction of light propagation). In the ChB

phase, however, there is no pseudo-isotropic region [47]. The pitch P of the helic-
oidal structure, with a typical length in the range of micrometers, depends on
temperature, concentration cm of the chiral dopant [49,50], and shape anisotropy
of the micelles [51]. ChD, ChB, and ChC cholesteric phases can be recognized by
observing the behavior of the fingerprint textures when the sample is subjected
to a magnetic field. In the presence of strong enough magnetic fields (or small
fields, if the mixtures are doped with ferrofluids), the helical axis of ChD and
ChB phases aligns along the magnetic field. ChC phases under the same condi-
tions untwist in the presence of a field, giving rise to a planar alignment of the
director. The director of the former nematic phase, from which the cholesteric
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phase was originated, aligns perpendicular to the helicoidal axis in both ChC

and ChD phases. In the ChB phase, the largest dimension of the micelles aligns
along the helicoidal axis.

General features of the X-ray diffraction patterns of nematics and cholesterics
are essentially similar. However, in the particular case of the mixture with BS, the
shape of the strong first-order band is slightly different with respect to nematics.
The edges of the diffraction band are bent towards small values of the modulus of
the scattering vector [52], which indicates a micellar deformation. The presence
of large BS molecules leads to a swelling of the pseudo-lamellar structure near
their edges.

6.4.1.2 The experimental phase diagrams In Fig. 6.12, we show a particu-
lar surface of the phase diagram of the KL/DeOH/BS/D2O mixture, at fixed
concentrations of KL, DeOH and D2O [48].

The topology of this surface of the phase diagram has some features that
are different from lyotropic nematics. No Landau points were clearly observed
and large polyphase regions surround the cholesteric domains. Cholesteric phases
appear in the temperature range 10 � T � 35◦C. The increase of the relative
concentration of BS (with respect to KL) favors the stabilization of the ChD

mesophase. A different topology, closer to lyotropic nematics, was found by
Melnik and Saupe [53] for another surface of the same phase diagram, as sketched
in Fig. 6.13.

6.4.1.3 The uniaxial–biaxial cholesteric phase transition The inspection of the
temperature evolution of the texture of a lyocholesteric sample under crossed
polarizers indicates the continuous nature of the Ch–Ch phase transitions.
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Fig. 6.12. Sketch of the surface of the phase diagram of the lyotropic cholesteric
mixture of KL/DeOH/D/BS [48]. Labels POL and S refer to polyphase and
gel regions, respectively. The horizontal axis represents the relative molar
ratio of BS with respect to KL.
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Fig. 6.13. Sketch of the surface of the phase diagram of the lyotropic cholesteric
mixture KL/DeOH/D/BS [53]. Labels POL and ISO refer to polyphase and
isotropic regions, respectively. The horizontal axis represents the relative
weight percentage of BS with respect to KL.

The elastic chiral field is responsible for the chirality-induced biaxiality of the
Ch–Ch phase transitions [54]. This is equivalent to the magnetic field-induced
biaxiality at the uniaxial–biaxial phase transitions in nematic mixtures, but with
a smaller amplitude. In the vicinity of the uniaxial–biaxial phase transition, the
free-energy density in terms of an induced biaxial order parameter ζ should
include uniform terms,

fu =
1

2
a(T )ζ2 +

1

4
bζ4, (6.12)

where a(T ) = a0(T − Tc), and a0 and b are positive coefficients, and an elastic
gradient term, which can be written in the simple form [54]

fg = −cq2
0ζ, (6.13)

where q0 = 2π/P is the helical wave number and c is a positive parameter. The
dependence on the square of the helical wave number comes from the square
of the first derivatives of the components of a suitable (biaxial) traceless tensor
order parameter [54]. The minimization of the total free-energy density, f =
fu + fg, with respect to ζ leads to the mean-field expression,

ζ ≃ cq2

a0(T − Tc)
. (6.14)
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The biaxial order parameter ζ is assumed to be proportional to the ratio
δn/∆n, which can be determined from measurements of the optical birefring-
ences, δn and ∆n. Interferometric measurements performed in the neighborhood
of the ChD–ChB transition for different cholesteric mixtures [54] indicate that,
for concentrations of chiral molecules of about 10−2 M%, close to the transition,
ζ2 is of order 10−2. Experimental results for ζ versus T in the neighborhood
of the transition show that the Ch–Ch phase transition is not of second order,
although it is possible to go continuously from one phase to the other by a
suitable manipulation of the chiral field.

Phase diagrams of cholesteric mixtures display similar phenomena of reen-
trance as the nematic counterparts. Again, this behavior can be accounted for
by the introduction of a novel scalar non-critical order parameter τ related to
changes in shape anisotropy of the molecular aggregates [23]. The expansion of
the free energy should include phenomenological coupling terms involving τ and
the helical wave number, which will lead to topological transformations of the
phase diagram [55].

6.4.2 Phenomenological theory of the cholesteric transitions

The description of cholesteric structures requires the introduction of a space-
dependent tensor order parameter, Q = Q(

→
r ), and the inclusion of gradient

terms in the expansion of the free energy. According to de Gennes and Prost [50],
the free energy should be written as the sum of bulk and gradient terms,

F = Fbulk + Fgrad. (6.15)

The bulk term is given by a volume integral of the usual nematic free-energy
density,

Fbulk =

∫
d3r

[
1

2
AI1 +

1

3
BI2 +

1

4
CI2

1

]
, (6.16)

where I1 = I1(
→
r ) = TrQ2 and I2 = I2(

→
r ) = TrQ3 are the invariants of a

local traceless tensor order parameter. Note that we are not including higher-
order terms. Also, note that C > 0, in order to ensure thermodynamic stability,
and B �= 0, for accounting to the first-order transition between isotropic and
uniaxial nematic phases. As we have discussed in Chapter 2, the minimization
of this bulk free energy favors a uniaxial form of the symmetric traceless tensor
order parameter Q.

The simplest expression for the gradient term includes derivatives of the
symmetric traceless tensor Q. With the restriction to second order in gradients
and second order in Q, there are just four rotationally invariant quantities [56]

(i) (∇iQjk)(∇iQjk) = (∇iQjk)2; (ii) (∇iQik)(∇jQjk) = (∇iQjk)2; (6.17)

(iii) (∇iQjk)(∇jQik); (iv) εijk(∇iQjs)Qks; (6.18)
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where we are using the convention of summation over repeated indices, and εαγδ

is a Levi–Civita symbol. Note that the antisymmetric third-rank tensor εijk,
which changes sign under spatial inversion, is a typical feature of cholesterics.
As the third quantity differs from the second by a total derivative, the integral
form of the gradient free energy is usually written as

Fgrad =

∫
d3r

[
1

2
L2

[
(∇ × Q)ij + 2q0Qij

]2
+

1

2
L1[(∇ · Q)i]

2

]
, (6.19)

where

(∇ × Q)ij = εist∇sQtj , (∇ · Q)i = ∇jQji. (6.20)

The coefficients L1 and L2 are elastic positive constants, and q0 is a (helical)
wave number.

We now recall that the position-dependent director of a cholesteric helical
phase may be written as

→
n = cos(q0z)

→
i + sin(q0z)

→
j ,

where the pitch axis is along the z direction,
→
i and

→
j are unit vectors along the

x and y axes, and the pitch is P = 2π/q0 (ordinary nematics can be regarded as
the limiting case q0 = 0). This director can be used to construct the (uniaxial)
order parameter

Quh
ij = γ

(
ninj − 1

3
δij

)
,

which may be written in the explicit form

Quh = γ

⎛
⎝

1/6 0 0
0 1/6 0
0 0 −1/3

⎞
⎠+

1

2
γ

⎛
⎝

cos 2q0z sin 2q0z 0
sin 2q0z − cos 2q0z 0

0 0 0

⎞
⎠ , (6.21)

where the superscript uh stands for uniaxial helix.
The main problem of the minimization of the total free energy is the com-

petition between bulk and gradient terms. The bulk free energy (6.16) favors a
uniaxial form of the tensor Q. Therefore, Quh, given by Eq. (6.21), minimizes
the bulk free energy. On the other hand, it is not difficult to see that the gradient
free energy is minimized for a tensor order parameter that satisfies the rotational
condition

∇ × Q = −2q0Q. (6.22)
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With an additional algebraic work, we can show that this condition is satisfied
by the second term of Eq. (6.21),

Qbh =

⎛
⎝

cos 2q0z sin 2q0z 0
sin 2q0z − cos 2q0z 0

0 0 0

⎞
⎠ , (6.23)

which is called a biaxial helix (note that Qbh is associated with the maximal
biaxial eigenvalues, −1, 0, and +1). Far below the transition from the isotropic
phases, the bulk free energy is supposed to dominate, favoring the appearance
of a phase associated with a helical uniaxial order parameter (which is the typ-
ical feature of a standard cholesteric phase). However, a dominant gradient free
energy favors a strongly biaxial form of the tensor order parameter. The com-
petition between bulk and gradient terms leads to intricate problems and the
phenomena of the blue phases [56].

6.4.2.1 The general helical order parameter The minimization of the total
mean-field free energy (6.15) is an intractable theoretical problem. It is then
usual to resort to a trial order parameter for describing biaxial effects in a helical
structure.

We now rewrite the free energy according to the more convenient notation of
the pedagogical review of Wright and Mermin [56],

φ =

∫
d3r
[
tχijχji −

√
6χijχjkχki + (χijχij)

2
]

+

∫
d3r

[
κ2

(
εikl

∂χδj

∂xk
+ χij

)2

+ κ2η

(
∂χij

∂xj

)2
]

, (6.24)

where

φ =
36C3

24B4
(F − F0), χij = −3

√
6C

4B
Qij , (6.25)

with the coefficients

t =
3CA

4B2
, κ =

(
33CL2q

2
0

B2

)1/2

, η =
L1

L2
, (6.26)

and we measure lengths in units of 1/2q0. Note that C > 0 and B �= 0 in the
neighborhood of the underlying uniaxial nematic (first-order) transition, so the
parameter t may be viewed as a reduced temperature. Also, note that κ = ξq0,
where ξ is a correlation length, gauges the degree of chirality. The remaining
coefficient, η = L1/L2, is a ratio of elastic moduli that plays no essential role
and may be discarded.
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The general helical order parameter is usually written as

χ =
√

6λ cos θ

⎛
⎝

−1/6 0 0
0 −1/6 0
0 0 1/3

⎞
⎠+

λ√
2

sin θ

⎛
⎝

cos z sin z 0
sin z − cos z 0

0 0 0

⎞
⎠ ,

(6.27)

where λ is related to the amount of angular ordering and θ represents the degree
of (induced) biaxiality. We can distinguish several particular cases:

(i) θ = 0 corresponds to a uniaxial nematic system;

(ii) θ = 2π/3 corresponds to a uniaxial cholesteric system (with a simple
uniaxial helix). We regain Quh, given by Eq. (6.21 ), with γ = λ

√
3/2

and the rescaling of z.

(iii) θ = π/2 corresponds to the strongly biaxial case of Eq. (6.23).

Inserting this trial order parameter into the expression of the free energy and
performing the integration over a region of volume v, we have

1

v
φ =

(
1

2
κ2 + t

)
λ2 + λ4 − λ3 cos 3θ +

1

2
κ2λ2 cos 2θ. (6.28)

Note that large values of λ favor cos 3θ = 1 (recall that θ = 2π/3 corresponds
to a uniaxial cholesteric system). On the other hand, large values of κ favor
cos 2θ = −1 (recall that θ = π/2 corresponds to a strongly biaxial cholesteric).
In the limit κ = 0, we recover the behavior of a uniaxial nematic system.

There are a few analytical results that can be obtained from this expression
for the free energy. For example, if we parametrize the amplitude λ by

λ =
1

6
κ2 sinhα, (6.29)

and minimize with respect to θ, we have

cos θ = −1

2
tanh

α

2
(6.30)

and

1

v
φ =

1

9
κ4tu +

1

9
κ4

[
t +

1

9
κ2

(
κ2 − 9

4

)]
u2

+
2

81
κ6

(
κ2 − 3

2

)
u3 +

1

81
κ8u4, (6.31)

where

u = sinh2 α

2
. (6.32)

From Eq. (6.31), if κ > 3/2, we see that φ is positive for t > 0, and can become
negative for t < 0 and u sufficiently small. Therefore, there is a second-order
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transition at t = 0. Since u = 0 at the transition, α is also zero, and we have
θ = π/2, which characterizes a biaxial helix.

It is peculiar to have a second-order transition in the presence of a cubic term
in the expression for the free energy. Let us look at this situation from a different
point of view. We may write θ = π/2 + ǫ, where ǫ ≪ 1. We then have

1

v
φ = tλ2 + λ4 − 3λ3ǫ + κ2λ2ǫ2 + O(ǫ3). (6.33)

Minimizing this free energy with respect to ǫ, we have ǫ = 3λ/(2κ2), and

1

v
φ = tλ2 +

(
1 − 9

4κ2

)
λ4, (6.34)

which gives rise to a second-order transition, at t = 0, provided that κ > 3/2.
We may now look at the first-order transition if κ < 3/2. Consider again

the free energy given by Eq. (6.31), in terms of the variable u. The first-order
transition occurs at uc �= 0, such that φ′(uc) = 0 and φ(uc) = 0. With some
algebraic effort, it is not difficult to show the existence of a first-order border,
given by

tc =
1

8

[
1 − 4κ2 +

(
1 +

4

3
κ2

)3/2
]

. (6.35)

Along this border, we have

cos θ = −1

2

(
1 +

4

3
κ2

)1/2

. (6.36)

According to this picture, the character of the helical cholesteric phase
depends crucially on the parameter κ = ξq0. For small values of κ, there is
a first-order transition to a cholesteric phase with an order parameter very close
to a conventional uniaxial helix. For large values of κ, the transition turns into
second order, with an order parameter close to a biaxial helix. However, for
κ > 3/2, it has been shown the occurrence of much more interesting phenomena,
related to the onset of the blue phases [56].

6.4.2.2 Reentrance phenomena The usual form of the phenomenological theory
of Landau–de Gennes does not explain a number of features of the experi-
mental phase diagrams of lyotropic cholesteric mixtures. For example, consider
the temperature–concentration phase diagram of Fig. 6.13 for a mixture of
potassium laurate, decanol, BS, and water. Besides the high-temperature
isotropic–cholesteric transition, it should be interesting to have an explanation
for the transition from the cholesteric to a low-temperature isotropic phase.

In close analogy with the treatment of the Freiser–Alben model, Tolédano and
Figueiredo Neto have also invoked changes of the shape anisotropy of micelles
in order to account for the reentrance phenomena in cholesteric mixtures. As we
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pointed out before, the idea consists in the introduction of a phenomenological
non-critical order parameter τ that represents the effects of changes in the shape
anisotropy of micellar aggregates with temperature and concentration. As a first
approximation, the phenomenological free energy is still given by Eq. (6.6), with
the choice a2 < 0, which is supposed to mimic some of the features of cholesteric
systems. Again, the reconstruction of the phase diagram leads to the explanation
of the low-temperature isotropic phase.

The existence of two distinct biaxial regions in the phase diagrams of cho-
lesteric systems suggests the phenomenological introduction of an additional
non-critical parameter associated with chirality. According to Tolédano and col-
laborators [55], we then write ν = (ν0P0) /P , where P is the helical pitch and
ν0 and P0 are suitable normalization constants. If we redefine the lowest-order
invariant of the Landau–de Gennes order parameter, I1 → I1 + τ2 + (ν/ν0)

2
,

and include terms up to second order in the non-critical parameters τ and ν,
Eq. (6.6) for the free energy can be written as

Fm = a1(I1 + τ2 + ν2) + b1I2 + a2

(
I2
1 + 2I1τ

2 + 2I1ν
2
)

+ b2I
2
2 + c1τ + c2τ

2 + d1ν + d2ν
2 + eντ + . . . (6.37)

Standard minimization with respect to these variables yields phase diagrams
with a wealth of lyotropic cholesteric phases as well as two independent isotropic
regions [55].

The temperature dependence of the pitch is an effect that is not accounted for
in the usual Landau–de Gennes phenomenological theory of cholesteric systems.
However, it is possible to show [57] that the (very laborious) inclusion of higher-
order elastic terms in the expansion of the free energy leads to a helical wave
number of the form

q =
bQ0 + κ

1 + gQ0 + aQ2
0 + hQ2

2

, (6.38)

where Q0 = λ cos θ and Q2 = λ sin θ should assume (temperature-dependent)
equilibrium values, and the coefficients a, b, g, and h, are related to the extra
q-dependent terms. Using the ideas of Tolédano and Figueiredo Neto, Longa
and collaborators [58] introduced the non-critical parameter τ in the standard
Landau–de Gennes treatment of cholesteric structures. The free energy, given by
Eq. (6.28), is then supplemented with a linear and some quadratic extra terms,

1

v
φextra = c1τ + c2τ

2 +

(
1 +

1

2
κ2c3 cos 2θ

)
τ2λ2, (6.39)

where the coefficients c1, c2, and c3 depend on temperature and concentration.
According to this work, the main modification in the expression for the wave
number q, given by Eq. (6.38), is the inclusion in the denominator of an extra
term, proportional to τ2.
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6.4.3 Cholesteric phases in other lyotropic mixtures

In general, with the addition of a suitable chiral agent, all of the lyotropic mix-
tures with nematic phases can also present cholesteric phases. Some of these
mixtures have been studied in a more extensive way, and surfaces of their phase
diagrams can be found in the published literature. However, many of them were
investigated at room temperature only, for a few values of the relative concen-
trations of their components (in particular, for changing concentrations of the
chiral agent). From the experimental point of view, it should be noted that the
ChB phase has never been found alone, without the vicinity of ChC and ChD

phases.
In Table 6.3, we list the main lyotropic mixtures displaying cholesteric phases.
In general, as in the case of multicomponent mixtures with nematic phases,

we do not know the complete structure of the associated multidimensional phase
diagrams. In the best cases, we just know some particular surfaces of these phase
diagrams.

In Fig. 6.14, we sketch a surface of the phase diagram of a potassium alanin-
ate mixture [60], KL/DeOH/W/l-N -lauroyl potassium alaninate, determined by
optical microscopy and X-ray diffraction observations. Besides the three choles-
teric phases, a coagel (or gel) and a long-range ordered phase have also been
characterized (labelled S in the figure). At higher temperatures, we have a
polyphase region.

Table 6.3 Multicomponent mixtures presenting cholesteric phases.
The label water refers to both heavy (D) and light (W) water used
to prepare lyotropic mixtures. The three cholesteric phases, ChC, Ch,
and ChD, have been found in mixtures marked with the tag #

Mixture Reference

SdS/1-decanol/W/BS (#) [47,59]
KL/DeOH/W/l-N -lauroyl potassium alaninate (#) [60]
KL/DaCl/W/BS (#) [61]
l-N -lauroyl potassium serinate/KCl/n-DeOH/water/KOH [62]
l-Di-sodium N -lauroyl-aspartate/NH4Cl /DeOH/water [63]
l-Di-sodium N -lauroyl-aspartate/Na2 SO4/DeOH/water [63]
KL/KCl/water/cholesterol [64]
KL/KCl/KOH/water/cholesterol [64]
KL/KCl/DeOH/water/cholesterol [64]
DaCl/NH4 Cl/D/cholesterol [65]
α-Alanine hydrochloride decylester/Na2SO4/D [46]
K lauroyl-l-alaninate/K2SO4/DeOH/D [25,66]
CsdS/DeOH/water/tartaric acid [45]
NH4dS/DeOH/water/BS [45]
DaCl/water/cholesterol [45]
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Fig. 6.14. Sketch of a surface of the phase diagram of the KL/DeOH/W/l-N -
lauroyl potassium alaninate mixture [60]. The horizontal axis represents the
relative molar ratio of l-N -lauroyl potassium alaninate with respect to KL.
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7

THE LYOTROPIC ONE-, TWO- AND

THREE-DIMENSIONALLY ORDERED PHASES

7.1 Lamellar phases

7.1.1 Introduction

Several types of lamellar phases, Lα,Lβ ,Lγ ,Lβ′ ,Lδ,Ls, and Pβ′ , have been
observed in lyotropic phase diagrams [1,2]. In general, they are characterized by
the presence of one-dimensional packings of lamellae. As discussed in Chapter 1,
the topological organization of amphiphiles in the lamellar phases resembles a
cellular membrane skeleton.

The Lα phase, also known as neat soap, is usually found in the region of
large amphiphilic concentration of the phase diagrams [3]. In the Lα phase, the
carbonic chains are in a liquid-like state. The Lβ phase differs from the Lα phase
by the state of the carbonic chains. In the Lβ phase, the carbonic chains remain
stiff, perpendicular to the plane of the lamellae, with the axes organized as a
two-dimensional hexagonal lattice. There are, however, orientational fluctuations
of the carbonic chains with respect to their long axes. The viscosity of the Lβ

phase ranges from approximately 1 to 10 P.
The Lγ phase is formed by a sequence of layers with Lα and Lβ structures.

The Lβ′ phase differs from the Lβ phase by the tilt of the axis of carbonic chains
with respect to the normal to the lamellae. Tilt angles from 15 to 40◦ were
observed in lipid–water mixtures [2]. In the Lδ phase, the carbonic chains remain
stiff, perpendicular to the plane of the lamellae, and the axes are organized as
a two-dimensional square lattice. As in the Lβ phase, there are orientational
fluctuations of the chains with respect to the long axes. The Pβ′ phase displays
rippled lamellae with the characteristics of the Lβ′ phase.

Single-layered Ls phases were also observed in some lyotropic mixtures (e.g.
in mixtures of Na caprylate, octan-1,8-diol, and water [3], almost in the center
of the triangular phase diagram). Another lamellar-type phase found in ternary
lyotropic mixtures, in the water-rich region of the phase diagram, is the so-called
mucous woven phase. It is made of a double-layered structure, as in the usual
Lα phase, but with a smaller optical anisotropy.

Mineral lyotropic lamellar phases [4] are mixtures of solid acids and water
(e.g. a mixture of phosphatoantimonic acid and brine [5], H3Sb3P2O14/brine,
where the brine may be NaCl in water). The structure of this phase resembles
an aqueous dispersion of planar solid-like sheets of covalently bonded atoms.



220 ONE-, TWO- AND THREE-DIMENSIONALLY ORDERED PHASES

7.1.2 An introductory example: sodium dodecylsulfate-based mixtures

We now give some examples of lamellar phases and their neighboring structures.
Consider lyotropic mixtures based on molecules of sodium dodecylsulfate,
C12H25NaSO4, also known as SDS or SLS. These molecules form extensively
investigated mixtures, with many examples of lamellar phases in binary, ternary,
and quaternary systems.

7.1.2.1 The Lα phase in binary and multicomponent phase diagrams Binary
mixtures of SDS and water were investigated by Luzzati and coworkers [1,6].
At 75◦C, for concentrations of SDS between 70 and 85 wt%, there is a well-
characterized Lα phase. From X-ray diffraction experiments, the structural
lattice parameter and the bilayer thickness are about 3 and 2.4 nm, respect-
ively. The Hα phase is stable at the same temperature, but for smaller SDS
concentrations (less than about 60 wt%).

Ternary mixtures of SDS, decanol (DeOH), and water also display lamellar
phases. A partial isothermal, at 25◦C, is shown in Fig. 7.1 [3]. The Lα phase
occupies a large region in the geometrical center of the triangular representation.
In the upper vertex of the triangle, corresponding to large DeOH concentrations
(larger than 85 wt%), there is a stable inverted micellar phase, L2. A direct
micellar phase, L1, is located near the left-down vertex of the triangle, at large
water and small DeOH concentrations (smaller than 10 wt%). The hexagonal
phase Hα is also present in this region of small DeOH concentration. This should
be anticipated, since the presence of alcohol in the structure tends to reduce the
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Fig. 7.1. Sketch of a partial isotherm, at 25◦C, for a mixture of sodium
dodecylsulfate (SDS), decanol, and water [3].
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mean curvature of the amphiphile–solvent interface. If the DeOH concentration
increases from 10 to about 40 wt%, and the concentration range of SDS extends
from 10 to 60 wt%, which is also the approximate range of concentrations of
water, there appears an Lα phase. The region of this Lα phase extends towards
the large water concentration vertex of the partial isotherm, and is surrounded
by large coexistence phase regions. These coexistence regions separate the Lα

region from the regions of Hα and micellar isotropic L1 phases.
The Lα phase was also found in a quaternary mixture of SDS, pentanol

(POH), cyclohexane, and water. A particular partial isothermal representation
(at room temperature and relative concentration [water wt%]/[SDS wt%] = 1.2)
is shown in Fig. 3.12(b) of Chapter 3. Also, note a large, almost horizontal, region
of Lα phase. As in the previous cases, the lamellar phase is stabilized at larger
alcohol concentrations (with respect to the concentrations at which there is a
hexagonal phase). The dodecane is preferentially located inside the lamellae,
producing the swelling and increasing the bilayer thickness. If the concentration
of dodecane increases, the region of the Lα phase becomes thinner and finally
vanishes.

7.1.2.2 Light scattering studies As pointed out in different sections of this
book, light scattering is one of the most powerful experimental techniques to
study different aspects of the physics of lyotropics [7]. Typical scattering wave
numbers (q = 4π sin θ/λ, where λ and 2θ are the laser wavelength and the
scattering angle, respectively) range from 103 to 104 cm−1.

Let us increase the concentration of the solvent in a lyotropic mixture with a
lamellar phase. From the experimental point of view, the increasing of the con-
centration of a non-polar solvent may lead to either the swelling of the lamellae,
keeping the same lamellar structure, or to a phase separation between lamel-
lar and isotropic phases. The dynamics of phase separation between Lα and
isotropic phases in the quaternary SDS/POH/water/dodecane mixture, upon
increasing the solvent concentration, can be investigated, e.g., by light scatter-
ing experimental techniques [8]. At the early stages of dilution, measurements
as a function of time of the typical size of the isotropic phase regions growing
out of a lamellar phase have been shown to follow a power law of the form t1/3.
Lattice parameters in the diluted lamellar phase reach values of about 60 nm.
The growth of the isotropic phase domains in the lamellar phase is anisotropic,
that is, it depends on the particular direction. Growth is faster in the in-plane
direction, which is partially due to the anisotropy of the diffusion constants in
the direction parallel and perpendicular to the lamellae. The anisotropy of the
elastic constants, however, is also an important factor for explaining this kind of
behavior.

Dynamic light scattering techniques lead to measurements of the layer com-
pressibility modulus, B, of lamellar phases. The hydrodynamics of lamellar
lyotropic mesophases is quite complex. Besides the usual modes of thermotropic
smectics, there is an additional mode, known as the slip mode [9], which is
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due to the coupling between amphiphile concentration and layer displacement
fluctuations. In particular, the behavior of B, calculated from the anisotropic
dispersion relation of the slip mode, depends on the particular solvent used to
swell the lamellar structure [10]. In lyotropic mixtures under dilution, regard-
less the polar or non-polar type of the solvent, the compressibility modulus
was shown to be inversely proportional to d3, where d is the interlayer spacing
distance. Helfrich [11] proposed a mechanism of interaction between mem-
branes, in which a long-range repulsive entropically driven interaction is due
to the steric hindrance of the thermally excited undulations of the layers.
The interlayer interactions can be studied by investigating the relaxation fre-
quency of the slip mode. For SDS-based mixtures, undulation forces dominate
in the case of dodecane or brine (0.4 M of a NaCl solution in water) dilutions.
Electrostatic interactions dominate in pure water dilution (mixtures of SDS,
pentanol, and water). The values of B range from 104 Pa (for less diluted oil
SDS/pentanol/NaCl/water mixtures) to about 10 Pa (for most diluted brine
SDS/dodecane/pentanol/water mixtures).

There is an interesting behavior if the lamellar structure is subjected to a
shear. By varying the shear rate, closed-compact multilamellar vesicles can be
formed [12], giving rise to a structure that has been called onion texture [13].
The process of formation of these vesicles can be studied by using small-angle
light scattering techniques. The onset of undulation (buckling) instabilities in
the lamellar structure has been suggested as the mechanism in order to account
for the formation of these vesicles.

7.1.3 The Lα phase in some lyotropic mixtures

The Lα phase is found in most of the binary and ternary lyotropic mixtures [3].
For example, it has been found in binary mixtures of potassium laurate and
water, sodium myristate and water, and dimethyldodecylamine oxide and water;
also, in the ternary mixtures of potassium laurate, decanol and water, sodium
caprylate, nonanol and water, and sodium octylsulfate, decanol and water.

In binary mixtures, the Lα region is usually found at concentrations of
amphiphilic molecules larger than about 50 wt%, and at temperatures from 20 up
to 300◦C, depending on particular amphiphiles and relative concentrations. For
example, in Fig. 7.2 we sketch a partial phase diagram of a mixture of potassium
oleate and water [14]. Note the neighboring Hα and isotropic phases. Also, note
large phase coexistence regions separating different phases.

In ternary mixtures, the Lα region is located almost at the middle of the tri-
angular phase diagram [3], at about 30 wt% of solvent and 60 wt% of the principal
amphiphile, as described in the introductory example of the preceding section.
The cosurfactant (e.g. an alcohol), with a carbonic chain of smaller length
than the main amphiphile, works in order to increase the radius of the surface
curvature of the supermolecular aggregates, which favors flat surfaces. In the tri-
angular phase diagrams, the lamellar phase is located in regions with increasing
amounts of the cosurfactant with respect to cosurfactant concentrations at the
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Fig. 7.2. Sketch of the temperature versus concentration phase diagram of
a mixture of potassium oleate and water [14]. The label ISO refers to an
isotropic phase.

location of the hexagonal phase. The Lα phase has the smallest surface per polar
head with respect to other lyotropic structures.

A nematic structure is one of the neighboring phases of the lamellar struc-
tures. Quasielastic light scattering techniques are used to study the temperature
behavior of the orientational fluctuations of nematics in the vicinity of the
nematic–lamellar phase transition. For example, we have the phase diagram
of a mixture of decylammonium chloride (DaCl), NH4Cl, and water. Meas-
urements of the elastic constants in the nematic phase indicate a divergence,
according to the behavior of a three-dimensional XY model, as the temperature
approaches the transition to the lamellar phase [15]. X-ray and nuclear magnetic
resonance (NMR) experiments for the DaCl/NH4Cl/water mixture suggest that
the temperature-driven transition from the lamellar to the nematic phase occurs
through the appearance of water holes in the lamellae. In other words, the lamel-
lae are pierced by regions of water that increase as the temperature approaches
the transition [16]. A similar interpretation was proposed to explain the neut-
ron scattering data for the sodium decylsulfate/1-decanol/water mixture in the
lamellar phase, in the neighborhood of the phase transition [17].

The topology of the phase diagram and the sequences of phases depend on
different parameters related to the shape of the amphiphilic molecule, the inter-
action between these molecules and the solvent, and the interaction between the
amphiphilic aggregates.

7.1.3.1 The sodium dodecanoate/water mixture The phase diagram of a mix-
ture of sodium dodecanoate (or laurate) and water has already been sketched
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in Fig. 3.18 of Chapter 3. Lamellar Lα and hexagonal Hα phases are located
between Tc (crystallization line) and the high-temperature isotropic phase. A
large lamellar region is stabilized at larger amphiphile concentrations and extends
to higher temperatures. Transitions between different liquid crystalline phases
and between them and the isotropic phase are characterized by large regions of
phase coexistence.

7.1.3.2 The AOT/water mixture A mixture of sodium bis-2-ethylhexyl
sulfosuccinate (AOT) and water is another example of a lyotropic system with
a large lamellar phase region [18]. The phase diagram of this mixture, in terms
of temperature and concentration of AOT, is sketched in Fig. 7.3. Note that
there are some different features in the phase diagrams of Figs 7.2 and 7.3. For
example, the locus of the lamellar phase occurs at AOT concentrations smaller
than those of the hexagonal phase (in other words, at a fixed temperature, there
is a hexagonal–lamellar transition if we decrease the AOT concentration).

If a soap is one of the components of a lyotropic binary mixture, there
appears a hexagonal–lamellar transition in the phase diagram, at a given tem-
perature, if we increase the soap concentration. The shape of the amphiphilic
molecule strongly influences the topology of these phase diagrams. In partic-
ular, the topology of the phase diagram of Fig. 7.3 is strongly dependent on
the shape anisotropy of the AOT molecule and the volumes occupied by the
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Fig. 7.3. Sketch of the phase diagram of a mixture of sodium bis-2-ethylhexyl
sulfosuccinate (AOT) and water [18]. The gray regions correspond to phase
coexistence.
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Fig. 7.4. Structure of the AOT (C20H27NaO7S) molecule. O and S atoms are
in the polar heads. Note that the Na atom is placed in the neighborhood of
S and O atoms.

polar and non-polar parts of the molecule. Figure 7.4 shows the structure of
the AOT molecule. It can be involved by a cone of circular base, with the
polar part of the molecule placed near the apex of the cone and the non-
polar part extending towards the base. This topology clearly favors inverted-type
amphiphilic aggregates. Thus, at large AOT concentrations, inverted hexagonal
(Hi) and micellar isotropic (L2) phases become stable. If we decrease the
AOT concentration, there appear lamellar and direct micellar isotropic (L1)
phases.

7.1.3.3 The C12E5/water mixture A mixture of pentaethyleneglycol n-dodecyl
ether (C12E5) and water [19] presents lamellar Lα, direct (L1) and reverse (L2)
isotropic micellar, sponge (L3), hexagonal (Hα), and cubic (Q) phases, as a func-
tion of temperature and relative concentrations of the compounds (see Fig. 3.8 in
Chapter 3). The topology of the phase diagram shows that, at a given temperat-
ure (e.g. 19◦C), the lamellar phase is located between cubic and micellar inverted
phases. As in the case of soap-based mixtures (e.g. potassium laurate/water),
the phase diagrams display a hexagonal phase at amphiphilic concentrations
smaller than those where the lamellar phase is stable. The stabilization of the
lamellar phase, even at small amphiphilic concentration but at higher temperat-
ures (larger than about 55◦C), is an interesting feature of the phase diagram. In
this system, particularly in the lamellar phase, the steric and entropic repulsion
between membranes is the dominant interaction for explaining the stabiliza-
tion of the structure. It can be highly swollen (e.g. with a layer separation of
about 300 nm, and bilayers of about 3.8 nm) and still keep the lamellar struc-
ture. Dynamic light scattering experiments carried out on highly swollen lamellar
phases [20] indicate that the bilayer elasticity is characterized by a curvature, or
bending, elastic constant of the order of kBT .
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7.1.4 Structures of the lamellar phases

Besides the usual structure of the Lα phase, as sketched in Fig. 1.13 of Chapter 1,
other structures have been found and characterized in different lyotropic systems.
These structures have different organizations of the carbon chains, distinct topo-
logy of the surfaces (flat or undulated), and various values of thickness of the
(single or double) layer.

7.1.4.1 Phospholipid/water membrane structures Phospholipids are important
structural components of living tissues in plants, animals, and microorganisms.
If they are mixed with water, around room temperature, these amphiphilic
molecules may form lamellar phases, which are called Lβ ,Lγ ,Lβ′ ,Lδ, and Pβ′ ,
with different structures as compared with the usual Lα phase.

In the Lβ phase, carbonic chains remain stiff, perpendicular to the plane
of the lamellae. The long axes are organized on a two-dimensional hexagonal
lattice. There are orientational fluctuations about these long chain axes. The Lγ

phase is formed by a sequence of layers with Lα and Lβ structures.
In the Lβ′ phase (see Fig. 1.14(b) of Chapter 1), the axes of the carbonic

chains are tilted, by about 15–40◦ with respect to the normal to the lamellae [21].
In the Lδ phase, carbonic chains remain stiff, perpendicular to the plane

of the lamellae. The long axes are organized on a two-dimensional square lat-
tice. As in the Lβ phase, there are orientational fluctuations about the long
chain axes.

The structure of the Pβ′ phase displays rippled lamellae with the charac-
teristics of the Lβ′ phase (see Fig. 1.14(a) of Chapter 1) [21,22]. The surface
undulations of the lamellae, suggested by X-ray diffraction measurements, were
observed by transmission electron microscopy (TEM) in a freeze-fracture replica
of a DMPC/water sample [23]. The amplitude and wavelength of undulations
were estimated as 4.5 and 16 nm, respectively. This wavelength seems to be
weakly dependent on temperature and water content of the sample [24].

7.1.4.2 Single-layered Ls structures Lamellar single-layered structures are not
so common, but they were also observed in some lyotropic phase diagrams (e.g.
in a mixture of sodium caprylate, octan-1,8-diol (also called 1,8 octandiol) and
water, as shown in Fig. 7.5 [25,26]).

In terms of spacing distances, these structures are characterized by a layer
thickness of about the same typical length of the cosurfactant. In the example
of Fig. 7.5, the locus of the Ls phase corresponds to approximate concentra-
tions 40/15/45 wt% of sodium caprylate/octan-1,8-diol/water. The ratio between
the molar fraction of the principal amphiphile and octandiol is about 2. The
neighboring phases are L1 and Hα. The presence of 1,8-octandiol [C8H18O2,
or HO–(CH2)8–OH] seems to be the responsible for the existence of the single-
layered Ls phase. In other lyotropic mixtures with the same principal amphiphile
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Fig. 7.5. Sketch of a partial isotherm of a mixture of sodium caprylate, 1,8-
octandiol, and water, at 20◦C [3].

and a different alcohol, this phase is not observed (e.g. in mixtures of sodium
caprylate, pentanol, and water [27], and sodium caprylate, decanol, and water
[28]). Different diol groups are located on the surfaces of the lamellae, defining
the layer thickness. The Ls phase is not observed in phase diagrams of mixtures
in which octandiol is replaced by smaller diol chains (as ethylene glycol and
glycerol).

7.1.4.3 Swollen lamellar Lα phases We now consider diluted Lα phases, for
increasing solvent (water) concentrations at fixed values of temperature and pres-
sure. Two types of behavior were observed in lamellar phases under dilution: (i)
in one case, the lattice parameter d (i.e. the repeating distance between layers,
measured by X-ray diffraction) increases with the solvent concentration φs; (ii)
in other cases, d remains constant as φs increases. In the first case, d and the
amphiphile concentration φa behave according to the relation

ln(d/d0) ∝ ln(1/φa),

where d0 is a constant; this is a phase of expanding (swelling) type. In the
non-expanding (non-swelling) phases, the ratio d/d0 is constant as φs increases.
For example [3]: (i) AOT/water, at 20◦C, and monolaurin/water, at 29◦C,
present expanding phases; (ii) potassium laurate/water, at 86◦C, presents a
non-expanding phase.

In expanding phases, the surface per polar head of the amphiphilic molecules
in the interface between the amphiphilic aggregates and the solvent, as well as the
bilayer thickness, are not significantly affected if we increase φs. Water molecules
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essentially occupy the interlayer space, leading to a one-dimensional type of
swelling. On the other hand, in non-expanding phases, since d remains constant,
the increase of water concentration brings about an increase of the amphiphile
surface per polar head and even a decrease of layer thickness. The type and
characteristics of the hydrophilic part of the amphiphilic molecules, specially
those related to the head hydration phenomenon, are important parameters to
be considered in the swelling process. For example, amphiphile heads (in this
discussion, counterions and ionized groups are taken into account) that can bind
more water molecules are able to increase the surface per polar head, incor-
porating more water molecules in the interface. This “excess”of water in the
interface is supposed to keep the interlayer distance almost constant. These water
molecules, under some conditions, may even be introduced in the amphiphilic
aggregates, in the neighborhood of the first carbon atoms of the chain. In soaps,
Gallot and Skoulios [29] showed that the surface per polar head (S) and the
ratio between the number of moles of water and soap (Z) behave according
to the relation

log(S/S1) = q log(Z),

where S1 is a constant representing the surface per polar head if Z = 1, and q
is a parameter depending on the particular soap molecule (e.g. S1 = 0.241 nm2

and q = 0.24, for Na at 86◦C; S1 = 0.256 nm2 and q = 0.21 for K at 86◦C [3]).
Mineral lyotropic lamellar phases have a remarkable behavior under dilution

[4]. Let us call φm the mineral volume fraction. At a very dilute regime (0.033% <
φ < 0.18%), the structure determined from X-ray scattering is formed by large
(�300 nm) flat sheets. Even at the maximum swelling, the large number of Bragg
peaks (of the order of 7) indicates the continuing existence of the lamellar order.
The behavior of the lamellar spacing distance d as a function of 1/φm shows
a crossover from an almost linear increasing (for 1/φm � 150, d ∝ 1/φm) to a
plateau (for 1/φm ∼ 500, d ∼ 200 nm). The thickness of the layers, of about
1.1 nm, is independent of φm.

There is, however, another possibility to swell a lamellar structure, different
from the situations that we have been discussing in this section. A non-polar
solvent enters into the lamellae and may increase the bilayer thickness. In
Fig. 7.6(a), we show a sketch of a usual lamellar L1

α phase; layers of the polar
solvent are thicker than the lamellae. In Fig. 7.6(c), the non-polar solvent swells
the lamellar structure (L2

α); the layers of the polar solvent are thinner than the
lamellae. From the theoretical point of view, it has been shown [30,31] that
the phase diagram obtained from a free energy with a two-component order
parameter (associated with molecular segregation and relative concentration)
presents two independent stability regions (of L1

α and L2
α phases). To some

extent, the structure of the L2
α phase can be regarded as an inverted lamellar

phase. Between these two structures, there is a symmetric phase, in which the
layers of polar solvent and the lamellae have the same thickness (see Fig. 7.6(b)).
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Fig. 7.6. Sketch of the lamellar structure under dilution with a non-polar solvent
(polar solvent is placed between lamellae and non-polar solvent is placed
inside lamellae): (a) usual lamellar structure (L1

α); (b) symmetric case (Ls
α);

polar and non-polar layers have the same thickness; (c) inverted lamellar
structure (L2

α).

7.1.4.4 Undulation and flexibility of the Lα phase Different experimental
techniques have been used to investigate undulations in lamellar phases (in
particular, X-ray and dynamic light scattering [32], static light-scattering [33],
neutron scattering [34], and NMR [35] measurements). The counterion screening
strongly affects the undulation behavior of lamellar structures with charged lay-
ers. In unscreened layers, the electrostatic interactions lead to small amplitude
undulations; however, this amplitude increases if we increase the concentra-
tion of monovalent electrolytes. It is interesting to emphasize that undulations
contribute to the stabilization of the lamellar phase.

Elastic properties of a lamellar phase can be characterized by three elastic
constants, the layer compression modulus B, and two smectic curvature moduli,
K1 and K, which are related to the lamellar periodicity d. These two curvature
moduli are related to the mean bending modulus κ and the bilayer Gaussian
bending modulus κ by the relations K1 = κ/d and K = κ/d. In particular,
κ is responsible for the bilayer topology. In lyotropic lamellar phases, with a
bending elastic constant of the order kBT , the static and dynamic structures of
the phase are strongly influenced by thermal fluctuations of the undulations of
layers. From the study of the hydrodynamic baroclinic–undulation mode [36], it
is possible to determine the bending rigidity K1 and the compressibility mod-
ulus B, which are macroscopic characteristics of the lamellar system. We then
determine the rigidity K, or flexibility, of the membrane, which is a property
of the system at a local scale. We have the following examples of values of the
rigidity [32]: K = 0.5 kBT , for sodium octylbenzene sulfonate/pentanol/brine
and n-dodecylcarboxybetain/pentanol/D2O mixtures; K = 1.4 kBT , for a
cetylpyridinium chloride/hexanol/brine mixture. As discussed above, undulation
fluctuations give rise to long-range steric repulsions [11,37].

The flexible structures are strongly affected by shear, which can promote
reconstructive phase transitions to an onionlike phase made of multilamellar
vesicles, e.g.. Shear experiments, under shear stress 0.03 < σ < 0.12 dyn/cm2,
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Fig. 7.7. Definition of the crumpling parameter τ2 = AB/A, where A is the real
area of the membrane and AB is the projection of the area: (a) τ2 = 1; (b)
τ2 < 1.

(a) (b) (c)

Fig. 7.8. Sketch of the low-frequency hydrodynamic modes of a lamellar
structure [9,36]: (a) transverse shear mode; (b) peristaltic mode; (c)
undulation–baroclinic mode.

and with shear rate 1.5 <
.
γ < 1 s−1, performed in a mixture of C12E5 and water,

show that the behavior of the flow of the lamellar phase is non-Newtonian,
and that the average spacing distance decreases whereas the out-of-plane layer
displacement fluctuations increase as a function of shear [38].

A useful parameter that accounts for the undulation of the lamellae is the
crumpling τ2 [39,40]. It is defined as the ratio between the projection of the area
of the membrane, AB, and the real value of the area, A, as indicated in Fig. 7.7.

If τ2 = 1, the membrane is flat; if τ2 < 1, it is undulated. In the particular
case of swollen lamellar phases, if we assume small compressibility and small
heat capacity, there are three low-frequency hydrodynamic modes [9,36] (see
Figs 7.8)(a)–(c)): (a) a transverse shear mode; (b) a peristaltic mode; (c) an
undulation–baroclinic mode, which comes from the coupling between concen-
tration and layer displacement fluctuations. Brochard and de Gennes [9] called
slip modes the cases (b) and (c). Quasi-elastic light scattering experiments, in
the frequency range from 102 to 106 Hz, are expected to be sensitive to this last
mode, since the other modes have larger characteristic frequencies (with a typical
value of order 102 MHz).

From the point of view of elastic properties, it is interesting to investigate
the behavior of lamellar phases with the addition of a certain amount of a water-
soluble polymer [41]. The introduction of polyvinylpyrrolidone in a mixture of
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cetylpiridinium chloride, hexanol, and water, with weight concentrations of poly-
mer in water of about 20 wt%, has been shown to produce no noticeable changes
of values of κ with respect to the undoped lyotropic mixture. On the other hand,
the presence of the polymer decreases the value of κ with respect to the undoped
sample, which is as yet a difficult result to be explained.

There may be high-amplitude fluctuations of the lamellar structures, in par-
ticular in the vicinity of phase transitions. In the case of the transition between
the Lα and a bicontinuous gyroid-type phase structure, these fluctuations lead to
a perforating lamellar structure, with the formation of holes in the lamellae [42],
giving rise to a different topology of the amphiphilic aggregates.

7.1.4.5 The lamellar–inverse hexagonal transition Due to symmetry consid-
erations, the lamellar–hexagonal phase transition is expected to be first order.
Regions of different phases are separated by regions of phase coexistence, as
it can be seen for Lα–Hα transitions, in Figs 3.7 and 3.10 of Chapter 3, for
a binary and a ternary mixture. In the following sections, we discuss in more
detail the intermediate phases that may be present between the lamellar and
hexagonal phases.

The Lα–Hi
α transition is observed as a function of either temperat-

ure [43,44] or pressure [45]. Lyotropic mixtures presenting this transition
include 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and water, and
1-palmitoyl-2-oleoyl-sn-phosphatidylethanolamine (POPE) and water. Rappolt
and coworkers [44] have recently proposed a mechanism to account for the form-
ation of the inverted rods in the lamellar structure. It is assumed that there
appears a line of defects (e.g. a water core) between consecutive lamellae. This
mechanism, sketched in Fig. 7.9, produces a region of unfavorable curvatures
in the lamellae, which leads to the formation of the first rod (whose axis is
perpendicular to the plane of Fig. 7.9). The minimization of the volume of
the interstitial region induces the formation of new cores and, consequently,

(a) (b)

Fig. 7.9. Sketch of a possible mechanism for the lamellar–inverse hexagonal
phase transition [44]. Black dots represent the water cores: (a) beginning
of the process with the creation of a line defect; (b) formation of the first
cylinder, with an axis perpendicular to the plane of the figure.
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new rods. The number of water molecules per amphiphile has been observed to
increase from 14 in the Lα phase to 18 in the Hi

α phase.
Besides temperature, pressure was shown to induce a phase transition

between the lamellar and the inverted hexagonal phases (e.g. in a mixture of
DOPE and water [45]). The domain of the lamellar phase increases with pres-
sure (until about 2 kbar). In the Hi phase, the lattice parameter of the hexagonal
structure also increases with pressure. The experimental results obtained so far
seem to indicate that an intermediate cubic phase may be stabilized between
lamellar and hexagonal phases.

7.2 Two- and three-dimensionally ordered phases

7.2.1 Introduction

In conventional solid crystals, discrete symmetry groups reflect the transla-
tional invariance, along three independent directions, of the mean molecular
positions in equilibrium. In a liquid crystal, molecules or molecular aggreg-
ates are usually positionally disordered. The discrete groups of translation are
then associated with the spatial pattern of orientation of molecules or molecular
aggregates.

In two-dimensional ordered structures, amphiphilic molecules self-organize
in aggregates of large anisometry, as cylinders and ribbons, at least 100 nm
long. Three-dimensional lyotropic structures can be formed by micellar or bicon-
tinuous molecular aggregates. The presence of these high-dimensionally ordered
structures in a particular phase diagram has no connection with the number of
components of the lyotropic mixture. In fact, two- and three-dimensional struc-
tures have been observed in some binary mixtures. Although we have two- or
three-dimensional structures, which can be characterized by typical scattering
patterns, in general we do not have long-range positional order (as in a three-
dimensional solid). Some authors even say that in lyotropic liquid crystals there
is short or medium-ranged positional order.

We pay special attention to the structural characterization of different
phases. X-ray and neutron scattering and diffraction are the basic techniques
for the determination of these structures. Complementary techniques, as nuclear
magnetic resonance, may give key information on local ordering, which is funda-
mental for a more complete description of the amphiphilic aggregates and their
space organization.

7.2.2 Two-dimensional phases

Hexagonal (H), monoclinic (M), rectangular (R), and tetragonal (C, direct; K,
inverted) two-dimensional phases have been observed in lyotropic mixtures. All
of these structures are optically anisotropic.

7.2.2.1 Direct and inverted hexagonal phases There are three types of lyo-
tropic hexagonal phases [3]: direct (Hα), inverted (Hi

α), and complex (Hc)
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hexagonal phases. In these structures, amphiphilic molecules self-assemble as
long cylindrical aggregates. The carbonic chains remain in a liquid-like state. If
hexagonal and isotropic micellar phases occupy neighboring regions in a phase
diagram, the transition from the micellar to the hexagonal phase can be regarded
as a process of increasing the length of the micellar cylindrical aggregates. This
mechanism, taking into account shape anisotropy and the concentration of cyl-
indrical stiff objects, sometimes called “particles,” has been theoretically treated
by Flory [46]. The approach is more complicated for lyotropic mixtures, since the
micelles, in the isotropic micellar phase, and the long cylinders, in the hexagonal
phase, are flexible and deformable objects, changing shape anisotropy as a func-
tion of external parameters (as temperature and relative concentrations of the
components).

Location of the phases in the phase diagrams The Hα phase (see Fig. 1.15(a))
is present in phase diagrams of binary mixtures of an amphiphile and water at
amphiphilic concentrations of about 50 wt% (e.g. see Figs 1.6, 3.7, and 3.8). A
micellar isotropic phase, at increasing temperatures or water concentrations, and
a lamellar phase, at increasing amphiphile concentrations, are in the neighbor-
hood of this Hα phase. Since the transitions between the hexagonal and their
neighboring phases are of first order, there are large characteristic regions of
phase coexistence. The Hα phase is also found in the phase diagrams of ternary
and quaternary mixtures (e.g. see Figs 3.10 and 3.13). In partial isothermal rep-
resentations of ternary mixtures, the Hα phase is located at low co-surfactant
concentrations, and at about 50 wt% of the principal surfactant.

The Hi
α phase (Fig. 1.15(b)) is also found in phase diagrams of binary [18]

and multicomponent [3] lyotropic mixtures. Amphiphiles that combine the geo-
metrical characteristics of bulky paraffinic regions and a small polar head are
potential candidates to present inverted structures. In a binary mixture of sodium
bis-2-ethylhexyl sulfosuccinate (AOT) and water (see Fig. 7.3), the Hi

α phase is
located in a range of large amphiphilic concentrations (�82 wt%), and high tem-
peratures (higher than 100◦C). The stabilization of an inverted phase in this
phase diagram is strongly dependent on the molecular topology of AOT. Binary
mixtures of lecithin and water [47] also present a reversed hexagonal phase, at
high temperatures (above 100◦C), surrounded by an inverted micellar isotropic
phase at lower temperatures. In the partial isotherm of phase diagrams of ternary
mixtures, the Hi

α phase is usually located in the upper vertex region of the tri-
angular representation (mixture of Na caprylate/1-decanol/water at 20◦C, [3]).
However, depending on the particular amphiphile, it can be located in a differ-
ent region. For example, in the partial isothermal representation of a mixture of
AOT, decanol, and water, the Hi

α phase is located in the region of right vertex
of the triangular representation (in other words, in a region with concentrations
of AOT larger than 60 wt% and concentrations of decanol less than 30 wt%).

The complex hexagonal phase has been found in several binary lyotropic mix-
tures; e.g., in Na myristate (C14H27NaO2) and water, K palmitate (C16H31KO2)
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and water, and Na laurylsulfate (C12H25NaO4S) and water [48,49]. It is located
in different regions of the phase diagrams between Lα and Hα phases.

Determination of the structures The determination of the structure of a
hexagonal phase is mainly achieved by X-ray and neutron diffraction and scatter-
ing techniques. In neutron diffraction and scattering experiments, samples have
to be prepared with deuterated materials in order to give the necessary contrast
between different parts of the structure, mainly between the solvent and the
alkyl chain [50,51]. The coherent scattering of neutrons by deuterons is much
stronger than by protons. Coherent scattering lengths of H and D are about
−0.37×10−12 and 0.67×10−12 cm, respectively [52]. The contrast technique can
be used to determine the molecular distribution of a particular species in the
structure. It is used for studying the deformation of the circular cross section of
cylindrical amphiphilic aggregates into a flattened cylinder (which is also called
a ribbon).

Experimentalists always face the important, and difficult, task of achieving
a good degree of orientation of samples. In most of the situations, the diffrac-
tion peaks of the lyotropic structures appear at small scattering angles, which
correspond to large spacing distances, of the order of 1–10 nm.

If X-rays are used as probes, the diffraction intensity depends on the
electronic density contrast between the amphiphile head and the surrounding
medium (e.g. between the paraffinic chains and water). The analysis of diffraction
patterns of lyotropic phases is essentially performed in two regions of reciprocal
space: (i) in the high-angle region, with s = 2 sin θ/λx ∼ 2.5 nm−1, where 2θ
and λx are the scattering angle and the X-ray wavelength, respectively; (ii) in
the small-angle region, with s∼ 0.1 nm−1. At high angles, water-based lyotropic
mesophases display two broad bands, at s ∼ 2.22 nm−1 and s ∼ 3.13 nm−1, due
to the mean distances between carbons of paraffinic chains and water molecules,
respectively. These bands do not have an oriented profile, even if oriented
phases are used to obtain the diffraction patterns, which is an indication of
the liquid-like state of the paraffinic chains (and water) in these mesophases.
In the range of small angles, diffraction patterns of Hα,Hi

α, and Hc phases
display several Bragg peaks, with characteristic distances according to ratios
1 :

√
3 :

√
4 :

√
7 : · · · , which are typical of a two-dimensional hexagonal structure

in direct space. These patterns are consistent with the picture of long cylindrical
amphiphilic aggregates, organized as a hexagonal two-dimensional lattice. In
crystallographic terms, the reciprocal spacings shkl of the diffraction, with Miller
indices [53] h, k and l, are written as s2

hkl = a∗2(h2+k2−hk), where a∗ is the lat-
tice parameter of the reciprocal unit cell. Figures 1.15(a) and (b) show sketches
of the Hα and Hi

α structures. In the Hα phase, the diameter of the cylinders is
about twice the extended length of the principal amphiphile.

Typical lattice parameters d of selected amphiphiles in water, in the Hα

phase, are given in Table 7.1. The diameter of the cylinders, da, and the mean
surface per polar head, S, can be calculated if we know the concentrations of
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Table 7.1 Lattice parameters of phases Hα and Hc of selected
amphiphiles in water; d corresponds to Hα, and dc to Hc ([49])

Amphiphile d (nm) dc (nm)

C18H35NaO2 6.3 12.4
C18H33NaO2 5.4 10.7
C16H31KO2 5.0 10.5
C14H27KO2 4.6 9.3

the different components of the mixture, their partial specific volumes, vs for the
solvent and va for the amphiphile, and the weight concentration of amphiphile
per gram of the mixture, cw. Thus, we have

da = d

[
π

2
√

3

(
1 +

vs

va

1 + cw

cw

)]−1/2

.

It should be noted that the partial specific volume of component 1 of a binary
mixture is given by v1 = (∂V/∂g1)T,P,g2

, where V, gi, T and P are the total
volume of the mixture, mass of component i, temperature, and pressure.

In the Hα phase of water-based mixtures, the shape of the cross section of
the cylindrical amphiphilic aggregates depends on the water concentration. This
result seems to be related to the hydration of the heads of the amphiphiles in
the structure [54]. Let us call φa the volume fraction of the amphiphile in the
mixture. In binary mixtures of fatty acid soaps, the lattice parameter d behaves
according to the relation

log(d/d0) ∝ log(1/φa),

where d0 is a constant, and the slope is usually small [29,54]. In mixtures with
small water concentrations, the lattice parameter becomes almost independent
of φa, which indicates a possible modification of the shape of the amphiphilic
aggregate (e.g. a modification of the cross section perpendicular to the cylindrical
axis). The diameter of the cylindrical aggregates slightly increases with φa. The
surface per polar head, at the interface between aggregates and water, increases
with the water concentration in the mixture. Gallot and Skoulios [29] showed
that, in the case of soaps, the surface per polar head S and the ratio between the
number of moles of water and soap, Z, behave according to the same relation
for the lamellar phase,

log(S/S1) = q log(Z),

where S1 is a constant, representing the surface per polar head if Z = 1, and
q is a parameter that depends on the particular soap molecule (e.g. we have
S1 = 0.397 nm2 and q = 0.09, for a sodium soap at 86◦C; and S1 = 0.396 nm2

and q = 0.10 for a potassium soap at the same temperature [3]). In the
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Hα phase, the surface per polar head has intermediate values between those
found in lamellar and micellar isotropic phases. In a mixture of potassium laur-
ate and water, S ∼ 0.53 nm2 in the Hα phase, S ∼ 0.35 nm2 in the lamellar
phase, and S ∼ 0.65 nm2 in the micellar isotropic phase [55].

Quantities d and S have distinct behavior in the Hi
α structure and the cor-

responding direct phase; d is almost constant for increasing (small) amounts of
water, and slightly increases with φw (where we recall that φw is the volume
fraction of water in the mixture); S increases with φw. A logarithmic plot of
S/S1 as a function of Z shows different linear regions, with different angular
coefficients [56].

In the Hc phase, lattice parameter dc obtained from the analysis of X-ray
diffraction patterns is about twice the lattice parameter of the Hα phase for the
same amphiphile (see Table 7.1). In this structure, it has been assumed that long
cylinders are formed by closed bent double layers, as sketched in Fig. 7.10 [48,49].

The local configuration: Growth and shape anisotropy of aggregates The local
configuration of cylindrical-type amphiphilic aggregates is affected by several
parameters, as temperature, pH, and ionic strength of the mixture. Let us
discuss some quasielastic light scattering experiments performed in a mix-
ture of sodium dodecylsulfate (SDS), NaCl, and water, in the temperature
range 10< T < 85◦C, for NaCl concentrations 0.15 < cn < 0.8 M, and SDS con-
centrations 1.7 × 10−2 < cs < 6.9 × 10−2 M [57,58]. For cn > 0.3 M, amphiphilic
aggregates present a prolate ellipsoidal shape, with a minor axis of about 5.0 nm
and a major axis increasing with T and decreasing with cn. The aggregation num-
ber ñ, defined as the mean number of amphiphilic molecules per aggregate, at

Fig. 7.10. Sketch of the hexagonal complex phase Hc.
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fixed SDS and NaCl concentrations, cs = 6.9×10−2 M and cn = 0.6 M, increases
from ñ ∼ 60, at T = 85◦C, corresponding to an almost spherical micelle, to
ñ ∼ 1600, at T = 18◦C, corresponding to a major axis of about 135 nm. Fixing
the temperature at 25◦C, and with the same value of the NaCl concentration
cs, ñ increases from ñ ∼ 80, at cn = 0.15 M, to ñ ∼ 1000, at cn = 0.6 M. In these
cylindrical-type aggregates, it has been observed that ñ ∼ √

cs, at fixed T and
cn. The width of the distribution of aggregation numbers is ±70% of the mean
value, which indicates a large polydispersity of the major axis (length of the cyl-
inders) of the molecular aggregates (since the minor axis is almost independent
of T , cn and cs).

The growth of the major axis of the cylindrical aggregates, keeping the minor
axis approximately unchanged, is a consequence of what we may call the end-
ing effect. For example, consider a spherocylindrical aggregate, formed by a
cylindrical core and two semispherical caps. The molecular packing is expected
to be more compact in the cylindrical core than in the caps. Variable parameters
as T , cn, and cs seem to affect these caps preferentially, increasing or decreasing
the core length.

NMR experiments indicate that the local behavior of amphiphilic molecules is
practically unchanged in all of the lyotropic phases (hexagonal as well as lamellar,
cubic, etc). Fast molecular translational diffusion and conformational motions
of paraffinic chains have been detected in hexagonal and lamellar phases [59].
However, the surface per polar head is larger in the direct hexagonal than in
the lamellar phase. In order to account for deuteron magnetic resonance results,
the packing of the heads of amphiphilic molecules in the cylindrical surface was
proposed to be direction-dependent. Along the generators of the cylinders, heads
of the amphiphile molecules pack as in a lamellar phase; along the circumference,
the heads are more distant from each other [60].

Deformation of the cylinders In the hexagonal phases of binary mixtures,
cylindrical aggregates of amphiphilic molecules are expected to display a simple
circular cross section. However, in particular if there is a cosurfactant in the
mixture, there may appear stable fattened cylinders, which are also known as
ribbons.

Hendrikx and coworkers [61,62] performed contrast neutron scattering exper-
iments in the ternary mixtures of potassium laurate (KL), decanol, and water,
and sodium decylsulfate, decanol, and water, with convenient changes of H2O by
D2O, using deuterated KL and perdeuterated decanol. The sections of the cyl-
indrical amphiphile aggregates depend on the molar ratio, Rd/a, between decanol
and the main amphiphile. The deviations of the cylinders from a circular shape
increase with the ratio Rd/a. This deformation produces cylindrical cross sec-
tions of elliptical shape, and degrees of ellipticity increasing with Rd/a, until the
formation of ribbons. It is interesting to point out that this deformation occurs
before the system enters into another phase. A phase transition (to a rectangular
phase) takes place at the moment the cylindrical cross sections of the aggregates
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are sufficiently far from a circular shape. Contrast experiments also lead to the
preferential location of alcohol molecules, in the flat part of the amphiphilic
aggregates.

Shear effects The peculiar behavior of the direct hexagonal phase under shear
is strikingly different from the usual behavior of nematic and lamellar phases.
There are rheological, as well as combined rheological and small-angle light-
scattering, rheological-NMR and rheological-neutron scattering experiments in
order to investigate dynamic aspects of the hexagonal phases.

In a rheological experiment, a creep curve is a plot of the time dependence
of the compliance, J(t) = γ(t)/σ, where γ(t) is the measured time-dependent
shear strain and σ is the (constant) shear stress. The flow curve is the plot of the

shear stress as a function of the shear rate
·
γ. The SI units of σ and

·
γ are Pa and

s−1, respectively, while γ is dimensionless. Among other effects, in rheological
experiments we observe shear-induced phase transitions and shear-orientation of
amphiphilic aggregates.

A lyotropic mixture of H3C(CH2)13OCH[CH2O(CH2CH2O)4CH3]2, also
called C14G(E4M)2, and water [63] displays a hexagonal phase, which has been
investigated under shear using the rheo-SALS (rheological-small angle light scat-
tering) technique [64]. At constant shear stress or shear rate, the long axes of
the cylindrical aggregates become oriented either parallel or perpendicular to the
flow direction. At smaller shear rates, or at short creep times, there are observa-
tions of orientational correlations of the molecular aggregates along a direction
perpendicular to the flow. After long creep times, or at large shear rates, the
axes of the cylindrical aggregates become oriented parallel to the direction of
the flow. More recent experiments performed in the same mixture with comple-
mentary techniques, as optical microscopy, SALS, SANS (small-angle neutron
scattering), birefringence, and NMR [65], show that, at nanoscopic length scales,
the 1 0 plane (where h = 1 and k = 0 are the Miller indices) of the hexagonal
structure is oriented parallel to the shear plane. The six-fold symmetry is lost
under shear, but it is recovered if the shear ceases. The average orientations of
the director were shown to be always parallel to the direction of the flow. Also,
there are observations of orientational correlations, associated with an undula-
tion of the director in a direction perpendicular to the flow direction, at a larger
length scale, of the order of micrometers, as compared with the typical diameter
of a cylinder.

A cone–plate rheo-NMR experiment performed in a mixture of hexa (ethylene
glycol) monododecyl ether (C12E6) and D2O, in the region of the hexagonal
phase, has shown that [66]: a) shear macroscopically orients a previously non-
oriented sample (at large shear rates, cylindrical axes are aligned parallel to the
flow); (b) the aligned state shows no relaxation after removing shear; (c) the
apparent shear viscosity decreases with the shear-alignment of the cylinders; (d)
reorientation processes do not depend on the shear rate (but depend on the shear
strain).
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Shear melting was observed in the hexagonal phase of a mixture of SDS,
pentanol, cyclohexane, and a brine (NaCl) [67]. Two states with different
viscosities were identified as a function of shear. In the small shear regime

(
·
γ ≤ 100 s−1), the axes of the cylindrical aggregates are aligned parallel to the

shear flow, keeping a two-dimensional hexagonal structure. At larger shear

rates (
·
γ ≥ 1000 s−1), however, the two-dimensional long-range arrangement is

destroyed, leading to a two-dimensional liquid-like structure of amphiphilic
aggregates, with the cylindrical axes along the flow. The six-fold symmetry is
recovered a few seconds after removing the shear. It has been proposed that
this mechanism of shear melting involves an activation energy, EA, related to
the end-cap energy of the cylindrical aggregates [68]. This energy, estimated as
EA ∼ 30kBT , should account for the energy cost for breaking a cylinder into two
pieces. In the range of temperatures 285 <T < 309 K, the linear elastic modu-
lus G0, also known as shear modulus, does not display a monotonous behavior
as a function of temperature: it increases to a maximum value, G0 ∼ 230 Pa,
at T ∼ 291 K, and then decreases to G0 ∼ 120 Pa, at 309 K. This decreasing
of G0 at higher temperatures, after reaching a maximum value, was attrib-
uted to the increasing number of end caps due to the activated breaking of the
cylinders.

7.2.2.2 Monoclinic, orthorhombic, and tetragonal phases In this section, we
discuss monoclinic (M), orthorhombic (also known as rectangular, R), and
tetragonal (C for direct, and K for inverted) phases. Let us recall some crys-
tallographic concepts. In Fig. 7.11, we sketch a unit cell in real space with lattice

parameters a, b, and c, angles α, β, and γ, and lattice vectors −→a ,
−→
b , and −→c .

Since we are dealing with two-dimensional lattices, and amphiphilic aggreg-
ates that are long cylinders or ribbons, one of the dimensions is assumed to be
much larger than the other two. Relations pertaining to axial lengths and angles,

c

a

a

b

c

�
�

�

b

Fig. 7.11. Sketch of a unit cell.
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Table 7.2 Crystallographic systems with the respective axial lengths and angles

System Axial lengths Angles

Tetragonal a = b �= c α = β = γ = π/2
Orthorhombic a �= b �= c α = β = γ = π/2
Monoclinic a �= b �= c α = γ = π/2 �= β
Hexagonal a = b �= c α = β = π/2, γ = 2π/3

c

a �

Fig. 7.12. Sketch of a cross section of the monoclinic Mα phase structure; the
amphiphilic aggregates have a ribbon-type shape.

in the monoclinic, orthorhombic, tetragonal and hexagonal crystallographic
systems, are shown in Table 7.2.

A monoclinic two-dimensional phase Mα has been identified in a mixture of
SDS and water, between the hexagonal and the lamellar phases [69,70]. In real
space, the structure of this phase was associated with a “deformed parallelo-
gram,”originated from the hexagonal phase. One of the edges becomes longer
than the other one, and the angle between them decreases continuously. This
phase, which has been called “deformed hexagonal” by Luzzati and cowork-
ers [49], was observed in soap/water mixtures, between H and Hc phases. In
the SDS/water mixture, the lattice parameters and the angle of the Mα phase,
where the subscript α represents the liquid-like state of the paraffinic chains,
were estimated as a = 4.88 nm, c = 3.93 nm, b ≫ a, c, and β ≃ 1.99 (≃114.1◦).
In Fig. 7.12, we show the sketch of a cross section of the Mα phase, in which the
amphiphilic aggregates have a ribbon-type shape. Diffraction peaks observed in
the Mα phase of the SDS/water mixture correspond to the following h k pairs of
Miller indices: 1 0, 0 1, 1 1, 2 0, 1 2, 2 2 or 0 2, and 3 0 or 3 2.

A direct rectangular phase Rα of a two-dimensional orthorhombic sys-
tem, formed by long cylinders with a ribbon-type cross section, has been
observed between lamellar and hexagonal phases of some binary (C18H33NaO2

and water [6]) and ternary (sodium decylsulfate, decanol, and water [71])
mixtures. The subscript α represents the liquid-like state of the carbonic chains.
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aa

b

Fig. 7.13. Sketch of a cross section of the direct rectangular Rα phase structure;
the amphiphilic aggregates have a ribbon-type shape.

In Fig. 7.13, we show the sketch of a cross section of this phase structure. In crys-
tallographic terms, the reciprocal spacings are written as s2

hk = h2a∗2 + k2b∗2,
where a∗and b∗ are the lattice parameters of the reciprocal unit cell. The pos-
itions of the Bragg peaks of the X-ray diffraction spectra of the Rα phase are
distributed according to the ratios 1 : 1/2 : 1/3 : · · · .

Square phases (C for direct, and K for the inverted structures) associated with
a two-dimensional tetragonal system, formed by long cylinders with non-circular,
almost square, cross sections, also known as “white phases,” have been observed
in some ternary lyotropic mixtures. Consider the C phase. It is located between
L1 and Lα regions. X-ray diffraction patterns of the C phase present Bragg
peaks with positions according to the ratios 1 : 1/2 : 1/3 : · · · . Lyotropic mixtures
of sodium caprylate (C8H15NaO2), nonanol and water, and of decaoxyethylene
glycol monolauryl ether, oleic acid and water, are known to present the C phase
[26]. In Fig. 7.14(a), we show a cross section of this phase structure. In a mixture
of sodium caprylate, decanol and water, in the C phase, Fontel and coworkers [54]
have shown that the lattice parameter a depends on the volume fraction of
amphiphiles φa according to the relation

log(a/a0) ∝ log(1/φa),

where a0 is a constant. However, the surface per polar head remains constant,
of order 0.41 nm2, as a function of the amount of water in the mixture. The
proposal of a square shape for the cross sections of the cylinders was not based
on the X-ray diffraction patterns only. It also comes from considerations about
the molar concentrations of different components of the mixture [3]. The C phase
is stable in alcohol and soap-rich regions of the phase diagrams, mostly in the
alcohol-rich region, with a water content of about 50 wt%.

We now discuss the inverted K phase, which is sketched in Fig. 7.14(b). It was
also observed in ternary mixtures, as CH3(CH2)8COOK (potassium caprate),
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a

b

a

b

(a) (b)

Fig. 7.14. Sketch of a cross section of the square phase structure; the
amphiphilic aggregates have a square-type shape, a = b; (a) direct, C; (b)
inverted phase, K.

octanol, and water [72], with small amounts of water. X-ray diffraction experi-
ments display Bragg peaks in positions according to the ratios 1 : 1/2 : 1/4 : 1/8.
The lattice parameter seems to be weakly sensitive to the water content of the
mixture.

7.2.3 Three-dimensionally ordered phases

Three-dimensional lyotropic structures can be formed by micellar (direct
and inverted) or bicontinuous molecular aggregates. Several distinct three-
dimensional structures have been experimentally observed in lyotropic mixtures:
cubic micellar (Qm), hexagonal micellar (Hm), rhombohedral micellar (Rh),
tetragonal micellar (Tα), bicontinuous cubic (Qb), bicontinuous sponge (L3),
and bicontinuous mesh. We now discuss some features of these structures.

7.2.3.1 Direct and inverted cubic micellar phases From the optical point of
view, direct and inverted cubic micellar phases are isotropic. Two types of lyo-
tropic micellar cubic phases were identified, Q223

m , with a primitive unit cell and a
homogeneous lipid composition, and Q227

m , with a fcc unit cell [73] of Fd3m space
group and heterogeneous lipid composition. Q223

m was observed in chemically pure
mixtures of lipids and solvents, and Q227

m requires mixtures of water-miscible and
water-immiscible lipids and a solvent [73]. Binariy mixtures of dodecyltrimethyl-
ammonium chloride (DTAC) and water, N,N,N -trimethylamino dodecanoimide
and water, and palmitoyllyso phosphatidyl choline (PLPC) and water, are known
to present cubic phases. Also, a ternary mixture of dioleoylphosphatidylcholine,
dioleoylglycerol and water presents a cubic phase. X-ray diffraction patterns of
fcc phases display Bragg peaks with characteristic distances according to the
ratios 1 :

√
4/3 :

√
8/3 :

√
11/3.
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These phases may have spherical or ellipsoidal micelles [74]. The primitive
cell of the Q223

m phase has six direct, disk-like, micelles of symmetry 42 m, and
two spherical micelles of symmetry m3. The ratio between area and volume of
these micelles is about the same. The values of the lattice parameters of the Q223

m

phase, in mixtures of DTAC and water and PLPC and water, were estimated as
8.5 and 13.7 nm, respectively, always larger (about twice) than the values of the
lattice parameters of the neighboring hexagonal phase.

In the inverted cubic phase Q227
m , instead of micelles, spherical liquid globules

of the solvent are packed in a cubic symmetry. This phase has been observed,
e.g., in the phase diagram of a mixture of phosphatidylcholine, diacylglycerol,
and water [75]. The Q227

m phase is present between inverse hexagonal and inverse
micellar isotropic phases. The unit cell of this phase is composed by two types
of inverted micelles [75], eight larger micelles in a tetrahedral diamond-like lat-
tice, and 16 smaller micelles in tetrahedral clusters at the four octants of the
cell. Large and small micelles have different values of the ratio between area
and volume. The lattice parameter of the Q227

m phase in a mixture of PFL,
which is a lipid extracted from the Pseudomonas fluorescens [76], and water is
14.6 nm, about three times larger than the lattice parameter of the neighboring
hexagonal phase.

7.2.3.2 Three-dimensional micellar phases of lower symmetries In the
hexagonal micellar phase Hm, micelles are packed on a hexagonal three-
dimensional lattice (of hcp structure). A lyotropic mixture of octaethylene glycol
dodecyl ether (C12EO8) and water presents the Hm phase, of space group
P63/mmc. It is located in the vicinity of Qm and Hα phases, at concentra-
tions of C12EO8 between about 35 and 39 wt%, in a temperature range from 5
to 14◦C [77]. Lattice parameters of this particular mixture, at 38 wt% of C12EO8,
are a = 6.88 nm and c = 11.17 nm (see Fig. 7.11). The aggregation number is
approximately 102, and micelles are assumed to be almost spherical.

A rhombohedral Rh phase (such that a = b = c and α = β = γ �= π/2, see
Fig. 7.11), was observed in a SDS/water mixture (Fig. 3.9), with a = 9.99 nm,
which is practically constant in almost the entire phase region, far from the phase
transitions, and α = 108.3◦, at SDS concentrations of about 62 wt% [69,70].
Diffraction peaks observed in the Rh phase of the SDS/water mixture correspond
to the following sets of h k l Miller indices, 1 1 0, 2 1 1, 2 2 0, 2 1 1, 1 1 1, 3 1 1, 1 2 0,
and 3 2 1. If we increase the SDS concentration, there is a phase transition to
a cubic phase, with a jump in the lattice parameter, ∆a ≃ 0.01 nm, at the
transition. If we decrease the SDS concentration, there is a phase transition to a
two-dimensional monoclinic phase Mα. Parameters a and α undergo considerable
changes in the vicinity of the Rh–Mα transition.

A tetragonal Tα micellar phase, associated with a bcc lattice, has also been
observed in SDS/water mixtures [70]. The Tα phase is stable in a narrow region
of the phase diagram, at approximately 65.7 wt% SDS, in a temperature range
from 328 to 360 K. Diffraction peaks in the Tα phase of the SDS/water mixture
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correspond to the following sets of hkl Miller indices, 1 1 0, 1 0 1, 2 0 0, 0 0 2,
1 1 2, 2 0 2, 3 0 1, 1 0 3, 2 2 2, 4 0 0, 0 0 4 or 3 0 3, and 2 0 4 or 3 2 3. The lattice
parameters are a = b = 7.61 nm and c = 6.72 nm.

7.2.3.3 Direct and inverted bicontinuous cubic phases Direct and inverted
bicontinuous cubic phases are optically isotropic. Cubic bicontinuous structures
in lyotropic mixtures are associated with distinct space groups of symmetry [78]
(Q230 with space group Ia3d [56]; Q229 with Im3m [79]; Q224 with Pn3m [80])
Another cubic phase, Q212, shows a complex intermediate character between a
bicontinuous and micellar phases. It has been modeled as a three-dimensional
network of rods, with a structure that encloses the micelles [79]. The Bragg
peaks of the X-ray diffraction patterns of these micellar phases are related to
a cubic symmetry in direct space. The binary mixture of dodecyltrimethilam-
monium chloride and water, and the ternary mixture of monoolein, oleic acid and
water, present these bicontinuous cubic phases [81]. Deuteron magnetic reson-
ance experiments in a mixture of potassium laurate and D2O in the cubic phase
show that the longitudinal relaxation time is intermediate between the values for
lamellar and hexagonal phases. On the other hand, the transverse relaxation time
is larger than in lamellar and hexagonal phases. Different regimes of time were
also observed in this experiment; there is a fast molecular reorientation of the
O–D bonds, with a time scale of 10−11 s; also, there is slow motion (time scale of
10−6 s) and short- and long-range diffusion (time scales of 10−9 and 10−7–10−8 s,
respectively) [82]. Soap molecules in this cubic structure were shown to have a
diffusion coefficient D = 2 × 10−6 cm2/s, at 90◦C.

The microstructure of these phases can be explained in terms of three-
dimensional periodic minimal surfaces, free from self-intersections, which are
generically called triply periodic minimal surfaces (TPMS). The basic charac-
teristics of this type of surfaces is the vanishing of the mean curvature at every
point [83]. Let us give some details about the three fundamental cubic (peri-
odic) minimal surfaces [84], P-surface, D-surface and G-surface. Schwarz [85]
constructed the simplest of these structures, the continuous P-surface, shown in
Fig. 7.15.

Repetition of this unit along the directions of the three Cartesian axes gives
the bicontinuous P-surface, separating two continuous and congruent channel
regions. Another surface that can be constructed is of the diamond-type, called
D-surface, and sketched in Fig. 7.16. In this type of surface, channel systems on
each side form a diamond lattice. The last fundamental surface is the gyroid or
G-surface [86], shown in Fig. 7.17.

The Q230 phase was observed [87] in anhydrous salts of fatty acids, of divalent
cations, with both direct and inverted topology. In Fig. 7.18(a) we sketch
the structure of the Q230 phase. The direct structure was found in lyotropic
mixtures with the amphiphile dodecyltrimethylammonium chloride (DTAC),
with lattice parameter a = 7.96 nm. The inverted structure was found in a
mixture of monoolein (MO), oleic acid, and water, with a lattice parameter
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Fig. 7.15. Structure of the Schwarz primitive surface or P-surface [89].

(a) (b)

Fig. 7.16. Sketch of the diamond-type surface (D-surface) [89]: (a) lattice
formed by two-fold axes; filled and open circles indicate the catenoids going
upwards and downwards; (b) illustration of two of these catenoids.

Fig. 7.17. Gyroid or G-surface. The two sides of the bicontinuous structure are
represented with gray scales [84].
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a
a

a

(a) (b)

(c)

Fig. 7.18. Sketch of bicontinuous cubic structures with a lattice parameter a
[91]: (a) Q230, with space group Ia3d; (b) Q224, with space group Pn3m; (c)
Q229, with space group Im3m.

a = 14.30 nm [73]. This phase consists of interconnected rods, linked three-by-
three, forming two three-dimensional networks intertwined and disconnected. In
a mixture of C12EO8 and water, the structure of the Ia3d phase was described
in terms of a complex bicontinuous three-dimensional surface, with convoluted
polar–nonpolar interfaces, which has been called gyroid infinite periodic minimal
surface (G-IPMS or G-surface) [88,89]. Luzzati and coworkers [73] introduced
the concept of chaotic zones, defined as the loci where the short-range disorder
is maximal. The CH3 end-groups of the hydrocarbon chains are located in the
non-polar chaotic zones of the (direct) structure, which is coincident with the
G-IPMS.

Q224 and Q229 phases were observed in inverted topology only. In Fig. 7.18(b)
and (c), we sketch the structures of the Q224 and Q229 phases. The structure
of the Q224 phase is made of interconnected rods, tetrahedrally linked, in order
to form two three-dimensional intertwined and disconnected networks. The Q229
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phase seems to be formed by six-by-six linked rods, which are oriented along the
sides of a cube. In terms of a structural description on the basis of convoluted
surfaces, Q224 and Q229 phases present a D-surface, with symmetry group Pn3m,
and a P-surface, with symmetry group Im3m, respectively [90].

7.2.3.4 From micellar to bicontinuous topology One of the key concepts in
order to determine the location of a particular phase in a phase diagram is the
preferred interfacial mean curvature (between the amphiphilic aggregate and
the solvent). Consider, e.g., a binary mixture of an amphiphile and water. In
general, this interfacial curvature increases with hydration, since the area per
head group of the amphiphile increases with the amount of water in the mixture.
The phase sequence in a hypothetical phase diagram (relative water concentra-
tion versus temperature) starts with the inverse micellar phase (at lower water
concentrations), going towards the direct micellar phase (at higher water con-
centrations). If we increase the water concentration in the mixture, there may
appear inverse hexagonal, lamellar, and direct hexagonal phases, between the two
extrema. Also, there may exist cubic phases in the intermediate regions between
each one of the two neighboring phases of this hypothetical sequence [91].

Micellar cubic phases Qm are usually located between hexagonal (direct and
inverse) and isotropic micellar phases in the phase diagrams of lyotropic mix-
tures. For example, consider the phase diagram sketched in Fig. 7.19, for a
mixture of 1-palmitoyllysophosphatidylcholine (PaLPC) and D2O [74], in which
the cubic micellar phase Qm is located between Hα and L1 phases.
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Fig. 7.19. Phase diagram of a mixture of 1-palmitoyllysophosphatidylcholine
(PaLPC) and water [74]. The micellar cubic Qm phase is located between Hα

and L1 phases.
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Fig. 7.20. Phase diagram of the lyotropic mixture of (di − C12) dialkyl dido-
decylphosphatidylethanolamine (DDPE) and water [92]. The bicontinuous
cubic Q phase is located between Hi and Lα phases.

The bicontinuous cubic phase Q usually lies between hexagonal and lamellar
phases (i.e. between Hα and Lα, and Hi

α and Lα). For example, in the phase
diagram of Fig. 7.20, for a mixture of (di-C12) dialkyl didodecylphosphatidy-
lethanolamine (DDPE) and water [92], the bicontinuous cubic Q phase is located
between Hi

α and Lα phases. There are no experimental observations of a direct
transition between micellar and bicontinuous cubic phases.

7.2.4 The mesh phase

The mesh phase is found in the phase diagrams of some lyotropic mixtures,
between lamellar and hexagonal structures. It seems to be favored if the prin-
cipal amphiphile has a long chain or if the flexibility of the chain is reduced
[93]. Lyotropic mixtures of nonaethylene glycol mono-ether (11-oxa-14,18,22,26-
tetramethylheptacosyl), also known as C30EO9, and water [94], and hexadecyl
polyethylene oxide, C16H33O(C2H4O)7H, also known as C16E7, and water [42,95]
present mesh phases in certain regions of the phase diagrams.

In the mesh phase, original flat lamellae have pores (holes) filled with the
solvent, organized in a particular two-dimensional symmetry. In Fig. 7.21 we
sketch an example of a perforating lamellar structure. The ordering of the holes
in the original lamellar plane is not long-ranged. However, it extends to scales
which allow the establishment of a clear X-ray diffraction indexation. Bragg
peaks in the X-ray diffraction patterns of this phase could be indexed in different
ways, since in many cases the number of peaks is not enough to clearly identify
the structure. The following structural models have been proposed to account
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Fig. 7.21. Sketch of a typical perforating lamellar structure of a mesh phase.
There are holes filled with the solvent in the original lamellar structure [42].

for these Bragg peaks [94]: (a) a centered tetragonal mesh (see Fig. 1.36(a)); (b)
a bicontinuous centered tetragonal structure; (c) a structure with one layer of a
type a hexagonal mesh from which both a rhombohedral mesh and bicontinuous
structures can be constructed; (d) a similar structure, with a layer of type b
hexagonal. In the particular case of the C30EO9/water mixture, the structure of
the mesh phase seems to include layers of type b rhombohedral (see Fig. 1.36(b)),
with diffraction peaks corresponding to the following set of h k l Miller indices,
1 1 0, 0 0 2, 1 1 2, 3 0 1, 1 0 3, 2 2 0, and 0 0 4, and lattice parameters a = 24.4 nm
and c = 19.6 nm (the parameter a lies along the corrugated lamellar layer and c
is perpendicular to it).

In the C16E7/water mixture, there is a transition from the lamellar to an
intermediate phase, of the mesh-type, called gyroid by Imai and coworkers [42].
The symmetry group of this phase is Ia3d, with a unit-cell dimension of 15.03 nm.
The observed diffraction peaks in this gyroid phase correspond to the follow-
ing set of h k l Miller indices, 2 1 1, 2 2 0, 3 2 1, 4 0 0, 4 2 0, 3 3 2, 4 2 2, and
4 3 1.
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8

RECENT DEVELOPMENTS AND RELATED AREAS

8.1 Introduction

Interfaces with other fields of chemical physics and interdisciplinary connections
are important features of research work on liquid crystals, in particular on
lyotropic mixtures. We can give several examples of topics in this interface:
magnetic colloids (or ferrofluids), microemulsions, Langmuir–Blodgett films, and
diblock copolymers.

Ferrofluids are used to dope liquid crystals for different purposes. For
example, they may be used for reducing the strength of the magnetic field
required to align a certain sample, and for swelling smectic structures in order to
promote nanophase segregation. Amphiphilic molecules are also used for coat-
ing ferrofluid nanograins in order to avoid their aggregation. In this chapter,
we discuss magnetic colloids, in particular the applications in the study of
physico-chemical properties of lyotropic mixtures.

As discussed in Chapter 1, there are no sharp conceptual boundaries between
lyotropics, in particular the isotropic phases, and microemulsions. In some cases,
isotropic phases of the same mixture, in which oil is one of the components,
are classified in different sides of this boundary. In this chapter, we discuss
microemulsions formed by isolated aggregates and bicontinuous structures. In
particular, we look at the topology of the phase diagrams and refer to some of
the models used to describe microemulsions.

The study of ultra-thin and highly ordered films (Langmuir and Langmuir–
Blodgett films) is also strongly related to the area of lyotropic liquid crystals.
Hydrophobic and hydrophilic effects play an important role in the stabilization
of these films. In this chapter, we discuss the processes of deposition of thin
films, their characterization, and some specific applications.

Diblock copolymers are formed by two independent polymers, with a small
affinity, linked by a covalent-type bond. Under some conditions, this system self-
organizes in order to increase (decrease) the contacts between similar (antagonic)
species. In the discussion of these systems, we emphasize the concepts of affinity,
nanoscale segregation and ordering. We also discuss some structural aspects and
the phase diagrams of these materials.

Finally, we refer to new lyotropic-type mixtures: chromonic and lyo-banana
systems. Chromonics are mixtures of disk or lath-like molecules with solvents.
Lyo-bananas are mixtures of a thermotropic banana-type liquid crystal and a
solvent.
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8.2 Magnetic colloids

There are strong overlaps between the areas of magnetic colloids and lyotropic
liquid crystals, from the point of view of the basic mechanisms for the stabil-
ization of colloids and also from purely practical reasons. The introduction of
magnetic colloids in a liquid crystalline medium leads to a new class of complex
fluids, the so-called ferroliquid-crystals, with remarkable properties that are not
observed in the undoped system. In this section, we describe magnetic colloids
and their use for doping liquid crystals.

8.2.1 Definition of a ferrofluid

Ferrofluids, or magnetic fluids, are colloidal suspensions of small magnetic grains,
of about 10 nm, dispersed in a liquid carrier. In the reduced volume of a grain,
there is just a single magnetic domain. These synthetic materials were produced
in the 1960s, in the context of the NASA space program [1–3]. At that time, space
scientists faced the problem of transporting fuel from the reservoir to the engines
in orbital artificial satellites without the use of heavy and mechanically complex
pumps. The creative answer was to dope fuel with ferrofluids and then use small
magnetic field gradients, produced by very small coils, in order to move the
magnetic grains and the fuel through the pipes. The movement of the dissolved
ferrofluid grains is then responsible for the collective motion of the fluid. Since
this breakthrough, the technological applications of these materials, ranging from
industry to medicine, did not stop to increase.

In the absence of external fields, ferrofluids are optically isotropic, with a
large magnetic susceptibility. On the other hand, they become birefringent in the
presence of magnetic [4] and surface [5,6] fields. Two different types of ferrofluids
are available, surfacted and ionic ferrofluids, depending on the physical processes
to avoid agglomeration of grains.

8.2.2 Surfacted ferrofluids

Surfacted ferrofluids (SFFs) are formed by grains (usually magnetite, Fe3O4)
coated with surfactant agents (amphiphilic molecules, as oleic acid and aero-
sol sodium di-2-ethylhexyl-sulfosuccinate) in order to prevent their aggregation.
They were the first ferrofluids to be synthesized by the NASA team. Steric repul-
sion between grains acts as a physical barrier [7] that keeps grains in the solution
and stabilizes the colloid. If the grains are dispersed in a polar medium, as water,
two layers of surfactant are needed to form an external hydrophilic layer. The
polar heads of surfactant molecules can be cationic, anionic or nonionic. If grains
are dispersed in a nonpolar medium (as light mineral oil, toluene, octane, hex-
ane, cyclohexane), a single surfactation is enough to form the external layer,
with the polar head of the surfactant attached to the surface of the grains and
the carbonic chain in contact with the fluid carrier.
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(a) (b)

Fig. 8.1. Sketch of surfacted ferrofluid grains: (a) single-layer coated grains; (b)
double-layer coated grains.

If a ferrofluid is highly diluted in a solvent, it becomes unstable and the grains
flocculate. Different types of liquid carriers are used; for example, liquid metals,
as Hg, K, and NaK. In Fig. 8.1, we show the sketch of the grains of a surfacted
ferrofluid: (a) single-layer coated grains; (b) double-layer coated grains.

SFFs are commercially available [8,9], but details about manufacturing pro-
cesses, purity of the fluid carrier and composition of the coating agents, are
usually not provided by producers. In some cases, this lack of additional informa-
tion is a source of difficulties for analyzing experiments with ferrofluids. However,
some laboratories in the world are able to produce small quantities of SFFs. Since
it is possible to know all the details about the components and manufacturing
processes, these homemade materials are the best indicated samples to be used
in research laboratories.

8.2.3 Ionic ferrofluids

In the ionic ferrofluids (IFF) [10], magnetic grains (usually maghemite, γ-Fe2O3,
and different ferrites, MFe2O4, where M = Mn, Co, Zn, Cu, Ni) are electrically
charged to keep the colloidal system stable (by the effect of electric repulsion).
Magnetic grains are obtained through a chemical synthesis. An acid–alkaline
reaction between grains and the bulk keeps the surface of the grains electrically
charged [11,12]. Usually, the liquid carrier is water, and the pH of the solution can
vary from about 2 to 12, depending on the sign of the surface charge of the grains.
Acid ferrofluids (pH< 7) have positively charged grains, and alkaline ferrofluids
(pH> 7) have negatively charged grains. The charge of the grains changes as a
function of the pH of the solution. The point of zero charge (PZC) is defined as
the value of the pH at which the grains are not charged (in other words, at which
the ferrofluid precipitates). The typical surface charge density of a grain, far from
the PZC, is about 10 µC/cm2 [13]. One of the advantages of this procedure for
preparing a ferrofluid is that the sizes of the grains can be better controlled
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Fig. 8.2. Sketch of ionic ferrofluid grains. The counterions (NO−
3 , tetramethyl-

ammonium hydroxide TAM+, and OH−) and the water molecules are also
represented: (a) acid ferrofluid grain. Positive charges are given by the H+

located at the surface of the grains; (b) alkaline ferrofluid grain. Negative
charges are given by the O− located at the surface of the grains.

during chemical synthesis. Ionic citrated or tartarated maghemite (γ-Fe2O3)
ferrofluids have both characteristics (steric and electrostatic repulsion) to prevent
aggregation of the magnetic grains. The grains of these ferrofluids are coated with
small chain molecules, as COOH–CH2–COH–COOH–CH2–COOH in the case of
citrated ferrofluids. In the presence of water, these attached molecules ionize;
besides the steric repulsion, there is also an electrostatic interaction. In Fig. 8.2,
we show the sketch of IFF grains: (a) acid ferrofluid grain; (b) alkaline ferrofluid
grain.

The grains display an almost spherical geometry, which could be sketched as
a potato, with a non-uniform shape distribution [14]. The distribution P (D) of
sizes of the grains, in terms of the diameter D, is given by a log-normal function
[15,16],

P (D) =
1

Dσ
√

2π
exp

(
− ln2(D/D0)

2σ2

)
, (8.1)

where D0 and σ are the mean diameter and standard deviation, respectively. In
Fig. 8.3, we show a plot of P (D) versus D, with σ = 0.2 and D0 = 10 nm.

The internal crystalline structure of the grains corresponds to the mineral
spinel, MgAl2O4, in which divalent ions (Mn2+ and Co2+, for example) replace
ions of Mg, and ions of Fe3+ replace ions of Al3+ [17]. In this structure, the bcc
primitive unit cell has 32 oxygen atoms, with 64 and 32 interstices of tetrahedral
and octahedral symmetries, respectively. In direct spinel structures, ions M and
Fe2+ occupy 1/8 and 1/2 of the tetrahedral and octahedral sites, respectively.
In inverse spinel structures, ions M occupy part of the octahedral sites and ions
Fe2+ occupy the rest of the octahedral and the tetrahedral sites. Globally, the
nanocrystal is ferrimagnetic; the typical lattice parameter of maghemite, Co and
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Fig. 8.3. Log-normal plot of size distribution of grains P (D) with σ = 0.2 and
D0 = 10 nm.

Ni ferrites is about 0.83 nm. At saturation, the magnetization of maghemite,
Co and Ni ferrites is given by ms = 400, 400 and 270 kA/m, respectively. The
magnetic moment of a grain ranges from about 103 µB to 105 µB, where µB is
the Bohr magneton [18].

8.2.4 Stability of the colloid

The stability of the magnetic colloid depends on the thermal contribution and on
the balance between attractive (van der Waals and dipole–dipole) and repulsive
(steric and electrostatic) interactions. In order to avoid sedimentation, the size
of the grains cannot be larger than a few nanometers.

8.2.4.1 Attractive interactions There are essentially two main attractive inter-
actions between magnetic grains in a ferrofluid, the van der Waals–London and
the dipole–dipole interactions.

The van der Waals–London interaction, UAw, between two spherical grains
of diameter D0 separated by a distance r is written as [19]

UAw = −A

6

[
2

α2 − 4
+

2

α2
+ ln

(
α2 − 4

α2

)]
, (8.2)

where α = 2r/D0 and A is the Hamaker constant (A ∼ 10−19 J for ferrite
grains [12]). This is a short-range interaction; the attractive force increases with
the size of the grains.
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The interaction energy between two magnetic dipoles, µ1 and µ2, separated
by a distance r, is given by

UAd =
µ0

4πr3

[
µ1 · µ2 − 3

(
µ1 · r

r

)(
µ2 · r

r

)]
, (8.3)

where r is the relative position of the grains, and µ0 is the permeability of
vacuum. In the ionic water-based ferrofluid MnFe2O4, with D0 = 10.7 nm, the
magnetic moment of a grain is about 10−19 Am2/grain (or 10−16 in CGS units).
This interaction is partly responsible for the formation of chains in actual ferro-
fluids. The formation of chains can also be attributed to the action of an external
magnetic field. In this case, there is a reduction of the rotational degrees of
freedom, and the grains tend to agglomerate in linear or neck-ring chains.

8.2.4.2 Repulsive interactions In SFFs, there are sterical repulsion forces, of a
short-range nature. On the other hand, in IFFs, long-range electrostatic interac-
tions between charged grains give rise to repulsive interactions, which guarantee
colloidal stability. As the bulk of IFFs is electrically neutral, there are coun-
terions in the bulk of the suspension in order to compensate the surface charged
grains (which can be regarded as macro-ions). These counterions are driven to
the surface of the grains, but are also subjected to electrostatic repulsion. The
calculation of the electrostatic repulsion between grains has to take into account
this complex distribution of counterions. In the double-layer model [20], there is a
first layer of counterions, called Stern layer, some angstroms thick, which involves
the grain, and a second diffuse layer. These layers are separated by a Helmholtz
plane. The diffuse layer is characterized by a Debye length, lD ≡ κ−1, which
is defined as the distance, from the Helmholtz plane, at which the electrostatic
potential is 37% smaller than the value at the plane.

The interaction between two electrically charged spherical grains of diameter
D0, separated by a distance r, is written as [20]

UR =
D0πσ2

ε0εrκ2
exp[−κ(r − D0)], (8.4)

where σ = ε0εrκψ0 is the surface charge density, ε = ε0εr is the electric permit-
tivity of the fluid carrier, and ψ0 is the surface potential of the charged grain at
the Helmholtz plane (with typical values ψ0 < 50 mV).

8.2.4.3 Total interaction potential At short intergrain distances, the total
interaction potential UT between magnetic grains of a ferrofluid as a function
of the intergrain distance r has a cutoff due to hard-sphere interactions. There
is a potential barrier if we increase the intergrain distances beyond this cutoff.
For larger values of r, there appears a secondary minimum, at r = re. This is
the equilibrium distance between grains (mean intergrain distance) in the stable
colloid. Larger values of ψ0 lead to higher potential barriers and smaller values
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Fig. 8.4. Sketch of the total interaction potential UT between magnetic grains
in a ferrofluid as a function of the intergrain distance r, for ψ0 = 15 mV,
pH=2.5, and D = 8.2 nm [13].

of the depth of the secondary minimum. In Fig. 8.4 we show a sketch of UT as
a function of r in the vicinity of re.

8.2.5 The mechanisms of rotation of the magnetic moment

In the absence of external fields, the magnetic moment µ of a grain is oriented
along the direction of easy magnetization, defined by the vector nf . The magnetic
moment is kept along this direction by an anisotropic energy barrier of strength
Ea. The Néel time to go through this barrier is given by

τN ∼ 10−9 exp

(
− Ea

kBT

)
,

where τN is expressed in seconds. In the absence of a small magnetic field, the
ferrofluid behaves as a paramagnetic system formed by nano-ions, which has also
been called superparamagnetic.

At a given temperature, and with Ea > kBT , µ remains parallel to nf . On
the other hand, with Ea < kBT , µ can flip continuously between nf and −nf ,
according to a process that is called Néel rotation.

Another process of rotation of µ is a type of Brownian rotation, in which
grains are supposed to physically rotate with respect to the environment. It is
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characterized by the typical time

τB ≃ 3ηVh

kBT
,

where η is the viscosity of the fluid carrier and Vh is the hydrodynamic volume
of the magnetic grain. In a solution of water, τB ∼ 10−6 s.

In summary, if a ferrofluid is in the presence of a small magnetic field H,
the couplings between the individual magnetic moments µ of the grains and the
field H depend on different parameters, according to two basic processes (the
rotation of the magnetic moment without the physical rotation of the grain, and
a physical rotation of the hole grain). If Ea > kBT , µ orients parallel to H; in this
limit of a rigid dipole, there is a physical rotation of the hole grain. In the other
limit (Ea < kBT ), the torque of H on µ gives rise to a rotation of the magnetic
moment but not necessarily of nf (i.e. of the grain itself). This process depends
on the viscosity and on the elastic properties of the liquid carrier in which the
grains are placed.

8.2.6 Thermodiffusion in ferrofluids: The Soret effect

Thermodiffusion, also called Soret effect [21–24], is one of the most interesting
phenomena observed in the area of condensed matter. In order to provide a simple
explanation of this effect, consider a single-phase solution, formed by two differ-
ent types of basic units (e.g. a colloidal system in which grains or nanoparticles
are dispersed in a fluid carrier), characterized by a volume fraction of one of the
components of the solution. If this originally homogeneous material is subjected
to a thermal gradient, there is sometimes a concentration current parallel to the
direction of the thermal gradient. This is the Soret effect, which has also been
observed in some gases and solids [23,25,26]. This effect is characterized by the
measurement of the thermodiffusion coefficient ST , also known as Soret coeffi-
cient [27]. ST represents the coupling between current of mass and temperature
gradient. In gases and ordinary liquids, we have 10−5 < ST < 10−3 K−1 [28]; in
metals, ST ∼ 10−3 K−1 [29]; in polymeric solutions, ST ∼ 1 K−1 [30]. Recently,
values of ST , from 10−3 up to 10−1 K−1, have been reported in magnetic col-
loidal (ferrofluid) systems [31,32]. It is interesting to note that, with the same
temperature gradient, but depending on the particular ferrofluid under study,
there are observations of positive or negative concentration gradients. It has been
proposed [33] the following terminology in order to characterize different mag-
netic colloids with respect to the sign of ST : if the grains of a colloid tend to
go away from the hottest region, it will be called thermophobic (ST > 0); if the
grains tend to concentrate in the hottest region, the colloid will be called ther-
mophilic (ST < 0). Although the Soret effect has been discovered more than
a century ago, we still lack a better explanation of the associated physical
mechanisms.
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Table 8.1 Sign of the Soret coefficient (last column)
as a function of constitutive parameters in maghemite-
based noncoated ferrofluids. The label SC refers to the
sign of the surface charge (the carrier liquid is always
water)

pH φ (%) Experiment SC ST

12.87 9.93 FRS − +
12.56 4.96 FRS − +
12.4 3.97 FRS − +

≪7 6.7 FRS + −
≪7 3.3 FRS + −

2.46 0.32 Z-scan + −
2.91 0.32 Z-scan + −
3.49 0.32 Z-scan + −
3.49 0.32 Z-scan + −

Several experimental methods have been used to measure the Soret coeffi-
cient: the column method [34], forced Rayleigh scattering (FRS) experiments
[32], and the Z-scan technique [35]. The experimental results are summarized in
Tables 8.1 and 8.2:

• the sign of ST depends on the sign of the charge of the surface grains;

• for water-based SFF, the thermodiffusive behavior is opposite to IFF; in
other words, grains coated with cationic surfactants behave as negatively
charged IFF (alkaline) grains, and grains coated with anionic surfactants
behave as positively charged IFF (acid) grains;

• SFF with grains coated with nonionic surfactants dispersed in non-polar
fluid carriers behave as SFF with grains coated with cationic surfactants;

• the nature of the liquid carrier itself is not the only determinant factor of
the sign of ST , except maybe in the case of the nonpolar fluids, where ST

seems to be always positive.

We now give a qualitative discussion of these results [33]. In IFF, the col-
loidal stability comes from an acid–alkaline equilibrium reaction between the
surface of the grain and the bulk, which is responsible for keeping the sur-
face of the grains electrically charged. If we change some physico-chemical
parameters of the solution, so that the system tends to the PZC, the surface
charge density decreases and the system tends to flocculate. In other words, the
distance between grains decreases until phase separation. The acid–alkaline equi-
librium reaction in these colloids depends on temperature. A mechanism that
might account for the sign of the Soret coefficient in IFF could be related to
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Table 8.2 Sign of the Soret coefficient (last column) as a function of con-
stitutive parameters in coated ferrofluids. The label SC refers to the sign of
the surface charge. Labels Ferrotec surfact. and BNE surfact. refer to the
commercially available products of Ferrotec Inc. and Beycostatne, respect-
ively. All the grains of the FF in this table have a maghemite core, except
the samples of the bottom row, which have a cobalt-ferrite core

Coating Carrier
liquid

pH φ (%) Experiment SC ST

BNE surfact. Cyclohexane 6.8 FRS No +
BNE surfact. Cyclohexane 2.5 FRS No +
BNE surfact. Toluene 3.3 FRS No +

Oleic acid surfact. Hexane 6.88 FRS No +
Oleic acid surfact. Octane 19.6 FRS No +

Ferrotec surfact. Light mineral oil 3.6 FRS No +
Ferrotec surfact. Water 9–10 1.8 FRS + +
Ferrotec surfact. Water 9–10 0.45 Z-scan + +
Ferrotec surfact. Water 8–9 1.1 FRS − −
Ferrotec surfact. Water 8–9 0.45 Z-scan − −
Citrate ion Water 7 4.65 FRS − −
Citrate ion Water 7 3.30 FRS − −
Citrate ion Water 7.32 0.09 Z-Scan − −
Citrate ion Water 7.3 0.16 Z-Scan − −
Citrate ion Water 7.44 0.47 Z-Scan − −
Citrate ion Water 7.57 0.79 Z-Scan − −
Tartarate ion Water 8.93 7.23 FRS − −
Cobalt-ferrite Water 7 6 FRS − −
citrate ion

a temperature unbalance of this reaction; if the charge of the grains increases
with the heating of the solution, they move away with respect to each other
(ST > 0); if the charge of the grains decreases with heating, they tend to floc-
culate (ST < 0). In SFF, however, the mechanism described above does not
apply since the stability of the colloid is not due to electrostatic repulsions
but to the steric interactions. In order to assume a similar mechanism (i.e. in
order to reduce or increase the intergrain interactions), we have to consider
the modification of the surfactant coating around the grains as a function of
temperature.

These results still lack a theoretical explanation. Maybe different mechanisms
are related to the thermodiffusive behavior of these complex fluids [33]. Recently,
Bringuier and Bourdon [36] prosed a kinetic theory, based on the analysis of a
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Brownian motion in a nonuniform temperature profile, in order to predict both
signs of the Soret coefficient.

8.2.7 Doping of liquid crystals with ferrofluids

In 1970, Brochard and de Gennes [37] proposed an elegant theory of magnetic
suspensions in liquid crystals. The system is formed by a liquid crystalline mat-
rix with sticky nanograins of large shape anisotropy (L/d ∼ 10, where L and d
are the length and the diameter of the cylindrical grains, respectively). In order
to avoid modifications of the liquid crystalline properties, only a small quantity
of grains should be added to the liquid crystal. From this point of view, this
procedure is better characterized as a doping [38]. One of the goals of this type
of doping is to reduce the magnetic field necessary to orient liquid crystals (from
a usual value of order 10 kG to a smaller value by a factor of 103 [39]). According
to experimental observations for lyotropic nematic liquid crystals [40], above a
minimum value of the concentration of grains, cm, the liquid crystalline mat-
rix collectively follows the orientation of the grains. Collective response of the
liquid crystalline matrix doped with ferrofluids, in samples of about 102

µm of
thickness, have been observed with magnetic fields of 5 G.

The first successful observation of macroscopic collective behavior in a
nematic liquid crystal doped with magnetic grains was reported in 1970 by
Rault and coworkers [41]. In this experiment, however, magnetic grains were
much bigger than in actual ferrofluids. One of the main difficulties of this doping
is the solubilization of ferrofluids in a thermotropic liquid crystal; despite many
attempts, thermotropic liquid crystals doped with ferrofluids are not stable. On
the other hand, the doping of lyotropic liquid crystals with water-based sur-
facted ferrofluids was achieved in 1979 by Liébert and Martinet [42], and since
then this method has been used to investigate physico-chemical properties of
lyotropics [38,40,43–45]. The occurrence of aggregation of grains depends on the
magnetic field gradients in the doped samples. The formation of needles of about
10 µm of length can be easily observed [43]. The presence of these needles can be
used to investigate dynamic aspects in the physics of liquid crystals, as relaxa-
tion processes and thermal induced hydrodynamic instabilities. There were also
observations of depletion layers, that is, regions in which magnetic grains are
segregated due to topological configurations of the director [37,43].

Dynamic processes in lyotropic ferronematics, in particular the response of
the nematic matrix to pulsed magnetic fields, have been investigated by several
authors [46,47]. Later, we will discuss an unusual dynamical behavior of
ferronematics as compared to undoped nematics [48].

Due to the new features of ferronematics, in particular the remarkable
response to low magnetic fields, and after the work of Brochard and de Gennes,
there were several theoretical approaches to the problem of the field–director
coupling [49–53].
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An interesting question that arises in the physics of ferrofluid-doped meso-
phases refers to the mechanism responsible for the liquid crystal orientation. Two
possibilities have been considered: (a) a magnetic coupling between the local field
of the individual grains and the director; and (b) a mechanical coupling between
anisometric grains and the director. These questions will be discussed in the
following sections.

8.2.7.1 Mechanical versus magnetic coupling Consider the effects of a magnetic
field in a grain inside a nematic liquid crystal, characterized by a director n. The
contribution to the free energy due to the magnetic coupling is written as [39]

∆F = −1

2
χa

∫
[n(r) · H(r)]2 d3r, (8.5)

where χa ∼ 10−7 is the anisotropy of the diamagnetic susceptibility of the liquid
crystal [39,54]. In order to obtain the magnetic coupling, we compare the energy
necessary to change the configuration from n ‖ H to n ⊥ H. As H α µ/r3, this
energy is given by Emag ∼ χaµ

2/V , where V is the typical volume of a grain.
Using typical values, V ∼ 10−21 cm3 and µ ∼ 10−16 CGS, we have Emag ∼ 10−21

erg, which is much smaller than kBT ∼ 300 K ∼ 10−14 erg. This result clearly
shows that thermal fluctuations are enough to overcome an eventual magnetic
orientation of the director due to the magnetic field of individual grains.

In order to calculate the order of magnitude of the mechanical coupling
between the anisometric (stick-like of length L) grains and the nematic matrix,
it is enough to compare the elastic energy of a grain in the configurations with its
long axis parallel and perpendicular to n. In the minimum energy configuration,
the long axis of the grain is parallel to n. Using the mean Frank elastic constant
[55] of the nematic liquid crystal, given by k ∼ (k11 + k22 + k33)/3 ∼ 10−6 dyn
[54], the energy necessary to change the orientation of the long axis of the grain
from a parallel to a perpendicular orientation with respect to n is of the order
of kL ∼ 10−12 erg, with L ∼ 10 nm, which is much larger than kBT (at 300 K).

In conclusion, the mechanical coupling between anisometric grains and the
local director of nematics is the mechanism responsible for the orientation of
ferrofluid-doped liquid crystals in a small magnetic field.

8.2.7.2 Doping of thermotropic liquid crystals A thermotropic ferronematic
suspension was obtained in 1970 [41] by mixing large γ-Fe2O3 magnetic stick-
like grains (L = 0.35 µm, with diameter d = 0.04 mm), coated with surfactant
agents, to MBBA (p-methoxybenzilidene-p-n-butylaniline). Due to their large
dimensions, these grains do not fulfill the requirements to be classified as basic
units of a ferrofluid. One of the major difficulties of the thermotropic liquid
crystal doping with magnetic grains is the stability of the solution. At long
times, there appear large aggregates of grains, and the solution is no longer
homogeneous. Magnetization experiments performed with this mixture showed
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that, in the isotropic phase, there is no remanent magnetization; on the other
hand, a large remanent magnetization was observed in the nematic phase.

Chen and Amer [56] investigated the mixture of MBBA with similar grains
(L = 0.5 µm, L/d = 7), coated with dimethyl octadecyl aminopropyl trimeth-
oxysilyl chloride (DMOAP). Liquid crystal molecules are expected to anchor on
the large grains, which is compatible with the observation of a macroscopic col-
lective behavior of the nematic matrix. Formation of aggregates was also observed
in this experiment, specially in “high” fields (H > 20 G), giving rise to unusual
microscopic textures (called cellular by these authors).

Our experience in mixing different types of ferrofluids, with different fluid
carriers, to thermotropic liquid crystals show that it is a difficult task to reach a
homogeneous mixture at nano-scales. In the most favorable cases, MBBA with
nonpolar fluid-based ferrofluid, after some minutes, the mixture presented grain
clusters of micrometric dimensions, which indicates demixing.

8.2.7.3 Doping of lyotropic liquid crystals Since one of the basic substances
of lyotropics is water, their doping with water-based ferrofluids is straightfor-
ward. As there is a minimum concentration of grains necessary to produce a
collective response of the medium to external magnetic fields, the doping has
to be done with grain concentrations larger than cm ∼ 1/(LD2

s ) [37], where Ds

is the thickness of the sample. On the other hand, experimentalists have to
take care in order not to introduce too much ferrofluid in lyotropics in order to
avoid undesired modifications of some physico-chemical properties of the liquid
crystal. Typical concentrations used in lyotropics, for many practical purposes,
are c ∼ 1013 grains/cm3, which corresponds to adding about 1 µl of ferrofluid
(ϕ ∼ 2%, where ϕ is the volume fraction of magnetic material in the magnetic col-
loidal solution) to 1 ml of the lyotropic mixture. At this concentration, there were
observations of no significative changes in the transition temperatures, birefrin-
gence, and elastic constants [38]. The stability of ferronematic mixtures was
also reported at large ferrofluid concentration, under some particular conditions,
specially related to the cosurfactant relative concentration [57].

Both ionic and surfacted ferrofluids have been used to dope lyotropics. If a
large amount of water-based ferrofluid is added to a lyotropic nematic mixture,
the first effect can be a shift towards domains of the ND and isotropic phases in
the phase diagrams, due to the addition of excess water. Usually, the formation
of large (micrometer and even millimeter sizes) clusters of grains can be observed
in the test tube in which the doped lyotropic mixture is prepared. This condition
has to avoided in the experimental investigation of lyotropic mixtures by means
of ferrofluid doping.

8.2.7.4 Ferronematic lyomesophases Liébert and Martinet reported a pioneer-
ing experiment in which a water-based surfacted ferrofluid (Fe3O4 grains, with a
mean diameter of 15.4 nm) was mixed to a lyotropic nematic mixture of sodium
decylsulphate, decanol and water, in the ND phase [42]. These authors describe
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the formation of different types of clusters of grains. The biggest aggregates
were removed by centrifugation, but small clusters remain in the mixture. The
remaining mixture behaved as a stable system for a long time, without any fur-
ther aggregation. The collective behavior of the nematic matrix was observed
with magnetic fields of about 20 G.

Experimental determinations of cm in lyotropic ferronematics [40,58] con-
firmed Brochard’s prediction, cm ∼ 1/(LD2

s ). Observations of depletion layers,
also predicted by Brochard and de Gennes [37], were reported for calamitic
ferronematics [43], with a mixture of potassium laurate, decanol and water,
doped with surfacted ferrofluids. In this experiment, the formation of clusters
of magnetic grains was clearly observed in regions of the sample with a lar-
ger concentration of grains, inside domains closed by depletion layers. The use
of ferrofluids to orient lyotropics was essential in experiments in which the
reciprocal structure of the biaxial nematic phase was determined [44,59–61].
Combination of magnetic orientation and spinning of the sample (see the exper-
imental procedure discussed in Chapter 1) lead to a good orientation of the
sample, which is necessary for obtaining the reciprocal space image of the NB

phase.
An interesting application of the ferrofluid doping of nematics is the possibil-

ity to obtain the bend elastic constant, k33, and the anisotropy of the diamagnetic
susceptibility, χa, of lyotropic liquid crystals. There appears a metastable situ-
ation if an initial calamitic liquid crystalline film, in a planar alignment geometry,
is subjected to a magnetic field perpendicular to the original planar orienta-
tion [62]. A periodic bend structure, with inversion walls, is then observed.
These walls are oriented parallel to the direction of the magnetic field [54,63,64].
Depending on the field strength, concentration doping and anchoring conditions,
the typical time necessary for the walls to relax (disappear), and for the setting
of the new planar alignment, can be of the order of some hours. In this case, the
process can be analyzed in a quasi-static framework, specially in the beginning
(first minutes), and the measurements of the periodicity of the bend distor-
tion allow estimates of k33 and χa. The effective splay-bend elastic constant,
k13, was also investigated using ferrofluid doped lyotropic samples [65]. The
ratio between k13 and the usual Frank elastic constant found in the potassium
laurate/decanol/water mixture was positive and of the order of 1 [66,67].

The dynamical behavior of ferronematics as a function of time and strength of
the magnetic field was investigated by using optical techniques [46,47]. Assuming
a nematic sample characterized by an elastic constant k, doped with magnetic
grains of typical dimension D and magnetization at saturation ms, with concen-
tration of grains ϕ, in a magnetic field H, the torque balance equation per unit
area is written as

γDθ̇ = − k

D
θ − DmsHθϕ, (8.6)
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where θ is the angle between H and µ, and γ is the rotational viscosity of the
liquid crystal. The solution of Eq. (8.6) is given by

τ−1 =
k

γD2
+

msϕ

γ
H.

In this picture, if samples subjected to a magnetic field are left to relax back
to their original conditions, the dynamical behavior of ferronematics is different
from undoped nematics. In usual nematics, the relaxation time is proportional to
H−2; in ferronematics, the relaxation time is proportional to H−1 [46,48]. The
critical field of the Fréedericksz transition [55] of a discotic ferronematic sample
was found to be two orders of magnitude smaller than its value in undoped
samples [68]. In contrast to the work of Brochard and de Gennes [37], this result
was theoretically explained by assuming a coupling between anisometric micelles
and small clusters of magnetic grains in the mixture [69].

More recently, the Z-scan technique was used to investigate nonlinear prop-
erties of ferrofluid-doped lyotropics [70,71]. Values of the nonlinear refraction
index n2 [72] in doped samples were shown to be 10 times larger than those
of undoped samples. These results were explained by assuming that the laser
beam indirectly heats the sample via ferrofluid grains. This mechanism is named
hyperthermia, being well known in biomedical applications of magnetic fluids [73].
In this scenario, magnetic grains absorb heat from the laser beam and then
transfer heat to the lyotropic mixture. Since the absorption of the liquid crystal
itself is small, nonlinear effects are also small without the presence of ferrofluid
grains. Ferrofluid doping enhances this nonlinear response of the liquid crystalline
medium.

It is interesting to note that the typical size of a micelle is about 10 nm, which
is also the typical size of a ferrofluid magnetic grain. The packing of micelles
and grains in the bulk of ferronematics is not yet well known. Considering the
structural data for a mixture of potassium laurate, decanol and water [74], in
the nematic phases, the density of micelles is of the order of 1018 micelles/cm3.
Comparing this value with the usual ferrofluid doping concentration of about
1013 grains/cm3, we see that, for a fixed volume, there are 105 more micelles
with respect to the quantity of magnetic grains. In terms of linear dimensions,
this corresponds to about 1 grain per 102 micelles.

8.2.7.5 Ferrocholesterics lyomesophases Ferrocholesteric lyotropic liquid crys-
tals are obtained by doping usual cholesterics with ferrofluids. Both ionic
and surfacted ferrofluids can be used for this purpose. All of the require-
ments presented in the previous section regarding ferronematics also apply to
ferrocholesterics.

The first successful attempt to dope a lyocholesteric mixture was also done by
Liébert and Martinet [75]. In this experiment, a ChD mesophase, made of sodium
decylsulfate, decanol, water, and brucine sulfate, was doped with a surfacted
water-based ferrofluid, with a concentration of about 1% by weight of ferrofluid.
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At this high concentration, large needle-like clusters were formed in the direction
parallel to the external magnetic field and perpendicular to the cholesteric planes.
It was shown that small magnetic fields, of about 5 G, were already enough to
orient samples in the cholesteric phase.

In the case of calamitic ferrocholesterics (ChC), small magnetic fields, of
about 10 G, were able to unwind the cholesteric helix [76] and produce an ori-
ented planar texture. Another interesting result obtained in this experiment with
calamitic ferrocholesterics subjected to a magnetic field is the observation of the
relaxation process after the removal of the field. There are observations of hydro-
dynamic instabilities, at length scales comparable to the sample thickness, that
can be followed by inspecting the texture in a polarizing microscope as a func-
tion of time. Since the concentration of ferrofluid was large in this experiment,
there appeared needle-like clusters of micrometer lengths; after removing the
field, these clusters were deformed by the hydrodynamic instabilities, through
the appearance of undulations (see Fig. 8.5).

Ferrofluid doping was also done in biaxial cholesterics ChB for studying phase
transitions and, in general, for establishing different phase diagrams of new
cholesteric mixtures [60,77–79]. As discussed before, the doping allows an easy
manipulation of small permanent magnets (and coils) in the optical microscope,
which helps the observation of textures and the identification of phases.

100 µm

Fig. 8.5. Typical texture of an initially oriented ferrocholesteric ChC lyomeso-
phase (unwinded by the magnetic field). The system has been allowed to
relax after removing the magnetic field. The texture has been obtained in
a polarizing light microscope, between crossed polarizers. Note the presence
of large ferrofluid needles (see the indications of the arrows) decorating the
hydrodynamic instabilities.
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8.2.7.6 Ferrolamellar and ferrohexagonal lyomesophases Fabre and cowork-
ers incorporated γ-Fe2O3 grains, of a typical diameter of 8 nm, coated with
organophosphorated surfactants and dispersed in cyclohexane, in a lyotropic
lamellar phase of a mixture of sodium dodecylsulfate (SDS), pentanol (C5),
cyclohexane (C6), and water [80–82]. The volume fraction of ferrofluid intro-
duced in the lamellar phase was in the range 0.1 < ϕ < 6%. The thickness of
the lipid bilayer of this lamellar phase ranges from 2 to 40 nm, depending on
the cyclohexane content, keeping the water layer almost constant. Stable fer-
rolamellar phases, without the formation of aggregates and phase separation,
were observed under some particular conditions, at ϕ = 1.5% and with oil
layers of thickness 20 and 25 nm [80]. Magnetic grains are expected to accom-
modate in the hydrophobic region of the lamellar structure. Modifications of
the texture (under polarizing microscope) were observed with the direction of
the external magnetic field in the plane of the lamellae and perpendicular to
it. These results indicate that doping does not change the original lamellar
structure.

The flexibility of the lamellae in ferrofluid doped samples was also invest-
igated and compared to the undoped system [83]. It was observed that the
value of the bending elastic constant in doped samples is about 10 times larger
than in undoped samples [83]. This fact could not be attributed to a harden-
ing of lamellae since the membrane flexibility, described by the mean bending
elastic modulus [84], remains the same in both doped and undoped samples.
Comparison between lamellar phases doped with magnetic and nonmagnetic
grains shows that both systems behave similarly, as far as we consider non-
magnetic effects (spontaneous orientation in the absence of a magnetic field,
textures and topology of the phase diagram) [82]. However, these aspects dif-
fer significantly from those of undoped samples, indicating that the magnetic
interaction between grains does not seem to be relevant for these properties.
Apparently, the existence of trapped (magnetic or non-magnetic) grains between
the lamellae is the most important feature that determines these properties of the
system.

The first realization of a ferrohexagonal phase was obtained by Quilliet and
coworkers [85] with the SDS/C5/water/C6 lyotropic mixture, which presents a
hexagonal phase, doped with the surfacted C6-based ferrofluid, with maghemite
grains of a typical diameter of 7 nm. An interesting feature of this experiment is
that a homogeneous phase was not observed. The doped mixture shows a biphasic
behavior, with coexisting hexagonal and isotropic phases. In undoped and doped
hexagonal phases, on the plane perpendicular to the axes of the cylinders, the
lattice parameters were 14.8 and 30.2 nm, respectively. From the analysis of the
composition of the sample, it was concluded that there are direct cylinders in
the hexagonal phase, which confine the magnetic grains in doped samples. If
they are subjected to an external magnetic field, the cylindrical axes of doped
samples are oriented along the direction of the field.
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8.3 Microemulsions

Many physico-chemical properties of this family of complex fluids have broad
overlaps with analogous features of lyotropic liquid mixtures [86,87].

Microemulsions are optically isotropic and thermodynamically stable mix-
tures of oil (O), water (W) and a surfactant, with the eventual addition of an
alcohol [88]. The presence of a surfactant strongly reduces the interfacial tension
of the original oil/water mixture, being the main responsible for the forma-
tion of microemulsions. More generally, a microemulsion is a thermodynamically
stable dispersion of one liquid phase into another. This system is stabilized by
an interfacial film of surfactant that separates both liquids.

There are two types of microemulsions, oil-in-water (usually labeled O/W) or
water-in-oil (usually labeled W/O). Since the diameters of droplets range from
about 10 to 100 nm, these systems are clear solutions, transparent to visible light.
The interfacial tension between the two phases is small. A typical composition
of a W/O microemulsion, in weight%, (wt%), is given by 28% of water, 16% of
pentanol, and 6% of potassium oleate. The nature of a microemulsion does not
depend on the way it is prepared. The order of mixing of the different substances
is irrelevant. The system reaches an equilibrium state in a longer or shorter time
interval, depending on the energy employed in the mixing process.

These systems differ from emulsions (sometimes called macroemulsions)
since they are kinetically stable. Emulsions are unstable, with suspended droplets
of a typical size of micrometers or even larger; one of the liquids of an emulsion
may aggregate and trigger a demixing process. As the large droplets scatter light,
the appearance of an emulsion is milky. The nature of an emulsion depends on
the way it is prepared, that is, on the order of mixing of different substances and
on the (mechanical or thermal) energy of the mixing process.

The conceptual border between lyotropics (in particular the isotropic phases)
and microemulsions is not sharp. Isotropic phases of the same mixture, in which
oil is one of the components, are sometimes considered at different sides of this
frontier. However, an alternative way to differentiate them consists in the char-
acterization of microemulsions as two-phase systems and micellar solutions as
one-phase systems. In the literature, there are several reviews of the properties
of microemulsions [87,89–92].

From a theoretical point of view, the description of microemulsions has to
take into account mechanisms for phase separation and for the self-aggregation
of molecules in globules [93]. The pioneer theoretical work of Schulman and
Montagne [94] describes the stabilization of a microemulsion on the basis
of a model that considers the interfacial tension between water and oil and
the surfactant free energy. However, the interaction between globules and
fluctuations of shape of a globule (sometimes called “self-interaction”) are
important ingredients of a theory to describe microemulsions. As discussed in
Chapter 1, the hydrophobic–hydrophilic effects are essential for the formation of
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microemulsions. The presence of a surfactant makes this coexistence compatible
and the self-organization mechanism allows the structural organization of the
microemulsion.

8.3.1 Phase diagrams

Microemulsions are usually formed by a quaternary mixture of a surfactant,
alcohol, water and oil. However, some ternary mixtures, without an alcohol,
as AOT/oil/water, also form microemulsions [95]. Other mixtures presenting
microemulsions are AOT/oil/water/decane and water/dodecane/pentanol/SDS.

We now discuss an introductory example of a mixture with microemulsion
phases. In Fig. 8.6, we show a sketch of the isothermal (T = 25◦C) surface of
the phase diagram of the AOT/decane/water mixture [91,92]. Three microemul-
sion phases have been identified, LM

1 , LM
2 and L′M

2 (note that, in order to avoid
any misunderstanding with the isotropic micellar phases, we are using a differ-
ent nomenclature with respect to Bellocq [91,92]). Phases LM

1 (LM
2 ) are direct

(inverse) micellar phases in the water-rich (oil-rich) region of this phase diagram.
We also have a lyotropic birefringent lamellar phase and several phase coexist-
ence regions. L′M

2 is a microemulsion phase similar to LM
2 , sometimes observed in

coexistence regions. A critical point was observed on the demixing curve of the
inverted microemulsion region (as well as a line of critical points). Light scat-
tering experiments for different temperatures, at fixed relative concentrations of
the components, along a path approaching the critical line, show that the intens-
ity of the scattering follows an Ornstein–Zernike behavior [91]. The correlation
length is given by the power law

ξ = ξ0

[
Tc − T

Tc

]−νt

, (8.7)

LM
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2

LM
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2
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2
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2
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Fig. 8.6. Partial isothermal representation, at T = 25◦C, of the phase diagram
of the mixture AOT/water/decane [92].
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where νt is a critical exponent at fixed relative concentrations (for fixed temperat-
ure, this exponent is called νx) and Tc is the critical temperature. It was observed
that ξ0 ∼ 1 nm, slightly increasing as the temperature increases, and νt ∼ 0.7.
The same experiment, at a fixed temperature and approaching the critical line
by changing the relative composition, leads to νx ∼ 0.6. In contrast to single
liquids, besides depending on temperature, the interaction between droplets in
microemulsions also depends on parameters related to the relative concentra-
tion of the different components of the mixture (and on the physico-chemical
properties of these components).

There are two large groups of phase diagrams of microemulsions: with the
occurrence of critical points, and without critical points, but with the coexist-
ence of two micellar phases. Besides the coexistence regions discussed above,
microemulsions can coexist with an oil-rich phase (which is called Winsor I
equilibrium, or WI), with a water-rich phase (WII), or with both phases (WIII).

According to the prevailing experimental picture, in the oil-rich region of the
phase diagram of microemulsions, there are almost spherical water droplets in a
continuous oil medium, separated from this medium by a surfactant layer, which
is assumed to be an incompressible liquid. In water-rich mixtures, the situation is
reversed. If water and oil concentrations are comparable, there may appear more
complicated topologies, as a bicontinuous structure [96], with continuous water
and oil compartments separated by a continuous layer of surfactant [97–100].
The radius of the droplets in mixtures with alcohol slightly increases with the
number of carbon atoms in the alcohol chain. However, the spherical micellar
shape and the bicontinuous structure were not the unique microscopic pictures
proposed to account for experimental observations in microemulsions [101,102].
Disorder lamellar-like and polymer-like phases, with flexible cylindrical molecular
aggregates, as well as middle phases [103], in coexistence domains with water
and oil, are examples of proposed structures in the literature.

8.3.2 Models and theoretical approaches

Due to the different mechanisms responsible for the stability of microemulsions
(the role of different components, the relative concentrations, temperature), the
theoretical description of these complex fluids is still partial and incomplete.
Considerations involving interfacial energy, entropy of mixing of the polar and
nonpolar liquids, curvature energy and interactions between different compon-
ents, must be taken into account. There are different theoretical approaches,
sometimes with emphasis on particular systems and particular structural features
[94,98,100,104,105].

8.3.2.1 Droplet-type microemulsions Microemulsions formed by droplets can
be regarded as an intermediate state between a homogeneous mixture of isolated
molecules, without the formation of droplets, and a colloidal suspension of hard
spheres. A Landau–Ginzburg phenomenological model developed by Safran and
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coworkers [93,101] assumes that the surfactant (incompressible) layer can be
elastically deformed in a splay-type topology, characterized by two orthogonal
curvature fields, ρ1(r) and ρ2(r). In this context, the free energy per droplet can
be written as a function of the mean, Hm, and Gaussian, Q, curvatures [93,106],

F = Ksp

∫
(Hm − H0)

2 da + Kss

∫
Qda, (8.8)

with Hm = (1/ρ1 +1/ρ2)/2 and Q= 1/(ρ1ρ2), where Ksp and Kss are the energy
costs involved in a splay deformation of the interface and the formation of saddles,
respectively, and H0 represents the tendency of the interface to curve towards
the polar or non-polar solvent region of the mixture. The next step is the con-
sideration of the molecular packing in the interface (i.e. the interface topology)
and the minimization of this free energy with respect to the area per surfactant
molecule. The resulting phase diagram [93] shows three distinct regions, in which
spheres, rods and lamellae are stabilized, depending on the curvatures and the
deformation energies. Rods and lamellae are stabilized at large concentrations of
the surfactant, and intermediate forms as ellipsoids were not stabilized. Trans-
itions between phase regions are always first order. Temperature is taken into
account by the introduction of the entropy of mixing and the internal entropy
of the different types of surfactant aggregates.

Although it is usually assumed that the interactions between surfactant
aggregates do not change the overall structure of the phases, these interac-
tions are also an important ingredient of any theoretical approach. Lemaire
and coworkers [107] proposed a model in which droplets can interpenetrate
forming new aggregates, as dimers, trimers, etc. In this model, droplets can
be deformed if they are allowed to physically touch each other. The attractive
interaction between droplets includes the London–van der Waals–Hamaker con-
tribution. Additional mechanisms, as the attraction between tips of the tails of
the surfactant molecules, have also been taken into account [107].

8.3.2.2 Bicontinuous-type microemulsions There are several models for des-
cribing microemulsions with bicontinuous structures [100]. For example, we
should mention a model of a random distribution of water and oil in micro-
scopic polyhedral cells [98], and a model of superposition of cubes of edges equal
to the persistence length ξK of the interface [108].

The free energy of the system is usually written in terms of different contribu-
tions, including entropic terms, and interfacial and interface curvature terms [92].
The interfacial term takes into account the free energy of the surfactant and
the interfacial tension between water and oil without surfactant molecules. The
entropic contribution, despite its smallness in absolute values, is essential to allow
the stability of microemulsions [109]. The curvature contribution [106] takes into
account the energy expense to splay the surfactant interface in orthogonal dir-
ections with respect to the spontaneous curvature. This contribution critically
depends on the presence of a cosurfactant in the mixture.
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Let us discuss a model proposed by Jouffroy and coworkers [108]. The sur-
factant interface, separating water from oil in the bicontinuous structure of
the microemulsion, is assumed to be made of a set of individual pieces, with
independent orientations, which turns out to be responsible for the entropy of
the film, of area ξ2

K . Small values of the persistence length (ξK ∼ 10 nm) favor
the stabilization of microemulsions, in contrast to the case of liquid crystals,
in which ξK ∼ 50 nm. The first contribution to the free energy comes from the
surfactant film. The space is divided into cubes of volume ξ3

K filled with water or
oil. If adjacent cubes have different solvents, they are separated by a surfactant
film of area ξ2

K . This contribution for the total free energy is written as [108]

F1 = ϕsξ
3
Kw−1G(Σ), (8.9)

where ϕs, w, and G(Σ) are the volume fraction of surfactant in the mixture, the
volume of the surfactant molecule, and the free energy per surfactant molecule
of the film, respectively. The second term in this free energy comes from the
entropy of mixing of the set of cubes,

F2 = kBT [φ ln φ + (1 − φ) ln(1 − φ)], (8.10)

where φ is the probability of a cube to be filled with oil. Finally, we have
the contribution of the curvature of the surfactant layer. This term requires a
more extensive calculation since the details about the topology of the surfactant
molecule are essential to describe the interface conformation. This contribution
for the free energy is written as

F3 = λf3(φ), (8.11)

with

λ ∝ K

kBT
H0ξK , (8.12)

where K is the rigidity and f3(φ) is a dimensionless function [108]. The total free
energy, given by the sum of these terms, depends on two adjustable parameters,
ξK and λ. The calculated phase diagram displays coexistence regions, with two
and three phases, and a microemulsion domain.

As a final remark, we should mention that some authors classify microemul-
sions as a lyotropic mixture (see, e.g. the definition of a lyotropic mixture in
Chapter 1). Indeed, there is a clear overlap between the concepts of a micel-
lar isotropic phase in lyotropic mixtures and the description of microemulsion
phases. Bicontinuous isotropic phases (as the sponge phase) are also very close
to a microemulsion phase.

8.4 Langmuir–Blodgett films

The investigation of ultra-thin and highly ordered films has many connections
with problems in the area of lyotropic liquid crystals. For example, the concepts
of mono and multilayers are present and very relevant in both areas of thin
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films and lyotropic mixtures. Although this may seem a rather abstract idea, we
do have a feeling of thickness if we think about pouring oil in a water surface.
Traveling waves in water, for example, have much smaller amplitudes in the
presence of an oil layer.

After the seminal work of Langmuir [110–113], for which he was awarded the
Nobel Prize for Chemistry in 1932, there were many outstanding contributions
to the production of stable layer films [114]. Again, the hydrophobic–hydrophilic
effects are deeply present in the stabilization of these films. The interaction
of liquid crystal molecules or micellar aggregates with these films leads to an
interesting field of research about the wetting of substrates by ordered complex
fluids. This problem has fundamental implications from the point of view of
the understanding of some physico-chemical processes. Also, it has practical
implications in the technological manufacturing of devices using liquid crystals.
Orientational properties of liquid crystals in layers near a liquid–solid interface
can be strongly affected by the deposit of a thin film on the surface.

Langmuir and coworkers developed a technique to form a monolayer film
of surfactant molecules at a fluid-gas interface. This type of film is named
a Langmuir film. Katharine Blodgett, one of the collaborators of Langmuir,
developed the technique to transfer this monolayer film to solid substrates and,
moreover, to transfer successive layers in order to build a multilayer film over a
solid substrate [115,116]. These types of systems are called Langmuir–Blodgett
(LB) films.

8.4.1 Langmuir films

The Langmuir monolayer film is usually built on top of a liquid substrate called
subphase. It should be more appropriate to refer to a liquid–gas interface, with
the deposition and organization of molecules of a surfactant. The most commonly
used subphase is water, due to its large surface tension (γ = 73 mN/m, at normal
conditions of temperature and pressure). However, other liquids, as mercury [117]
and glycerol [118], were also used as subphases.

Langmuir films are formed by surfactant molecules poured on the subphases.
The surfactant molecules are dissolved in an organic solvent and spread over the
subphase. The solvent evaporates rapidly, and the surfactant molecules remain
at the liquid–gas interface.

If the concentration of molecules is small and the distance between them
is large, polar heads remain immersed in the liquid while the hydrophobic tail
of the molecules remain in the gaseous part of the interface, bent towards the
liquid-gas interface (see Fig. 8.7(a)). If the molecules are brought together by
physically compressing their polar heads (using a barrier that moves at the liquid-
gas interface, and reducing the available total area where the heads are located),
the hydrophobic part of the molecules exert a repulsive force and tend to “stand
up,” with the head still immersed in the liquid (see Fig. 8.7(b)). If we continue
to exert a compression of the polar heads, the hydrophobic part of the molecules
tends to minimize the available volume, and organizes in a compressed, solid-like,
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(a) (b)

(c)

Fig. 8.7. Monolayer of surfactant molecules in a liquid–gas interface: (a)
small concentration of surfactant molecules; (b) large concentration of non-
compressed surfactant molecules; (c) large concentration of compressed
surfactant molecules.

closed-packed layer (see Fig. 8.7(c)) [119] . The surface pressure is defined as

Π = γ − γ0, (8.13)

where γ0 and γ are the surface tension of the subphase with and without the
presence of the surfactant molecules. The pressure Π is a measure of the repulsive
force between surfactant molecules spread over the subphase.

Usually, we plot Π as a function of the area per surfactant molecule in order
to characterize the properties of the surface monolayer spread over a subphase.
This plot is called surface pressure/area isotherm [119]. As the surface area
per surfactant molecule decreases with compression, the typical behavior of Π
depends on the surfactant molecule and subphase. Let us describe the case of sur-
factant molecules as the stearic, CH3(CH2)16COOH, or oleic, C18H34O2 , acids.
Initially, Π is a constant; it then increases abruptly, indicating the increasing
interaction between surfactant molecules. As the surface per surfactant molecule
continuous to decrease, another abrupt increase of Π is observed, indicating a
surface phase transition. Surfactant molecules organize in a solid-like structure,
with the hydrophobic tails pointing towards the gaseous side of the interface and
arranging themselves in a closed-packed structure. The values of the area per
surfactant molecule are characteristics of the molecule and the subphase (usu-
ally water). If the area per surfactant molecule continuous to decrease, there
is a phenomenon of collapse; the monolayer destabilizes, giving rise to more
complicated structures as disordered multilayers.

Some polymers, as polyacrylates, polymethacrylates and silicone copolymers
[120], can be used for building a Langmuir film. The polar part of the monomer
stays at the surface of the subphase, and the hydrophobic part, which usually
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links to other molecules during the polymerization process, stays at the gaseous
part of the interface.

8.4.2 Deposition of Langmuir–Blodgett films

The most useful (and practical) application of the Langmuir ideas is perhaps the
deposition of successive molecular layers on a solid substrate. The final product
of this deposition is a Langmuir–Blodgett film.

The general idea is very simple, as shown schematically in Fig. 8.8. In
Fig. 8.8(a), we show a deposition setup with the compression barrier and the
displacement transducer. After the Langmuir film is constructed over the sub-
strate, different deposition procedures can be employed by using a dipper that
introduces (or removes, depending on the deposition type) the solid substrate
in the Langmuir trough [119,121,122]. Typical rates of immersion (or remotion,
if the substrate is withdrawn from the liquid side of the interface) are about
1 mm/s.

In the X-type deposition of Fig. 8.8(b), a solid substrate is introduced in
the Langmuir trough from the gaseous side of the interface. In this case, the

(a)

(c)

(b)

(d)

Plate

Barrier

Fig. 8.8. Deposition of a Langmuir–Blodgett film: (a) deposition setup; (b)
X-type deposition; (c) Z-type deposition; (d) Y-type deposition.
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hydrophobic part of the surfactant molecule is placed in contact with the sub-
strate. Successive layers can be deposited repeating the same procedure. In the
Z-type deposit of Fig. 8.8(c), the substrate is withdrawn from the liquid side
of the interface towards the gaseous side. In this case, the hydrophilic part of
the surfactant molecule is placed in contact with the solid substrate. As in the
previous case, successive layers can be deposited onto the substrate, one on top
of the other, by repeating the same procedure. Another way to build up an LB
film in a symmetrical way consists in the Y-type deposition. In this case, the
substrate is initially withdrawn from the liquid (as in the Z-deposition). Then,
the substrate with the first deposited layer is immersed into the liquid as in the
X-type deposition (see Fig. 8.8(d)). Surfactant molecules can now be successively
deposited and are organized with the polar heads of one layer in contact with
the heads of the next layer (and with a similar arrangement for hydrophobic
parts of the molecules). However, it is important to remark that this simple view
of molecular deposit is not the only possibility. In some cases, the type of the
deposited film does not depend on the way the substrate is immersed or removed
from the subphase. In other words, even if one tries to build up a particular type
of film, the final result is always the same, irrespective of the procedure [123].
Substrates can be prepared to present a hydrophobic or hydrophilic character
for receiving successive film deposits. One of these possibilities is to deposit onto
a substrate one or more monolayers of stearic acid, which gives rise to a good
surface, and then depositing the desired molecules.

Film deposition can be characterized by a parameter called deposition or
transfer ratio τ , defined as the ratio between the decrease in the area occupied
by the monolayer on the subphase at constant pressure and the coated area of
the solid substrate [124]. Another parameter which characterizes the depositions
is φLB = τe/τi, where τe and τi are the remotion and immersion ratios [125].
In this context, X and Y depositions have φLB = 0, 1, and Z depositions has
φLB −→ ∞.

8.4.3 Characterization of the film

Different techniques are used to characterize mono- and multilayer deposited
films [126].

An important characteristic of the film is the thickness after the sequence
of depositions. The most used techniques to measure film thickness are interfer-
ence [115], ellipsometry [127], and X-ray and neutron diffraction. The monolayer
thickness of fatty acid LB films was found to be a linear function of the number of
carbons in the hydrophobic chain [128]. The film structure can be characterized
by using X-ray, neutron, and electron diffraction techniques (transmission elec-
tron diffraction, TED, and reflection high-energy electron diffraction, RHEED),
optical birefringence, infrared and Raman spectroscopy. Fatty acids and other
molecules used to build up LB films were shown to present a crystalline structure
of subunits of the aliphatic chains [129] . There are experimental evidences that
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the structure of the first deposited layers may differ from the structure of the
subsequent layers [130].

The orientation of the aliphatic chains of the deposited molecules with respect
to the surface of the substrate can be determined by infrared and visible spec-
troscopy techniques. These experiments are particularly sensitive to the relative
orientation of the incident electric field of the probe beam and the dipole
moments of deposited molecules [131].

The intrinsic geometry of the LB films, in which an inversion symmetry is
broken at the interface, leads to some interesting studies of nonlinear properties.
If a medium interacts with an electric field E of an electromagnetic wave, the
macroscopic polarization P can be written as [132]

P = P0 + χ(1)E + χ(2)E2 + χ(3)E3 + · · · ,

where P0 is a constant and χ(n) is the nth-order susceptibility of the medium.
The second-order susceptibility tensor is responsible for the second harmonic
generation and the linear electro-optical effect; the third-order susceptibility is
related to the third harmonic generation and the Kerr effect [132]. The susceptib-
ility tensors, which reflect the symmetry properties of the films, can be measured
by different experimental techniques, as forced Rayleigh scattering (FRS).

8.4.4 Applications of LB films in the study of lyotropics

Despite the large number of potential and actual applications of LB films in many
fields, the use for investigating properties of lyotropic mixtures, as anchoring and
wetting, is still modest. In one of these studies, LB films were used to investig-
ate surface properties of lyotropics [133] . The deposited molecules were lignin,
cadmium stearate, and behenic acid, with various numbers of layers, in a film
symmetry of Y type. The films were deposited over glass substrates, which were
used to build the sample holder for encapsulating the liquid crystal (in this case,
a nematic ND phase). Different optical techniques were used to investigate the
effects of the LB film depositions on the anisotropic part of the surface tension
of the discotic nematic liquid crystal in contact with the treated substrate. The
temperature dependence of the bulk and surface tilt angles of the director with
respect to the normal to the surface substrate [67] were measured. Experimental
results show that the average director alignment is practically independent of the
nature of the molecule deposited onto the substrate. This result is completely dif-
ferent from the observations, under the same conditions, for thermotropic liquid
crystals (in this particular study, for 4-heptylcyanobiphenyl, also called K21).
These results were explained assuming that the substrate, independently of the
deposited LB films, stabilizes a lamellar layer, or bilayer, formed by the surfact-
ant molecules of the lyotropic liquid crystal. This layer screens the effect of the
LB films on the alignment of the nematic director. The presence of this layer was
previously used to explain the gliding anchoring of the director of a lyotropic NC

phase at amorphous glass surfaces, subjected to an external magnetic field [48].
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Even in this situation without the deposition of a particular LB film, the exper-
imental results were explained by assuming the existence of a surfactant layer
stabilized by the flat glass surface. In contrast with thermotropics, in which case
the individual molecules strongly interact with the substrate and organize a layer
that affects the orientation of the bulk molecules, the “carpet” formed by this
surfactant deposit in lyotropics screens the influence of surface and allows the
gliding of the director under the action of magnetic fields. Although additional
experiments are needed to improve this description of the gliding phenomenon,
this process may have some connections with the so-called self-assembling [134]
for building up a thin film over the actual substrate sample-holder.

8.5 Diblock copolymers

The study of polymeric liquid crystals is another interesting area that is strongly
related to the investigations of lyotropic mixtures. In particular, the analysis of
mesophases formed by basic units of diblock copolymers (in short, called “ DiCo”)
is based on concepts as affinity, nanoscale segregation and ordering.

A DiCo is formed by two independent polymers, of species A and B, for
example, with a small affinity, linked by a covalent bond. In Fig. 8.9, we show
polystyrene (A) and polybutadiene (B), forming a DiCo. Without the link, this
system tends to separate into macroscopic segregated states; each type of poly-
mer concentrates in a distinct region of the mixture. On the other hand, if
there is a covalent bond between the different species of polymers, the sys-
tem self-organizes in order to increase the contacts between similar species and
decrease the contacts between antagonic species. Even if repulsion between unlike
monomers is relatively weak, in a DiCo the repulsion between sequences of unlike
species is strong. Examples of this type of system are mixtures of polystyrene and
poly-methyl-metacrylate, polystyrene and polybutadiene [135], and polystyrene
and polyisoprene [136].

[—CH—CH2—]n

—CH2—CH—

CH

CH2

[—CH2—CH——CH—CH2—]n

n

and

(A)

(B)

Fig. 8.9. Basic units of the diblock copolymer polystyrene (A) and poly-
butadiene (B).
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The repulsion between unlike species leads to a nanosegregation and,
moreover, to a nanoscale structuring into domains of different topologies.
Spheres, cylinders and lamellae can be formed and organize themselves as dif-
ferent structures, three-dimensional cubic lattices of spheres, two-dimensional
hexagonal lattices of cylinders, and one-dimensional lamellar structures. In a
DiCo in which species A and B present a low polymerization index, there may be
a stable homogeneous phase; however, there can be transitions to nanosegregated
phases by changing some physico-chemical features of the material.

From the experimental point of view, the most used techniques for investig-
ating the structures of a DiCo are small-angle X-ray scattering (SAXS), electron
microscopy and electron diffraction.

Different theoretical approaches have been used to describe DiCo systems
[137–139]. Microscopic statistical models show that the relevant parameters to
describe the nanophase separation in a DiCo are the Flory parameter, which
characterizes the A–B interactions, the polymerization index, and the fraction
of monomers of one species in the chain [138].

8.5.1 Structures of diblock copolymers

Depending on physico-chemical parameters, three types of aggregates were
observed in diblock copolymers: spheres, lamellae, and cylinders.

8.5.1.1 Spherical aggregates Systems of polystyrene/polyisoprene form spher-
ical aggregates at suitable conditions of temperature and relative concentrations
of the different species [136]. Depending on the relative concentrations, spheres
with mean radius RA ranging from about 7 to 30 nm, separated by distances
Ddi from about 24 to 106 nm, respectively, were observed by SAXS techniques.
The peaks and shoulders in the curves of diffracted intensity indicate a medium-
ranged simple cubic lattice, or a cubic close-packed lattice (bcc lattice), which
has also been called a paracrystalline macrolattice [140]. The experimental res-

ults show that Ddi ∝ M
2/3
t and RA ∝ M

2/3
A , where Mt and MA are the total

molecular weight of the DiCo and the molecular weight of the block chain form-
ing the spherical domains (of polyisoprene), respectively. Phases with spherical
aggregates were also observed in a system of polystyrene and polybutadiene;
the geometrical parameters of the structure are functions of temperature and
relative concentrations of the two species, with typical values Ddi ∼ 21 nm and
RA ∼ 7 nm, and a bcc lattice [135,141]. The interface between the two different
species A and B was shown to be well defined at lower temperatures, but it
becomes more diffuse as the temperature increases. This behavior indicates a
loss of the globular segregation and an almost homogeneous distribution of both
species.

A solid–liquid transition has been recently observed in a DiCo, with spherical
micellar aggregates, formed by polyoxyethylene and polyoxybutylene in water
[142]. If the concentration of micelles is large, they pack in a regular array which
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corresponds, sometimes, to the formation of a solid or a hard gel phase. Micellar
ordering can be of bcc or fcc type, depending on the intermicellar interactions.
Rheological experiments, which measure the shear rate and the shear stress of
DiCo samples, together with SAXS and light scattering experiments, lead to the
characterization of the different phases of the mixtures. The experimental results
for the solid–liquid transitions were explained by using a model of hard spheres;
the transition is of first order, with a region of phase coexistence between a hard
sphere fluid and a solid crystal [142].

8.5.1.2 Lamellar structure A diblock copolymer of polystyrene and polyiso-
prene, with about 50 wt% of polystyrene, forms a lamellar structure, in which
species A and B spatially segregate in alternating layers [143,144]. Electron
micrograph patterns of this structure show a sequence of black (polyisoprene-
rich, usually contrasted by osmium tetroxide) and white (polystyrene-rich)
parallel stripes, as a fingerprint pattern, with a periodicity of about 60 nm,
which can also be measured by the SAXS technique. The annealing on these
DiCo samples with a lamellar structure, at temperatures above the glass trans-
ition temperature Tg, increases the periodicity by about 15%. However, annealing
at temperatures below Tg does not seem to affect the lamellar periodicity. If
copolymers are cast into films of about 102

µm thickness, it was observed that
the lamellae orient parallel to the surface of the film. The regularity of the lamel-
lar structure seems to be strongly dependent upon the molecular weight of the
copolymers.

The morphology of the lamellae near a free surface (e.g. of a DiCo in con-
tact with a gas) displays a microdomain structure [145]. Electron micrograph
experiments show a distinct aspect of the lamellar structure in the free surface
with respect to the bulk; the lamellae appear somewhat rough and, in some
regions, the interfaces of the lamellae orient perpendicular to the free surface. In
both cases, the polyisoprene layer separates the DiCo from the free surface. The
thickness of this polyisoprene layer is about half of the thickness in the bulk.

There is an interesting behavior if homopolymers are mixed with a DiCo.
Consider the case of the same system, polystyrene and polyisoprene, mixed with
the corresponding low molecular weight homopolystyrene and homopolyisoprene
[146]. Electron micrograph and SAXS results for samples of these homopolymers
solubilized in the lamellar structure of the DiCo indicated that the corresponding
homopolymers are almost homogeneously distributed inside the lamellae, each
one in the region of its similar species (i.e. homopolymer of type A in a region
of type A, and the same for species of type B). The corresponding swelling
causes an increase of the lamellar periodicity and the chains of the polymers in
each domain (A and B) tend to stretch and orient perpendicular to the lamellar
interface. Structural phase transitions from lamellae to spheres and cylinders can
occur as a function of the content of homopolymers.

If the architecture of a DiCo is of the rod-coil type, there may appear an inter-
esting lamellar topology; the rods can be arranged in a type of smectic structure
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formed by a monolayer or a bilayer of rigid rods [147]. This liquid crystalline
ordering depends on the physico-chemical characteristics of both species of the
DiCo and their respective volume fractions. Transitions between smectic-C and
smectic-A structures are also predicted as a function of relative volume fractions.

8.5.1.3 Cylindrical aggregates A mixture of polybutadiene and polystyrene is
an example of a DiCo presenting cylindrical aggregates [148]. Electron micro-
graphs of this system, with a typical content of block styrene of about 68 wt%,
show rod-shaped butadiene aggregates (black domains, contrasted by osmium
tetroxide) in a homogeneous matrix of styrene. The cylindrical axes are parallel
and arranged in a hexagonal close-packed structure. The mean butadiene rod
diameter in this particular case is about 19 nm; the lattice parameter of the two-
dimensional hexagonal array is about 33 nm. This hexagonal lattice, as in the
case of a mosaic crystal, presents small-angle grain boundaries. Regions of lattice
imperfections, cracks and defects were also observed in the electron micrographs.

The DiCo poly (ethylenepropylene) and poly (ethylethylene) presents a
lamellar structure and a hexagonal phase of cylindrical aggregates [149]. The
mechanical properties of diblock copolymers are an interesting subject of research
in part due to practical applications. In the particular case of this system, in the
presence of applied uniaxial shear, there appear structural instabilities, which
can be observed by small-angle scattering techniques. From the theoretical point
of view, structural instabilities, as this uniaxial strain-induced instability, were
treated by a mean-field approach [150]. In the limit of small strains, two types
of instabilities can take place, a modulation of the cylinders along the axes, and
a saddle–splay curvature. Uniaxial strains above a critical value should induce
a phase transition from the hexagonal closed-packed structure to a modulated
cylindrical structure.

8.5.1.4 Phase transitions The organization of diblock copolymers in spheres,
lamellae, and cylinders depends on temperature T , composition (f is the volume
fraction of one species), degree of polymerization N , and a parameter that
accounts for the local and nonlocal interactions between polymer species (the
Flory–Huggins interaction parameter χ [138]). The DiCo poly(ethylenepropy
lene) and poly (ethylethylene) provides an example of a system displaying
phase transitions between lamellar and hexagonal structures [149]. As a func-
tion of (increasing) temperature, this DiCo presents several structures: lamellae;
hexagonally modulated lamellae; hexagonally packed layered channels; and
hexagonally packed cylinders. Neutron scattering results show the reversibil-
ity of the lamellae modulated–lamellae transitions upon heating or cooling. This
phase sequence has also been observed in other polyolefin diblock copolymers.

As a function of temperature, the DiCo polyoxyethylene and polyoxy-
butylene, mixed with 0.2 M of K2SO4, displays two cubic phases formed by
spherical aggregates, a bcc and an fcc phase [151]. Leibler developed a micro-
scopic statistical theory of microphase separation in A–B diblock copolymers,
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using f and the product χN as the relevant parameters [138]. A sketch of the
phase diagram in terms of χN and f is shown in Fig. 8.10. This isothermal
representation is symmetric with respect to f ; at small values of χN , and for all
values of f , there is a stable disordered phase (Dis). At a fixed value of f , and
increasing χN , there is a cubic (C)–hexagonal (H)–lamellar (L) phase sequence.

The phase diagrams of binary blends of DiCo and homopolymers at constant
temperature show a morphology depending on T , f , N , χ, and the concentration
of the homopolymer [152]. Blends of homopolystyrene with poly(styrene-b-
butadiene) and poly(styrene-b-isoprene) show isothermal morphology diagrams
with several structures (lamellar; ordered bicontinuous double-diamond; cylin-
ders on a hexagonal lattice; spheres on a cubic lattice; disordered aggregates of
various shapes) and a macrophase separation.

Matsen and Bates [153] have drawn a mean-field phase diagram for conforma-
tionally symmetric DiCo melts using the standard Gaussian polymer model. This
phase diagram, sketched in Fig. 8.11, shows regions of stability for disordered
(Dis) melts and for ordered structures as lamellae (L), hexagonally packed cylin-
ders (H), body-centered cubic spheres (BCC), close-packed spheres (CPS), and
the bicontinuous cubic network (Bic). The CPS phase domains are shown to be
very narrow, between the BCC and the disordered phases. This topology of the
isothermal phase diagram agrees with many experimental observations.
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Fig. 8.10. Sketch of the phase diagram of an A–B type of DiCo in the plane χN
versus f . Labels Dis, C, H and L refer to the disordered, cubic, hexagonal,
and lamellar phases, respectively [138].
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Fig. 8.11. Sketch of a mean-field calculation for the phase diagram of a DiCo in
terms of χN and f (see Matsen and Bates [153]). We indicate the following
structures: L (lamellar), H (hexagonal cylinders), Bic (bicontinuous cubic),
BCC (bcc spheres), CPS (close-packed spheres), and Dis (disordered).

If the DiCo is made of a chain liquid-crystalline block, as a nematic block, and
an isotropic block, there appear spherical micelles or cylinders with a nematic
core. The phase diagrams, with multiply reentrant sequences, are different from
the case of an isotropic DiCo [154]. This type of material is useful for studying
the behavior of liquid crystals in confined geometries at nano and micron length
scales.

8.6 New lyotropic-type mixtures

As discussed in the previous sections, the presence of sectors with differ-
ent properties in the same molecule, or the presence of different species in
diblock copolymers, with selective affinities, may lead to segregation and self-
organization in contact with other molecules. Several examples were discussed
in this book and the richness of the polymorphism was sufficiently presented.
More recently, there appeared new mixtures of molecules whose interactions
involve the concepts of self-aggregation and segregation. Three examples will be
discussed: chromonics, lyo-bananas, and transparent nematic phases.

8.6.1 Chromonics

There is an increasing interest in the study of the polymorphism of mixtures of
thermotropic liquid crystals with nonpolar organic solvents. Smectic thermotrop-
ics, of types A and C, have been mixed to organic solvents (n-hexane, n-decane,
benzene, and trichloroethylene) [155]. It was shown that solvent molecules
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Fig. 8.12. Molecular structure of tetranuclear palladium organyl.

nanosegregate in regions between the smectic layers, forming a lamellar structure.
These solvent-rich regions intercalate between the layers of the former smectic
structure. Sometimes this process is referred to as a swelling of the smectic struc-
ture due to the presence of the solvent, with the increasing of the smectic layer
spacing by the addition of the solvent.

Chromonics are made of mixtures of disk or lath-like molecules with solvents
[156,157]. In Fig. 8.12, we show the molecular structure of tetranuclear palladium
organyl, with a disc-like shape anisotropy. These molecules, which are piled up on
top of each other, forming a columnar phase, can pack in a two-dimensional array
or even present a uniaxial nematic ordering [158]. The polymorphism of the pure
tetranuclear palladium organyl shows a phase transition from a crystalline phase
to a discotic columnar phase, at 71◦C, and from this structure to an isotropic
phase, at 301◦C. There is an interesting polymorphism if this type of molecule is
mixed with non-polar organic solvents. In Fig. 8.13, we show a sketch of the phase
diagram of this mixture (tetranuclear palladium organyl, shown in Figure 8.12,
and pentadecane [157]). Besides multiphase domains, there were observations of
crystalline (C), nematic (N1 and N2), discotic columnar (D), and isotropic (I)
phases. Two nematic phases were identified and differentiated by means of their
optical microscopic textures. The N1 phase is preferentially located at the low
temperature region of the phase diagram, in contrast to the N2 phase, which is
preferentially located at the high-temperature regions. The presence of nematic
phases in this phase diagram is a direct consequence of the introduction of the
solvent in the previous packed columnar phase (which is present in the pure
material).
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Fig. 8.13. Sketch of the phase diagram of a mixture of tetranuclear palladium
organyl (see Fig. 8.12) and pentadecane [157]. We indicate the following
structures: crystalline (C), nematic (N1 and N2), discotic columnar (D), and
isotropic (I).

The ratio between the length of the aliphatic chain of the metal complex
and the length of the (unfolded) solvent molecule was shown to affect the
polymorphism of the mixtures, at least in some particular cases [159].

Ternary mixtures of tetranuclear palladium organyl (of the type depicted in
Fig. 8.12), with enantiomers of the π-acid electron acceptor, (+)-TAPA[(+)-2]
and (−)-TAPA[(−)-2], and a nonpolar organic solvent, as pentadecane, have
shown a cholesteric phase, besides the nematic and isotropic structures [160].
The charge transfer interactions are assumed to be responsible for the observed
cholesteric properties.

The hexakis(alkanoyl)benzene derivatives are another type of molecules with
a rich polymorphism in a mixture with cyclic hydrocarbons, as benzene, cyc-
lohexane, and cyclodecane [161]. The pure derivatives present a thermotropic
polymorphism, including columnar and cubic mesophases. With the addition
of a hydrocarbon, the polymorphism becomes much more interesting, with the
stabilization of nematic and isotropic phases in temperatures depending on the
amount of solvent.

More recently, carboxyl and alkoxycarbonyl-substituted phthalocyanine cop-
per complexes mixed with different solvents, as nonane, chloroform and benzene,
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were observed to present a rich lyopolymorphism, with the appearance of nematic
and isotropic phases [162].

8.6.2 The lyo-banana mesophases

Thermotropic liquid crystals formed by bent core molecules, as the banana-shape
systems, have unconventional phases with remarkable properties [163,164]. The
possibility of obtaining a chiral mesophase by packing nonchiral molecules is one
of these properties. Some of these phases have a ferroelectric polarization, usually
at high temperatures, which brings some problems to potential technological
applications.

A lyo-banana mesophase can be obtained from the mixture of a thermotropic
banana-type liquid crystal with a solvent. Jákli and coworkers mixed a ferroelec-
tric “banana-smectic” material with non-polar xylene as the solvent [165]. They
observed that this procedure drastically widens the ferroelectric electro-optical
switching range and lowers the clearing point. Due to steric and chemical reas-
ons related to the affinity between species, xylene molecules are assumed to sit
between rigid cores of the banana-shaped molecules, weakening the dipole–dipole
intermolecular interactions.

Let us look at the steric features of the interactions between “banana” and
solvent molecules. If they come into contact, it is known that rigid and flexible
molecular segments tend to segregate into packings of similar nature [166]. The
extension of this concept to linear and bent segments of molecules leads to a
picture in which flexible nonpolar alkyl chains avoid any contacts with the rigid
bent core of the molecules, and pack together with aliphatic chains. In the case
of organic solvents mixed with thermotropic smectic phases formed by calamitic
molecules, it has been observed an increase of the layer spacing with increasing
amounts of the solvent [155], which indicates a nanosegregation of the solvent
between the smectic layers.

8.6.2.1 The example of host–C14 guest-hexadecane As a working example, we
now discuss the case of 4-chloro-1,3-phenylinebis [4-(4-N -tetradecyloxyphenyl-
iminomethyl) benzoate] [167], also called C14 [168] (see Fig. 8.14). As a function
of temperature, C14 displays a sequence of transitions, from a crystalline phase
to a polar smectic C phase, SmCP, at 68◦C, and from the SmCP phase to an
isotropic ISO phase, at 127◦C [169]. Upon cooling from the SmCP phase, there
appears a metastable state, SmX, below 60◦C. Molecules of n-hexadecane [CH3–
(CH2)14–CH3], also called HEX, are the guest organic solvent mixed to the host
C14, at different relative concentrations.

If HEX is mixed with C14, the clearing point is lowered (e.g. to 91◦C at
27 wt%, and to 77◦C at 40 wt% HEX concentrations), but the crystalliza-
tion temperature does not change appreciably. The texture of the crystalline
phase changes and there appears an optically isotropic phase at concentrations of
HEX larger than 20 wt%. The switchable range does not extend with increasing
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Fig. 8.14. A “banana”-shaped molecule: 4-chloro-1,3-phenylinebis [4-(4-N -
tetradecyloxyphenyliminomethyl)benzoate].

concentrations of solvent, and non-switchable metastable states appear close to
the temperature at which the SmX phase is formed in pure C14. Increasing the
HEX concentration, the textures of the metastable states gradually lose the fea-
tures of the SmCP phase and become optically isotropic above 20 wt%, giving
rise to a state that has been called X. The small-angle X-ray profiles showed
that the layer spacing in the 40 wt% of HEX mixture is about 0.3 nm larger
than that in pure C14. Differential scanning calorimetetry (DSC) data indicate
that the transition enthalpies strongly decrease with increasing concentrations
of HEX. Above 45–50 wt% of HEX, the SmCP range disappears, and there is a
direct transition between two optically isotropic states (ISO and X phases). At
increasing HEX concentrations, there is a decrease of the transition enthalpies,
the layer ordering, and the magnitude of the electric polarization. The increase
of the layer spacing saturates at 5 wt% of HEX.

The experimental results indicate a nanosegregated structure with the HEX
molecules packing in layers which are set by the periodicity of the smectic
structure. The driving mechanism for this nanophase segregation are the steric
interactions between flexible HEX molecules and rigid bent cores of the liquid
crystal molecules. The amount of HEX in the mixture defines two different
regimes: (i) at small HEX concentrations, all the HEX molecules are between
layers, with uniform layer spacings; (ii) at larger HEX concentrations, the dis-
tribution of layer spacings becomes non-uniform. Steric incompatibility between
the flexible linear solvent and the rigid bent cores of the C14 molecules are sup-
posed to push the HEX molecules to regions with smaller concentrations of C14,
leading to a sub-micrometer segregation of the solvent.

At increasing HEX concentrations, there appear separated HEX domains of
increasing size, and a weakening of the correlations between smectic domains.
Due to the isotropic nature of the solvent at sufficiently high concentrations
(about 20 wt% of HEX), the alignment of the smectic domains, of sub-micrometer
dimensions, becomes uncorrelated and the texture becomes optically isotropic.

The structural model of Fig. 8.15 is based on X-ray scattering observations. In
Fig. 8.15(a), we show a typical sketch of the antiferroelectric molecular packing of
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(a)

(c) (d)

(b)

Fig. 8.15. Model for the molecular packing of the pure banana-shaped C14
liquid crystal and a mixture containing n-hexadecane [168]: (a) antifer-
roelectric molecular packing of pure C14; (b) submicrometer segregated
isotropic HEX domains surrounding the smectic domains of C14 with layered
nanosegregated HEX molecules; (c) magnified local structure of smectic
domains with nanosegregated HEX molecules; (d) magnified local structure
of submicrometer segregated HEX molecules.

pure C14. In Fig. 8.15(b), we show the sub-micrometer segregated isotropic HEX
domains surrounding the smectic regions of C14 with the layered nanosegregated
HEX molecules. In Fig. 8.15(c) and (d), we show magnified local structures of the
smectic domains with nanosegregated and submicron-segregated HEX molecules.

This picture should give hints and indications in order to use the nanose-
gregation process for designing and producing devices at nanometer length
scales.

8.6.3 Transparent nematic phase

Yamamoto and Tanaka have recently reported [170] an interesting study of a
mixture of water, the thermotropic liquid crystal pentylcyanobiphenyl (5CB)
and a double tailed ionic surfactant (didodecyl dimethyl ammonium bromide,
DDAB). In the investigated range of molecular concentrations, there were obser-
vations of spherical inverted micelles, with a typical radius a∼ 1.9 nm, and
typical intermicellar distances ranging from about 15 to 4 nm. Water droplets
are involved by the polar heads of DDAB molecules, and the hydrophobic parts
of those amphiphilic molecules are in contact with 5CB, which plays the role
of the non-polar oily medium (5CB has been called oil by some authors). DSC,
optical microscopy, and light scattering measurements indicated the existence
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of an unusual structure between the isotropic phase and a region of phase
coexistence. Since it is optically isotropic (it looks like an isotropic phase if
it is observed between crossed polarizers), this unusual phase has been called
transparent nematic (TN). DSC experiments show the presence of two peaks,
indicating two thermodynamic transitions. The first transition, at lower temper-
atures, was associated with the transition between a phase coexistence region and
the TN phase; the other transition, at higher temperatures, was associated with
the nematic–isotropic transition of 5CB. The nematic features of the TN phase
are still present at 10 nm length scales. In the proposed structural model, 5CB
molecules are assumed to be strongly anchored perpendicular to the surface of
the inverse micelles. At the TN phase, the nematic directors are locally distorted
by randomly dispersed micelles. At the macroscopic level, this structure gives
rise to the “transparent” aspect of the phase. If we increase the temperature
above the nematic–isotropic transition, the distorted nematic structure between
micelles is no longer stable and 5CB molecules display an isotropic structure.

More recently, Bellini and coworkers [171] investigated this same mixture
by static and dynamic light scattering techniques. Measurements of the intens-
ity autocorrelation function lead to the identification of contributions due to
pretransitional paranematic fluctuations (at a nanosecond time scale) and to
the scattering by micelles (at a microsecond scale). The fluctuations of correla-
tions of both molecular orientations and micellar concentrations were observed
to be enhanced with decreasing temperatures from the isotropic phase towards
the demixing transition. This pre-transitional behavior has been explained by a
mean-field calculation for a Lebwohl–Lasher model [172]. The effective attractive
interactions between micelles are consequences of fluctuations of the 5CB degrees
of freedom. Micelles were regarded as holes in the nematic matrix, with free or
semifree boundary conditions, in contrast to the strong anchoring proposed by
Yamamoto and Tanaka.
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Hermann, Paris.
[29] K. E. Grew (1969). In Transport Phenomena in Fluids, Ed. H. J. M. Hanley,

Marcel Dekker, New York.
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[76] A. M. Figueiredo Neto, L. Liébert, and A. M. Levelut (1984). J. Phys.

(France) 45, 1505.
[77] A. M. Figueiredo Neto, Y. Galerne, and L. Liébert (1985). J. Phys. Chem.
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