
 

         www.4electron.com                                              موقع عالم الإلكترون                                                      

....موقع عالم الإلكترون  
واختصاصاتھا المختلفة لتكنلوجيةموقع إلكتروني متخصص في علوم الھندسة ا  

 4electron.comمكتبة عالم الإلكترون 

 

  ...إلى قارئ ھذا الكتاب ، تحية طيبة وبعد 

حقيقياً في عالم يعج بالأبحاث والكتب والمعلومات، وأصبح العلم معياراً نعيش لقد أصبحنا 
حلاً شبه  بدورهوقد أمسى لتفاضل الأمم والدول والمؤسسات والأشخاص على حدٍّ سواء، 

، فالبيئة تبحث عن حلول، وصحة الإنسان تبحث عن دة وخطورةاكل العالم حوحيدٍ لأكثر مش
الطاقة والغذاء حلول، والموارد التي تشكل حاجة أساسية للإنسان تبحث عن حلول كذلك، و

فأين نحن من . ويحاول أن يجد الحلول لھاالآن والماء جميعھا تحديات يقف العلم في وجھھا 
   ھذا العلم ؟ وأين ھو منا؟

ن نوفر بين أيدي كل من حمل لأ www.4electron.comسعى في موقع عالم الإلكترون ن
من أدوات تساعده في ھذا الدرب، من  ما نستطيعالتحديات لى عاتقه مسيرة درب تملؤه ع

ء والأفكار العلمية مواضيع علمية، ومراجع أجنبية بأحدث إصداراتھا، وساحات لتبادل الآرا
والمرتبطة بحياتنا الھندسية، وشروحٍ لأھم برمجيات الحاسب التي تتداخل مع تطبيقات الحياة 
الأكاديمية والعملية، ولكننا نتوقع في نفس الوقت أن نجد بين الطلاب والمھندسين والباحثين 

مجتمعٍ يساھم  من يسعى مثلنا لتحقيق النفع والفائدة للجميع، ويحلم أن يكون عضواً في
   بتحقيق بيئة خصبة للمواھب والإبداعات والتألق، فھل تحلم بذلك ؟

رأيتھا في إحدى المواضيع حاول أن تساھم بفكرة، بومضة من خواطر تفكيرك العلمي، بفائدة 
تأكد بأنك ستلتمس الفائدة في كل . جانب مضيء لمحته خلف ثنايا مفھوم ھندسي ماالعلمية، ب

  ...رى غيرك يخطوھا معك خطوة تخطوھا، وت

، أخي القارئ، نرجو أن يكون ھذا الكتاب مقدمة لمشاركتك في عالمنا العلمي التعاوني
بكل الإمكانيات المتوفرة لديه جاھزاً  ww.4electron.com سيكون موقعكم عالم الإلكترونو

، أو طالب في علوم الھندسة قع الذي يبحث عنه كل باحثالبيئة والوا على الدوام لأن يحقق
  . ويسعى فيه للإفادة كل ساعٍ ، فأھلاً وسھلاً بكم 

  مع تحيات إدارة الموقع وفريق عمله

www.4electron.com  





Mathematical and
Physical Data,
Equations, and
Rules of Thumb



Mathematical and
Physical Data,
Equations, and
Rules of Thumb

Stan Gibilisco

McGraw-Hill
New York Chicago San Francisco Lisbon London Madrid

Mexico City Milan New Delhi San Juan Seoul
Singapore Sydney Toronto



Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United
States of America. Except as permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher. 

The material in this eBook also appears in the print version of this title: 0-07-136148-0. 

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit
of the trademark owner, with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps. 

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales pro-
motions, or for use in corporate training programs. For more information, please contact George
Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069. 

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors
reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted
under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not
decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be terminated if you
fail to comply with these terms. 

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUAR-
ANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF
OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMA-
TION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the func-
tions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inac-
curacy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work.
Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the
work, even if any of them has been advised of the possibility of such damages. This limitation of lia-
bility shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort
or otherwise.

 abc
McGraw-Hill 

0-07-139539-3 

DOI: 10.1036/0071395393



To Tony, and Samuel, and Tim
from Uncle Stan



vii

Contents

Preface xi
Acknowledgments xiii

Chapter 1. Algebra, Functions, Graphs, and Vectors 1

Sets 3
Denumerable Number Sets 6
Non-denumerable Number Sets 12
Properties of Operations 21
Miscellaneous Principles 23
Inequalities 32
Simple Equations 35
Simultaneous Linear Equations 38
The Cartesian Plane 44
The Polar Plane 57
Other Coordinate Systems 64
Vector Algebra 78

Chapter 2. Geometry, Trigonometry, Logarithms, and Exponential
Functions 99

Principles of Geometry 101
Formulas for Plane Figures 118
Formulas for Solids 130
Circular Functions 139
Circular Identities 149
Hyperbolic Functions 161
Hyperbolic Identities 169
Logarithms 174
Exponential Functions 180

Chapter 3. Applied Mathematics, Calculus, and Differential Equations 187

Scientific Notation 189
Boolean Algebra 195

Copyright 2001 The McGraw-Hill Companies, Inc.   Click Here for Terms of Use.



viii Contents

Propositional Logic 200
Sequences and Series 204
Scalar Differentiation 218
Vector Differentiation 230
Scalar Integration 234
Vector Integration 240
Differential Equations 244
Probability 249

Chapter 4. Electricity, Electronics, and Communications 261

Direct Current 263
Alternating Current 273
Magnetism, Inductors, and Transformers 286
Resonance, Filters, and Noise 292
Semiconductor Diodes 306
Bipolar Transistors 308
Field-effect Transistors 315
Electron Tubes 318
Electromagnetic Fields 326
RF Transmission Lines 327
Antennas 335
Bridge Circuits 339
Null Networks 344

Chapter 5. Physical and Chemical Data 347

Units 349
Classical Mechanics 358
Fluidics and Thermodynamics 376
Waves and Optics 387
Relativistic and Atomic Physics 403
Chemical Elements 410
Chemical Compounds and Mixtures 460

Chapter 6. Data Tables 471

Prefix Multipliers 478
SI Unit Conversions 479
Electrical Unit Conversions 480
Magnetic Unit Conversions 482
Miscellaneous Unit Conversions 483
Constants 485
Chemical Symbols and Atomic Numbers 486
Derivatives 489
Indefinite Integrals 490
Fourier Series 496
Fourier Transforms 497



Contents ix

Orthogonal Polynomials 499
Laplace Transforms 500
Lowercase Greek Alphabet 503
Uppercase Greek Alphabet 505
General Mathematical Symbols 506
Number Conversion 511
Flip-flops 516
Logic Gates 517
Wire Gauge 518
Current-carrying Capacity 520
Resistivity 521
Permeability 521
Solder Data 522
Radio Spectrum 522
Schematic Symbols 523
TV Broadcast Channels 536
Q Signals 538
Ten-code Signals 541
Morse Code 549
Phonetic Alphabet 550
Time Conversion 551

Suggested Additional References 553

Index 555



xi

Preface

This is a comprehensive sourcebook of definitions, formulas, units,
constants, symbols, conversion factors, and miscellaneous data for use
by engineers, technicians, hobbyists, and students. Some information
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definitions, formulas, and data.

Feedback concerning this edition is welcome, and suggestions for
future editions are encouraged.
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This chapter contains data pertaining to sets, functions, arith-
metic, real-number algebra, complex-number algebra, coordi-
nate systems, graphs, and vector algebra.

Sets

A set is a collection or group of definable unique elements or
members. Set elements commonly include:

� Points on a line
� Instants in time
� Coordinates in a plane
� Coordinates in space
� Coordinates on a display
� Curves on a graph or display
� Physical objects
� Chemical elements
� Digital logic states
� Locations in memory or storage
� Data bits, bytes, or characters
� Subscribers to a network
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If an element a is contained in a set A, then this fact is written
as:

a � A

Set intersection

The intersection of two sets A and B, written A � B, is the set
C such that the following statement is true for every element
x:

x � C ↔ x � A and x � B

Set union

The union of two sets A and B, written A � B, is the set C such
that the following statement is true for every element x:

x � C ↔ x � A or x � B

Subsets

A set A is a subset of a set B, written A � B, if and only if the
following holds true:

x � A → x � B

Proper subsets

A set A is a proper subset of a set B, written A � B, if and only
if both the following hold true:

x � A → x � B

A � B

Disjoint sets

Two sets A and B are disjoint if and only if all three of the
following conditions are met:
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A � �

B � �

A � B � �

where � denotes the empty set, also called the null set.

Coincident sets

Two non-empty sets A and B are coincident if and only if, for
all elements x:

x � A ↔ x � B

Cardinality

The cardinality of a set is defined as the number of elements in
the set. The null set has cardinality zero. The set of people in
a city, stars in a galaxy, or atoms in the observable universe has
finite cardinality.

Most commonly used number sets have infinite cardinality.
Some number sets have cardinality that is denumerable; such
a set can be completely defined in terms of a sequence, even
though there might be infinitely many elements in the set.
Some infinite number sets have non-denumerable cardinality;
such a set cannot be completely defined in terms of a sequence.

One-one function

Let A and B be two non-empty sets. Suppose that for every
member of A, a function f assigns some member of B. Let a1

and a2 be members of A. Let b1 and b2 be members of B, such
that f assigns f(a1) � b1 and f(a2) � b2. Then f is a one-one
function if and only if:

a � a → b � b1 2 1 2

Onto function

A function f from set A to set B is an onto function if and only
if:

b � B → f(a) � b for some a � A
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One-to-one correspondence

A function f from set A to set B is a one-to-one correspondence,
also known as a bijection, if and only if f is both one-one and
onto.

Domain and range

Let f be a function from set A to set B. Let A� be the set of all
elements a in A for which there is a corresponding element b
in B. Then A� is called the domain of f.

Let f be a function from set A to set B. Let B� be the set of
all elements b in B for which there is a corresponding element
a in A. Then B� is called the range of f.

Continuity

A function f is continuous if and only if, for every point a in the
domain A� and for every point b � f(a) in the range B�, f(x)
approaches b as x approaches a. If this requirement is not met
for every point a in A�, then the function f is discontinuous, and
each point or value ad in A� for which the requirement is not
met is called a discontinuity.

Denumerable Number Sets

Numbers are abstract expressions of physical or mathematical
quantity, extent, or magnitude. Mathematicians define numbers
in terms of set cardinality. Numerals are the written symbols
that are mutually agreed upon to represent numbers.

Natural numbers

The natural numbers, also called the whole numbers or counting
numbers, are built up from a starting point of zero. Zero is de-
fined as the null set �. On this basis:

0 � �

1 � {�}
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Figure 1.1 The natural numbers can be depicted
as points on a ray.

2 � {0, 1} � {�,{�}}

3 � {0, 1, 2} � {�,{�},{�,{�}}}

↓
Etc.

The set of natural numbers is denoted N, and is commonly ex-
pressed as:

N � {0, 1, 2, 3, ..., n, ...}

In some instances, zero is not included, so the set of natural
numbers is defined as:

N � {1, 2, 3, 4, ..., n, ...}

Natural numbers can be expressed as points along a geometric
ray or half-line, where quantity is directly proportional to dis-
placement (Fig. 1.1).

Decimal numbers

The decimal number system is also called modulo 10, base 10,
or radix 10. Digits are representable by the set {0, 1, 2, 3, 4, 5,
6, 7, 8, 9}. The digit immediately to the left of the radix point
is multiplied by 100, or 1. The next digit to the left is multiplied
by 101, or 10. The power of 10 increases as you move further to
the left. The first digit to the right of the radix point is multi-
plied by a factor of 10�1, or 1/10. The next digit to the right is
multiplied by 10�2, or 1/100. This continues as you go further
to the right. Once the process of multiplying each digit is com-
pleted, the resulting values are added. This is what is repre-
sented when you write a decimal number. For example,

3 2 1 02704.53816 � 2 � 10 � 7 � 10 � 0 � 10 � 4 � 10
�1 �2 �3 �4 �5� 5 � 10 � 3 � 10 � 8 � 10 � 1 � 10 � 6 � 10
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Binary numbers

The binary number system is a method of expressing numbers
using only the digits 0 and 1. It is sometimes called base 2, radix
2, or modulo 2. The digit immediately to the left of the radix
point is the ‘‘ones’’ digit. The next digit to the left is a ‘‘twos’’
digit; after that comes the ‘‘fours’’ digit. Moving further to the
left, the digits represent 8, 16, 32, 64, etc., doubling every time.
To the right of the radix point, the value of each digit is cut in
half again and again, that is, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64,
etc.

Consider an example using the decimal number 94:

0 194 � (4 � 10 ) � (9 � 10 )

In the binary number system the breakdown is:

0 1 21011110 � 0 � 2 � 1 � 2 � 1 � 2
3 4 5 6� 1 � 2 � 1 � 2 � 0 � 2 � 1 � 2

When you work with a computer or calculator, you give it a
decimal number that is converted into binary form. The com-
puter or calculator does its operations with zeros and ones.
When the process is complete, the machine converts the result
back into decimal form for display.

Octal and hexadecimal numbers

Another numbering scheme is the octal number system, which
has eight symbols, or 23. Every digit is an element of the set
{0, 1, 2, 3, 4, 5, 6, 7}. Counting thus proceeds from 7 directly to
10, from 77 directly to 100, from 777 directly to 1000, etc.

Yet another scheme, commonly used in computer practice, is
the hexadecimal number system, so named because it has 16
symbols, or 24. These digits are the usual 0 through 9 plus six
more, represented by A through F, the first six letters of the
alphabet. The digit set is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D,
E, F}.

Integers

The set of natural numbers can be duplicated and inverted to
form an identical, mirror-image set:



Algebra, Functions, Graphs, and Vectors 9

Figure 1.2 The integers can be depicted as points
on a horizontal line.

�N � {0, �1, �2, �3, ..., �n, ...}

The union of this set with the set of natural numbers produces
the set of integers, commonly denoted Z:

Z � N � �N

� {..., �n, ..., �2, �1, 0, 1, 2, ..., n, ...}

Integers can be expressed as points along a line, where quantity
is directly proportional to displacement (Fig. 1.2). In the illus-
tration, integers correspond to points where hash marks cross
the line. The set of natural numbers is a proper subset of the
set of integers:

N � Z

For any number a, if a � N, then a � Z. This is formally writ-
ten:

∀a: a � N → a � Z

The converse of this is not true. There are elements of Z
(namely, the negative integers) that are not elements of N.

Operations with integers

Several arithmetic operations are defined for pairs of integers.
The basic operations include addition, subtraction, multiplica-
tion, division, and exponentiation.

Addition is symbolized by a cross or plus sign (�). The result
of this operation is a sum. On the number line of Fig. 1.2, sums
are depicted by moving to the right. For example, to illustrate
the fact that �2 � 5 � 3, start at the point corresponding to
�2, then move to the right 5 units, ending up at the point cor-
responding to 3. In general, to illustrate a � b � c, start at the
point corresponding to a, then move to the right b units, ending
up at the point corresponding to c.
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Subtraction is symbolized by a dash (�). The result of this
operation is a difference. On the number line of Fig. 1.2, differ-
ences are depicted by moving to the left. For example, to illus-
trate the fact that 3 � 5 � �2, start at the point corresponding
to 3, then move to the left 5 units, ending up at the point cor-
responding to �2. In general, to illustrate a � b � c, start at
the point corresponding to a, then move to the left b units, end-
ing up at the point corresponding to c.

Multiplication is symbolized by a tilted cross (�), a small dot
(�), or sometimes in the case of variables, by listing the numbers
one after the other (for example, ab). Occasionally an asterisk
(*) is used. The result of this operation is a product. On the
number line of Fig. 1.2, products are depicted by moving away
from the zero point, or origin, either toward the left or toward
the right depending on the signs of the numbers involved. To
illustrate a � b � c, start at the origin, then move away from
the origin a units b times. If a and b are both positive or both
negative, move toward the right; if a and b have opposite sign,
move toward the left. The finishing point corresponds to c.

The preceding three operations are closed over the set of
integers. This means that if a and b are integers, then a � b,
a � b, and a � b are integers.

Division, also called the ratio operation, is symbolized by a
forward slash (/) or a dash with dots above and below (�). Oc-
casionally it is symbolized by a colon (:). The result of this op-
eration is a quotient or ratio. On the number line of Fig. 1.2,
quotients are depicted by moving in toward the zero point, or
origin, either toward the left or toward the right depending on
the signs of the numbers involved. To illustrate a /b � c, it is
easiest to envision the product b � c � a performed ‘‘back-
wards.’’ But division, unlike addition, subtraction, or multipli-
cation, is not closed over the set of integers. If a and b are in-
tegers, then a /b might be an integer, but this is not necessarily
the case. The ratio operation gives rise to a more inclusive, but
still denumerable, set of numbers. The quotient a /b is not de-
fined if b � 0.

Exponentiation, also called raising to a power, is symbolized
by a superscript numeral. The result of this operation is known
as a power. If a is an integer and b is a positive integer, then
ab is the result of multiplying a by itself b times.
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Rational numbers

A rational number (the term derives from the word ratio) is a
quotient of two integers, where the denominator is positive. The
standard form for a rational number r is:

r � a /b

Any such quotient is a rational number. The set of all possible
such quotients encompasses the entire set of rational numbers,
denoted Q. Thus,

Q � {x�x � a /b}

where a � Z, b � Z, and b � 0. The set of integers is a proper
subset of the set of rational numbers. Thus natural numbers,
integers, and rational numbers have the following relationship:

N � Z � Q

Decimal expansions

Rational numbers can be denoted in decimal form as an integer
followed by a period (radix point) followed by a sequence of
digits. (See Decimal numbers above for more details concern-
ing this notation.) The digits following the radix point always
exist in either of two forms:

� A finite string of digits beyond which all digits are zero
� An infinite string of digits that repeat in cycles

Examples of the first type of rational number, known as termi-
nating decimals, are:

3/4 � 0.750000 ...

�9/8 � � 1.1250000 ...

Examples of the second type of rational number, known as non-
terminating, repeating decimals, are:

1/3 � 0.33333 ...

�123/999 � �0.123123123 ...
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Non-denumerable Number Sets

The elements of non-denumerable number sets cannot be listed.
In fact, it is impossible to even define the elements of such a
set by writing down a list or sequence.

Irrational numbers

An irrational number is a number that cannot be expressed as
the ratio of two integers. Examples of irrational numbers in-
clude:

� The length of the diagonal of a square that is one unit on
each edge

� The circumference-to-diameter ratio of a circle

All irrational numbers share the property of being inexpressible
in decimal form. When an attempt is made to express such a
number in this form, the result is a nonterminating, nonrepeat-
ing decimal. No matter how many digits are specified to the
right of the radix point, the expression is only an approximation
of the actual value of the number. The set of irrational numbers
can be denoted S. This set is entirely disjoint from the set of
rational numbers:

S � Q � �

Real numbers

The set of real numbers, denoted R, is the union of the sets of
rational and irrational numbers:

R � Q � S

For practical purposes, R can be depicted as the set of points
on a continuous geometric line, as shown in Fig. 1.2. In theo-
retical mathematics, the assertion that the points on a geomet-
ric line correspond one-to-one with the real numbers is known
as the Continuum Hypothesis. The real numbers are related to
rational numbers, integers, and natural numbers as follows:

N � Z � Q � R

The operations addition, subtraction, multiplication, division,
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and exponentiation can be defined over the set of real numbers.
If # represents any one of these operations and x and y are
elements of R with y � 0, then:

x # y � R

The symbol ℵ0 (aleph-null or aleph-nought) denotes the car-
dinality of the sets of natural numbers, integers, and rational
numbers. The cardinality of the real numbers is denoted ℵ1

(aleph-one). These ‘‘numbers’’ are called infinite cardinals or
transfinite cardinals. Around the year 1900, the German math-
ematician Georg Cantor proved that these two ‘‘numbers’’ are
not the same:

ℵ � ℵ1 0

This reflects the fact that the elements of N can be paired off
one-to-one with the elements of Z or Q, but not with the ele-
ments of S or R. Any attempt to pair off the elements of N and
S or N and R results in some elements of S or R being left over
without corresponding elements in N.

Imaginary numbers

The set of real numbers, and the operations defined above for
the integers, give rise to some expressions that do not behave
as real numbers. The best known example is the number i such
that i � i � �1. No real number satisfies this equation. This
entity i is known as the unit imaginary number. Sometimes it
is denoted j. If i is used to represent the unit imaginary number
common in mathematics, then the real number x is written be-
fore i. Examples: 3i, �5i, 2.787i. If j is used to represent the
unit imaginary number common in engineering, then x is writ-
ten after j if x � 0, and x is written after �j if x � 0. Examples:
j3, �j5, j2.787.

The set J of all real-number multiples of i or j is the set of
imaginary numbers:

J � {k�k � jx} � {k�k � xi}

For practical purposes, the set J can be depicted along a number
line corresponding one-to-one with the real number line. How-
ever, by convention, the imaginary number line is oriented ver-
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Figure 1.3 The imaginary
numbers can be depicted as
points on a vertical line.

tically (Fig. 1.3). The sets of imaginary and real numbers have
one element in common. That element is zero:

0i � j0 � 0

J � R � {0}

Complex numbers

A complex number consists of the sum of two separate compo-
nents, a real number and an imaginary number. The general
form for a complex number c is:

c � a � bi � a � jb

The set of complex numbers is denoted C. Individual complex
numbers can be depicted as points on a coordinate plane as
shown in Fig. 1.4. According to the Continuum Hypothesis, the
points on the so-called complex-number plane exist in a one-to-
one correspondence with the elements of C.

The set of imaginary numbers, J, is a proper subset of C. The
set of real numbers, R, is also a proper subset of C. Formally:

J � C

N � Z � Q � R � C
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Figure 1.4 The complex numbers can be depicted as points on a
plane.

Equality of complex numbers

Let x1 and x2 be complex numbers such that:

x � a � jb1 1 1

x � a � jb2 2 2

Then the two complex numbers are said to be equal if and only
if their real and imaginary components are both equal:

x � x ↔ a � a & b � b1 2 1 2 1 2

Operations with complex numbers

The operations of addition, subtraction, multiplication, division,
and exponentiation are defined for the set of complex numbers
as follows.
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Complex addition: The real and imaginary parts are summed
independently. The general formula for the sum of two complex
numbers is:

(a � jb) � (c � jd) � (a � c) � j(b � d)

Complex subtraction: The second complex number is multi-
plied by �1, and then the resulting two numbers are summed.
The general formula for the difference of two complex numbers
is:

(a � jb) � (c � jd) � (a � jb) � (�1(c � jd))

� (a � c) � j(b � d)

Complex multiplication: The product of two complex numbers
consists of a sum of four individual products. The general for-
mula for the product of two complex numbers is:

2(a � jb)(c � jd) � ac � jad � jbc � j bd

� (ac � bd) � j(ad � bc)

Complex division: This formula can be derived from the for-
mula for complex multiplication. The general formula for the
quotient of two complex numbers is:

(a � jb)/(c � jd)

2 2 2 2� (ac � bd)/(c � d ) � j(bc � ad)/(c � d )

The above formula assumes that the denominator is not zero.
For complex division to be defined, the following must hold:

c � jd � 0 � j0

Complex exponentiation to a positive integer: This is symbol-
ized by a superscript numeral. The result of this operation is
known as a power. If a � jb is an integer and c is a positive
integer, then (a � jb)c is the result of multiplying (a � jb) by
itself c times.
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Complex conjugates

Let x1 and x2 be complex numbers such that:

x � a � jb1

x � a � jb2

Then x1 and x2 are said to be complex conjugates, and the fol-
lowing equations hold true:

x � x � 2a1 2

2 2x x � a � b1 2

Complex vectors

Complex numbers can be represented as vectors in rectangular
coordinates. This gives each complex number a unique magni-
tude and direction. The magnitude is the distance of the point
a � jb from the origin 0 � j0. The direction is the angle of the
vector, measured counterclockwise from the �a axis. This is
shown in Fig. 1.5.

The absolute value or magnitude of a complex number a � jb,
written �a � jb�, is the length of its vector in the complex plane,
measured from the origin (0,0) to the point (a,b). In the case of
a pure real number a � j0:

�a � j0� � a if a � 0

�a � j0� � �a if a � 0

In the case of a pure imaginary number 0 � jb:

�0 � jb� � b if b � 0

�0 � jb� � �b if b � 0

If a complex number is neither pure real nor pure imaginary,
the absolute value is the length of the vector as shown in Fig.
1.6. The general formula is:

2 2 1 /2�a � jb� � (a � b )
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Figure 1.5 Magnitude and direction of a vector in the complex plane.

Polar form of complex numbers

Consider the polar plane defined in terms of radius r and angle
� counterclockwise from the �a axis as shown in Fig. 1.7. The
expression for a Cartesian vector (a,b), representing the com-
plex number a � jb in polar coordinates (r,�) is obtained by
these conversions:

2 2 1 /2r � (a � b )

�1� � tan (b /a)

The expression for a polar vector (r,�) in Cartesian coordinates
(a,b) is obtained by these conversions:

a � r cos �

b � r sin �

Therefore the following equation holds:
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Figure 1.6 Calculation of absolute value (vector length) of a com-
plex number.

a � jb � r cos � � j(r sin �)

� r(cos � � j sin �)

The value of r, corresponding to the magnitude of the vector, is
called the modulus. The angle �, corresponding to the direction
of the vector, is called the amplitude.

Product of complex numbers in polar
form

Let x1 and x2 be complex numbers in polar form such that:

x � r (cos � � j sin � )1 1 1 1

x � r (cos � � j sin � )2 2 2 2

Then the product of the complex numbers in polar form is given
by the following formula:

x x � r r (cos (� � � ) � j sin (� � � ))1 2 1 2 1 2 1 2
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Figure 1.7 Polar form of a complex number.

Quotient of complex numbers in polar
form

Let x1 and x2 be complex numbers in polar form such that:

x � r (cos � � j sin � )1 1 1 1

x � r (cos � � j sin � )2 2 2 2

Then the quotient of the complex numbers in polar form is given
by the following formula:

x /x � (r /r )(cos (� � � ) � j sin (� � � ))1 2 1 2 1 2 1 2

De Moivre’s Theorem

Let x be a complex number in polar form:

x � r(cos � � j sin �)

Then x raised to any real-number power p is given by the fol-
lowing formula:

p px � r (cos p� � j sin p�)
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Properties of Operations

Several properties, also called laws, are recognized as valid for
the operations of addition, subtraction, multiplication, and di-
vision for all real, imaginary, and complex numbers.

Additive identity

When 0 is added to any real number a, the sum is always equal
to a. When 0 � j0 is added to any complex number a � jb, the
sum is always equal to a � jb. The numbers 0 and 0 � j0 are
additive identity elements:

a � 0 � a

(a � jb) � (0 � j0) � a � jb

Multiplicative identity

When any real number a is multiplied by 1, the product is al-
ways equal to a. When any complex number a � jb is multiplied
by 1 � j0, the product is always equal to a � jb. The numbers
1 and 1 � j0 are multiplicative identity elements:

a � 1 � a

(a � jb) � (1 � j0) � a � jb

Additive inverse

For every real number a, there exists a unique real number �a
such that the sum of the two is equal to 0. For every complex
number a � jb, there exists a unique complex number �a � jb
such that the sum of the two is equal to 0 � j0. Formally:

a � (�a) � 0

(a � jb) � (�a � jb) � 0 � j0

Multiplicative inverse

For every nonzero real number a, there exists a unique real
number 1/a such that the product of the two is equal to 1. For
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every complex number a � jb except 0 � j0, there exists a
unique complex number a /(a2 � b2) � jb /(a2 � b2) such that the
product of the two is equal to 1 � j0. Formally:

a � (1/a) � 1

2 2 2 2(a � jb) � (a /(a � b ) � jb /(a � b )) � 1 � j0

Commutativity of addition

When summing any two real or complex numbers, it does not
matter in which order the sum is performed. For all real num-
bers a and b, and for all complex numbers a � jb and c � jd,
the following equations hold:

a � b � b � a

(a � jb) � (c � jd) � (c � jd) � (a � jb)

Commutativity of multiplication

When multiplying any two real or complex numbers, it does
not matter in which order the product is performed. For all
real numbers a and b, and for all complex numbers a � jb and
c � jd, the following equations hold:

ab � ba

(a � jb)(c � jd) � (c � jd)(a � jb)

Associativity of addition

When adding any three real or complex numbers, it does not
matter how the addends are grouped. For all real numbers a1,
a2, and a3, and for all complex numbers a1 � jb1, a2 � jb2, and
a3 � jb3, the following equations hold:

(a � a ) � a � a � (a � a )1 2 3 1 2 3

((a � jb ) � (a � jb )) � (a � jb )1 1 2 2 3 3

� (a � jb ) � ((a � jb ) � (a � jb ))1 1 2 2 3 3
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Associativity of multiplication

When multiplying any three real or complex numbers, it does
not matter how the multiplicands are grouped. For all real
numbers a1, a2, and a3, and for all complex numbers a1 � jb1,
a2 � jb2, and a3 � jb3, the following equations hold:

(a a )a � a (a a )1 2 3 1 2 3

((a � jb )(a � jb ))(a � jb ) � (a � jb )((a � jb )(a � jb ))1 1 2 2 3 3 1 1 2 2 3 3

Distributivity of multiplication over
addition

For all real numbers a1, a2, and a3, and for all complex numbers
a1 � jb1, a2 � jb2, and a3 � jb3, the following equations hold:

a (a � a ) � a a � a a1 2 3 1 2 1 3

(a � jb )((a � jb ) � (a � jb ))1 1 2 2 3 3

� (a � jb )(a � jb ) � (a � jb )(a � jb )1 1 2 2 1 1 3 3

Miscellaneous Principles

The following rules and definitions apply to arithmetic opera-
tions for real and complex numbers, with the constraint that no
denominator be equal to zero, and no denominator contain any
variable that can attain a value that renders the denominator
equal to zero.

Zero numerator

For all nonzero real numbers a and all complex numbers
a � jb such that a � jb � 0 � j0:

0/a � 0

0/(a � jb) � 0 � j0
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Zero denominator

For all real numbers a and all complex numbers a � jb:

a /0 is undefined

a /(0 � j0) is undefined

(a � jb)/0 is undefined

(a � jb)/(0 � j0) is undefined

Multiplication by zero

For all real numbers a and all complex numbers a � jb:

a � 0 � 0

(a � jb) � 0 � 0 � j0

Zeroth power

For all real numbers a and all complex numbers a � jb:

0a � 1

0(a � jb) � 1 � j0

Positive integer roots

If x is a real or complex number and x is multiplied by itself n
times to obtain another real or complex number y, then x is
defined as an nth root of y:

nx � y

1 /nx � y

Factorial

If n is a natural number and n � 1, the value of n! (n factorial)
is the product of all natural numbers less than or equal to n:

n! � 1 � 2 � 3 � 4 � ... � n
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Arithmetic mean

Let a1, a2, a3, ..., an be real numbers. Then the arithmetic mean,
denoted mA, also known as the average, of a1, a2, a3, ..., and an
is given by the following formula:

m � (a � a � a � ... � a )/nA 1 2 3 n

Geometric mean

Let a1, a2, a3, ..., an be positive reals. Then the geometric mean,
denoted mG, of a1, a2, a3, ..., and an is given by the following
formula:

1 /nm � (a a a ... a )G 1 2 3 n

Arithmetic interpolation

Let y � f(x) represent a function in which the value of a quan-
tity y depends on the value of an independent variable x. Let y1

and y2 represent two values of the function such that:

y � f(x )1 1

y � f(x )2 2

Then the value ya of the function at a point xm midway between
x1 and x2 can be estimated as follows via arithmetic interpola-
tion:

y � (y � y ) / 2 � ( f(x ) � f(x ))/2a 1 2 1 2

Geometric interpolation

Let y � f(x) represent a function in which the value of a quan-
tity y depends on the value of an independent variable x. Let y1

and y2 represent two values of the function such that:

y � f(x )1 1

y � f(x )2 2
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Then the value yg of the function at a point xm midway between
x1 and x2 can be estimated as follows via geometric interpolation:

1 /2 1 /2y � (y y ) � ( f(x ) � f(x ))g 1 2 1 2

Product of signs

When numbers with plus and minus signs are multiplied, the
following rules apply:

(�)(�) � (�)

(�)(�) � (�)

(�)(�) � (�)

(�)(�) � (�)

n(�) � (�) if n is even

n(�) � (�) if n is odd

Quotient of signs

When numbers with plus and minus signs are divided, the fol-
lowing rules apply:

(�)/(�) � (�)

(�)/(�) � (�)

(�)/(�) � (�)

(�)/(�) � (�)

Power of signs

When numbers with signs are raised to a positive integer power
n, the following rules apply:

n(�) � (�)

n(�) � (�) if n is odd

n(�) � (�) if n is even
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Unit imaginary quadrature

The following equations hold for the unit imaginary number j:

2j � �1

3j � �j

4j � 1

5j � j

�

n (n�4)j � j

�

Reciprocal of reciprocal

For all nonzero real numbers a and all complex numbers
a � jb, such that a � jb � 0 � j0:

1/(1/a) � a

1/(1/(a � jb)) � a � jb

Product of sums

For all real or complex numbers w, x, y, and z:

(w � x)(y � z) � wy � wz � xy � xz

Distributivity of division over addition

For all real or complex numbers x, y, and z, where x � 0 � j0:

(xy � xz)/x � xy /x � xz /x � x � y

Cross multiplication

For all real or complex numbers w, x, y, and z, where x � 0 �
j0 and z � 0 � j0, the following statement is logically valid:

w /x � y /z ↔ wz � xy
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Reciprocal of product

For all real or complex numbers x and y, where x � 0 � j0 and
y � 0 � j0:

1/(xy) � (1/x)(1/y)

Reciprocal of quotient

For all real or complex numbers x and y, where x � 0 � j0 and
y � 0 � j0:

1/(x /y) � y /x

Product of quotients

For all real or complex numbers w, x, y, and z, where x �
0 � j0 and z � 0 � j0:

(w /x)(y /z) � (wy)/(xz)

Quotient of products

For all real or complex numbers w, x, y, and z, where yz �
0 � j0:

(wx)/(yz) � (w /y)(x /z) � (w /z)(x /y)

Quotient of quotients

For all real or complex numbers w, x, y, and z, where x �
0 � j0, y � 0 � j0, and z � 0 � j0:

(w /x)/(y /z) � (w /x)(z /y) � (w /y)(z /x) � (wz)/(xy)

Sum of quotients (common
denominator)

For all real or complex numbers x, y, and z, where z � 0 � j0:

x /z � y /z � (x � y)/z

Sum of quotients (general)

For all real or complex numbers w, x, y, and z, where x �
0 � j0 and z � 0 � j0:

w /x � y /z � (wz � xy)/(xz)
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Prime numbers

Let p be a natural number. Suppose ab � p, where a and b are
natural numbers. Further suppose that the following statement
is true for all a and b:

a � 1 & b � p

or

a � p & b � 1

Then p is defined as a prime number. In other words, p is prime
if and only if its only two factors are 1 and itself.

Prime factors

Let n be a natural number. Then there is a unique, increasing
set of prime numbers {p1, p2, p3, ... pm} such that the following
equation, also known as the Fundamental Theorem of Arith-
metic, holds true:

p � p � p � ... � p � n1 2 3 m

Rational-number powers

Let x be a real or complex number. Let y be a rational number
such that y � a /b, where a and b are integers and b � 0. Then
the following formula holds:

y a /b a 1 /b 1 /b ax � x � (x ) � (x )

Negative powers

Let x be a complex number where x � 0 � j0. Let y be a rational
number. Then the following formula holds:

�y y yx � (1/x) � 1/x

Sum of powers

Let x be a complex number. Let y and z be rational numbers.
Then the following formula holds:

(y�z) y zx � x x
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Difference of powers

Let x be a complex number where x � 0 � j0. Let y and z be
rational numbers. Then the following formula holds:

(y�z) y zx � x /x

Product of powers

Let x be a complex number. Let y and z be rational numbers.
Then the following formula holds:

yz y z z yx � (x ) � (x )

Quotient of powers

Let x be a complex number. Let y and z be rational numbers,
with the constraint that z � 0. Then the following formula
holds:

y /z y 1 /z 1 /z yx � (x ) � (x )

Powers of sum

Let x and y be complex numbers. Then the following formulas
hold:

2 2 2(x � y) � x � 2xy � y

3 3 2 2 3(x � y) � x � 3x y � 3xy � y

4 4 3 2 2 3 4(x � y) � x � 4x y � 6x y � 4xy � y

Powers of difference

Let x and y be complex numbers. Then the following formulas
hold:

2 2 2(x � y) � x � 2xy � y

3 3 2 2 3(x � y) � x � 3x y � 3xy � y

4 4 3 2 2 3 4(x � y) � x � 4x y � 6x y � 4xy � y
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Binomial formula

Let x and y be complex numbers, and let n be a natural number
with n � 1. Then the value of (x � y)n is equal to the sum of
the following expressions:

nx

�

(n�1)nx y

�

(n�2) 2(n(n � 1)/2!) x y

�

(n�3) 3(n(n � 1)(n � 2)/3!) x y

�

�

�

ny

Precedence of operations

When various operations appear in an expression and that ex-
pression is to be simplified, perform the operations in the fol-
lowing sequence:

� Simplify all expressions within parentheses from the inside
out.

� Perform all exponential operations, proceeding from left to
right.

� Perform all products and quotients, proceeding from left to
right.

� Perform all sums and differences, proceeding from left to
right.

The following are examples of this process, in which the order
of the numerals and operations is the same in each case, but
the groupings differ.
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2 2((2 � 3)(�3 � 1) )

2 2(5 � (�4) )

2(5 � 16)

280

6400

2 2((2 � 3 � (�3) � 1) )

2 2((2 � (�9) � 1) )

2 2(�8 )

264

4096

Inequalities

The following general rules and definitions apply to inequali-
ties, with the constraint that denominators of quotients must
be nonzero because division by zero is undefined.

Transitivity

Inequalities are transitive when they all have the same sense.
For all real numbers x, y, and z, the following statements are
logically valid:

(x � y) & (y � z) → x � z

(x � y) & (y � z) → x � z

(x � y) & (y � z) → x � z

(x � y) & (y � z) → x � z

Corollaries to transitivity

For all real numbers x, y, and z, the following statements are
logically valid:
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(x � y) & (y � z) → x � z

(x � y) & (y � z) → x � z

(x � y) & (y � z) → x � z

(x � y) & (y � z) → x � z

Additive inverses

For all real numbers x and y, the following statements are log-
ically valid:

x � y → �x � �y

x � y → �x � �y

x � y → �x � �y

x � y → �x � �y

Reciprocals of positive reals

For all real numbers x and y where x � 0 and y � 0, the follow-
ing statements are logically valid:

x � y → 1/x � 1/y

x � y → 1/x � 1/y

x � y → 1/x � 1/y

x � y → 1/x � 1/y

Reciprocals of negative reals

For all real numbers x and y where x � 0 and y � 0, the follow-
ing statements are logically valid:

x � y → 1/x � 1/y

x � y → 1/x � 1/y

x � y → 1/x � 1/y

x � y → 1/x � 1/y
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Powers of positive reals

For all positive real numbers x, and for all natural numbers n
where n � 1, the following statements are logically valid:

(n�1) n0 � x � 1 → 0 � x � x

(n�1) nx � 1 → x � x � 1

(n�1) nx � 1 → x � x � 1

Even powers of negative reals

For all negative real numbers x, and for all even natural num-
bers n, the following statements are logically valid:

(n�2) nx � �1 → x � x � 1

(n�2) nx � �1 → x � x � 1

(n�2) n�1 � x � 0 → 0 � x � x

Odd powers of negative reals

For all negative real numbers x, and for all odd natural numbers
n, the following statements are logically valid:

(n�2) nx � �1 → x � x � �1

(n�2) nx � �1 → x � x � �1

(n�2) n�1 � x � 0 → 0 � x � x

Addition property

For all real numbers x, y, and z, the following statements are
logically valid:

x � y → x � z � y � z

x � y → x � z � y � z

x � y → x � z � y � z

x � y → x � z � y � z
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Multiplication property

For all real numbers x, y, and z, the following statements are
logically valid:

x � y & z � 0 → xz � yz

x � y & z � 0 → xz � yz

x � y & z � 0 → xz � yz

x � y & z � 0 → xz � yz

x � y & z � 0 → xz � yz

x � y & z � 0 → xz � yz

x � y & z � 0 → xz � yz

x � y & z � 0 → xz � yz

Complex-number magnitudes

Inequalities for complex numbers are defined according to their
real-number relative absolute values (magnitudes). Let a1 � jb1

and a2 � jb2 be complex numbers. Then the following state-
ments are logically valid:

2 2 2 2�a � jb � � �a � jb � ↔ a � b � a � b1 1 2 2 1 1 2 2

2 2 2 2�a � jb � � �a � jb � ↔ a � b � a � b1 1 2 2 1 1 2 2

2 2 2 2�a � jb � � �a � jb � ↔ a � b � a � b1 1 2 2 1 1 2 2

2 2 2 2�a � jb � � �a � jb � ↔ a � b � a � b1 1 2 2 1 1 2 2

Simple Equations

The objective of solving a single-variable equation is to get it
into a form where the expression on the left-hand side of the
equality symbol is exactly equal to the variable being sought
(for example, x), and a defined expression not containing that
variable is on the right.
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Elementary rules

There are several ways in which an equation in one variable
can be manipulated to obtain a solution, assuming a solution
exists. Any and all of the aforementioned principles can be ap-
plied toward this result. In addition, the following rules can be
applied in any order, and any number of times.
Addition of a quantity to each side: Any defined constant,

variable, or expression can be added to both sides of an equa-
tion, and the result is equivalent to the original equation.
Subtraction of a quantity from each side: Any defined con-

stant, variable, or expression can be subtracted from both sides
of an equation, and the result is equivalent to the original equa-
tion.
Multiplication of each side by a quantity: Both sides of an

equation can be multiplied by a defined constant, variable, or
expression, and the result is equivalent to the original equation.
Division of each side by a quantity: Both sides of an equation

can be divided by a nonzero constant, by a variable that cannot
attain a value of zero, or by an expression that cannot attain a
value of zero over the range of its variable(s), and the result is
equivalent to the original equation.

Basic equation in one variable

Consider an equation of the following form:

ax � b � cx � d

where a, b, c, and d are complex numbers, and a � c. This
equation is solved as follows:

ax � b � cx � d

ax � cx � d � b

ax � cx � d � b

(a � c)x � d � b

x � (d � b)/(a � c)
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Factored equations in one variable

Consider an equation of the following factored form:

(x � a )(x � a )(x � a ) ��� (x � a ) � 01 2 3 n

where a1, a2, a3, ..., an are complex numbers. Then the solutions
of this equation are:

x � a1 1

x � a2 2

x � a3 3

�

x � an n

Quadratic formula

Consider a quadratic equation in standard form:

2ax � bx � c � 0

where a, b, and c are complex numbers, with a � 0 � j0. The
solutions of this equation can be found according to the follow-
ing formula:

2 1 /2x � (�b � (b � 4ac) )/2a

Discriminant

Consider a quadratic equation in standard form:

2ax � bx � c � 0

where a, b, and c are real numbers. Define the discriminant, d,
as follows:

2d � b � 4ac

Let the solutions to the quadratic equation be denoted as fol-
lows:
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x � a � jb1 1 1

x � a � jb2 2 2

Then the following statements hold true:

d � 0 → b � 0 & b � 0 & a � a1 2 1 2

d � 0 → b � 0 & b � 0 & a � a1 2 1 2

d � 0 → a � a & b � �b1 2 1 2

These three principles are often stated as follows:

� If d � 0, then there are two distinct real-number solutions.
� If d � 0, then there is a single real-number solution.
� If d � 0, then there are two complex-conjugate solutions.

Simultaneous Equations

A linear equation in n variables takes the following form:

a x � a x � a x � � � � � a x � a � 01 1 2 2 3 3 n n 0

where x1 through xn represent the variables, and a0 through an
represent constants, usually real numbers.

Existence of solutions

Suppose there exists a set of m linear equations in n variables.
If m � n, there exists no unique solution to the set of equations.
If m � n or m � n, there might exist a unique solution, but not
necessarily. When solving sets of linear equations, it is first nec-
essary to see if the number of equations is greater than or equal
to the number of variables. If this is the case, any of the follow-
ing methods can be used in an attempt to find a solution. If
there exists no unique solution, this fact will become apparent
as the steps are carried out.

2�2 substitution method

Consider the following set of two linear equations in two vari-
ables:
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a x � b y � c � 01 1 1

a x � b y � c � 02 2 2

where a1, a2, b1, b2, c1, and c2 are real-number constants, and
the variables are represented by x and y. The substitution
method of solving these equations consists in performing either
of the following sequences of steps. If a1 � 0, use Sequence A.
If a1 � 0, use Sequence B. (If both a1 � 0 and a2 � 0, the set
of equations is in fact a pair of equations in terms of a single
variable, and the following steps are irrelevant.)
Sequence A: First, solve the first equation for x in terms of y:

a x � b y � c � 01 1 1

a x � �b y � c1 1 1

x � (�b y � c )/a1 1 1

Next, substitute the above-derived solution for x in place of x in
the second equation, obtaining:

a (�b y � c )/a � b y � c � 02 1 1 1 2 2

Solve this single-variable equation for y, using the previously
outlined rules for solving single-variable equations. Assuming
a solution exists, it can be substituted for y in either of the
original equations, deriving a single-variable equation in terms
of x. Solve for x, using the previously outlined rules for solving
single-variable equations.
Sequence B: Because a1 � 0, the first equation has only one

variable, and is in the following form:

b y � c � 01 1

Solve this equation for y:

b y � �c1 1

y � �c /b1 1

This can be substituted for y in the second equation, obtaining:



40 Chapter One

a x � b (�c /b ) � c � 02 2 1 1 2

a x � b (c /b ) � c � 02 2 1 1 2

a x � b (c /b ) � c2 2 1 1 2

x � (b (c /b ) � c )/a2 1 1 2 2

2�2 addition method

Consider the following set of two linear equations in two vari-
ables:

a x � b y � c � 01 1 1

a x � b y � c � 02 2 2

where a1, a2, b1, b2, c1, and c2 are real-number constants, and
the variables are represented by x and y. The addition method
of solving these equations consists in performing two separate
and independent steps:

� Multiply one or both equations through by constant values to
cancel out the coefficients of x, and then solve for y.

� Multiply one or both equations through by constant values to
cancel out the coefficients of y, and then solve for x.

The scheme for solving for y begins by multiplying the first
equation through by �a2, and the second equation through by
a1, and then adding the two resulting equations:

�a a x � a b y � a c � 02 1 2 1 2 1

a a x � a b y � a c � 01 2 1 2 1 2

(a b � a b )y � a c � a c � 01 2 2 1 1 2 2 1

Next, add a2c1 to each side, obtaining:

(a b � a b )y � a c � a c1 2 2 1 1 2 2 1

Next, subtract a1c2 from each side, obtaining:

(a b � a b )y � a c � a c1 2 2 1 2 1 1 2

Finally, divide through by a1b2 � a2b1, obtaining:
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y � (a c � a c )/(a b � a b )2 1 1 2 1 2 2 1

For this to be valid, the denominator must be nonzero; that is,
a1b2 � a2b1. (If it turns out that a1b2 � a2b1, then there are not
two distinct solutions to the set of equations.)

The process of solving for x is similar. Consider again the orig-
inal set of simultaneous linear equations:

a x � b y � c � 01 1 1

a x � b y � c � 02 2 2

Multiply the first equation through by �b2, and the second
equation through by b1, and then add the two resulting equa-
tions:

�a b x � b b y � b c � 01 2 1 2 2 1

a b x � b b y � b c � 02 1 1 2 1 2

(a b � a b )x � b c � b c � 02 1 1 2 1 2 2 1

Next, add b2c1 to each side, obtaining:

(a b � a b )x � b c � b c2 1 1 2 1 2 2 1

Next, subtract b1c2 from each side, obtaining:

(a b � a b )x � b c � b c2 1 1 2 2 1 1 2

Finally, divide through by b2c1 � b1c2, obtaining:

x � (b c � b c )/(a b � a b )2 1 1 2 2 1 1 2

For this to be valid, the denominator must be nonzero; that is,
a1b2 � a2b1. (If it turns out that a1b2 � a2b1, then there are not
two distinct solutions to the set of equations.)

Solving n�n sets of linear equations

In general, matrices are used for solving sets of equations larger
than 2�2, because the above mentioned methods become too
complex. Linear algebra, also known as matrix algebra, uses
rules similar to those of the addition method described above.
Please consult college-level texts on linear algebra for details.
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Solving 2�2 general equations

When one or both of the equations in a 2�2 set are nonlinear,
the substitution method generally works best. Two examples
follow.
Example A. Consider the following two equations:

2y � x � 2x � 1

y � �x � 1

The first equation is quadratic, and the second equation is lin-
ear. Either equation can be directly substituted into the other
to solve for x. Substituting the second equation into the first
yields this result.

2�x � 1 � x � 2x � 1

This equation can be put into standard quadratic form as fol-
lows:

2�x � 1 � x � 2x � 1

2�x � x � 2x

20 � x � 3x

2x � 3x � 0 � 0

Using the quadratic formula, let a � 1, b � 3, and c � 0:

2 1 /2x � (�3 � (3 � 4 � 1 � 0) )/(2 � 1)

1 /2x � (�3 � (9 � 0) )/2

x � (�3 � 3)/2

x � �3 and x � 01 2

These values can be substituted into the original linear equa-
tion to obtain the y-values:

y � 3 � 1 and y � 0 � 11 2

y � 4 and y � 11 2

The solutions are therefore:
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(x ,y ) � (�3,4)1 1

(x ,y ) � (0,1)2 2

Example B. Consider the following two equations:

2y � �2x � 4x � 5

y � �2x � 5

The first equation is quadratic, and the second equation is
linear. Either equation can be directly substituted into the other
to solve for x. Substituting the second equation into the first
yields this result.

2�2x � 5 � �2x � 4x � 5

This equation can be put into standard quadratic form as fol-
lows:

2�2x � 5 � �2x � 4x � 5

2�2x � �2x � 4x

20 � �2x � 6x

2�2x � 6x � 0 � 0

Using the quadratic formula, let a � �2, b � 6, and c � 0:

2 1 /2x � (�6 � (6 � 4 � �2 � 0) )/(2 � �2)

1 /2x � (�6 � (36 � 0) )/�4

x � (�6 � 6)/�4

x � 3 and x � 01 2

These values can be substituted into the original linear
equation to obtain the y-values:

y � �2 � 3 � 5 and y � �2 � 0 � 51 2

y � �11 and y � �51 2

The solutions are therefore:
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Figure 1.8 The Cartesian coordinate plane.

(x ,y ) � (3,�11)1 1

(x ,y ) � (0,�5)2 2

The Cartesian Plane

The most common two-dimensional coordinate system is the
Cartesian plane (Fig. 1.8), also called rectangular coordinates or
the xy-plane. The independent variable is plotted along the x
axis or abscissa; the dependent variable is plotted along the y
axis or ordinate. The scales of the abscissa and ordinate are
normally linear, although the divisions need not represent the
same increments. Variations of this scheme include the semilog
graph, in which one scale is linear and the other scale is loga-
rithmic, and the log-log graph, in which both scales are loga-
rithmic.

Slope-intercept form of linear equation

A linear equation in two variables can be rearranged from stan-
dard form to a conveniently graphable form as follows:
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ax � by � c � 0

ax � by � �c

by � �ax � c

y � (�a /b)x � (c /b)

where a, b, and c are real-number constants, and b � 0. Such
an equation appears as a straight line when graphed on the
Cartesian plane. Let �x represent a small change in the value
of x on such a graph; let �y represent the change in the value
of y that results from this change in x. The ratio �y /�x is defined
as the slope of the line, and is commonly symbolized m. Let k
represent the y-value of the point where the line crosses the
ordinate. Then the following equations hold:

m � �a /b

k � �c /b

Thus, the linear equation can be rewritten in slope-intercept
form as:

y � mx � k

To plot a graph of a linear equation in Cartesian coordinates,
proceed as follows:

� Convert the equation to slope-intercept form.
� Plot the point y � k and x � 0.
� Move to the right by n units on the graph.
� Move upward by mn units (or downward by �mn units).
� Plot the resulting point y � mn � k.
� Connect the two points with a straight line.

Figures 1.9 and 1.10 illustrate the following linear equations as
graphed in slope-intercept form:

y � 5x � 3

y � �x � 2

Note that a positive slope indicates that the graph ‘‘ramps up-
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Figure 1.9 Slope-intercept plot of the equation y �
5x � 3.

Figure 1.10 Slope-intercept plot of the equation
y � �x � 2.
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ward’’ and a negative slope indicates that the graph ‘‘ramps
downward’’ as the point moves toward the right. A zero slope
indicates a horizontal line. The slope of a vertical line is unde-
fined.

Point-slope form of linear equation

It is not always convenient to plot a graph of a line based on
the y-intercept point because the relevant part of the graph
might lie at a great distance from that point. In this situation,
the point-slope form of a linear equation can be used. This form
is based on the slope m of the line and the coordinates of a
known point (x0,y0):

y � y � m(x � x )0 0

To plot a graph of a linear equation using the point-slope
method, proceed as follows:

� Convert the equation to point-slope form
� Determine a point (x0,y0) by ‘‘plugging in’’ values
� Plot (x0,y0) on the plane
� Move to the right by n units on the graph
� Move upward by mn units (or downward my �mn units)
� Plot the resulting point (x1,y1)
� Connect the points (x0,y0) and (x1,y1) with a straight line

Figures 1.11 and 1.12 illustrate the following linear equations
as graphed in point-slope form for regions in the immediate vi-
cinity of points far removed from the origin:

y � 104 � 3(x � 72)

y � 55 � �2(x � 85)

Finding linear equation based on graph

Suppose the rectangular coordinates of two points P and Q are
known; suppose further that these two points lie along a
straight line (but not a vertical line). Let the coordinates of the
points be:
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Figure 1.11 Point-slope plot of the equation y � 104 �
3(x � 72).

P � (x ,y )p p

Q � (x ,y )q q

Then the slope m of the line is given by the either of the follow-
ing formulas:

m � (y � y )/(x � x )q p q p

m � (y � y )/(x � x )p q p q

The point-slope equation of the line can be determined based on
the known coordinates of P or Q. Therefore, either of the follow-
ing formulas represent the line:

y � y � m(x � x )p p

y � y � m(x � x )q q
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Figure 1.12 Point-slope plot of the equation y � 55 �
�2(x � 85).

Equation of parabola

The Cartesian-coordinate graph of a quadratic equation takes
the form of a parabola. Suppose the following equation is given:

2y � ax � bx � c

where a � 0. (If a � 0, then the equation is linear, not quad-
ratic.) To plot a graph of the above equation, first determine the
coordinates of the point (x0,y0) where:

x � �b /(2a)0

2y � c � b /(4a)0

This point represents the base point of the parabola; that is, the
point at which the curvature is sharpest, and at which the slope
of a line tangent to the curve is zero. Once this point is known,
find four more points by ‘‘plugging in’’ values of x somewhat
greater than and less than x0 and determining the correspond-
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ing y-values. These x-values, call them x�2, x�1, x1, and x2,
should be equally spaced on either side of x0, such that:

x � x � x � x � x�2 �1 0 1 2

x � x � x � x � x � x � x � x�1 �2 0 �1 1 0 2 1

This will yield five points that lie along the parabola, and that
are symmetrical relative to the axis of the curve. The graph can
then be inferred, provided that the points are judiciously cho-
sen. Some trial and error might be required. If a � 0, the pa-
rabola will open upward. If a � 0, the parabola will open down-
ward.
Example A. Consider the following formula:

2y � x � 2x � 1

The base point is:

x � �2/2 � �10

y � 1 � 4/4 � 1 � 1 � 00

�

(x ,y ) � (�1,0)0 0

This point is plotted first. Next, consider the following points:

x � x � 2 � �3�2 0

2y � (�3) � 2(�3) � 1 � 9 � 6 � 1 � 4�2

�

(x ,y ) � (�3,4)�2 �2

x � x � 1 � �2�1 0

2y � (�2) � 2(�2) � 1 � 4 � 4 � 1 � 1�1

�

(x ,y ) � (�2,1)�1 �1
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Figure 1.13 Plot of the parabola y � x2 � 2x � 1.

x � x � 1 � 01 0

2y � (0) � 2(0) � 1 � 0 � 0 � 1 � 11

�

(x ,y ) � (0,1)1 1

x � x � 2 � 12 0

2y � (1) � 2(1) � 1 � 1 � 2 � 1 � 42

�

(x ,y ) � (1,4)2 2

The five known points are plotted as shown in Fig. 1.13. From
these, the curve can be inferred.
Example B. Consider the following formula:

2y � �2x � 4x � 5

The base point is:
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x � �4/�4 � 10

y � �5 � 16/�8 � �5 � 2 � �30

�

(x ,y ) � (1,�3)0 0

This point is plotted first. Next, consider the following points:

x � x � 2 � �1�2 0

2y � �2(�1) � 4(�1) � 5 � �2 � 4 � 5 � �11�2

�

(x ,y ) � (�1,�11)�2 �2

x � x � 1 � 0�1 0

2y � �2(0) � 4(0) � 5 � �5�2

�

(x ,y ) � (0,�5)�1 �1

x � x � 1 � 21 0

2y � �2(2) � 4(2) � 5 � �8 � 8 � 5 � �5�2

�

(x ,y ) � (2,�5)1 1

x � x � 2 � 32 0

2y � �2(3) � 4(3) � 5 � �18 � 12 � 5 � �11�2

�

(x ,y ) � (3,�11)2 2

The five known points are plotted as shown in Fig. 1.14. From
these, the curve can be inferred.
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Figure 1.14 Plot of y � �2x2 � 4x � 5.

Equation of circle

The general form for the equation of a circle in the xy-plane is
given by the following formula:

2 2 2(x � x ) � (y � y ) � r0 0

where (x0,y0) represents the coordinates of the center of the cir-
cle, and r represents the radius. This is illustrated in Fig. 1.15.
In the special case where the circle is centered at the origin, the
formula becomes:

2 2 2x � y � r

Such a circle intersects the x axis at the points (r,0) and (�r,0);
it intersects the y axis at the points (0,r) and (0,�r). An even
more specific case is the so-called unit circle:

2 2x � y � 1

This curve intersects the x axis at the points (1,0) and (�1,0);
it also intersects the y axis at the points (0,1) and (0,�1). The
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Figure 1.15 Plot of (x � x0)2 � (y � y0)2 � r 2.

unit circle is the basis for the definitions of the circular trigo-
nometric functions.

Equation of ellipse

The general form for the equation of an ellipse in the xy-plane
is given by the following formula:

2 2 2 2(x � x ) /a � (y � y ) /b � 10 0

where (x0,y0) represents the coordinates of the center of the el-
lipse, a represents the distance from (x0,y0) to the curve as mea-
sured parallel to the x axis, and b represents the distance from
(x0,y0) to the curve as measured parallel to the y axis. This is
illustrated in Fig. 1.16. The values 2a and 2b represent the
lengths of the axes of the ellipse; the greater value is the length
of the major axis, and the lesser value is the length of theminor
axis. In the special case where the ellipse is centered at the
origin, the formula becomes:

2 2 2 2x /a � y /b � 1

Such an ellipse intersects the x axis at the points (a,0) and
(�a,0); it intersects the y axis at the points (0,b) and (0,�b).
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Figure 1.16 Plot of the ellipse (x � x0)2 /a2 �
(y � y0)2 /b2 � 1.

Equation of hyperbola

The general form for the equation of a hyperbola in the xy-plane
is given by the following formula:

2 2 2 2(x � x ) /a � (y � y ) /b � 10 0

where (x0,y0) represents the coordinates of the center of the hy-
perbola. Let D represent a rectangle whose center is at (x0,y0),
whose vertical edges are tangent to the hyperbola, and whose
vertices (corners) lie on the asymptotes of the hyperbola (Fig.
1.17). Then a represents the distance from (x0,y0) to D as mea-
sured parallel to the x axis, and b represents the distance from
(x0,y0) to D as measured parallel to the y axis. The values 2a
and 2b represent the lengths of the axes of the hyperbola; the
greater value is the length of the major axis, and the lesser
value is the length of the minor axis. In the special case where
the hyperbola is centered at the origin, the formula becomes:

2 2 2 2x /a � y /b � 1

An even more specific case is the so-called unit hyperbola, the
basis for the definitions of the hyperbolic trigonometric func-
tions:

2 2x � y � 1
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Figure 1.17 Plot of the hyperbola (x � x0)2 /a2 �
(y � y0)2 /b2 � 1.

Graphic solution of pairs of equations

The solutions of pairs of equations can be depicted by graphs.
Solutions appear as intersection points between the graphs of
the equations in question.
Example A. Refer to Example A from ‘‘Solving 2�2 general

equations’’ above:

2y � x � 2x � 1

y � �x � 1

These equations are graphed in Fig. 1.18. The line crosses the
parabola at two points, indicating that there are two solutions
of this set of simultaneous equations. The coordinates of the
points, corresponding to the solutions, are:

(x ,y ) � (�3,4)1 1

(x ,y ) � (0,1)2 2

Example B. Refer to Example B from ‘‘Solving 2�2 general
equations’’ above:
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Figure 1.18 Graphic depiction of solutions of y �
x2 � 2x � 1 and y � �x � 1.

2y � �2x � 4x � 5

y � �2x � 5

These equations are graphed in Fig. 1.19. The line crosses the
parabola at two points, indicating that there are two solutions
of this set of simultaneous equations. The coordinates of the
points, corresponding to the solutions, are:

(x ,y ) � (3,�11)1 1

(x ,y ) � (0,�5)2 2

The Polar Plane

The polar coordinate plane is an alternative way of expressing
the positions of points, and of graphing equations and relations,
in two dimensions. The independent variable is plotted as the
distance or radius r from the origin, and the dependent variable
is plotted as an angle � relative to a reference axis. Figure 1.20
shows the polar system generally used in mathematics, physical
science, and engineering; � is in radians and is plotted counter-
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Figure 1.19 Graphic depiction of solutions of y �
�2x2 � 4x � 5 and y � �2x � 5.

clockwise from the ray extending to the right. In the sections
that follow, this scheme is used. Figure 1.21 shows the polar
system employed in wireless communications, broadcasting, lo-
cation, and navigation; � is in degrees and is plotted clockwise
from the ray extending upwards (corresponding to geographic
north).

Cartesian vs. polar coordinates

Let (x0,y0) represent the coordinates of a point in the Cartesian
plane. The coordinates (r0,�0) of the same point in the polar
plane are given by:

2 2 1 /2r � (x � y )0 0 0

�1� � tan (y /x )0 0 0

Polar coordinates are converted to Cartesian coordinates by the
following formulas:
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Figure 1.20 The polar plane for mathematics and physi-
cal sciences.

x � r cos �0 0 0

y � r sin �0 0 0

Equation of circle

The equation of a circle centered at the origin in the polar plane
is given by the following formula:

r � a

where a is a real number and a � 0. This is illustrated in Fig.
1.22.

The general form for the equation of a circle passing through
the origin, and centered at the point (r0,�0) in the polar plane is
given by:

r � 2r cos (� � � )0 0

This is illustrated in Fig. 1.23.
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Figure 1.21 The polar plane for wireless engineering, broad-
cast engineering, navigation, and location.

Equation of ellipse centered at origin

The equation of an ellipse centered at the origin in the polar
plane is given by the following formula:

2 2 2 2 1 /2r � ab /(a sin � � b cos �)

where a represents the distance from the origin to the curve as
measured along the ‘‘horizontal’’ ray � � 0, and b represents the
distance from the origin to the curve as measured along the
‘‘vertical’’ ray � � � /2. This is illustrated in Fig. 1.24. The val-
ues 2a and 2b represent the lengths of the axes of the ellipse;
the greater value is the length of the major axis, and the lesser
value is the length of the minor axis.

Equation of hyperbola centered at
origin

The equation of a hyperbola centered at the origin in the polar
plane is given by the following formula:
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Figure 1.22 Polar graph of circle centered at the origin.

2 2 2 2 1 /2r � ab /(a sin � � b cos �)

Let D represent a rectangle whose center is at the origin, whose
vertical edges are tangent to the hyperbola, and whose vertices
(corners) lie on the asymptotes of the hyperbola (Fig. 1.25). Then
a represents the distance from the origin to D as measured
along the ‘‘horizontal’’ ray � � 0, and b represents the distance
from the origin to D as measured along the ‘‘vertical’’ ray � �
� /2. The values 2a and 2b represent the lengths of the axes of
the hyperbola; the greater value is the length of the major axis,
and the lesser value is the length of the minor axis.

Equation of lemniscate

The equation of a lemniscate centered at the origin in the polar
plane is given by the following formula:

1 /2r � a (cos 2�)

where a is a real number and a � 0. This is illustrated in Fig.
1.26. The area A of each loop of the figure is given by:

2A � a
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Figure 1.23 Polar graph of circle passing through the or-
igin.

Equation of three-leafed rose

The equation of a three-leafed rose centered at the origin in the
polar plane is given by either of the following two formulas:

r � a cos 3�

r � a sin 3�

where a is a real number and a � 0. The cosine curve is illus-
trated in Fig. 1.27A; the sine curve is illustrated in Fig. 1.27B.

Equation of four-leafed rose

The equation of a four-leafed rose centered at the origin in the
polar plane is given by either of the following two formulas:
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Figure 1.24 Polar graph of ellipse centered at the origin.

r � a cos 2�

r � a sin 2�

where a is a real number and a � 0. The cosine curve is illus-
trated in Fig. 1.28A; the sine curve is illustrated in Fig. 1.28B.

Equation of spiral

The equation of a spiral centered at the origin in the polar plane
is given by the following formula:

r � a�

where a is a real number and a � 0. This is illustrated in Fig.
1.29.

Equation of cardioid

The equation of a cardioid centered at the origin in the polar
plane is given by the following formula:
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Figure 1.25 Polar graph of hyperbola centered at the or-
igin.

r � 2a (1 � cos �)

where a is a real number and a � 0. This is illustrated in Fig.
1.30.

Other Coordinate Systems

The following paragraphs describe other coordinate systems
that are used in scientific and engineering applications.

Latitude and longitude

Latitude and longitude angles uniquely define the positions of
points on the surface of a sphere or in the sky. The scheme for
geographic locations on the earth is illustrated in Fig. 1.31A.
The polar axis connects two specified points at antipodes on the
sphere. These points are assigned latitude � � 90� (north pole)
and � � �90� (south pole). The equatorial axis runs outward
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Figure 1.26 Polar graph of lemniscate centered at the or-
igin.

from the center of the sphere at a 90� angle to the polar axis.
It is assigned longitude 	 � 0�. Latitude � is measured posi-
tively (north) and negatively (south) relative to the plane of the
equator. Longitude 	 is measured counterclockwise (east) and
clockwise (west) relative to the equatorial axis. The angles are
restricted as follows:

�90� � � � 90�

�180� � 	 � 180�

On the earth’s surface, the half-circle connecting the 0� longi-
tude line with the poles passes through Greenwich, England
and is known as the Greenwich meridian or the prime meridian.
Longitude angles are defined with respect to this meridian.

Celestial coordinates

Celestial latitude and celestial longitude are extensions of the
earth’s latitude and longitude into the heavens. Figure 1.31A,

Administrator
ferret
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Figure 1.27A Polar graph of three-leafed rose r �
a cos 3� centered at the origin.

the same set of coordinates used for geographic latitude and
longitude, applies to this system. An object whose celestial lat-
itude and longitude coordinates are (�,	) appears at the zenith
in the sky from the point on the earth’s surface whose latitude
and longitude coordinates are (�,	).
Declination and right ascension define the positions of objects

in the sky relative to the stars. Figure 1.31B applies to this
system. Declination (�) is identical to celestial latitude. Right
ascension (	) is measured eastward from the vernal equinox
(the position of the sun in the heavens at the moment spring
begins in the northern hemisphere). The angles are restricted
as follows:

�90� � � � 90�

0� � 	 � 360�
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Figure 1.27B Polar graph of three-leafed rose r �
a sin 3� centered at the origin.

Cartesian three-space

An extension of rectangular coordinates into three dimensions
is Cartesian three-space (Fig. 1.32), also called xyz-space. Inde-
pendent variables are usually plotted along the x and y axes;
the dependent variable is plotted along the z axis. The scales
are normally linear, although the divisions need not represent
the same increments. Variations of this scheme can employ log-
arithmic graduations for one, two, or all three scales.

Cylindrical coordinates

Figure 1.33 shows a system of cylindrical coordinates for spec-
ifying the positions of points in three-space. Given a set of Car-
tesian coordinates or xyz-space, an angle 	 is defined in the xy-
plane, measured in radians counterclockwise from the x axis.
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Figure 1.28A Polar graph of four-leafed rose r � a cos 2�
centered at the origin.

Given a point P in space, consider its projection P� onto the xy-
plane. The position of P is defined by the ordered triple (	,r,z)
such that:

	 � angle between P� and the x axis in the xy-plane

r � distance (radius) from P to the origin

z � distance (altitude) of P above the xy-plane

Spherical coordinates

Figure 1.34 shows a system of spherical coordinates for defining
points in space. This scheme is identical to the system for dec-
lination and right ascension, with the addition of a radius vector
r representing the distance of point P from the origin. The lo-
cation of a point P is defined by the ordered triple (�,	,r) such
that:
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Figure 1.28B Polar graph of four-leafed rose r � a sin 2�
centered at the origin.

� � declination of P

	 � right ascension of P

r � distance (radius) from P to the origin

In this example, angles are specified in degrees; alternatively
they can be expressed in radians. There are several variations
of this system, all of which are commonly called spherical co-
ordinates.

Semilog (x-linear) coordinates

Figure 1.35 shows semilogarithmic (semilog) coordinates for de-
fining points in a portion of the xy-plane. The independent-
variable axis is linear, and the dependent-variable axis is log-
arithmic. The numerical values that can be depicted on the y
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Figure 1.29 Polar graph of spiral centered at the origin.

axis are restricted to one sign or the other, positive or negative.
In this example, functions can be plotted with domains and
ranges as follows:

�1 � x � 1

0.1 � y � 10

The y axis in Fig. 1.35 spans two orders of magnitude (powers
of 10). The span could be larger or smaller than this, but in any
case the y values cannot extend to zero. In the example shown
here, only portions of the first and second quadrants of the xy-
plane can be depicted. If the y axis were inverted (its values
made negative), the resulting plane would cover corresponding
parts of the third and fourth quadrants.

Semilog (y-linear) coordinates

Figure 1.36 shows semilog coordinates for defining points in a
portion of the xy-plane. The independent-variable axis is loga-
rithmic, and the dependent-variable axis is linear. The numer-
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Figure 1.30 Polar graph of cardioid centered at the ori-
gin.

ical values that can be depicted on the x axis are restricted to
one sign or the other (positive or negative). In this example,
functions can be plotted with domains and ranges as follows:

0.1 � x � 10

�1 � y � 1

The x axis in Fig. 1.36 spans two orders of magnitude (powers
of 10). The span could be larger or smaller, but in any case the
x values cannot extend to zero. In the example shown here, only
portions of the first and fourth quadrants of the xy-plane can be
depicted. If the x axis were inverted (its values made negative),
the resulting plane would cover corresponding parts of the sec-
ond and third quadrants.

Log-log coordinates

Figure 1.37 shows log-log coordinates for defining points in a
portion of the xy-plane. Both axes are logarithmic. The numer-
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Figure 1.31A Scheme for latitude and longitude.

ical values that can be depicted on either axis are restricted to
one sign or the other, positive or negative. In this example, func-
tions can be plotted with domains and ranges as follows:

0.1 � x � 10

0.1 � y � 10

The axes in Fig. 1.37 span two orders of magnitude (powers of
10). The span of either axis could be larger or smaller, but in
any case the values cannot extend to zero. In the example
shown here, only a portion of the first quadrant of the xy-plane
can be depicted. By inverting the signs of one or both axes, cor-
responding portions of any of the other three quadrants can be
covered.

Geometric xy-coordinates

Figure 1.38 shows an xy-coordinate system on which both scales
are graduated geometrically. The points corresponding to 1 on
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Figure 1.31B Scheme for declination and right ascension.

Figure 1.32 Cartesian three-space, also called xyz-space.
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Figure 1.33 Cylindrical coordinates for defining points in
three-space.

Figure 1.34 Spherical coordinates for defining points in three-space.
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Figure 1.35 Semilog xy-plane with linear x axis and
logarithmic y axis.

Figure 1.36 Semilog xy-plane with logarithmic x axis
and linear y axis.
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Figure 1.37 Log-log xy-plane.

Figure 1.38 Geometric xy-plane.
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Figure 1.39 Geometric polar plane.

the axes are halfway between the origin and the positive outer
ends, which are labeled �	. The points corresponding to �1 on
the axes are halfway between the origin and the negative outer
ends, which are labeled �	. Succeeding integer points are
placed halfway between previous integers (next closest to zero)
and the outer ends. The result of this scheme is that the entire
coordinate xy-plane is depicted within a finite open square.

The domain and/or range scales of this coordinate system can
be expanded or compressed by multiplying all the values on
either axis or both axes by a constant. This allows various re-
lations and functions to be plotted, minimizing distortion in par-
ticular regions of interest. Distortion relative to the Cartesian
(conventional rectangular) xy-plane is greatest near the periph-
ery, and is least near the origin.

Geometric polar plane

Figure 1.39 shows a polar plane on which the radial scale is
graduated geometrically. The point corresponding to 1 on the r
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Figure 1.40 Vectors in the xy-plane.

axis is halfway between the origin and the outer periphery,
which is labeled 	. Succeeding integer points are placed halfway
between previous integer points and the outer periphery. The
result of this scheme is that the entire polar coordinate polar
plane is depicted within a finite open circle.

The radial scale of this coordinate system can be expanded or
compressed by multiplying all the values on the r axis by a
constant. This allows various relations and functions to be plot-
ted, minimizing distortion in particular regions of interest. Dis-
tortion relative to the conventional polar coordinate plane is
greatest near the periphery, and is least near the origin.

Vector Algebra

A vector is a mathematical expression for a quantity exhibiting
two independently variable properties: magnitude and direc-
tion.

Vectors in the xy-plane

In the xy-plane, vectors a and b can be denoted as rays from
the origin (0,0) to points (xa,ya) and (xb,yb) as shown in Fig. 1.40.

The magnitude of a, written �a�, is given by:



Algebra, Functions, Graphs, and Vectors 79

2 2 1 /2�a� � (x � y )a a

The direction of a, written dir a, is the angle �a that a nonzero
vector a subtends counterclockwise from the positive x axis:

�1dir a � � � arctan (y /x ) � tan (y /x )a a a a a

By convention, the following restrictions hold:

0 � � � 360 for � in degreesa a

0 � � � 2� for � in radiansa a

The sum of vectors a and b is:

a � b � ((x � x ),(y � y ))a b a b

This sum can be found geometrically by constructing a
parallelogram with a and b as adjacent sides; then a � b is the
diagonal of this parallelogram.

The dot product, also known as the scalar product and written
a • b, of vectors a and b is a real number given by the formula:

a • b � x x � y ya b a b

The cross product, also known as the vector product and writ-
ten a � b, of vectors a and b is a vector perpendicular to the
plane containing a and b. Let � be the angle between vectors a
and b, as measured in the plane containing them both. The
magnitude of a � b is given by the formula:

�a � b� � �a� �b� sin �

If the direction angle �b is greater than the direction angle �a

(as shown in Fig. 1.40), then a � b points toward the observer.
If �b � �a, then a � b points away from the observer.

Vectors in the Polar Plane

In the polar coordinate plane, vectors a and b can be denoted
as rays from the origin (0,0) to points (ra,�a) and (rb,�b) as shown
in Fig. 1.41.
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Figure 1.41 Vectors in the polar plane.

The magnitude and direction of vector a in the polar coordi-
nate plane are defined directly:

�a� � ra

dir a � �a

By convention, the following restrictions hold:

r � 0

0 � � � 360 for � in degreesa a

0 � � � 2� for � in radiansa a

The sum of a and b is best found by converting into
rectangular (xy-plane) coordinates, adding the vectors according
to the formula for the xy-plane, and then converting the resul-
tant back to polar coordinates. To convert vector a from polar
to rectangular coordinates, these formulas apply:
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x � r cos �a a a

y � r sin �a a a

To convert vector a from rectangular coordinates to polar co-
ordinates, these formulas apply:

2 2 1 /2r � (x � y )a a a

�1� � arctan (y /x ) � tan (y /x )a a a a a

Let ra be the radius of vector a, and rb be the radius of vector
b in the polar plane. Then the dot product of a and b is given
by:

a • b � �a� �b� cos (� � � )b a

� r r cos (� � � )a b b a

The cross product of a and b is perpendicular to the polar
plane. Its magnitude is given by:

�a � b� � �a� �b� sin (� � � )b a

� r r sin (� � � )a b b a

If �b � �a (as is the case in Fig. 1.41), then a � b points toward
the observer. If �b � �a, then a � b points away from the ob-
server.

Vectors in xyz-space

In rectangular xyz-space, vectors a and b can be denoted as rays
from the origin (0,0,0) to points (xa,ya,za) and (xb,yb,zb) as shown
in Fig. 1.42. The magnitude of a, written �a�, is given by:

2 2 2 1 /2�a� � (x � y � z )a a a

The direction of a is denoted by measuring the angles �x, �y,
and �z that the vector a subtends relative to the positive x, y,
and z axes respectively (Fig. 1.43). These angles, expressed in
radians as an ordered triple (�x,�y,�z), are the direction angles
of a. Often the cosines of these angles are specified. These are
the direction cosines of a:
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Figure 1.42 Vectors in xyz-space. This is a perspective
drawing, so the vector-addition parallelogram appears dis-
torted.

Figure 1.43 Direction angles of a vector in xyz-space.
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dir a � (
,�,�)


 � cos �x

� � cos �y

� � cos �z

The sum of vectors a and b is:

a � b � ((x � x ),(y � y ),(z � z ))a b a b a b

This sum can, as in the two-dimensional case, be found geo-
metrically by constructing a parallelogram with a and b as
adjacent sides. The sum a � b is the diagonal.

The dot product a • b of two vectors a and b in xyz-space is
a real number given by the formula:

a • b � x x � y y � z za b a b a b

The cross product a � b of vectors a and b in xyz-space is a
vector perpendicular to the plane P containing both a and b,
and whose magnitude is given by the formula:

�a � b� � �a� �b� sin � ,ab

where �ab is the smaller angle between a and b as measured in
P. Vector a � b is perpendicular to P. If a and b are observed
from some point on a line perpendicular to P and intersecting
P at the origin, and �ab is expressed counterclockwise from a to
b, then a � b points toward the observer. If a and b are ob-
served from some point on a line perpendicular to P and inter-
secting P at the origin, and �ab is expressed clockwise from a to
b, then a � b points away from the observer.

Standard and nonstandard form

In most discussions, vectors are expressed as rays whose origins
coincide with the origins of the coordinate systems in which
they are denoted. This is the standard form of a vector. In stan-
dard form, a vector can be depicted as an ordered set of coor-
dinates such as (x,y,z) � (3,�5,5) or (r,�) � (10,� /4). In rectan-
gular coordinates, the origin of a vector does not have to coincide
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Figure 1.44 Standard and nonstandard forms of a vector in the
xy-plane.

with the origin of the coordinate system, but it is customary to
place it there unless there is a reason to place it elsewhere.
In the xy-plane. In two-dimensional Cartesian coordinates,

suppose that the end points of a vector a� are P1 and P2, defined
as follows:

P � (x ,y )1 1 1

P � (x ,y )2 2 2

where (x1,y1) represents the origin of the vector; that is, the
direction of the vector is from P1 to P2. Then the standard form
of a�, denoted a, is defined by point P such that:

P � (x,y) � ((x � x ),(y � y ))2 1 2 1

The two vectors a and a� represent the same quantity. In effect
they are identical because they have the same magnitude and
the same direction, even though their end points differ (Fig.
1.44).
In the polar plane. Vectors in polar coordinates are always

denoted in standard form, that is, with their origins at (r,�) �
(0,0).
In xyz-space. In three-dimensional Cartesian coordinates,

suppose that the end points of a vector a� are P1 and P2, defined
as follows:
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Figure 1.45 Standard and nonstandard forms
of a vector in xyz-space.

P � (x ,y ,z )1 1 1 1

P � (x ,y ,z )2 2 2 2

where (x1,y1,z1) represents the origin of the vector; that is, the
direction of the vector is from P1 to P2. Then the standard form
of a�, call it a, is defined by point P such that:

P � (x,y,z) � ((x � x ),(y � y ),(z � z ))2 1 2 1 2 1

The two vectors a and a� represent the same quantity. In effect
they are identical, because they have the same magnitude and
the same direction, even though their end points differ (Fig.
1.45).

Equality of vectors

Two vectors a and b are equal (written a � b) if and only if
they have the same magnitude and direction. The end points of
the vectors need not coincide, unless both vectors are denoted
in standard form.
In the xy-plane. In two-dimensional Cartesian coordinates,

suppose the end points of vector a are (xa1,ya1) and (xa2,ya2). Sup-
pose the end points of vector b are (xb1,yb1) and (xb2,yb2). Further
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suppose that no two of these points coincide. Then a � b if and
only if the following equations hold:

x � x � x � xb1 b2 a1 a2

y � y � y � yb1 b2 a1 a2

In the polar plane. In two-dimensional polar coordinates, sup-
pose the end points of vector a are (0,0) and (ra,�a), and the end
points of vector b are (0,0) and (rb,�b). Then a � b if and only
if the following equations hold:

r � ra b

� � �a b

In xyz-space. In three-dimensional Cartesian coordinates,
suppose the end points of vector a are (xa1,ya1,za1) and (xa2,ya2,
za2). Suppose the end points of vector b are (xb1,yb1,zb1) and
(xb2,yb2,zb2). Further suppose that no two of these points coin-
cide. Then a � b if and only if the following equations hold:

x � x � x � xb1 b2 a1 a2

y � y � y � yb1 b2 a1 a2

z � z � z � zb1 b2 a1 a2

Multiplication of vector by scalar

When any vector is multiplied by a real-number scalar, the vec-
tor magnitude (length) is multiplied by that scalar. The direc-
tion (angle or angles) remain(s) unchanged if the scalar is pos-
itive, but is exactly reversed if the scalar is negative. The
following rules apply to vectors in standard form.
In the xy-plane. In two-dimensional Cartesian coordinates, let

vector a be defined by the coordinates (x,y) as shown in Fig.
1.46. Suppose a is multiplied by a positive real scalar k. Then
the following equation holds:

ka � k(x,y) � (kx,ky)

If a is multiplied by a negative real scalar �k, then:
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Figure 1.46 Multiplication of a vector by a
positive real scalar k, and by a negative
real scalar �k, in the xy-plane.

�ka � �k(x,y) � (�kx,�ky)

In the polar plane. In two-dimensional polar coordinates, let
vector a be defined by the coordinates (r,�) as shown in Fig.
1.47. Suppose a is multiplied by a positive real scalar k. Then
the following equation holds:

ka � (kr,�)

If a is multiplied by a negative real scalar �k, then:

�ka � (kr, ���)

The addition of � (180 angular degrees) to � reverses the direc-
tion of a. The same effect can be accomplished by adding or
subtracting any odd integer multiple of �.
In xyz-space. In three-dimensional Cartesian coordinates, let

vector a be defined by the coordinates (x,y,z) as shown in Fig.
1.48. Suppose a is multiplied by a positive real scalar k. Then
the following equation holds:

ka � k(x,y,z) � (kx,ky,kz)

If a is multiplied by a negative real scalar �k, then:
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Figure 1.47 Multiplication of a vector by a positive real
scalar k, and by a negative real scalar �k, in the polar
plane.

Figure 1.48 Multiplication of a vector by a positive real sca-
lar k, and by a negative real scalar �k, in xyz-space.
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�ka � �k(x,y,z) � (�kx,�ky,�kz)

Suppose the direction angles of a are represented by (�x,�y,�z).
Then the direction angles of ka are also given by (�x,�y,�z). The
direction angles of �ka are all increased by � (180 angular de-
grees), so they are represented by ((�x � �),(�y � �),(�z � �)).
The same effect can be accomplished by adding or subtracting
any odd integer multiple of � to each of these direction angles.

Commutativity of vector addition

When summing any two vectors, it does not matter in which
order the sum is performed. If a and b are vectors, then:

a � b � b � a

In the xy-plane. In two-dimensional Cartesian coordinates, let
vector a be defined by the coordinates (xa,ya), and let vector b
be defined by the coordinates (xb,yb). The commutativity of vec-
tor addition follows directly from the commutativity of the ad-
dition of real numbers:

a � b � (x ,y ) � (x ,y )a a b b

� ((x � x ),(y � y ))a b a b

and

b � a � (x ,y ) � (x ,y )b b a a

� ((x � x ),(y � y ))b a b a

� ((x � x ),(y � y ))a b a b

In the polar plane. The sum of a and b is best found by
converting into rectangular (xy-plane) coordinates, adding the
vectors according to the formula for the xy-plane, and then con-
verting the resultant back to polar coordinates.
In xyz-space. In three-dimensional Cartesian coordinates, let

vector a be defined by the coordinates (xa,ya,za), and let vector
b be defined by the coordinates (xb,yb,zb). The commutativity of
vector addition follows directly from the commutativity of the
addition of real numbers:



90 Chapter One

a � b � (x ,y ,z ) � (x ,y ,z )a a a b b b

� ((x � x ),(y � y ),(z � z ))a b a b a b

and

b � a � (x ,y ,z ) � (x ,y ,z )b b b a a a

� ((x � x ),(y � y ),(z � z ))b a b a b a

� ((x � x ),(y � y ),(z � z ))a b a b a b

Commutativity of vector-scalar
multiplication

When a vector is multiplied by a scalar, it does not matter in
which order the product is performed. If a is a vector and k is
a real number, then:

ka � ak

In the xy-plane. In two-dimensional Cartesian coordinates, let
vector a be defined by the coordinates (x,y). Let k be any real
number. The commutativity of vector-scalar multiplication fol-
lows directly from the commutativity of the multiplication of
real numbers:

ka � k(x,y) � (kx,ky)

and

ak � (x,y)k � (xk,yk) � (kx,ky)

In the polar plane. In two-dimensional polar coordinates, let
vector a be defined by the coordinates (r,�). Let k be a real num-
ber. If k � 0, then:

ka � k(r,�) � (kr,�)

and

ak � (r,�)k � (rk,�) � (kr,�)

If k � 0, then:
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ka � 0(r,�) � (0r,�) � (0,�) � zero vector

and

ak � (r,�)0 � (r0,�) � (0,�) � zero vector

Let �k be a negative real; that is, suppose that �k � 0. Then:

�ka � �k(r,�) � (kr, ���)

and

a(�k) � (r,�)(�k) � (r(�k),� � �) � (kr, ���)

In xyz-space. In three-dimensional Cartesian coordinates, let
vector a be defined by the coordinates (x,y,z). Let k be any real
number. The commutativity of vector-scalar multiplication fol-
lows directly from the commutativity of the multiplication of
real numbers:

ka � k(x,y,z) � (kx,ky,kz)

and

ak � (x,y,z)k � (xk,yk,zk) � (kx,ky,kz)

Commutativity of dot product

When the dot product of two vectors is found, it does not matter
in which order the vectors are placed. If a and b are vectors,
then:

a • b � b • a

In the xy-plane. In two-dimensional Cartesian coordinates, let
vector a be defined by the coordinates (xa,ya), and let vector b
be defined by the coordinates (xb,yb). The commutativity of the
dot product follows directly from the commutativity of the mul-
tiplication of real numbers:

a • b � x x � y ya b a b

and

b • a � x x � y yb a b a

� x x � y ya b a b

In the polar plane. In two-dimensional polar coordinates, let
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vector a be defined by (ra,�a); let vector b be defined by (rb,�b).
Note that, for any angles �a, �b, and 	, the following equations
hold:

(� � � ) � �(� � � )a b b a

cos (�	 ) � cos 	

The commutativity of the dot product is demonstrated as fol-
lows:

a • b � �a� �b� cos (� � � )b a

� r r cos (� � � )a b b a

and

b • a � �b� �a� cos (� � � )a b

� r r cos (� � � )b a a b

� r r cos �(� � � )a b b a

� r r cos (� � � )a b b a

In xyz-space. In three-dimensional Cartesian coordinates, let
vector a be defined by the coordinates (xa,ya,za), and let vector
b be defined by the coordinates (xb,yb,zb). The commutativity of
the dot product follows directly from the commutativity of the
multiplication of real numbers:

a • b � x x � y y � z za b a b a b

and

b • a � x x � y y � z zb a b a b a

� x x � y y � z za b a b a b

Negative commutativity of cross
product

Let � be the angle between two vectors a and b as measured in
the plane containing a and b. Suppose that � is measured by
rotating from a to b, in the direction such that the angle tra-
versed is less than or equal to � radians. The magnitude of the
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Figure 1.49 The vector b � a has the same magnitude as vector a �
b, but points in the opposite direction.

cross-product vector is independent of the order in which the
cross product is performed. This can be derived from the com-
mutativity of the multiplication of scalars:

�a � b� � �a� �b� sin �

and

�b � a� � �b� �a� sin � � �a� �b� sin �

The direction of b � a is opposite that of a � b. The sense of
these vectors, and their relationship with a and b, is shown in
the example of Fig. 1.49. From this, it follows that:

b � a � (�1)(a � b) � �(a � b)

Associativity of vector addition

When summing any three vectors, it makes no difference how
the sum is grouped. If a, b, and c are vectors, then:

(a � b) � c � a � (b � c)

In the xy-plane. In two-dimensional Cartesian coordinates, let
vector a be defined by the coordinates (xa,ya), let vector b be
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Figure 1.51 Sum of three vectors: a � (b � c).

Figure 1.50 Sum of three vectors: (a � b) � c.

defined by the coordinates (xb,yb), and let vector c be defined by
the coordinates (xc,yc). The associativity of vector addition fol-
lows directly from the associativity of the addition of real num-
bers:

(a � b) � c � ((x ,y ) � (x ,y )) � (x ,y )a a b b c c

� (((x � x ) � x ),((y � y ) � y ))a b c a b c

and

a � (b � c) � (x ,y ) � ((x ,y ) � (x ,y ))a a b b c c

� ((x � (x � x )),(y � (y � y )))a b c a b c

� (((x � x ) � x ),((y � y ) � y ))a b c a b c

This situation is shown in Figs. 1.50 and 1.51. Fig. 1.50 is an
illustration of summed vectors (a � b) � c; Fig. 1.51 is an il-
lustration of summed vectors a � (b � c).
In the polar plane. The sum of vectors is best found by con-

verting into rectangular (xy-plane) coordinates, adding the vec-
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tors according to the formula for the xy-plane, and then con-
verting the resultant back to polar coordinates.
In xyz-space. In three-dimensional Cartesian coordinates, let

vector a be defined by the coordinates (xa,ya,za), let vector b be
defined by the coordinates (xb,yb,zb), and let vector c be defined
by the coordinates (xc,yc,zc). The associativity of vector addition
follows directly from the associativity of the addition of real
numbers:

(a � b) � c � ((x ,y ,z ) � (x ,y ,z )) � (x ,y ,z )a a a b b b c c c

� (((x � x ) � x ),((y � y ) � y ),((z � z ) � z ))a b c a b c a b c

and

a � (b � c) � (x ,y ,z ) � ((x ,y ,z ) � (x ,y ,z ))a a a b b b c c c

� ((x � (x � x )),(y � (y � y )),(z � (z � z )))a b c a b c a b c

� (((x � x ) � x ),((y � y ) � y ),((z � z ) � z ))a b c a b c a b c

Associativity of vector-scalar
multiplication

Let a be a vector, and let k1 and k2 be real-number scalars. Then
the following equation holds:

k (k a) � (k k )a1 2 1 2

In the xy-plane. In two-dimensional Cartesian coordinates, let
vector a be defined by the coordinates (x,y). Let k1 and k2 be
real numbers. The associativity of vector-scalar multiplication
follows directly from the associativity of the multiplication of
real numbers:

k (k a) � k (k (x,y)) � k (k x,k y) � (k k x,k k y)1 2 1 2 1 2 2 1 2 1 2

and

(k k )a � ((k k )x,(k k )y) � (k k x,k k y)1 2 1 2 1 2 1 2 1 2

In the polar plane. The products in this case are best found
by converting into rectangular (xy-plane) coordinates, multiply-
ing the vector by scalars according to the formulas in the pre-
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ceding paragraph, and then converting the resultant back to
polar coordinates.
In xyz-space. In three-dimensional Cartesian coordinates, let

vector a be defined by the coordinates (x,y,z). Let k1 and k2 be
real numbers. The associativity of vector-scalar multiplication
follows directly from the associativity of the multiplication of
real numbers:

k (k a) � k (k (x,y,z)) � k (k x,k y,k z) � (k k x,k k y,k k z)1 2 1 2 1 2 2 2 1 2 1 2 1 2

and

(k k )a � ((k k )x,(k k )y,(k k )z) � (k k x,k k y,k k z)1 2 1 2 1 2 1 2 1 2 1 2 1 2

Other properties of vector operations

The following theorems apply to vectors and real-number sca-
lars in the xy-plane, in the polar plane, or in xyz-space.
Distributivity of scalar multiplication over scalar addition.

Let a be a vector, and let k1 and k2 be real-number scalars. Then
the following equations hold:

(k � k )a � k a � k a1 2 1 2

a(k � k ) � ak � ak � k a � k a1 2 1 2 1 2

Distributivity of scalar multiplication over vector addition.
Let a and b be vectors, and let k be a real-number scalar. Then
the following equations hold:

k(a � b) � ka � kb

(a � b)k � ak � bk � ka � kb

Distributivity of dot product over vector addition. Let a, b, and
c be vectors. Then the following equations hold:

a • (b � c) � a • b � a • c

(b � c) • a � b • a � c • a � a • b � a • c

Distributivity of cross product over vector addition. Let a, b,
and c be vectors. Then the following equations hold:
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a � (b � c) � a � b � a � c
(b � c) � a � b � a � c � a

� � (a � b) � (a � c)
� � (a � b � a � c)

Dot product of cross products. Let a, b, c, and d be vectors.
Then the following equation holds:

(a � b) • (c � d) � (a • c)(b • d) � (a • d)(b • c)
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This chapter outlines basic principles and formulas relevant to
Euclidean geometry, circular and hyperbolic trigonometric func-
tions, common and natural logarithmic functions, and exponen-
tial functions.

Principles of Geometry

The fundamental rules of geometry are widely used in Newto-
nian (non-relativistic) physics and engineering.

Two point principle

Let P and Q be two distinct points. Then the following state-
ments hold true, as shown in Fig. 2.1:

� P and Q lie on a common line L
� L is the only line on which both points lie

Three point principle

Let P, Q, and R be three distinct points, not all of which lie on
a straight line. Then the following statements hold true:

� P, Q , and R all lie in a common Euclidean plane S
� S is the only Euclidean plane in which all three points lie



102 Chapter Two

Figure 2.1 Two point principle.

Figure 2.2 Midpoint principle.

Principle of n points

Let P1, P2, P3, . . . , and Pn be n distinct points, not all of which
lie in the same Euclidean space of n � 1 dimensions. Then the
following statements hold true:

� P1, P2, P3, . . . , and Pn all lie in a common Euclidean space
U of n dimensions.

� U is the only n-dimensional Euclidean space in which all n
points lie.

Distance notation

The distance between any two points P and Q, as measured
from P towards Q along the straight line connecting them, is
symbolized by writing PQ.

Midpoint principle

Given a line segment connecting two points P and R, there ex-
ists one and only one point Q on the line segment, between P
and R, such that PQ � QR. This is illustrated in Fig. 2.2.

Angle notation

Let P, Q, and R be three distinct points. Let L be the line seg-
ment connecting P and Q; let M be the line segment connecting
R and Q. Then the smaller of the 2 angles angle � between L
and M, as measured at the vertex point Q in the plane defined
by the three points, can be written either as ∠PQR or as ∠RQP.
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Figure 2.3 Angle notation
and measurement.

If the rotational sense of measurement is specified, then ∠PQR
indicates the angle as measured from L to M, and ∠RQP indi-
cates the angle as measured from M to L (Fig. 2.3.) These no-
tations can also stand for the measures of angles in degrees or
radians.

Angle bisection

Given an angle ∠PQR measuring less than 180 degrees and
defined by three points P, Q, and R, there exists exactly one ray
M that bisects ∠PQR. If S is any point on M and S � Q, then
the following statement is always true:

∠PQS � ∠SQR

That is, ray M is uniquely defined by points Q and S. Every
angle has one and only one ray that bisects it. This is illustrated
in Fig. 2.4.

Perpendicularity

Let L be a line through points P and Q, and let R be a point
not on L. Then there exists one and only one perpendicular line
M through point R, intersecting line L at a point S, such that
the following holds (Fig. 2.5):

∠PSR � ∠QSR � 90� � � /2 radians

Perpendicular bisector

Let L be a line segment connecting two points P and R. Then
there exists one and only one perpendicular line M that inter-
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Figure 2.4 Angle bisection
principle.

Figure 2.5 Perpendicular
principle.

Figure 2.6 Perpendicular bi-
sector principle.

sects line segment L in a point Q, such that the distance from
P to Q is equal to the distance from Q to R. That is, every line
segment has exactly one perpendicular bisector. This is illus-
trated in Fig. 2.6.
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Figure 2.8 Angular addition
and subtraction.

Figure 2.7 Distance addition and
subtraction.

Distance addition and subtraction

Let P, Q, and R be points on a line L, such that Q is between
P and R. Then the following equations hold concerning dis-
tances as measured along L (Fig. 2.7).

PQ � QR � PR

PR � PQ � QR

PR � QR � PQ

Angle addition and subtraction

Let P, Q, R, and S be four points that lie in a common plane.
Let Q be the vertex of three angles ∠PQR, ∠PQS, and ∠SQR
as shown in Fig. 2.8. Then the following equations hold con-
cerning the angular measures:

∠PQS � ∠SQR � ∠PQR

∠PQR � ∠PQS � ∠SQR

∠PQR � ∠SQR � ∠PQS
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Figure 2.9 Vertical angles
have equal measure.

Figure 2.10 Alternate inte-
rior angles have equal mea-
sure.

Vertical angles

Let L and M be two lines that intersect at a point P. Opposing
pairs of angles, defined by the intersection of the lines, are
known as vertical angles and always have equal measure (Fig.
2.9). In the example shown, � � 	. Lines L and M are perpen-
dicular if and only if � � 	.

Alternate interior angles

Let L and M be parallel lines. Let N be a transversal line that
intersects L and M at points P and Q , respectively. In Fig. 2.10,
angles labeled � are alternate interior angles; the same holds
true for angles labeled 	. Alternate interior angles always have
equal measure. The transversal line N is perpendicular to lines
L and M if and only if � � 	.
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Figure 2.11 Alternate exte-
rior angles have equal mea-
sure.

Figure 2.12 Corresponding
angles have equal measure.

Alternate exterior angles

Let L and M be parallel lines. Let N be a transversal line that
intersects L and M at points P and Q, respectively. In Fig. 2.11,
angles labeled � are alternate exterior angles; the same holds
true for angles labeled 	. Alternate exterior angles always have
equal measure. The transversal line N is perpendicular to lines
L and M if and only if � � 	.

Corresponding angles

Let L and M be parallel lines. Let N be a transversal line that
intersects L and M at points P and Q, respectively. In Fig. 2.12,
angles labeled �1 are corresponding angles; the same holds true
for angles labeled �2, �3, and �4. Corresponding angles always
have equal measure. The transversal line N is perpendicular to
lines L and M if and only if the following equation holds:

� � � � � � � � 90� � � /2 radians1 2 3 4
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Figure 2.13 The parallel principle.

Figure 2.14 Mutual perpen-
dicularity.

Parallel principle

Let L be a line; let P be a point not on L. Then there exists one
and only one line M through P, such that line M is parallel to
line L (Fig. 2.13). This is one of the most important postulates
in Euclidean geometry. Its negation can take two forms: either
there exists no such line M, or there exists more than one such
line M. Either form of the negation of this principle constitutes
a cornerstone of non-Euclidean geometry.

Mutual perpendicularity

Let L andM be coplanar lines (lines that lie in a common plane),
both of which intersect a third line N, and both of which are
perpendicular to line N. Then lines L and M are parallel (Fig.
2.14).
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Figure 2.15 The three-point
principle; side-side-side tri-
angles.

Point-point-point triangle

Let P, Q, and R be three distinct points, not all of which lie on
the same straight line. Then the following statements hold true
(Fig. 2.15):

� P, Q, and R lie at the vertices of a triangle T.
� T is the only triangle having vertices P, Q, and R.

Side-side-side triangles

Let S1, S2, and S3 be line segments. Let s1, s2, and s3 be the
lengths of S1, S2, and S3 respectively. Suppose S1, S2, and S3 are
joined at their end points P, Q, and R (Fig. 2.15). Then the
following statements hold true:

� Line segments S1, S2, and S3 determine a triangle T.
� T is the only triangle having sides S1, S2, and S3.
� All triangles having sides of lengths s1, s2, and s3 are congru-

ent.

Side-angle-side triangles

Let S1 and S2 be distinct line segments. Let P be a point that
lies at the ends of both S1 and S2. Let s1 and s2 be the lengths
of S1 and S2, respectively. Suppose line segments S1 and S2 sub-
tend an angle � at point P (Fig. 2.16). Then the following state-
ments hold true:

� S1, S2, and � determine a triangle T.
� T is the only triangle having sides S1 and S2 subtending an

angle � at point P.
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Figure 2.16 Side-angle-side
triangles.

Figure 2.17 Angle-side-angle triangles.

� All triangles containing two sides of lengths s1 and s2 that
subtend an angle � are congruent.

Angle-side-angle triangles

Let S be a line segment having length s, and whose end points
are P and Q. Let �1 and �2 be angles relative to S subtended by
nonparallel lines L1 and L2 that run through P and Q, respec-
tively (Fig. 2.17). Then the following statements hold true:

� S, �1, and �2 determine a triangle T.
� T is the only triangle determined by S, �1, and �2.
� All triangles containing one side of length s, and whose other

two sides subtend angles of �1 and �2 relative to the side
whose length is s, are congruent.

Angle-angle-angle triangles

Let L1, L2, and L3 be lines that lie in a common plane and
intersect in three points as illustrated in Fig. 2.18. Let the an-
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Figure 2.18 Angle-angle-angle triangles.

Figure 2.19 Isosceles and
equilateral triangles.

gles at these points be �1, �2, and �3. Then the following state-
ments hold true:

� There are infinitely many triangles with interior angles �1, �2,
and �3 in the sense shown.

� All triangles with interior angles �1, �2, and �3 in the sense
shown are similar to each other.

Isosceles triangle

Let T be a triangle with sides S1, S2, and S3 having lengths s1,
s2, and s3. Let �1, �2, and �3 be the angles opposite S1, S2, and
S3 respectively (Fig. 2.19). Suppose any of the following equa-
tions hold:
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s � s1 2

s � s2 3

s � s1 3

� � �1 2

� � �2 3

� � �1 3

Then T is known as an isosceles triangle, and the following log-
ical statements are valid:

s � s → � � �1 2 1 2

s � s → � � �2 3 2 3

s � s → � � �1 3 1 3

� � � → s � s1 2 1 2

� � � → s � s2 3 2 3

� � � → s � s1 3 1 3

Equilateral triangle

Let T be a triangle with sides S1, S2, and S3 having lengths s1,
s2, and s3. Let �1, �2, and �3 be the angles opposite S1, S2, and
S3 respectively (Fig. 2.19). Suppose either of the following are
true:

s � s � s1 2 3

� � � � �1 2 3

Then T is a special type of isosceles triangle called an equilat-
eral triangle, and the following logical statements are valid:



Geometry, Trigonometry, Logarithms, and Exponential Functions 113

s � s � s → � � � � �1 2 3 1 2 3

� � � � � → s � s � s1 2 3 1 2 3

That is, all equilateral triangles have precisely the same shape;
if T and U are any two equilateral triangles, then T and U are
similar.

Isosceles triangle bisection

Let T be an isosceles triangle with sides S1, S2, and S3 having
lengths s1, s2, and s3. Suppose s1 � s2, so that �1 � �2. Then S3

is the base of the triangle, and the point P opposite S3, whose
angle is �3, is the vertex. Let L be a line through P that cuts the
vertex angle �3 into two smaller angles �3a and �3b, and that
cuts the base S3 into two shorter line segments S3a and S3b

whose lengths are s3a and s3b as shown in Fig. 2.20. Then the
following logical statements are valid:

s � s → � � �3a 3b 3a 3b

� � � → s � s3a 3b 3a 3b

L � S3

That is, if L bisects the base, L also bisects the vertex angle;
and if L bisects the vertex angle, L also bisects the base. Also,
if L bisects either the base or the vertex angle, then L is per-
pendicular to the base.

Parallelogram diagonals

Let V be a parallelogram defined by four points P, Q, R, and S.
Let D1 be a line segment connecting P and R as shown in Fig.
2.21A. Then D1 is a minor diagonal of the parallelogram, and
the triangles defined by D1 are congruent:

�PQR � �RSP

Let D2 be a line segment connecting Q and S (Fig. 2.21B). Then
D2 is a major diagonal of the parallelogram, and the triangles
defined by D2 are congruent:

�QRS � �SPQ
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Figure 2.20 Bisection of base
and vertex angle of an isos-
celes triangle.

Figure 2.21a The triangles defined by the minor
diagonal of a parallelogram are congruent.

Bisection of parallelogram diagonals

Let V be a parallelogram defined by four points P, Q, R, and S.
Let D1 be the diagonal connecting P and R; let D2 be the diag-
onal connecting Q and S (Fig. 2.22). Then D1 and D2 bisect each
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Figure 2.21b The triangles defined by the major
diagonal of a parallelogram are congruent.

Figure 2.22 The diagonals of a parallelogram bi-
sect each other.

other at their intersection point X. In addition, the following
pairs of triangles are congruent:

�PQX � �RSX

�QRX � �SPX

The converse of the foregoing is also true: if V is a convex plane
quadrilateral whose diagonals bisect each other, then V is a par-
allelogram.

Rectangle

Let V be a parallelogram defined by four points P, Q, R, and S.
Suppose any of the following statements is true for angles in
degrees:
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Figure 2.24 The diagonals of
a rectangle have equal
length.

Figure 2.23 If a parallelo-
gram has one right interior
angle, then the parallelo-
gram is a rectangle.

∠PQR � 90� � � /2 radians

∠QRS � 90� � � /2 radians

∠RSP � 90� � � /2 radians

∠SPQ � 90� � � /2 radians

Then all four interior angles measure 90 degrees, and V is a
rectangle: a four-sided plane polygon whose interior angles are
all congruent (Fig. 2.23). The converse of this is also true: if V
is a rectangle, then any given interior angle has a measure of
90 degrees.

Rectangle diagonals

Let V be a parallelogram defined by four points P, Q, R, and S.
Let D1 be the diagonal connecting P and R; let D2 be the diag-
onal connecting Q and S. Let the length of D1 be d1; let the
length of D2 be d2 (Fig. 2.24). If d1 � d2, then V is a rectangle.
The converse is also true: if V is a rectangle, then d1 � d2. That
is, a parallelogram is a rectangle if and only if its diagonals have
equal lengths.
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Figure 2.26 A trapezoid within a triangle.

Figure 2.25 The diagonals of
a rhombus are perpendicu-
lar.

Rhombus diagonals

Let V be a parallelogram defined by four points P, Q, R, and S.
Let D1 be the diagonal connecting P and R; let D2 be the diag-
onal connecting Q and S. If D1 � D2, then V is a rhombus: a
four-sided plane polygon whose sides are all congruent (Fig.
2.25). The converse is also true: if V is a rhombus, then D1 �

D2. That is, a parallelogram is a rhombus if and only if its di-
agonals are perpendicular.

Trapezoid within triangle

Let T be a triangle defined by three points P, Q, and R. Let X
be the midpoint of side PR, and let Y be the midpoint of side
PQ. Then line segments XY and RQ are parallel, and the figure
defined by XYQR is a trapezoid: a four-sided plane polygon with
one pair of parallel sides (Fig. 2.26). In addition, the length of
line segment XY is half the length of line segment RQ.

Median of trapezoid

Let V be a trapezoid defined by four points P, Q, R, and S. Let
X be the midpoint of side PS, and let Y be the midpoint of side
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Figure 2.27 The median of a
trapezoid.

QR. Line segment XY is called the median of trapezoid PQRS.
Let W1 be the polygon defined by P, Q, Y, and X; let W2 be the
polygon defined by X, Y, R, and S. Then W1 and W2 are trape-
zoids (Fig. 2.27). In addition, the length of line segment XY is
half the sum of the lengths of line segments PQ and SR:

XY � (PQ � SR)/2

Formulas for Plane Figures

The following formulas apply to common geometric figures in
Euclidean two-space (a ‘‘flat’’ plane).

Sum of interior angles of triangle

Let T be a triangle, and let the interior angles be �1, �2, and �3.
Then the following equation holds if the angular measures are
given in degrees:

� � � � � � 1801 2 3

If the angular measures are given in radians, then the following
holds:

� � � � � � �1 2 3

Theorem of Pythagoras

Let T be a right triangle whose sides are S1, S2, and S3 having
lengths s1, s2, and s3 respectively. Let S3 be the side opposite the
right angle (Fig. 2.28). Then the following equation holds:

2 2 2s � s � s1 2 3

The converse of this is also true: If T is a triangle whose sides
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Figure 2.28 The Theorem of Pythagoras.

Figure 2.29 Interior angles
of a plane quadrilateral.

have lengths s1, s2, and s3, and the above formula holds, then T
is a right triangle.

Sum of interior angles of plane
quadrilateral

Let V be a plane quadrilateral, and let the interior angles be �1,
�2, �3, and �4 (Fig. 2.29). Then the following equation holds if
the angular measures are given in degrees:

� � � � � � � � 3601 2 3 4

If the angular measures are given in radians, then the following
holds:

� � � � � � � � 2�1 2 3 4

Sum of interior angles of plane polygon

Let V be a plane polygon having n sides. Let the interior angles
be �1, �2, �3, . . . , �n (Fig. 2.30). Then the following equation
holds if the angular measures are given in degrees:
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Figure 2.30 Interior angles
of a plane polygon.

Figure 2.31 Interior angles
of a regular plane polygon.

� � � � � � . . . � � � 180n � 360 � 180 (n � 2)1 2 3 n

If the angular measures are given in radians, then the following
holds:

� � � � � � . . . � � � �n � 2� � � (n � 2)1 2 3 n

Individual interior angles of regular
plane polygon

Let V be a plane polygon having n sides whose interior angles
all have equal measure given by s, and whose sides all have
equal length (Fig. 2.31). Then V is a regular polygon, and the
measure of each interior angle, �, in degrees is given by the
following formula:

� � (180n � 360)/n

If the angular measures are given in radians, then the following
holds:

� � (�n � 2�)/n
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Figure 2.32 In this polygon,
� is a positive exterior angle,
as are all the others except
	, which is a negative exte-
rior angle.

Positive and negative exterior angles

An exterior angle of a polygon is measured counterclockwise be-
tween a specific side and the extension of a side next to it (Fig.
2.32). If the arc lies outside the polygon, then the resulting an-
gle � has a measure between, but not including, 0 and �180
degrees:

0 � � � �180

If the arc lies inside the polygon, then the angle is measured
clockwise (‘‘negatively counterclockwise’’). This results in an an-
gle 	 with a measure between, but not including, �180 and 0
degrees:

�180 � 	 � 0

Exterior angles of plane polygon

Let V be a plane polygon having n sides. Let the exterior angles
be �1, �2, �3, . . . , �n. Then the following equation holds if the
angular measures are given in degrees:

� � � � � � . . . � � � 3601 2 3 n

If the angular measures are given in radians, then the following
holds:

� � � � � � . . . � � � 2�1 2 3 n
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Figure 2.33 Perimeter and area of triangle.

Perimeter of triangle

Let T be a triangle defined by points P, Q, and R, and having
sides of lengths s1, s2, and s3 as shown in Fig. 2.33. Let s1 be
the base length, h be the height, and � be the angle between
the sides having length s1 and s2. Then the perimeter, B, of the
triangle is given by the following formula:

B � s � s � s1 2 3

Interior area of triangle

Let T be a triangle as defined above and in Fig. 2.33. The in-
terior area, A, is given by either of the following formulas:

A � s1h / 2

A � (s1s2 sin �)/2

Perimeter of parallelogram

Let V be a parallelogram defined by points P, Q, R, and S, and
having sides of lengths s1 and s2 as shown in Fig. 2.34. Let s1

be the base length, h be the height, and � be the angle between
the sides having lengths s1 and s2. Then the perimeter, B, of the
parallelogram is given by the following formula:

B � 2s � 2s1 2

Interior area of parallelogram

Let V be a parallelogram as defined above and in Fig. 2.34. The
interior area, A, is given by either of the following formulas:
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Figure 2.34 Perimeter and area of parallelogram.
If s1 � s2, the figure is a rhombus.

A � s1h

A � s1s2 sin �

Perimeter of rhombus

Let V be a rhombus defined by points P, Q, R, and S, and having
sides all of which have length s. Let the lengths of the diagonals
of the rhombus be d1 and d2. The rhombus is a special case of
the parallelogram (Fig. 2.34) in which the following holds:

s1 � s2 � s

The perimeter, B, of the rhombus is given by the following for-
mula:

B � 4s

Interior area of rhombus

Let V be a rhombus as defined above. The interior area, A, of
the rhombus is given by any of the following formulas:

A � sh

A � s2 sin �

A � d1d2/2
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Figure 2.35 Perimeter and
area of rectangle. If s1 � s2,
the figure is a square.

Perimeter of rectangle

Let V be a rectangle defined by points P, Q, R, and S, and hav-
ing sides of lengths s1 and s2 as shown in Fig. 2.35. Let s1 be
the base length, and let s2 be the height. Then the perimeter,
B, of the rectangle is given by the following formula:

B � 2s1 � 2s2

Interior area of rectangle

Let V be a rectangle as defined above and in Fig. 2.35. The
interior area, A, is given by:

A � s1s2

Perimeter of square

Let V be a square defined by points P, Q, R, and S, and having
sides all of which have length s. This is a special case of the
rectangle (Fig. 2.35) in which the following holds:

s1 � s2 � s

The perimeter, B, of the square is given by the following for-
mula:

B � 4s

Interior area of square

Let V be a square as defined above. The interior area, A, is given
by:

A � s2
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Figure 2.36 Perimeter and
area of trapezoid.

Perimeter of trapezoid

Let V be a trapezoid defined by points P, Q, R, and S, and hav-
ing sides of lengths s1, s2, s3, and s4 as shown in Fig. 2.36. Let
s1 be the base length, h be the height, � be the angle between
the sides having length s1 and s2, and 	 be the angle between
the sides having length s1 and s4. Let sides having lengths s1

and s3 (line segments PQ and RS) be parallel. Then the perim-
eter, B, of the trapezoid is given by either of the following for-
mulas:

B � s1 � s2 � s3 � s4

B � s1 � s3 � h csc � � h csc 	

Interior area of trapezoid

Let V be a trapezoid as defined above and in Fig. 2.36. The
interior area, A, is given by:

A � (s1h � s3h)/2

Perimeter of regular polygon

Let V be a regular plane polygon having n sides of length s, and
whose vertices are P1, P2, P3, . . . , Pn as shown in Fig. 2.37.
Then the perimeter, B, of the polygon is given by the following
formula:

B � ns
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Figure 2.37 Perimeter and area of regular polygon.

Interior area of regular polygon

Let V be a regular polygon as defined above and in Fig. 2.37.
The interior area, A, is given by the following formula if angles
are specified in degrees:

A � (ns2/4) cot (180/n)

If angles are specified in radians, then:

A � (ns2/4) cot (� /n)

Perimeter of circle

Let C be a circle having radius r as shown in Fig. 2.38. Then
the perimeter, B, of the circle is given by the following formula:

B � 2�r

Interior area of circle

Let C be a circle as defined above and in Fig. 2.38. The interior
area, A, of the circle is given by:

A � �r2
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Figure 2.38 Perimeter and
area of circle.

Figure 2.39 Perimeter and
area of ellipse.

Perimeter of ellipse

Let E be an ellipse whose major semi-axis measures r1, and
whose minor semi-axis measures r2 as shown in Fig. 2.39. Then
the perimeter, B, of the ellipse is given approximately by the
following formula:

B � 2�((r1
2 � r2

2)/2)1 / 2

Interior area of ellipse

Let E be an ellipse as defined above and in Fig. 2.39. The in-
terior area, A, of the ellipse is given by:

A � �r1r2

Perimeter of regular polygon in circle

Let V be a regular plane polygon having n sides, and whose
vertices P1, P2, P3, . . . , Pn lie on a circle of radius r (Fig. 2.40).
Then the perimeter, B, of the polygon is given by the following
formula when angles are specified in degrees:
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Figure 2.40 Perimeter and area of regular polygon
inscribed within a circle.

B � 2nr sin (180/n)

If angles are specified in radians, then:

B � 2nr sin (� /n)

Interior area of regular polygon in circle

Let V be a regular polygon as defined above and in Fig. 2.40.
The interior area, A, of the polygon is given by the following
formula if angles are specified in degrees:

A � (nr2/2) sin (360/n)

If angles are specified in radians, then:

A � (nr2/2) sin (2� /n)

Perimeter of regular polygon around
circle

Let V be a regular plane polygon having n sides whose center
points P1, P2, P3, . . . , Pn lie on a circle of radius r (Fig. 2.41).
Then the perimeter, B, of the polygon is given by the following
formula when angles are specified in degrees:
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Figure 2.41 Perimeter and area of regular polygon
that circumscribes a circle.

B � 2nr tan (180/n)

If angles are specified in radians, then:

B � 2nr tan (� /n)

Interior area of regular polygon around
circle

Let V be a regular polygon as defined above and in Fig. 2.41.
The interior area, A, of the polygon is given by the following
formula if angles are specified in degrees:

A � nr2 tan (180/n)

If angles are specified in radians, then:

A � nr2 tan (� /n)

Perimeter of circular sector

Let S be a sector of a circle whose radius is r (Fig. 2.42). Let �
be the apex angle in radians. Then the perimeter, B, of the sec-
tor is given by the following formula:

B � r(2 � �)
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Figure 2.42 Perimeter and
area of circular sector.

Interior area of circular sector

Let S be a sector of a circle as defined above and in Fig. 2.42.
If � is in radians, then the interior area, A, of the sector is given
by:

A � r2� /2

If � is specified in degrees, then the perimeter, B, of the sector
is given by:

B � (�r� /180) � 2r

If � is specified in degrees, then the interior area, A, of the sector
is given by:

2A � �r � /360

Formulas for Solids

The following formulas apply to common geometric solids in Eu-
clidean three-space.

Volume of pyramid

Let W be a pyramid whose base is a polygon with area A, and
whose height is h (Fig. 2.43). The volume, V, of the pyramid is
given by:

V � Ah /3
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Figure 2.43 Volume of pyramid.

Figure 2.44 Surface area and volume of right cir-
cular cone and enclosed solid.

Surface area of right circular cone

Let W be a cone whose base is a circle. Let P be the apex of the
cone, and let Q be the center of the base (Fig. 2.44). Suppose
line segment PQ is perpendicular to the base, so that W is a
right circular cone. Let r be the radius of the base, let h be the
height of the cone (the length of line segment PQ), and let s be
the slant height of the cone as measured from any point on the
edge of the circle to the apex P. Then the surface area S1 of
the cone (including the base) is given by either of the following
formulas:

S1 � �r2 � �rs

S1 � �r2 � �r(r2 � h2)1 / 2



132 Chapter Two

Figure 2.45 Surface area and volume of frustum
of right circular cone and enclosed solid.

The surface area S2 of the cone (not including the base) is given
by either of the following:

S2 � �rs

S2 � �r(r2 � h2)1 / 2

Volume of right circular conical solid

Let W be a right circular cone as defined above and in Fig. 2.44.
The volume, V, of the corresponding right circular conical solid
is given by:

V � �r2h /3

Surface area of frustum of right circular
cone

Let W be a cone whose base is a circle, and which is truncated
by a plane parallel to the base. Let P be the center of the circle
defined by the truncation, and let Q be the center of the base
(Fig. 2.45). Suppose line segment PQ is perpendicular to the
base, so that W is a frustum of a right circular cone. Let r1 be
the radius of the top, let r2 be the radius of the base, let h be
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Figure 2.46 Volume of general conical solid.

the height of the object (the length of line segment PQ), and let
s be the slant height. Then the surface area S1 of the object
(including the base and the top) is given by either of the follow-
ing formulas:

2 2 1 /2 2 2S � �(r � r )(s � (r � r ) ) � �(r � r )1 1 2 2 1 1 2

2 2S � �s(r � r ) � �(r � r )1 1 2 1 2

The surface area S2 of the object (not including the base or the
top) is given by either of the following:

S2 � �(r1 � r2)(s2 � (r2 � r1)2)1 / 2

S2 � �s(r1 � r2)

Volume of frustum of right circular
conical solid

Let W be a cone as defined above and in Fig. 2.45. The volume,
V, of the corresponding right circular conical solid is given by:

V � �r2h /3

Volume of general conical solid

Let W be a cone whose base is any enclosed plane curve. Let A
be the interior area of the base of the cone. Let P be the apex
of the cone, and let Q be a point in the plane X containing the
base such that line segment PQ is perpendicular to X (Fig. 2.46).
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Figure 2.47 Surface area and
volume of right circular cyl-
inder and enclosed solid.

Let h be the height of the cone (the length of line segment PQ).
Then the volume, V, of the corresponding conical solid is given
by:

V � Ah /3

Surface area of right circular cylinder

Let W be a cylinder whose base is a circle. Let P be the center
of the top of the cylinder, and let Q be the center of the base
(Fig. 2.47). Suppose line segment PQ is perpendicular to both
the top and the base, so that W is a right circular cylinder. Let
r be the radius of the cylinder, and let h be the height (the
length of line segment PQ). Then the surface area S1 of the
cylinder (including the base) is given by:

S1 � 2�rh � 2�r2 � 2�r(h � r)

The surface area S2 of the cylinder (not including the base) is
given by:

S2 � 2�rh

Volume of right circular cylindrical solid

Let W be a cylinder as defined above (Fig. 2.47). The volume,
V, of the corresponding right circular cylindrical solid is given
by:

V � �r2h
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Figure 2.48 Surface area and volume of general cylinder and en-
closed solid.

Surface area of general cylinder

Let W be a general cylinder whose base is any enclosed plane
curve. Let A be the interior area of the base of the cylinder (thus
also the interior area of the top). Let B be the perimeter of the
base (thus also the perimeter of the top). Let h be height of the
cylinder, or the perpendicular distance separating the planes
containing the top and the base. Let � be the angle between the
plane containing the base and any line segment PQ connecting
corresponding points P and Q in the top and the base, respec-
tively. Let s be the slant height of the cylinder, or the length of
line segment PQ (Fig. 2.48). Then the surface area S1 of the
cylinder (not including the base or the top) is given by either of
the the following formulas:

S1 � 2A � Bh

S1 � 2A � Bs sin �

The surface area S2 of the cylinder (not including the base) is
given by either of the following:

S2 � Bh

S2 � Bs sin �
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Figure 2.49 Surface area and
volume of sphere and en-
closed solid.

Volume of general cylindrical solid

Let W be a general cylinder as defined above (Fig. 2.48). The
volume, V, of the corresponding general cylindrical solid is
given by either of the following formulas:

V � Ah

V � As sin �

Surface area of sphere

Let S be a sphere having radius r as shown in Fig. 2.49. The
surface area, A, of the sphere is given by:

A � 4�r2

Volume of spherical solid

Let S be a sphere as defined above and in Fig. 2.49. The volume,
V, of the solid enclosed by the sphere is given by:

V � 4�r3/3

Volume of ellipsoidal solid

Let E be an ellipsoid whose semi-axes are r1, r2, and r3 (Fig.
2.50). The volume, V, of the enclosed solid is given by:

V � 4�r1r2r3/3
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Figure 2.50 Volume of solid
enclosed by ellipsoid.

Figure 2.51 Surface area and
volume of cube and enclosed
solid.

Surface area of cube

Let K be a cube whose edges each have length s, as shown in
Fig. 2.51. The surface area, A, of the cube is given by:

A � 6s2

Volume of cubical solid

Let K be a cube as defined above and in Fig. 2.51. The volume,
V, of the solid enclosed by the cube is given by:

V � s3

Surface area of rectangular prism

Let W be a rectangular prism whose edges have lengths s1, s2,
and s3 as shown in Fig. 2.52. The surface area, A, of the prism
is given by:

A � 2s1s2 � 2s1s3 � 2s2s3
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Figure 2.52 Surface area and
volume of rectangular prism
and enclosed solid.

Figure 2.53 Surface area and
volume of parallelepiped and
enclosed solid.

Volume of rectangular prism solid

Let W be a rectangular prism as defined above and in Fig. 2.52.
The volume, V, of the enclosed solid is given by:

V � s1s2s3

Surface area of parallelepiped

Let W be a parallelepiped whose edges have lengths s1, s2, and
s3. Suppose the acute angle between edges s1 and s2 is � as
shown in Fig. 2.53. The surface area, A, of the parallelepiped is
given by:

A � 2s1s2 sin � � 2s1s3 � 2s2s3

Volume of parallelepiped solid

LetW be a parallelepiped as defined above and in Fig. 2.53. The
volume, V, of the enclosed solid is given by:

V � s1s2s3 sin �
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Figure 2.54 Surface area and
volume of torus and enclosed
solid.

Surface area of torus

Let T be a torus with a circular cross section, an inner radius
of r1, and an outer radius of r2 as shown in Fig. 2.54. The surface
area, A, of the torus is given by:

A � �2(r2
2 � r1

2)

Volume of toroidal solid

Let T be a torus as defined above and in Fig. 2.54. The volume,
V, of the enclosed toroidal solid is given by:

2 2V � � (r � r )(r � r ) /42 1 2 1

Circular Functions

There are six circular trigonometric functions. They operate on
angles to yield real numbers, and are known as sine, cosine,
tangent, cosecant, secant, and cotangent. In formulas and equa-
tions, they are abbreviated sin, cos, tan, csc, sec, and cot re-
spectively.

Basic circular functions

Consider a circle in rectangular coordinates with the following
equation:
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Figure 2.55 Unit-circle mo-
del for defining circular trig-
onometric functions.

x2 � y2 � 1

This is called the unit circle because its radius is one unit, and
it is centered at the origin (0,0), as shown in Fig. 2.55. Let � be
an angle whose apex is at the origin, and that is measured coun-
terclockwise from the abscissa (x axis). Suppose this angle cor-
responds to a ray that intersects the unit circle at some point
P � (x0, y0). Then

y0 � sin �

x0� cos �

y0/x0 � tan �

Secondary circular functions

Three more circular trigonometric functions are derived from
those defined above. They are the cosecant function, the secant
function, and the cotangent function. In formulas and equations,
they are abbreviated csc �, sec �, and cot �. They are defined as
follows:

csc � � 1 / (sin �) � 1/y0

sec � � 1 / (cos �) � 1/x0

cot � � 1 / (tan �) � x0/y0
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Figure 2.56 Right-triangle model for defining
circular trigonometric functions.

Right-triangle model

Consider a right triangle �PQR, such that ∠PQR is the right
angle. Let a be the length of line segment RQ, b be the length
of line segment QP, and c be the length of line segment RP as
shown in Fig. 2.56. Let � be the angle between line segments
RQ and RP. The six circular trigonometric functions can be de-
fined as ratios between the lengths of the sides, as follows:

sin � � b /c

cos � � a /c

tan � � b /a

csc � � c /b

sec � � c /a

cot � � a /b

Circular functions as imaginary powers
of e

Let � be a real-number angle in radians. The values of the cir-
cular functions of � can be defined in exponential terms as imag-
inary-number powers of e, where e is the natural logarithm base
and is equal to approximately 2.71828. The symbol j represents
the unit imaginary number, which is the positive square root of
�1. As long as denominators are nonzero, the following equa-
tions hold:
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Figure 2.57 Approximate
graph of the sine function.

sin � � (ej� � e�j�)/j2

cos � � (ej� � �j�e )/2

tan � � (ej� � e�j�)/j(ej� � e�j�)

csc � � j2/(ej� � e�j�)

sec � � 2/(ej� � e�j�)

cot � � j(ej� � e�j�)/(ej� � e�j�)

Graph of sine function

Figure 2.57 is a graph of the function y � sin x for values of the
domain x in radians from �3� to 3� (�540 to 540 degrees). The
range of the sine function is limited to values between, and in-
cluding, �1 and 1.

Graph of cosine function

Figure 2.58 is a graph of the function y � cos x for values of the
domain x in radians from �3� to 3� (�540 to 540 degrees). The
range of the cosine function is limited to values between, and
including, �1 and 1.
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Figure 2.58 Approximate
graph of the cosine function.

Graph of tangent function

Figure 2.59 is a graph of the function y � tan x for values of
the domain x in radians from �3� to 3� (�540 to 540 degrees).
The range of the tangent function encompasses the entire set
of real numbers. Asymptotes are shown as dotted lines. For val-
ues of x where these asymptotes intersect the x axis, the func-
tion is undefined.

Graph of cosecant function

Figure 2.60 is a graph of the function y � csc x for values of the
domain x in radians from �3� to 3� (�540 to 540 degrees). The
range of the cosecant function encompasses all real numbers
greater than or equal to 1, and all real numbers less than or
equal to �1.

Graph of secant function

Figure 2.61 is a graph of the function y � sec x for values of the
domain x in radians from �3� to 3� (�540 to 540 degrees). The
range of the secant function encompasses all real numbers
greater than or equal to 1, and all real numbers less than or
equal to �1.
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Figure 2.59 Approximate
graph of the tangent func-
tion.

Graph of cotangent function

Figure 2.62 is a graph of the function y � cot x for values of the
domain x in radians from �3� to 3� (�540 to 540 degrees). The
range of the cotangent function encompasses the entire set of
real numbers. Asymptotes are shown as dotted lines. For values
of x where these asymptotes intersect the x axis, the function
is undefined.

Inverse circular functions

Each of the six circular trigonometric functions has an inverse.
These inverse relations operate on real numbers to yield angles,
and are known as arcsine, arccosine, arctangent, arccosecant,
arcsecant, and arccotangent. In formulas and equations, they
are abbreviated arcsin or sin�1, arccos or cos�1, arctan or tan�1,
arccsc or csc�1, arcsec or sec�1, and arccot or cot�1 respectively.
They are functions when their domains are restricted as shown
in the graphs of Figs. 2.63 through 2.68.

Graph of arcsine function

Figure 2.63 is an approximate graph of the function
y � sin�1 x with its domain limited to values of x such that
�1 � x � 1. The range of the arcsine function is limited to
values of y between, and including, �� /2 and � /2 radians (�90
and 90 degrees).
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Figure 2.60 Approximate
graph of the cosecant func-
tion.

Figure 2.61 Approximate
graph of the secant function.

Graph of arccosine function

Figure 2.64 is an approximate graph of the function
y � cos�1 x with its domain limited to values of x such that
�1 � x � 1. The range of the arccosine function is limited to
values of y between, and including, 0 and � radians (0 and 180
degrees).

Graph of arctangent function

Figure 2.65 is an approximate graph of the function
y � tan�1 x; its domain encompasses the entire set of real num-
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Figure 2.62 Approximate
graph of the cotangent func-
tion.

Figure 2.63 Approximate
graph of the arcsine func-
tion.

bers. The range of the arctangent function is limited to values
of y between, but not including, �� /2 and � /2 radians (�90
and 90 degrees).

Graph of arccosecant function

Figure 2.66 is an approximate graph of the function y �
csc�1 x with its domain limited to values of x such that x � �1
or x � 1. The range of the arccosecant function is limited to
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Figure 2.64 Approximate
graph of the arccosine func-
tion.

Figure 2.65 Approximate
graph of the arctangent
function.

values of y in radians such that �� /2 � y � 0 or 0 � y � � /2.
This corresponds to values of y in degrees such that �90 �
y � 0 or 0 � y � 90.

Graph of arcsecant function

Figure 2.67 is an approximate graph of the function y �
sec�1 x with its domain limited to values of x such that x � �1
or x � 1. The range of the arcsecant function is limited to values
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Figure 2.66 Approximate
graph the arccosecant func-
tion.

Figure 2.67 Approximate
graph of the arcsecant func-
tion.

of y in radians such that 0 � y � � /2 or � /2 � y � �. This
corresponds to values of y in degrees such that 0 � y � 90 or
90 � y � 180.

Graph of arccotangent function

Figure 2.68 is an approximate graph of the function
y � cot�1 x; its domain encompasses the entire set of real num-
bers. The range of the arccotangent function is limited to values
of y between, but not including, 0 and � radians (0 and 180
degrees).
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Figure 2.68 Approximate
graph of the arccotangent
function.

Circular Identities

The following paragraphs depict common trigonometric identi-
ties for the circular functions. Unless otherwise specified, these
formulas apply to angles � and 	 in the standard range, as
follows:

0 � � � 2� (in radians)

0 � � � 360 (in degrees)

0 � 	 � 2� (in radians)

0 � 	 � 360 (in degrees)

Angles outside the standard range should be converted to val-
ues within the standard range by adding or subtracting the ap-
propriate integral multiple of 2� radians (360 degrees).

Pythagorean theorem for sine and
cosine

The sum of the squares of the sine and cosine of an angle is
always equal to 1. The following formula holds:

sin2 � � cos2 � � 1
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Pythagorean theorem for secant and
tangent

The difference between the squares of the secant and tangent
of an angle is always equal to either 1 or �1. The following
formulas apply for all angles except � � � /2 radians (90 de-
grees) and � � 3� /2 radians (270 degrees):

2 2sec � � tan � � 1

2 2tan � � sec � � �1

Sine of negative angle

The sine of the negative of an angle is equal to the negative
(additive inverse) of the sine of the angle. The following formula
holds:

sin �� � �sin �

Cosine of negative angle

The cosine of the negative of an angle is equal to the cosine of
the angle. The following formula holds:

cos �� � cos �

Tangent of negative angle

The tangent of the negative of an angle is equal to the negative
(additive inverse) of the tangent of the angle. The following for-
mula applies for all angles except � � � /2 radians (90 degrees)
and � � 3� /2 radians (270 degrees):

tan �� � �tan �

Cosecant of negative angle

The cosecant of the negative of an angle is equal to the negative
(additive inverse) of the cosecant of the angle. The following
formula applies for all angles except � � 0 radians (0 degrees)
and � � � radians (180 degrees):

csc �� � �csc �
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Secant of negative angle

The secant of the negative of an angle is equal to the secant of
the angle. The following formula applies for all angles except
� � � /2 radians (90 degrees) and � � 3� /2 radians (270 de-
grees):

sec �� � sec �

Cotangent of negative angle

The cotangent of the negative of an angle is equal to the neg-
ative (additive inverse) of the cotangent of the angle. The fol-
lowing formula applies for all angles except � � 0 radians (0
degrees) and � � � radians (180 degrees):

cot �� � �cot �

Periodicity of sine

The sine of an angle is equal to the sine of any integral multiple
of 2� radians added to, or subtracted from, that angle. If k is
an integer, then the following formulas hold for angles � in ra-
dians:

sin � � sin (� � 2�k)

sin � � sin (� � 2�k)

For angles � in degrees, the equivalent formulas are:

sin � � sin (� � 360k)

sin � � sin (� � 360k)

Periodicity of cosine

The cosine of an angle is equal to the cosine of any integral
multiple of 2� radians added to, or subtracted from, that angle.
If k is an integer, then the following formulas hold for angles �
in radians:
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cos � � cos (� � 2�k)

cos � � cos (� � 2�k)

For angles � in degrees, the equivalent formulas are:

cos � � cos (� � 360k)

cos � � cos (� � 360k)

Periodicity of tangent

The tangent of an angle is equal to the tangent of any integral
multiple of � radians added to, or subtracted from, that angle.
If k is an integer, the following formulas apply for all angles
except � � � /2 radians and � � 3� /2 radians:

tan � � tan (� � �k)

tan � � tan (� � �k)

For angles � in degrees, the following formulas apply for all
angles except � � 90 and � � 270:

tan � � tan (� � 180k)

tan � � tan (� � 180k)

Periodicity of cosecant

The cosecant of an angle is equal to the cosecant of any integral
multiple of 2� radians added to, or subtracted from, that angle.
If k is an integer, the following formulas apply for all angles
except � � 0 radians and � � � radians:

csc � � csc (� � 2�k)

csc � � csc (� � 2�k)

For angles � in degrees, the following formulas apply for all
angles except � � 0 and � � 180:

csc � � csc (� � 360k)

csc � � csc (� � 360k)
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Periodicity of secant

The secant of an angle is equal to the secant of any integral
multiple of 2� radians added to, or subtracted from, that angle.
If k is an integer, the following formulas apply for all angles
except � � � /2 radians and � � 3� /2 radians:

sec � � sec (� � 2�k)

sec � � sec (� � 2�k)

For angles � in degrees, the following formulas apply for all
angles except � � 90 and � � 270:

sec � � sec (� � 360k)

sec � � sec (� � 360k)

Periodicity of cotangent

The cotangent of an angle is equal to the cotangent of any in-
tegral multiple of � radians added to, or subtracted from, that
angle. If k is an integer, the following formulas apply for all
angles except � � 0 radians and � � � radians:

cot � � cot (� � �k)

cot � � cot (� � �k)

For angles � in degrees, the following formulas apply for all
angles except � � 0 and � � 180:

cot � � cot (� � 180k)

cot � � cot (� � 180k)

Sine of double angle

The sine of twice any given angle is equal to twice the sine of
the original angle times the cosine of the original angle:

sin 2� � 2 sin � cos �

Cosine of double angle

The cosine of twice any given angle can be found according to
either of the following two formulas:
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2cos 2� � 1 � (2 sin �)

2cos 2� � (2 cos �) � 1

Tangent of double angle

The tangent of twice any given angle can be found according to
the following formula:

2tan 2� � (2 tan �)/(1 � tan �)

One or both of the above tangent functions is/are undefined,
and therefore the formula does not apply in the following cases:

� � � /4 radians (45 degrees)

� � � /2 radians (90 degrees)

� � 3� /4 radians (135 degrees)

� � � radians (180 degrees)

� � 5� /4 radians (225 degrees)

� � 3� /2 radians (270 degrees)

� � 7� /4 radians (315 degrees)

Sine of half angle

The sine of half any given angle can be found according to the
following formula when 0 � � � � radians (0 � � � 180 de-
grees):

sin (� /2) � ((1 � cos �)/2)1 / 2

When � � � � 2� radians (180 � � � 360 degrees), the formula
is:

sin (� /2) � �((1 � cos �)/2)1 / 2

Cosine of half angle

The cosine of half any given angle can be found according to the
following formula when 0 � � � � /2 radians (0 � � � 90 de-
grees) or 3� /2 � � � 2� radians (270 � � � 360 degrees):
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cos (� /2) � ((1 � cos �)/2)1 / 2

When � /2 � � � 3� /2 radians (90 � � � 270 degrees) the
formula is:

cos (� /2) � � ((1 � cos �)/2)1 / 2

Tangent of half angle

The tangent of half any given angle can be found according to
the following formula when 0 � � � � /2 radians (0 � � � 90
degrees) or � � � � 3� /2 radians (180 � � � 270 degrees):

tan (� /2) � ((1 � cos �)/(1 � cos �))1 / 2

When � /2 � � � � radians (90 � � � 180 degrees) or 3� /2 �
� � 2� radians (270 � � � 360 degrees), the formula is:

tan (� /2) � � ((1 � cos �)/(1 � cos �))1 / 2

The following formula can be used for all angles except � ra-
dians (180 degrees):

tan (� /2) � (sin �)/(1 � cos �)

Either of the following two formulas hold for all angles except
0 and � radians (0 and 180 degrees):

tan (� /2) � (1 � cos �)/(sin �)

tan (� /2) � csc � � cot �

Sine of angular sum

The sine of the sum of two angles � and 	 can be found accord-
ing to the following formula:

sin (� � 	) � (sin �)(cos 	) � (cos �)(sin 	)

Cosine of angular sum

The cosine of the sum of two angles � and 	 can be found ac-
cording to the following formula:

cos (� � 	) � (cos �)(cos 	) � (sin �)(sin 	)
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Tangent of angular sum

The tangent of the sum of two angles � and 	 can be found
according to the following formula:

tan (� � 	) � (tan � � tan 	)/(1 � (tan �)(tan 	))

One or more of the functions within the above equation is/are
undefined, and therefore the formula does not apply in the fol-
lowing cases:

� � � /2 radians (90 degrees)

	 � � /2 radians (90 degrees)

� � 	 � � /2 radians (90 degrees)

� � 3� /2 radians (270 degrees)

	 � 3� /2 radians (270 degrees)

� � 	 � 3� /2 radians (270 degrees)

(tan �)(tan 	) � 1

Sine of angular difference

The sine of the difference between two angles � and 	 can be
found according to the following formula:

sin (� � 	) � (sin �)(cos 	) � (cos �)(sin 	)

Cosine of angular difference

The cosine of the difference between two angles � and 	 can be
found according to the following formula:

cos (� � 	) � (cos �)(cos 	) � (sin �)(sin 	)

Tangent of angular difference

The tangent of the difference between two angles � and 	 can
be found according to the following formula:

tan (� � 	) � (tan � � tan 	)/((1 � (tan �)(tan 	))

One or more of the functions within the above equation is/are
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undefined, and therefore the formula does not apply in the fol-
lowing cases:

� � � /2 radians (90 degrees)

	 � � /2 radians (90 degrees)

� � 	 � � /2 radians (90 degrees)

� � 3� /2 radians (270 degrees)

	 � 3� /2 radians (270 degrees)

� � 	 � 3� /2 radians (270 degrees)

(tan �)(tan 	) � �1

Sine of complementary angle

The sine of the complement of an angle is equal to the cosine
of the angle. The following formula holds for angles in radians:

sin (� /2 � �) � cos �

For angles in degrees, the equivalent formula is:

sin (90 � �) � cos �

Cosine of complementary angle

The cosine of the complement of an angle is equal to the sine
of the angle. The following formula holds:

cos (� /2 � �) � sin �

For angles in degrees, the equivalent formula is:

cos (90 � �) � sin �

Tangent of complementary angle

The tangent of the complement of an angle is equal to the co-
tangent of the angle. The following formula holds:
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tan (� /2 � �) � cot �

For angles in degrees, the equivalent formula is:

tan (90 � �) � cot �

The functions within the above equations are undefined, and
therefore the formulas do not apply in the following cases:

� � 0 radians (0 degrees)

� � � radians (180 degrees)

Cosecant of complementary angle

The cosecant of the complement of an angle is equal to the se-
cant of the angle. The following formula holds:

csc (� /2 � �) � sec �

For angles in degrees, the equivalent formula is:

csc (90 � �) � sec �

The functions within the above equations are undefined, and
therefore the formulas do not apply in the following cases:

� � � /2 radians (90 degrees)

� � 3� /2 radians (270 degrees)

Secant of complementary angle

The secant of the complement of an angle is equal to the cose-
cant of the angle. The following formula holds:

sec (� /2 � �) � csc �

For angles in degrees, the equivalent formula is:

sec (90 � �) � csc �

The functions within the above equations are undefined, and
therefore the formulas do not apply in the following cases:
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� � 0 radians (0 degrees)

� � � radians (180 degrees)

Cotangent of complementary angle

The cotangent of the complement of an angle is equal to the
tangent of the angle. The following formula holds:

cot (� /2 � �) � tan �

For angles in degrees, the equivalent formula is:

cot (90 � �) � tan �

The functions within the above equations are undefined, and
therefore the formulas do not apply in the following cases:

� � � /2 radians (90 degrees)

� � 3� /2 radians (270 degrees)

Sine of supplementary angle

The sine of the supplement of an angle is equal to the sine of
the angle. The following formula holds:

sin (� � �) � sin �

For angles in degrees, the equivalent formula is:

sin (180 � �) � sin �

Cosine of supplementary angle

The cosine of the supplement of an angle is equal to the nega-
tive (additive inverse) of the cosine of the angle. The following
formula holds:

cos (� � �) � �cos �

For angles in degrees, the equivalent formula is:

cos (180 � �) � �cos �
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Tangent of supplementary angle

The tangent of the supplement of an angle is equal to the neg-
ative (additive inverse) of the tangent of the angle. The follow-
ing formula holds:

tan (� � �) � �tan �

For angles in degrees, the equivalent formula is:

tan (180 � �) � �tan �

The functions within the above equations are undefined, and
therefore the formulas do not apply in the following cases:

� � � /2 radians (90 degrees)

� � 3� /2 radians (270 degrees)

Cosecant of supplementary angle

The cosecant of the supplement of an angle is equal to the co-
secant of the angle. The following formula holds:

csc (� � �) � csc �

For angles in degrees, the equivalent formula is:

csc (180 � �) � csc �

The functions within the above equations are undefined, and
therefore the formulas do not apply in the following cases:

� � 0 radians (0 degrees)

� � � radians (180 degrees)

Secant of supplementary angle

The secant of the supplement of an angle is equal to the nega-
tive (additive inverse) of the secant of the angle. The following
formula holds:

sec (� � �) � �sec �

For angles in degrees, the equivalent formula is:
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sec (180 � �) � �sec �

The functions within the above equations are undefined, and
therefore the formulas do not apply in the following cases:

� � � /2 radians (90 degrees)

� � 3� /2 radians (270 degrees)

Cotangent of supplementary angle

The cotangent of the supplement of an angle is equal to the
negative (additive inverse) of the cotangent of the angle. The
following formula holds:

cot (� � �) � �cot �

For angles in degrees, the equivalent formula is:

cot (180 � �) � �cot �

The functions within the above equations are undefined, and
therefore the formulas do not apply in the following cases:

� � 0 radians (0 degrees)

� � � radians (180 degrees)

Hyperbolic Functions

There are six hyperbolic functions that are analogous in some
ways to the circular trigonometric functions. They are known
as hyperbolic sine, hyperbolic cosine, hyperbolic tangent, hyper-
bolic cosecant, hyperbolic secant, and hyperbolic cotangent. In
formulas and equations, they are abbreviated sinh, cosh, tanh,
csch, sech, and coth respectively.

Hyperbolic functions as powers of e

Let x be a real number. The values of the hyperbolic functions
of x can be defined in exponential terms as powers of e, where
e is the natural logarithm base and is equal to approximately
2.71828. As long as denominators are nonzero, the following
equations hold:
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Figure 2.69 Approximate
graph of the hyperbolic sine
function.

sinh x � (ex � e�x)/2

cosh x � (ex � e�x)/2

tanh x � sinh x /cosh x � (ex � e�x)/(ex � e�x)

csch x � 1/sinh x � 2/(ex � e�x)

sech x � 1/cosh x � 2/(ex � e�x)

coth x � cosh x /sinh x � (ex � e�x)/(ex � e�x)

Hyperbolic functions as series

Let x be a real number. The exclamation symbol (!) denotes fac-
torial. The following equations hold:

3 5 7sinh x � x � x /3! � x /5! � x /7! � . . .

2 4 6cosh x � 1 � x /2! � x /4! � x /6! � . . .

Graph of hyperbolic sine function

Figure 2.69 is an approximate graph of the function y � sinh x;
both its domain and range extend over the entire set of real
numbers.
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Figure 2.71 Approximate
graph of the hyperbolic tan-
gent function.

Figure 2.70 Approximate
graph of the hyperbolic co-
sine function.

Graph of hyperbolic cosine function

Figure 2.70 is an approximate graph of the function y � cosh x.
Its domain extends over the entire set of real numbers, and its
range encompasses the set of real numbers y such that y � 1.

Graph of hyperbolic tangent function

Figure 2.71 is an approximate graph of the function y �
tanh x; its domain encompasses the entire set of real numbers.
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Figure 2.72 Approximate
graph of the hyperbolic co-
secant function.

The range of the hyperbolic tangent function is limited to the
set of real numbers y such that �1 � y � 1.

Graph of hyperbolic cosecant function

Figure 2.72 is an approximate graph of the function y � csch x;
its domain encompasses the set of real numbers x such that
x � 0. The range of the hyperbolic cotangent function en-
compasses the set of real numbers y such that y � 0.

Graph of hyperbolic secant function

Figure 2.73 is an approximate graph of the function y � sech x.
Its domain encompasses the entire set of real numbers. Its
range is limited to the set of real numbers y such that 0 �
y � 1.

Graph of hyperbolic cotangent function

Figure 2.74 is an approximate graph of the function y � coth x;
its domain encompasses the entire set of real numbers x such
that x � 0. The range of the hyperbolic cotangent function
encompasses the set of real numbers y such that y � �1 or
y � 1.
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Figure 2.73 Approximate
graph of the hyperbolic se-
cant function.

Figure 2.74 Approximate
graph of the hyperbolic co-
tangent function.

Inverse hyperbolic functions

Each of the six hyperbolic functions has an inverse. These in-
verse relations are known as hyperbolic arcsine, hyperbolic arc-
cosine, hyperbolic arctangent, hyperbolic arccosecant, hyperbolic
arcsecant, and hyperbolic arccotangent. In formulas and equa-
tions, they are abbreviated arcsinh or sinh�1, arccosh or cosh�1,
arctanh or tanh�1, arccsch or csch�1, arcsech or sech�1, and arc-
coth or coth�1 respectively. They are functions when their do-
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Figure 2.76 Approximate
graph of the hyperbolic arc-
cosine function.

Figure 2.75 Approximate
graph of the hyperbolic arc-
sine function.

mains are restricted, as shown in the graphs of Figs. 2.75
through 2.80.

Graph of hyperbolic arcsine function

Figure 2.75 is an approximate graph of the function y �
sinh�1 x; both its domain and range encompass the entire set of
real numbers.



Geometry, Trigonometry, Logarithms, and Exponential Functions 167

Figure 2.77 Approximate
graph of the hyperbolic arc-
tangent function.

Graph of hyperbolic arccosine function

Figure 2.76 is an approximate graph of the function y �
cosh�1 x. The domain includes real numbers x such that x � 1.
The range of the hyperbolic arccosine function is limited to the
non-negative reals, that is, to real numbers y such that y � 0.

Graph of hyperbolic arctangent
function

Figure 2.77 is an approximate graph of the function y �
tanh�1 x. The domain is limited to real numbers x such that
�1 � x � 1. The range of the hyperbolic arctangent function
spans the entire set of real numbers.

Graph of hyperbolic arccosecant
function

Figure 2.78 is an approximate graph of the function y �
csch�1 x. Both the domain and the range of the hyperbolic arc-
cosecant function include all real numbers except zero.

Graph of hyperbolic arcsecant function

Figure 2.79 is an approximate graph of the function y �
sech�1 x. The domain of this function is limited to real numbers
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Figure 2.78 Approximate
graph of the hyperbolic arc-
cosecant function.

Figure 2.79 Approximate
graph of the hyperbolic arc-
secant function.

x such that 0 � x � 1. The range of the hyperbolic arcsecant
function is limited to the non-negative reals, that is, to real
numbers y such that y � 0.

Graph of hyperbolic arccotangent
function

Figure 2.80 is an approximate graph of the function y �
coth�1 x. The domain of this function includes all real numbers
x such that x � �1 or x � 1. The range of the hyperbolic arc-
cotangent function includes all real numbers except zero.
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Figure 2.80 Approximate
graph of the hyperbolic arc-
cotangent function.

Inverse hyperbolic functions as natural
logarithms

Let x be a real number. The values of the inverse hyperbolic
functions of x can be defined in logarithmic terms, where ln
represents the natural (base-e) logarithm function, and the do-
mains (values of x) are restricted as defined in the preceding
paragraphs and in Figs. 2.75 through 2.80. The following equa-
tions hold:

sinh�1 x � ln (x � (x2 � 1)1 / 2)

cosh�1 x � ln (x � (x2 � 1)1 / 2)

tanh�1 x � 0.5 ln ((1 � x)/(1 � x))

csch�1 x � ln (x�1 � (x�2 � 1)1 / 2)

sech�1 x � ln (x�1 � (x�2 � 1)1 / 2)

coth�1 x � 0.5 ln ((x � 1)/(x � 1))

Hyperbolic Identities

The following paragraphs depict common identities for hyper-
bolic functions. Unless otherwise specified, values of variables
can span the real-number domains of the hyperbolic functions
as defined above.
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Pythagorean theorem for hyperbolic
sine and cosine

The difference between the squares of the hyperbolic sine and
hyperbolic cosine of a variable is always equal to either 1 or �1.
The following formulas hold for all nonzero real numbers x:

sinh2 x � cosh2 x � �1

cosh2 x � sinh2 x � 1

Pythagorean theorem for hyperbolic
cotangent and cosecant

The difference between the squares of the hyperbolic cotangent
and hyperbolic cosecant of a variable is always equal to either
1 or �1. The following formulas hold for all nonzero real num-
bers x:

csch2 x � coth2 x � �1

coth2 x � csch2 x � 1

Pythagorean theorem for hyperbolic
secant and tangent

The sum of the squares of the hyperbolic secant and hyperbolic
tangent of a variable is always equal to 1. The following formula
holds for all real numbers x:

sech2 x � tanh2 x � 1

Hyperbolic sine of negative variable

The hyperbolic sine of the negative of a variable is equal to the
negative (additive inverse) of the hyperbolic sine of the variable.
The following formula holds for all real numbers x:

sinh �x � �sinh x

Hyperbolic cosine of negative variable

The hyperbolic cosine of the negative of a variable is equal to
the hyperbolic cosine of the variable. The following formula
holds for all real numbers x:

cosh �x � cosh x
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Hyperbolic tangent of negative variable

The hyperbolic tangent of the negative of a variable is equal to
the negative (additive inverse) of the hyperbolic tangent of the
variable. The following formula holds for all real numbers x:

tanh �x � �tanh x

Hyperbolic cosecant of negative
variable

The hyperbolic cosecant of the negative of a variable is equal to
the negative (additive inverse) of the hyperbolic cosecant of the
variable. The following formula holds for all nonzero real num-
bers x:

csch �x � �csch x

Hyperbolic secant of negative variable

The hyperbolic secant of the negative of a variable is equal to
the hyperbolic secant of the variable. The following formula
holds for all real numbers x:

sech �x � sech x

Hyperbolic cotangent of negative
variable

The hyperbolic cotangent of the negative of a variable is equal
to the negative (additive inverse) of the hyperbolic cotangent of
the variable. The following formula holds for all nonzero real
numbers x:

coth �x � �coth x

Hyperbolic sine of double value

The hyperbolic sine of twice any given variable is equal to twice
the hyperbolic sine of the original variable times the hyperbolic
cosine of the original variable. The following formula holds for
all real numbers x:

sinh 2x � 2 sinh x cosh x
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Hyperbolic cosine of double value

The hyperbolic cosine of twice any given variable can be found
according to any of the following three formulas for all real
numbers x:

cosh 2x � cosh2 x � sinh2 x

cosh 2x � 1 � 2 sinh2 x

cosh 2x � 2 cosh2 x � 1

Hyperbolic tangent of double value

The hyperbolic tangent of twice any given variable can be found
according to the following formula for all real numbers x:

tanh 2x � (2 tanh x) / (1 � tanh2 x)

Hyperbolic sine of half value

The hyperbolic sine of half any given variable can be found ac-
cording the following formula for all non-negative real numbers
x:

sinh (x /2) � ((1 � cosh x)/2)1 / 2

For negative real numbers x, the formula is:

sinh (x /2) � � ((1 � cosh x)/2)1 / 2

Hyperbolic cosine of half value

The hyperbolic cosine of half any given variable can be found
according to the following formula for all real numbers x:

cos (x /2) � ((1 � cos x)/2)1 / 2

Hyperbolic tangent of half value

The hyperbolic tangent of half any given variable can be found
according to the following formula for all non-negative real
numbers x:
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tanh (x /2) � ((cosh x � 1)/(cosh x � 1))1 / 2

For negative real numbers x, the formula is:

tanh (x /2) � � ((cosh x � 1) / (cosh x � 1))1 / 2

The following formula applies for all real numbers x:

tanh (x /2) � sinh x /(cosh x � 1)

The following formula applies for all nonzero real numbers x:

tanh (x /2) � (cosh x � 1)/sinh x

Hyperbolic sine of sum

The hyperbolic sine of the sum of two variables x and y can be
found according to the following formula:

sinh (x � y) � sinh x cosh y � cosh x sinh y

Hyperbolic cosine of sum

The hyperbolic cosine of the sum of two variables x and y can
be found according to the following formula:

cosh (x � y) � cosh x cosh y � sinh x sinh y

Hyperbolic tangent of sum

The hyperbolic tangent of the sum of two variables x and y
can be found according to the following formula, provided
tanh x tanh y � �1:

tanh (x � y)� (tanh x � tanh y)/(1 � tanh x tanh y)

Hyperbolic sine of difference

The hyperbolic sine of the difference between two variables x
and y can be found according to the following formula:

sinh (x � y) � sinh x cosh y � cosh x sinh y
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Hyperbolic cosine of difference

The hyperbolic cosine of the difference between two variables x
and y can be found according to the following formula:

cosh (x � y) � cosh x cosh y � sinh x sinh y

Hyperbolic tangent of difference

The hyperbolic tangent of the difference between two variables
x and y can be found according to the following formula, pro-
vided tanh x tanh y � 1:

tanh (x � y)� (tanh x � tanh y)/(1 � tanh x tanh y)

Logarithms

A logarithm (sometimes called a log) is an exponent to which a
constant is raised to obtain a given number. Suppose the follow-
ing relationship exists among three real numbers a, and x, and
y:

ay � x

Then y is the base-a logarithm of x. This expression is written

y � loga x

The two most common logarithm bases are a � 10 and a � e �
2.71828.

Common logarithms

Base-10 logarithms are also known as common logarithms or
common logs. In equations, common logarithms are denoted by
writing ‘‘log’’ without a subscript. For example:

log 10 � 1.000

Figure 2.81 is an approximate linear-coordinate graph of the
function y � log x. Figure 2.82 is the same graph in semilog
coordinates. The domain is limited to the positive reals, that is,
to real numbers x such that x � 0. The range of the common
log function encompasses the entire set of real numbers.
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Figure 2.81 Approximate linear-coordinate graph of the
common logarithm function.

Figure 2.82 Approximate semilog-coordinate graph of
the common logarithm function.



176 Chapter Two

Figure 2.83 Approximate linear-coordinate graph of the
natural logarithm function.

Natural logarithms

Base-e logarithms are also called natural logs or Napierian logs.
In equations, the natural-log function is usually denoted ‘‘ln’’ or
‘‘loge.’’ For example:

ln 2.71828 � loge 2.71828 � 1.00000

Figure 2.83 is an approximate linear-coordinate graph of the
function y � ln x. Figure 2.84 is the same graph in semilog
coordinates. The domain is limited to the positive reals, that is,
to real numbers x such that x � 0. The range of the natural log
function encompasses the entire set of real numbers.

Common logarithm in terms of natural
logarithm

Let x be a positive real number. The common logarithm of x can
be expressed in terms of the natural logarithms of x and 10:

log x � ln x / ln 10 � 0.434 ln x
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Figure 2.84 Approximate semilog-coordinate graph of
the natural logarithm function.

Natural logarithm in terms of common
logarithm

Let x be a positive real number. The natural logarithm of x can
be expressed in terms of the common logarithms of x and e:

ln x � log x / log e � 2.303 log x

Common logarithm of product

Let x and y be positive real numbers. The common logarithm of
the product is equal to the sum of the common logarithms of
the individual numbers:

log xy � log x � log y

Natural logarithm of product

Let x and y be positive real numbers. The natural logarithm of
the product is equal to the sum of the natural logarithms of the
individual numbers:

ln xy � ln x � ln y
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Common logarithm of ratio

Let x and y be positive real numbers. The common logarithm of
their ratio, or quotient, is equal to the difference between the
common logarithms of the individual numbers:

log (x /y) � �log (y /x) � log x � log y

Natural logarithm of ratio

Let x and y be positive real numbers. The natural logarithm of
their ratio, or quotient, is equal to the difference between the
natural logarithms of the individual numbers:

ln (x /y) � �ln (y /x) � ln x � ln y

Common logarithm of power

Let x be a positive real number; let y be any real number. The
common logarithm of x raised to the power y can be reduced to
a product, as follows:

log xy � y log x

Natural logarithm of power

Let x be a positive real number; let y be any real number. The
natural logarithm of x raised to the power y can be reduced to
a product, as follows:

ln xy � y ln x

Common logarithm of reciprocal

Let x be a positive real number. The common logarithm of the
reciprocal (multiplicative inverse) of x is equal to the additive
inverse of the common logarithm of x, as follows:

log (1/x) � �log x
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Natural logarithm of reciprocal

Let x be a positive real number. The natural logarithm of the
reciprocal (multiplicative inverse) of x is equal to the additive
inverse of the natural logarithm of x, as follows:

ln (1/x) � �ln x

Common logarithm of root

Let x be a positive real number; let y be any real number except
zero. The common logarithm of the yth root of x (also denoted
as x to the 1/y power) is given by:

log (x1 /y) � (log x)/y

Natural logarithm of root

Let x be a positive real number; let y be any real number except
zero. The natural logarithm of the yth root of x (also denoted as
x to the 1/yth power) is given by:

ln (x1 /y) � (ln x)/y

Common logarithm of power of 10

The common logarithm of 10 to any real-number power is al-
ways equal to that real number:

log (10x) � x

Natural logarithm of power of e

The natural logarithm of e to any real-number power is always
equal to that real number:

ln (ex) � x

Natural logarithm of complex number

Let c be a complex number in polar form:

c � r cos � � j(r sin �)

where r represents the length of the complex vector in the
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complex-number plane, and � represents the angle in radians
counterclockwise from the abscissa (the positive real-number
axis). Let k be an integer. The natural logarithm of c is periodic
and can be depicted by the following formula:

ln c � ln r � j(� � 2k�)

Exponential Functions

An exponential is a number that results from the raising of a
constant to a given power. Suppose the following relationship
exists among three real numbers a, x, and y:

ax � y

Then y is the base-a exponential of x. The two most common
exponential-function bases are a � 10 and a � e � 2.71828.

Common exponentials

Base-10 exponentials are also known as common exponentials.
For example:

�3.00010 � 0.001

Figure 2.85 is an approximate linear-coordinate graph of the
function y � 10x. Figure 2.86 is the same graph in semilog co-
ordinates. The domain encompasses the entire set of real num-
bers. The range is limited to the positive reals, that is, to real
numbers y such that y � 0.

Natural exponentials

Base-e exponentials are also known as natural exponentials. For
example:

�3.000 �3.000e � 2.71828 � 0.04979

Figure 2.87 is an approximate linear-coordinate graph of the
function y � ex. Figure 2.88 is the same graph in semilog co-
ordinates. The domain encompasses the entire set of real num-
bers. The range is limited to the positive reals, that is, to real
numbers y such that y � 0.
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Figure 2.85 Approximate linear-coordinate graph of
the common exponential function.

Figure 2.86 Approximate semilog graph of the com-
mon exponential function.
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Figure 2.87 Approximate linear-coordinate graph of
the natural exponential function.

Figure 2.88 Approximate semilog graph of the nat-
ural exponential function.



Geometry, Trigonometry, Logarithms, and Exponential Functions 183

Reciprocal of common exponential

Let x be a real number. The reciprocal of the common exponen-
tial of x is equal to the common exponential of the additive in-
verse of x:

1/(10x) � 10�x

Reciprocal of natural exponential

Let x be a real number. The reciprocal of the natural exponen-
tial of x is equal to the natural exponential of the additive in-
verse of x:

1/(ex) � e�x

Product of common exponentials

Let x and y be real numbers. The product of the common ex-
ponentials of x and y is equal to the common exponential of the
sum of x and y:

(10x)(10y) � 10(x�y)

Product of natural exponentials

Let x and y be real numbers. The product of the natural expo-
nentials of x and y is equal to the natural exponential of the
sum of x and y:

(ex)(ey) � e (x�y)

Ratio of common exponentials

Let x and y be real numbers. The ratio (quotient) of the common
exponentials of x and y is equal to the common exponential of
the difference between x and y:

10x /10y � 10(x�y)

Ratio of natural exponentials

Let x and y be real numbers. The ratio (quotient) of the natural
exponentials of x and y is equal to the natural exponential of
the difference between x and y:

ex /ey � e(x�y)
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Exponential of common exponential

Let x and y be real numbers. The yth power of the quantity 10x

is equal to the common exponential of the product xy:

(10x)y � 10(xy)

Exponential of natural exponential

Let x and y be real numbers. The yth power of the quantity ex

is equal to the natural exponential of the product xy:

(ex)y � e(xy)

Product of common and natural
exponentials

Let x be a real number. The product of the common and natural
exponentials of x is equal to the exponential of x to the base 10e:

(10x)(ex) � (10e)x � (27.1828)x

Let x be a nonzero real number. The product of the common and
natural exponentials of 1/x is equal to the exponential of 1/x to
the base 10e:

(101 /x)(e1 /x) � (10e)1 /x � (27.1828)1 /x

Ratio of common to natural exponential

Let x be a real number. The ratio (quotient) of the common ex-
ponential of x to the natural exponential of x is equal to the
exponential of x to the base 10/e:

10x /ex � (10/e)x � (3.6788)x

Let x be a nonzero real number. The ratio (quotient) of the com-
mon exponential of 1/x to the natural exponential of 1/x is equal
to the exponential of 1/x to the base 10/e:

(101 /x)/(e1 /x) � (10/e)1 /x � (3.6788)1 /x
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Ratio of natural to common exponential

Let x be a real number. The ratio (quotient) of the natural ex-
ponential of x to the common exponential of x is equal to the
exponential of x to the base e /10:

ex /10x � (e /10)x � (0.271828)x

Let x be a nonzero real number. The ratio (quotient) of the nat-
ural exponential of 1/x to the common exponential of 1/x is
equal to the exponential of 1/x to the base e /10:

(e1 /x)/(101 /x) � (e /10)1 /x � (0.271828)1 /x

Common exponential of ratio

Let x and y be real numbers, with the restriction y � 0. The
common exponential of the ratio (quotient) of x to y is equal to
the exponential of 1/y to the base 10x:

10x /y � (10x)1 /y

Natural exponential of ratio

Let x and y be real numbers, with the restriction y � 0. The
natural exponential of the ratio (quotient) of x to y is equal to
the exponential of 1/y to the base ex:

ex /y � (ex)1 /y

Natural exponential of imaginary
number

Let jx be an imaginary number, where x is a non-negative real
number expressed as an angle in radians, with the restriction
that the angle be reduced to its simplest form, that is, 0 � x �
2�. (If x � 2�, a natural-number multiple of 2� can be sub-
tracted to obtain an equivalent value of x such that 0 � x � 2�.
If x � 0, a natural-number multiple of 2� can be added to obtain
an equivalent value of x such that 0 � x � 2�.) The following
equations hold:

jxe � cos x � j sin x

�jxe � cos x � j sin x
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Complex number in exponential form

Let c be a complex number a � jb, where a and b are real
numbers. Let r represent the length of the complex vector in
the complex-number plane, and x represent the angle of the
vector in radians counterclockwise from the abscissa (the posi-
tive real-number axis). Then the following equations hold:

r � (a2 � b2)1 / 2

x � tan�1 (b /a)

c � r cos x � j(r sin x)

(If x � 2�, a natural-number multiple of 2� can be subtracted
to obtain an equivalent value of x such that 0 � x � 2�. If x �
0, a natural-number multiple of 2� can be added to obtain an
equivalent value of x such that 0 � x � 2�.) The value of c can
be depicted as the natural exponential of an imaginary number:

c � rejx
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This chapter outlines principles and formulas in scientific no-
tation, logic, sequences and series, differentiation, integration,
differential equations, and probability.

Scientific Notation

The term scientific notation refers to various methods of ex-
pressing numbers and variables, including the use of subscripts,
superscripts, and powers of 10.

Subscripts

Subscripts modify the meanings of units, constants, and varia-
bles. A subscript is placed to the right of the main character
(without spacing), is set in smaller type than the main charac-
ter, and is set below the base line. Numeric subscripts are not
italicized; alphabetic subscripts are sometimes italicized. Ex-
amples of subscripted quantities are:

Z0 read ‘‘Z sub nought’’;
stands for characteristic impedance

Rout read ‘‘R sub out’’;
stands for output resistance

yn read ‘‘y sub n’’;
represents a variable
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Superscripts

Superscripts represent exponents (the raising of a base quantity
to a power). Superscripts are usually numerals, but they are
sometimes alphabetic characters. Italicized, lowercase English
letters from the second half of the alphabet (n through z) are
generally used to represent variable exponents. A superscript is
placed to the right of the main character (without spacing), is
set in smaller type than the main character, and is set above
the base line. Examples of superscripted quantities are:

23 read ‘‘two cubed’’;
represents 2 � 2 � 2

ex read ‘‘e to the xth’’;
represents the exponential function of x

y1 / 2 read ‘‘y to the one-half ’’;
represents the square root of y

Power-of-10 notation

Extreme numerical values can be represented by an exponential
scheme known as power-of-10 notation. A numeral in this form
is written as follows:

zm.n � 10

where m (to the left of the radix point) is a number from the
set {1, 2, 3, 4, 5, 6, 7, 8, 9}, n (to the right of the radix point) is
a non-negative integer, and z (the power of 10) can be any in-
teger. Here are some examples of numbers written in this form:

62.56 � 10

�188.0773 � 10

01.000 � 10

In some countries, power-of-10 notation requires that that m �
0. In this rarely-used form, the above numbers appear as:

70.256 � 10

�170.80773 � 10

10.1000 � 10
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The ‘‘times sign’’

The multiplication sign in a power-of-10 expression can be de-
noted in various ways. Instead of the common cross symbol (�),
an asterisk (*) can be used, so the above expressions become:

62.56 * 10

�188.0773 * 10

01.000 * 10

Another alternative is to use a small dot raised above the base
line (�), so the expressions appear as:

62.56 � 10

�188.0773 � 10

01.000 � 10

This small dot should not be confused with a radix point, as in
the expression:

zm.n � 10

in which the dot between m and n is a radix point and lies along
the base line, while the dot between n and 10z is a multiplica-
tion symbol and lies above the base line.

Plain-text exponents

Sometimes it is necessary to express numbers in power-of-10
notation using plain text. This is the case, for example, when
transmitting information within the body of an e-mail message
(rather than as an attachment). Some electronic calculators and
computers use this system. The uppercase letter E indicates
that the quantity immediately following is an exponent. In this
format, the above expressions are written as:

2.56E6

8.0773E�18

1.000E0

Sometimes the exponent is always written with two numerals
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and always includes a plus sign or a minus sign, so the above
expressions appear as:

2.56E�06

8.0773E�18

1.000E�00

Another alternative is to use an asterisk to indicate multipli-
cation, and the symbol � to indicate a superscript, so the ex-
pressions appear as:

�2.56 * 10 6

�8.0773 * 10 �18

�1.000 * 10 0

In all of these examples, the numerical values represented are
identical. Respectively, if written out in full, they are:

2,560,000

0.0000000000000000080773

1.000

Rules for use

In printed literature, it is common practice to use power-of-10
notation only when z (the power of 10) is fairly large or small.
If �2 � z � 2, numbers are written out in full as a rule, and
the power of 10 is not shown. If z � �3 or z � 3, numbers are
sometimes written out in full, and are sometimes depicted in
power-of-10 notation. If z � �4 or z � 4, values are expressed
in power-of-10 notation as a rule. Calculators set to display
quantities in power-of-10 notation usually do so for all numbers,
even those for which the power of 10 is zero.

Addition and subtraction of numbers is best done by writing
numbers out in full, if possible. Thus, for example:

(3.045 � 102) � (6.853 � 103)

� 304.5 � 6853 � 7157.5

� 7.1575 � 103
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When numbers are multiplied or divided in power-of-10 no-
tation, the decimal numbers (to the left of the multiplication
symbol) are multiplied or divided by each other. Then the pow-
ers of 10 are added (for multiplication) or subtracted (for divi-
sion). Finally, the product or quotient is reduced to standard
form. An example is:

(3.045 � 102)(6.853 � 103)

� 20.867385 � 105 � 2.0867385 � 106

Truncation

The process of truncation deletes all the numerals to the right
of a certain point in the decimal part of an expression. Some
electronic calculators use this process to fit numbers within
their displays. For example, the number 3.830175692803 can be
shortened in steps as follows:

3.830175692803

3.83017569280

3.8301756928

3.830175692

3.83017569

3.8301756

3.830175

3.83017

3.8301

3.830

3.83

3.8

3

Rounding

Rounding is a more accurate, and preferred, method of render-
ing numbers in shortened form. In this process, when a given
digit (call it r) is deleted at the right-hand extreme of an ex-
pression, the digit q to its left (which becomes the new r after
the old r is deleted) is not changed if 0 � r � 4. If 5 � r � 9,
then q is increased by 1 (‘‘rounded up’’). Some electronic calcu-



194 Chapter Three

lators use rounding rather than truncation. If rounding is used,
the number 3.830175692803 can be shortened in steps as fol-
lows:

3.830175692803

3.83017569280

3.8301756928

3.830175693

3.83017569

3.8301757

3.830176

3.83018

3.8302

3.830

3.83

3.8

4

Significant figures

When calculations are performed using power-of-10 notation,
the number of significant figures in the result cannot be greater
than the number of significant figures in the shortest expression
in the calculation.

In the foregoing example showing addition, the sum, 7.1575
� 103, must be cut down to four significant figures because the
addends have only four significant figures. If the resultant is
truncated, it becomes 7.157 � 103. If rounded, it becomes 7.158
� 103.

In the foregoing example showing multiplication, the resul-
tant, 2.0867385 � 106, must be cut down to four significant fig-
ures because the multiplicands have only four significant fig-
ures. If the resultant is truncated, it becomes 2.086 � 106. If
rounded, it becomes 2.087 � 106.
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‘‘Downsizing’’ of resultants is best done at the termination of
a calculation process, if that process involves more than one
computation.

Boolean Algebra

Boolean algebra is a simple system of mathematical logic using
the numbers 0 and 1. These logic states are also called low and
high, respectively. There are three fundamental operations: ne-
gation, multiplication, and addition. Boolean operations behave
differently than their counterparts in conventional real-number
and complex-number algebra.

Negation

Let X be a logical quantity, also known as a Boolean variable.
The negation of X is written as �X, X�, or X with a line over it.
In the following paragraphs, the dash (�) is used to represent
Boolean negation. The following rules apply:

If X � 0, then �X � 1

If X � 1, then �X � 0

Multiplication

Let X and Y be Boolean variables. The Boolean product can be
written in any of these ways:

XY

X � Y

X � Y

X * Y

In the following paragraphs, the � symbol is used. The follow-
ing rules apply:
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If X � 0 and Y � 0, then X � Y � 0

If X � 0 and Y � 1, then X � Y � 0

If X � 1 and Y � 0, then X � Y � 0

If X � 1 and Y � 1, then X � Y � 1

Addition

Let X and Y be Boolean variables. The Boolean sum is written
X � Y. The following rules apply:

If X � 0 and Y � 0, then X � Y � 0

If X � 0 and Y � 1, then X � Y � 1

If X � 1 and Y � 0, then X � Y � 1

If X � 1 and Y � 1, then X � Y � 1

Even-multiple negation

The negation of any logical quantity X, carried out an even
number of times, is always equal to X. The following equations
hold:

�(�X) � X

�(�(�(�X))) � X

�(�(�(�(�(�X))))) � X

etc.

Odd-multiple negation

The negation of any logical quantity X, carried out an odd num-
ber of times, is always equal to �X. The following equations
hold:

�(�(�X)) � �X

�(�(�(�(�X)))) � �X

�(�(�(�(�(�(�X)))))) � �X

etc.
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Additive identity

The sum of 0 and any logical quantity X is always equal to X.
Therefore, 0 is known as the additive identity element. The fol-
lowing Boolean equations hold:

X � 0 � X

0 � X � X

Addition of 1

The sum of 1 and any logical quantity X is always equal to 1.
The following Boolean equations hold:

X � 1 � 1

1 � X � 1

Addition of identical quantities

When any logical quantity X is added to itself, the result is
equal to X. The following Boolean equation holds:

X � X � X

Addition of opposites

The sum of any logical quantity X and its negative is always
equal to 1. The following Boolean equations hold:

X � (�X) � 1

�X � X � 1

Commutativity of addition

The order in which a sum is performed does not matter. For any
two logical quantities X and Y, the following Boolean equation
holds:

X � Y � Y � X
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Associativity of addition

The manner in which a sum is grouped does not matter. For any
three logical quantities X, Y, and Z, the following Boolean equa-
tion holds:

(X � Y) � Z � X � (Y � Z)

Negation of a sum

The negation of the sum of two quantities is equal to the product
of the negations of the individual quantities. This is also known
as DeMorgan’s rule for addition. For any two logical quantities
X and Y, the following Boolean equation holds:

�(X � Y) � (�X) � (�Y)

Multiplicative identity

The product of 1 and any logical quantity X is always equal to
X. Therefore, 1 is known as the Boolean multiplicative identity
element. The following Boolean equations hold:

X � 1 � X

1 � X � X

Multiplication by zero

The product of 0 and any logical quantity X is always equal to
0. The following Boolean equations hold:

X � 0 � 0

0 � X � 0

Multiplication of identical quantities

When any logical quantity X is multiplied by itself, the result
is equal to X. The following Boolean equation holds:

X � X � X
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Multiplication of opposites

The product of any logical quantity X and its negative is always
equal to 0. The following Boolean equations hold:

X � (�X) � 0

�X � X � 0

Commutativity of multiplication

The order in which a product is performed does not matter. For
any two logical quantities X and Y, the following Boolean equa-
tion holds:

X � Y � Y � X

Associativity of multiplication

The manner in which a product is grouped does not matter. For
any three logical quantities X, Y, and Z, the following Boolean
equation holds:

(X � Y) � Z � X � (Y � Z)

Negation of a product

The negation of the product of two quantities is equal to the
sum of the negations of the individual quantities. This is also
known as DeMorgan’s rule for multiplication. For any two log-
ical quantities X and Y, the following Boolean equation holds:

�(X � Y) � (�X) � (�Y)

Distributivity

Boolean multiplication distributes over Boolean addition. For
any three logical quantities X, Y, and Z, the following equation
holds:

X � (Y � Z) � (X � Y) � (X � Z)
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TABLE 3.1 Propositional Logic Values

P Q �P P � Q P � Q P → Q P ↔ Q

F F T F F T T
F T T F T T F
T F F F T F F
T T F T T T T

Product added to a quantity

For any two logical quantities X and Y, the following Boolean
equation holds:

X � (X � Y) � X

Quantity added to a product

For any two logical quantities X and Y, the following Boolean
equation holds:

(X � (�Y)) � Y � X � Y

Propositional Logic

Propositional logic, also known as propositional calculus, sen-
tential logic, or sentential calculus, is similar to Boolean algebra
but involves more operations. Propositions or sentences are
symbolized by letters from the middle of the alphabet, such as
P, Q, R, and S. Logic values are T (true) and F (false). Standard
operations and relations are negation, conjunction, disjunction,
implication, and equivalence.

Negation

Logical negation is also known as the NOT operation. Let P be
a proposition. The negation of P is written as ¬P or �P. In the
following paragraphs, the tilde (�) is used. See Table 3.1 for
logic values.

Conjunction

Logical conjunction is also known as the AND operation. Let P
and Q be propositions. The conjunction of P and Q is written
P � Q. See Table 3.1 for logic values.
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Disjunction

Logical disjunction is also known as the OR operation. Let P
and Q be propositions. The disjunction of P and Q is written
P � Q. See Table 3.1 for logic values.

Implication

Logical implication is also known as if-then. Let P and Q be
propositions. The statement ‘‘If P, then Q,’’ also read as ‘‘P im-
plies Q,’’ is written P → Q. (The arrow symbol is not to be con-
fused with the identical symbol denoting the fact that the value
of a sequence or series approaches a constant.) See Table 3.1 for
logic values.

Equivalence

Logical equivalence is also know as if-and-only-if or iff. Let P
and Q be propositions. The statement ‘‘P if and only if Q’’ is
written P ↔ Q. See Table 3.1 for logic values.

Even-multiple negation

The negation of any proposition P, carried out an even number
of times, is logically equivalent to the original proposition P. The
following statements are valid:

�(�P) ↔ P

�(�(�(�P))) ↔ P

�(�(�(�(�(�P))))) ↔ P

etc.

Odd-multiple negation

The negation of any proposition P, carried out an odd number
of times, is logically equivalent to �P. The following statements
are valid:

�(�(�P)) ↔ �P

�(�(�(�(�P)))) ↔ �P

�(�(�(�(�(�(�P)))))) ↔ �P

etc.
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Idempotence of disjunction

The disjunction of any proposition P and itself is logically equiv-
alent to P. The following statement is valid:

P � P ↔ P

Excluded middle

The disjunction of any proposition P and its negative is a logi-
cally valid statement. That is:

P � �P

Commutativity of disjunction

The order in which a disjunction is stated does not matter. For
any two propositions P and Q, the following statement is valid:

P � Q ↔ Q � P

Associativity of disjunction

The manner in which a disjunction is grouped does not matter.
For any three propositions P, Q, and R, the following statement
is valid:

(P � Q) � R ↔ P � (Q � R)

DeMorgan’s law for disjunction

The negation of the disjunction of two propositions is equal to
the conjunction of the negations of the propositions. For any two
propositions P and Q, the following statement is valid:

�(P � Q) ↔ (�P) � (�Q)

Idempotence of conjunction

The conjunction of any proposition P and itself is logically equiv-
alent to P. The following statement is valid:

P � P ↔ P
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Commutativity of conjunction

The order in which a conjunction is stated does not matter. For
any two propositions P and Q, the following statement is valid:

P � Q ↔ Q � P

Associativity of conjunction

The manner in which a conjunction is grouped does not matter.
For any three propositions P, Q, and R, the following statement
is valid:

(P � Q) � R ↔ P � (Q � R)

DeMorgan’s law for conjunction

The negation of the conjunction of two propositions is equal to
the disjunction of the negations of the propositions. For any two
propositions P and Q, the following statement is valid:

�(P � Q) ↔ (�P) � (�Q)

Modus ponens

For any two propositions P and Q, if P is true and P implies Q,
then Q is true. The following logical statement is valid:

(P � (P → Q)) → Q

Modus tollens

For any two propositions P and Q, if Q is false and P implies Q,
then P is false. The following logical statement is valid:

(�Q � (P → Q)) → �P

Proof by cases

For any two propositions P and Q, if P implies Q and the ne-
gation of P implies Q, then Q is true. The following logical state-
ment is valid:

((P → Q) � (�P → Q)) → Q
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Elimination of cases

For any two propositions P and Q, the conjunction of �P with
the disjunction of P and Q implies Q. The following logical state-
ment is valid:

(�P � (P � Q)) → Q

Contradiction

For any proposition P, if P and �P are simultaneously true, then
anything follows. The following statement is valid:

(P � �P) → Q

Contraposition

For any two propositions P and Q, if P implies Q, then �Q im-
plies �P. Also, if �Q implies �P, then P implies Q. The follow-
ing statement is valid:

(P → Q) ↔ (�Q → �P)

Transitivity of implication

For any three propositions P, Q, and R, if P implies Q and Q
implies R, then P implies R. The following statement is valid:

((P → Q) � (Q → R)) → (P → R)

Transitivity of equivalence

For any three propositions P, Q, and R, if P is logically equiva-
lent to Q and Q is logically equivalent to R, then P is logically
equivalent to R. The following statement is valid:

((P ↔ Q) � (Q ↔ R)) → (P ↔ R)

Sequences and Series

This section contains definitions and formulas for sequences
and series commonly encountered in engineering and science.
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Infinite sequence

An infinite sequence A is a function f whose domain is the set
N of positive integers. The following formula applies:

A � a , a , a , ..., a , ... � f(1), f(2), f(3), ...1 2 3 n

Occasionally the set of non-negative integers is specified for N:

A � a , a , a , ..., a , ... � f(0), f(1), f(2), ...0 1 2 n

Positive infinite sequence

A positive infinite sequence is an infinite sequence, all of whose
terms are real numbers greater than zero.

Negative infinite sequence

A negative infinite sequence is an infinite sequence, all of whose
terms are real numbers less than zero.

Alternating infinite sequence

An alternating infinite sequence is an infinite sequence of posi-
tive and negative terms such that, if an and an�1 are successive
terms, the following statements hold:

If a � 0, then a � 0n n�1

If a � 0, then a � 0n n�1

Bounded infinite sequence

A bounded infinite sequence is a sequence such that, for every
n � N, the defining function f has the following property:

p � f(n) � q

for some p � N and some q � N.

Nondecreasing infinite sequence

A nondecreasing infinite sequence is a sequence such that, for
every n � N, the defining function f has the following property:

f(n � 1) � f(n)
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Nonincreasing infinite sequence

A nonincreasing infinite sequence is a sequence such that, for
every n � N, the defining function f has the following property:

f(n � 1) � f(n)

Convergent infinite sequence

A convergent infinite sequence is a sequence in which the value
of the defining function f approaches a specific real number s as
n increases without bound:

f(n) → s as n → 	

(The arrow symbol is not to be confused with the identical sym-
bol denoting the fact that one logical proposition implies an-
other.) Example of convergent infinite sequences are:

n 1 1 1 1 1A � f(n) � 1/(2 ) � ⁄2, ⁄4, ⁄8, ⁄16, ⁄32, ...

n 1 1 1 1 1B � g(n) � 1/(�2 ) � � ⁄2, ⁄4, � ⁄8, ⁄16, � ⁄32, ...

The values of both of these infinite sequences converge toward
zero.

Uniqueness of limit

Suppose A � f(n) is a convergent sequence such that the follow-
ing statements are both valid:

f(n) → s as n → 	1

f(n) → s as n → 	2

Then s1 � s2. In other words, an infinite sequence can never
converge to more than one value.

Divergent infinite sequence

A divergent infinite sequence is a sequence in which the value
of the defining function f increases and/or decreases without
bound as n increases without bound:
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f(n) → �	 as n → 	

and/or

f(n) → �	 as n → 	

(The arrow symbol is not to be confused with the identical sym-
bol denoting the fact that one logical proposition implies an-
other.) Examples of a divergent infinite sequence are:

nf(n) � 2 � 2, 4, 8, 16, 32, ...

nf(n) � (�2) � �2, 4, �8, 16, �32, ...

Term-by-term reciprocal

Let A be an infinite sequence, none of whose terms are equal to
zero. Let B be the infinite sequence whose terms are reciprocals
of the corresponding terms of A:

A � a , a , a , ...1 2 3

B � 1/a , 1/a , 1/a , ...1 2 3

Then if A diverges, B converges toward zero.

Boundedness and convergence

Let A be an infinite sequence a1, a2, a3, ... . The following state-
ments are always true: if A is bounded and nondecreasing, then
A is convergent; if A is bounded and nonincreasing, then A is
convergent.

Alteration of initial terms in sequence

Let A and B be infinite sequences that are identical except for
the first k terms; the first k terms have different values an and
bn, as follows:

A � a , a , a , ..., a , a , a , a ,...1 2 3 k k�1 k�2 k�3

B � b , b , b , ..., b , a , a , a ,...1 2 3 k k�1 k�2 k�3

Then the following statements are always true: if A is conver-
gent, then B is convergent; and if A is divergent, then B is di-
vergent.
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Infinite series

An infinite series consists of the elements of an infinite sequence
arranged in a specific order, separated by addition symbols:

a � a � a � ... � a � ...1 2 3 n

or

a � a � a � ... � a � ...0 1 2 n

Positive infinite series

A positive infinite series is the sum of an infinite sequence, all
of whose terms are real numbers greater than zero.

Negative infinite series

A negative infinite series is an the sum of an infinite sequence,
all of whose terms are real numbers less than zero.

Alternating infinite series

An alternating infinite series is the sum of an infinite sequence
of positive and negative terms such that, if an and an�1 are suc-
cessive terms, the following statements hold:

If a � 0, then a � 0n n�1

If a � 0, then a � 0n n�1

Partial sum

The partial sum Sn of an infinite series is the sum of its first n
terms:

S � a � a � a � ... � an 1 2 3 n

Convergent infinite series

A convergent infinite series is an infinite series whose partial
sum Sn approaches a specific finite number S as n increases
without bound:
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S → S as n → 	n

�

S � a � a � a � ...1 2 3

An example of a convergent infinite series is:

1 1 1C � ⁄2 � ⁄4 � ⁄8 � ... � 1

Uniqueness of sum

Suppose S is a convergent infinite series such that the following
statements are both valid for the partial sums:

S → T as n → 	n 1

S → T as n → 	n 2

Then T1 � T2. In other words, the partial sum of an infinite
series can never converge to more than one value.

Divergent infinite series

A divergent infinite series is an infinite series that is not con-
vergent; its partial sum Sn does not approach any specific finite
number as n increases without bound. An example of a diver-
gent infinite series is:

D � 1 � 2 � 3 � 4 � ...

Conditionally convergent infinite series

A conditionally convergent infinite series is an infinite series
that is convergent for certain values of a parameter x, but is
divergent for other values of x. An example of a conditionally
convergent infinite series is:

2 3 4 5C � 1 � x � x � x � x � x � ...cc

This infinite series converges to 1/(1 � x) if �1 � x � 1, but
diverges if x � �1 or x � 1.
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Absolutely convergent infinite series

An absolutely convergent infinite series is an infinite series such
that the sum of the absolute values of all its terms is conver-
gent. Let

S � a � a � a � ...1 2 3

be an infinite series. Then S is absolutely convergent if and only
if the following series converges:

S � �a � � �a � � �a � � ...abs 1 2 3

Alteration of initial terms in series

Let S and T be infinite series that are identical except for the
first k terms; the first k terms have different values an and bn,
as follows:

S � a � a � a � ... � a � a � a � a ,...1 2 3 k k�1 k�2 k�3

T � b � b � b � ... � b � a � a � a ,...1 2 3 k k�1 k�2 k�3

Then the following statements are always true: if S is conver-
gent, then T is convergent; and if S is divergent, then T is di-
vergent.

Terms in convergent infinite series

If S is a convergent infinite series, then the corresponding se-
quence A converges toward zero. Let S, a partial sum Sn, and
A be denoted as follows:

S � a � a � a � ...1 2 3

S � a � a � a � ... � an 1 2 3 n

A � a , a , a , ...1 2 3

If Sn → S as n → 	, then an → 0 as n → 	, where S is a specific,
unique real number.
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Terms in divergent infinite series

Let S be an infinite series. Suppose the corresponding sequence
A does not converge toward zero. Then S is divergent. Let S, a
partial sum Sn, and A be denoted as follows:

S � a � a � a � ...1 2 3

S � a � a � a � ... � an 1 2 3 n

A � a , a , a , ...1 2 3

If it is not the case that an → 0 as n → 	, then there exists no
real number such that Sn → S as n → 	.

Multiple of convergent infinite series

Let S be a convergent infinite series, and let k be a nonzero real
number. If each term of S is muliplied by k, the resulting series
kS converges. Let S, a partial sum Sn, kS, and a partial sum
kSn be denoted as follows:

S � a � a � a � ...1 2 3

S � a � a � a � ... � an 1 2 3 n

kS � ka � ka � ka � ...1 2 3

kS � ka � ka � ka � ... � kan 1 2 3 n

If Sn → S as n → 	, then kSn → kS as n → 	.

Factorial

For a given positive integer n, the number n factorial (written
n!) is the product of all the positive integers up to, and includ-
ing, n:

n! �1 � 2 � 3 � 4 � ... � n

Factorials of n become large rapidly as n increases. Factorials
of the first several positive integers are:
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1! � 1

2! � 2

3! � 6

4! � 24

5! � 120

6! � 720

7! � 5,040

8! � 40,320

9! � 362,880

10! � 3,628,800

11! � 39,916,800

12! � 479,001,600

Arithmetic series

An arithmetic series is a series A such that:

f(a ) � a � dn�1 n

�

A � a � (a � d) � (a � 2d) � (a � 3d) � ...1 1 1 1

where d is a constant called the difference. For example, if a1 �
5 and d � 2, then:

A � 5 � 7 � 9 � 11 � 13 ...

Geometric series

A geometric series is a series G such that:

f(a ) � a /rn�1 n

�

2 3G � a � (a /r) � (a /r ) � (a /r ) � ...1 1 1 1
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where r is a constant called the ratio. For example, if a1 � 3
and r � 2, then:

3 3 3 3G � 3 � ⁄2 � ⁄4 � ⁄8 � ⁄16 � ...

Harmonic series

A harmonic series is a series H � a1 � a2 � a3 � ... � an � ...
such that the series consisting of the reciprocal of each term is
an arithmetic series A:

1/f(a ) � 1/(a � d)n�1 n

�

H � 1/b � 1/b � 1/b � ... � 1/b � ...1 2 3 n

Where d is a constant. For example, if a1 � 1 and d � 3, then:

1 1 1 1H � 1, ⁄4, ⁄7, ⁄10, ⁄13, ...

Power series

A power series is a series P such that the following equation
holds for coefficients ai (where i is a non-negative integer sub-
script) and a variable x:

2 3 nP � a � a x � a x � a x � ... � a x � ...0 1 2 3 n

where a1, a2, a3, ... � an, ... is a sequence. For example, if the
sequence of coefficients is 2, 4, 6, 8, ... then:

2 3P � 2 � 4x � 6x � 8x � ...

Arithmetic-geometric series

An arithmetic-geometric series is a series C such that, for con-
stants a and b and a variable x:

2 3C � a � (a � b)x � (a � 2b)x � (a � 3b)x � ...

(n�1)� (a � (n � 1)b)x
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Taylor series

A Taylor series, also known as a Taylor expansion, is a series T
such that the following equation holds for some function f, its
successive derivatives f�, f 	, f , ..., some constant a, and some
variable x:

T �

f(a) � ((x � a)( f�(a))

�

2((x � a) ( f 	(a))/2

�

3((x � a) ( f (a))/3!

�

...

Maclaurin series

A Maclaurin series M is a Taylor series with a � 0. The follow-
ing holds for some function f, its successive derivatives f�, f 	,
f , ..., and some variable x:

M �

f(0)

�

(x( f�(0))

�

(x2( f 	(0))/2

�

(x3( f (0))/3!

�

...
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Binomial series

Let x be a variable, let a be a real number, and let n be a positive
integer. Then the value of (x � a)n can be found by summing a
finite series known as the Binomial series:

(x � a)n �

an

�

nan�1x

�

(n(n�1)/2!)an�2x2

�

(n(n � 1)(n � 2)/3!)an�3x3

�
(n(n � 1)(n � 2)(n � 3)/4!)an�4x4

�

...

�

xn

General Fourier series

A Fourier series represents a periodic function F having period
2L, such that the following equation holds for some variable x,
some sequence a1, a2, a3, ... � an, ..., and some sequence b1, b2,
b3, ... � bn, ... :

F �

a0/2 � a1 cos (�x /L) � b1 sin (�x /L)

�

a2 cos (2�x /L) � b2 sin (2�x /L)

�
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Figure 3.1 Square wave.

a3 cos (3�x /L) � b3 sin (3�x /L) � ...

�

an cos (n�x /L) � bn sin (n�x /L)

�

...

Fourier series for square wave

Figure 3.1 is a graph of a square wave with peak values of � /4
and �� /4, and with period 2�. This function can be represented
by the following infinite series:

f(x) � sin x � (sin 3x)/3 � (sin 5x)/5

� (sin 7x)/7 � (sin 9x)/9 � ...

Fourier series for ramp wave

Figure 3.2 is a graph of a ramp wave with peak values of � /2
and �� /2, and with period 2�. This function can be represented
by the following infinite series:

f(x) � sin x � (sin 2x)/2 � (sin 3x)/3

�(sin 4x)/4 � (sin 5x)/5 � ...
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Figure 3.2 Ramp wave.

Fourier series for triangular wave

Figure 3.3 is a graph of a triangular wave with peak values of
�2/8 and ��2/8, and with period 2�. This function can be rep-
resented by the following infinite series:

2 2f(x) � cos x � (cos 3x)/3 � (cos 5x)/5

2 2� (cos 7x)/7 � (cos 9x)/9 � ...

Fourier series for half-rectified sine
wave

Figure 3.4 is a graph of a half-rectified sine wave with peak
values of � /2 and 0, and with period 2�. This function can be
represented by the following infinite series:

1f(x) � ⁄2 � (� /4) sin x � (cos 2x)/3 � (cos 4x)/(3 � 5)

� (cos 6x)/(5 � 7) � (cos 8x)/(7 � 9) � ...

Fourier series for full-rectified sine
wave

Figure 3.5 is a graph of a full-rectified sine wave with peak val-
ues of � /4 and 0, and with period �. This function can be rep-
resented by the following infinite series:
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Figure 3.3 Triangular wave.

Figure 3.4 Half-rectified sine
wave.

1f(x) � ⁄2 � (cos 2x)/3 � (cos 4x)/(3 � 5)

� (cos 6x)/(5 � 7) � (cos 8x)/(7 � 9) � ...

Scalar Differentiation

Let f be a real-number function, let x0 be an element of the
domain of f, and let y0 be an element of the range of f such that
y0 � f(x0). Suppose that f is continuous in the vicinity of (x0,y0)
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Figure 3.5 Full-rectified sine
wave.

Figure 3.6 Derivative repre-
sented by the slope of a
curve at a point.

as shown in Fig. 3.6. Let �x represent a small change in x, and
let �y represent the change in y � f(x) that occurs as a result
of �x. Then the derivative of f at (x0,y0) is defined as:

f�(x ) � Lim (�y /�x)0 �x→0

If f is differentiable at all points in its domain, then the deriv-
ative of f is defined and can be denoted in several ways:

f�(x) � d/dx ( f ) � df /dx � dy /dx

In Fig. 3.6, the slope of line L approaches f�(x0) as �x → 0.
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For this reason, the derivative f�(x0) is graphically described as
the slope of a line tangent to the curve of f at the point (x0,y0).

Second derivative

The second derivative of a function f is the derivative of its de-
rivative. This can be denoted in various ways:

2 2 2 2 2 2f 	(x) � d /dx ( f ) � d f /dx � d y /dx

Higher-order derivatives

The nth derivative of a function f is the derivative taken in suc-
cession n times, where n is a positive integer. This can be de-
noted as follows:

(n) n n n n n nf (x) � d /dx ( f ) � d f /dx � d y /dx

Derivative of constant

The derivative of a constant is always equal to zero. Let f be a
function of x such that f(x) � c, where c is a real number. Then:

d(c)/dx � 0

Derivative of sum of two functions

Let f and g be two different functions, and let f � g � f(x) �
g (x) for all x in the domains of both f and g. Then:

d( f � g)/dx � df /dx � dg /dx

Derivative of difference of two
functions

Let f and g be two different functions, and let f � g � f(x) �
g(x) for all x in the domains of both f and g. Then:

d( f � g)/dx � df /dx � dg /dx

Derivative of function multiplied by a
constant

Let f be a function, let x be an element of the domain of f, and
let c be a constant. Then:

d(cf)/dx � c(df /dx)
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Derivative of product of two functions

Let f and g be two different functions. Define the product of f
and g as follows:

f � g � f(x) � g(x)

for all x in the domains of both f and g. Then:

d( f � g)/dx � f � (dg /dx) � g � (df /dx)

Derivative of product of three functions

Let f, g, and h be three different functions. Define the product
of f, g, and h as follows:

f � g � h � f(x) � g(x) � h(x)

for all x in the domains of f, g, and h. Then:

d( f � g � h)/dx � f � g � (dh /dx)

� f � h � (dg /dx) � g � h � (df /dx)

Derivative of quotient of two functions

Let f and g be two different functions, and define f /g � f(x)/g(x)
for all x in the domains of both f and g. Then:

2d( f /g)/dx � (g � (df /dx) � f � (dg /dx))/g

where g2 � g(x) � g(x), not to be confused with d2g /dg2.

Reciprocal derivatives

Let f be a function, and let x and y be variables such that y �
f(x). The following formulas hold:

dy /dx � 1/(dx /dy)

dx /dy � 1/(dy /dx)
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Derivative of function raised to a power

Let f be a function, let x be an element of the domain of f, and
let n be a positive integer. Then:

n n�1d( f )/dx � n( f ) � df /dx

where f n denotes f multiplied by itself n times, not to be con-
fused with the nth derivative.

Chain rule

Let f and g be two different functions of a variable x. The de-
rivative of the composite function f(g(x)) is given by the follow-
ing formula:

( f(g(x)))� � f�(g(x)) � g�(x)

Partial derivative of two-variable
function

Let f be a real-number function of two variables x and y. Let
(x0,y0) be an element of the domain of f. Suppose that f is con-
tinuous in the vicinity of (x0,y0). Let �x represent a small
change in x. The partial derivative of f with respect to x at the
point (x0,y0) is obtained by treating y as a constant:

�f /�x � Lim ( f(x ��x,y ) � f(x ,y ))/�x�x→0 0 0 0 0

Let �y represent a small change in y. The partial derivative of
f with respect to y at the point (x0,y0) is obtained by treating x
as a constant:

�f /�y � Lim ( f(x ,y ��y) � f(x ,y ))/�y�y→0 0 0 0 0

Partial derivative of multivariable
function

Let f be a real-number function of n variables x1, x2, ..., xn. Let
(x10,x20,...,xn0) be an element of the domain of f. Suppose that f
is continuous in the vicinity of (x10,x20,...,xn0). Let �xi represent
a small change in xi, where xi is one of the variables of the
domain of f. The partial derivative of f with respect to xi at the
point (x10,x20,...,xn0) is defined as the following limit as �xi ap-
proaches zero:
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Figure 3.7 Line tangent to
function at a point.

�f /�x � Lim ( f(x ,x ,...,x ��x ,...x ) � f(x ,x ,...,x ))/�xi 10 20 i0 i n0 10 20 n0 i

That is, all the variables except xi are treated as constants.

Tangent to curve at point (x0,y0)

Let f be a function such that y � f(x). Let (x0,y0) be a point on
the graph of f, and suppose f is continuous at (x0,y0). Let L be
a line tangent to the graph of f, and suppose L passes through
(x0,y0) as shown in Fig. 3.7. Suppose the derivative of f at (x0,
y0) is equal to some real number m. Then the equation of line
L is given by the following:

y � y � m(x � x )0 0

If the derivative of f at (x0,y0) is zero, then the equation of the
line L tangent to f at that point is given by:

y � y0

The derivative of f at (x0,y0) is undefined when the equation of
the line L tangent to f at that point is given by:

x � x0

Normal to curve at point (x0,y0)

Let f be a function such that y � f(x). Let (x0,y0) be a point on
the graph of f, and suppose f is continuous at (x0,y0). Let L be
a line normal (perpendicular) to the graph of f, and suppose L
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Figure 3.8 Line normal to
function at a point.

passes through (x0,y0) as shown in Fig. 3.8. Suppose the deriv-
ative of f at (x0,y0) is equal to some nonzero real number m.
Then the equation of line L is given by the following:

y � y � (�x � x )/m0 0

If the derivative of f at (x0,y0) is zero, then the equation of the
line L normal to f at that point is given by:

x � x0

The derivative of f at (x0,y0) is undefined when the equation of
the line L normal to f at that point is given by:

y � y0

Angle of intersection between curves

Let f and g be functions. Let (x0,y0) be a point at which the
graphs of f and g intersect, and suppose f and g are both con-
tinuous at (x0,y0), as shown in Fig. 3.9. Suppose the derivative
of f at (x0,y0) is equal to some nonzero real number m, and the
derivative of g at (x0,y0) is equal to some nonzero real number
n. Then the acute angle � at which the graphs intersect is given
by the following:
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Figure 3.9 Angle of intersec-
tion between two curves at a
point.

�1� � tan ((m � n)/(mn � 1))

if m � n, and

�1� � 180� � tan ((m � n)/(mn � 1))

if m � n, for angle measures in degrees. If m � n, then � �
180�, and the two curves are tangent to each other at the point
(x0,y0). For angle measures in radians, substitute � for 180�.

Local maximum

Let f be a function such that y � f(x). Let (x0,y0) be a point on
the graph of f, and suppose f is twice differentiable at (x0,y0).
Suppose the following are both true:

f�(x ) � 00

f 	(x ) � 00

Then (x0,y0) is a local maximum in the graph of f. An example
is shown in Fig. 3.10.

Local minimum

Let f be a function such that y � f (x). Let (x0,y0) be a point on
the graph of f, and suppose f is twice differentiable at (x0,y0).
Suppose the following are both true:
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Figure 3.10 Local maximum
value of a function.

Figure 3.11 Local minimum
value of a function.

f�(x ) � 00

f 	(x ) � 00

Then (x0,y0) is a local minimum in the graph of f. An example
is shown in Fig. 3.11.

Inflection point

Let f be a function such that y � f(x). Let (x0,y0) be a point on
the graph of f, and suppose f is twice differentiable at (x0,y0).
Suppose the following are both true:
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f�(x ) � 00

f 	(x ) � 00

Then (x0,y0) is an inflection point in the graph of f. Examples
are shown in Fig. 3.12. At A, the curve is concave upward-to-
downward:

f 	(x) � 0 for x � x0

f 	(x) � 0 for x � x0

At B, the curve is concave downward-to-upward:

f 	(x) � 0 for x � x0

f 	(x) � 0 for x � x0

Derivative of sine wave

The derivative of a sine wave is a cosine wave. This is the equiv-
alent of a 90-degree phase shift (Fig. 3.13). The amplitude of
the resultant wave depends on the amplitude and frequency of
the sine wave.

Derivative of up-ramp wave

The derivative of an up-ramp wave is a positive constant (Fig.
3.14). The magnitude of the resultant depends on the amplitude
and frequency of the up-ramp wave.

Derivative of down-ramp wave

The derivative of a down-ramp wave is a negative constant (Fig.
3.15). The magnitude of the resultant depends on the amplitude
and frequency of the down-ramp wave.

Derivative of triangular wave

The derivative of a triangular wave is a square wave (Fig. 3.16).
The amplitude of the resultant depends on the amplitude and
frequency of the triangular wave.
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Figure 3.12 Inflection point
in the graph of a function. At
A, function decreasing in the
region; at B, function in-
creasing in the region.

Figure 3.13 Derivative of a sine wave.



Applied Mathematics, Calculus, and Differential Equations 229

Figure 3.14 Derivative of an up-ramp wave.

Figure 3.15 Derivative of a down-ramp wave.

Figure 3.16 Derivative of a triangular wave.
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Figure 3.17 Derivative of a square wave.

Derivative of square wave

The derivative of a square wave is zero (Fig. 3.17). This is true
regardless of the amplitude or the frequency of the square wave.

Derivatives of common functions

Chapter 6 contains a table of derivatives of common mathe-
matical functions.

Vector Differentiation

Let i, j, and k represent unit vectors in Cartesian xyz-space, as
follows:

i � (1,0,0)

j � (0,1,0)

k � (0,0,1)

A vector function G of a scalar variable v consists of the sum of
three scalar functions G1, G2, and G3:

G(v) � G (v)i � G (v)j � G (v)k1 2 3

The derivative of G(v) with respect to v is defined as:

dG(v)/dv � Lim (G(v � �v) � G(v))/�v�v→0

� (dG (v)/dv)i � (dG (v)/dv)j � (dG (v)/dv)k1 2 3
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If G(x,y,z) is a vector function of three variables x, y, and
z, the partial derivatives �G1(x,y,z)/�x, �G2(x,y,z)/�y, and
�G3(x,y,z)/�z are determined for each variable by holding the
other two variables constant.

Derivative of dot product of two vector
functions

Let F(v) and G(v) be vector functions of a scalar variable v. The
derivative of the dot product F(v) • G(v) with respect to v is
given by the following formula:

d(F(v) • G(v))/dv � F(v) • dG(v)/dv � G(v) • dF(v)/dv

Derivative of cross product of two
vector functions

Let F(v) and G(v) be vector functions of a scalar variable v. The
derivative of the cross product F(v) � G(v) with respect to v is
given by the following formula:

d(F(v) � G(v))/dv � F(v) � dG(v)/dv � dF(v)/dv � G(v)

Del operator

The del operator, also called nabla and symbolized �, is defined
as follows:

� � i(� /�x) � j(� /�y) � k(� /�z)

Distributivity of del involving scalar
functions

Let F(x,y,z) and G(x,y,z) be scalar functions of three variables
x, y, and z. Then the del operator distributes over addition of
the functions. The following formula applies:

� (F(x,y,z) � G(x,y,z)) � � F(x,y,z) � � G(x,y,z)

Distributivity of del involving dot
product

Let F(v) and G(v) be vector functions of a scalar variable v. Then
the dot product of the del operator and the sum of the functions
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is equal to the sum of the dot products of the del operator and
the individual functions. The following formula applies:

� • (F(v) � G(v)) � � • F(v) � � • G(v)

Distributivity of del involving cross
product

Let F(v) and G(v) be vector functions of a scalar variable v. Then
the cross product of the del operator and the sum of the func-
tions is equal to the sum of the cross products of the del operator
and the individual functions, taken in the same order. The fol-
lowing formula applies:

� � (F(v) � G(v)) � � � F(v) � � � G(v)

Del of the dot product

Let F(v) and G(v) be vector functions of a scalar variable v. The
following formula holds:

� (F(v) • G(v))

� (G(v) • �)F(v) � (F(v) • �)G(v)

� G(v) � (� � F(v)) � F(v) � (� � G(v))

Del dot the cross product

Let F(v) and G(v) be vector functions of a scalar variable v. The
following formula holds:

� • (F(v) � G(v))

� G(v) • (� � F(v)) � F(v) • (� � G(v))

Del cross the cross product

Let F(v) and G(v) be vector functions of a scalar variable v. The
following formula holds:

� � (F(v) � G(v))

� (G(v) • �)F(v) � G(v)(� • F(v))

� (F(v) • �)G(v) � F(v)(� • G(v))
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Divergence

Let G(x,y,z) be a vector function of scalar variables x, y, and z
as defined above. The divergence of G(x,y,z), written div G, is
defined as the dot product of the del operator and G(x,y,z), as
follows:

div G � � • G(x,y,z) � �G (x,y,z)/�x1

� �G (x,y,z)/�y � �G (x,y,z)/�z2 3

Curl

Let G(x,y,z) be a vector function of scalar variables x, y, and z
as defined above. The curl of G(x,y,z), written curl G, is defined
as the cross product of the del operator and G(x,y,z), as follows:

curl G � (�G (x,y,z)/�y � �G (x,y,z)/�x)i3 2

� (�G (x,y,z)/�z � �G (x,y,z)/�x)j1 3

� (�G (x,y,z)/�x � �G (x,y,z)/�y)k2 1

Laplacian

Let G(x,y,z) be a vector function of scalar variables x, y, and z
as defined above. The Laplacian of G(x,y,z), written Laplacian
G, is defined as follows:

2 2 2 2 2 2 2Laplacian G � � G � � G /�x � � G /�y � � G /�z

For a scalar function F(x,y,z), the Laplacian is defined as fol-
lows:

2 2 2 2 2 2 2Laplacian F � � F � � F /�x � � F /�y � � F /�z

Gradient

Let F(x,y,z) be a scalar function of scalar variables x, y, and z
as defined above. The gradient of F(x,y,z), written grad F, is
defined as follows:

grad F � � F � (�F /�x)i � (�F /�y)j � (�F /�z)k
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Scalar Integration

In general, integration is the opposite of differentiation. Integral
calculus is used to find areas, volumes, and accumulated quan-
tities.

Indefinite integral

Let f be a defined and continuous real-number function of a
variable x. The antiderivative or indefinite integral of f is a func-
tion F such that dF /dx � f. This is written as follows:

� f(x) dx � F(x) � c

where c is a real number and dx is the differential of x (custom-
arily annotated with all indefinite integrals).

Definite integral

Let f be a defined and continuous real-number function of a
variable x. Let a and b be values in the domain of f such that
a � b. Let F be the antiderivative of f as defined above. The
definite integral of f from a to b is defined as follows:

b� f(x) dx � F(b) � F(a)
a

The constant of integration subtracts from itself, thereby can-
celing additively. The definite integral can be depicted as the
area under the curve of f in rectangular coordinates (Fig. 3.18).
Regions above the x axis are considered to have positive area;
regions below the x axis are considered to have negative area.

Constant of integration

There exist an infinite number of antiderivatives for any given
function, all of which differ by real-number values. If the func-
tion Fa(x) is an antiderivative of f(x), then Fb(x) � Fa(x) � c is
also an antiderivative of f(x), and c is known as the constant of
integration.
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Figure 3.18 Definite integral
represented as the area un-
der a curve between two
points.

Linearity

Let f and g be defined, continuous functions of x. Let a and b
be real-number constants. Then:

� (a � f(x) � b � g(x)) dx � a � � f(x) dx � b � � g(x) dx
Integration by parts

Let f and g be defined, continuous functions of x, and let F be
an antiderivative of f. Then:

� ( f(x) � g(x)) dx � F(x) � g(x) � � (F(x) � dg /dx) dx

Indefinite integral of constant

Let k be a constant; let c be the constant of integration. The
following formula applies:

� k dx � kx � c

Indefinite integral of variable

Let x be a variable. Let c be the constant of integration. The
following formula applies:

2� x dx � x /2 � c
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Indefinite integral of variable multiplied
by constant

Let x be a variable. Let k be a constant, and let c be the constant
of integration. The following formula applies:

2� kx dx � kx /2 � c

Indefinite integral of function multiplied
by constant

Let f(x) be a function of a variable x. Let k be a constant. The
following formula applies:

� kf(x) dx � k � f(x) dx

Indefinite integral of reciprocal

Let x be a variable. Let c be the constant of integration. The
following formula applies:

� (1/x) dx � ln �x� � c

Indefinite integral of reciprocal
multiplied by constant

Let x be a variable. Let k be a constant, and let c be the constant
of integration. The following formula applies:

� (k /x) dx � k ln �x� � c

Indefinite integral of sum of functions

Let f1(x), f2(x), f3(x), ..., and fn(x) be functions of a variable x. The
following formula applies:
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� ( f (x) � f (x) � f (x) � ... � f (x)) dx1 2 3 n

� � f (x) dx � � f (x) dx � � f (x) dx � ... � � f (x) dx1 2 3 n

Indefinite integral of variable raised to
integer power

Let x be a variable. Let k be an integer with the restriction that
k � �1, and let c be the constant of integration. The following
formula applies:

k k�1� x dx � (x /(k � 1)) � c

Indefinite integral of constant raised to
variable power

Let x be a variable. Let k be a constant such that k � 0 and
k � 1. Let c be the constant of integration. The following for-
mula applies:

x x� k dx � (k /(ln k)) � c

Indefinite integral of sine wave

The antiderivative (indefinite integral) of a sine wave is shown
in Fig. 3.19. The amplitude and displacement of the resultant
wave depend on the amplitude and frequency of the sine wave.

Indefinite integral of up-ramp wave

The antiderivative (indefinite integral) of an up-ramp wave is
shown in Fig. 3.20. The magnitude of the resultant depends on
the amplitude and frequency of the up-ramp wave.

Indefinite integral of down-ramp wave

The antiderivative (indefinite integral) of a down-ramp wave is
shown in Fig. 3.21. The magnitude of the resultant depends on
the amplitude and frequency of the down-ramp wave.
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Figure 3.19 Antiderivative (indefinite integral) of a
sine wave.

Figure 3.20 Antiderivative (indefinite integral) of an
up-ramp wave.

Figure 3.21 Antiderivative (indefinite integral) of a
down-ramp wave.
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Figure 3.23 Antiderivative (indefinite integral) of a
square wave.

Figure 3.22 Antiderivative (indefinite integral) of a
triangular wave.

Indefinite integral of triangular wave

The antiderivative (indefinite integral) of a triangular wave is
shown in Fig. 3.22. The amplitude of the resultant depends on
the amplitude and frequency of the triangular wave.

Indefinite integral of square wave

The antiderivative (indefinite integral) of a square wave is
shown in Fig. 3.23. The amplitude of the resultant depends on
the amplitude of the square wave.
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Figure 3.24 Determination of
the average value of a func-
tion over an interval.

Average value of function over interval

Let f(x) be a function that is continuous over the domain from
x � a to x � b, where a and b are real numbers and a � b. Let
F(x) be the antiderivative of f(x). Then the average value, A, of
f(x) over the open, half-open, or closed interval bounded by a
and b is given by the following formula (Fig. 3.24):

A � (F(b) � F(a))/(b � a)

Indefinite integrals of common
functions

Chapter 6 contains a table of indefinite integrals of common
mathematical functions.

Vector Integration

Let F be a defined and continuous vector function of a scalar
variable v. The antiderivative or indefinite integral of F is a
vector function G such that dG /dv � F. This is written as fol-
lows:

� F(v) dv � G(v) � c

where c is a constant vector and dv is the differential of v (cus-
tomarily annotated with all indefinite integrals).
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Definite integral

Let F be a defined and continuous vector function of a variable
v. Let a and b be values in the domain of F such that a � b.
Let G be the antiderivative of F as defined above. The definite
integral of F from a to b is defined as follows:

b� F(v) dv � G(b) � G(a)
a

The constant vector of integration subtracts from itself, thereby
vanishing.

Line integral

Let P and Q be two points in Cartesian xyz-space, connected by
a curve C. Define the following:

dr � dxi � dyj � dzk

where

i � (1,0,0)

j � (0,1,0)

k � (0,0,1)

Let G be a vector function that follows C from P and Q, con-
sisting of three scalar functions G1, G2, and G3 such that:

G � G i � G j � G k1 2 3

The line integral of G over the curve C is defined as follows:

� G • dr � � G dx � � G dy � � G dz1 2 3
C

Direction of line integral

The line integral along a curve in a given direction is equal to
the negative of the line integral along the same curve in the
opposite direction. The following formula holds for a vector func-
tion G as defined above:

Q P� G • dr � �� G • dr
P Q
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Separation of paths

Let C be a curve connecting points P and Q; let R be some
intermediate point on the curve between P and Q. The following
formula holds for a vector function G as defined above:

Q R Q� G • dr � � G • dr � � G • dr
P P R

Alternatively, let C be a curve connecting points P and R, let D
be a curve connecting points R and Q, and let C � D denote the
composite curve connecting points P and Q. The following for-
mula holds:

� G • dr � � G • dr � � G • dr
C�D C D

Integration around a closed curve

The line integral of a conservative vector field around a closed
curve is always equal to zero. A conservative vector field is one
that can be written as the del of a function, for example, G �
�f(x,y,z). The line integral along a closed curve in the counter-
clockwise direction is generally symboled as follows:

� G • dr
C

Surface integral

Let S be a surface in xyz-space; let R be the projection of S onto
the xy-plane. Let G be a vector function; let N be a unit vector
normal to S in a region dS (Fig. 3.25). The surface integral of
G over S is given by the following formula:

� G • N dS � �� G • (r � r ) dRu v
S D



Applied Mathematics, Calculus, and Differential Equations 243

Figure 3.25 Integral over surface S, expressed as double integral over
projection R in xy-plane; Stokes’ theorem.

Divergence Theorem

Let S be a surface in Cartesian xyz-space that encloses a solid
having volume V. Let G be a vector function; let N be a vector
normal to S in an arbitrarily small region dS as shown in Fig.
3.26. The following formula, known as the Divergence Theorem
or Gauss’ theorem, states that:

� � • G dV � � G • dS
V S

Stokes’ theorem

Let S be a surface in Cartesian xyz-space that is bounded by a
closed curve C, as shown in Fig. 3.25. Let G be a vector function;
let N be a vector normal to S in an arbitrarily small region dS.
Let dr be defined as follows:

dr � dxi � dyj � dzk

where
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Figure 3.26 Divergence Theorem.

i � (1,0,0)

j � (0,1,0)

k � (0,0,1)

The following formula, known as Stokes’ theorem, states that:

� G • dr � � (� � G) • dS
C S

Differential Equations

A differential equation contains one or more derivatives or dif-
ferentials as variables. The derivatives can be of any order
(first, second, third, etc.). There are numerous forms. Some of
the most common forms, and their solutions, are given in this
section.

Linear differential equation of first
order

Let f(x) and g(x) be distinct functions. Let x and y be variables.
Let c be the constant of integration. A linear differential equa-
tion of first order takes the following form:
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dy /dx � y f(x) � g(x)

The solution is given by:


f (x) dx 
f (x) dxy e � � g(x) e dx � c

Homogeneous differential equation

Let f be a function; let x and y be variables, with the restriction
that x � 0. Let v � y /x. Let c be the constant of integration. A
homogeneous differential equation takes the following form:

dy /dx � f(v)

The solution is given by:

ln �x� � � 1/(( f(v) � v) dv � c

Separation of variables

Let F, G, M, and N be functions; let x and y be variables, with
the restriction that M(x) � 0 and G(y) � 0. Let k be a constant.
Suppose we are given a differential equation of the following
form:

F(x) G(y) dx � M(x) N(y) dy � 0

The solution, according to separation of variables, is as follows:

� (F(x)/M(x)) dx � � (N(y)/G(y)) dy � k

Linear, homogeneous, second-order
differential equation

Let x, y, and z be variables; let a, b, m, n, p, and q be real-
number constants. Let j represent the unit imaginary number
(the positive square root of �1). Let s and t be the roots of the
following quadratic equation:



246 Chapter Three

2z � az � b � 0

A linear, homogeneous, second-order differential equation takes
the following form:

2 2d y /dx � a(dy /dx) � by � 0

The solution(s) of the differential equation can occur in any
of three different ways, depending on the nature of the solutions
s, t to the quadratic equation.

1. If s and t are both real numbers and s � t, then the general
solution to the differential equation is given by:

sx txy � me � ne

2. If s and t are both real numbers and s � t (call them both s
in this situation), then the general solution to the differential
equation is given by:

sx sxy � me � nxe

3. If s and t are complex conjugates such that s � p � jq and
t � p � jq, then the general solution to the differential equa-
tion is given by:

pxy � e (m cos qx � n sin qx)

In this instance, p and q can be derived from a and b via the
quadratic formula:

p � �a /2

2 1 /2q � (b � a /4)

Linear, non-homogeneous, second-
order differential equation

Let x, y, and z be variables; let a, b, m, n, p, and q be real-
number constants. Let j represent the unit imaginary number
(the positive square root of �1). Let s and t be the roots of the
following quadratic equation:
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2z � az � b � 0

A linear, non-homogeneous, second-order differential equation
takes the following form:

2 2d y /dx � a(dy /dx) � by � F(x)

The solution(s) of the differential equation can occur in any
of three different ways, depending on the nature of the solutions
to the quadratic equation.

1. If s and t are both real numbers and s � t, then the solution
to the differential equation is given by:

sx txy � me � ne

sx �sx� (e /(s � t)) � e F(x) dx

tx �tx� (e /(s � t)) � e F(x) dx

2. If s and t are both real numbers and s � t (call them both s
in this situation), then the solution to the differential equa-
tion is given by:

sx sxy � me � nxe

sx �sx� xe � e F(x) dx

sx �sx� e � xe F(x) dx

3. If s and t are complex conjugates such that s � p � jq and
t � p � jq, then the solution to the differential equation is
given by:

pxy � e (m cos qx � n sin qx)

px �px� (e sin qx /q) � e F(x) cos qx dx

px �px� (e cos qx /q) � e F(x) sin qx dx
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In this instance, p and q can be derived from a and b via the
quadratic formula:

p � �a /2

2 1 /2q � (b � a /4)

Euler differential equation

Let x and y be variables; let t be a parameter such that x � et.
Let a and b be constants, and let F(x) be a function of x. A Euler
differential equation takes the following form:

2 2 2x (d y /dx ) � ax(dy /dx) � by � F(x)

This equation can be put into the following form:

2 2 td y /dt � (a � 1)(dy /dt) � by � F(e )

The Euler equation can then solved as a linear, second-order,
non-homogeneous differential equation.

Bernoulli differential equation

Let F(x) and G(x) be distinct functions. Let x and y be variables.
Let n be a natural number, and let c be the constant of integra-
tion. A Bernoulli differential equation takes the following form:

ndy /dx � yF(x) � y G(x)

The solution is given by:

(1�n) (1�n) 
 F(x) dx (1�n) 
 F(x) dxy e � (1 � n) � G(x) e dx � c

Exact differential equation

Let f(x,y) and g(x,y) be distinct functions of two variables x and
y. Let c be a constant. An exact differential equation takes the
following form:

f(x,y) dx � g(x,y) dy � 0

such that
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�f(x,y)/�y � �g(x,y)/�x

The solution is given by the following equation, where �x de-
notes integration with respect to x, treating y as a constant:

� f(x,y) �x � (g(x,y) � � /�y � f(x,y) �x) dy � c

Probability

Probability can be expressed as a ratio between 0 and 1, or as
a percentage between 0 and 100 inclusive. The probability of an
event H taking place in a given situation is written p(H). This
section outlines important principles in probability theory.

Probability with discrete random
variable

Let X be a discrete random variable, that is, one that can attain
n possible values, all equally likely. Suppose an event H results
from exactly m different values of X, where m � n. Then the
probability p(H) that the event H will result from any given
value of X, expressed as a ratio, is given by the following for-
mula:

p(H) � m /n

Expressed as a percentage, the probability p%(H) is:

p (H) � 100m /n%

Probability with continuous random
variable

Let X be a continuous random variable, that is, one that can
attain all possible real values. Let F(X) be the distribution func-
tion that defines the probability associated with defined regions
of the domain, represented by open, half-open, or closed inter-
vals bounded by X1 and X2, where X1 � X2 as shown in Fig. 3.27.
Let H be the event that results from situations defined as
follows:
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Figure 3.27 Probability defined with continuous random
variable.

X � X � X for (X ,X )1 2 1 2

X � X � X for (X ,X ]1 2 1 2

X � X � X for [X ,X )1 2 1 2

X � X � X for [X ,X ]1 2 1 2

Then the probability p(H) that H will result from any given
value of X, expressed as a ratio, is given by the following for-
mula:

X2� F(X) dX
X1

p(H) � 	� F(X) dX
�	

Expressed as a percentage, the probability p%(H) is:

X2� F(X) dX
X1

p (H) � 100% 	� F(X) dX
�	
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Independent events

Two events H1 and H2 are said to be independent if and only if
the probability, expressed as a ratio, of their occurring simul-
taneously is equal to the product of the probabilities, expressed
as ratios, of their occurring separately. The following equation
holds:

p(H � H ) � p(H ) p(H )1 2 1 2

Mutually exclusive events

Let H1 and H2 be two events that are mutually exclusive; that
is, they have no elements in common:

H � H � �1 2

The probability, expressed as a ratio, of either event occurring
is equal to the sum of the probabilities, expressed as ratios, of
their occurring separately. The following equation holds:

p(H � H ) � p(H ) � p(H )1 2 1 2

Complementary events

If two events H1 and H2 are complementary, then the probabil-
ity, expressed as a ratio, of either event occurring is equal to 1
minus the probability, expressed as a ratio, of the other event
occurring. The following equations hold:

p(H ) � 1 � p(H )2 1

p(H ) � 1 � p(H )1 2

Nondisjoint events

Let H1 and H2 be two events that are nondisjoint; that is, they
have at least one element in common:

H � H � �1 2

The probability, expressed as a ratio, of either event occurring
is equal to the sum of the probabilities, expressed as ratios, of
their occurring separately, minus the probability, expressed as
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a ratio, of both occurring simultaneously. The following equation
holds:

p(H � H ) � p(H ) � p(H ) � p(H � H )1 2 1 2 1 2

Conditional probability

Let H1 and H2 be two events. Suppose that H1 has occurred.
The probability that H2 will occur is called the conditional prob-
ability of H2 given H1. This is determined mathematically as
follows:

p(H �H ) � (p(H � H ))/p(H )2 1 1 2 2

Tree diagrams

Suppose there are n1 ways in which an event H1 can occur, and
n2 ways in which an event H2 can occur. The total number of
ways, n, in which the two events, taken together, can occur, is
equal to the product of the ways in which either event can occur:

n � n n1 2

This can be illustrated by means of a branched figure called a
tree diagram. The diagram shows all the various combinations
geometrically. If n1 � n2, there are two different ways in which
a given situation can be depicted using tree diagrams. An ex-
ample is shown in Fig. 3.28 for n1 � 3 and n2 � 4.

Permutations

Suppose that, out of q objects, r objects are taken at a time in
a specific order. Also suppose that q � r, where both q and r are
positive integers. The possible number of choices is symbolized
qPr and can be calculated as follows:

P � q! /(q � r)!q r

where ! denotes factorial, the product of all positive integers less
than or equal to a specified integer.

Combinations

Suppose that, out of q objects, r objects are taken at a time in
no particular order. Also suppose that q � r, where both q and



Applied Mathematics, Calculus, and Differential Equations 253

Figure 3.28 Tree diagrams for events where n1 �
3 and n2 � 4. At A, branch points are from n1; at
B, branch points are from n2.

r are positive integers. The possible number of such combina-
tions is symbolized qCr and can be calculated as follows:

C � P /r! � q! /(r!(q � r)!)q r n r

Expectation

Let X be a discrete random variable. The expectation of X, also
called the mean and symbolized �, is equal to the sum of the
products of all possible values of X and their respective proba-
bilities. Suppose there are n possible values of X, such that:

x � {x , x , ..., x }i 1 2 n

Then the following formula applies:

� � x p(x )	 i i

� x p(x ) � x p(x ) � ... � x p(x )1 1 2 2 n n

Variance

Let X be a discrete random variable. The variance of X, sym-
bolized �2, is equal to the sum of the squares of the differences
of the expectation � and all possible values of X, multiplied by
the probability of X. Suppose there are n possible values of X,
such that:
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x � {x , x , ..., x }i 1 2 n

Then the following formula applies:

2 2� � (x � �) p(x )	 i i

2 2 2� (x � �) p(x ) � (x � �) p(x ) � ... � (x � �) p(x )1 1 2 2 n n

Binomial random variable formula

Let X be a binomial random variable, that is, a discrete random
variable in an experiment having these characteristics:

� A specific number n of trials, all of which are identical
� Two possible outcomes, say 0 and 1, for each trial
� Equal probability for either outcome in any given trial

Let q represent the probability of the outcome 1 in a given trial;
let r represent the probability of the outcome 0 in a given trial.
Let X be the number of outcomes equal to 1 in n trials, then
the following formula holds:

X n�Xp(X) � C q rn X

Expectation of binomial distribution

Let n be the number of trials in a binomial distribution. Let q
represent the probability of the outcome 1 in any given trial.
The expectation, �, in this case is given by:

� � nq

Variance of binomial distribution

Let n be the number of trials in a binomial distribution. Let q
represent the probability of the outcome 1 in any given trial; let
r represent the probability of the outcome 0 in a given trial. The
variance, �2, in this case is given by:

2� � nqr � �r
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Figure 3.29 The normal dis-
tribution (bell-shaped curve)
has a characteristic symme-
try.

Standard deviation of binomial
distribution

Let n be the number of trials in a binomial distribution. Let q
represent the probability of the outcome 1 in any given trial; let
r represent the probability of the outcome 0 in a given trial. The
standard deviation, denoted �, is given by:

1 /2 1 /2� � (nqr) � (�r)

Normal distribution

Let X be a continuous random variable. Let x be any given data
point in X. Let E(z) represent the exponential function for a
real-number variable z:

zE(z) � e

where e is the natural logarithm base and e � 2.71828. In a
normal distribution, X has a density function of the form:

2 2 1 /2g(x) � (E(�(x � �) /2� ))/�(2�)

The normal distribution has a well-known symmetry, and is
sometimes called the bell-shaped curve for this reason (Fig.
3.29). It has these characteristics:

� Approximately 68% of the data points are within the range
�� of �.
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� Approximately 95% of the data points are within the range
�2� of �.

� More than 99.5% of the data points are within the range �3�
of �.

Uniform distribution

Let X be a continuous random variable. Let x be any given data
point in X. Let a and b be real numbers. In a uniform distri-
bution, X has a density function of the form:

�1g(x) � (b � a)

The following constraint applies:

a � x � b

The mean, variance, and standard deviation are given by:

� � (a � b)/2

2 2� � (b � a) /2

2 1 /2� � ((b � a) /2)

Beta distribution

Define the gamma function, �(z), of a complex variable z and a
parameter t as follows:

	
z�1 �t�(z) � � t e dt

0

Let X be a continuous random variable. Let x be any given
data point in X. Let a and b be real numbers. In a beta distri-
bution, X has a density function of the form:

a bg(x) � (�(a � b � 2) x (1 � x) )/(�(a � 1)(�(b � 1))

The following constraints apply:

0 � x � 1

a � �1

b � �1
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The mean, variance, and standard deviation are given by:

� � (a � 1)/(a � b � 2)

2 2� � (a � 1)(b � 1)/((a � b � 2) (a � b � 3))

1 /2 1 /2 1 /2� � (a � 1) (b � 1) /((a � b � 2) (a � b � 3) )

Gamma distribution

Let X be a continuous random variable. Let x be any given data
point in X. Let a and b be real numbers. In a gamma distri-
bution, X has a density function of the form:

a �x /b 1�ag(x) � x e /(�(1 � a)b )

The following constraints apply:

x � 0

a � �1

b � 0

The mean, variance, and standard deviation are given by:

� � ab � b

2 2 2� � ab � b

1 /2� � (a � 1) b

Chi-square distribution

Let X be a continuous random variable. Let x be any given data
point in X. Let n be a natural number. In a chi-square distri-
bution with n degrees of freedom, X has a density function of
the form:

(n�2) /2 �x / 2 n / 2g(x) � (x e )/(2 �(n /2))

The following constraint applies:

x � 0

The mean, variance, and standard deviation are given by:
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� � n

2� � 2n

1 /2� � (2n)

Exponential distribution

Let X be a continuous random variable. Let x be any given data
point in X. Let a be a real number. In an exponential distribu-
tion, X has a density function of the form:

�x /ag(x) � e /a

The following constraints apply:

x � 0

a � 0

The mean, variance, and standard deviation are given by:

� � a

2 2� � a

� � a

Linear pseudorandom number
generation

A string of pseudorandom numbers can be obtained by repeat-
edly performing a linear function on integers, thereby obtaining
an infinite sequence of digits. Choose an initial modulus (radix)
number k. Common choices are prime numbers less than 10,
that is, k � 3, k � 5, and k � 7, and also k � 10. This yields
the following digit sets:

k � 3: {0, 1, 2}

k � 5: {0, 1, 2, 3, 4}

k � 7: {0, 1, 2, 3, 4, 5, 6}

k � 10: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
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Let n1 be the starting number, taken from one of the sets above.
Let

n � pn � q2 1

calculated in the radix k, where p and q are integer constants
taken from one of the sets above. In general, let

n � 1 � pn � qi i

where i designates the position of a given number in the se-
quence. The digits are simply put down end-to-end. Suppose
k � 10, p � 2, q � 3, and n1 � 5. Then:

n � 51

n � 2 � 5 � 3 � 132

n � 2 � 13 � 3 � 293

n � 2 � 29 � 3 � 614

n � 2 � 61 � 3 � 1255

The resulting sequence S of pseudorandom numbers starts out
as follows:

S � 5, 1, 3, 2, 9, 6, 1, ...

Measurement error

Let xa represent the actual value of a quantity to be measured.
Let xm represent the measured value of the quantity, in the
same units as xa. Then the absolute error, Da (in the same units
as xa), is given by:

D � x � xa m a

The proportional error, Dp, is given by:

D � (x � x )/xp m a a
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The percentage error, D%, is given by:

D � 100(x � x )/x% m a a

Error values and percentages are positive if xm � xa, and
negative if xm � xa.
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This chapter contains information relevant to direct current,
alternating current, magnetism, transformers, digital circuits,
filters, semiconductors, electron tubes, antennas, and measure-
ment apparatus.

Direct Current

This section contains formulas involving direct-current (DC)
charge quantity, amperage, voltage, resistance, power, and en-
ergy.

The coulomb

The standard unit of electrical charge quantity, symbolized by
Q, is the coulomb, equivalent to the charge contained in ap-
proximately 6.24 � 1018 electrons.

Charge vs current and time

Let Q represent charge quantity in coulombs, let I represent
direct current in amperes, and let t represent time in seconds.
Then:
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Figure 4.1 Electrical charge as a function of current and time.

Q � � I dt
This principle is illustrated in Fig. 4.1. If the current remains
constant over time, then the above formula can be simplified to:

Q � It

Coulomb’s Law

Let F represent force in newtons, let QX and QY represent the
charges on two distinct objects X and Y, and let d represent the
distance between the charge centers of X and Y. Then:

2F � (Q Q )/dX Y

If the charges are alike in polarity (� /� or � /�), then F is
positive (repulsive). If the charges are opposite in polarity (� /
� or � /�), then F is negative (attractive).
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The ampere

The standard unit of direct current, also called DC amperage
and symbolized by I, is the ampere, equivalent to one coulomb
of charge moving past a point in one second, always in the same
direction.

Charging and discharging

Let Ic / d represent instantaneous charging or discharging cur-
rent in amperes. Let t represent time in hours. Then the accu-
mulated charge or discharge quantity QAh, in ampere-hours, is:

Q � � I dtAh c /d

If the rate of charging or discharging is constant, then:

Q � I tAh c /d

Current vs charge and time

Let Q represent charge quantity in coulombs. Let t represent
time in seconds. Then the instantaneous charging or discharg-
ing current Ic / d, in amperes, is:

I � dQ /dtc /d

If the rate of charge or discharge is constant over an interval
beginning at time t1 and ending at time t2, then:

I � (Q � Q )/(t � t )c /d 2 1 2 1

where Q1 is the charge at time t1, and Q2 is the charge at time
t2. In these formulas, positive values of Ic / d represent a charging
condition; negative values of Ic / d represent a discharging con-
dition.

Ohm’s Law for DC amperage

Let V represent the voltage (in volts) across a component or
device; let R represent the resistance (in ohms) of the compo-
nent or device. Then the current I (in amperes) through the
component or device is:
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I � V /R

Current vs voltage and power

Let V represent the potential difference (in volts) across a com-
ponent or device; let P represent the power (in watts) dissipated,
radiated, or supplied by the component or device. Then the cur-
rent I (in amperes) through the component or device is:

I � P /V

Current vs voltage, energy, and time

Let V represent the potential difference (in volts) across a com-
ponent or device; let E represent the energy (in joules) dissi-
pated, radiated, or supplied by the component or device over a
period of time t (in seconds). Then the current I (in amperes)
through the component or device is:

I � E /(Vt)

Current vs resistance and power

Let R represent the resistance (in ohms) of a component or de-
vice; let P represent the power (in watts) radiated, dissipated,
or supplied by the component or device. Then the current I (in
amperes) through the component or device is:

1 /2I � (P /R)

Current vs resistance, energy, and time

Let R represent the resistance (in ohms) of a component or de-
vice; let E represent the energy (in joules) dissipated, radiated,
or supplied by the component or device over a period of time t
(in seconds). Then the current I (in amperes) through the com-
ponent or device is:

1 /2I � (E /(Rt))

Kirchhoff’s Law for DC amperage

The current going into any point in a DC circuit is the same as
the current going out. An example is shown at Fig. 4.2. If Iin



Electricity, Electronics, and Communications 267

Figure 4.2 Kirchhoff ’s cur-
rent law.

represents the total current entering the branch point Z and Iout

represents the total current emerging from point Z, then:

I � Iin out

I � I � Iin 1 2

I � I � I � Iout 3 4 5

�

I � I � I � I � I1 2 3 4 5

The volt

The standard unit of DC voltage, also called potential difference
or electromotive force (EMF), is the volt. Voltage is symbolized
by V in this chapter; alternatively it can be symbolized by E
unless doing so would confuse it with energy. One volt is the
EMF required to drive one ampere of current through a resis-
tance of one ohm.

Ohm’s Law for DC voltage

Let I be the current (in amperes) through a component, and let
R be the resistance (in ohms) of that component. Then the po-
tential difference V (in volts) across the component is:

V � IR



268 Chapter Four

Voltage vs current and power

Let I represent the current (in amperes) through a component
or device; let P represent the power (in watts) dissipated, ra-
diated, or supplied by the component or device. Then the poten-
tial difference V (in volts) across the component or device is:

V � P /I

Voltage vs current, energy, and time

Let I represent the current (in amperes) through a component
or device; let E represent the energy (in joules) dissipated, ra-
diated, or supplied by the component or device over a period of
time t (in seconds). Then the potential difference V (in volts)
across the component or device is:

V � E /(It)

Voltage vs resistance and power

Let R represent the resistance (in ohms) of a component or de-
vice; let P represent the power (in watts) dissipated, radiated,
or supplied by the component or device. Then the potential dif-
ference V (in volts) across the component or device is:

1 /2V � (PR)

Voltage vs resistance, energy, and time

Let R represent the resistance (in ohms) of a component or de-
vice; let E represent the energy (in joules) dissipated, radiated,
or supplied by the component or device over a period of time t
(in seconds). Then the potential difference V (in volts) across
the component or device is:

1 /2V � (ER /t)

Kirchhoff’s Law for DC voltage

In a closed DC network, the sum of the voltages across all the
components in any given loop, taking polarity into account, is
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Figure 4.3 Kirchhoff ’s volt-
age law.

zero. An example is shown at Fig. 4.3. The EMF of the battery
is V; there are four components across which the potential dif-
ferences are V1, V2, V3, and V4. The following equations hold in
this case:

V � V � V � V � V � 01 2 3 4

V � V � V � V � �V1 2 3 4

V � �(V � V � V � V )1 2 3 4

The ohm

The standard unit of DC resistance, symbolized by R, is the
ohm. A component has a resistance of one ohm when an applied
EMF of one volt across it results in a current of one ampere
through it, or when a current of one ampere through the com-
ponent produces a potential difference of one volt across it.

Ohm’s Law for DC resistance

Let I be the current (in amperes) through a component, and let
V be the potential difference (in volts) across it. Then the resis-
tance R (in ohms) of the component is:

R � V /I

Resistance vs current and power

Let I be the current (in amperes) through a component or de-
vice, and let P be the power (in watts) radiated or supplied.
Then the resistance R (in ohms) of the component or device is:

2R � P /I
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Resistance vs current, energy, and time

Let I be the current (in amperes) through a component or de-
vice, and let E be the energy (in joules) dissipated, radiated, or
supplied over a period of time t (in seconds). Then the resistance
R (in ohms) of the component or device is:

2R � E /(I t)

Resistance vs voltage and power

Let V be the potential difference (in volts) across a component
or device, and let P be the power (in watts) dissipated, radiated,
or supplied. Then the resistance R (in ohms) of the component
or device is:

2R � V /P

Resistance vs voltage, energy, and time

Let V be the potential difference (in volts) across a component
or device, and let E be the energy (in joules) dissipated, radi-
ated, or supplied over a period of time t (in seconds). Then the
resistance R (in ohms) of the component or device is:

2R � V t /E

The watt

The standard unit of DC power, symbolized by P, is the watt. A
component dissipates, radiates, or supplies one watt when it
carries or provides a current of one ampere, and when the po-
tential difference across it is one volt.

Power vs energy and time

Let E be the energy (in joules) dissipated, radiated, or supplied
by a component or device over a period of time t (in seconds).
Then the dissipated, radiated, or supplied power P (in watts) is:

P � E /t
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Power vs current and voltage

Let I be the current (in amperes) through a component or de-
vice, and let V be the potential difference (in volts) across it.
Then the dissipated, radiated, or supplied power P (in watts) is:

P � VI

Power vs current and resistance

Let I be the current (in amperes) through a component or de-
vice, and let R be its resistance (in ohms). Then the dissipated,
radiated, or supplied power P (in watts) is:

2P � I R

Power vs voltage and resistance

Let V be the potential difference (in volts) across a component
or device, and let R be its resistance (in ohms). Then the dis-
sipated, radiated, or supplied power P (in watts) is:

2P � V /R

The joule

The standard unit of DC energy, symbolized by E, is the joule.
A component dissipates, radiates, or supplies one joule when it
dissipates, radiates, or supplies an average power of one watt
over a time interval of one second.

Energy vs power and time

Let P be the power (in watts) dissipated, radiated, or supplied
by a component or device over a period of time t (in seconds).
Then the energy E (in joules) is:

E � � P dt
If the power remains constant over the entire time interval,
then

E � Pt
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Energy vs current, voltage, and time

Let I be the current (in amperes) through a component or de-
vice, and let V be the potential difference (in volts) across it.
Then the dissipated, radiated, or supplied energy E (in joules)
over a period of time t (in seconds) is:

E � � VI dt
If the current and voltage remain constant over the entire time
interval, then

E � VIt

Energy vs current, resistance, and time

Let I be the current (in amperes) through a component or de-
vice, and let R be its resistance (in ohms). Then the dissipated
or radiated energy E (in joules) over a period of time t (in sec-
onds) is:

2E � � I R dt
If the current and resistance remain constant over the entire
time interval, then

2E � I Rt

Energy vs voltage, resistance, and time

Let V be the potential difference (in volts) across a component
or device, and let R be its resistance (in ohms). Then the dis-
sipated or radiated energy E (in joules) over a period of time t
(in seconds) is:

2E � � (V /R) dt

If the current and resistance remain constant over the entire
time interval, then

2E � V t /R
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Alternating Current

This section contains formulas involving alternating-current
(AC) frequency, phase, amperage, voltage, impedance, power,
and energy.

Frequency and phase

Frequency is usually symbolized by the letter f, period by the
letter T, and phase angle by the Greek letter 	.

Frequency vs period

Let f be the frequency of an AC wave (in hertz), and let T be
the period (in seconds). Then the following relations hold:

f � 1/T

T � 1/f

These relations are also valid for T in milliseconds (ms) and f
in kilohertz (kHz); for T in microseconds (�s) and f in megahertz
(MHz); for T in nanoseconds (ns) and f in gigahertz (GHz); and
for T in picoseconds (ps) and f in terahertz (THz).

Phase angle vs time and frequency

Let f be the frequency of an AC wave (in hertz), and let t be the
time (in seconds) following the instant t0 at which the wave
amplitude is zero and positive-going (Fig. 4.4). Then the phase
angle 	, in degrees, is:

	 � 360ft

If 	 is expressed in radians, then:

	 � 2�ft

These formulas are also valid for t in milliseconds (ms) and f in
kilohertz (kHz); for t in microseconds (�s) and f in megahertz
(MHz); for t in nanoseconds (ns) and f in gigahertz (GHz); and
for t in picoseconds (ps) and f in terahertz (THz).
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Figure 4.4 Relations among
frequency ( f ), period (T),
phase (	), and time (t) for an
AC sine wave cycle begin-
ning at t � t0.

Phase angle vs time and period

Let T be the period of an AC wave (in seconds) and let t be the
time (in seconds) following the instant t0 at which the wave
amplitude is zero and positive-going. Then the phase angle 	,
in degrees, is:

	 � 360t /T

If 	 is expressed in radians, then:

	 � 2�t /T

These formulas are also valid for t and T in milliseconds (ms),
microseconds (�s), nanoseconds (ns), and picoseconds (ps).

AC amplitude

The amplitude of an AC wave can be expressed in several ways.
The definitions and formulas in the next several paragraphs
apply to sinusoidal waveforms, and are expressed in terms of
voltage (V). However, these definitions and formulas can also
be used for current (I).

Instantaneous amplitude

The instantaneous amplitude (Vinst) of an AC sine wave con-
stantly varies. In the example at Fig. 4.5, instantaneous ampli-
tudes are shown as vertical displacement on the waveform.
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Figure 4.5 Positive peak
(pk�), negative peak (pk�),
peak-to-peak (pk-pk), and
average (avg) values for an
AC sine wave. See text for
definition of root-mean-
square (rms).

Positive peak amplitude

The positive peak amplitude (Vpk�) of an AC sine wave is the
maximum deviation of Vinst in the positive direction. See Fig.
4.5.

Negative peak amplitude

The negative peak amplitude (Vpk�) of an AC sine wave is the
maximum deviation of Vinst in the negative direction. See Fig.
4.5.

DC component

The DC component (VDC) of an AC sine wave is the arithmetic
mean of the positive and negative peak amplitudes:

V � (V � V )/2DC pk� pk�

Average amplitude

The average amplitude (Vavg) of an AC sine wave is the same as
the DC component.

Peak amplitude when VDC 
 0

If VDC � 0, then the positive and negative peak amplitudes are
equal and opposite. This can be generalized as the peak ampli-
tude (Vpk):

V � V � �Vpk pk� pk�
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Peak-to-peak amplitude

The peak-to-peak amplitude (Vpk�pk) of an AC wave is the dif-
ference between the positive and negative peak amplitudes:

V � V � Vpk�pk pk� pk�

If VDC � 0, then:

V � 2V � �2Vpk�pk pk� pk�

Instantaneous amplitude vs phase
angle

Let Vpk� represent the positive peak amplitude of a wave. Let
VDC represent the DC component, and let 	 represent the phase
angle as measured from the point in time at which the instan-
taneous amplitude Vinst � VDC and is increasing positively. Then:

V � V � V sin 	inst DC pk�

Effective amplitude

The effective amplitude of an AC wave is also known as the
direct-current (DC) equivalent amplitude or the root-mean-
square (rms) amplitude. Let VDC represent the DC component.
Then the rms amplitude, Vrms, is given by:

�1 /2V � V � 2 (V � V )rms DC pk� DC

�V � 0.707 (V � V )DC pk� DC

If there is no DC component, then:

�1 /2V � 2 V � 0.707 Vrms pk pk

Impedance

Impedance, symbolized by the letter Z, is the opposition that a
component or circuit offers to AC. Impedance is a two-
dimensional quantity, consisting of two independent compo-
nents, resistance and reactance.
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Inductive reactance

Inductive reactance is symbolized jXL. Its real-number coeffi-
cient, XL, is always positive or zero.

jXL vs frequency

If the frequency of an AC source is given (in hertz) as f, and the
inductance of a component is given (in henrys) as L, then the
vector expression for inductive reactance (in imaginary-number
ohms), jXL, is:

jX � j(2�fL) � j(6.28fL)L

This formula also applies for f in kilohertz (kHz) and L in mil-
lihenrys (mH); for f in megahertz (MHz) and L in microhenrys
(�H); for f in gigahertz (GHz) and L in nanohenrys (nH); and
for f in terahertz (THz) and L in picohenrys (pH).

RL phase angle

The phase angle 	RL in a resistance-inductance (RL) circuit is
the arctangent of the ratio of the real-number coefficient of the
inductive reactance to the resistance:

�1	 � tan (X /R)RL L

Capacitive reactance

Capacitive reactance is symbolized jXC. Its real-number coeffi-
cient, XC, is always negative or zero.

jXC vs frequency

If the frequency of an AC source is given (in hertz) as f, and the
value of a capacitor is given (in farads) as C, then the vector
expression for capacitive reactance (in imaginary-number
ohms), jXC, is given by:

jX � �j(1/(2�fC)) � �j(1/(6.28fC))C

This formula also applies for f in megahertz (MHz) and C in
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microfarads (�F), and for f in terahertz (THz) and C in picofar-
ads (pF).

RC phase angle

The phase angle 	RC in a resistance-capacitance (RC) circuit is
the arctangent of the ratio of the real-number coefficient of the
capacitive reactance to the resistance:

�1	 � tan (X /R)RC C

Complex impedances in series

Given two complex impedances Z1 � R1 � jX1 and Z2 � R2 �
jX2 connected in series, the resultant complex impedance Z is
their vector sum, given by:

Z � (R � R ) � j(X � X )1 2 1 2

Admittance

Admittance, symbolized by the letter Y, is the ease with which
a component or circuit conducts AC. Admittance is a two-
dimensional quantity, consisting of two independent compo-
nents, conductance and susceptance.

AC conductance

In an AC circuit, electrical conductance behaves the same way
as in a DC circuit. Conductance is symbolized by the capital
letter G. The relationship between conductance and resistance
is:

G � 1/R

The unit of conductance is the siemens, sometimes called the
mho.

Inductive susceptance

Inductive susceptance is symbolized jBL. Its real-number coeffi-
cient, BL, is always negative or zero, being the negative recip-
rocal of the real-number coefficient of inductive reactance:
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B � �1/XL L

The vector expression of inductive susceptance requires the j
operator, as does the vector expression of inductive reactance.
The reciprocal of j is its negative, so when calculating vector
quantities BL in terms of vector quantities XL, the sign changes.

jBL vs frequency

If the frequency of an AC source is given (in hertz) as f, and the
value of an inductor is given (in henrys) as L, then the vector
expression for inductive susceptance (in imaginary-number sie-
mens), jBL, is given by:

jB � �j(1/(2�fL)) � �j(1/(6.28fL))L

The above formula also applies for f in kilohertz (kHz) and L in
millihenrys (mH); for f in megahertz (MHz) and L in micro-
henrys (�H); for f in gigahertz (GHz) and L in nanohenrys (nH);
and for f in terahertz (THz) and L in picohenrys (pH).

Capacitive susceptance

Capacitive susceptance is symbolized jBC. Its real-number coef-
ficient, BC, is always positive or zero, being the negative recip-
rocal of the real-number coefficient of capacitive reactance:

B � �1/XC C

The expression of capacitive susceptance requires the j operator,
as does the expression of capacitive reactance. The reciprocal of
j is its negative, so when calculating BC in terms of XC, the sign
changes.

jBC vs frequency

If the frequency of an AC source is given (in hertz) as f, and the
value of a capacitor is given (in farads) as C, then the vector
expression for capacitive susceptance (in imaginary-number sie-
mens), jBC, is given by:

jB � j (2�fC) � j(6.28fC)C

This formula also applies for f in megahertz (MHz) and C in
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microfarads (�F), and for f in terahertz (THz) and C in picofar-
ads (pF).

Complex admittances in parallel

Given two complex admittances Y1 � G1 � jB1 and Y2 � G2 �
jB2 connected in parallel, the resultant complex admittance Y
is their vector sum, given by:

Y � (G � G ) � j (B � B )1 2 1 2

Complex impedances in parallel

To find the resultant complex impedance of two components in
parallel, follow these steps in order:

1. Convert each real-number resistance to conductance: Gn �
1/Rn

2. Convert each imaginary-number reactance to susceptance,
paying careful attention to the changes in sign of the real-
number coefficients: Bn � �1/Xn

3. Sum the conductances and susceptances to get complex ad-
mittances

4. Use the above formula to find net complex admittance, con-
sisting of a resultant conductance and a resultant suscep-
tance

5. Convert the resultant real-number conductance back to re-
sistance

6. Convert the resultant imaginary-number susceptance back
to reactance, paying careful attention to the change in sign
of the real-number coefficient: Xn � �1/Bn

The resulting expression R � jX is the complex impedance of
the two components in parallel.

AC amperage

The standard unit of alternating current, also called AC am-
perage and symbolized by Irms, is the ampere rms.
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Current vs voltage and reactance

Let Vrms be the AC voltage (in volts rms) across a component or
device; let X be the real-number coefficient of the reactance (in
ohms) of the component or device. Then the alternating current
(in amperes rms), Irms, is given by:

I � �V /X �rms rms

Current vs voltage, frequency, and
inductance

Let Vrms be the AC voltage (in volts rms) across a component or
device; let f be the AC frequency (in hertz); let L be the induc-
tance (in henrys) of the component or device. Then the alter-
nating current (in amperes rms), Irms, is given by:

I � V /(2�fL) � V /(6.28fL)rms rms rms

This formula also applies for f in kilohertz (kHz) and L in
millihenrys (mH); for f in megahertz (MHz) and L in micro-
henrys (�H); for f in gigahertz (GHz) and L in nanohenrys (nH);
and for f in terahertz (THz) and L in picohenrys (pH).

Current vs voltage, frequency, and
capacitance

Let Vrms be the AC voltage (in volts rms) across a component or
device; let f be the AC frequency (in hertz); let C be the capac-
itance (in farads) of the component or device. Then the alter-
nating current (in amperes rms), Irms, is given by:

I � 2�V fC � 6.28V fCrms rms rms

This formula also applies for f in megahertz (MHz) and C in
microfarads (�F), and for f in terahertz (THz) and C in picofar-
ads (pF).

Current vs voltage and complex
impedance

Let Vrms be the AC voltage (in volts rms) across a component or
device; let the complex impedance of the component or device
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be Z � R � jX, where X is the real-number coefficient of the
reactance (in ohms) of the component or device and R is the
resistance (in ohms) of the component or device. Then the al-
ternating current (in amperes rms), Irms, is given by:

2 2 1 /2I � V /(R � X )rms rms

AC voltage

The standard unit of AC voltage, also called AC electromotive
force (AC EMF) and symbolized by Vrms, is the volt rms.

Voltage vs current and reactance

Let Irms be the alternating current (in amperes rms) through a
component or device; let X be the real-number coefficient of the
reactance (in ohms) of the component or device. Then the AC
voltage (in volts rms), Vrms, across the component or device is
given by:

V � �I X �rms rms

Voltage vs current, frequency, and
inductance

Let Irms be the alternating current (in amperes rms) through a
component or device; let f be the AC frequency (in hertz); let L
be the inductance (in henrys) of the component or device. Then
the AC voltage (in volts rms), Vrms, across the component or
device is given by:

V � 2�I fL � 6.28I fLrms rms rms

This formula also applies for f in kilohertz (kHz) and L in mil-
lihenrys (mH); for f in megahertz (MHz) and L in microhenrys
(�H); for f in gigahertz (GHz) and L in nanohenrys (nH); and
for f in terahertz (THz) and L in picohenrys (pH).

Voltage vs current, frequency, and
capacitance

Let Irms be the alternating current (in amperes rms) through a
component or device; let f be the AC frequency (in hertz); let C
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be the capacitance (in farads) of the component or device. Then
the AC voltage (in volts rms), Vrms, across the component or
device is given by:

V � I /(2�fC) � I /(6.28fC)rms rms rms

This formula also applies for f in megahertz (MHz) and C in
microfarads (�F), and for f in terahertz (THz) and C in picofar-
ads (pF).

Voltage vs current and complex
impedance

Let Irms be the alternating current (in amperes rms) through a
component or device; let the complex impedance of the compo-
nent or device be Z � R � jX, where X is the real-number co-
efficient of the reactance (in ohms) of the component or device
and R is the resistance (in ohms) of the component or device.
Then the AC voltage (in volts rms), Vrms, is given by:

2 2 1 /2V � I (R � X )rms rms

AC power

There are three ways of expressing AC power: as real power (in
watts rms), as reactive power (in watts reactive), or as apparent
power (in volt-amperes).

Real power

Let Vrms be the AC voltage across a component or device (in volts
rms); let Irms be the alternating current through the component
or device (in amperes rms); let 	 be the phase angle between
the voltage and current waves. Then the real power, PR, dissi-
pated or radiated by the component or device (in watts rms) is
given by the following formula:

P � V I cos 	R rms rms
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Reactive power

Let Vrms be the AC voltage across a component or device (in volts
rms); let Irms be the alternating current through the component
or device (in amperes rms); let 	 be the phase angle between
the voltage and current waves. Then the reactive power, PX,
manifested in the component or device (in watts reactive) is
given by the following formula:

P � V I sin 	X rms rms

Apparent power

Let Vrms be the AC voltage across a component or device (in volts
rms); let Irms be the alternating current through the component
or device (in amperes rms); let PR be the real power dissipated
or radiated by the component or device (in watts rms); let PX be
the reactive power manifested in the component or device (in
watts reactive). Then the apparent power, PVA, dissipated or ra-
diated by the component or device (in volt-amperes) is given by
the following formulas:

P � V IVA rms rms

2 2 1 /2P � (P � P )VA R X

AC energy

There are three ways of expressing AC energy: as real energy
(in joules), as reactive energy (in joules reactive), or as apparent
energy (in volt-ampere-seconds).

Real energy

Let Vrms be the AC voltage across a component or device (in volts
rms); let Irms be the alternating current through the component
or device (in amperes rms); let 	 be the phase angle between
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the voltage and current waves. Then the real energy, ER, dis-
sipated or radiated by the component or device (in joules)
over a period of time t (in seconds) is given by the following
formula:

E � V I t cos 	R rms rms

Reactive energy

Let Vrms be the AC voltage across a component or device (in volts
rms); let Irms be the alternating current through the component
or device (in amperes rms); let 	 be the phase angle between
the voltage and current waves. Then the reactive energy,
EX, manifested in the component or device (in joules reactive)
over a period of time t (in seconds) is given by the following
formula:

E � V I t sin 	X rms rms

Apparent energy

Let Vrms be the AC voltage across a component or device (in volts
rms); let Irms be the alternating current through the component
or device (in amperes rms); let ER be the real energy dissipated
or radiated by the component or device (in joules); let EX be
the reactive energy manifested in the component or device (in
joules reactive). Then the apparent energy, EVAS, dissipated or
radiated by the component or device (in volt-ampere-seconds)
over a period of time t (in seconds) is given by the following
formulas:

E � V I tVAS rms rms

2 2 1 /2E � (E � E )VAS R X
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Magnetism, Inductors, and Transformers

This section contains formulas involving magnetic fields, mag-
netic circuits, and the behavior of inductor coils and transform-
ers.

Reluctance

Reluctance is a measure of the opposition that a circuit offers
to the establishment of a magnetic field. It is symbolized R and
is measured in ampere-turns per weber in the SI system of units.

Reluctance of a magnetic core

Let s represent the length (in meters) of a path through a mag-
netic core; let � represent the magnetic permeability of the
core material (in tesla-meters per ampere); let A represent
the cross-sectional area of the core (in square meters). Then
the reluctance R (in ampere-turns per weber) is:

R � s /(A�)

The above formula also holds for s in centimeters, � in gauss
per oersted, and A in square centimeters.

Reluctances in series

Reluctances in series add like resistances in series. If R1, R2,
R3, ... Rn represent reluctances and RS represents their series
combination, then:

R � R � R � R � ... � RS 1 2 3 n

Reluctances in parallel

Reluctances in parallel add like resistances in parallel. If R1,
R2, R3, ... Rn represent reluctances and RP represents their par-
allel combination, then:

R � 1/(1/R � 1/R � 1/R � ... � 1/R )P 1 2 3 n

For only two reluctances R1 and R2 in parallel, the composite
parallel reluctance, RP, is given by:

R � R R /(R � R )P 1 2 1 2
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Magnetic flux density

Let � represent magnetic flux (in webers); let A represent the
cross-sectional area of a region through which the flux lines
pass at right angles (in square meters). Then the magnetic flux
density (in teslas) is denoted B and is given by:

B � � /A

The above formula also holds when B is specified in gauss, � is
specified in maxwells, and A is specified in square centimeters.

Magnetic permeability

Let B represent magnetic flux density (in teslas); let H repre-
sent magnetic field intensity (in amperes per meter). Then the
magnetic permeability (in tesla-meters per ampere) is denoted
� and is given by:

� � B /H

The above formula also holds when � is expressed in gauss per
oersted, B is expressed in gauss, and H is expressed in oersteds.

Magnetomotive force

Let N represent the number of turns in an air-core coil; let I
represent the current through the coil (in amperes). Then the
magnetomotive force (in ampere-turns) is denoted F and is given
by:

F � NI

If F is specified in gilberts, then

F � 0.4�NI � 1.256NI

Magnetizing force

Let N represent the number of turns in an air-core coil; let I
represent the current through the coil (in amperes); let s rep-
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resent the length of a magnetic path through the coil (in me-
ters). Then the magnetizing force (in ampere-turns per meter)
is denoted H and is given by:

H � NI /s

If H is specified in oersteds and s is specified in centimeters,
then

H � 0.4�NI /s � 1.256NI /s

Voltage induced by motion of
conductor

Let B represent the intensity of a stationary, constant magnetic
field (in webers per square meter); let s represent the length of
a conductor (in meters); let v represent the velocity of the con-
ductor (in meters per second) at right angles to the magnetic
lines of flux. Then the induced voltage (in volts) between the
ends of the conductor is denoted V and is given by:

V � Bsv

Voltage induced by variable magnetic
flux

Let N represent the number of turns in a coil; let d� /dt rep-
resent the change in magnetic flux (in webers per second). Then
the induced voltage (in volts), V, between the ends of the coil is
given by:

V � N(d� /dt)

Transformer efficiency

Let Ipri represent the current (in amperes) in the primary wind-
ing of a transformer; let Isec represent the current (in amperes)
in the secondary; let Vpri represent the rms sine-wave AC volt-
age across the primary; let Vsec represent the rms sine-wave AC
voltage across the secondary. Then the transformer efficiency (as
a ratio) is denoted Eff and is given by:



Electricity, Electronics, and Communications 289

Eff � V I /(V I )sec sec pri pri

Expressed as a percentage and denoted Eff%, the efficiency of
the transformer is:

Eff � 100 V I /(V I )% sec sec pri pri

PS turns ratio

Let Npri represent the number of turns in the primary winding
of a transformer; let Nsec represent the number of turns in the
secondary winding. Then the primary-to-secondary turns ratio
is denoted P:S and is given by:

P:S � N /Npri sec

SP turns ratio

The secondary-to-primary turns ratio of a transformer is de-
noted S:P and is given by:

S:P � N /N � 1/(P:S)sec pri

Voltage transformation

Let Vpri represent the rms sine-wave AC voltage across the pri-
mary winding of a transformer (in volts). Then the rms sine-
wave AC voltage across the secondary, Vsec (in volts), neglecting
transformer losses, is given by either of the following formulas:

V � (S:P) Vsec pri

V � V /(P:S)sec pri

Impedance transformation

Let S:P represent the secondary-to-primary turns ratio of a
transformer; let Zin � Rin � j0 represent a purely resistive (zero-
reactance) impedance at the input (across the primary winding).
Then the impedance at the output (across the secondary wind-
ing), Zout, is also purely resistive, and is given by:



290 Chapter Four

2 2Z � (S:P) Z � (S:P) R � j0out in in

Let P:S represent the primary-to-secondary turns ratio of a
transformer; let Zsec � Rsec � j0 represent a purely resistive
(zero-reactance) impedance connected across the secondary
winding. Then the reflected impedance across the primary
winding, Zpri, is also purely resistive, and is given by:

2 2Z � (P:S) Z � (P:S) R � j0pri sec sec

Current demand

Let Iload represent the rms sine-wave alternating current drawn
by a load connected to the secondary winding of a transformer
(in amperes). Then the rms sine-wave alternating current de-
manded from a power source connected to the primary, Isrc (in
amperes), neglecting transformer losses, is given by:

I � (S:P) Isrc load

Ohmic power loss

Let Irms represent the alternating current (in amperes rms)
through an inductor or transformer winding; let Vrms represent
the AC voltage (in volts rms) across the inductor or winding; let
R represent the resistive component of the complex impedance
of the inductor or winding (in ohms). Then the ohmic power loss,
denoted P� and expressed in watts, is given by either of the
following two formulas:

2P � I R� rms

2P � V /R� rms

Eddy-current power loss

Let B represent the maximum flux density in an inductor or
transformer core (in gauss); let s represent the thickness of the
core material (in centimeters); let U represent the volume of the
core material (in cubic centimeters); let f represent the fre-
quency of the applied alternating current (in hertz); let k rep-
resent the core constant as specified by the manufacturer. Then
the eddy-current power loss (in watts) is denoted PI and is given
by:
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2 2P � kUBs fI

At 60 Hz, the utility line frequency commonly used in the
United States:

2P � 3600kUBsI

In circuits where the AC line frequency is 50 Hz:

2P � 2500kUBsI

For silicon steel, a core material used in AC power-supply trans-
formers, the core constant k is typically in the neighborhood of
4 � 10�12. However, the value of k can differ substantially from
this in the case of powerdered-iron cores.

Hysteresis power loss

Let AB-H represent the area of the measured hysteresis curve
(B-H curve) for a core material at a specific frequency, where B
is the flux density in gauss and H is the magnetizing force in
oersteds. Then the hysteresis power loss (in watts) is denoted PH

and is given by:

�8P � (0.796 � 10 ) AH B-H

Total power loss in transformer

Let Vpri represent the AC voltage (in volts rms) across the pri-
mary winding of a transformer operating with a specific con-
stant load. Let Vsec represent the AC voltage (in volts rms)
across the secondary; let Ipri represent the alternating current
(in amperes rms) through the primary; let Isec represent the al-
ternating current (in amperes rms) through the secondary.
Then, assuming zero reactance in the source or the load, the
total power loss in the transformer, Ploss (in watts) is given by:

P � V I � V Iloss pri pri sec sec

Total power loss in inductor or winding

Let P� represent the ohmic power loss (in watts) in an inductor
or transformer winding; let PI represent the eddy-current power
loss (in watts); let PH represent the hysteresis power loss (in
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watts); let P� represent flux-leakage power loss (in watts). Then
the total power loss Ploss (in watts) is given by:

P � P � P � P � Ploss � I H �

Resonance, Filters, and Noise

This section contains formulas relevant to resonance, filter de-
sign, and noise characteristics.

LC resonant frequency

Let L be the inductance (in henrys) and C be the capacitance
(in farads) in an inductance-capacitance (LC) resonant circuit.
Then the LC resonant frequency (in hertz) is denoted f0 and is
given by:

1 /2 1 /2f � 1/(2�L C )0

This formula also holds for f0 in megahertz, L in microhenrys,
and C in microfarads.

Quarter-wave cavity resonant frequency

Let s be the end-to-end length (in inches) of an air cavity. Then
the fundamental quarter-wave cavity resonant frequency (in
megahertz) is denoted f0 and is given by:

f � 2950/s0

If s is in centimeters, then:

f � 7500/s0

Harmonic quarter-wave resonances occur at odd integral mul-
tiples of this frequency.

Half-wave cavity resonant frequency

Let s be the end-to-end length (in inches) of an air cavity. Then
the fundamental half-wave cavity resonant frequency (in meg-
ahertz) is denoted f0 and is given by:
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f � 4900/s0

If s is in centimeters, then:

f � 15,000/s0

Harmonic half-wave resonances occur at all integral multiples
of this frequency.

Quarter-wave transmission-line
resonant frequency

Let s be the end-to-end length (in inches) of a section of trans-
mission line whose velocity factor (as a ratio between 0 and 1)
is v. Then the fundamental quarter-wave transmission-line res-
onant frequency (in megahertz) is denoted f0 and is given by:

f � 2950v /s0

If s is in centimeters, then:

f � 7500v /s0

If s is in feet, then:

f � 246v /s0

Harmonic quarter-wave resonances occur at odd integral
multiples of this frequency.

Half-wave transmission-line resonant
frequency

Let s be the end-to-end length (in inches) of a section of trans-
mission line whose velocity factor (as a ratio between 0 and 1)
is v. Then the fundamental half-wave transmission-line reso-
nant frequency (in megahertz) is denoted f0 and is given by:

f � 4900v /s0

If s is in centimeters, then:

f � 15,000v /s0

If s is in feet, then:
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Figure 4.6 Constant-k low-
pass filter.

f � 492v /s0

Harmonic half-wave resonances occur at all integral multiples
of this frequency.

Lowpass filter

A lowpass filter offers little or no attenuation of signals at fre-
quencies less than the cutoff, and significant attenuation of sig-
nals at frequencies greater than the cutoff.

Constant-k lowpass filter

Let f be the cutoff frequency (in hertz) for a constant-k lowpass
LC filter as shown in Fig. 4.6. Let R be the load resistance (in
ohms). Then the optimum inductance L (in henrys) is given by:

L � R /(�f)

The optimum capacitance C (in farads) for the filter shown in
Fig. 4.6 is given by:

C � 1/(�fR)

Series m-derived lowpass filter

Let f1 be the highest frequency of maximum transmission (in
hertz) for a series m-derived lowpass LC filter as shown in Fig.
4.7. Let f2 be the lowest frequency of maximum attenuation (in
hertz); let R be the load resistance (in ohms). Then the filter
constant is denoted m and is given by:
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Figure 4.7 Series m-derived
lowpass filter.

2 2 1 /2m � (1 � f /f )1 2

The optimum inductance L1 (in henrys) for the filter shown in
Fig. 4.7 is given by:

L � mR /(�f )1 1

The optimum inductance L2 (in henrys) for the filter shown in
Fig. 4.7 is given by:

2L � R (1 � m )/(4�mf )2 1

The optimum capacitance C (in farads) for the filter shown in
Fig. 4.7 is given by:

2C � (1 � m )/(�Rf )1

Shunt m-derived lowpass filter

Let f1 be the highest frequency of maximum transmission (in
hertz) for a shunt m-derived lowpass LC filter as shown in Fig.
4.8. Let f2 be the lowest frequency of maximum attenuation (in
hertz); let R be the load resistance (in ohms). Then the filter
constant m is given by:

2 2 1 /2m � (1 � f /f )1 2

The optimum inductance L (in henrys) for the filter shown in
Fig. 4.8 is given by:
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Figure 4.8 Shunt m-derived
lowpass filter.

L � mR /(�f )1

The optimum capacitance C1 (in farads) for the filter shown in
Fig. 4.8 is given by:

2C � (1 � m )/(4�Rmf )1 1

The optimum capacitance C2 (in farads) for the filter shown in
Fig. 4.8 is given by:

C � m /(�Rf )2 2

Highpass filter

A highpass filter offers little or no attenuation of signals at fre-
quencies greater than the cutoff, and significant attenuation of
signals at frequencies less than the cutoff.

Constant-k highpass filter

Let f be the cutoff frequency (in hertz) for a constant-k highpass
LC filter as shown in Fig. 4.9. Let R be the load resistance (in
ohms). Then the optimum inductance L (in henrys) is given by:

L � R /(4�f )

The optimum capacitance C (in farads) for the filter shown in
Fig. 4.9 is given by:

C � 1/(4�fR)
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Figure 4.9 Constant-k high-
pass filter.

Figure 4.10 Series m-derived
highpass filter.

Series m-derived highpass filter

Let f1 be the highest frequency of maximum attenuation (in
hertz) for a series m-derived highpass LC filter as shown in Fig.
4.10. Let f2 be the lowest frequency of maximum transmission
(in hertz); let R be the load resistance (in ohms). Then the filter
constant m is given by:

2 2 1 /2m � (1 � f /f )1 2

The optimum inductance L (in henrys) for the filter shown in
Fig. 4.10 is given by:

L � R /(4�mf )2

The optimum capacitance C1 (in farads) for the filter shown in
Fig. 4.10 is given by:

C � 1/(4�mf R)1 2

The optimum capacitance C2 (in farads) for the filter shown in
Fig. 4.10 is given by:
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Figure 4.11 Shunt m-derived
highpass filter.

2C � m /(�f R(1 � m ))2 2

Shunt m-derived highpass filter

Let f1 be the highest frequency of maximum attenuation (in
hertz) for a shunt m-derived highpass LC filter as shown in Fig.
4.11. Let f2 be the lowest frequency of maximum transmission
(in hertz); let R be the load resistance (in ohms). Then the filter
constant m is given by:

2 2 1 /2m � (1 � f /f )1 2

The optimum inductance L1 (in henrys) for the filter shown in
Fig. 4.11 is given by:

2L � mR /(�f (1 � m ))1 2

The optimum inductance L2 (in henrys) for the filter shown in
Fig. 4.11 is given by:

L � R /(4�mf )2 2

The optimum capacitance C (in farads) for the filter shown in
Fig. 4.11 is given by:

C � 1/(4�mf R)2

Bandpass filter

A bandpass filter offers little or no attenuation of signals whose
frequencies are between a lower cutoff and an upper cutoff, and
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Figure 4.12 Constant-k band-
pass filter.

significant attenuation of signals whose frequencies are outside
this range.

Constant-k bandpass filter

Let f1 be the lower cutoff frequency (in hertz) for a constant-k
bandpass LC filter as shown in Fig. 4.12. Let f2 be the upper
cutoff frequency (in hertz). Let R be the load resistance (in
ohms). Then the optimum inductances (in henrys) are given by:

L � R /(�(f � f ))1 2 1

L � (f � f )R /(4�f f )2 2 1 1 2

The optimum capacitances (in farads) for the filter shown in Fig.
4.12 are given by:

C � (f � f )/(4�f f R)1 2 1 1 2

C � 1/(�R(f � f ))2 2 1

Series m-derived bandpass filter

Let frequencies f1, f2, f3, and f4 be expressed in hertz and defined
as shown in Fig. 4.13. Let R be the load resistance (in ohms).
Define the quantities x, m (the filter constant), y, and z as fol-
lows:

2 2 2 2 1 /2x � ((1 � f /f )(1 � f /f ))2 3 3 4

2m � x /(1 � f f /f )2 3 4
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Figure 4.13 Bandpass filter response curve.

Figure 4.14 Series m-derived bandpass filter.

2 2 2 2y � (1 � m )(1 � f /f )f f /(4xf )1 4 2 3 1

2 2 2z � (1 � m )(1 � f /f )/(4x)1 4

The optimum inductances (in henrys) for the filter shown in Fig.
4.14 are given by:

L � mR /(�( f � f ))1 3 2

L � zR /(�( f � f ))2 3 2

L � yR /(�( f � f ))3 3 2

The optimum capacitances (in farads) for the filter shown in Fig.
4.14 are given by:
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Figure 4.15 Shunt m-derived bandpass filter.

C � ( f � f )/(4�mRf f )1 3 2 2 3

C � ( f � f )/(4�yRf f )2 3 2 2 3

C � ( f � f )/(4�zRf f )3 3 2 2 3

Shunt m-derived bandpass filter

Let frequencies f1, f2, f3, and f4 be expressed in hertz and defined
as shown in Fig. 4.13. Let R be the load resistance (in ohms).
Define the quantities x, m (the filter constant), y, and z as in
the preceding section for the series m-derived bandpass filter.
Then the optimum inductances (in henrys) for the filter shown
in Fig. 4.15 are given by:

L � ( f � f )R /(4�zf f )1 3 2 2 3

L � ( f � f )R /(4�yf f )2 3 2 2 3

L � ( f � f )R /(4�mf f )3 3 2 2 3

The optimum capacitances (in farads) for the filter shown in Fig.
4.15 are given by:

C � z /(�R( f � f ))1 3 2

C � y /(�R( f � f ))2 3 2

C � m /(�R( f � f ))3 3 2
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Figure 4.16 Constant-k band-
stop filter.

Bandstop filter

A bandstop filter, also called a band-rejection filter, offers sig-
nificant attenuation of signals whose frequencies are between a
lower cutoff and an upper cutoff, and little or no attenuation of
signals whose frequencies are outside this range.

Constant-k bandstop filter

Let f1 be the lower cutoff frequency (in hertz) for a constant-k
bandstop LC filter as shown in Fig. 4.16. Let f2 be the upper
cutoff frequency (in hertz). Let R be the load resistance (in
ohms). Then the optimum inductances (in henrys) are given by:

L � R( f � f )/(�f f )1 2 1 1 2

L � R /(4�( f � f ))2 2 1

The optimum capacitances (in farads) for the filter shown in Fig.
4.16 are given by:

C � 1/((4�R( f � f ))1 2 1

C � ( f � f )/(�Rf f )2 2 1 1 2

Series m-derived bandstop filter

Let frequencies f1, f2, f3, and f4 be expressed in hertz and defined
as shown in Fig. 4.17. Let R be the load resistance (in ohms).
Define the quantities m (the filter constant), x, and y as follows:
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Figure 4.17 Bandstop filter
response curve.

Figure 4.18 Series m-derived bandstop filter.

2 2 2 2 1 /2m � ((1 � f /f )(1 � f /f )/(1 � f /f ))1 3 3 4 1 4

2x � (1/m)(1 � f f /f )1 4 3

2y � (1/m)(1 � f /( f f ))3 1 4

The optimum inductances (in henrys) for the filter shown in Fig.
4.18 are given by:

L � mR( f � f )/(�f f )1 4 1 1 4

L � R /(4�m( f � f ))2 4 1

L � yR /(4�( f � f ))3 4 1

The optimum capacitances (in farads) for the filter shown in Fig.
4.18 are given by:
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Figure 4.19 Shunt m-derived bandstop filter.

C � 1/(4�mR( f � f ))1 4 1

C � ( f � f )/(�yRf f )2 4 1 1 4

C � ( f � f )/(�xRf f )3 4 1 1 4

Shunt m-derived bandstop filter

Let frequencies f1, f2, f3, and f4 be expressed in hertz and defined
as shown in Fig. 4.17. Let R be the load resistance (in ohms).
Define the quantities m (the filter constant), x, and y as in the
preceding section for the series m-derived bandstop filter. The
optimum inductances (in henrys) for the filter shown in Fig.
4.19 are given by:

L � ( f � f )R /(�yf f )1 4 1 1 4

L � ( f � f )R /(�xf f )2 4 1 1 4

L � R /(4�m( f � f ))3 4 1

The optimum capacitances (in farads) for the filter shown in Fig.
4.19 are given by:

C � x /(4�R( f � f ))1 4 1

C � y /(4�R( f � f ))2 4 1

C � m( f � f )/(�Rf f )3 4 1 1 4
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Thermal noise power

Let k represent Boltzmann’s constant (approximately 1.3807 �
10�23 joules per degree Kelvin); let T represent the absolute
temperature (in degrees Kelvin); let B represent the bandwidth
(in hertz). Then the thermal noise power (in watts), Pnt, is given
by:

P � kTBnt

Thermal noise voltage

Let R represent the resistance of a noise source (in ohms); let
Pnt represent the thermal noise power (in watts). Then the ther-
mal noise voltage (in volts), Vnt, is given by:

1 /2V � (P R)nt nt

Signal-to-noise ratio

Let Pn represent the noise power (in watts) at the output of a
circuit; let Ps represent the signal power (in watts) at the output
of the same circuit. Then the signal-to-noise ratio (in decibels)
is denoted S:N and is given by:

S:N � 10 log (P /P )10 s n

The value of S:N can also be calculated in terms of voltages or
currents. Let Vn represent the noise voltage (in volts) at the
output of a circuit; let In represent the noise current (in am-
peres) at that point; let Vs represent the signal voltage (in volts)
at that point; let Is represent the signal current (in amperes) at
that point. Then the signal-to-noise ratio S:N (in decibels), as-
suming constant impedance, is given by either of these formu-
las:

S:N � 20 log (V /V )10 s n

S:N � 20 log (I /I )10 s n

Signal-plus-noise-to-noise ratio

Let Pn represent the noise power (in watts) at the output of a
circuit; let Ps represent the signal power (in watts) at the output
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of the same circuit. Then the signal-plus-noise-to-noise ratio (in
decibels) is denoted (S�N):N and is given by:

(S�N):N � 10 log ((P � P )/P )10 s n n

The value of (S�N):N can also be calculated in terms of voltages
or currents. Let Vn represent the noise voltage (in volts) at the
output of a circuit; let In represent the noise current (in am-
peres) at that point; let Vs represent the signal voltage (in volts)
at that point; let Is represent the signal current (in amperes) at
that point. Then the signal-plus-noise-to-noise ratio (S�N):N
(in decibels), assuming constant impedance, is given by either
of these formulas:

(S�N):N � 20 log ((V � V )/V )10 s n n

(S�N):N � 20 log ((I � I )/I )10 s n n

Noise figure

Let Pi represent the noise power (in watts) at the output of an
ideal circuit; let Pa represent the noise power (in watts) at the
output of an actual circuit. Then the noise figure (in decibels) of
the actual circuit is denoted N and is given by:

N � 10 log (P /P )10 a i

The noise figure can also be calculated in terms of S:N ratios.
Let S:Ni be the S:N ratio (in decibels) at the output of an ideal
circuit; let S:Na be the S:N ratio (in decibels) at the output of
an actual circuit receiving the same signal. Then the noise fig-
ure N (in decibels) of the actual circuit is given by:

N � S:N � S:Ni a

Semiconductor Diodes

A diode exhibits a nonlinear relationship between voltage and
current. This relationship differs in the forward direction com-
pared with the reverse direction. It also differs in the dynamic
(changing) sense compared with the static (unchanging) sense.
The following several formulas are relevant to semiconductor
diodes.
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Forward current

Let Irs represent the reverse saturation current (in amperes) for
a particular diode. Let q represent the charge on an electron
(approximately 1.602 � 10�19 coulomb); let Vf represent the for-
ward voltage (in volts); let k represent Boltzmann’s constant
(approximately 1.3807 � 10�23 joules per degree Kelvin); let T
represent the absolute temperature (in degrees Kelvin); let e
represent the exponential constant (approximately 2.718). Con-
sider x to be defined as follows:

x � qV /(kT)f

Then the forward current, If (in amperes), is given by:

xI � I (e � 1)f rs

Static resistance

Let VDC represent the DC voltage drop (in volts) across a diode;
let IDC represent the direct current (in amperes) through the
diode. Then the static resistance, Rs (in ohms), of the diode is
given by:

R � V /Is DC DC

Dynamic resistance

Let V represent the instantaneous voltage drop (in volts) across
a diode; let I represent the instantaneous current (in amperes)
through the diode. Then the dynamic resistance, Rd (in ohms),
of the diode is given by:

R � dV / dId

That is, Rd is the derivative of the voltage with respect to the
current, or the slope of the characteristic curve V versus I (Fig.
4.20) at a specified point.

Rectification efficiency

Let VDC represent the DC output voltage of a diode rectifier (in
volts); let Vpk represent the peak AC input voltage (in volts).
Then the rectification efficiency, � (as a ratio), is given by:
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Figure 4.20 Characteristic
curve for a semiconductor di-
ode.

� � V /VDC pk

The rectification efficiency, �% (in percent), is given by:

� � 100V /V% DC pk

Bipolar Transistors

The following several formulas are relevant to bipolar transis-
tors, both the NPN type and the PNP type.

Static forward current transfer ratio

Assume the collector voltage, Vc, in a common-emitter circuit
(Fig. 4.21) is constant. Let Ic represent the collector current (in
amperes); let Ib represent the base current (in amperes). Then
the static forward current transfer ratio, HFE, is given by:

H � I /IFE c b

Dynamic base resistance

Assume the collector voltage, Vc, is constant. Let Vb represent
the base voltage (in volts); let Ib represent the base current (in
amperes). Then the dynamic base resistance, Rb (in ohms), is:

R � dV /dIb b b
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Figure 4.21 Common-emitter bipolar transistor circuit.

Dynamic emitter resistance

Assume the collector voltage, Vc, applied to a transistor is con-
stant. Let Ve represent the emitter voltage (in volts); let Ie rep-
resent the emitter current (in amperes). Then the dynamic emit-
ter resistance, Re (in ohms), is given by:

R � dV /dIe e e

Dynamic collector resistance

Assume the emitter current, Ie, through a transistor is constant.
Let Vc represent the collector voltage (in volts); let Ic represent
the collector current (in amperes). Then the dynamic collector
resistance, Rc (in ohms), is given by:

R � dV /dIc c c

Dynamic emitter feedback conductance

Assume the emitter voltage, Ve, applied to a transistor is con-
stant. Let Ie represent the emitter current (in amperes); let Vc
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Figure 4.22 Common-base bipolar transistor circuit.

represent the collector voltage (in volts). Then the dynamic
emitter feedback conductance, Gec (in siemens), is given by:

G � dI /dVec e c

Alpha

Assume the collector voltage, Vc, in a common-base circuit (Fig.
4.22) is constant. Let Ic represent the collector current (in am-
peres); let Ie represent the emitter current (in amperes). Then
the dynamic current amplification in common-base arrange-
ment, or alpha (symbolized 
), is given by:


 � dI /dIc e

This quantity is always greater than 0 but less than 1.

Beta

Assume the collector voltage, Vc, applied to a transistor in a
common-emitter circuit (Fig. 4.21) is constant. Let Ic represent
the collector current (in amperes); let Ib represent the base cur-
rent (in amperes). Then the dynamic current amplification in
common-emitter arrangement, or beta (symbolized �), is:

� � dI /dIc b
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Alpha as a function of beta

Suppose the beta (�) of a bipolar transistor is known. The alpha
(
) of that transistor, assuming the collector voltage Vc remains
constant, is given by:


 � � /(1 � �)

Beta as a function of alpha

Suppose the alpha (
) of a bipolar transistor is known. The beta
(�) of that transistor, assuming the collector voltage Vc remains
constant, is given by:

� � 
 /(1 � 
)

Dynamic stability factor

Let Ic represent the collector current through a bipolar transis-
tor (in amperes); let I� represent the collector leakage current
(in amperes). Then the dynamic stability factor, S, of the tran-
sistor is given by:

S � dI /dIc �

Resistance parameters (common base)

Let 
 represent the dynamic current amplification of a bipolar
transistor in the common-base arrangement. Let the following
symbols represent resistances (in ohms):

Rb � dynamic base resistance

Rc � dynamic collector resistance

Re � dynamic emitter resistance

Rin � input resistance

Rrt � reverse transfer resistance

Rft � forward transfer resistance

Rout � output resistance

Then the following equations hold:
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Rin � Re � Rb

Rrt � Rb

Rft � Rb � 
Rc

Rout � Rc � Rb

Resistance parameters (common
emitter)

Let 
 represent the dynamic current amplification of a bipolar
transistor in the common-base arrangement. Let the following
symbols represent resistances (in ohms) in a common-emitter
circuit:

Rb � dynamic base resistance

Rc � dynamic collector resistance

Re � dynamic emitter resistance

Rin � input resistance

Rrt � reverse transfer resistance

Rft � forward transfer resistance

Rout � output resistance

Then the following equations hold:

Rin � Re � Rb

Rrt � Re

Rft � Re � 
Rc

Rout � Rc � Re � 
Rc

Resistance parameters (common
collector)

Let 
 represent the dynamic current amplification of a bipolar
transistor in the common-base arrangement. Let the following
symbols represent resistances (in ohms) in a common-collector
circuit (Fig. 4.23):
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Figure 4.23 Common-collector bipolar transistor circuit, also
known as emitter follower.

Rb � dynamic base resistance

Rc � dynamic collector resistance

Re � dynamic emitter resistance

Rin � input resistance

Rrt � reverse transfer resistance

Rft � forward transfer resistance

Rout � output resistance

Then the following equations hold:

Rin � Rb � Rc

Rrt � Rc � 
Rc

Rft � Re (1 � 
)

Rout � Re � Rc � 
Rc

Hybrid parameters (common emitter)

In a common-emitter bipolar-transistor circuit, let the following
symbols represent the indicated parameters. Currents are in
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amperes, resistances are in ohms, conductances are in siemens,
and voltages are in volts.

Ib � base current

Ic � collector current

Veb � emitter-base voltage

Vce � collector-emitter voltage

Rin � input resistance for constant Vce

Gout � output conductance for constant Ib
hf � forward transfer characteristic for constant Vce

hr � reverse transfer characteristic for constant Ib

Then the following equations hold:

Rin � dVeb/dIb

Gout � dIc /dVce

hf � dIc /dIb

hr � dVeb/dVce

Hybrid parameters (common base)

In a common-base bipolar-transistor circuit, let the following
symbols represent the indicated parameters. Currents are in
amperes, resistances are in ohms, conductances are in siemens,
and voltages are in volts.

Ie � emitter current

Ic � collector current

Vcb � collector-base voltage

Veb � emitter-base voltage

Rin � input resistance for constant Vcb

Gout � output conductance for constant Ie
hf � forward transfer characteristic for constant Vcb

hr � reverse transfer characteristic for constant Ie
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Then the following equations hold:

Rin � dVeb/dIe

Gout � dIc /dVcb

hf � dIc /dIe

hr � dVeb/dVcb

Hybrid parameters (common collector)

In a common-collector bipolar-transistor circuit, let the follow-
ing symbols represent the indicated parameters. Currents are
in amperes, resistances are in ohms, conductances are in sie-
mens, and voltages are in volts.

Ib � base current

Ie � emitter current

Vec � emitter-collector voltage

Vbc � base-collector voltage

Rin � input resistance for constant Vec

Gout � output conductance for constant Ib
hf � forward transfer characteristic for constant Vec

hr � reverse transfer characteristic for constant Ib

Then the following equations hold:

Rin � dVec /dIe

Gout � dIe /dVec

hf � dVbc /dIb

hr � dVbc /dVec

Field-effect Transistors

The following several formulas are relevant to field-effect tran-
sistors (FETs), both the N-channel type and the P-channel type.
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Figure 4.25 Common-source FET circuit with unbypassed source
resistor.

Figure 4.24 Common-source FET circuit with bypassed source
resistor.

Forward transconductance (common
source)

Let Id represent drain current (in amperes) in a common-source
FET circuit (Fig. 4.24 or 4.25). Let Vg represent gate voltage (in
volts). Forward transconductance, Gfs (in siemens), is:

G � dI /dVfs d g
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Figure 4.26 Common-drain FET circuit, also known as source
follower.

Voltage amplification (common source)

Let Gfs represent the forward transconductance (in siemens) for
a common-source circuit with an unbypassed source resistor
(Fig. 4.25). Let Rd represent the resistance (in ohms) of an ex-
ternal drain resistor. Let Rs represent the resistance (in ohms)
of an external source resistor. Then the voltage amplification,
AV (as a ratio), is given by:

A � G R /(1 � G R )V fs d fs s

If the source resistor is bypassed (Fig. 4.24), then:

A � G RV fs d

Voltage amplification (source follower)

Let Gfs represent the forward transconductance (in siemens) for
a source-follower FET circuit (Fig. 4.26). Let Rd represent the
resistance (in ohms) of an external drain resistor. Let Rs rep-
resent the resistance (in ohms) of an external source resistor.
Then the voltage amplification, AV (as a ratio), is given by:

A � G R /(1 � G R )V fs s fs s
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Output impedance (source follower)

Let Gfs represent the forward transconductance (in siemens) for
a source-follower FET circuit (Fig. 4.26). Let Rs represent the
resistance (in ohms) of an external source resistor. Then the
output impedance, Zout (in ohms), is given by:

Z � R /(1 � G R )out s fs s

Electron Tubes

This section contains formulas relevant to electron tubes (often
called simply tubes, or valves in England).

Diode tube perveance

Let Ap represent the surface area of the anode (plate) of a diode
tube (in square centimeters); let scp represent the separation
between the cathode and the plate (in centimeters). Then the
diode perveance, Gd, is given by:

�6G � 2.3 � 10 (A /s )d p cp

Triode tube perveance

Let Ap represent the surface area of the anode (plate) of a diode
tube (in square centimeters); let scg represent the separation
between the cathode and the grid (in centimeters). Then the
triode perveance, Gt, is given by:

�6G � 2.3 � 10 (A /s )t p cg

3/2-power law for diode tube

Let Vp represent the plate voltage (in volts) in a diode tube; let
Gd represent the diode perveance. Then the plate current, Ip (in
amperes) is approximately given by:

3 /2I � V Gp p d
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3/2-power law for triode tube

Let � represent the amplification factor of a triode tube; let Vg

represent the grid voltage (in volts); let Vp represent the plate
voltage (in volts); let Gt represent the triode perveance. Then
the plate current, Ip (in amperes) is approximately given by:

3 /2I � (�V � V ) Gp g p t

Plate current vs perveance in triode

Let Vg represent the grid voltage (in volts) in a triode; let Vp

represent the plate voltage (in volts); let Gt represent the triode
perveance; let � represent the amplification factor. Then the
plate current, Ip (in amperes) is approximately given by:

3 /2I � ((�V � V )/(� � 1)) Gp g p t

DC internal plate resistance

Let Vp represent the DC plate-cathode voltage (in volts) in a
vacuum tube; let Ip represent the DC flowing in the plate circuit
(in amperes). Then the DC internal plate resistance, Rp (in
ohms), is given by:

R � V /Ip p p

Dynamic internal plate resistance

Let Vp represent the instantaneous plate-cathode voltage (in
volts); let Ip represent the instantaneous current flowing in the
plate circuit (in amperes). Assume the control-grid voltage, Vg,
is constant. Then the dynamic internal plate resistance, Rpd (in
ohms), is given by:

R � dV /dIpd p p

DC internal screen resistance

Let Vs represent the DC screen-grid voltage (in volts) in a tet-
rode or pentode tube; let Is represent the DC flowing in the
screen circuit (in amperes). Then the DC screen resistance, Rs

(in ohms), is given by:

R � V /Is s s



320 Chapter Four

Dynamic internal screen resistance

Let Vs represent the instantaneous screen-grid voltage (in volts)
in a tetrode or pentode tube; let Is represent the instantaneous
current flowing in the screen circuit (in amperes). Then the dy-
namic internal screen resistance, Rsd (in ohms), is given by:

R � dV /dIsd s s

Transconductance of tube

Let Vg represent the instantaneous control-grid voltage (in
volts); let Ip represent the instantaneous current flowing in the
plate circuit. Assume the DC plate voltage, Vp, is constant. Then
the transconductance, gm (in siemens), is given by:

g � dI /dVm p g

Plate amplification factor

Let Vp represent the instantaneous plate voltage (in volts); let
Vg represent the instantaneous control-grid voltage (in volts);
let gm represent the transconductance (in siemens); let Rpd rep-
resent the dynamic internal plate resistance (in ohms). Assume
that the plate current, Ip, is constant. Then the plate amplifi-
cation factor, �p (as a ratio), is given by either of the following
formulas:

� � dV /dVp p g

� � R gp pd m

Screen amplification factor

Let Vs represent the instantaneous screen-grid voltage (in volts)
in a tetrode or pentode tube; let Vg represent the instantaneous
control-grid voltage (in volts). Assume that the screen-grid cur-
rent, Is, is constant. Then the screen amplification factor, �s (as
a ratio), is given by:

� � dV /dVs s g
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Figure 4.27 Common-plate electron-tube cir-
cuit, also known as cathode follower.

Output resistance in cathode follower

Let gm represent the transconductance of a tube (in siemens)
connected in a cathode-follower arrangement as shown in Fig.
4.27; let Rk represent the value of the external cathode resistor
(in ohms). Then the output resistance, Rout (in ohms) is given
by:

R � R /(1 � g R )out k m k

Input capacitance of tube

Let Cgk represent the capacitance between the control grid and
the cathode (in picofarads); let Cgp represent the capacitance
between the control grid and the plate (in picofarads); let � rep-
resent the amplification factor (as a ratio). Then the input ca-
pacitance, Cin (in picofarads), is given by:

C � C � C (� � 1)in gk gp

Required DC supply voltage for tube

Refer to Fig. 4.28. Let Vk represent the required cathode voltage
(in volts); let Rk represent the value of the external cathode
resistor (in ohms); let RL represent the value of the external
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Figure 4.28 General elec-
tron-tube circuit.

plate resistor (in ohms); let VL represent the voltage (in volts)
across the external plate resistor; let Ik represent the cathode
current (in amperes); let Ip represent the plate current (in am-
peres); let Vp represent the required plate-cathode voltage (in
volts). Then the required DC supply voltage, Vbb (in volts), is
given by either of the following two formulas:

V � V � V � Vbb p k L

V � V � I R � I Rbb p k k p L

DC plate-cathode voltage

Refer to Fig. 4.28. Let Vbb represent the supply voltage (in volts);
let Vk represent the voltage (in volts) on the cathode relative to
ground; let Ip represent the plate current (in amperes); let RL

represent the value of the external plate resistor (in ohms).
Then the DC plate-cathode voltage, Vp, is given by:

V � V � (I R � V )p bb p L k

DC screen voltage

Refer to Fig. 4.28; let Vss represent the DC screen-grid supply
voltage (in volts); let Is represent the screen current (in am-
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peres); let Rs represent the value of the external screen-circuit
resistor (in ohms). Then the DC screen voltage, Vs (in volts), is
given by:

V � V � I Rs ss s s

Screen current

Refer to Fig. 4.28; let Vg represent the DC voltage on the control
grid (in volts); let Vs represent the DC screen voltage (in volts);
let G represent the perveance of the electron tube; let �s rep-
resent the screen amplification factor. Then the screen current,
Is (in amperes), is given by:

I � G (V � V /� )s g s s

Required external plate resistance

Refer to Fig. 4.28. Let Vbb represent the DC supply voltage (in
volts); let Vk represent the required cathode voltage (in volts)
relative to ground; let Vp represent the required plate-cathode
voltage (in volts); let Ip represent the required plate current (in
amperes). Then the required external plate resistance, RL (in
ohms), is given by:

R � (V � (V � V ))/IL bb p k p

Required external cathode resistance

Refer to Fig. 4.28. Let Vbb represent the supply voltage (in volts);
let Vg represent the grid voltage (in volts); let Ik represent the
cathode current (in amperes). Then the required external cath-
ode resistance, Rk (in ohms), is given by:

R � (V � V )/Ik bb g k

Required external screen resistance

Refer to Fig. 4.28. Let Vs represent the required screen voltage
(in volts); let Vss represent the screen supply voltage (in volts);
let Is represent the required screen current (in amperes). Then
the required external screen resistance, Rs (in ohms), is given by:

R � (V � V )/Is ss s s
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Voltage amplification and gain for tube

Let gm represent the transconductance of an electron tube; let
� represent the amplification factor; let Rp represent the inter-
nal plate resistance (in ohms); let RL represent the value of the
external plate resistor (in ohms). Then the voltage amplifica-
tion, AV (as a ratio), is given by either of these formulas:

A � g R R /(R � R )V m p L p L

A � �R /(R � R )V L p L

The voltage gain, GV (in decibels), is given by either of the fol-
lowing formulas, assuming constant impedance:

G � 20 log (g R R /(R � R ))V 10 m p L p L

G � 20 log (�R /(R � R ))V 10 L p L

Power amplification and gain for tube

Refer to Fig. 4.28. Let Pin represent the input signal power (in
watts) applied to the control grid of an electron tube; let Pout

represent the output signal power in the plate circuit. Then the
power amplification, AP (as a ratio), is given by:

A � P /PP out in

The power gain, GP (in decibels), is given by:

G � 10 log (P /P )P 10 out in

Filament power demand

Let Vf represent the effective filament voltage in an electron
tube (in volts rms); let If represent the effective filament current
(in amperes rms); let Rf represent the filament resistance (in
ohms). Then the filament power demand, Pf (in watts), is given
by any of the following formulas:

P � V If f f

2P � I Rf f f

2P � V /Rf f f
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DC screen power

Refer to Fig. 4.28. Let Vs represent the DC screen voltage (in
volts); let Is represent the direct current in the screen circuit (in
amperes). Then the DC screen power, Ps (in watts), is given by:

P � V Is s s

DC plate input power

Refer to Fig. 4.28. Let Vp represent the DC plate voltage (in
volts); let Ip represent the direct current in the plate circuit (in
amperes). Then the DC plate input power, Pp-in (in watts), is:

P � V Ip-in p p

Signal output power from tube

Refer to Fig. 4.28. Let Vmax represent the maximum instanta-
neous plate voltage (in volts); let Vmin represent the minimum
instantaneous plate voltage (in volts); let Imax represent the
maximum instantaneous plate current (in amperes); let Imin rep-
resent the minimum instantaneous plate current (in amperes).
Then the signal output power, Ps-out (in watts), is given by:

P � 0.125 (V I � V I � V I � V I )s-out max max max min min max min min

Plate power dissipation

Refer to Fig. 4.28. Let Pp-in represent DC plate power input (in
watts); let Ps-out represent signal output power (in watts). Then
the plate power dissipation, Pp-dis (in watts), is given by:

P � P � Pp-dis p-in s-out

Plate efficiency

Refer to Fig. 4.28. Let Pp-in represent DC plate input power (in
watts); let Ps-out represent signal output power (in watts). Then
the plate efficiency, �p (as a ratio), is given by:

� � P /Pp s-out p-in

As a percentage, the plate efficiency �p% is given by:

� � 100 P /Pp% s-out p-in
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Input power sensitivity for tube

Refer to Fig. 4.28. Let Vg-in represent the grid input signal volt-
age (in volts rms); let Ps-out represent the signal power output
(in watts). Then the input power sensitivity, SP (in watts per
volt), is given by:

S � P /VP s-out g-in

Electromagnetic Fields

An electromagnetic (EM) field is generated whenever charged
particles are accelerated. In most practical situations, this ac-
celeration is alternating and periodic.

Frequency vs wavelength

Let the frequency (in hertz) of an EM wave be represented by
f; let the wavelength (in meters) be represented by �; let the
speed of propagation (in meters per second) be represented by
c. Then the following formula holds:

c � f�

In free space, c is approximately 2.99792 � 108 meters per sec-
ond. For most practical applications this is rounded off to 3.00
� 108 meters per second.

Free-space wavelength

The free-space wavelength of an RF field depends on the fre-
quency. In general, the higher the frequency, the shorter the
free-space wavelength. Let:

�ft � free-space wavelength (in feet)

�in � free-space wavelength (in inches)

�m � free-space wavelength (in meters)

�cm � free-space wavelength (in centimeters)

fMHz � frequency (in megahertz)

fGHz � frequency (in gigahertz)
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Then the following equations hold:

�ft � 984/fMHz

�ft � 0.984/fGHz

�in� 11.8/fGHz

�m � 300/fMHz

�m � 0.300/fGHz

�cm � 30.0/fGHz

Angular frequency

Let f be the frequency of an EM field (in hertz). Then the an-
gular frequency, � (in radians per second), is given by:

� � 2�f � 6.28f

The angular frequency in degrees per second is given by:

� � 360f

Period

Let f be the frequency of an EM field (in hertz). The the period,
T (in seconds), is given by:

T � 1/f

For an angular frequency � in radians per second:

T � 2� /�

T � 6.28/�

For an angular frequency � in degrees per second:

T � 360/�

RF Transmission Lines

The following formulas apply to RF transmission lines, also
called feed lines, used wireless transmitting and receiving an-
tenna systems.
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Characteristic impedance of coaxial
cable

Let d1 represent the outside diameter of the center conductor
in an air-dielectric coaxial transmission line; let d2 represent
the inside diameter of the shield or braid (in the same units as
d1). Then the characteristic impedance, Z0, of the line (in ohms),
is given by:

Z � 138 log (d /d )0 10 2 1

Characteristic impedance of two-wire
line

Let d represent the outside diameter of either wire in a two-
wire, air-dielectric transmission line; assume both wires have
the same diameter. Let s represent the spacing between the cen-
ters of the two conductors in the line; assume s is the same at
all points along the line, and is specified in the same units as
d. Then the characteristic impedance, Z0, of the line (in ohms),
is given by:

Z � 276 log (2s /d)0 10

Velocity factor

Let c0 represent the speed at which an EM disturbance propa-
gates along a transmission line (in meters per second). Then the
velocity factor, v, of the line (as a ratio), is given by:

8v � c /(3.00 � 10 )0

The velocity factor as a percentage is denoted v% and is given
by:

6v � c /(3.00 � 10 )% 0

Table 4.1 lists approximate velocity factors for common types of
RF transmission line. The value of v is always positive, but it
can never be greater than 1 (100 percent). In wire lines, v de-
pends primarily on the nature of the dielectric separating the
conductors.
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TABLE 4.1 Velocity factors for RF transmission lines. These
figures are approximate.

General Description
Velocity
Factor

Coaxial cable, solid polyethylene dielectric 0.66
Coaxial hard line, solid polyethylene dielectric 0.66
Coaxial cable, foamed polyethylene dielectric 0.75–0.85
Coaxial hard line, foamed polyethylene dielectric 0.75–0.85
Coaxial hard line, solid polyethylene disk spacers 0.85–0.90
TV ‘‘twin-lead’’ ribbon, 75-ohm 0.70–0.80
TV ‘‘twin-lead’’ ribbon, 300-ohm 0.80–0.90
Parallel-wire ‘‘window’’ ribbon 0.85–0.90
Parallel-wire ‘‘ladder line’’ with plastic spacers 0.90–0.95
Open-wire line without spacers 0.95
Single-wire line 0.95

Electrical wavelength

In a medium other than free space, the wavelength depends on
the frequency and also on the velocity factor (v) of the medium
in which the field propagates. Let:

�ft � electrical wavelength (in feet)

�in � electrical wavelength (in inches)

�m � electrical wavelength (in meters)

�cm � electrical wavelength (in centimeters)

fMHz � frequency (in megahertz)

fGHz � frequency (in gigahertz)

Then the following equations hold:

�ft � 984v /fMHz

�ft � 0.984v /fGHz

�in� 11.8v /fGHz

�m � 300v /fMHz

�m � 0.300v /fGHz

�cm � 30.0v /fGHz
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Let v% represent the velocity factor as a percentage between 0
and 100. Then:

� � 9.84v /fft % MHz

�3� � (9.84 � 10 )v /fft % GHz

� � 0.118v /fin % GHz

� � 3.00v /fm % MHz

�3� � (3.00 � 10 )v /fm % GHz

� � 0.300v /fcm % GHz

Length of 1/4-wave matching section

The length of a quarter-wave section of transmission line, com-
monly used for impedance matching, depends on the frequency,
and also on the velocity factor of the line. Let:

sft � section length (in feet)

sin � section length (in inches)

sm � section length (in meters)

scm � section length (in centimeters)

fMHz � frequency (in megahertz)

fGHz � frequency (in gigahertz)

v � velocity factor (as a ratio between 0 and 1)

Then the following equations hold:

scm � 7.50v /fGHz

sft � 246v /fMHz

sft � 0.246v /fGHz

sin � 2.95v /fGHz

sm � 75.0v /fMHz

sm � 0.0750v /fGHz
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Let v% represent the velocity factor as a percentage between 0
and 100. Then:

scm � 0.0750v%/fGHz

sft � 2.46v%/fMHz

sft � (2.46 � 10�3)v%/fGHz

sin � 0.0295v%/fGHz

sm � 0.750v%/fMHz

sm � (7.50 � 10�4)v%/fGHz

Characteristic impedance of 1/4-wave
matching section

In an optimally designed antenna feed system, the signal input
and output impedances must both be purely resistive, and the
characteristic impedance of a quarter-wave matching section
must be equal to the geometric mean of the input and output
impedances. Let:

Z0 � characteristic impedance of matching section (in ohms)

Z � input impedance (in ohms)in

Z � output impedance (in ohms)out

The following formulas apply:

1 /2Z � (Z Z )0 in out

2Z � Z /Zout 0 in

2Z � Z /Zin 0 out

If the above mentioned criteria are not met, then standing
waves will exist along the transmission line. This is not always
a serious practical concern, but in some cases it can result in
degradation of system efficiency and/or physical damage to the
transmission line.
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Standing wave ratio (SWR)

Suppose an RF transmission line is terminated in a load whose
impedance (in ohms) is a pure resistance, Rload. Let Z0 represent
the characteristic impedance of the line (in ohms). If Rload � Z0,
the standing-wave ratio, abbreviated SWR, is given by:

SWR � R /Zload 0

If Rload � Z0, then:

SWR � Z /R0 load

If Rload � Z0, then:

SWR � R /Z � Z /R � 1:1 � 1load 0 0 load

When a transmission line is terminated with a load whose
impedance is not a pure resistance, the SWR is determined ac-
cording to the maximum and minimum voltage or current in
the line.

Voltage standing wave ratio (VSWR)

Let Vmax represent the maximum RF voltage (in volts) between
the conductors of a transmission line; let Vmin represent the
minimum RF voltage (in volts) between the conductors of the
line. Points at which Vmax and Vmin occur are separated by 1⁄4
electrical wavelength. The voltage standing-wave ratio, abbre-
viated VSWR, is given by:

VSWR � V /Vmax min

Current standing wave ratio (ISWR)

Let Imax represent the maximum RF current (in amperes) in a
transmission line; let Imin represent the minimum RF current
in the line (in amperes). Points at which Imax and Imin occur are
separated by 1⁄4 electrical wavelength. Current maxima nor-
mally exist at the same points on a transmission line as voltage
minima; current minima normally exist at the same points as
voltage maxima. The current standing-wave ratio, abbreviated
ISWR, is given by:

ISWR � I /Imax min
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TABLE 4.2A Approximate loss in decibels per 100 feet
for various transmission lines under conditions of 1:1
SWR.

Line type 1 MHz 10 MHz 100 MHz

600-ohm ladder line 0.05 0.1 0.5
300-ohm TV ribbon 0.1 0.5 1.5
RG-8/U coaxial cable 0.15 0.6 2.0
RG-59/U coaxial cable 0.3 1.0 4.0
RG-58/U coaxial cable 0.3 1.4 5.0

Relation among SWR, VSWR, and ISWR

In theory, assuming zero loss in a transmission line, the follow-
ing equation holds:

SWR � VSWR � ISWR

In practice, when a line has significant loss, these quantities
differ slightly depending on the points where current and volt-
age are measured. In transmitting antenna systems, the ratios
are lower toward the equipment (transmitter) end of the line,
and higher toward the antenna (load) end.

Reflection coefficient vs SWR

Let s represent the SWR, VSWR, or ISWR measured at the an-
tenna (load) end of a transmitting RF transmission line. Then
the reflection coefficient, k, is given by:

k � (s � 1)/s

Reflection coefficient vs load
resistance

Suppose an RF transmission line is terminated in a load whose
impedance (in ohms) is a pure resistance, Rload. Let Z0 represent
the characteristic impedance of the line (in ohms). Then the
reflection coefficient, k, is given by:

k � (R � Z )/(R � Z )load 0 load 0

Loss in matched lines

Table 4.2 gives the approximate loss (in decibels per 100 feet
and per 100 meters) for various types of transmission line under
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TABLE 4.2B Approximate loss in decibels per 100 meters
for various transmission lines under conditions of 1:1
SWR.

Line Type 1 MHz 10 MHz 100 MHz

600-ohm ladder line 0.16 0.33 1.6
300-ohm TV ribbon 0.33 3.3 4.9
RG-8/U coaxial cable 0.49 2.0 6.5
RG-59/U coaxial cable 1.0 3.3 13
RG-58/U coaxial cable 0.3 1.4 5.0

Figure 4.29 Approximate SWR loss, as a function of
both the matched-line loss and the SWR at the load
end of the line.

conditions of 1:1 SWR (a perfect impedance match between the
line and the load). Dielectrics are assumed to be solid polyeth-
ylene, except for ladder line in which the dielectric is dry air
with plastic spacers.

SWR loss

Figure 4.29 shows the approximate loss (in decibels) that occurs
in addition to the matched-line loss in a transmission line when
the SWR is not 1:1. This additional loss is called SWR loss and
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is insignificant in practical terms unless the SWR is more than
2:1. In severely mismatched, long lines at high frequencies, the
SWR loss can be considerable.

Antennas

The physical size of a resonant antenna depends on the electri-
cal wavelength, which in turn depends on the frequency.

Radiation resistance

Let Prad represent the power radiated from a resonant antenna
(in watts); let Irad represent the RF current (in amperes) that
would flow in a non-reactive resistor inserted at the feed point,
if the use of that resistor in place of the antenna would produce
the same feed-line current distribution as does the antenna.
Then the radiation resistance, Rrad (in ohms), of the resonant
antenna is given by:

2R � P /Irad rad rad

Let Prad represent the power radiated from a resonant an-
tenna (in watts); let Vrad represent the RF voltage (in volts) that
would appear across a non-reactive resistor inserted at the feed
point, if the use of that resistor in place of the antenna would
produce the same feed-line voltage distribution as does the an-
tenna. Then the radiation resistance, Rrad (in ohms), of the res-
onant antenna is given by:

2R � V /Prad rad rad

Antenna efficiency

Let Rrad represent the radiation resistance of an antenna (in
ohms); let Rloss represent the loss resistance in the antenna and
associated components such as loading coils, traps, ground sys-
tem, etc. Then the antenna efficiency, � (as a ratio), is given by:

� � R /(R � R )rad rad loss

The efficiency as a percentage, �%, is given by:

� � 100 R /(R � R )% rad rad loss
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Length of 1/2-wave dipole antenna

For a half-wave dipole antenna fed at the center, placed at least
1/4 wavelength above effective ground and constructed of com-
mon wire, let:

sft � end-to-end length (in feet)

sin � end-to-end length (in inches)

sm � end-to-end length (in meters)

scm � end-to-end length (in centimeters)

fMHz � frequency (in megahertz)

fGHz � frequency (in gigahertz)

Then the following formulas apply:

sft � 468/fMHz

sft � 0.468/fGHz

sin � 5.62/fGHz

sm � 143/fMHz

sm � 0.143/fGHz

scm � 14.3/fGHz

For antennas constructed of metal tubing, the above values
should be multiplied by approximately 0.95 (95 percent). How-
ever, the exact optimum antenna length in any given case must
be determined by experimentation, because it depends on the
ratio of tubing diameter to wavelength, and also on the sur-
rounding environment.

Height of 1/4-wave vertical antenna

For a quarter-wave vertical antenna constructed of common
wire and placed over perfectly conducting ground, let:

hft � radiating-element height (in feet)

hin � radiating-element height (in inches)
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hm � radiating-element height (in meters)

hcm � radiating-element height (in centimeters)

fMHz � frequency (in megahertz)

fGHz � frequency (in gigahertz)

Then the following formulas apply:

hft � 234/fMHz

hft � 0.234/fGHz

hin � 2.81/fGHz

hm � 71.5/fMHz

hm � 0.0715/fGHz

hcm � 7.15/fGHz

For antennas constructed of metal tubing, the above values
should be multiplied by approximately 0.95 (95 percent). How-
ever, the exact optimum antenna height in any given case must
be determined by experimentation, because it depends on the
ratio of tubing diameter to wavelength, and also on the sur-
rounding environment.

Length of harmonic antenna

For a resonant harmonic antenna fed at integral multiples of 1⁄4
wavelength from either end, placed at least 1⁄4 wavelength above
effective ground and constructed of common wire, let:

sft � end-to-end length (in feet)

sin � end-to-end length (in inches)

sm � end-to-end length (in meters)

scm � end-to-end length (in centimeters)

fMHz � frequency (in megahertz)

fGHz � frequency (in gigahertz)

n � harmonic at which antenna is operated
(a positive integer)

Then the following formulas apply:
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sft � 492 (n � 0.05)/fMHz

sft � 0.492 (n � 0.05)/fGHz

sin � 5.90 (n � 0.05)/fGHz

sm � 150 (n � 0.05)/fMHz

sm � 0.150 (n � 0.05)/fGHz

scm � 15.0 (n � 0.05)/fGHz

Length of resonant unterminated long
wire

For a resonant unterminated long wire antenna fed at either
end, placed at least 1/4 wavelength above effective ground and
constructed of common wire, let:

sft � end-to-end length (in feet)

sin � end-to-end length (in inches)

sm � end-to-end length (in meters)

scm � end-to-end length (in centimeters)

fMHz � frequency (in megahertz)

fGHz � frequency (in gigahertz)

n � length of wire in wavelengths

Then the following formulas apply:

sft � 984 (n � 0.025)/fMHz

sft � 0.984 (n � 0.025)/fGHz

sin � 11.8 (n � 0.025)/fGHz

sm � 300 (n � 0.025)/fMHz

sm � 0.300 (n � 0.025)/fGHz

scm � 30.0 (n � 0.025)/fGHz
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Figure 4.30 Anderson bridge for determining
the value of an inductance (Lx) and resistance
(Rx) in series.

Bridge Circuits

A bridge circuit is used to determine unknown resistances, re-
actances, impedances, and/or frequencies. Variable components
are adjusted until a condition of balance (zero output) occurs,
at which time the unknown values can be calculated.

Anderson bridge

Let Lx and Rx represent an unknown inductance (in henrys) and
an unknown resistance (in ohms) in series. Assume they are
inserted in the Anderson bridge configuration of Fig. 4.30, and
the variable components are adjusted for balance. Let Cs rep-
resent a precision standard capacitance (in farads). The follow-
ing formulas apply:

L � C (R (1 � R /R ) � R )x s 3 2 4 2

R � R R /Rx 1 2 4

Hay bridge

Let Lx and Rx represent an unknown inductance (in henrys) and
an unknown resistance (in ohms) in series. Assume they are
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Figure 4.31 Hay bridge for determining the
value of an inductance (Lx) and resistance (Rx)
in series.

inserted in the Hay bridge configuration of Fig. 4.31, and the
variable components are adjusted for balance. Let Cs represent
a precision standard capacitance (in farads). Let f represent the
frequency (in hertz). The following formulas apply:

L � C R Rx s 1 2

2 2 2 2 2 2 2R � (4� f C R R R )/(1 � 4� f C R )x s 1 2 3 s 3

Maxwell bridge

Let Lx and Rx represent an unknown inductance (in henrys) and
an unknown resistance (in ohms) in series. Assume they are
inserted in the Maxwell bridge configuration of Fig. 4.32, and
the variable components are adjusted for balance. Let Cs rep-
resent a precision standard capacitance (in farads). The follow-
ing formulas apply:

L � C R Rx s 1 2

R � R R /Rx 1 2 3
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Figure 4.32 Maxwell bridge for determining
the value of an inductance (Lx) and resistance
(Rx) in series.

Owen bridge

Let Lx and Rx represent an unknown inductance (in henrys) and
an unknown resistance (in ohms) in series. Assume they are
inserted in the Owen bridge configuration of Fig. 4.33, and the
variable components are adjusted for balance. The following for-
mulas apply:

L � C R Rx 2 1 2

R � R C /Cx 1 2 1

Schering bridge

Let Cx and Rx represent an unknown capacitance (in farads) and
an unknown resistance (in ohms) in series. Assume they are
inserted in the Schering bridge configuration of Fig. 4.34, and
the variable components are adjusted for balance. Let Cs rep-
resent a precision standard capacitance (in farads). The follow-
ing formulas apply:

C � C R /Rx s 2 1

R � R C /Cx 1 1 s
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Figure 4.33 Owen bridge for determining the
value of an inductance (Lx) and resistance (Rx)
in series.

Figure 4.34 Schering bridge for determining
the value of a capacitance (Cx) and resistance
(Rx) in series.
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Figure 4.35 Wheatstone bridge for determining
the value of a resistance (Rx).

Wheatstone bridge

Let Rx represent an unknown resistance (in ohms). Assume it
is inserted in the Wheatstone bridge configuration of Fig. 4.35,
and potentiometer R2 is adjusted for balance. The following for-
mula applies:

R � R R /Rx 1 2 3

Wien bridge

Let the resistances (in ohms) and capacitances (in farads) of the
Wien bridge circuit of Fig. 4.36 be related as follows:

R � 2R2 1

C � C1 2

R � R3 4

Then the input frequency, f (in hertz), that results in zero output
(balance) is given by:

f � 1/(2�R C )3 1
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Figure 4.36 Wien bridge for measurement of
frequency.

Figure 4.37 Inductance-ca-
pacitance (LC) bridged T
null network.

Null Networks

A null network produces zero output at a specific frequency that
is determined by the values of the inductances, capacitances,
and resistances in the circuit.

LC bridged T

Suppose an inductance L (in henrys), capacitances C1 and C2

(in farads), and a resistance R (in ohms) are connected in the
configuration shown in Fig. 4.37. Further suppose that C1 � C2,
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Figure 4.38 Resistance-ca-
pacitance (RC) bridged T
null network.

Figure 4.39 Resistance-ca-
pacitance (RC) parallel T
null network.

so the network is symmetrical. Then the null frequency, f (in
hertz), is given by either of the following:

1 /2f � 1/(�(2LC ) )1

1 /2f � 1/(�(2LC ) )2

RC bridged T

Suppose capacitances C1 and C2 (in farads) and resistances R1

and R2 (in ohms) are connected as shown in Fig. 4.38. Further
suppose C1 � C2, so the network is symmetrical. Then the null
frequency, f (in hertz), is given by either of the following:

1 /2f � 1/(2�C (R R ) )1 1 2

1 /2f � 1/(2�C (R R ) )2 1 2
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RC parallel T

Suppose capacitances C1, C2, and C3 (in farads) and resistances
R1, R2, and R3 (in ohms) are connected as shown in Fig. 4.39.
Further suppose that the following hold:

C � 2C � 2C3 1 2

R � R � 2R1 2 3

Then the null frequency, f (in hertz), is given by:

f � 1/(2�R C )1 1
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This chapter contains information and formulas relevant to
classical physics, relativistic physics, general chemistry, and re-
lated disciplines.

Units

The Standard International (SI) System of Units, formerly
called the Meter /Kilogram /Second (MKS) System, consists of
seven fundamental quantities in nature. These are the first
seven units defined below. Most other units are derived from
these.

Displacement

One meter (1 m) is equivalent to 1.65076373 � 106 wavelengths
in a vacuum of the radiation corresponding to the transition
between the two levels of the krypton-86 atom. It was originally
defined as 10�7 of the distance from the North Geographic Pole
to the equator as measured over the surface of the earth at the
Greenwich Meridian. Displacement is represented in equations
by the italicized lowercase letters d or s.

Mass

One kilogram (1 kg) is the mass of 1000 cubic centimeters (1.000
� 103 cm3), or one liter, of pure liquid water at the temperature
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of its greatest density (approximately 281 degrees Kelvin). Mass
is represented by the italicized lowercase letter m.

Time

One second (1 s) is 1/86,400 � 1.1574 � 10�5 part of a solar
day. It is also defined as the time required for a beam of visible
light to propagate over a distance of 2.99792 � 108 m in a vac-
uum. Time is represented in equations by the italicized lower-
case letter t.

Temperature

One degree Kelvin (1�K) is 3.66086 � 10�3 part of the difference
between absolute zero (the absence of all heat) and the freezing
point of pure water at standard atmospheric temperature and
pressure. Temperature is represented in equations by the ital-
icized uppercase letter T, and occasionally by the italicized low-
ercase letter t.

Electric current

One ampere (1 A) represents the movement of 6.24 � 1018

charge carriers (usually electrons) past a specific fixed point in
an electrical conductor over a time span of 1 s. Current is rep-
resented in equations by the uppercase letter I, and occasionally
by the italicized lowercase letter i.

Luminous intensity

One candela (1 cd) represents the radiation from a surface area
of 1.667 � 10�6 m2 of a blackbody at the solidification temper-
ature of pure platinum. Luminous intensity is represented in
equations by the italicized uppercase letters B, F, I, or L.

Material quantity

One mole (1 mol) is the number of atoms in precisely 0.012 kg
of carbon-12. This is approximately 6.022169 � 1023, also known
as Avogadro’s number. Material quantity is represented in
equations by the italicized uppercase letter N.
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Area

The standard unit of area is the square meter (sq m) or meter
squared (m2). Area is represented in equations by the italicized
uppercase letter A.

Volume

The standard unit of volume is the cubic meter (cu m) or meter
cubed (m3). Volume is represented in equations by the italicized
uppercase letter V.

Plane angular measure

The standard unit of angular measure is the radian (rad). It is
the angle subtended by an arc on a circle, whose length, as mea-
sured on the circle, is equal to the radius of the circle. Angles
are represented in equations by italicized lowercase Greek let-
ters, usually 	 (phi) or � (theta).

Solid angular measure

The standard unit of solid angular measure is the steradian (sr).
A solid angle of 1 sr is represented by a cone with its apex at
the center of a sphere, intersecting the surface of the sphere in
a circle such that, within the circle, the enclosed area on the
sphere is equal to the square of the radius of the sphere. Solid
angles are represented in equations by italicized lowercase
Greek letters, usually 	 (phi) or � (theta).

Velocity

The standard unit of linear speed is the meter per second
(m/s). The unit of velocity requires two specifications: speed and
direction. Direction is indicated in radians clockwise from geo-
graphic north on the earth’s surface, and counterclockwise from
the positive x axis in the coordinate xy-plane. In three dimen-
sions, direction can be specified in rectangular, spherical, or cy-
lindrical coordinates. Speed and velocity are represented in
equations by the italicized lowercase letter v, and sometimes by
the italicized lowercase letters u or w.
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Angular velocity

The standard unit of angular velocity is the radian per second
(rad/s). Angular velocity is represented in equations by the ital-
icized lowercase Greek letter � (omega).

Acceleration

The standard unit of acceleration is the meter per second per
second (m/s/s) or meter per second squared (m/s2). Linear ac-
celeration is represented in equations by the italicized lower-
case letter a.

Angular acceleration

The standard unit of angular acceleration is the radian per sec-
ond per second (rad/s/s) or radian per second squared (rad/s2).
Angular acceleration is represented in equations by the itali-
cized lowercase Greek letter 
 (alpha).

Force

The standard unit of force is the newton (N). It is the impetus
required to cause the linear acceleration of a 1-kg mass at a
rate of 1 m/s2. Force is represented in equations by the italicized
uppercase letter F.

Unit electric charge

The unit electric charge is the charge contained in a single elec-
tron. This charge is also contained in a hole (electron absence
within an atom), a proton, a positron, and an anti-proton.
Charge quantity in terms of unit electric charges is represented
in equations by the italicized lowercase letter e.

Electric charge quantity

The standard unit of charge quantity is the coulomb (C), which
represents the total charge contained in 6.24 � 1018 electrons.
Charge quantity is represented in equations by the italicized
uppercase letter Q or the italicized lowercase letter q.
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Energy

The standard SI unit of energy is the joule (J). Mathematically,
it is expressed in terms of unit mass multiplied by unit distance
squared per unit time squared:

2 21 J � 1 kg � m /s

Energy is represented in equations by the italicized uppercase
letter E. Occasionally it is represented by the italicized upper-
case H, T, or V.

Electromotive force

The standard unit of electromotive force (EMF), also called elec-
tric potential or potential difference, is the volt (V). It is equiv-
alent to 1 J/C. Electromotive force is represented in equations
by the italicized uppercase letters E or V.

Resistance

The standard unit of resistance is the ohm (�). It is the resis-
tance that results in 1 A of electric current with an applied EMF
of 1 V. Resistance is represented in equations by the italicized
uppercase letter R, and occasionally by the italicized lowercase
letter r.

Resistivity

The standard unit of resistivity is the ohm-meter (� � m). If a
length of material measuring 1 m carries 1 A of current when
a potential difference of 1 V is applied, then it has a resistivity
of 1 � � m. Resistivity is represented in equations by the itali-
cized lowercase Greek letter � (rho).

Conductance

The standard unit of conductance is the siemens (S), formerly
called the mho. Mathematically, conductance is the reciprocal
of resistance. Conductance is represented in equations by the
italicized uppercase letter G. If R is the resistance of a compo-
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nent in ohms, and G is the conductance of the component in
siemens, then

G � 1/R

R � 1/G

Conductivity

The standard unit of conductivity is the siemens per meter
(S/m). If a length of material measuring 1 m carries 1 A of
current when a potential difference of 1 V is applied, then it
has a conductivity of 1 S/m. Conductivity is represented in
equations by the italicized lowercase Greek letter � (sigma).

Power

The standard unit of power is the watt (W), equivalent to 1
J/s. Power is represented in equations by the italicized upper-
case letters P or W. In electrical and electronic circuits contain-
ing no reactance, if P is the power in watts, V is the voltage in
volts, I is the current in amperes, and R is the resistance in
ohms, then the following holds:

2 2P � VI � I R � V /R

Period

The standard unit of alternating-current (AC) cycle period is the
second (s). This is a large unit in practice; typical signals have
periods on the order of thousandths, millionths, billionths, or
trillionths of a second. Period is represented in equations by the
italicized uppercase letter T.

Frequency

The standard unit of frequency is the hertz (Hz), formerly called
the cycle per second (cps). This is a small unit in practice; typical
signals have frequencies on the order of thousands, millions,
billions, or trillions of hertz. Frequency, which is the mathe-
matical reciprocal of period, is represented in equations by the
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italicized lowercase letter f. If T is the period of a wave distur-
bance in seconds, then the frequency f in hertz is given by:

f � 1/T

Capacitance

The standard unit of capacitance is the farad (F), which is equal
to 1 C/V. This is a large unit in practice. In electronic circuits,
most values of capacitance are on the order of millionths, bil-
lionths, or trillionths of a farad. Capacitance is represented in
equations by the italicized uppercase letter C.

Inductance

The standard unit of inductance is the henry (H), which is equal
to 1 V � s/A. This is a large unit in practice. In electronic circuits,
most values of inductance are on the order of thousandths or
millionths of a henry. Inductance is represented in equations by
the italicized uppercase letter L.

Reactance

The standard unit of reactance is the ohm (�). Reactance is
represented in equations by the italicized uppercase letter X. It
can be positive (inductive) and symbolized by XL, or negative
(capacitive) and symbolized by XC. Reactance is dependent on
frequency. Let f represent frequency in hertz, L represent in-
ductance in henrys, and C represent capacitance in farads. Then
the following formulas hold:

X � 2�fLL

X � �1/(2�fC)C

Complex impedance

In the determination of complex impedance, there are two com-
ponents: resistance (R) and reactance (X). The reactive compo-
nent is multiplied by the unit imaginary number known as the
j operator. Mathematically, j is equal to the positive square root
of �1, so the following formulas hold:
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1 /2j � (�1)

2j � j � j � �1

3 2j � j � j � �1 � j � �j

4 3j � j � j � �j � j � 1

For powers of j beyond 4, the cycle repeats, so in general, for
integers n � 4:

n (n�4)j � j

Let Z represent complex impedance, R represent resistance, and
X represent reactance (either inductive or capacitive). Then:

Z � R � jX

Absolute-value impedance

Complex impedance can be represented as a vector in a rectan-
gular coordinate plane, where resistance is plotted on the ab-
scissa (horizontal axis) and reactance is plotted on the ordinate
(vertical axis). The length of this vector is called the absolute-
value impedance, symbolized by the italicized uppercase letter
Z and expressed in ohms. This impedance is usually discussed
only when jX � 0, that is, when the impedance is a pure resis-
tance (Z � R). In the broad sense, if Z is the absolute-value
impedance, then

2 2 1 /2Z � (R � X )

There are, in theory, infinitely many combinations of R and X
that can result in a given absolute-value impedance Z.

Electric field strength

The standard unit of electric field strength is the volt per meter
(V/m). An electric field of 1 V/m is represented by a potential
difference of 1 V existing between two points displaced by 1 m.
Electric field strength is represented in equations by the itali-
cized uppercase letter E.
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Electromagnetic field strength

The standard unit of electromagnetic (EM) field strength is the
watt per square meter (W/m2). An EM field of 1 W/m2 is rep-
resented by 1 W of power impinging perpendicularly on a flat
surface whose area is 1 m2.

Electric susceptibility

The standard unit of electric susceptibility is the coulomb per
volt-meter, abbreviated C/(V � m). This quantity is represented
in equations by the italicized lowercase Greek letter � (eta).

Permittivity

The standard unit of permittivity is the farad per meter (F/m).
Permittivity is represented in equations by the italicized low-
ercase Greek letter � (epsilon).

Charge-carrier mobility

The standard unit of charge-carrier mobility, also called carrier
mobility or simply mobility, is themeter squared per volt-second,
abbreviated m2/(V � s). Mobility is represented in equations by
the italicized lowercase Greek letter � (mu).

Magnetic flux

The standard unit of magnetic flux is the weber (Wb). This is a
large unit in practice, equivalent to 1 A � H, represented by a
constant, direct current of 1 A flowing through a coil having an
inductance of 1 H. Magnetic flux is represented in equations by
the italicized uppercase Greek letter � (phi).

Magnetic flux density

The standard unit of magnetic flux density is the tesla (T),
equivalent to 1 Wb/m2. Sometimes, magnetic flux density is spo-
ken of in terms of the number of lines of flux per unit area; this
is an imprecise terminology.
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Magnetic field intensity

The standard unit of magnetic field intensity is the oersted (Oe),
equivalent to 79.6 A/m. Magnetic field intensity is represented
in equations by the italicized uppercase letter H.

Magnetic pole strength

The standard unit of magnetic pole strength is the ampere-
meter (A � m). Pole strength is represented in equations by the
italicized lowercase letter p or uppercase P.

Magnetomotive force

The standard unit of magnetomotive force is the ampere-turn,
produced by a constant, direct current of 1 A flowing in a single-
turn, air-core coil. Magnetomotive force is independent of the
radius of the coil.

Classical Mechanics

The following paragraphs summarize basic Newtonian equa-
tions relating to the motions of masses in Euclidean space.

Displacement, velocity, and time

Let vav represent the average velocity of an object (in meters per
second); let t represent the elapsed time (in seconds). Then the
displacement s (in meters) is given by:

s � v tav

If the displacement s (in meters) and the time t (in seconds) are
known, then the average velocity vav (in meters per second) is:

v � s /tav

If the displacement s (in meters) and the average velocity vav

(in meters per second) are known, then the elapsed time t (in
seconds) is given by:

t � s /vav
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Instantaneous velocity

Let vins represent the instantaneous velocity of an object (in me-
ters per second). If sins represents the instantaneous displace-
ment (in meters) and t represents the time (in seconds), then
the instantaneous velocity is given by the derivative of the in-
stantaneous displacement with respect to time:

v � ds /dtins ins

Average acceleration

Let v1 represent the velocity of an object (in meters per second)
at the beginning of a specified period of time of duration t (in
seconds); let v2 represent the velocity of the object (in meters
per second) at the end of that period. Then the average accel-
eration, aav (in meters per second squared) during the period is
given by:

a � (v � v )/tav 2 1

Displacement, average acceleration,
and time

Let aav represent the average acceleration of an object (in me-
ters per second squared); let t represent the elapsed time (in
seconds). Then the displacement s (in meters) is given by:

2s � (a t )/2av

If the displacement s (in meters) and the time t (in seconds) are
known, then the average acceleration aav (in meters per second
squared) is given by:

2a � 2s /tav

If the displacement s (in meters) and the average acceleration
aav (in meters per second squared) are known, then the elapsed
time t (in seconds) is given by:

1 /2t � (2s /a )av
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Instantaneous acceleration

Let ains represent the instantaneous acceleration of an object (in
meters per second squared). If vins represents the instantaneous
velocity (in meters per second) and t represents the time (in
seconds), then the instantaneous acceleration is given by the
derivative of the instantaneous velocity with respect to time:

a � dv /dtins ins

Newton’s First Law

This law consists of two parts:

� A mass at rest will remain at rest unless acted on by an out-
side force

� A mass in motion will continue to move with constant velocity
unless acted on by an outside force.

Newton’s Second Law

Consider an object of mass m (in kilograms). Suppose this mass
is acted upon by a constant outside force F (in newtons). The
object will experience a constant acceleration a (in meters per
second squared) equal to the ratio of the force to the mass:

a � F /m

The foregoing can be more generally stated by considering the
force as a vector F (in newtons in a specific direction) and the
acceleration as a vector a (representing a change in the velocity
vector v):

a � F /m

The following relation derives from the above:

F � ma

In addition, the following relation holds when a � 0, although
this is primarily of theoretical interest:

m � F /a
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Newton’s Third Law

This law in its most familiar form states that for every action,
there is an equal and opposite reaction. If F represents a force
vector acting on a given body, then the resultant reaction force
vector G is related to F as follows:

G � �F

Law of Universal Gravitation

Let m1 and m2 represent the masses (in kilograms) of two ob-
jects M1 and M2. Let d be the distance (in meters) separating
the mass centers. Then a gravitational force vector F (whose
magnitude is expressed in newtons) acts on M1 in the direction
of M2, and an equal but opposite gravitational force vector �F
acts on M2 in the direction of M1, such that:

2�F� � Gm m /d1 2

where G is a number known as the gravitational constant, and

�11G � 6.673 � 10

This constant is expressed in newton-meters squared per kilo-
gram squared.

Coefficient of static friction

Suppose two objects, M1 and M2, are in physical contact along
a common flat surface S. Suppose there is friction caused by the
contact. Let Fn represent the normal (perpendicular) force at S
(in newtons) with whichM1 pushes againstM2. Let Fm represent
the maximum force (in newtons) that can be applied to M1 rel-
ative to M2 parallel to S, such that the two objects remain sta-
tionary with respect to each other. The coefficient of static fric-
tion, denoted �s, is defined as follows:

� � F /Fs m n

Coefficient of kinetic friction

Suppose two objects, M1 and M2, are in physical contact along
a common flat surface S, and that the two objects are in relative
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Figure 5.1 Determination of torque, also known as
moment, about a rotational axis.

motion at a constant linear velocity. Suppose there is friction
caused by the contact. Let Fn represent the normal (perpendic-
ular) force at S (in newtons) with which M1 pushes against M2.
Let Ff represent the frictional force (in newtons) between M1

and M2 parallel to S. The coefficient of kinetic friction, denoted
�k, is defined as follows:

� � F /Fk f n

Torque

Let r represent the radial distance (in meters) from a pivot point
P to some point Q at which a force vector F (whose magnitude
is expressed in newtons) is applied, as shown in Fig. 5.1. Let �
represent the angle (in radians) between F and line segment
PQ. The torque, also called the moment (denoted � and ex-
pressed in newton-meters) is defined as follows:

� � r�F� sin �

Work

Let F be a force vector (whose magnitude is expressed in new-
tons) that acts on an object M, causing M to be displaced by a
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Figure 5.2 Determination of work in straight-line motion.

vector s (whose magnitude is expressed in meters). Let � be the
angle between vectors F and s, as shown in Fig. 5.2. Then the
work done by F acting on M is denoted W, is expressed in new-
ton-meters or joules, and is given by:

W � �F��s� cos �

Potential energy

Let m be the mass (in kilograms) of an object M. Let h be the
altitude (in meters) of M above a reference level, through which
M will freely fall if released. Let g be the gravitational accel-
eration (in meters per second squared) in which M is placed.
Then the potential energy of M is denoted Ep, is expressed in
newton-meters or joules, and is given by:

E � gmhp

In the earth’s gravitational field at the surface, g � 9.8067.

Kinetic energy

Let m be the mass (in kilograms) of an object M moving in a
straight line at constant speed. Let v be the constant linear
velocity (in meters per second) at which M moves. Then the
kinetic energy of M is denoted Ek, is expressed in newton-
meters or joules, and is given by:

2E � mv /2k
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Principle of work

Let Win be the total work input to a machine; let Wout be the
work output from that machine in useful or intended form; let
Wf be the work required to overcome friction or loss in the ma-
chine. Further, let all these quantities be expressed in the same
units (usually joules). Then the following equation holds:

W � W � Wout in f

Displacement ratio

Let sin be the displacement over which an input force moves an
object M. Let s be the actual displacement of M, in the same
units as sin. The displacement ratio, Rs, is given by:

R � s /ss in

Force ratio

Let Fload be the force exerted on an object M by a machine. Let
F be the force actually used to operate the machine, in the same
units as Fload. The force ratio, RF, is given by:

R � F /FF load

Efficiency of machine

Let Wout represent the useful work output from a machine; let
Win represent the useful work input (in the same units as Wout).
The efficiency of the machine, Eff, is:

Eff � W /Wout in

As a percentage, the efficiency Eff% is:

Eff � 100 W /W% out in

The above formulas also apply for useful power output versus
power input, because power is defined as work per unit time.
Let Pout represent the useful power output from a machine; let
Pin represent the useful power input (in the same units as Pout).
The efficiency of the machine, Eff, is:
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Eff � P /Pout in

As a percentage, the efficiency Eff% is:

Eff � 100 P /P% out in

Linear impulse

Let F be a force (whose magnitude is expressed in newtons)
applied to an object M for a length of time t (in seconds). The
linear impulse (whose magnitude is expressed in kilogram-
meters per second, or in newton-seconds) is denoted I and is
given by:

I � Ft

Linear momentum

Let m be the mass (in kilograms) of an object M. Let v be the
velocity (whose magnitude is expressed in meters per second).
Then the linear momentum (whose magnitude is expressed in
kilogram-meters per second) is denoted p and is given by:

p � mv

Conservation of linear momentum

Let S � {M1, M2, M3, . . . Mn} be a system of objects; let their
masses (in kilograms) be denoted m1, m2, m3, . . . mn. Let the
velocity of each object (the magnitudes of which are expressed
in meters per second) be denoted v1, v2, v3, . . . vn respectively.
Let the net external force acting on S be denoted F (whose mag-
nitude is expressed in newtons). Let the momentum of each ob-
ject (the magnitudes of which are expressed in kilogram-meters
per second) be denoted p1, p2, p3, . . . pn respectively. Let the
vector sum of the momenta of the objects in S be given by:

p � p � p � p � . . . p1 2 3 n

� m v � m v � m v � . . . � m v1 1 2 2 3 3 n n

Suppose the magnitude and direction of F both remain con-
stant. Then the magnitude and direction of p will both remain
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constant. This holds true even if the individual momenta, pi,
the individual masses, mi, and/or the individual velocities, vi,
do not all remain constant.

Collisions and momentum

Let M1 and M2 be two separate objects having masses (in iden-
tical units) m1 and m2, respectively. Let v1 and v2 be their re-
spective velocities (whose magnitudes are expressed in identical
units) before the objects collide. Let w1 and w2 be their re-
spective velocities after they collide (whose magnitudes are ex-
pressed in the same units as v1 and v2). Then the following
holds true:

m v � m v � m w � m w1 1 2 2 1 1 2 2

The total system momentum before the collision is equal to the
total system momentum after the collision.

Elastic collisions and kinetic energy

Let M1 and M2 be two separate objects having masses (in iden-
tical units) m1 and m2, respectively. Let v1 and v2 be their re-
spective linear speeds before the objects undergo an elastic col-
lision. Let w1 and w2 be their respective linear speeds after they
undergo the elastic collision (expressed in the same units as v1

and v2). Then the following holds true:

2 2 2 2m v /2 � m v /2 � m w /2 � m w /21 1 2 2 1 1 2 2

The total system kinetic energy before the elastic collision is
equal to the total system energy after the elastic collision.

Average angular speed

Let M be an object that is rotating about a fixed axis L. Let �1

be the angular displacement of M (in radians, relative to some
reference axis K) at an instant of time t1, and let �2 be the
angular displacement of M (in radians relative to K) at some
later instant of time t2, as shown in Fig. 5.3. The average an-
gular speed (in radians per second) is denoted �av, and is given
by:

� � (� � � )/(t � t )av 2 1 2 1
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Figure 5.3 Determination of average angular
speed.

Angular frequency

Let M be an object that is rotating about a fixed axis L at a
constant rate. Let f be the number of complete rotations that
occur per second. Then the angular frequency (in radians per
second) is denoted �, and is given by:

� � 2�f

Angular acceleration

Let M be an object that is rotating about a fixed axis L at a rate
that changes uniformly over a time interval starting at time t1
and ending at time t2 (t2 � t1 seconds later). Let the angular
speed (in radians per second) at time t1 be �1, and let the an-
gular speed at time t2 be �2. Then the angular acceleration (in
radians per second squared) during the time interval [t1,t2] is
denoted 
, and is given by:


 � (� � � )/(t � t )2 1 2 1

Moment of inertia

Let an object M be comprised of smaller mass components m1,
m2, m3, . . . , mn (in kilograms). Suppose these components are
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at distances r1, r2, r3, . . . , rn respectively (in meters) from an
axis L about which M rotates. The moment of inertia (denoted
I and expressed in kilogram-meters squared) of M is given by:

2 2 2 2I � m r � m r � m r � . . . � m r1 1 2 2 3 3 n n

Torque vs angular acceleration

Suppose a torque � (in newton-meters) acts on an object M that
has a moment of inertia I (in kilogram-meters squared). Let 

be the angular acceleration (in radians per second squared) that
results. Then the following relations hold:

� � I



 � � /I

Angular momentum

Suppose an object M of mass m (in kilograms) rotates about an
axis L at an angular speed � (in radians per second). The an-
gular momentum (in kilogram-meters squared per second) is a
vector directed along L with a magnitude equal to I�, the prod-
uct of the angular speed and the moment of inertia.

Angular impulse

Suppose a constant torque � (in newton-meters) acts on an ob-
ject M for a period of time t � t2 � t1 (expressed in seconds).
Let I be the moment of inertia ofM. Let �1 be the angular speed
(in radians per second) of M at time t1; let �2 be the angular
speed of M at some later time t2. Then the angular impulse is
a vector I� (whose magnitude is expressed in kilogram-second-
meters squared):

�I � � � (t � t ) � I� � I�� 2 1 2 1

Conservation of angular momentum

If the net torque on an object M is zero, the angular momentum
vector of M will remain constant in magnitude and constant in
direction.
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Kinetic energy of rotation

Let M be an object rotating about an axis L with an angular
speed � (in radians per second). Then the rotational kinetic en-
ergy (denoted Ekr and expressed in joules) of M is given by:

2E � I� /2kr

Work on rotating object

Let M be an object rotating about an axis L as a result of con-
stant torque � (in newton-meters). Suppose M rotates through
an angle � (in radians). Then the rotational work (denoted Wr

and expressed in joules) performed on M is given by:

W � ��r

Power on rotating object

Let M be an object rotating about an axis L as a result of con-
stant torque � (in newton-meters). Suppose M rotates at an an-
gular speed � (in radians per second). Then the rotational power
(denoted Pr and expressed in watts) performed on M is given
by:

P � ��r

Centripetal acceleration

Let M be an object revolving around a central point Q at a con-
stant rate. Let v be the tangential speed of M (in meters per
second); let � be the angular speed (in radians per second); let
r be the radius of revolution (in meters), as shown in Fig. 5.4.
Then the magnitude of the centripetal acceleration, denoted ac

(in meters per second squared), is given by:

2 2a � v /r � � rc

The centripetal-acceleration vector, ac, is directed from M to-
ward Q.

Centripetal force

Let M be an object revolving around a central point Q at a con-
stant rate. Let v be the tangential speed of M (in meters per
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Figure 5.4 Determination of centripetal accel-
eration.

second); let � be the angular speed (in radians per second); let
r be the radius of revolution (in meters), and let m be the mass
of M (in kilograms), as shown in Fig. 5.4. Then the magnitude
of the centripetal force, denoted Fc (in kilogram-meters per sec-
ond squared), is given by:

2 2F � mv /r � m� rc

The centripetal-force vector, Fc, is directed from M toward Q.

Hooke’s Law

Let M be an object in an elastic system. Suppose M is moved
from its equilibrium position so the elastic medium is stretched
over a displacement s (in meters), defined such that:

s � 0 represents expansion

s � 0 represents compression

Let the stiffness of the elastic medium be expressed as a con-
stant k (in newtons per meter). Then the magnitude of the ex-
ternal force (denoted Fx and expressed in newtons) is given by:
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F � ksx

The magnitude of the restoring force (denoted Fr and expressed
in newtons) is given by:

F � �ksr

The direction of the external-force vector, Fx, is the same as
the direction of the displacement of M; the direction of the
restoring-force vector, Fr, is opposite to the direction of the dis-
placement of M.

Elastic potential energy

Let M be an object in an elastic system. Suppose M is moved
from its equilibrium position so the elastic medium is stretched
over a displacement s (in meters), defined such that:

s � 0 represents expansion

s � 0 represents compression

Let the stiffness of the elastic medium be expressed as a con-
stant k (in newtons per meter). Then the elastic potential energy
(denoted Epx and expressed in joules) stored in the stretched or
compressed medium is given by:

2E � ks /2px

Suppose M is released and allowed to oscillate as a result of the
elasticity of the medium. This oscillation is known as simple
harmonic motion (SHM). Let sinst be the instantaneous displace-
ment of M from the midpoint (the point of zero expansion or
compression) at a given instant in time. Then:

2E � ks /2px inst

At the midpoint of the oscillation, when sinst is zero and the
medium is not stretched,

E � 0px



372 Chapter Five

Elastic kinetic energy

Let M be an object in an elastic system. Suppose M is moved
from its equilibrium position so the elastic medium is stretched
over a displacement s (in meters), defined such that:

s � 0 represents expansion

s � 0 represents compression

Let the stiffness of the elastic medium be expressed as a con-
stant k (in newtons per meter). Suppose M is released and al-
lowed to oscillate in SHM as a result of the elasticity of the
medium. Let vinst be the instantaneous speed ofM at some point
in the oscillation (in meters per second). Let v be the maximum
speed attained by M during the oscillation. The elastic kinetic
energy (denoted Ekx and expressed in joules) manifested by M
at any given instant of time is given by:

2E � kv /2kx inst

At the midpoint of the oscillation, when vinst � v and the me-
dium is not stretched,

2 2E � kv /2 � ks /2kx

At either endpoint of the oscillation, when vinst is zero and the
medium is fully expanded or compressed:

E � 0kx

Elastic kinetic vs potential energy in
SHM

Refer to the preceding two paragraphs. At all times in an oscil-
lating system that exhibits SHM such as that described, the
combined total of the elastic kinetic energy manifested by M
and the elastic potential energy stored in M is constant:

E � Epx kx

2 2� ks /2 � kv /2inst inst
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Period of oscillation in SHM

LetM be an object of massm (in kilograms) in an elastic system.
Suppose M is moved from its equilibrium position as described
in the preceding paragraphs, causingM to oscillate in SHM. Let
the stiffness of the elastic medium be expressed as a constant
k (in newtons per meter). Then the period of oscillation (denoted
T and expressed in seconds) is given by:

1 /2T � 2�(m /k)

Instantaneous speed in SHM

Let M be an object in an elastic system. Suppose M is moved
from its equilibrium position so the elastic medium is stretched
over a displacement s (in meters), defined such that:

s � 0 represents expansion

s � 0 represents compression

Let the stiffness of the elastic medium be expressed as a con-
stant k (in newtons per meter). Suppose M is released and al-
lowed to oscillate in SHM as a result of the elasticity of the
medium. Let sinst be the instantaneous displacement of M from
the midpoint (the point of zero expansion or compression) at a
given instant in time. Let vinst be the instantaneous speed of M
at some point in the oscillation (in meters per second). Then:

2 2 1 /2v � (ks � ks )/m)inst inst

Instantaneous acceleration in SHM

Let M be an object in an elastic system. Suppose M is moved
from its equilibrium position so the elastic medium is stretched
over displacement s (in meters) such that:

s � 0 represents expansion

s � 0 represents compression

Let the stiffness of the elastic medium be expressed as a con-
stant k (in newtons per meter). Suppose M is released and al-
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lowed to oscillate in SHM as a result of the elasticity of the
medium. Let sinst be the instantaneous displacement of M from
the midpoint (the point of zero expansion or compression) at a
given instant in time. Let ainst be the instantaneous acceleration
of M (in meters per second squared). Then

a � �ks /minst inst

2 2� �4� s /Tinst

Period of oscillation for pendulum

Let M be a mass that is hung from a rigid wire and allowed to
swing over a small arc as a simple pendulum. Let s be the
length of the wire (in meters); let g represent the gravitational
acceleration (approximately 9.8067 meters per second squared
at the earth’s surface). Then the approximate period of oscilla-
tion for M (denoted T and expressed in seconds) is given by:

1 /2T � 2�(s /g)

Mass density

Let M be an object whose mass is m (in kilograms). Let V be
the volume of M (in cubic meters). Then the mass density of M
(denoted � and expressed in kilograms per meter cubed) is given
by:

� � m /V

Specific gravity for solid

Let M be an object whose mass is m (in kilograms). Let V be
the volume of M (in liters). Then the specific gravity of M (de-
noted sp gr) is given by:

sp gr � m /V

Specific gravity for liquid

Let L be a sample of liquid whose mass is m (in kilograms). Let
V be the volume of L (in liters). Then the specific gravity of L
(denoted sp gr) is given by:

sp gr � m /V
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Specific gravity for gas

Let G be a sample of gas whose mass is m (in grams). Let V be
the volume of G (in liters). Then the specific gravity of G (de-
noted sp gr) is given by:

sp gr � 0.7735m /V

Pressure

Let M be an object whose surface area is A (in square meters).
Let F be a compressive force (in newtons) directed perpendicu-
lar to the surface of M at all points. Then the pressure (denoted
P and expressed in pascals) on M is given by:

P � F /A

Stress

Let M be a solid object. Let A be the area (in square meters) of
a cross section S of M. Let F be a force (in newtons) applied
over S. Then the stress (denoted � and expressed in pascals) on
M is given by:

� � F /A

Strain

Let X be a specified linear dimensional measure (in meters) of
an object M with no force applied. Let XF be the measure of the
same linear dimension (in meters) with a force F (in newtons)
applied. Then the strain (denoted �) on M is given by:

� � �X � X � /XF

Modulus of elasticity

Let � be the stress (in pascals) on an objectM; let � be the strain
on M. Then the modulus of elasticity (expressed in pascals and
denoted Y) is given by:

Y � � /�

This quantity is also known as Young’s modulus. In general, low
values of Y represent flexible or highly elastic substances; high
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values of Y represent comparatively inflexible or rigid sub-
stances.

Fluidics and Thermodynamics

This section deals with the behavior of fluids, gases, heat, ther-
mal expansion and contraction, and entropy.

Hydrostatic pressure

Let C be a column of fluid whose mass density (in kilograms
per meter cubed, or grams per liter) is �, and whose height (in
meters) is h. Let g represent the gravitational acceleration (ap-
proximately 9.8067 meters per second squared at the earth’s
surface). Then the hydrostatic pressure (denoted P and ex-
pressed in pascals) at the bottom of C is given by:

P � �hg

Archimedes’ Principle

Let M be an object of density �M completely immersed in a fluid
having density � (in kilograms per meter cubed). Let V be the
volume of M (in cubic meters). Let g be the gravitational accel-
eration (g � 9.8067 meters per second squared at the earth’s
surface). The buoyant force vector, FB, is directed upward with
magnitude (in newtons) given by:

�F � � �Vg � � VgB M

When an object is partially immersed in fluid, the buoyant
force vector is directed upward, and has a magnitude equal to
the weight of the fluid displaced.

Pascal’s Principle

When the pressure changes on a parcel of confined fluid or gas,
then the pressure on every other parcel of the same confined
fluid or gas changes to the same extent.

Fluid flow rate

Suppose a fluid C passes along a pipe. Let s be the average
speed of C relative to the pipe (in meters per second); let A be
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the cross-sectional area of the pipe (in meters squared). The
fluid flow rate (denoted J and expressed in meters cubed per
second) is:

J � As

Continuity principle

Suppose a non-compressible fluid C passes along a pipe. Let s1

be the speed of C relative to the pipe (in meters per second) at
some point P1 along the length of the pipe; let A1 be the cross-
sectional area of the pipe (in meters squared) at P1. Let s2 be
the speed of C relative to the pipe (in meters per second) at
some point P2 along the length of the pipe; let A2 be the cross-
sectional area of the pipe (in meters squared) at P2. Then the
following equation holds:

A s � A s � J1 1 2 2

That is, the flow rate (denoted J and expressed in meters cubed
per second) of a non-compressible fluid moving through a pipe
is the same at all points along the pipe.

The so-called continuity principle can also be stated as fol-
lows:

A /A � s /s1 2 2 1

That is, the speed of a noncompressible fluid flowing through a
pipe at a given point is inversely proportional to the cross-
sectional area of the pipe at that point.

Shear stress

Let M be an object having the shape of a rectangular prism.
Suppose that a force F (in newtons) acts in one direction on one
face of M whose area (in square meters) is A. Suppose the same
force F acts in the opposite direction on the opposite face of M,
whose area is also A. Suppose the application of these forces
does not change the volume of M relative to its volume with no
forces applied. The shear stress (denoted �s and expressed in
pascals) is given by:

� � F /As
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Shear strain

Let M, F, and A be defined as in the preceding paragraph. Let
s be the shearing displacement (in meters); let d be the distance
(in meters) between the opposite faces to which the opposing
forces F are applied. The shear strain (denoted �s) is given by:

� � s /ds

Shear rate

Let M, F, and A be defined as in the preceding paragraphs. Let
s be the shearing displacement (in meters); let d be the distance
(in meters) between the opposite faces to which the opposing
forces F are applied. The shear rate is defined as the rate of
change of shear strain. Let t represent time (in seconds) and the
shear rate (per second) be denoted Rs. Then:

R � d� /dts s

Shear modulus

Let M, F, A, s, and d be defined as in the preceding two para-
graphs. The shear modulus (denoted Ss and expressed in pas-
cals) is the ratio of the shear stress to the shear strain, and is
given by:

S � � /� � (Fd)/(As)s s s

Fluid viscosity

Let �s be the shear stress of a fluid C (in pascals); let Rs be the
shear rate of C (per second). Then the fluid viscosity (denoted �
and expressed in pascal-seconds) of C is given by:

� � � /Rs s

Reynolds number for fluids

Let � be the viscosity (in pascal-seconds) of a fluid C flowing
through a pipe. Let � be the density of C (in kilograms per meter
cubed, or grams per liter). Let s be the speed (in meters per
second) at which C flows through the pipe whose radius is r (in
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meters). Then the Reynolds number, denoted NR, of C is defined
as:

N � 2�sr /�R

Poiseuille’s Law for fluids

Let � be the viscosity (in pascal-seconds) of a fluid C flowing
through a pipe. Let Pin be the pressure (in pascals) on C at the
input end of the pipe; let Pout be the pressure (in pascals) on C
at the output end of the pipe. Let m be the length of the pipe
(in meters); let r be the radius of the pipe (in meters). Then the
fluid flow rate (denoted J and expressed in meters cubed per
second) is given by:

4J � �r (P � P )/(8�m)in out

Bernoulli’s Law for fluids

Suppose a non-compressible, non-viscous fluid C flows at a
steady rate J (in meters cubed per second) along a path or
through a pipe. Consider two points X1 and X2, at heights h1

and h2 (in meters) respectively above a specified reference level.
Let s1 and s2 be the fluid speeds (in meters per second) at X1

and X2 respectively. Let � be the fluid density (in kilograms per
meter cubed, or grams per liter) at X1 and X2; this parameter
does not change because C is incompressible. Let P1 and P2 be
the fluid pressures (in pascals) at X1 and X2 respectively. Let g
be the gravitational acceleration. Then the following equation
holds:

2 2P � s � /2 � h g� � P � s � /2 � h g�1 1 1 2 2 2

In the earth’s gravitational field at the surface, g � 9.8067.

Torricelli’s Law for fluids

Suppose a volume of a non-compressible, non-viscous fluid C is
held by a stationary container open at the top. Suppose there
is a hole in the tank at a distance a (in meters) below the surface
of the liquid. Let s be the speed (in meters per second) at which
C flows out of the hole as a result of the effects of gravitational
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acceleration g (in meters per second squared). Then the follow-
ing equation holds:

1 /2s � (2ga)

In the earth’s gravitational field at the surface, g � 9.8067.

Linear thermal expansion

Let T1 be the initial temperature (in degrees Kelvin) of a solid
object M; let T2 be the final temperature (in degrees Kelvin).
Let s1 be the initial measure of a specific linear dimension of M
(in meters); let s2 be the final measure of the same linear di-
mension (in meters). Then the following approximation holds:

s � s � 
s (T � T )2 1 1 2 1

where 
 is a dimensionless constant known as the coefficient of
linear expansion for the substance comprising M.

Area thermal expansion

Let T1 be the initial temperature (in degrees Kelvin) of a solid
object M; let T2 be the final temperature (in degrees Kelvin).
Let A1 be the initial area of a specific cross section of M (in
meters squared); let A2 be the final area of the same cross sec-
tion (in meters squared). Then the following approximation
holds:

A � A � �A (T � T )2 1 1 2 1

where � is a dimensionless constant known as the coefficient of
area expansion for the substance comprising M.

Volume thermal expansion

Let T1 be the initial temperature (in degrees Kelvin) of a solid
object M; let T2 be the final temperature (in degrees Kelvin).
Let V1 be the initial volume of M (in meters cubed); let V2 be
the final volume of M (in meters cubed). Then the following
approximation holds:
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V � V � �V (T � T )2 1 1 2 1

where � is a dimensionless constant known as the coefficient of
volume expansion for the substance comprising M.

Isotropic substance

Let M be a solid object that expands to the same extent in all
linear dimensions when the temperature increases. Then the
solid substance comprising M is called isotropic. Let 
 be the
coefficient of linear expansion, let � be the coefficient of area
expansion, and let � be the coefficient of volume expansion for
an isotropic solid. Then the following approximations hold:

� � 2


� � 3


STP for a gas

For a substance in the gaseous state, standard temperature and
pressure (STP) are defined as follows, in degrees Kelvin and
pascals respectively:

T � 273.150

5P � 1.013 � 100

This corresponds to one atmosphere at the freezing point of pure
water.

Ideal Gas Law

Suppose a quantity N (in moles) of a gas C is confined to a
container having volume V (in meters cubed). Let P be the pres-
sure of the gas (in pascals); let T be the absolute temperature
(in degrees Kelvin). Suppose the following relation holds under
conditions of varying pressure, temperature, and volume:

P � R NT /V0

where R0 � 8.3145. If this property holds for C, then C is con-
sidered an ideal gas. The value R0 � 8.3145 is known as the
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ideal gas constant, and is expressed in joules per mole degree
Kelvin.

This law is sometimes expressed in another way. Suppose a
confined volume of a gas C undergoes compression or expansion.
Let P1 represent the initial pressure of C (in pascals); let T1

represent the initial temperature (in degrees Kelvin); let V1 rep-
resent the initial volume (in meters cubed). Let P2 represent the
final pressure (in pascals); let T2 represent the final tempera-
ture (in degrees Kelvin); let V2 represent the final volume (in
meters cubed). Then C is an ideal gas if and only if the following
equation holds:

P V /T � P V /T1 1 1 2 2 2

Dalton’s Law

Let C be a mixture of ideal, non-reactive gases C1, C2, C3, . . . ,
Cn, occupying a container of volume V (in meters cubed). Let P
be the pressure (in pascals) exerted by C; let P1, P2, P3, . . . , Pn
be the partial pressures (in pascals) exerted by C1, C2, C3, . . . ,
and Cn respectively. Then the following equation holds:

P � P � P � P � . . . � P1 2 3 n

Mass of atom

Let M be the atomic mass of a chemical element. Let m be the
mass (in kilograms) of an individual atom of that element. Then
the following equation holds:

m � M /N

where N is a constant known as Avogadro’s number, expressed
in particles per mole:

23N � 6.022169 � 10

Mass of molecule

Let M be the molecular mass of a chemical compound. Let m be
the mass (in kilograms) of an individual atom of that compound.
Then the following equation holds:

m � M /N
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Average translational kinetic energy of
gas particle

Let T be the absolute temperature (in degrees Kelvin) of a gas.
The average translational kinetic energy (denoted Ekt�av and ex-
pressed in joules) of an atom or molecule in that gas is given
by:

E � 3kT /2kt�av

where k is Boltzmann’s constant, expressed in joules per degree
Kelvin:

�23k � 1.3807 � 10

Root-mean-square (rms) speed of gas
particle

Let m be the mass (in kilograms) of an atom or molecule in a
gas. Let T be the absolute temperature (in degrees Kelvin). Let
k be Boltzmann’s constant, as defined in the preceding para-
graph. The root-mean-square speed (denoted vrms and expressed
in meters per second) of the particle is given by:

1 /2v � (3kT /m)rms

Length of mean free path (mfp) for gas
particle

Suppose an ideal gas is confined to a chamber of volume V (in
meters cubed). Let N be the number of gas particles in the en-
closure. Suppose each atom or molecule undergoes numerous,
repeated collisions with other atoms or molecules of the same
ideal gas. Further suppose that all the particles are perfect
spheres with identical radius r (in meters). The length of the
mean free path for each particle (denoted Lmfp and expressed in
meters) is given by:

2 1 /2 2L � V /((32� ) r N)mfp

Specific heat capacity

Suppose a sample X of a substance has mass m (in kilograms).
Let T1 be the temperature (in degrees Kelvin) of X before the
application of an amount q (in joules) of heat energy. Let T2 be



384 Chapter Five

the temperature (in degrees Kelvin) of X following the applica-
tion of the heat energy. The specific heat capacity (denoted c and
expressed in joules per kilogram degree Kelvin) of X is given
by:

c � q /(mT � mT )2 1

Heat gain

Suppose a sample X of a substance has mass m (in kilograms)
and a specific heat capacity c (in joules per kilogram degree
Kelvin). Let T1 be the initial temperature (in degrees Kelvin) of
X; let T2 be the final temperature (in degrees Kelvin) of X. Sup-
pose T2 � T1 (that is, X heats up), and the state of X (solid,
liquid, or gas) remains the same. Then the heat gain (denoted
q� and expressed in joules) of X is given by:

q � mcT � mcT� 2 1

Heat loss

Suppose a sample X of a substance has mass m (in kilograms)
and a specific heat capacity c (in joules per kilogram degree
Kelvin). Let T1 be the initial temperature (in degrees Kelvin) of
X; let T2 be the final temperature (in degrees Kelvin) of X. Sup-
pose T2 � T1 (that is, X cools down), and the state of X (solid,
liquid, or gas) remains the same. Then the heat loss (denoted
q� and expressed in joules) of X is given by:

q � mcT � mcT� 1 2

Emissivity

Let M be an object whose surface area (in meters squared) is A.
Let Mb be a blackbody of identical proportions and surface area
to M. Let T be the absolute temperature (in degrees Kelvin) of
both M and Mb. Suppose Mb emits energy Eb (in joules) while
M emits energy E (also in joules). Then the emissivity (denoted
�, a dimensionless quantity) of M is given by:

� � E /Eb

Emissivity can also be expressed in terms of power. Suppose
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Mb emits power Pb (in watts) while M emits power P (also in
watts). Then:

� � P /Pb

Emissivity is sometimes expressed as a percentage �% rather
than as a ratio. For energy and power, respectively, the following
equations apply:

� � 100E /E% b

� � 100P /P% b

Power radiated by surface

Let M be an object with surface area A (in meters squared). Let
T be the temperature of M (in degrees Kelvin); let � be the em-
issivity (expressed as a ratio) ofM. Let P be the power (in watts)
radiated by M. Then the following equation holds:

4P � T ��A

where � represents the Stefan-Boltzmann constant, expressed
in watts per meter squared degree Kelvin to the fourth power:

�8� � 5.6697 � 10

First Law of Thermodynamics

Let X be a physical system such as a machine. Suppose X ab-
sorbs or accepts a quantity of heat input energy E (in joules).
Let Ew represent the work energy (in joules) expended by X in
the desired form; let Eint represent the increased internal energy
(in joules) of X resulting from the input energy E. Then the
following equation holds:

E � E � Ew int

Stated another way, the useful work energy expended by a
physical system is always equal to the difference between the
input energy and the increased internal energy:

E � E � Ew int
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Entropy gain

Let X be a system whose temperature (in degrees Kelvin) is T.
Suppose an amount q� of heat energy (in joules) is introduced
into X. Then the entropy gain (denoted S� and expressed in
joules per degree Kelvin) is given by:

S � q /T� �

Entropy loss

Let X be a system whose temperature (in degrees Kelvin) is T.
Suppose an amount q� of heat energy (in joules) leaves X. Then
the entropy loss (denoted S� and expressed in joules per degree
Kelvin) is given by:

S � q /T� �

Second Law of Thermodynamics

This law can be stated in three parts.

� Let M1 and M2 be objects having absolute temperatures T1

and T2. If T1 � T2, then heat energy can spontaneously flow
from T1 to T2, but not from T2 to T1. If T1 � T2, then heat
energy can spontaneously flow from T2 to T1, but not from T1

to T2.
� The efficiency of a continuously cycling heat engine is always

less than 100 percent. Let E represent the heat energy input
to the engine; let Ew represent the useful work energy output.
Then Ew � E.

� When a system changes spontaneously, its entropy cannot de-
crease.

A corollary to this law is the fact that if there are several
different ways in which a system can exist, the most probable
state is the state in which the entropy is greatest, and the least
probable state is the state in which the entropy is smallest.
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Waves and Optics

This section deals with the physics of wave motion, interference,
refraction, reflection, and diffraction.

Wavelength/frequency/speed

Let � denote the wavelength (in meters) of a wave disturbance.
Let f denote the frequency (in hertz); let c be the speed (in me-
ters per second) at which the disturbance propagates. Then the
following relations hold:

c � f�

f � c /�

� � c /f

Engineers generally use the italicized lowercase English letter
f to represent frequency; physicists more often use the italicized
lowercase Greek � (nu).

Wavelength/period/speed

Let � denote the wavelength (in meters) of a wave disturbance.
Let T denote the period (in seconds); let c be the speed (in me-
ters per second) at which the disturbance propagates. Then the
following relations hold:

� � cT

c � � /T

T � � /c

Resonance

Suppose a wire, waveguide, antenna element, or cavity M has
length L (in meters). Suppose a disturbance propagates along
or through M at a speed c (in meters per second). Let f be the
frequency (in hertz) of the disturbance. Let T be the period (in
seconds). Let � be the wavelength of the disturbance (in meters).
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Let n be any positive integer. Then M will exhibit resonance if
and only if the following relations hold:

� � 2L /n

f � nc /(2L)

T � 2L /(nc)

Speed of acoustic waves in ideal gas

Let C be an ideal gas whose atomic or molecular mass is M.
Suppose the absolute temperature (in degrees Kelvin) is T. Let
cp represent the specific heat capacity (in joules per kilogram
degree Kelvin) of C at constant pressure; let cv represent the
specific heat capacity of C at constant volume. Let R0 represent
the ideal gas constant (approximately 8.3145 joules per mole
degree Kelvin). Then the speed of acoustic waves in C (denoted
v and expressed in meters per second) is given by:

1 /2v � (c R T /(c M))p 0 v

Speed of acoustic waves versus
temperature

Let C be an ideal gas. Let T1 be the initial temperature of C (in
degrees Kelvin); let T2 be the temperature (in degrees Kelvin)
after heating or cooling. Let v1 be the speed (in meters per sec-
ond) of acoustic waves in C at temperature T1; let v2 be the
speed (in meters per second) of acoustic waves in C at temper-
ature T2. The following relation holds:

2 2v /v � T /T2 1 2 1

This can also be expressed as a statement that the speed of
acoustic-wave propagation in an ideal gas is proportional to the
square root of the absolute temperature:

1 /2v /v � (T /T )2 1 2 1

Acoustic wave intensity

Suppose an acoustic wave disturbance propagates through an
ideal gas C at speed v (in meters per second). Let � be the den-
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sity of C (in grams per liter or kilograms per meter cubed); let
d be the maximum displacement (in meters) of the atoms or
molecules in the gas caused by the acoustic disturbance. Let f
be the frequency (in hertz) of the wave disturbance. Then the
acoustic wave intensity (denoted I and expressed in watts per
meter squared) is given by:

2I � 2�v(�fd)

Threshold of audibility

The threshold of audibility is the minimum acoustic wave in-
tensity that can be detected by the average human listener
when the listener is anticipating the sound. By convention, this
is denoted I0 and is defined as 1.000 � 10�12 watt per meter
squared, or 1.000 picowatt per meter squared.

Loudness

Let I be the intensity of an acoustic disturbance (in picowatts
per meter squared). The loudness, also called the volume, of the
sound (denoted � and expressed in decibels) is given by:

� � 10 log I10

When I is expressed in microwatts per meter squared:

� � 60 � 10 log I10

When I is expressed in milliwatts per meter squared:

� � 90 � 10 log I10

When I is expressed in watts per meter squared:

� � 120 � 10 log I10

Doppler effect for acoustic waves

Let v be the speed (in meters per second) of acoustic waves in
a medium C. Let L be a line at rest in C. Suppose that a sound
source, S, and an observer, O, both move along L in such a way
that they approach one another, and both move in opposite di-
rections relative to C. Let ss be the speed of the acoustic wave
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Figure 5.5 Reflection from a flat surface.

source (in meters per second) relative to C; let so be the speed
of the observer (in meters per second) relative to C. Let fs be
the frequency (in hertz) of the sound emitted by S. Then the
frequency fo (in hertz) of the acoustic disturbance perceived by
O is given by:

f � (f v � f s )/(v � s )o s s o s

If S and O both move along L in such a way that they recede
from each other, and both move in opposite directions relative
to C, then:

f � (f v � f s )/(v � s )o s s o s

Reflection from flat surface

Refer to Fig. 5.5. Let M be a flat reflective surface. Let N be a
line normal to M that intersects M at a point P. Suppose a ray
of light R1 strikes M at P, subtending an angle �1 (in radians)
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Figure 5.6 Reflection from concave spherical surface.

relative to N. Let �2 be the angle (in radians) that the reflected
ray R2, emanating from P, subtends relative to N. Let � be the
angle (in radians) between R1 and R2. Then the measure of the
angle of incidence equals the measure of the angle of reflection,
and the sum of the measures of the two angles is equal to twice
the measure of either. The following equations hold:

� � �1 2

� � � � �1 2

Reflection from concave spherical
surface

Refer to Fig. 5.6. Let M be a concave spherical reflective surface
whose radius of curvature is r (in meters). Let N be a line pass-
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ing through some point P on M, such that N is normal to the
plane Q tangent to M at P. Let X1 be a point source of light
located on line N, at a distance s1 (in meters) from point P. The
light reflected from M will converge toward a point X2 that is
also located on line N. Let s2 be the distance (in meters) of X2

from point P. Then the following equations hold:

s � 2s r /(2s � r)2 1 1

s � 2s r /(2s � r)1 2 2

Note that if s1 � r /2, then point X2 vanishes because the re-
flected rays are parallel. In addition, if point X1 is located ar-
bitrarily far away so that its arriving rays are parallel, then
s2 � r /2. The distance r /2 is defined as the focal length of
the concave spherical reflector M.

The above equations can be rearranged to obtain:

1/s � 1/s � 2/r1 2

r � 2s s /(s � s )1 2 1 2

Reflection from convex spherical
surface

Refer to Fig. 5.7. Let M be a convex spherical reflective surface
whose radius of curvature is r (in meters), and is defined as a
negative radius. Let N be a line passing through some point P
on M, such that N is normal to the plane Q tangent to M at P.
Let X1 be a point source of light located on line N, at a distance
s1 (in meters) from point P. The light reflected from M will em-
anate away from a point X2 that is also located on line N, but
on the opposite side of M from X1. Let s2 be the distance (in
meters) of X2 from point P, and let s2 be defined as a negative
distance. Then the following equations hold:

1/s � 1/s � 2/r1 2

r � 2s s /(s � s )1 2 1 2

Absolute refractive index

Let v be the speed (in meters per second) of an electromagnetic
wave disturbance D in some medium M. The absolute refractive
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Figure 5.7 Reflection from convex spherical surface.

index of M (a dimensionless quantity, usually symbolized n) for
D is approximately equal to:

8n � 2.99792 � 10 /v

Relative refractive index

Let v1 be the speed of an electromagnetic wave disturbance D
in some medium M1. Let v2 be the speed (in the same units as
v1) of D in some other medium M2. The relative refractive index
(a dimensionless quantity, symbolized n2:1) of M2 with respect to
M1 for D is given by:
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Figure 5.8 A ray passing from a medium with a relatively lower refractive
index to a medium with a relatively higher refractive index.

n � v /v2:1 1 2

The relative refractive index can also be stated in terms of
the absolute refractive indices of two media. Let n1 be the ab-
solute refractive index of medium M1 for an electromagnetic
wave disturbance D; let n2 be the absolute refractive index of
medium M2 for D. Then the following equation holds:

n � n /n2:1 2 1

Snell’s Law for n2 � n1
Refer to Fig. 5.8. Let B be a flat boundary between two media
M1 and M2 whose absolute indices of refraction are n1 and n2,
respectively. Suppose that n2 � n1, that is, the ray passes from
a medium having a relatively lower refractive index to a me-
dium having a relatively higher refractive index. Let N be a line
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Figure 5.9 A ray passing from a medium with a relatively higher refractive
index to a medium with a relatively lower refractive index.

passing through some point P on B, such that N is normal to B
at P. Let R1 be a ray of some electromagnetic disturbance D,
traveling through M1, that strikes B at P. Let �1 be the angle
(in radians) that R1 subtends relative to N at P. Let R2 be the
ray of D that emerges from P into M2. Let �2 be the angle (in
radians) that R2 subtends relative to N at P. Then line N, ray
R1, and ray R2 lie in a common plane, and �2 � �1. (The two
angles are equal if and only if both measure zero; that is, if and
only if R1 coincides with N.) The following equation, known as
Snell’s Law, holds for D traveling through M1 and M2:

sin � /sin � � n /n2 1 1 2

Snell’s Law for n2 � n1
Refer to Fig. 5.9. Let B be a flat boundary between two media
M1 and M2 whose absolute indices of refraction are n1 and n2,
respectively. Suppose that n2 � n1, that is, the ray passes from
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a medium having a relatively higher refractive index to a me-
dium having a relatively lower refractive index. Let N be a line
passing through some point P on B, such that N is normal to B
at P. Let R1 be a ray of some electromagnetic disturbance D,
traveling through M1, that strikes B at P. Let �1 be the angle
(in radians) that R1 subtends relative to N at P. Let R2 be the
ray of D that emerges from P into M2. Let �2 be the angle (in
radians) that R2 subtends relative to N at P. Then line N, ray
R1, and ray R2 lie in a common plane, and �2 � �1. (The two
angles are equal if and only if both measure zero; that is, if and
only if R1 coincides with N.) Snell’s law holds in this case, just
as in the situation described previously:

sin � /sin � � n /n2 1 1 2

Critical angle

Consider the situation depicted by Fig. 5.9. As �1 increases,
�2 → � /2. In the case where n2 � n1, �2 � � /2 for some �1 �
� /2. The critical angle for R1, denoted �c, is the smallest �1 for
which �2 � � /2. When �c � �1 � � /2, B behaves as a reflective
surface, and R1 obeys the rule for reflection from a flat surface.
The value of �c (in radians) is equal to the arcsine of the ratio
of the indices of refraction:

�1� � sin (n /n )c 2 1

Refraction through convex lens

Refer to Fig. 5.10. Let M be a symmetrical convex lens whose
focal length is f (in meters). Let N be a line passing through the
center of M, such that N is normal to the plane Q defined by M.
Let X1 be a point source of light located on line N, at a distance
s1 (in meters) from the center point P of M. Assume that s1 �
f. The light refracted through M will converge toward a point
X2 that is also located on line N. Let s2 be the distance (in me-
ters) of X2 from P. Then the following equations hold:

s � s f /(s � f )2 1 1

s � s f /(s � f )1 2 2

Note that if s1 � f, then point X2 vanishes because the re-
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Figure 5.10 Refraction through a symmetrical convex lens when the dis-
tance from the source to the lens is greater than the focal length.

fracted rays are parallel. In addition, if point X1 is located
arbitrarily far away so that its arriving rays are parallel, then
s2 � f.

The above equations can be rearranged to obtain:

1/s � 1/s � 1/f1 2

f � s s /(s � s )1 2 1 2

If s1 � f, then s2 becomes negative; the light from X1 will
diverge from a point X2 located on the same side of the lens as
X1. This is shown in Fig. 5.11.
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Figure 5.11 Refraction through a symmetrical convex lens when the dis-
tance from the source to the lens is less than the focal length.

Refraction through concave lens

Refer to Fig. 5.12. Let M be a symmetrical concave lens whose
virtual focal length is f (in meters), and is defined as a negative
length. Let N be a line passing through the center of M, such
that N is normal to the plane Q defined by M. Let X1 be a point
source of light located on line N, at a distance s1 (in meters)
from the center point P of M. The light refracted throughM will
diverge from a point X2 that is also located on line N. Let s2 be
the distance (in meters) of X2 from P, and let s2 be defined as a
negative distance. Then the following equations hold:

1/s � 1/s � 1/f1 2

f � s s /(s � s )1 2 1 2
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Figure 5.12 Refraction through a symmetrical concave lens.

Diopter of lens

Let M be a lens whose focal length (in meters) is f. The diopter,
also called the power, of the lens (denoted � and expressed per
meter) is equal to the reciprocal of this length:

�1� � 1/f � f

The diopter of a convex lens (also called magnifying or converg-
ing) is considered positive; the diopter of a concave (also called
minimizing or diverging) lens is considered negative.

Composite lenses

Let M1 and M2 be symmetrical lenses in close proximity with
their principal axes aligned. Either lens can be convex or con-
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Figure 5.13 Determination of the magnification of a refracting tele-
scope.

cave. Let �1 be the diopter ofM1 (per meter); let �2 be the diopter
of M2 (per meter). Then the diopter � (per meter) of the com-
posite lens M is given by:

� � � � �1 2

From this formula, the analogous formula for focal length can
be derived. Recall that diopter and focal length are inverses of
each other when the displacement units are specified in meters.
Let M1 and M2 be symmetrical lenses in close proximity with
their principal axes aligned. Either lens can be convex or con-
cave. Let f1 be the focal length of M1 (in meters); let f2 be the
focal length ofM2 (in meters). Then the focal length f (in meters)
of the composite lens M is given by:

�1 �1 �1f � ( f � f )1 2

Alternatively, this formula can be used:

f � f f /( f � f )1 2 1 2

Telescopic magnification

Refer to Fig. 5.13. Let T be a refracting telescope consisting of
two convex lenses: an objective (M1) and an eyepiece (M2). Let
f1 be the focal length (in meters) of the objective lens; let f2 be
the focal length (in meters) of the eyepiece. In a magnifying
telescope, f2 � f1. Assume that M1 and M2 are placed along a
common principal axis, that the distance between M1 and M2 is
adjusted for proper focus, and that the object(s) being observed
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Figure 5.14 Determination of
the magnification of a micro-
scope.

are arbitrarily distant. The telescopic magnification (a dimen-
sionless quantity, denoted Tmag in this context) is given by:

T � f /fmag 1 2

Alternatively, M1 can be a concave mirror; in that case T is a
reflecting telescope. Telescopic magnification is sometimes er-
roneously called ‘‘power.’’

Microscopic magnification

Refer to Fig. 5.14. Let U be a microscope consisting of two con-
vex lenses: an objective (M1) and an eyepiece (M2). Let f1 be the
focal length (in meters) of the objective lens; let f2 be the focal
length (in meters) of the eyepiece. Assume that M1 and M2 are
placed along a common principal axis, and that the distance
betweenM1 andM2 is adjusted for proper focus. Let s1 represent
the distance (in meters) from the objective to the real image it
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Figure 5.15 Diffraction of monochromatic light through a sin-
gle slit.

forms of the object under examination. The microscopic mag-
nification (a dimensionless quantity, denoted Umag in this con-
text) is given by:

U � ((s � f )/f )) (( f � 0.25)/f )mag 1 1 1 2 2

The quantity 0.25 represents the nominal near point of the
human eye, which is the closest distance over which the eye can
focus on an object: approximately 0.25 meters. Microscopic mag-
nification is sometimes erroneously called ‘‘power.’’

Diffraction through slit

Refer to Fig. 5.15. Suppose a beam of monochromatic light of
wavelength � (in nanometers) shines toward a barrier B at a
right angle, and that the beam encounters a slit S of width w
(in nanometers) in the barrier. The light diffracts through S.
Let L represent the line of the direct beam, normal to B and
passing through S. The waves in the diffracted beam cancel in
phase, resulting in minimum brilliance, at angles �n relative to
L, where n is a positive integer. These angles are given by:

�1� � sin (n� /w)n

Diffraction through grating

Refer to Fig. 5.16. Suppose a beam of monochromatic light of
wavelength � (in nanometers) shines toward a grating G at a
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Figure 5.16 Diffraction of monochromatic light through a grat-
ing.

right angle. Suppose G consists of slits of uniform width and
spacing, and that adjacent slits are separated by distance g (in
nanometers). The light will diffract through G, forming a pat-
tern of light and dark beams. Let L represent the line of the
direct beam, normal to G. The waves in the diffracted beam will
add in phase, resulting in maximum brilliance, at certain angles
�n relative to L, where n is a positive integer. These angles can
be determined according to the following equation:

�1� � sin (n� /g)n

Relativistic and Atomic Physics

This section deals with the special theory of relativity, quantum
physics, electron behavior, nuclear physics, and radioactivity.

Relativistic addition of speeds

Refer to Fig. 5.17. Suppose two objects X and Y are moving in
the same direction along a straight line L with respect to an
observer Z. Suppose X moves at constant speed vX relative to Z;
suppose Y moves at constant speed vY (in the same units as vX)
relative to X, in the same direction that X moves relative to Z.
Let c be the speed of light in a vacuum, expressed in the same
units as vX and vY. The speed of Y as measured along L relative
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Figure 5.17 Relativistic addition of velocities. The com-
posite speed, vX�Y, can never exceed the speed of light in
a vacuum.

Figure 5.18 Relativistic time dilation. The ‘‘moving’’ clock
appears to run more slowly than the ‘‘stationary’’ clock.

to Z (denoted vX�Y and expressed in the same units as vX, vY,
and c), is given by:

2v � (v � v )/(1 � v v /c )X�Y X Y X Y

If the speeds are all expressed in kilometers per second, then
c � 2.99792 � 105, and c2 � 8.98752 � 1010.

Relativistic dilation of time

Refer to Fig. 5.18. Suppose an object X moves at constant ve-
locity v along a line L relative to an observer Z. Suppose X
carries a precision clock KX that Z can constantly monitor. Sup-
pose Z has a clock KZ identical to KX, and that KX and KZ are
synchronized at a specific time so both clocks read zero: tX � 0
and tZ � 0. Let c be the speed of light in a vacuum, expressed
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Figure 5.19 Relativistic spatial contraction occurs along
an axis parallel to the velocity vector (instantaneous di-
rection of motion).

in the same units as v. Neglect the effects of variable observa-
tion-path delay between X and Z. Suppose Z observes the pas-
sage of tZ seconds. At the time Z observes KZ to read tZ seconds,
Z will observe KX to read tX seconds, where:

2 2 1 /2t � t (1 � v /c )X Z

If the speeds are all expressed in kilometers per second, then
c � 2.99792 � 105, and c2 � 8.98752 � 1010.

Twin Paradox for relativistic time
dilation

The formula in the preceding paragraph applies equally well
when X and Z (the observer’s and the object’s reference frames)
are transposed, even if all other considerations remain unchan-
ged. This gives rise to the so-called twin paradox, in which clock
KX lags clock KZ from the reference frame of Z, and KZ lags KX

from the reference frame of X. This absurdity is overcome in the
general theory of relativity, in which time dilation is considered
to result from acceleration or the presence of a gravitational
field, rather than from relative motion.

Relativistic spatial contraction

Refer to Fig. 5.19. Suppose an object X moves at constant ve-
locity v (in meters per second) along a line L relative to an ob-
server Z. Suppose X has length sX1 (in meters) at rest, measured
in the dimension parallel to L. Let c be the speed of light in a
vacuum (in meters per second). Suppose Z observes the length
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of X to be sX2 (in meters, in the dimension of L) when X is in
motion at velocity v. The following equation holds:

2 2 1 /2s � s (1 � v /c )X2 X1

If the speeds are all expressed in meters per second, then
c � 2.99792 � 108, and c2 � 8.98752 � 1016.

Relativistic mass increase

Suppose an object X moves at constant velocity v along a line L
relative to an observer Z. Suppose X has mass mX1 at rest. Let
c be the speed of light in a vacuum, expressed in the same units
as v. Suppose Z observes the mass of X to be mX2 (in the same
units as mX1) when X is in motion at velocity v. The following
equation holds:

2 2 1 /2m � m /(1 � v /c )X2 X1

If the speeds are all expressed in kilometers per second, then
c � 2.99792 � 105, and c2 � 8.98752 � 1010.

Relativistic linear momentum

Suppose an object X moves with constant velocity vector v (in
meters per second in a specified direction) along a line L relative
to an observer Z. Suppose X has mass m (in kilograms) at rest.
Let c be the speed of light in a vacuum (in meters per second).
Then Z will observe the relativistic linear momentum vector, p
(whose magnitude is expressed in kilogram-meters per second,
and whose direction is the same as that of v), of X as follows:

2 2 1 /2p � v (m /(1 � �v� /c ) )

If the speeds are all expressed in meters per second, then
c � 2.99792 � 108, and c2 � 8.98752 � 1016.

Relativistic energy

Suppose an object X moves with constant velocity v (in meters
per second) along a line L relative to an observer Z. Suppose X
has mass m (in kilograms) at rest. Let c be the speed of light in
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a vacuum (in meters per second). Then Z will observe the rel-
ativistic energy, E (in joules), of X as follows:

2 2 2 1 /2E � mc /(1 � v /c )

If the speeds are all expressed in meters per second, then
c � 2.99792 � 108, and c2 � 8.98752 � 1016.

Photon energy

Let f be the frequency of an electromagnetic wave disturbance
(in hertz). Let � be the wavelength (in meters); let c be the speed
of propagation (in meters per second). The photon energy (de-
noted Ep and expressed in joules) contained in a single quantum
of that wave is given by the following formulas:

E � hfp

E � hc /�p

where h is Planck’s constant, approximately equal to 6.6261 �
10�34 joule-seconds, and c � 2.99792 � 108 meters per second.

Photon momentum

Let f be the frequency of an electromagnetic wave disturbance
(in hertz). Let � be the wavelength (in meters); let c be the speed
of propagation (in meters per second). The photon momentum
(denoted pp and expressed in kilogram-meters per second) con-
tained in a single quantum of that wave is given by the follow-
ing formulas:

p � hf /cp

p � h /�p

where h � 6.6261 � 10�34 joule-seconds, and c � 2.99792 � 108

meters per second.

de Broglie wavelength

Let m be the mass (in kilograms) of a particle P moving at ve-
locity v (in meters per second). Neglecting relativistic effects,
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the de Broglie wavelength (denoted �d and expressed in meters)
of P is given by:

� � h /mvd

where h � 6.6261 � 10�34 joule-seconds. When relativistic ef-
fects are taken into account, the formula becomes:

2 2 1 /2� � (h /(mv))(1 � v /c )d

If the speeds are all expressed in meters per second, then c �
2.99792 � 108, and c2 � 8.98752 � 1016.

Compton effect

Suppose a photon P, having wavelength �1 (in meters), collides
with an electron E. Suppose E is free and stationary, and has a
rest mass me (in kilograms). Further suppose that when P
strikes E, the direction of P is changed by an angle 	 (in radi-
ans). Then the wavelength of P will change to a new value �2,
such �2 � �1. The scattered-photon wavelength �2 (in meters)
depends on the deflection angle 	, and is given by:

� � � � (h � h cos 	)/m c,2 1 e

where h � 6.6261 � 10�34 joule-seconds and c � 2.99792 � 108

meters per second. The rest mass of the electron, me, is approx-
imately equal to 9.109 � 10�31 kilograms.

Balmer series

Suppose a sample of hydrogen gas is excited so its atoms emit
photons. A set of emission lines known as the Balmer series
occurs at wavelengths (in meters) defined by the following for-
mula:

2 2� � (4n � 16n � 16)/(n R � 4nR)n

where n � {1, 2, 3, . . . } and R is the Rydberg constant, ap-
proximately equal to 1.097 � 107 and is expressed per meter.

Lyman series

Suppose a sample of hydrogen gas is excited so its atoms emit
photons. A set of emission lines known as the Lyman series oc-
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curs at wavelengths (in meters) defined by the following for-
mula:

2 2� � (n � 2n � 1)/(n R � 2nR)n

where n � {1, 2, 3, . . . } and R is the Rydberg constant,
approximately equal to 1.097 � 107 and is expressed per meter.

Paschen series

Suppose a sample of hydrogen gas is excited so its atoms emit
photons. A set of emission lines known as the Paschen series
occurs at wavelengths (in meters) defined by the following for-
mula:

2 2� � (9n � 54n � 81)/(n R � 6nR)n

where n � {1, 2, 3, . . . } and R is the Rydberg constant, ap-
proximately equal to 1.097 � 107 and is expressed per meter.

Principal quantum numbers

In a hydrogen atom, the energy contained in the electron is
defined in terms of principal quantum numbers (positive inte-
gers denoted n). The energy level ek (in electronvolts) corre-
sponding to a specific principal quantum number n � k is given
by the following formula:

2e � �13.6/(k )k

where k � {1, 2, 3, . . . }.

Orbital quantum numbers

In a hydrogen atom, the angular momentum contained in the
electron is defined in terms of orbital quantum numbers (posi-
tive integers denoted l). The angular momentum pk (in elec-
tronvolts) corresponding to a specific orbital quantum number
l � k and principal quantum number n is given by the following
formula:

2 1 /2p � h (k � k) /(2�)k

where k � {1, 2, 3, . . . , (n � 1)} and h is Planck’s constant,
approximately equal to 6.6261 � 10�34 joule-seconds.
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Radioactive decay

Radioactive decay is measured in terms of half life, denoted t
and expressed in time units that depend on the speed with
which the substance in question decays (seconds, minutes,
hours, days, or years). The half life is the length of time, as
measured from a defined starting point t0, after which exactly
half (50 percent) of the radioactive atoms in the sample are
unaltered. Half life is independent of t0.

Suppose a radioactive sample has a half life of t time units.
Suppose the substance is tested for radioactivity at a specific
time, and then is tested again x time units later. The proportion
of radioactive atoms P% that are unaltered after the passage of
x time units is given by the following formula:

(x / t)P � 1/2

Radioactive decay can also be expressed in terms of the per-
centage of atoms that remain unaltered. Suppose a radioactive
sample has a half life of t time units. Suppose the substance is
tested for radioactivity at a specific time, and then is tested
again x time units later. The percentage of radioactive atoms
P% that are unaltered after the passage of x time units is given
by the following formula:

(x / t)P � 100/2%

Ionizing-radiation dose

Suppose a sample of material has mass m (in kilograms) and
absorbs an amount of ionizing-radiation energy e (in joules). The
ionizing-radiation dose (denoted D and expressed in grays) is
given by:

D � e /m

A dose of one gray is equivalent to one joule per kilogram of
absorbed radiation.

Chemical Elements

The following paragraphs depict the chemical elements in order
by atomic number, and describe some of their characteristics
and practical uses.
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1. Hydrogen

Symbol, H. A colorless, odorless gas at room temperature. The
most common isotope has atomic weight 1.00794. The lightest
and most abundant element in the universe. Used in the semi-
conductor manufacturing process, in glow-discharge lamps, in
the refining processes of certain metals, and in some lighter-
than-air balloons. Highly flammable; combines readily with ox-
ygen to form water (H2O). In recent years, this element has been
the subject of research as a source of energy for use in internal
combustion engines, furnaces, and nuclear fusion reactors. The
isotope having one neutron in the nucleus is called deuterium.
The isotope having two neutrons in the nucleus is called tritium.

� Electrons in first energy level: 1

2. Helium

Symbol, He. A colorless, odorless gas at room temperature. The
most common isotope has atomic weight 4.0026. The second
lightest and second most abundant element in the universe.
Product of hydrogen fusion. Used in helium-neon (He-Ne) la-
sers, which produce visible red coherent light. Also used in place
of nitrogen in self-contained underwater breathing apparatus
(SCUBA) diving equipment. Used in medical equipment, espe-
cially in magnetic-resonance imaging (MRI). Liquid helium does
not solidify, even at temperatures arbitrarily close to absolute
zero.

� Electrons in first energy level: 2

3. Lithium

Symbol, Li. Classified as an alkali metal. In pure form it is sil-
ver-colored. The lightest elemental metal. The most common
isotope has atomic weight 6.941. Used in certain types of lubri-
cants, as an alloying agent, in ceramics, and in electrochemical
cells known for long life in low-current applications. Also used
in the synthesis of organic compounds. This element reacts rap-
idly with oxygen at standard atmospheric temperature and
pressure. It is not found free in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 1



412 Chapter Five

4. Beryllium

Symbol, Be. Classified as an alkaline earth. In pure form it has
a grayish color similar to that of steel. Has a relatively high
melting point. The most common isotope has atomic weight
9.01218. Found in various dielectrics, alloys, and phosphors.
The oxide of this element is used as an electrical insulator. The
metal is used in aircraft, spacecraft, and high-speed, high-
altitude missiles. In crude form, the mineral containing this el-
ement is known as beryl.

� Electrons in first energy level: 2
� Electrons in second energy level: 2

5. Boron

Symbol, B. Classified as a metalloid. The most common isotope
has atomic weight 10.82. Can exist as a powder or as a black,
hard metalloid. The metalloid form is a poor electrical conduc-
tor, and is heat-resistant. Used in nuclear reactors, in the man-
ufacture of electronic semiconductor devices, and in various in-
dustrial applications, especially insulating materials and
bleach. In crude form, the mineral containing this element is
known as kernite. Boron is not found free in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 3

6. Carbon

Symbol, C. A non-metallic element that is a solid at room tem-
perature. Has a characteristic hexagonal crystal structure.
Known as the basis of life on Earth. The most common isotope
has atomic weight 12.011. Exists in three well-known forms:
graphite (a black powder) which is common, diamond (a clear
solid) which is rare, and amorphous. Occasionally, white carbon
is observed along with graphite. Used in electrochemical cells,
air-cleaning filters, thermocouples, and noninductive electrical
resistors. Also used in medicine to absorb poisons and toxins in
the stomach and intestines. Abundant in mineral rocks such as
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limestone. Carbon dioxide is found in the atmosphere of the
earth, and plays a role in planetary heat retention.

� Electrons in first energy level: 2
� Electrons in second energy level: 4

7. Nitrogen

Symbol, N. A non-metallic element that is a colorless, odorless
gas at room temperature. The most common isotope has atomic
weight 14.007. The most abundant component of the earth’s at-
mosphere (approximately 78 percent at the surface). Reacts to
some extent with certain combinations of other elements. In its
liquid form, this element is used in medicine to freeze skin le-
sions for removal. It is also important as a component of pro-
teins, and is used to make ammonia. Nitrogen is used in the
manufacture of semiconductors (it provides a stable environ-
ment) and also by the pharmaceutical industry.

� Electrons in first energy level: 2
� Electrons in second energy level: 5

8. Oxygen

Symbol, O. A non-metallic element that is a colorless, odorless
gas at room temperature. The most common isotope has atomic
weight 15.999. The second most abundant component of the
earth’s atmosphere (approximately 21 percent at the surface).
Combines readily with many other elements, particularly met-
als. One of the oxides of iron, for example, is known as common
rust. Normally, two atoms of oxygen combine to form a molecule
(O2). In this form, oxygen is essential for the sustenance of many
forms of life on Earth. When three oxygen atoms form a mole-
cule (O3), the element is called ozone. This form of the element
is beneficial in the upper atmosphere, because it reduces the
amount of ultraviolet radiation reaching the earth’s surface.
Ozone is, ironically, also known as an irritant and pollutant in
the surface air over heavily populated areas.

� Electrons in first energy level: 2
� Electrons in second energy level: 6
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9. Fluorine

Symbol, F. The most common isotope has atomic weight 18.998.
A gaseous element of the halogen family. Has a characteristic
greenish or yellowish color. Reacts readily with many other el-
ements. Fluorine compounds are used in some refrigerant and
propellant chemicals. Human-synthesized chlorofluorocarbons
have been implicated as a potential aggravating factor in the
depletion of the ozone layer in the earth’s upper atmosphere.
Combined with certain other elements such as sodium, this el-
ement forms compounds that are known to retard or prevent
tooth decay in humans. This element has been considered for
use as a rocket propellant. It is used in the production of plas-
tics.

� Electrons in first energy level: 2
� Electrons in second energy level: 7

10. Neon

Symbol, Ne. The most common isotope has atomic weight
20.179. A noble gas present in trace amounts in the atmosphere.
Used in specialized low-frequency oscillators, flip-flops, voltage
regulators, indicator lamps, and alphanumeric displays. Found
in certain types of lamps used in special-effect lighting. Also
used in lightning arrestors, cathode-ray-tube (CRT) displays,
and radio-frequency-measuring devices (wavemeters). Neon
lamps produce a characteristic red-orange glow. Neon is used in
helium-neon (He-Ne) lasers, which produce a brilliant crimson
visible-light output. Neon is obtained commercially by fractional
distillation when air is liquefied.

� Electrons in first energy level: 2
� Electrons in second energy level: 8

11. Sodium

Symbol, Na. The most common isotope has atomic weight
22.9898. An element of the alkali-metal group. A solid at room
temperature. Used in gas-discharge lamps. Has a characteristic
candle-flame-colored glow when it fluoresces. Used in industrial
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chemicals; combined with chlorine, it forms common table salt.
Various compounds of this element are used in the food industry
for flavoring and for protection against spoilage. Reacts readily
with various other elements. In its pure form, it must be pro-
tected from direct contact with the atmosphere, or it will corrode
almost instantly.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 1

12. Magnesium

Symbol, Mg. The most common isotope has atomic weight
24.305. A member of the alkaline earth group. At room temper-
ature it is a whitish metal. Compounds of this element are used
as phosphors for some types of CRT. Also mixed with aluminum
to form strong alloys used in various structures such as anten-
nas and antenna support towers. In medicine, oxides and sul-
fides of this element are used as antacids or laxatives. Reacts
readily with various other elements. When heated in the at-
mosphere, it can burn with a brilliant white glow.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 2

13. Aluminum

Symbol, Al. The most common isotope has atomic weight 26.98.
A metallic element and a good electrical conductor. Has many
of the same characteristics as magnesium, except it reacts less
easily with oxygen in the atmosphere. Used as chassis in elec-
tronic equipment, in wireless-communications hardware, and in
electrical wiring. Mixed with magnesium to form strong alloys
used in various structures such as antennas and antenna sup-
port towers. In medicine, oxides of this element are used as
antacids. Serves as the electrode material in electrolytic capac-
itors. Can be doped to form a semiconductor, or oxidized to form
a dielectric.
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� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 3

14. Silicon

Symbol, Si. The most common isotope has atomic weight 28.086.
A metalloid abundant in the earth’s crust. Especially common
in rocks such as granite, and in many types of sand. Used in
the manufacture of glass. Processed to form semiconductor ma-
terials extensively used in electronic and computer systems.
This element, and various compounds of it, are used in diodes,
transistors, and integrated circuits (ICs). Can be oxidized to
form a dielectric.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 4

15. Phosphorus

Symbol, P. The most common isotope has atomic weight 30.974.
A nonmetallic element of the nitrogen family. Found in certain
types of rock. Used in the manufacture of various fertilizers.
Also used in cleaning detergents. Commonly employed as a dop-
ant in semiconductor manufacture, and as an alloy constituent
in some electrical and electronic components.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 5

16. Sulfur

Symbol, S. Also spelled sulphur. The most common isotope has
atomic weight 32.06. A nonmetallic element. Reacts with some
other elements. Compounds of sulfur are used in rechargeable
electrochemical cells and in power transformers. Well known as
a component in gunpowder; also used in the manufacture of
matches and fireworks. Some compounds of this element are
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used in medicine; an example is magnesium sulfate, also known
as Epsom salt.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 6

17. Chlorine

Symbol, Cl. The most common isotope has atomic weight
35.453. A gas at room temperature, and a member of the hal-
ogen family. Reacts readily with various other elements. Poten-
tially dangerous; displaces oxygen in the blood if inhaled. Liq-
uefied compounds of this element are used industrially as
bleaching agents. Because it kills bacteria, chlorine is some-
times used to render water safe to drink. Has a characteristic
smell, similar to that of ozone. Chlorine is a component of com-
mon table salt (sodium chloride) and also of salt substitutes (po-
tassium chloride).

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 7

18. Argon

Symbol, A or Ar. The most common isotope has atomic weight
39.94. A gas at room temperature; classified as a noble gas.
Present in small amounts in the atmosphere. Used in some
types of lasers and glow lamps. In general, this element does
not react readily with others.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 8

19. Potassium

Symbol, K. The most common isotope has atomic weight 39.098.
A member of the alkali metal group. Compounds of this element
are used in CRT phosphor coatings, in electroplating, and as
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ferroelectric substances. Also used in the manufacture of glass,
and in certain detergents. Combines with chlorine to form a
common table-salt substitute (potassium chloride). Obtained in
nature from the mineral carnallite.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 8
� Electrons in fourth energy level: 1

20. Calcium

Symbol, Ca. The most common isotope has atomic weight 40.08.
A metallic element of the alkaline-earth group. Calcium carbon-
ate, or calcite, is abundant in the earth’s crust, especially in
limestone. Calcium is also an important constituent of bones in
vertebrate animals. Compounds of this element are used as
phosphor coatings in CRTs; various display colors can be ob-
tained by using different compounds of calcium. Calcium is also
used in cement and in the glass-manufacturing industry.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 8
� Electrons in fourth energy level: 2

21. Scandium

Symbol, Sc. The most common isotope has atomic weight
44.956. In pure form, it is a soft metal. Classified as a transition
metal. This element is used along with aluminum in the man-
ufacture of alloys for use in sporting equipment such as bicycle
frames and baseball bats. Also used in the aerospace industry.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 9
� Electrons in fourth energy level: 2
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22. Titanium

Symbol, Ti. The most common isotope has atomic weight 47.88.
Classified as a transition metal. Well known for its mechanical
strength and resistance to corrosion. Used in a wide variety of
applications, including aircraft frames, jet engines, antenna
towers, and building supports. Certain compounds of this ele-
ment, especially oxides, can be used as dielectric materials.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 10
� Electrons in fourth energy level: 2

23. Vanadium

Symbol, V. The most common isotope has atomic weight 50.94.
Classified as a transition metal. In its pure form it is whitish
in color. Used in the manufacture of specialized industrial al-
loys. Also used in certain types of dyes. Can serve as a catalyst
in various chemical reactions. Used in lithium-ion electrochem-
ical cells and batteries, and in superconducting magnets. This
element is toxic and must be handled with care.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 11
� Electrons in fourth energy level: 2

24. Chromium

Symbol, Cr. The most common isotope has atomic weight
51.996. Classified as a transition metal. In pure form, it is gray-
ish in color. Used as a plating for metals to improve resistance
to corrosion. Also used in the manufacture of stainless steel.
Compounds of this element are used in specialized recording
tapes and in thermocouple devices.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
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� Electrons in third energy level: 13
� Electrons in fourth energy level: 1

25. Manganese

Symbol, Mn. The most common isotope has atomic weight
54.938. Classified as a transition metal. In pure form it is gray-
ish. An alloy of manganese is used in the manufacture of per-
manent magnets. Some batteries contain compounds of this el-
ement. Also used in the manufacture of steel and certain
ceramics.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 13
� Electrons in fourth energy level: 2

26. Iron

Symbol, Fe. The most common isotope has atomic weight
55.847. In pure form, it is a dull gray metal. Well known for its
magnetic properties. Found in abundance in the earth’s crust.
High-grade iron ore is known as hematite; a lower grade is tac-
onite. Used in magnetic circuits and transformer cores. Also
used in thermocouples. An alloy of this element (steel) is used
extensively in buildings, bridges, and antenna support towers.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 14
� Electrons in fourth energy level: 2

27. Cobalt

Symbol, Co. The most common isotope has atomic weight 58.94.
Classified as a transition metal. In pure form it is silvery in
color. Used in the manufacture of stainless steel. Also used in
making certain types of ceramics and glass. The isotope Co-60
is radioactive and has medical applications in radiology. Cobalt
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chloride, a salt, is sometimes used to absorb moisture in packing
materials.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 15
� Electrons in fourth energy level: 2

28. Nickel

Symbol, Ni. The most common isotope has atomic weight 58.69.
Classified as a transition metal. In its pure form it is light gray
to white. Nickel-cadmium (NiCd) and nickel-metal-hydride
(NiMH) are used in rechargeable electrochemical cells, espe-
cially the types used in portable electronic equipment and note-
book computers. Nickel compounds are used in the manufacture
of specialized semiconductor diodes. Alloys of this element are
used as resistance wire. Elemental nickel is employed in some
electron tubes. This element is also used in electroplating.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 16
� Electrons in fourth energy level: 2

29. Copper

Symbol, Cu. The most common isotope has atomic weight
63.546. Classified as a transition metal. In pure form, it has a
characteristic red or wine color. An excellent conductor of elec-
tricity and heat. Used in the manufacture of wires and cables.
Oxides of this element are used in specialized diodes and pho-
toelectric cells. Also used in some plumbing systems, and in the
manufacture of coins.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 1
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30. Zinc

Symbol, Zn. The most common isotope has atomic weight 65.39.
Classified as a transition metal. In pure form, it is a dull blue-
gray color. Used as the negative-electrode material in electro-
chemical cells, and as a protective coating for metals, especially
iron and steel. Zinc is a component of brass and bronze alloys.
Certain zinc compounds are used as CRT phosphors. The oxide
of this element is used to protect skin and help heal superficial
skin injuries. Zinc can be immersed in strong acids to liberate
hydrogen gas.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 2

31. Gallium

Symbol, Ga. The most common isotope has atomic weight 69.72.
A semiconducting metal. In pure form it is light gray to white.
Forms a compound with arsenic (GaAs) that is used in low-
noise, high-gain field-effect transistors (FETs), and also in spe-
cialized diodes. In nature, this element is commonly found with
aluminum in the mineral bauxite.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 3

32. Germanium

Symbol, Ge. The most common isotope has atomic weight 72.59.
A semiconducting metalloid. Used in specialized diodes, tran-
sistors, rectifiers, and photoelectric cells. In semiconductor com-
ponents, germanium has been largely replaced by silicon. This
is mainly because silicon and its compounds are more resistant
to heat than germanium and its compounds. Elemental ger-
manium is obtained as a byproduct in the refining of other met-
als, particularly zinc and copper.
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� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 4

33. Arsenic

Symbol, As. The most common isotope has atomic weight 74.91.
A metalloid used as a dopant in the manufacture of semicon-
ductors. In its pure form, it is gray in color. Forms a compound
with gallium (GaAs) known as gallium arsenide, which is used
in low-noise, high-gain FETs, and also in specialized diodes. The
element is noted for its toxicity.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 5

34. Selenium

Symbol, Se. The most common isotope has atomic weight 78.96.
Classified as a non-metal. In its pure form, it is gray in color. A
semiconducting element used in diodes, rectifiers. Recognized
for its photoconductive properties (the electrical conductivity
varies depending on the intensity of visible light, infrared, and/
or ultraviolet radiation that strikes the surface). Used in some
types of photoelectric cells and video cameras.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 6

35. Bromine

Symbol, Br. The most common isotope has atomic weight 79.90.
A nonmetallic element of the halogen family. A reddish-brown
liquid at room temperature. Has a characteristic unpleasant
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odor. Reacts readily with various other elements. Known as a
poison. Obtained from sea water, where it occurs as a compo-
nent of bromide salts. Was used at one time as a disinfectant
in swimming pools; chlorine and ozone are favored for that pur-
pose today.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 7

36. Krypton

Symbol, Kr. The most common isotope has atomic weight 83.80.
Classified as a noble gas. Colorless and odorless. Present in
trace amounts in the earth’s atmosphere. Some common iso-
topes of this element are radioactive. Used in specialized elec-
tric lamps; in this respect it is similar to neon and xenon gases.
This element is liberated as a byproduct when air is liquefied.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 8

37. Rubidium

Symbol, Rb. The most common isotope has atomic weight
85.468. Classified as an alkali metal. In pure form, it is silver-
colored. Reacts easily with oxygen and chlorine. Used in certain
types of photoelectric cells. Acts as a catalyst in some chemical
reactions.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 8
� Electrons in fifth energy level: 1
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38. Strontium

Symbol, Sr. The most common isotope has atomic weight 87.62.
A metallic element of the alkaline-earth group. In pure form it
is gold-colored. Compounds of this element are used in the man-
ufacture of specialized ceramic dielectrics. When used in
fireworks, this element produces brilliant colors. One isotope of
this element, Sr-90, is radioactive. Fallout containing Sr-90 was
a cause for concern during above-ground nuclear-weapons tests
carried out in the 1950s and 1960s.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 8
� Electrons in fifth energy level: 2

39. Yttrium

Symbol, Y. The most common isotope has atomic weight 88.906.
Classified as a transition metal. In its pure form it is silver-
colored. This element, and compounds containing it, are used in
electro-optical devices, particularly lamps and lasers. It is also
used in radar devices, and as a red phosphor in color television
picture tubes and computer monitors. Yttrium occurs naturally
in lunar rock.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 9
� Electrons in fifth energy level: 2

40. Zirconium

Symbol, Zr. The most common isotope has atomic weight 91.22.
Classified as a transition metal. In its pure form it is grayish
in color. The oxide of this element is used as a dielectric at high
temperatures. It is also used in nuclear devices. Zinc-beryllium-
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zirconium silicate is employed as a CRT phosphor. Carbonates,
phosphates, and salts of this element are used in a wide variety
of products including paper coatings, paints, adhesives, fillers,
ceramics, and textiles.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 10
� Electrons in fifth energy level: 2

41. Niobium

Symbol, Nb. The most common isotope has atomic weight 92.91.
Classified as a transition metal. In industry, this element is
sometimes called columbium. In pure form it is shiny, and is
light gray to white in color. In industry, it is used in specialized
welding processes. Niobium is also used to produce equipment
for the pharmaceutical, medical, aerospace, and electronic in-
dustries. It is especially favored for medical implants because
it is well tolerated by the body. This element is known for its
resistance to corrosion.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 12
� Electrons in fifth energy level: 1

42. Molybdenum

Symbol, Mo. The most common isotope has atomic weight 95.94.
Classified as a transition metal. In its pure form, it is hard and
silver-white. Used in the grids and plates of certain vacuum
tubes. Also used as a catalyst, as a component of hard alloys for
the aeronautical and aerospace industries, and in steel-
hardening processes. It is known for high thermal conductivity,
low thermal-expansion coefficient, high melting point, and re-
sistance to corrosion. Most molybdenum compounds are rela-
tively non-toxic.
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� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 13
� Electrons in fifth energy level: 1

43. Technetium

Symbol, Tc. Formerly called masurium. The most common iso-
tope has atomic weight 98. Classified as a transition metal. In
its pure form, it is grayish in color. This element is not found
in nature; it occurs when the uranium atom is split by nuclear
fission. It also occurs when molybdenum is bombarded by high-
speed deuterium nuclei (particles consisting of one proton and
one neutron). This element is radioactive. It has applications in
radiology, where it is used as a tracer, especially in the non-
invasive diagnosis of heart disease.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 14
� Electrons in fifth energy level: 1

44. Ruthenium

Symbol, Ru. The most common isotope has atomic weight
101.07. A rare element, classified as a transition metal. In pure
form it is silver-colored. When mixed with platinum and/or pal-
ladium, this element can produce hard alloys that are useful in
industrial bearings, the tips of pens, and in dental instruments.
Ruthenium is highly resistant to corrosion, even by strong acids;
it is added to some titanium alloys to improve durability. In
nature, ruthenium is found along with platinum.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18



428 Chapter Five

� Electrons in fourth energy level: 15
� Electrons in fifth energy level: 1

45. Rhodium

Symbol, Rh. The most common isotope has atomic weight
102.906. Classified as a transition metal. In its pure form it is
silver-colored. Occurs in nature along with platinum and nickel.
It is used in scientific work. In particular, it makes a good sil-
vering for first-surface mirrors in optical devices and instru-
ments. It is used as a plating material in jewelry manufacture.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 16
� Electrons in fifth energy level: 1

46. Palladium

Symbol, Pd. The most common isotope has atomic weight
106.42. Classified as a transition metal. In its pure form it is
light gray to white. In nature, palladium is found with copper
ore. It is used in certain types of medical instruments, in jew-
elry, and in photographic printing.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 18
� Electrons in fifth energy level: 0

47. Silver

Symbol, Ag. The most common isotope has atomic weight
107.87. Classified as a transition metal. In its pure form it is a
bright, shiny, silverish-white color. An excellent conductor of
electricity and heat. Resists corrosion. Used in circuits where
low resistance and/or high Q factor (selectivity) are mandatory.



Physical and Chemical Data 429

Also used for plating of electrical contacts. Certain silver com-
pounds darken when exposed to infrared, visible light, or ultra-
violet; this makes them useful in photographic film. Silver is
considered a precious metal, and is used in the manufacture of
jewelry and coins.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 18
� Electrons in fifth energy level: 1

48. Cadmium

Symbol, Cd. The most common isotope has atomic weight
112.41. Classified as a transition metal. In its pure form it is
silver-colored. Used with nickel in the manufacture of recharge-
able electrochemical cells. Also employed as a protective plating.
Helium-cadmium lasers are used in compact disc mastering, ho-
lography, data storage, stereolithography, Raman spectroscopy,
interferometry, industrial defect detection, and particle count-
ing. Cadmium occurs as a byproduct in the process of refining
zinc ores. Highly toxic, similar to lead. The disposal process is
regulated by law in some communities.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 18
� Electrons in fifth energy level: 2

49. Indium

Symbol, In. The most common isotope has atomic weight 114.82.
A metallic element used as a dopant in semiconductor process-
ing. In pure form it is silver-colored. In nature, it is often found
along with zinc. Certain compounds of this element are used as
semiconductors; indium antimonide is an example. Because of
its durability, indium is used to coat mechanical bearings. In-
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dustrial uses also include soldering, preforms, sputtering tar-
gets, and fusible alloys.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 18
� Electrons in fifth energy level: 3

50. Tin

Symbol, Sn. The most common isotope has atomic weight
118.71. In pure form it is a white or grayish metal. It changes
color (from white to gray) when it is cooled through a certain
temperature range. It is ductile and malleable. Mixed with lead
to manufacture solder. Tin foil is used to form the plates of some
fixed capacitors. Compounds of tin can be used to manufacture
resistors. Tin plating can protect metals against corrosion to a
limited extent, although it is affected by strong acids. The ele-
ment is toxic, in a manner similar to lead.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 18
� Electrons in fifth energy level: 4

51. Antimony

Symbol, Sb. The most common isotope has atomic weight
121.76. Classified as a metalloid. In pure form, it is blue-white
or blue-gray in color. Has a characteristic flakiness and brittle-
ness. It is a comparatively poor electrical conductor. Burns with
a bright glow. Used a dopant in the manufacture of N-type semi-
conductor material. The compound indium antimonide is used
in some transistors, diodes, and integrated circuits. Industrially,
antimony is used as a hardener for lead and also for certain
plastics.
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� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 18
� Electrons in fifth energy level: 5

52. Tellurium

Symbol, Te. The most common isotope has atomic weight
127.60. A rare metalloid element related to selenium. In pure
form, it is silverish-white and has high luster. In nature it is
found along with other metals such as copper. It has a charac-
teristic brittleness. Electrically, this element is a semiconductor
that exhibits photoconductive characteristics. Used in the man-
ufacture of solid-state electronic devices, especially for use in
temperature-sensing and light-sensing apparatus. Also used to
color glass. If this element is inhaled, even in minuscule
amounts, it causes an onion-like or garlic-like odor to appear on
the breath.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 18
� Electrons in fifth energy level: 6

53. Iodine

Symbol, I. The most common isotope has atomic weight 126.905.
A member of the halogen family. In pure form it has a black or
purple-black color. Well known as a poison; solutions are used
as a disinfectant for superficial skin wounds. Despite its toxicity
in large amounts or high concentrations, iodine in trace
amounts is an essential nutrient; the best sources are kelp and
ocean shellfish. Radioactive isotopes of this element are used in
medical radiology procedures. Solutions of the element can also
be used as a dye. When dilute solutions of this element come
into contact with starches, a characteristic dark purple stain is
produced.
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� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 18
� Electrons in fifth energy level: 7

54. Xenon

Symbol, Xe. The most common isotope has atomic weight
131.29. Classified as a noble gas. Colorless and odorless; present
in trace amounts in the earth’s atmosphere. Also found in the
atmosphere of Mars. Used in thyratrons, bubble chambers, elec-
tric lamps, flash tubes, and lasers. The xenon flash tube pro-
duces brilliant, blue-white visible output. Xenon gas can be iso-
lated when air is liquefied. This element can combine with
certain other elements, notably fluorine, hydrogen, and oxygen
to form compounds. When put under extreme pressure, xenon
becomes metallic.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 18
� Electrons in fifth energy level: 8

55. Cesium

Symbol, Cs. Also spelled caesium (in Britain). The most common
isotope has atomic weight 132.91. Classified as an alkali metal.
In pure form, it is silver-white in color, is ductile, and is mal-
leable. The oscillations of cesium atoms have been employed as
an atomic time standard. The element can be used as the light-
sensitive material in phototubes, and in arc lamps to produce
infrared (IR) output. In vacuum tubes, cesium is used as a ‘‘get-
ter’’ to remove residual traces of gas that remain after the evac-
uation process. The hydroxide of this element has extremely
high pH, and is caustic.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
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� Electrons in third energy level: 18
� Electrons in fourth energy level: 18
� Electrons in fifth energy level: 8
� Electrons in sixth energy level: 1

56. Barium

Symbol, Ba. The most common isotope has atomic weight
137.36. Classified as an alkaline earth. In pure form it is silver-
white in color, and is relatively soft; it is sometimes mistaken
for lead. Various compounds of barium are used as dielectrics
and ferroelectric materials. This element oxidizes readily. The
oxides of barium and strontium are used as coatings of vacuum-
tube cathodes to increase electron emission. Barium is used in
certain types of paint. Isotopes of barium have been used in the
radiological diagnoses of digestive-system diseases.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 18
� Electrons in fifth energy level: 8
� Electrons in sixth energy level: 2

57. Lanthanum

Symbol, La. The most common isotope has atomic weight
138.906. Classified as a rare earth. In pure form it is white in
color, malleable, and quite soft. Used in precision optical lenses.
Lanthanum oxidizes easily, and reacts with a variety of other
elements to form compounds. In nature, this element is found
in various minerals. The process of isolating lanthanum from
the other elements in these minerals is complicated and expen-
sive.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 18
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� Electrons in fifth energy level: 9
� Electrons in sixth energy level: 2

58. Cerium

Symbol, Ce. The most common isotope has atomic weight
140.13. Classified as a rare earth. In pure form it is light sil-
very-gray. It reacts readily with various other elements, and is
malleable and ductile. It oxidizes easily, and has been known to
burn with a flame when exposed directly to air. There are nu-
merous isotopes, some radioactive. Used in heat-resistant in-
dustrial alloys, despite its potential flammability in the pres-
ence of oxygen. It is commonly found in natural minerals.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 20
� Electrons in fifth energy level: 8
� Electrons in sixth energy level: 2

59. Praseodymium

Symbol, Pr. The most common isotope has atomic weight
140.908. Classified as a rare earth. In pure form it is silver-
gray, soft, malleable, and ductile. When exposed to air, it devel-
ops a characteristic green coating of oxide, although it is not as
highly reactive as cerium. This element is a component of the
flint material used in cigarette lighters. It is also added to cer-
tain types of industrial glass. Praseodymium salts are found in
various natural minerals.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 21
� Electrons in fifth energy level: 8
� Electrons in sixth energy level: 2
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60. Neodymium

Symbol, Nd. The most common isotope has atomic weight
144.24. Classified as a rare earth. In pure form it is shiny, and
is silvery in color. Neodymium oxidizes rapidly. It is used in low-
to-medium-power lasers along with yttrium/aluminum/garnet
(YAG) crystal. This neodymium-YAG laser is employed in jobs
where high precision is required. Neodymium is also used to
tint glass. It is used in the manufacture of infrared (IR) filters,
and is also a component of the flint material used in cigarette
lighters.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 22
� Electrons in fifth energy level: 8
� Electrons in sixth energy level: 2

61. Promethium

Symbol, Pm. Formerly called illinium. The most common iso-
tope has atomic weight 145. Classified as a rare earth. In pure
form it is gray in color, and is highly radioactive. Promethium
is dangerous to handle because of this radioactivity. Derived
from the fission of uranium, thorium, and plutonium. This ele-
ment has not been found in nature on the earth’s surface. An
isotope of this element is used in specialized photovoltaic cells
and batteries.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 23
� Electrons in fifth energy level: 8
� Electrons in sixth energy level: 2

62. Samarium

Symbol, Sm. The most common isotope has atomic weight
150.36. Classified as a rare earth. In pure form it is silvery-
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white in color with high luster. It is comparatively stable in
open air. Used in the manufacture of permanent magnets, and
in specialized alloys. Also employed in nuclear reactors and in
various electronic devices. In nature, samarium is found in min-
erals along with other rare-earth elements.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 24
� Electrons in fifth energy level: 8
� Electrons in sixth energy level: 2

63. Europium

Symbol, Eu. The most common isotope has atomic weight
151.96. Classified as a rare earth. In pure form it is silver-gray
in color, and has ductility similar to that of lead. This element
oxidizes rapidly when exposed to open air. It reacts with other
elements in a manner similar to calcium. It is used in CRT
displays to produce a red color. It is also used in lasers, and as
a neutron absorber in nuclear reactors. Europium is one of the
rarest and most expensive of the rare-earth metals.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 25
� Electrons in fifth energy level: 8
� Electrons in sixth energy level: 2

64. Gadolinium

Symbol, Gd. The most common isotope has atomic weight
157.25. Classified as a rare earth. In pure form it is silver in
color, is ductile, and is malleable. This element is fairly stable
in dry air, but when the humidity is high it tends to oxidize.
Compounds of this element are used in CRT phosphors. This
element enhances the resistance of certain metallic alloys to
oxidation, and also improves their ability to withstand heat.



Physical and Chemical Data 437

The pure metal has ferromagnetic and superconductive prop-
erties. In nature, gadolinium is found along with other rare
earths in various minerals.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 25
� Electrons in fifth energy level: 9
� Electrons in sixth energy level: 2

65. Terbium

Symbol, Tb. The most common isotope has atomic weight
158.93. Classified as a rare earth. In pure form it is silver-gray,
soft, malleable, and ductile. It is fairly stable when exposed to
dry air. The oxide is used to provide green color in CRT displays.
Sodium terbium borate is used in the semiconductor industry.
In nature, it is found in minerals with other rare-earth ele-
ments.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 27
� Electrons in fifth energy level: 8
� Electrons in sixth energy level: 2

66. Dysprosium

Symbol, Dy. The most common isotope has atomic weight 162.5.
Classified as a rare earth. In pure form it is a bright, shiny
silver color. It is soft and malleable, but it has a relatively high
melting point. It is fairly stable when exposed to dry air. Dys-
prosium has ferromagnetic properties. It is used in certain types
of lasers with vanadium. In nature, it is found in minerals with
other rare-earth elements.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
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� Electrons in third energy level: 18
� Electrons in fourth energy level: 28
� Electrons in fifth energy level: 8
� Electrons in sixth energy level: 2

67. Holmium

Symbol, Ho. The most common isotope has atomic weight
164.93. Classified as a rare earth. In pure form it is silver in
color. It is soft and malleable. It is fairly stable in dry air, but
if the humidity or temperature are high, it oxidizes quickly.
Forms ferromagnetic compounds. Used in nuclear reactors. In
nature, it is found in minerals with other rare-earth elements.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 29
� Electrons in fifth energy level: 8
� Electrons in sixth energy level: 2

68. Erbium

Symbol, Er. The most common isotope has atomic weight
167.26. Classified as a rare earth. In pure form it is silverish,
soft, malleable, and ductile. This element is comparatively sta-
ble when exposed to air. Erbium can be added to vanadium to
soften that element. Several of the isotopes are radioactive. This
element is used in the manufacture of certain ceramics; erbium
oxide has a pink tint and is sometimes used to color glass. In
nature, it is found in minerals with other rare-earth elements.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 30
� Electrons in fifth energy level: 8
� Electrons in sixth energy level: 2



Physical and Chemical Data 439

69. Thulium

Symbol, Tm. The most common isotope has atomic weight
168.93. Classified as a rare earth. In pure form, this element is
grayish in color, soft, malleable, and ductile. The natural isotope
is stable. Used in power supplies for X-ray generating equip-
ment. Compounds of this element are used in ferromagnetic ma-
terials that maintain low loss at ultra-high and microwave fre-
quencies. In nature, it is found in minerals with other
rare-earth elements, although it is comparatively rare.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 31
� Electrons in fifth energy level: 8
� Electrons in sixth energy level: 2

70. Ytterbium

Symbol, Yb. The most common isotope has atomic weight
173.04. Classified as a rare earth. In pure form it is silver-white
in color, soft, malleable, and ductile. It is somewhat susceptible
to oxidation if exposed to air, especially if the humidity is high.
Ytterbium is used in the manufacture of some stainless steel
alloys. Has been used in portable X-ray generating equipment.
One form of this element behaves as a pressure-sensitive semi-
conductor under high pressure. Derived from various ores in-
cluding gadolinite and monazite.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 8
� Electrons in sixth energy level: 2

71. Lutetium

Symbol, Lu. The most common isotope has atomic weight
174.967. Classified as a rare earth. In its pure form, it is silver-
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white and radioactive, with a half-life on the order of thousands
of millions of years. It is fairly resistant to corrosion. This ele-
ment has been used as a catalyst in certain industrial processes.
In nature, it is found in minerals along with other rare-earth
elements, but is difficult to separate and purify.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 9
� Electrons in sixth energy level: 2

72. Hafnium

Symbol, Hf. The most common isotope has atomic weight
178.49. Classified as a transition metal. In pure form, it is sil-
ver-colored, shiny, and ductile. This element is highly corrosion-
resistant. It readily emits electrons and absorbs neutrons. Used
in nuclear reactors, incandescent lamps, and gas-filled lamps.
Also used as a ‘‘getter’’ to remove residual gases from vacuum
tubes. In nature, it is found in minerals with zirconium. It is
difficult to separate pure hafnium from these minerals.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 10
� Electrons in sixth energy level: 2

73. Tantalum

Symbol, Ta. The most common isotope has atomic weight
180.95. Classified as a transition metal; an element of the va-
nadium family. In pure form it is grayish-silver in color, ductile,
and hard, with a high melting point. This element is highly
resistant to corrosion at moderate temperatures. It is used in
the manufacture of high-capacitance, close-tolerance electrolytic
capacitors. Also used in the elements of vacuum tubes, in some
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camera lenses, and in the manufacture of diodes and resistors.
The chemical and pharmaceutical industries use tantalum,
which is not affected by body fluids, to manufacture various
products. This element is resistant to corrosion and is used in
hostile industrial environments.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 11
� Electrons in sixth energy level: 2

74. Tungsten

Symbol, W. Also known as wolfram. The most common isotope
has atomic weight 183.85. Classified as a transition metal. In
pure form it is silver-colored. It has an extremely high melting
point, is known for its high tensile strength, and is relatively
resistant to corrosion. Used in switch and relay contacts, in the
filaments of electron tubes, and as the filaments in incandescent
lamps. Also employed as the anodes of X-ray tubes, and in seal-
ing between glass and metal. Alloys containing tungsten are
used in cutting tools. Compounds of tungsten are used in paints,
leather tanning, and fluorescent lamps.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 12
� Electrons in sixth energy level: 2

75. Rhenium

Symbol, Re. The most common isotope has atomic weight
186.207. Classified as a transition metal. In pure form it is
silver-white, has high density, and has a high melting point.
Annealed rhenium is ductile, and can be drawn easily into wire.
Used in thermocouples, mass spectrography equipment, flash
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lamps, and durable high-voltage electrical contacts. Alloyed
with molybdenum, this element becomes superconductive at ap-
proximately �263 degrees Celsius. In nature, it is found with
copper-sulfide ore.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 13
� Electrons in sixth energy level: 2

76. Osmium

Symbol, Os. The most common isotope has atomic weight 190.2.
A transition metal of the platinum group. In pure form, it is
bluish-silver in color, dense, hard, and brittle. Known for du-
rability. Alloys containing osmium are used in lamp filaments,
electrical contacts, the tips of writing instruments, and the
bearings of precision analog electromechanical meters. This el-
ement is dangerous if it gets into the air, even in low concen-
trations. In nature it is found in mineral deposits with platinum
and nickel.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 14
� Electrons in sixth energy level: 2

77. Iridium

Symbol, Ir. The most common isotope has atomic weight 192.22.
A transition metal of the platinum group. In pure form, it is
yellowish-white in color with high luster; it is hard, brittle, and
has high density. It is extremely resistant to corrosion. It is used
as a hardening agent for platinum. Because of its durability, it
is used in bearings, writing-instrument tips, and electrical con-
tacts that must open and close frequently. Salts of this element
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have various bright colors. It is somewhat famous as a compo-
nent of the standard meter bar in Paris, France. Occurs natu-
rally along with platinum and nickel.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 15
� Electrons in sixth energy level: 2

78. Platinum

Symbol, Pt. The most common isotope has atomic weight
195.08. Classified as a transition metal. In pure form, it has a
brilliant, shiny, white luster. It is malleable and ductile. This
element resists corrosion; used as a coating for electrodes and
switch contacts in electronic and computer systems. Also used
in specialized vacuum tubes, and in thermocouple-type meters.
An alloy of platinum and cobalt is used in the manufacture of
strong permanent magnets. In some applications it acts as a
catalyst. Platinum expands and contracts with temperature
changes in a manner similar to lime-silica glass, so it is used
as the electrode material in evacuated tubes made from this
type of glass. In nature, platinum is found along with other
metals in the same group.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 17
� Electrons in sixth energy level: 1

79. Gold

Symbol, Au. The most common isotope has atomic weight
196.967. A transition metal. In pure form it is shiny, yellowish,
ductile, malleable, and comparatively soft. Gold resists corro-
sion, and is used as a coating for electrodes and switch contacts
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in electronic and computer systems. Also used in specialized
semiconductor devices as electrodes or as a dopant. It is most
well known for its use in jewelry. A radioactive isotope of this
element is used for treating certain types of cancer. A compound
of gold and sodium is used for treating arthritis. In nature, gold
is found free, often appearing as shiny nuggets or grains rec-
ognizable to the trained eye.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 18
� Electrons in sixth energy level: 1

80. Mercury

Symbol, Hg. The most common isotope has atomic weight
200.59. Classified as a transition metal. In pure form, it is sil-
ver-colored and liquid at room temperature. It is a relatively
poor conductor of heat, but a good conductor of electric current.
Used in switches, relays, high-voltage rectifiers, high-vacuum
pumps, lamps, barometers, thermometers, and electrochemical
cells. It is also used in the manufacture of certain pesticides. It
forms compounds with many other elements. Mercury salts are
used in certain explosives devices and paints. The element is
highly toxic. It has been identified as a major pollutant in some
lakes and streams. It is not often found pure in nature. It is
usually obtained by heating the mineral cinnabar.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 18
� Electrons in sixth energy level: 2
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81. Thallium

Symbol, Tl. The most common isotope has atomic weight 204.38.
A metallic element. In pure form it is bluish-gray or dull gray,
soft, malleable, and ductile. Compounds of this element exhibit
photoconductivity, and are used in photoelectric cells at infrared
(IR) wavelengths. The element has been tested in the treatment
of certain skin infections, but because of its toxicity and the fact
that it may be carcinogenic, it has not gained widespread med-
ical acceptance. Compounds of thallium are used in the manu-
facture of pesticides, special glass, and in high-refraction optics.
Thallium occurs in various natural minerals, and is commonly
found in ores containing zinc and lead.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 18
� Electrons in sixth energy level: 3

82. Lead

Symbol, Pb. The most common isotope has atomic weight 207.2.
A metallic element. In pure form it is dull gray or blue-gray,
soft, and malleable. It is a relatively poor conductor of electric
current. Exhibits relatively low melting temperature. Lead is
corrosion-resistant and has historically been used to contain
caustic substances. It was used for thousands of years in plumb-
ing, but recently has been replaced by copper or plastic because
lead is toxic. Used in rechargeable cells and batteries, and as
fuse elements. Lead is alloyed with tin to make solder for use
in electronic equipment. It is also employed as a shield against
ionizing radiation, as a sound absorber, and in the manufacture
of certain types of glass. This element is rare in nature; it is
usually obtained from the mineral galena.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
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� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 18
� Electrons in sixth energy level: 4

83. Bismuth

Symbol, Bi. The most common isotope has atomic weight
208.98. A metallic element. In pure form it is pinkish-white and
brittle. Exhibits magnetoresistive properties. Bismuth is an ex-
tremely poor conductor of heat and electricity. When a sample
of the element is subjected to a magnetic field, its electrical con-
ductivity decreases. Used in fuses, thermocouples, thermocou-
ple type meters, and nuclear reactors. Also used in skin cos-
metics. Compounds of this element are used in medicine for the
relief of mild gastrointestinal upset. Alloys containing bismuth
have low melting points, and are used in fire-detection systems.
The element is found pure in nature, but industrially it is ob-
tained from the refining of metals.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 18
� Electrons in sixth energy level: 5

84. Polonium

Symbol, Po. The most common isotope has atomic weight 209.
Classified as a metalloid. It is produced from the decay of ra-
dium and is sometimes called radium-F. Polonium is radioac-
tive; it emits primarily alpha particles. The half-life depends on
the isotope and can range from a few weeks to more than 100
years. Polonium is dangerous to handle and can be deadly when
ingested because of the ionizing radiation it emits. It is rare in
nature, and occurs in pitchblende ore along with uranium. Po-
lonium can be obtained in the laboratory by subjecting bismuth
to high-speed neutron bombardment.
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� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 18
� Electrons in sixth energy level: 6

85. Astatine

Symbol, At. The most common isotope has atomic weight 210.
Formerly called alabamine. Classified as a halogen. The ele-
ment is radioactive, and is believed to accumulate in the thyroid
gland in a manner similar to iodine. It is produced from radio-
active decay; it can also be obtained in the laboratory by sub-
jecting bismuth to alpha-particle bombardment. This element is
extremely rare in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 18
� Electrons in sixth energy level: 7

86. Radon

Symbol, Rn. The most common isotope has atomic weight 222.
Classified as a noble gas. It is radioactive, emitting primarily
alpha particles, and has a short half-life. Radon is a colorless
gas that results from the disintegration of radium. This gas has
been found in basements, subterranean mines, caverns, and
other enclosed underground spaces. It has also been observed
dissolved in some mineral springs. Used in medical radiation
therapy. Known to contribute to lung cancer if regularly inhaled
over a long period of time.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
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� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 18
� Electrons in sixth energy level: 8

87. Francium

Symbol, Fr. The most common isotope has atomic weight 223.
Classified as an alkali metal. This element is radioactive, and
all isotopes decay rapidly. Produced as a result of the radioactive
disintegration of actinium. It can also be obtained in the labo-
ratory by subjecting thorium to high-speed proton bombard-
ment. But because of its unstable nature, it is impractical to
isolate pure francium.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 18
� Electrons in sixth energy level: 8
� Electrons in seventh energy level: 1

88. Radium

Symbol, Ra. The most common isotope has atomic weight 226.
Classified as an alkaline earth. In pure form it is silver-gray,
but darkens quickly when exposed to air. This element is radio-
active, emitting alpha particles, beta particles, and gamma
rays. It has a moderately long half-life. Radium is used in the
treatment of certain cancers. The element is luminescent and
was used at one time in ‘‘glow-in-the-dark’’ wristwatches. Ra-
dium releases radon gas slowly over time. It occurs naturally
with uranium in pitchblende ore.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
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� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 18
� Electrons in sixth energy level: 8
� Electrons in seventh energy level: 2

89. Actinium

Symbol, Ac. The most common isotope has atomic weight 227.
Classified as a rare earth. In pure form it is silver-gray in color.
This element is radioactive, emitting beta particles. The most
common isotope has a half-life of 21.6 years. It behaves in a
manner similar to lanthanum. In nature, it is found along with
uranium.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 18
� Electrons in sixth energy level: 9
� Electrons in seventh energy level: 2

90. Thorium

Symbol, Th. The most common isotope has atomic weight
232.038. Classified as a rare earth, and a member of the acti-
nide series. In pure form it is silver-colored, soft, ductile, and
malleable. It is fairly stable in air, but gradually darkens. The
naturally-occurring isotope is radioactive, emitting alpha par-
ticles, and has an extremely long half-life, on the order of sev-
eral billion years. Some isotopes are used in specialized alloys
and compounds, in the manufacture of photoelectric cells, and
to coat the tungsten in electron-tube and incandescent-lamp fil-
aments. When heated sufficiently, thorium burns with a bril-
liant white light. This element is fairly abundant in nature, ex-
isting in thorite and monazite ores. It holds promise as a source
of nuclear energy for the future. The energy released by the
radioactive decay of thorium and uranium is believed to be re-
sponsible for much of the internal heating of the earth.
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� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 18
� Electrons in sixth energy level: 10
� Electrons in seventh energy level: 2

91. Protactinium

Symbol, Pa. Formerly called protoactinium. The most common
isotope has atomic weight 231.036. Classified as a rare earth.
In pure form it is silver-colored. It is stable in air, and is dan-
gerously radioactive, emitting alpha particles. The most com-
mon isotope has a half-life of about 33,000 years. This element
is produced from the fission of uranium, plutonium, and tho-
rium. It occurs naturally along with uranium in pitchblende ore,
but is much less abundant than uranium.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 20
� Electrons in sixth energy level: 9
� Electrons in seventh energy level: 2

92. Uranium

Symbol, U. The most common isotope has atomic weight
238.029. Classified as a rare earth. In pure form it is silver-
colored, malleable, and ductile. In oxidizes readily when ex-
posed to air. Uranium is toxic as well as dangerously radioac-
tive. The naturally occurring isotope emits neutrons and
gamma rays, and has a half life of 4.5 billion years. It is prob-
ably best known as fuel for nuclear fission reactors. The element
is also employed in a variety of industrial and aerospace appli-
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cations. Uranium occurs naturally in carnotite, pitchblende, and
various other ores. The energy released by the radioactive decay
of uranium and thorium is believed to be responsible for much
of the internal heating of the earth.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 21
� Electrons in sixth energy level: 9
� Electrons in seventh energy level: 2

93. Neptunium

Symbol, Np. The most common isotope has atomic weight 237.
Classified as a rare earth. In pure form it is silver-colored, and
reacts with various other elements to form compounds. It is
used in some neutron-detection devices. Neptunium is primarily
a human-made element; it occurs naturally in minute amounts.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 23
� Electrons in sixth energy level: 8
� Electrons in seventh energy level: 2

94. Plutonium

Symbol, Pu. The most common isotope has atomic weight 244.
Classified as a rare earth. In pure form it is silver-colored; when
it is exposed to air, a yellow oxide layer forms. Plutonium reacts
with various other elements to form compounds. It is used in
nuclear reactors, and in the manufacture of nuclear bombs. It
is dangerous because of the high level of ionizing radiation it
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emits, and because it can explode if a quantity reaches the crit-
ical mass. Plutonium is primarily a human-made element; it
occurs naturally in minute amounts.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 24
� Electrons in sixth energy level: 8
� Electrons in seventh energy level: 2

95. Americium

Symbol, Am. The most common isotope has atomic weight 243.
Classified as a rare earth. In pure form it is silver-white and
malleable; it oxidizes slowly when exposed to air. Used in high-
tech smoke detectors. This element, like most transuranic ele-
ments, is dangerously radioactive. Americium is a human-made
element, not known to occur in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 25
� Electrons in sixth energy level: 8
� Electrons in seventh energy level: 2

96. Curium

Symbol, Cm. The most common isotope has atomic weight 247.
Classified as a rare earth. In pure form it is silvery in color, and
it reacts readily with various other elements. This element, like
most transuranic elements, is dangerously radioactive. When
humans are exposed for long periods, the element can accu-
mulate in the bones and interfere with blood production. It
holds some promise as a power source. Curium is a human-
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made element, not known to occur in nature, although minute
amounts might exist in some minerals.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 25
� Electrons in sixth energy level: 9
� Electrons in seventh energy level: 2

97. Berkelium

Symbol, Bk. The most common isotope has atomic weight 247.
Classified as a rare earth. It is radioactive with a short half-
life. Berkelium is a human-made element, and is not known to
occur in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 26
� Electrons in sixth energy level: 9
� Electrons in seventh energy level: 2

98. Californium

Symbol, Cf. The most common isotope has atomic weight 251.
Classified as a rare earth. It is radioactive, emitting neutrons
in large quantities. Californium is used as a portable source of
neutrons, and in the process of locating precious-metal deposits.
It has a short half-life. It is a human-made element, not known
to occur in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
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� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 28
� Electrons in sixth energy level: 8
� Electrons in seventh energy level: 2

99. Einsteinium

Symbol, E or Es. The most common isotope has atomic weight
252. Classified as a rare earth. It is radioactive with a short
half-life. Einsteinium is a human-made element, and is not
known to occur in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 29
� Electrons in sixth energy level: 8
� Electrons in seventh energy level: 2

100. Fermium

Symbol, Fm. The most common isotope has atomic weight 257.
Classified as a rare earth. It has a short half-life, is human-
made, and is not known to occur in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 30
� Electrons in sixth energy level: 8
� Electrons in seventh energy level: 2

101. Mendelevium

Symbol, Md or Mv. The most common isotope has atomic weight
258. Classified as a rare earth. It has a short half-life, is human-
made, and is not known to occur in nature.
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� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 31
� Electrons in sixth energy level: 8
� Electrons in seventh energy level: 2

102. Nobelium

Symbol, No. The most common isotope has atomic weight 259.
Classified as a rare earth. It has a short half-life (seconds or
minutes, depending on the isotope), is human-made, and is not
known to occur in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 32
� Electrons in sixth energy level: 8
� Electrons in seventh energy level: 2

103. Lawrencium

Symbol, Lr or Lw. The most common isotope has atomic weight
262. Classified as a rare earth. It has a half life less than one
minute, is human-made, and is not known to occur in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 32
� Electrons in sixth energy level: 9
� Electrons in seventh energy level: 2
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104. Rutherfordium

Symbol, Rf. Also called unnilquadium (Unq) and Kurchatovium
(Ku). The most common isotope has atomic weight 261. Clas-
sified as a transition metal. It has a half-life on the order of a
few seconds to a few tenths of a second (depending on the iso-
tope), is human-made, and is not known to occur in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 32
� Electrons in sixth energy level: 10
� Electrons in seventh energy level: 2

105. Dubnium

Symbol, Db. Also called unnilpentium (Unp) andHahnium (Ha).
The most common isotope has atomic weight 262. Classified as
a transition metal. It has a half-life on the order of a few sec-
onds to a few tenths of a second (depending on the isotope), is
human-made, and is not known to occur in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 32
� Electrons in sixth energy level: 11
� Electrons in seventh energy level: 2

106. Seaborgium

Symbol, Sg. Also called unnilhexium (Unh). The most common
isotope has atomic weight 263. Classified as a transition metal.
It has a half-life on the order of one second or less, is human-
made, and is not known to occur in nature.
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� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 32
� Electrons in sixth energy level: 12
� Electrons in seventh energy level: 2

107. Bohrium

Symbol, Bh. Also called unnilseptium (Uns). The most common
isotope has atomic weight 262. Classified as a transition metal.
It is human-made, and is not known to occur in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 32
� Electrons in sixth energy level: 13
� Electrons in seventh energy level: 2

108. Hassium

Symbol, Hs. Also called unniloctium (Uno). The most common
isotope has atomic weight 265. Classified as a transition metal.
It is human-made, and not known to occur in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 32
� Electrons in sixth energy level: 14
� Electrons in seventh energy level: 2
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109. Meitnerium

Symbol, Mt. Also called unnilenium (Une). The most common
isotope has atomic weight 266. Classified as a transition metal.
It is human-made, and not known to occur in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 32
� Electrons in sixth energy level: 15
� Electrons in seventh energy level: 2

110. Ununnilium

Symbol, Uun. The most common isotope has atomic weight 269.
Classified as a transition metal. It is human-made, and not
known to occur in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 32
� Electrons in sixth energy level: 17
� Electrons in seventh energy level: 1

111. Unununium

Symbol, Uuu. The most common isotope has atomic weight 272.
Classified as a transition metal. It is human-made, and not
known to occur in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
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� Electrons in fifth energy level: 32
� Electrons in sixth energy level: 18
� Electrons in seventh energy level: 1

112. Ununbium

Symbol, Uub. The most common isotope has atomic weight 277.
Classified as a transition metal. It is human-made, and not
known to occur in nature.

� Electrons in first energy level: 2
� Electrons in second energy level: 8
� Electrons in third energy level: 18
� Electrons in fourth energy level: 32
� Electrons in fifth energy level: 32
� Electrons in sixth energy level: 18
� Electrons in seventh energy level: 2

113.

As of this writing, no identifiable atoms of an element with
atomic number 113 have been reported. The synthesis of or ap-
pearance of such an atom is believed possible because of the
observation of ununqadium (Uuq, element 114) in the labora-
tory.

114. Ununquadium

Symbol, Uuq. The most common isotope has atomic weight 285.
First reported in January 1999. It is human-made, and not
known to occur in nature.

115.

As of this writing, no identifiable atoms of an element with
atomic number 115 have been reported. The synthesis or ap-
pearance of such an atom is believed possible, because of the
observation of ununhexium (Uuh, element 116) in the labora-
tory.
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116. Ununhexium

Symbol, Uuh. The most common isotope has atomic weight 289.
First reported in January 1999. It is a decomposition product
of ununoctium, and it in turn decomposes into ununquadium.
It is not known to occur in nature.

117.

As of this writing, no identifiable atoms of an element with
atomic number 117 have been reported. The synthesis or ap-
pearance of such an atom is believed possible, because of the
observation of ununoctium (Uuo, element 118) in the laboratory.

118. Ununoctium

Symbol, Uuo. The most common isotope has atomic weight 293.
It is the result of the fusion of krypton and lead, and decom-
poses into ununhexium. It is not known to occur in nature.

Chemical Compounds and Mixtures

The following is a list of some chemical combinations used in
scientific and industrial components, devices, and systems.

Alnico

Trade name for an alloy used in strong permanent magnets.
Contains aluminum, nickel, and cobalt. Sometimes also con-
tains copper and/or titanium.

Alumel

Trade name for an alloy used in thermocouple devices. Com-
posed of nickel (three parts) and aluminum (one part).

Alumina

Trade name for an aluminum-oxide ceramic used in electron
tube insulators and as a substrate in the fabrication of thin-film
circuits.
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Aluminum antimonide

Formula, AlSb. A crystalline compound useful as a semiconduc-
tor dopant.

Barium-strontium oxides

The combined oxides of barium and strontium, employed as
coatings of vacuum-tube cathodes to increase electron emission
at relatively low temperatures.

Barium-strontium titanate

A compound of barium, strontium, oxygen, and titanium, used
as a ceramic dielectric material. Exhibits ferroelectric proper-
ties and a high dielectric constant.

Barium titanate

Formula, BaTi02. A ceramic employed as the dielectric in ca-
pacitors. Has a high dielectric constant and some ferroelectric
properties.

Beryllia

Formula, BeO. Trade name for beryllium oxide, used in various
forms as an insulator and structural element (as in resistor
cores).

Cadmium borate

Formula, (CdO � B2O3): Mn. Used as a phosphor coating in CRT
screens; characteristic fluorescence is green or orange.

Cadmium selenide

A compound consisting of cadmium and selenium. Exhibits pho-
toconductive properties. Useful as a semiconductor in photo-
electric cells.

Cadmium silicate

Formula, CdO � SiO2. Used as a phosphor coating in CRT
screens; characteristic fluorescence is orange-yellow.



462 Chapter Five

Cadmium sulfide

A compound consisting of cadmium and sulfur. Exhibits photo-
conductive properties. Useful as a semiconductor in photoelec-
tric cells.

Cadmium tungstate

Formula, CdO � WO3. Used as a phosphor coating in CRT
screens; characteristic fluorescence is blue-white.

Calcium phosphate

Formula, Ca3(PO4)2. Used as a phosphor coating in CRT screens;
characteristic fluorescence is white.

Calcium silicate

Formula, (CaO � SiO2): Mn. Used as a phosphor coating in CRT
screens; characteristic fluorescence ranges from orange to
green.

Calcium tungstate

Formula, CaWO4. Used as a phosphor coating in CRT screens;
characteristic fluorescence is blue.

Chromel

Trade name for a nickel/chromium/iron alloy that is used in
the manufacture of thermocouples.

Chromium dioxide

Formula, CrO2. Used in the manufacture of specialized ther-
mocouples and recording tape.

Constantan

Trade name for an alloy of copper and nickel, used in thermo-
couples and standard resistors.

Copper oxides and sulfides

Compounds with semiconducting properties, occasionally used
in the manufacture of rectifiers, meters, modulators, and pho-
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tocells. These compounds have been largely replaced by silicon
in recent years.

Ferrite

Trade name for a ferromagnetic material consisting of iron ox-
ide and one or more other metals. Used as core material for
inductors and switching elements. Also used in CRT deflection
coils, and in loopstick receiving antennas at very low, low, me-
dium, and high radio frequencies.

Gallium arsenide

Formula, GaAs. A compound of gallium and arsenic, used as a
semiconductor material in low-noise diodes, varactors, and
FETs.

Gallium phosphide

A compound of gallium and phosphorus, used as a semiconduc-
tor material in light-emitting diodes (LEDs).

Garnet

A mineral containing silicon and various other elements, form-
ing a hard crystalline material. Mixed with aluminum and yt-
trium, garnet is used in solid-state lasers.

Germanium dioxide

Formula, GeO2. A gray or white powder obtainable from various
sources; it is reduced in an atmosphere of hydrogen or helium
to yield elemental germanium.

Helium/neon

Abbreviation, He-Ne. A mixture of these two gases is used in
low-cost lasers for various applications. The output is in the red
part of the visible spectrum.

Indium antimonide

A combination of indium and antimony, used in the manufac-
ture of semiconductor components.
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Iron oxides

Compounds consisting of iron and oxygen. The most familiar
example is common rust. Used in specialized rechargeable cells
and batteries.

Lead peroxide

A compound used as a constituent of the positive electrodes in
lead-acid electrochemical storage cells and batteries.

Magnesium fluoride

Used as a phosphor coating on the screens of long-persistence
CRTs. The fluorescence is orange.

Magnesium silicate

Used as a phosphor coating on the screens of CRTs. Fluores-
cence is orange-red.

Magnesium tungstate

Used as a phosphor coating on the screens of CRTs. Fluores-
cence is blue-white.

Magnet steel

A high-retentivity alloy of chromium, cobalt, manganese, steel,
and tungsten, employed in the manufacture of permanent mag-
nets.

Manganese dioxide

Formula, MnO2. Mixed with powdered carbon and used as a
depolarizing agent in electrochemical dry cells.

Manganin

Trade name for a low-temperature-coefficient alloy used in mak-
ing wire for precision resistors. Consists of copper 84 percent,
manganese 12 percent, and nickel 4 percent.
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Monel

Trade name for an alloy primarily consisting of nickel, copper,
iron, manganese, and trace amounts of various other metals.

Mercuric iodide

Formula, HgI2. A compound whose crystals are used as detec-
tors in high-resolution gamma-ray spectroscopy.

Mercuric oxide

A compound used in the cathodes of electrochemical mercury
cells and batteries.

Mercury cadmium telluride

Formula HgCdTe. An alloy used as a semiconductor in transis-
tors, integrated circuits, and IR detectors.

Neodymium/yttrium/aluminum/garnet

Abbreviation, neodymium-YAG. A mixture used in low-power,
solid-state lasers. Employed in medical applications and other
jobs where high precision is required.

Nichrome

Trade name for a nickel-chromium alloy used in the form of a
wire or strip for resistors and heater elements.

Nickel/cadmium

Abbreviation, NiCd or NICAD. A mixture used in rechargeable
electrochemical cells and batteries.

Nickel hydroxide

A compound used in rechargeable electrochemical power sup-
plies. Examples are nickel/cadmium (NiCd or NICAD) and
nickel/metal hydride (NiMH) batteries, used in older notebook
computers.
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Nickel/ iron

A mixture used as a specialized rechargeable electrochemical
cell in which the active positive plate material consists of nickel
hydroxide, the active negative plate material is powdered iron
oxide mixed with cadmium, and the electrolyte is potassium hy-
droxide.

Nickel oxide

A compound of nickel and oxygen, used in specialized semicon-
ductor components, particularly diodes.

Nickel silver

An alloy of copper, nickel, and zinc, sometimes used for making
resistance wire. Also called German silver.

Platinum/tellurium

These two metals, when placed in direct contact, form a ther-
mocouple used in specialized metering devices.

Potassium chloride

Formula, KCl. A compound used as a phosphor coating on the
screen of long-persistence CRTs. Fluorescence is magenta or
white. Also used as a salt substitute for people on prescribed
low-sodium diets.

Potassium cyanide

Formula, KCN. A highly toxic salt used as an electrolyte in elec-
troplating.

Potassium hydroxide

A compound used in rechargeable electrochemical cells and bat-
teries, along with various other compounds and mixtures. An
example is the nickel/cadmium (NiCd or NICAD) cell.
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Proustite

Trade name for crystalline silver arsenide trisulfide. Artificial
crystals of this compound are used in tunable IR emitting de-
vices.

Silicon carbide

Formula, SiC. A compound of silicon and carbon, used as a
semiconductor, an abrasive material, and a refractory sub-
stance. In industrial applications, this compound is sometimes
called by its trade name, Carborundum.

Silicon dioxide

Formula, SiO2. Also called silica. Used in IR emitting devices.
In the passivation of transistors and integrated circuits, a thin
layer of silicon dioxide is grown on the surface of the wafer to
protect the otherwise exposed junctions.

Silicon oxides

A mixture of silicon monoxide (SiO) and silicon dioxide (SiO2)
that exhibits dielectric properties. Used in the manufacture of
metal-oxide-semiconductor (MOS) devices.

Silicon steel

A high-permeability, high-resistance steel containing 2 to 3 per-
cent silicon. Used as core material in transformers and other
electromagnetic devices.

Silver solder

A solder consisting of an alloy of silver, copper, and zinc. Has a
comparatively high melting temperature.

Sodium iodide

A crystalline compound that sparkles when exposed to high-
speed subatomic particles or radioactivity. Useful as a detector
or counter of ionizing radiation.
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Sodium silicate

Also called water glass. A compound used as a fireproofing agent
and protective coating.

Steel

An alloy of iron, carbon, and other metals, used in the construc-
tion of antenna support towers, in permanent magnets and elec-
tromagnets, and as the core material for high-tensile-strength
wire.

Sulfur hexafluoride

A gas employed as a coolant and insulant in some power trans-
formers.

Sulfuric acid

Formula, H2SO4. An acid consisting of hydrogen, sulfur, and ox-
ygen. Used in a dilute solution or paste as the electrolyte in
rechargeable lead-acid cells and batteries.

Tantalum nitride

A compound used in the manufacture of specialized, close-
tolerance, thin-film resistors.

Thallium oxysulfide

A compound of thallium, oxygen, and sulfur, used as the light-
sensitive material in photoelectric cells.

Thorium oxide

A compound mixed with tungsten to increase electron emissiv-
ity in the filaments and cathodes of electron tubes.

Tin/lead

These two elements are commonly alloyed to make solder. Usu-
ally combined in a tin-to-lead ratio of 50:50 or 60:40.
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Tin oxide

A combination of tin and oxygen, useful as resistive material in
the manufacture of thin-film resistors.

Titanium dioxide

Formula, TiO2. A compound consisting of titanium and oxygen.
Useful as a dielectric material.

Yttrium/aluminum/garnet

Abbreviation, YAG. A crystalline mixture used along with var-
ious elements, such as neodymium, in low-power, solid-state la-
sers.

Yttrium/iron/garnet

Abbreviation, YIG. A crystalline mixture used in acoustic delay
lines, parametric amplifiers, and filters.

Zinc aluminate

Either of two similar compounds used as phosphor coatings in
CRT screens. One form glows blue; the other form glows red.

Zinc beryllium silicate

A compound used as a phosphor coating in CRT screens. Fluo-
rescence is yellow.

Zinc beryllium zirconium silicate

A compound used as a phosphor coating in CRT screens. Fluo-
rescence is white.

Zinc borate

A compound used as a phosphor coating in CRT screens. Fluo-
rescence is yellow-orange.

Zinc cadmium sulfide

Either of two similar compounds used as phosphor coatings in
CRT screens. One form glows blue; the other form glows red.
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Zinc germanate

A compound used as a phosphor coating in CRT screens. Fluo-
rescence is yellow-green.

Zinc magnesium fluoride

A compound used as a phosphor coating in CRT screens. Fluo-
rescence is orange.

Zinc orthoscilicate

Also called by the trade name Willemite. A compound used as
a phosphor coating in CRT screens. Fluorescence is yellow-
green.

Zinc oxide

A compound used as a phosphor coating in CRT screens. Fluo-
rescence is blue-green. Also used in the manufacture of certain
electronic components, such as voltage-dependent resistors
(varistors). A cream containing this compound is used for relief
of skin irriration.

Zinc silicate

A compound used as a phosphor coating in CRT screens. Fluo-
rescence is blue.

Zinc sulfide

A compound used as a phosphor coating in CRT screens. Fluo-
rescence is blue-green or yellow-green.

Zirconia

Any of various compounds containing zirconium, especially its
oxide (ZrO2), valued for high-temperature dielectric properties.
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This chapter contains information in tabular form of of interest
to engineers, mathematicians, and general scientists.

Prefix multipliers
Table 6.1
Page 478

This table lists names and
multiplication factors for decimal
(power-of-10) prefix multipliers and
binary (power-of-2) prefix multipliers.

SI unit
conversions
Table 6.2
Page 479

This is a conversion database for basic
SI units to and from various other
units. The first column lists units to be
converted; the second column lists units
to be derived. The third column lists
factors by which units in the first
column must be multiplied to obtain
units in the second column. The fourth
column lists factors by which units in
the second column must be multiplied
to obtain units in the first column.
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Electrical unit
conversions
Table 6.3
Page 480

This is a conversion database for
electrical SI units to and from various
other units. The first column lists units
to be converted; the second column lists
units to be derived. The third column
lists numbers by which units in the first
column must be multiplied to obtain
units in the second column. The fourth
column lists numbers by which units in
the second column must be multiplied
to obtain units in the first column.

Magnetic unit
conversions
Table 6.4
Page 482

This is a conversion database for
magnetic SI units to and from various
other units. The first column lists units
to be converted; the second column lists
units to be derived. The third column
lists factors by which units in the first
column must be multiplied to obtain
units in the second column. The fourth
column lists factors by which units in
the second column must be multiplied
to obtain units in the first column.

Miscellaneous
unit conversions
Table 6.5
Page 483

This is a conversion database for
miscellaneous SI units to and from
various other units. The first column
lists units to be converted; the second
column lists units to be derived. The
third column lists factors by which units
in the first column must be multiplied
to obtain units in the second column.
The fourth column lists factors by which
units in the second column must be
multiplied to obtain units in the first
column.

Constants
Table 6.6
Page 485

This table lists common physical,
electrical, and chemical constants.
Expressed units can be converted to
other units by using Tables 6.2 through
6.5.
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Chemical
symbols and
atomic numbers
Table 6.7
Page 486

This table lists the known chemical
elements in alphabetical order, with
their chemical symbols and atomic
numbers. For further information about
these elements, refer to the section
‘‘Chemical Elements’’ in Chapter 5.

Derivatives
Table 6.8
Page 489

This table lists some common first
derivatives. Functions are in the first
column; their first derivatives are in the
second column. For further information
about differentiation, refer to the
section ‘‘Scalar Differentiation’’ in
Chapter 3.

Indefinite
integrals
Table 6.9
Page 490

This table lists some common indefinite
integrals (antiderivatives). Functions
are in the first column; their
antiderivatives are in the second
column. For further information about
integration, refer to the section ‘‘Scalar
Integration’’ in Chapter 3.

Fourier series
Table 6.10
Page 496

This table lists some common Fourier
series. Descriptions are in the first
column; the first few terms of the
expansions are in the second column.

Fourier
transforms
Table 6.11
Page 497

This table lists some common Fourier
transforms. Functions are in the first
column; transforms are in the second
column.

Orthogonal
polynomials
Table 6.12
Page 499

This table depicts expansions of
Tschebshev, Hermite, and Laguerre
polynomials. Symbols are in the first
column; expansions are in the second
column.

Laplace
transforms
Table 6.13
Page 500

This table depicts one-dimensional
Laplace transforms. Image functions are
in the first column, original functions
are in the second column.
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Lowercase Greek
alphabet
Table 6.14
Page 503

This table lists lowercase Greek letters,
character names (as written in English),
and usages. These symbols are often
italicized in printed texts.

Uppercase Greek
alphabet
Table 6.15
Page 505

This table lists uppercase Greek letters,
character names (as written in English),
and usages. These symbols are often
italicized in printed texts.

General
mathematical
symbols
Table 6.16
Page 506

This table lists symbols used to depict
operations, relations, and specifications
in mathematics. Some of these symbols
may appear italicized in printed texts.

Number
conversion
Table 6.17
Page 511

This table compares decimal, binary,
octal, and hexadecimal numbers for
decimal values 0 through 256.

Flip-flops
Table 6.18
Page 516

Table A denotes the states for flip-flops
of the R-S type; table B denotes the
states for flip-flops of the J-K type.

Logic gates
Table 6.19
Page 517

This table denotes the states for logic
gates of NOT, OR, AND, NOR, NAND,
XOR, and XNOR types. The NOT gate
(inverter) is specified as having one
input and one output. The other gates
are all specified as having two inputs
and one output.

Wire gauge
Table 6.20
Page 518

Table A shows designators and
diameters for American Wire Gauge
(AWG). Table B shows designators and
diameters for British Standard Wire
Gauge (NBS SWG). Table C shows
designators and diameters for
Birmingham Wire Gauge (BWG).
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Current-carrying
capacity
Table 6.21
Page 520

This table denotes the maximum safe
continuous DC carrying capacities, in
amperes, for American Wire Gauges
(AWG) 8 through 20 in open air at room
temperature.

Resistivity
Table 6.22
Page 521

This table shows resistivity values, in
micro-ohms per meter, for solid copper
wire of sizes AWG No. 2 through No. 30
carrying DC at room temperature.

Permeability
Table 6.23
Page 521

This table shows the permeability
factors of some materials, in terms of
the extent to which a substance
concentrates magnetic lines of flux. Free
space is assumed to have permeability
1.

Solder data
Table 6.24
Page 522

This table denotes the most common
types of solder used in industry, with
melting points in degrees Fahrenheit
and Celsius.

Radio spectrum
Table 6.25
Page 522

This table denotes bands in the radio-
frequency (RF) spectrum, with
frequency and wavelength ranges
defined in the common units for each
band.

Schematic
symbols
Table 6.26
Page 523

This table shows common discrete-
component symbols used in electronic
circuit diagrams.

TV broadcast
channels
Table 6.27
Page 536

Table A lists frequencies for very-high-
frequency (VHF) television broadcast
channels. Table B lists frequencies for
ultra-high-frequency (UHF) television
channels.

Q signals
Table 6.28
Page 538

This table lists signals commonly used
by Amateur Radio and some military
communications personnel.
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TABLE 6.1 Prefix Multipliers and Their
Abbreviations

Designator Symbol Decimal Binary

yocto- y 10�24 2�80

zepto- z 10�21 2�70

atto- a 10�18 2�60

femto- f 10�15 2�50

pico- p 10�12 2�40

nano- n 10�9 2�30

micro- � or mm 10�6 2�20

milli- m 10�3 2�10

centi- c 10�2 —
deci- d 10�1 —
(none) — 100 20

deka- da or D 101 —
hecto- h 102 —
kilo- K or k 103 210

mega- M 106 220

giga- G 109 230

tera- T 1012 240

peta- P 1015 250

exa- E 1018 260

zetta- Z 1021 270

yotta- Y 1024 280

Ten-code signals
Table 6.29
Page 541

This table lists signals commonly used
by Citizens Radio and law-enforcement
communications personnel.

Morse code
Table 6.30
Page 549

This table lists ‘‘dot/dash’’ symbols for
International Morse code, occasionally
used by Amateur Radio and military
communications personnel.

Phonetic
alphabet
Table 6.31
Page 550

This table lists standard words to define
letters of the alphabet in voice
communications modes. These
designators are used by Amateur Radio,
military, and law-enforcement
personnel.

Time conversion
Table 6.32
Page 551

This is a conversion database for time
designations between Coordinated
Universal Time (UTC) and various time
zones in the United States.



Data Tables 479

TABLE 6.2 SI Unit Conversions*

To convert: To: Multiply by:
Conversely,
multiply by:

meters (m) Angstroms 1010 10�10

meters (m) nanometers (nm) 109 10�9

meters (m) microns (�) 106 10�6

meters (m) millimeters (mm) 103 10�3

meters (m) centimeters (cm) 102 10�2

meters (m) inches (in) 39.37 0.02540
meters (m) feet (ft) 3.281 0.3048
meters (m) yards (yd) 1.094 0.9144
meters (m) kilometers (km) 10�3 103

meters (m) statute miles (mi) 6.214 � 10�4 1.609 � 103

meters (m) nautical miles 5.397 � 10�4 1.853 � 103

meters (m) light seconds 3.336 � 10�9 2.998 � 108

meters (m) astronomical units
(AU)

6.685 � 10�12 1.496 � 1011

meters (m) light years 1.057 � 10�16 9.461 � 1015

meters (m) parsecs (pc) 3.241 � 10�17 3.085 � 1016

kilograms (kg) atomic mass units
(amu)

6.022 � 1026 1.661 � 10�27

kilograms (kg) nanograms (ng) 1012 10�12

kilograms (kg) micrograms (�g) 109 10�9

kilograms (kg) milligrams (mg) 106 10�6

kilograms (kg) grams (g) 103 10�3

kilograms (kg) ounces (oz) 35.28 0.02834
kilograms (kg) pounds (lb) 2.205 0.4535
kilograms (kg) English tons 1.103 � 10�3 907.0
seconds (s) minutes (min) 0.01667 60.00
seconds (s) hours (h) 2.778 � 10�4 3.600 � 103

seconds (s) days (dy) 1.157 � 10�5 8.640 � 104

seconds (s) years (yr) 3.169 � 10�8 3.156 � 107

seconds (s) centuries 3.169 � 10�10 3.156 � 109

seconds (s) millenia 3.169 � 10�11 3.156 � 1010

degrees Kelvin (�K) degrees Celsius (�C) Subtract 273 Add 273
degrees Kelvin (�K) degrees Fahrenheit (�F) Multiply by

1.80, then
subtract
459

Multiply by
0.556, then
add 255

degrees Kelvin (�K) degrees Rankine (�R) 1.80 0.556
amperes (A) carriers per second 6.24 � 1018 1.60 � 10�19

amperes (A) statamperes (statA) 2.998 � 109 3.336 � 10�10

amperes (A) nanoamperes (nA) 109 10�9

amperes (A) microamperes (�A) 106 10�6

amperes (A) abamperes (abA) 0.10000 10.000
amperes (A) milliamperes (mA) 103 10�3

candela (cd) microwatts per
steradian (�W/sr)

1.464 � 103 6.831 � 10�4
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TABLE 6.2 SI Unit Conversions* (Continued )

To convert: To: Multiply by:
Conversely,
multiply by:

candela (cd) milliwatts per
steradian (mW/sr)

1.464 0.6831

candela (cd) lumens per steradian
(lum/sr)

identical; no
conversion

identical; no
conversion

candela (cd) watts per steradian
(W/sr)

1.464 � 10�3 683.1

moles (mol) coulombs (C) 9.65 � 104 1.04 � 10�5

*When no coefficient is given, the coefficient is meant to be precisely
equal to 1.

TABLE 6.3 Electrical Unit Conversions*

To convert: To: Multiply by:
Conversely,
multiply by:

unit electric charges coulombs (C) 1.60 � 10�19 6.24 � 1018

unit electric charges abcoulombs (abC) 1.60 � 10�20 6.24 � 1019

unit electric charges statcoulombs (statC) 4.80 � 10�10 2.08 � 109

coulombs (C) unit electric charges 6.24 � 1018 1.60 � 10�19

coulombs (C) statcoulombs (statC) 2.998 � 109 3.336 � 10�10

coulombs (C) abcoulombs (abC) 0.1000 10.000
joules (J) electronvolts (eV) 6.242 � 1018 1.602 � 10�19

joules (J) ergs (erg) 107 10�7

joules (J) calories (cal) 0.2389 4.1859
joules (J) British thermal units

(Btu)
9.478 � 10�4 1.055 � 103

joules (J) watt-hours (Wh) 2.778 � 10�4 3.600 � 103

joules (J) kilowatt-hours (kWh) 2.778 � 10�7 3.600 � 106

volts (V) abvolts (abV) 108 10�8

volts (V) microvolts (�V) 106 10�6

volts (V) millivolts (mV) 103 10�3

volts (V) statvolts (statV) 3.336 � 10�3 299.8
volts (V) kilovolts (kV) 10�3 103

volts (V) megavolts (MV) 10�6 106

ohms (�) abohms (ab�) 109 10�9

ohms (�) megohms (M�) 10�6 106

ohms (�) kilohms (k�) 10�3 103

ohms (�) statohms (stat�) 1.113 � 10�12 8.988 � 1011

siemens (S) statsiemens (statS) 8.988 � 1011 1.113 � 10�12

siemens (S) microsiemens (�S) 106 10�6

siemens (S) millisiemens (mS) 103 10�3

siemens (S) absiemens (abS) 10�9 109

watts (W) picowatts (pW) 1012 10�12

watts (W) nanowatts (nW) 109 10�9
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TABLE 6.3 Electrical Unit Conversions* (Continued )

To convert: To: Multiply by:
Conversely,
multiply by:

watts (W) microwatts (�W) 106 10�6

watts (W) milliwatts (mW) 103 10�3

watts (W) British thermal units
per hour (Btu/hr)

3.412 0.2931

watts (W) horsepower (hp) 1.341 � 10�3 745.7
watts (W) kilowatts (kW) 10�3 103

watts (W) megawatts (MW) 10�6 106

watts (W) gigawatts (GW) 10�9 109

hertz (Hz) degrees per second
(deg/s)

360.0 0.002778

hertz (Hz) radians per second
(rad/s)

6.283 0.1592

hertz (Hz) kilohertz (kHz) 10�3 103

hertz (Hz) megahertz (MHz) 10�6 106

hertz (Hz) gigahertz (GHz) 10�9 109

hertz (Hz) terahertz (THz) 10�12 1012

farads (F) picofarads (pF) 1012 10�12

farads (F) statfarads (statF) 8.898 � 1011 1.113 � 10�12

farads (F) nanofarads (nF) 109 10�9

farads (F) microfarads (�F) 106 10�6

farads (F) abfarads (abF) 10�9 109

henrys (H) nanohenrys (nH) 109 10�9

henrys (H) abhenrys (abH) 109 10�9

henrys (H) microhenrys (�H) 106 10�6

henrys (H) millihenrys (mH) 103 10�3

henrys (H) stathenrys (statH) 1.113 � 10�12 8.898 � 1011

volts per meter
(V/m)

picovolts per meter
(pV/m)

1012 10�12

volts per meter
(V/m)

nanovolts per meter
(nV/m)

109 10�9

volts per meter
(V/m)

microvolts per meter
(�V/m)

106 10�6

volts per meter
(V/m)

millivolts per meter
(mV/m)

103 10�3

volts per meter
(V/m)

volts per foot (v / ft) 3.281 0.3048

watts per square
meter (W/m2)

picowatts per square
meter (pW/m2)

1012 10�12

watts per square
meter (W/m2)

nanowatts per square
meter (pW/m2)

109 10�9

watts per square
meter (W/m2)

microwatts per square
meter (�W/m2)

106 10�6

watts per square
meter (W/m2)

milliwatts per square
meter (mW/m2)

103 10�3
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TABLE 6.3 Electrical Unit Conversions* (Continued )

To convert: To: Multiply by:
Conversely,
multiply by:

watts per square
meter (W/m2)

watts per square foot
(W/ft2)

0.09294 10.76

watts per square
meter (W/m2)

watts per square inch
(W/in2)

6.452 � 10�4 1.550 � 103

watts per square
meter (W/m2)

watts per square
centimeter (W/cm2)

10�4 104

watts per square
meter (W/m2)

watts per square
millimeter (W/mm2)

10�6 106

*When no coefficient is given, the coefficient is meant to be precisely
equal to 1.

TABLE 6.4 Magnetic Unit Conversions*

To convert: To: Multiply by:
Conversely,
multiply by:

webers (Wb) maxwells (Mx) 108 10�8

webers (Wb) ampere-microhenrys
(A�H)

106 10�6

webers (Wb) ampere-millihenrys
(AmH)

103 10�3

webers (Wb) unit poles 1.257 � 10�7 7.956 � 106

teslas (T) maxwells per square
meter (Mx/m2)

108 10�8

teslas (T) gauss (G) 104 10�4

teslas (T) maxwells per square
centimeter (Mx/cm2)

104 10�4

teslas (T) maxwells per square
millimeter (Mx/mm2)

102 10�2

teslas (T) webers per square
centimeter (W/cm2)

104 104

teslas (T) webers per square
millimeter (W/mm2)

10�6 106

oersteds (Oe) microamperes per meter
(�A/m)

7.956 � 107 1.257 � 10�8

oersteds (Oe) milliamperes per meter
(mA/m)

7.956 � 104 1.257 � 10�5

oersteds (Oe) amperes per meter
(A/m)

79.56 0.01257

ampere-turns (AT) microampere-turns (�AT) 106 10�6

ampere-turns (AT) milliampere-turns (mAT) 103 10�3

ampere-turns (AT) gilberts (G) 1.256 0.7956

*When no coefficient is given, the coefficient is meant to be precisely
equal to 1.
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TABLE 6.5 Miscellaneous Unit Conversions*

To convert: To: Multiply by: Conversely, multiply by:

square meters (m2) square Angstroms 1020 10�20

square meters (m2) square nanometers (nm2) 1018 10�18

square meters (m2) square microns (�2) 1012 10�12

square meters (m2) square millimeters (mm2) 106 10�6

square meters (m2) square centimeters (cm2) 104 10�4

square meters (m2) square inches (in2) 1.550 � 103 6.452 � 10�4

square meters (m2) square feet (ft2) 10.76 0.09294
square meters (m2) acres 2.471 � 10�4 4.047 � 103

square meters (m2) hectares 10�4 104

square meters (m2) square kilometers (km2) 10�6 106

square meters (m2) square statute miles (mi2) 3.863 � 10�7 2.589 � 106

square meters (m2) square nautical miles 2.910 � 10�7 3.434 � 106

square meters (m2) square light years 1.117 � 10�17 8.951 � 1016

square meters (m2) square parsecs (pc2) 1.051 � 10�33 9.517 � 1032

cubic meters (m3) cubic Angstroms 1030 10�30

cubic meters (m3) cubic nanometers (nm3) 1027 10�27

cubic meters (m3) cubic microns (�3) 1018 10�18

cubic meters (m3) cubic millimeters (mm3) 109 10�9

cubic meters (m3) cubic centimeters (cm3) 106 10�6

cubic meters (m3) milliliters (ml) 106 10�6

cubic meters (m3) liters (l) 103 10�3

cubic meters (m3) U.S. gallons (gal) 264.2 3.785 � 10�3

cubic meters (m3) cubic inches (in3) 6.102 � 104 1.639 � 10�5

cubic meters (m3) cubic feet (ft3) 35.32 0.02831
cubic meters (m3) cubic kilometers (km3) 10�9 109

cubic meters (m3) cubic statute miles (mi3) 2.399 � 10�10 4.166 � 109

cubic meters (m3) cubic nautical miles 1.572 � 10�10 6.362 � 109

cubic meters (m3) cubic light seconds 3.711 � 10�26 2.695 � 1025
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To convert: To: Multiply by: Conversely, multiply by:

cubic meters (m3) cubic astronomical units (AU3) 2.987 � 10�34 3.348 � 1033

cubic meters (m3) cubic light years 1.181 � 10�48 8.469 � 1047

cubic meters (m3) cubic parsecs (pc3) 3.406 � 10�50 2.936 � 1049

radians (rad) degrees (� or deg) 57.30 0.01745
meters per second (m/s) inches per second (in/s) 39.37 0.02540
meters per second (m/s) kilometers per hour (km/hr) 3.600 0.2778
meters per second (m/s) feet per second (ft /s) 3.281 0.3048
meters per second (m/s) statute miles per hour (mi/hr) 2.237 0.4470
meters per second (m/s) knots (kt) 1.942 0.5149
meters per second (m/s) kilometers per minute (km/min) 0.06000 16.67
meters per second (m/s) kilometers per second (km/s) 10�3 103

radians per second (rad/s) degrees per second (� /s or deg/s) 57.30 0.01745
radians per second (rad/s) revolutions per second (rev/s or rps) 0.1592 6.283
radians per second (rad/s) revolutions per minute (rev/min or

rpm)
2.653 � 10�3 377.0

meters per second per second (m/s2) inches per second per second (in/s2) 39.37 0.02540
meters per second per second (m/s2) feet per second per second (ft /s2) 3.281 0.3048
radians per second per second (rad/s2) degrees per second per second (� /s2 or

deg/s2)
57.30 0.01745

radians per second per second (rad/s2) revolutions per second per second
(rev/s2 or rps/s)

0.1592 6.283

radians per second per second (rad/s2) revolutions per minute per second
(rev/min/s or rpm/s)

2.653 � 10�3 377.0

newtons (N) dynes 105 10�5

newtons (N) ounces (oz) 3.597 0.2780
newtons (N) pounds (lb) 0.2248 4.448

*When no coefficient is given, the coefficient is meant to be precisely equal to 1.
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TABLE 6.6 Physical, Electrical, and Chemical Constants

Quantity or phenomenon Value Symbol

Mass of sun 1.989 � 1030 kg msun

Mass of earth 5.974 � 1024 kg mearth

Avogadro’s number 6.022169 � 1023 mol�1 N or NA

Mass of moon 7.348 � 1022 kg mmoon

Mean radius of sun 6.970 � 108 m rsun

Speed of electromagnetic-field
propagation in free space

2.99792 � 108 m/s c

Faraday constant 9.64867 � 104 C/mol F
Mean radius of earth 6.371 � 106 m rearth

Mean orbital speed of earth 2.978 � 104 m/s
Base of natural logarithms 2.718282 e or �

Ratio of circle circumference to radius 3.14159 �

Mean radius of moon 1.738 � 106 m rmoon

Characteristic impedance of free
space

376.7 � Z0

Speed of sound in dry air at standard
atmospheric temperature and
pressure

344 m/s

Gravitational acceleration at sea level 9.8067 m/s2 g
Gas constant 8.31434 J/K/mol R or R0

Fine structure constant 7.2974 � 10�3 

Wien’s constant 0.0029 m � K �W

Second radiation constant 0.0143883 m � K c2

Permeability of free space 1.257 � 10�6 H/m �0

Stefan-Boltzmann constant 5.66961 � 10�8 W/m2/K4 �
Gravitational constant 6.6732 � 10�11 N � m2/kg2 G
Permittivity of free space 8.85 � 10�12 F/m �0

Boltzmann’s constant 1.380622 � 10�23 J /K k
First radiation constant 4.99258 � 10�24 J � m c1

Atomic mass unit (AMU) 1.66053 � 10�27 kg u
Bohr magneton 9.2741 � 10�24 J /T �B

Bohr radius 5.2918 � 10�11 m 
0

Nuclear magneton 5.0510 � 10�27 J /T �n

Mass of alpha particle 6.64 � 10�27 kg m


Mass of neutron at rest 1.67492 � 10�27 kg mn

Mass of proton at rest 1.67261 � 10�27 kg mp

Compton wavelength of proton 1.3214 � 10�15 m �cp

Mass of electron at rest 9.10956 � 10�31 kg me

Radius of electron 2.81794 � 10�15 m re

Elementary charge 1.60219 � 10�19 C e
Charge-to-mass ratio of electron 1.7588 � 1011 C/kg e /me

Compton wavelength of electron 2.4263 � 10�12 m �c

Planck’s constant 6.6262 � 10�34 J � s h
Quantum-charge ratio 4.1357 � 10�5 J � s/C h /e
Rydberg constant 1.0974 � 107 m�1 R	

Euler’s constant 0.577216 �
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TABLE 6.7 The Chemical Elements in
Alphabetical Order by Name, Including
Chemical Symbols and Atomic
Numbers 1 Through 118*

Element name
Chemical
symbol

Atomic
number

Actinium Ac 89
Aluminum Al 13
Americium Am 95
Antimony Sb 51
Argon Ar 18
Arsenic As 33
Astatine At 85
Barium Ba 56
Berkelium Bk 97
Beryllium Be 4
Bismuth Bi 83
Bohrium Bh 107
Boron B 5
Bromine Br 35
Cadmium Cd 48
Calcium Ca 20
Californium Cf 98
Carbon C 6
Cerium Ce 58
Cesium Cs 55
Chlorine Cl 17
Chromium Cr 24
Cobalt Co 27
Copper Cu 29
Curium Cm 96
Dubnium Db 105
Dysprosium Dy 66
Einsteinium Es 99
Erbium Er 68
Europium Eu 63
Fermium Fm 100
Fluorine F 9
Francium Fr 87
Gadolinium Gd 64
Gallium Ga 31
Germanium Ge 32
Gold Au 79
Hafnium Hf 72
Hassium Hs 108
Helium He 2
Holmium Ho 67
Hydrogen H 1
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TABLE 6.7 The Chemical Elements in
Alphabetical Order by Name, Including
Chemical Symbols and Atomic
Numbers 1 Through 118* (Continued )

Element name
Chemical
symbol

Atomic
number

Indium In 49
Iodine I 53
Iridium Ir 77
Iron Fe 26
Krypton Kr 36
Lanthanum La 57
Lawrencium Lr or Lw 103
Lead Pb 82
Lithium Li 3
Lutetium Lu 71
Magnesium Mg 12
Manganese Mn 25
Meitnerium Mt 109
Mendelevium Md 101
Mercury Hg 80
Molybdenum Mo 42
Neodymium Nd 60
Neon Ne 10
Neptunium Np 93
Nickel Ni 28
Niobium Nb 41
Nitrogen N 7
Nobelium No 102
Osmium Os 76
Oxygen O 8
Palladium Pd 46
Phosphorus P 15
Platinum Pt 78
Plutonium Pu 94
Polonium Po 84
Potassium K 19
Praseodymium Pr 59
Promethium Pm 61
Protactinium Pa 91
Radium Ra 88
Radon Rn 86
Rhenium Re 75
Rhodium Rh 45
Rubidium Rb 37
Ruthenium Ru 44
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TABLE 6.7 The Chemical Elements in
Alphabetical Order by Name, Including
Chemical Symbols and Atomic
Numbers 1 Through 118* (Continued )

Element name
Chemical
symbol

Atomic
number

Rutherfordium Rf 104
Samarium Sm 62
Scandium Sc 21
Seaborgium Sg 106
Selenium Se 34
Silicon Si 14
Silver Ag 47
Sodium Na 11
Strontium Sr 38
Sulfur S 16
Tantalum Ta 73
Technetium Tc 43
Tellurium Te 52
Terbium Tb 65
Thallium Tl 81
Thorium Th 90
Thulium Tm 69
Tin Sn 50
Titanium Ti 22
Tungsten W 74
Ununbium Uub 112
Ununhexium Uuh 116
Ununnilium Uun 110
Ununoctium Uuo 118
Ununquadium Uuq 114
Unununium Uuu 111
Uranium U 92
Vanadium V 23
Xenon Xe 54
Ytterbium Yb 70
Yttrium Y 39
Zinc Zn 30
Zirconium Zr 40

*As of the time of writing, there
were no known elements with atomic
numbers 113, 115, or 117. For further
details about each element, please re-
fer to the section ‘‘Chemical Elements’’
in Chapter 5.
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TABLE 6.8 Derivatives*

Function Derivative

f (x) � a f �(x) � 0
f (x) � ax f �(x) � a
f (x) � axn f �(x) � naxn�1

f (x) � 1/x f �(x) � ln �x�
f (x) � ln x f �(x) � 1/x
f (x) � ln g(x) f �(x) � g�1(x) g�(x)
f (x) � 1/xa f �(x) � �a / (xa�1)
f (x) � ex f �(x) � ex

f (x) � ax f �(x) � ax ln a
f (x) � ag(x) f �(x) � (ag(x)) (ln a) (g �(x))
f (x) � eax f �(x) � aex

f (x) � eg(x) f �(x) � eg(x) g �(x)
f (x) � sin x f �(x) � cos x
f (x) � cos x f �(x) � �sin x
f (x) � tan x f �(x) � sec2 x
f (x) � csc x f �(x) � �csc x cot x
f (x) � sec x f �(x) � sec x tan x
f (x) � cot x f �(x) � �csc2 x
f (x) � arcsin x � sin�1 x f �(x) � 1/(1 � x 2)1 / 2

f (x) � arccos x � cos�1 x f �(x) � �1/(1 � x2)1 / 2

f (x) � arctan x � tan�1 x f �(x) � 1/(1 � x2)
f (x) � arccsc x � csc�1 x f �(x) � �1/[x (x 2 � 1)1 / 2]
f (x) � arcsec x � sec�1 x f �(x) � 1/[x (x 2 � 1)1 / 2]
f (x) � arccot x � cot�1 x f �(x) � �1/(1 � x2)
f (x) � sinh x f �(x) � cosh x
f (x) � cosh x f �(x) � sinh x
f (x) � tanh x f �(x) � sech2 x
f (x) � csch x f �(x) � �csch x coth x
f (x) � sech x f �(x) � sech x tanh x
f (x) � coth x f �(x) � �csch2 x
f (x) � arcsinh x � sinh�1 x f �(x) � 1/(x 2 � 1)1 / 2

f (x) � arccosh x � cosh�1 x f �(x) � 1/(x 2 � 1)1 / 2

f (x) � arctanh x � tanh�1 x f �(x) � 1/(1 � x 2)
f (x) � arccsch x � csch�1 x f �(x) � �1/[x (1 � x 2)1 / 2] for x � 0

f �(x) � 1/[x(1 � x 2)1 / 2] for x � 0
f (x) � arcsech x � sech�1 x f �(x) � �1/[x(1 � x 2)1 / 2] for x � 0

f �(x) � 1/[x (1 � x 2)1 / 2] for x � 0
f (x) � arccoth x � coth�1 x f �(x) � 1/(1 � x 2)

*Letters a, b, and c denote constants. Letters f, g, and h de-
note functions;m, n, and p denote integers; w, x, y, and z denote
variables. The letter e represents the exponential constant (ap-
proximately 2.71828).
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TABLE 6.9 Indefinite Integrals*

Function Indefinite integral

f (x) � 0 
 f (x) dx � c
f (x) � 1 
 f (x) dx � 1 � c
f (x) � a 
 f (x) dx � a � c
f (x) � x 
 f (x) dx � 0.5x 2 � c
f (x) � ax 
 f (x) dx � 0.5ax 2 � c
f (x) � ax 2 
 f (x) dx � (1⁄3)ax 3 � c
f (x) � ax 3 
 f (x) dx � (1⁄4)ax 4 � c
f (x) � ax 4 
 f (x) dx � (1⁄5)ax 5 � c
f (x) � ax�1 
 f (x) dx � a ln �x� � c
f (x) � ax�2 
 f (x) dx � �ax�1 � c
f (x) � ax�3 
 f (x) dx � �0.5ax�2 � c
f (x) � ax�4 
 f (x) dx � (�1⁄3)ax�3 � c
f (x) � (ax � b)1 / 2 
 f (x) dx � (2⁄3)(ax � b)3 / 2 a�1 � c
f (x) � (ax � b)�1 / 2 
 f (x) dx � 2(ax � b)1 / 2 a�1 � c
f (x) � (ax � b)�1 
 f (x) dx � a�1(ln (ax � b)) � c
f (x) � (ax � b)�2 
 f (x) dx � �a�1(ax � b)�1 � c
f (x) � (ax � b)�3 
 f (x) dx � �0.5a�1(ax � b)�2 � c
f (x) � (ax � b)n

where n � �1

 f (x) dx � (ax � b)n�1(an � a)�1 � c

f (x) � x(ax � b)1 / 2 
 f (x) dx � (1⁄15)a�2(6ax � 4b)(ax � b)3 / 2 � c
f (x) � x(ax � b)�1 / 2 
 f (x) dx � (1⁄3)a�2(4ax � 4b)(ax � b)1 / 2 � c
f (x) � x(ax � b)�1 
 f (x) dx � (a�1x) � a�2b ln (ax � b) � c
f (x) � x(ax � b)�2 
 f (x) dx � b(a3x � a2b)�1 � a�2 ln (ax � b) � c
f (x) � x(ax � b)�3 
 f (x) dx � (b � (a3x � a2b)�1)(2a4x 2 � 4a3 bx

� 2a2b2)�1 � c
f (x) � x 2(ax � b)1 / 2 
 f (x) dx �

(1⁄105)a�3(30a2x 2 � 24abx � 16b2)(ax � b)3 / 2 � c
f (x) � x 2(ax � b)�1 / 2 
 f (x) dx �

(1⁄15)a�3(6a2x 2 � 8abx � 16b2)(ax � b)1 / 2 � c
f (x) � x 2(ax � b)�1 
 f (x) dx � ((ax � b)2 /2a3)

� a�3(2abx � 2b2) � (a�3b2) ln (ax � b) � c
f (x) � x 2(ax � b)�2 
 f (x) dx � a�2x � a�3b � a�3b2 (ax � b)�1

� 2a�3b ln (ax � b) � c
f (x) � x 2(ax � b)�3 
 f (x) dx � 2a�3b(ax � b)�1

� b2(2a3(ax � b)2)�1 � a�3 ln (ax � b) � c
f (x) � (ax 2 � bx)�1 
 f (x) dx � (b�2a)(ln ((ax � b) /x)) � (bx)�1 � c
f (x) � (ax 3 � bx 2)�1 
 f (x) dx � (ln (x(ax � b)�1)) /b
f (x) � (ax � b)(rx � s) 
 f (x) dx � (br � as)�1 ln ((ax � b)�1 (rx � s)) � c
f (x) �

(ax � b)(rx � s)�1

 f (x) dx � ar�1x � r�2(br � as) ln (rx � s) � c

f (x) � (x 2 � a2)1 / 2 
 f (x) dx � 0.5x(x 2 � a2)1 / 2

� 0.5a2 ln (x � (x 2 � a2)1 / 2) � c
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TABLE 6.9 Indefinite Integrals* (Continued )

Function Indefinite integral

f (x) � (x 2 � a2)1 / 2 
 f (x) dx � 0.5x(x 2 � a2)1 / 2

� 0.5a2 ln (x � (x 2 � a2)1 / 2) � c
f (x) � (a2 � x 2)1 / 2 
 f (x) dx � 0.5x(a2 � x 2)1 / 2 � 0.5a2 sin�1 (a�1x) � c
f (x) � (x 2 � a2)�1 / 2 
 f (x) dx � ln (x � (x 2 � a2)1 / 2) � c
f (x) � (x 2 � a2)�1 / 2 
 f (x) dx � ln (x � (x 2 � a2)1 / 2) � c
f (x) � (a2 � x 2)�1 / 2 
 f (x) dx � sin�1 (a�1x) � c
f (x) � (x 2 � a2)�1 
 f (x) dx � a�1 tan�1 (a�1x) � c
f (x) � (x 2 � a2)�1 
 f (x) dx � 0.5a�1 ln ((x � a)�1 (x � a)) � c
f (x) � (a2 � x 2)�1

where �a� � �x�

 f (x) dx � 0.5a�1 ln ((a � x)�1 (a � x)) � c

f (x) � (x 2 � a2)�2 
 f (x) dx �
(2a2x 2 � 2a4)�1 x � 0.5a�3 tan�1 (a�1x) � c

f (x) � (x 2 � a2)�2 
 f (x) dx � (�x)(2a2x 2 � 2a4)�1

� 0.25a�3 ln ((x � a)�1 (x � a)) � c
f (x) � (a2 � x 2)�2

where �a� � �x�

 f (x) dx � �x(2a4 � 2a2x 2)�1

� 0.25a�3 ln ((a � X )�1 (a � x)) � c
f (x) � x(x 2 � a2)1 / 2 
 f (x) dx � (1⁄3)(x 2 � a2)3 / 2 � c
f (x) � x(x 2 � a2)1 / 2 
 f (x) dx � (1⁄3)(x 2 � a2)3 / 2 � c
f (x) � x(a2 � x 2)1 / 2 
 f (x) dx � (�1⁄3)(a2 � x 2)3 / 2 � c
f (x) � x(x 2 � a2)�1 / 2 
 f (x) dx � (x 2 � a2)1 / 2 � c
f (x) � x(x 2 � a2)�1 / 2 
 f (x) dx � (x 2 � a2)1 / 2 � c
f (x) � x(a2 � x 2)�1 / 2 
 f (x) dx � �(a2 � x 2)1 / 2 � c
f (x) � x(x 2 � a2)�1 
 f (x) dx � 0.5 ln (x 2 � a2) � c
f (x) � x(x 2 � a2)�1 
 f (x) dx � 0.5 ln (x 2 � a2) � c
f (x) � x(a2 � x 2)�1

where �a� � �x�

 f (x) dx � �0.5 ln (a2 � x 2) � c

f (x) � x(x 2 � a2)�2 
 f (x) dx � (�2x 2 � 2a2)�1 � c
f (x) � x(x 2 � a2)�2 
 f (x) dx � �0.5(x 2 � a2)�1 � c
f (x) � x(a2 � x 2)�2

where �a� � �x�

 f (x) dx � 0.5(a2 � x 2)�1 � c

f (x) � x 2(x 2 � a2)1 / 2 
 f (x) dx � 0.25x(x 2 � a2)3 / 2 � (1⁄8)a2x(x 2 � a2)1 / 2

� (1⁄8)a4 ln (x � (x 2 � a2)1 / 2) � c
f (x) � x 2(x 2 � a2)1 / 2 
 f (x) dx � 0.25x(x 2 � a2)3 / 2 � (1⁄8)a2x(x 2 � a2)1 / 2

� (1⁄8)a4 ln (x � (x 2 � a2)1 / 2) � c
f (x) � x 2(a2 � x 2)1 / 2 
 f (x) dx � �0.25x(a2 � x 2)3 / 2 � (1⁄8)a2x(a2 � x 2)1 / 2

� (1⁄8)a4 sin�1 (a�1x) � c
f (x) � x 2(x 2 � a2)�1 / 2 
 f (x) dx � 0.5(x 2 � a2)1 / 2

� 0.5a2 ln (x � (x 2 � a2)1 / 2) � c
f (x) � x 2(x 2 � a2)�1 / 2 
 f (x) dx � 0.5x(x 2 � a2)1 / 2

� 0.5a2 ln (x � (x 2 � a2)1 / 2) � c
f (x) � x 2(a2 � x 2)�1 / 2 
 f (x) dx � �0.5x(a2 � x 2)1 / 2

� 0.5a2 sin�1 (a�1x) � c
f (x) � x 2(x 2 � a2)�1 
 f (x) dx � x � a tan�1 (a�1x) � c
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TABLE 6.9 Indefinite Integrals* (Continued )

Function Indefinite integral

f (x) � x 2(x 2 � a2)�1 
 f (x) dx � x � 0.5a ln ((x � a)�1 (x � a)) � c
f (x) � x 2(a2 � x 2)�1

where �a� � �x�

 f (x) dx � �x � 0.5a ln ((a � x)�1 (a � x)) � c

f (x) � x 2(x 2 � a2)�2 
 f (x) dx �
� x(2x 2 � 2a2)�1 � (2a)�1 tan�1 (a�1x) � c

f (x) � x 2(x 2 � a2)�2 
 f (x) dx � (�x)(2x 2 � 2a2)�1

� 0.25 a�1 ln ((x � a)�1 (x � a)) � c
f (x) � x 2(a2 � x 2)�2

where �a� � �x�

 f (x) dx � x(2a2 � 2x 2)�1

� 0.25a�1 ln ((a � x)�1 (a � x)) � c
f (x) � axn 
 f (x) dx � axn�1 (n � 1)�1 � c

provided that n � �1
f (x) � a g(x) 
 f (x) dx � a 
g(x) dx � c
f (x) � g(x) � h(x) 
 f (x) dx � 
g(x) dx � 
h(x) dx � c
f (x) � h(x) g �(x) 
 f (x) dx � g(x)h(x) � 
g(x)h�(x) � c
f (x) � ex 
 f (x) dx � ex � c
f (x) � a ebx 
 f (x) dx � a ebx /b � c
f (x) � x�1 ebx 
 f (x) dx � ln x � c � bx � (2! � 2)�1b2x 2

� (3! � 3)�1b3x 3 � (4! � 4)�1b4x 4 � . . .
f (x) � x ebx 
 f (x) dx � b�1x ebx � b�2 ebx � c
f (x) � x 2 ebx 
 f (x) dx � b�1x 2 ebx � 2b�2x ebx � 2b�3 ebx � c
f (x) � ln�1 x 
 f (x) dx � ln (ln x) � ln x � c

� (2! � 2)�1 ln2 x � (3! � 3)�1 ln3 x � . . .
f (x) � x�2 ln x 
 f (x) dx � � x�1 ln x � x�1 � c
f (x) � x�1 ln x 
 f (x) dx � 0.5 ln2 x � c
f (x) � ln x 
 f (x) dx � x ln x � x � c
f (x) � x ln x 
 f (x) dx � (1⁄2)x 2 ln x � (1⁄4)x 2 � c
f (x) � x 2 ln x 
 f (x) dx � (1⁄3)x 3 ln x � (1⁄9)x 3 � c
f (x) � ln2 x 
 f (x) dx � x ln2 x � 2x ln x � 2x � c
f (x) � sin x 
 f (x) dx � �cos x � c
f (x) � cos x 
 f (x) dx � sin x � c
f (x) � tan x 
 f (x) dx � ln �sec x� � c
f (x) � csc x 
 f (x) dx � ln �tan (0.5 x)� � c
f (x) � sec x 
 f (x) dx � ln �sec x � tan x� � c
f (x) � cot x 
 f (x) dx � ln �sin x� � c
f (x) � sin ax 
 f (x) dx � �a�1 cos ax � c
f (x) � cos ax 
 f (x) dx � a�1 sin ax � c
f (x) � tan ax 
 f (x) dx � a�1 ln (sec ax) � c
f (x) � csc ax 
 f (x) dx � a�1 ln (tan (0.5ax)) � c
f (x) � sec ax 
 f (x) dx � a�1 ln (tan (0.25� � 0.5ax)) � c
f (x) � cot ax 
 f (x) dx � a�1 ln (sin ax) � c
f (x) � sin2 x 
 f (x) dx � 0.5 (x � (0.5 sin (2x))) � c
f (x) � cos2 x 
 f (x) dx � 0.5 (x � (0.5 sin (2x))) � c
f (x) � tan2 x 
 f (x) dx � tan x � x � c
f (x) � csc2 x 
 f (x) dx � �cot x � c
f (x) � sec2 x 
 f (x) dx � tan x � c
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TABLE 6.9 Indefinite Integrals* (Continued )

Function Indefinite integral

f (x) � cot2 x 
 f (x) dx � �cot x � x � c
f (x) � sin2 ax 
 f (x) dx � 0.5x � 0.25a�1 (sin 2ax) � c
f (x) � cos2 ax 
 f (x) dx � 0.5x � 0.25a�1 (sin 2ax) � c
f (x) � tan2 ax 
 f (x) dx � a�1 tan ax � x � c
f (x) � csc2 ax 
 f (x) dx � �a�1 cot ax � c
f (x) � sec2 ax 
 f (x) dx � a�1 tan ax � c
f (x) � cot2 ax 
 f (x) dx � �a�1 cot ax � x � c
f (x) � x sin ax 
 f (x) dx � a�2 sin ax � a�1x cos ax � c
f (x) � x cos ax 
 f (x) dx � a�2 cos ax � a�1x sin ax � c
f (x) � x 2 sin ax 
 f (x) dx � 2a�2x sin ax

� (2a�3 � a�1x 2) cos ax � c
f (x) � x 2 cos ax 
 f (x) dx � 2a�2x cos ax

� (a�1x 2 � 2a�3) sin ax � c
f(x) � (sin x cos x)�2 
 f (x) dx � 2 cot 2x � c
f (x) � (sin x cos x)�1 
 f (x) dx � ln (tan x) � c
f (x) � sin x cos x 
 f (x) dx � 0.5 sin2 x � c
f (x) � sin2 x cos2 x 
 f (x) dx � (1⁄8) x � (1⁄32) sin 4x � c
f (x) � (sin ax cos ax)�2 
 f (x) dx � 2a�1 cot 2ax � c
f (x) � (sin ax cos ax)�1 
 f (x) dx � a�1 ln (tan ax) � c
f (x) � sin ax cos ax 
 f (x) dx � 0.5 a�1 sin2 ax � c
f (x) � sin2 ax cos2 ax 
 f (x) dx � (1⁄8) x � (1⁄32) (a�1) sin 4ax � c
f (x) � sec x tan x 
 f (x) dx � sec x � c
f (x) � sin�1 x 
 f (x) dx � x sin�1 x � (1 � x 2)1 / 2 � c
f (x) � cos�1 x 
 f (x) dx � x cos�1 x � (1 � x 2)1 / 2 � c
f (x) � tan�1 x 
 f (x) dx � x tan�1 x � 0.5 ln (1 � x 2) � c
f (x) � csc�1 x 
 f (x) dx � x csc�1 x � ln (x � (x 2 � 1)1 / 2) � c

when �� /2 � csc�1 x � 0

 f (x) dx � x csc�1 x � ln (x � (x 2 � 1)1 / 2) � c

when 0 � csc�1 x � � /2
f (x) � sec�1 x 
 f (x) dx � x sec�1 x � ln (x � (x 2 � 1)1 / 2) � c

when 0 � sec�1 x � � /2

 f (x) dx � x sec�1 x � ln (x � (x 2 � 1)1 / 2) � c

when � /2 � sec�1 x � �
f (x) � cot�1 x 
 f (x) dx � x cot�1 x � 0.5 ln (1 � x2) � c
f (x) � sinh x 
 f (x) dx � cosh x � c
f (x) � cosh x 
 f (x) dx � sinh x � c
f (x) � tanh x 
 f (x) dx � ln �cosh x� � c
f (x) � csch x 
 f (x) dx � ln �tanh (0.5 x)� � c
f (x) � sech x 
 f (x) dx � 2 tan�1 (ex) � c
f (x) � coth x 
 f (x) dx � ln �sinh x� � c
f (x) � sinh ax 
 f (x) dx � a�1 cosh ax � c
f (x) � cosh ax 
 f (x) dx � a�1 sinh ax � c
f (x) � tanh ax 
 f (x) dx � a�1 ln �cosh ax� � c
f (x) � csch ax 
 f (x) dx � a�1 ln �tanh (0.5 ax)� � c
f (x) � sech ax 
 f (x) dx � 2a�1 tan�1 (eax) � c
f (x) � coth ax 
 f (x) dx � a�1 ln �sinh ax� � c
f (x) � sinh2 x 
 f (x) dx � 0.5 sinh x cosh x � 0.5x � c
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TABLE 6.9 Indefinite Integrals* (Continued )

Function Indefinite integral

f (x) � cosh2 x 
 f (x) dx � 0.5 sinh x cosh x � 0.5x � c
f (x) � tanh2 x 
 f (x) dx � x � tanh x � c
f (x) � csch2 x 
 f (x) dx � � coth x � c
f (x) � sech2 x 
 f (x) dx � tanh x � c
f (x) � coth2 x 
 f (x) dx � x � coth x � c
f (x) � sinh2 ax 
 f (x) dx � 0.5a�1 sinh ax cosh ax � 0.5x � c
f (x) � cosh2 ax 
 f (x) dx � 0.5a�1 sinh ax cosh ax � 0.5x � c
f (x) � tanh2 ax 
 f (x) dx � x � a�1 tanh ax � c
f (x) � csch2 ax 
 f (x) dx � �a�1 coth ax � c
f (x) � sech2 ax 
 f (x) dx � a�1 tanh ax � c
f (x) � coth2 ax 
 f (x) dx � x � a�1 coth ax � c
f (x) � (sinh x)1 
 f (x) dx � ln �tanh 0.5x� � c
f (x) � (cosh x)�1 
 f (x) dx � 2 tan�1 ex � c
f (x) � (sinh ax)�1 
 f (x) dx � a�1 ln �tanh 0.5ax� � c
f (x) � (cosh ax)�1 
 f (x) dx � 2a�1 tan�1 eax � c
f (x) � (sinh x)�2 
 f (x) dx � coth x � c
f (x) � (cosh x)�2 
 f (x) dx � tanh x � c
f (x) � (sinh ax)�2 
 f (x) dx � a�1 coth ax � c
f (x) � (cosh ax)�2 
 f (x) dx � a�1 tanh ax � c
f (x) �

(sinh x cosh x)�2

 f (x) dx � �2 coth 2x � c

f (x) �
(sinh x cosh x)�1


 f (x) dx � ln �tanh x� � c

f (x) � sinh x cosh x 
 f (x) dx � 0.5 sinh2 x � c
f (x) � sinh2 x cosh2 x 
 f (x) dx � (1⁄32) sinh 4x � (1⁄8)x � c
f (x) �

(sinh ax cosh ax)�2

 f (x) dx � �2a�1 coth 2ax � c

f (x) �
(sinh ax cosh ax)�1


 f (x) dx � a�1 ln �tanh ax� � c

f (x) � sinh ax cosh ax 
 f (x) dx � 0.5a�1 sinh2 ax � c
f (x) �

sinh2 ax cosh2 ax

 f (x) dx � (1⁄32) a�1 sinh 4ax � (1⁄8)x � c

f (x) � sinh�1 x 
 f (x) dx � x sinh�1 x � (x2 � 1)1 / 2 � c
f (x) � cosh�1 x 
 f (x) dx � x cosh�1 x � (x 2 � 1)1 / 2 � c

when cosh�1 x � 0

 f (x) dx � x cosh�1 x � (x2 � 1)1 / 2 � c

when cosh�1 x � 0
f (x) � tanh�1 x f (x) dx � x tanh�1 x � 0.5 ln (1 � x 2) � c
f (x) � csch�1 x 
 f (x) dx � x csch�1 x � sinh�1 x � c

when x � 0

 f (x) dx � x csch�1 x � sinh�1 x � c

when x � 0
f (x) � sech�1 x 
 f (x) dx � x sech�1 x � sin�1 x � c

when sech�1 x � 0

 f (x) dx � x sech�1 x � sin�1 x � c

when sech�1 x � 0



Data Tables 495

TABLE 6.9 Indefinite Integrals* (Continued )

Function Indefinite integral

f (x) � coth�1 x 
 f (x) dx � x coth�1 x � 0.5 ln (x2 � 1) � c
f (x) � sinh�1 ax 
 f (x) dx � x sinh�1 ax � (x2 � a�2)1 / 2 � c
f (x) � cosh�1 ax 
 f (x) dx � x cosh�1 ax � (x2 � a�2)1 / 2 � c

when cosh�1 ax � 0

 f (x) dx � x cosh�1 ax � (x 2 � a�2)1 / 2 � c

when cosh�1 ax � 0
f (x) � tanh�1 ax 
 f (x) dx � x tanh�1 ax � 0.5a�1 ln (a�2 � x 2) � c
f (x) � csch�1 ax 
 f (x) dx � x csch�1 ax � a�1 sinh�1 ax � c

when x � 0

 f (x) dx � x csch�1 ax � a�1 sinh�1 ax � c

when x � 0
f (x) � sech�1 ax 
 f (x) dx � x sech�1 ax � a�1 sin�1 ax � c

when sech�1 ax � 0

 f (x) dx � x sech�1 ax � a�1 sin�1 ax � c

when sech�1 ax � 0
f (x) � coth�1 ax 
 f (x) dx � x coth�1 ax � 0.5a�1 ln (x 2 � a�2) � c

*Letters a, b, r, and s denote general constants; c denotes the constant
of integration; f, g, and h denote functions; w, x, y, and z denote variables.
The letter e represents the exponential constant (approximately 2.71828)
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TABLE 6.10 Fourier Series*

Description Expansion

General Fourier series F (x) � a0 /2 � a1 cos (�x /L) � b1 sin (�x /L)
� a2 cos (2�x /L) � b2 sin (2�x /L)
� a3 cos (3�x /L) � b3 sin (3�x /L) � . . .
� an cos (n�x /L) � bn sin (n�x /L) � . . .

Square wave
f (� ) � �1 for �� � � � 0
f (�) � 1 for 0 � � � �

F (� ) � sin � � (sin 3� ) /3 � (sin 5�) /5
� (sin 7� ) /7 � (sin 9� ) /9 � . . .

Ramp wave
f (� ) � � for �� � � � �

F (� ) � sin � � (sin 2� ) /2 � (sin 3� /3)
� (sin 4�) /4 � (sin 5�) /5 � . . .

Inverted full-rectified sine
wave

f (� ) � � 2 for �� � � � �

F (� ) � � /3 � 4 cos � � (4 cos 2� ) /22

� (4 cos 3� ) /32 � (4 cos 4� ) /42

� (4 cos 5� ) /52 � . . .
Sawtooth wave
f (� ) � �� �

F (� ) � cos � � (cos 3� ) /32 � (cos 5� ) /52

� (cos 7� ) /72 � (cos 9� ) /92 � . . .
Half-wave-rectified sine

wave
f (� ) � sin � for 0 � � � �
f (� ) � 0 for � � � � 2�

F (� ) � 1⁄2 � (� /4) sin � � (cos 2� ) /3
� (cos 4� ) / (3 � 5) � (cos 6� ) / (5 � 7) � . . .

Full-wave-rectified sine
wave

f (� ) �
�sin �� for �� � � � �

F (� ) � 1⁄2 � (cos 2� ) /3 � (cos 4� ) / (3 � 5)
� (cos 6� ) / (5 � 7) � (cos 8� ) / (7 � 9) � . . .

2� 8 � 8⁄3 � 8⁄5 � 8⁄7 � 8⁄9 � 8⁄11 � . . .
� 4 � 4⁄3 � 4⁄5 � 4⁄7 � 4⁄9 � 4⁄11 � . . .
� /2 2 � 2⁄3 � 2⁄5 � 2⁄7 � 2⁄9 � 2⁄11 � . . .
� /4 1 � 1⁄3 � 1⁄5 � 1⁄7 � 1⁄9 � 1⁄11 � . . .
� /8 1⁄2 � 1⁄6 � 1⁄10 � 1⁄14 � 1⁄18 � 1⁄22 � . . .
� 2 6 � 6⁄4 � 6⁄9 � 6⁄16 � . . . � 6/n2 � . . .
� 2 /2 3 � 3⁄4 � 3⁄9 � 3⁄16 � . . . � 3/n2 � . . .
� 2 /3 2 � 2⁄4 � 2⁄9 � 2⁄16 � . . . � 2/n2 � . . .
� 2 /6 1 � 1⁄4 � 1⁄9 � 1⁄16 � . . . � 1/n2 � . . .
� 2 /8 1 � 1⁄9 � 1⁄25 � . . . � 1/(2n � 1)2 � . . .
� 2 /12 1 � 1⁄4 � 1⁄9 � 1⁄16 � 1⁄25 � 1⁄36 � . . .

� 1/(n2) if n is odd . . .
� 1/(n2) if n is even . . . � . . .

*Functions are in the first column; initial terms are in the second col-
umn. Letters a and b (with or without subscripts) denote constants; n
denotes a positive integer; f denotes a function; F denotes a Fourier series
corresponding to the function f. Characters x and � denote variables.
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TABLE 6.11 Fourier Transforms*

Description Transform

General
Fourier transform
of f (x) F (�) � f (x) e�i�x dx

	�
�	

General
Fourier sine
transform
of f (x)

f (x) sin �x dx
	

S(�) � �
0

General
Fourier cosine
transform
of f (x)

f (x) cos �x dx
	

C (�) � �
0

f (x) � x�1 S(�) � 0.5�
f (x) � x�1 / 2 S(�) � (0.5� /�)1 / 2

f (x) � x�1 / 2 C (�) � (0.5� /�)1 / 2

f (x) � (x 2 � 1)�1 F (�) � � e��

f (x) � (x 2 � 1)�1 C (�) � 0.5� e��

f (x) � (x 2 � a2)�1 F (�) � a�1� e�a�

f (x) � (x 2 � a2)�1 C (�) � 0.5a�1� e�a�

f (x) � x(x 2 � 1)�1 F (�) � �i� e��

f (x) � x(x 2 � 1)�1 S (�) � 0.5� e��

f (x) � x(x 2 � a2)�1 F (�) � �i� e�a�

f (x) � x(x 2 � a2)�1 S (�) � 0.5� e�a�

f (x) � e��x� F (�) � �(2��1)1 / 2(1 � � 2)�1

f (x) � e��x� S (�) � (2��1)1 / 2�(1 � � 2)�1

f (x) � e��x� C (�) � (2��1)1 / 2(1 � �2)�1

f (x) � e�a�x� F (�) � �a(2��1)1 / 2(a2 � �2)�1

f (x) � e�a�x� S (�) � (2��1)1 / 2�(a2 � � 2)�1

f (x) � e�a�x� C (�) � (2��1)1 / 2a(a2 � � 2)�1

f (x) � �x��1 / 2 e��x� F (�) � (1 � � 2)�1 / 2(1 � (1 � � 2)1 / 2)1 / 2

f (x) � �x��1 / 2 e�a�x� F (�) � (a2 � � 2)�1 / 2(a � (a2 � � 2)1 / 2)1 / 2

f (x) � x�1 sin x F (�) � (0.5�)1 / 2 when ��� � 1
F (�) � 0 when ��� � 1

f (x) � x�1 sin x S (�) � 0.5 ln ((� � 1)�1(� � 1))
f (x) � x�1 sin x C (�) � 0.5� when � � 1

C (�) � 0.25� when � � 1
C (�) � 0 when � � 1

f (x) � x�1 sin ax F (�) � (0.5�)1 / 2 when ��� � a
F (�) � 0 when ��� � a

f (x) � x�1 sin ax S (�) � 0.5 ln ((� � a)�1(� � a))
f (x) � x�1 sin ax C (�) � 0.5� when � � a

C (�) � 0.25� when � � a
C (�) � 0 when � � a

f (x) � x�2 sin x S (�) � 0.5�� when � � 1
S (�) � 0.5� when � � 1

f (x) � x�2 sin ax S (�) � 0.5�� when � � a
S (�) � 0.5a� when � � a
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TABLE 6.11 Fourier Transforms* (Continued )

Description Transform

f (x) � sin x 2 F (�) � (2)�1 / 2 (cos (0.25� 2) � 0.25�)
f (x) � sin x 2 C (�) � (� /8)1 / 2 (cos (0.25� 2) � sin (0.25� 2))
f (x) � sin ax 2 F (�) � (2a)�1 / 2 (cos (0.25a�1� 2) � 0.25�)
f (x) � sin ax 2 C (�) � (a�1� /8)1 / 2 (cos (0.25a�1� 2) � sin (0.25a�1� 2))
f (x) � x�1 cos x S (�) � 0 when � � 1

S (�) � 0.25� when � � 1
S (�) � 0.5� when � � 1

f (x) � x�1 cos ax S (�) � 0 when � � a
S (�) � 0.25� when � � a
S (�) � 0.5� when � � a

f (x) � cos x 2 F (�) � (2)�1 / 2 (cos (0.25� 2) � 0.25�)
f (x) � cos x 2 C (�) � (0.125�)1 / 2 (cos (0.25� 2) � sin (0.25� 2))
f (x) � cos ax 2 F (�) � (2a)�1 / 2 (cos (0.25a�1� 2) � 0.25�)
f (x) � cos ax 2 C (�) � (a�1� /8)1 / 2 (cos (0.25a�1� 2) � sin (0.25a�1� 2))
f (x) � tan�1 x S (�) � 0.5��1� e��

f (x) � tan�1 ax S (�) � 0.5��1� e�� /a

f (x) � (sinh x) /
(sinh �x)

F (�) � 0.1339 (cos a � cosh �)�1

f (x) � (sinh ax) /
(sinh �x) when
�� � a � �

F (�) � (2�)�1 / 2 (cos a � cosh �)�1 sin a

f (x) � (cosh x) /
(cosh �x)

F (�) � 0.7979 (0.8776 � cosh �)�1 cosh 0.5�

f (x) � (cosh ax) /
(cosh �x) when
�� � a � �

F (�) � (2��1)1 / 2 (cos a � cosh �)�1 cos 0.5a
cosh 0.5�

f (x) � csc x S (�) � 0.5� tanh (0.5��)
f (x) � csc ax S (�) � 0.5a�1� tanh (0.5a�1��)
f (x) � sech x C (�) � 0.5� sech (0.5��)
f (x) � sech ax C (�) � 0.5a�1� sech (0.5a�1��)

*Functions are in the first column; transform functions are in the sec-
ond column. Letters a and b denote constants; n denotes a positive integer;
i denotes the unit imaginary number (�1)1 / 2; f denotes a function; F de-
notes a Fourier transform; S denotes a Fourier sine transform; C denotes
a Fourier cosine transform. Characters x and � denote variables.
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TABLE 6.12 Orthogonal Polynomials*

Symbol Polynomial expansion

T0 (x) 1
T1 (x) x
T2 (x) 2x2 � 1
T3 (x) 4x3 � 3x
T4 (x) 8x 4 � 8x2 � 1
T5 (x) 16x 5 � 20x 3 � 5x
T6 (x) 32x 6 � 48x 4 � 18x 2 � 1
T7 (x) 64x 7 � 112x 5 � 56x 3 � 7x
T8 (x) 128x 8 � 256x 6 � 160x 4 � 32x 2 � 1
T9 (x) 256x 9 � 576x 7 � 432x 5 � 120x 3 � 9x
T10 (x) 512x 10 � 1280x 8 � 1120x 6 � 400x 4 � 50x 2 � 1
U0 (x) 1
U1 (x) 2x
U2 (x) 4x 2 � 1
U3 (x) 8x 3 � 4x
U4 (x) 16x 4 � 12x 2 � 1
U5 (x) 32x 5 � 32x 3 � 6x
U6 (x) 64x 6 � 80x 4 � 24x 2 � 1
U7 (x) 128x 7 � 192x 5 � 80x 3 � 8x
U8 (x) 256x 8 � 448x 6 � 240x 4 � 40x 2 � 1
U9 (x) 512x 9 � 1024x 7 � 672x 5 � 160x 3 � 10x
U10 (x) 1024x 10 � 2304x 8 � 1792x 6 � 560x 4 � 60x 2 � 1
H0 (x) 1
H1 (x) 2x
H2 (x) 4x 2 � 2
H3 (x) 8x3 � 12x
H4 (x) 16x 4 � 48x 2 � 12
H5 (x) 32x 5 � 160x 3 � 120x
H6 (x) 64x 6 � 480x 4 � 720x 2 � 120
H7 (x) 128x 7 � 1344x 5 � 3360x 3 � 1680x
H8 (x) 256x 8 � 3584x 6 � 13440x 4 � 13440x 2 � 1680
H9 (x) 512x 9 � 9216x 7 � 48384x 5 � 80640x 3 � 30240x
H10 (x) 1024x 10 � 23040x 8 � 161280x 6 � 403200x 4 � 302400x 2 � 30240
L0 (x) 1
L1 (x) �x � 1
L2 (x) x 2 � 4x � 2
L3 (x) �x 3 � 9x 2 � 18x � 6
L4 (x) x 4 � 16x 3 � 72x 2 � 96x � 24
L5 (x) �x 5 � 25x 4 � 200x 3 � 600x 2 � 600x � 120
L6 (x) x 6 � 36x 5 � 450x 4 � 2400x 3 � 5400x 2 � 4320x � 720
L7 (x) �x 7 � 49x 6 � 882x 5 � 7350x 4 � 29400x 3 � 52920x 2 � 35280x

� 5040
L8 (x) x 8 � 64x 7 � 1568x 6 � 18816x 5 � 117600x 4 � 376320x 3

� 564480x 2 � 322560x � 40320
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TABLE 6.12 Orthogonal Polynomials* (Continued )

Symbol Polynomial expansion

L9 (x) �x 9 � 81x 8 � 2592x 7 � 42336x 6 � 381024x 5 � 1905120x 4

� 5080320x 3 � 6531840x 2 � 3265930x � 362880
L10 (x) x 10 � 100x 9 � 4050x 8 � 86400x 7 � 1058400x 6 � 7620480x 5

� 31752000x 4 � 72576000x 3 � 81648000x 2 � 36288000x
� 3628800

*Symbols are in the first column; expansions are in the second column.
Tn represent Tschebyshev polynomials of the first kind; Un represent
Tschebyshev polynomials of the second kind; Hn represent Hermite poly-
nomials; Ln represent Laguerre polynomials.

TABLE 6.13 One-dimensional Laplace Transforms*

Image function Original function

f (s) � s�1 F (t) � 1
f (s) � s�2 F (t) � t
f (s) � s�3 F (t) � 0.5 t 2

f (s) � s�4 F (t) � (1⁄6) t 3

f (s) � s�5 F (t) � (1⁄24) t 4

f (s) � s�n F (t) � (1 / (n � 1)!) t(n�1)

f (s) � s�1 / 2 F (t) � ��1 / 2 t�1 / 2

f (s) � s�3 / 2 F (t) � 2��1 / 2 t 1 / 2

f (s) � s�5 / 2 F (t) � (4⁄3) ��1 / 2 t 3 / 2

f (s) � s�7 / 2 F (t) � (8⁄15) ��1 / 2 t 5 / 2

f (s) � s�9 / 2 F (t) � (16⁄105) ��1 / 2 t 7 / 2

f (s) � s (�n�1 / 2) F (t) � ((1 � 3 � 5 � � � � � (2n � 1))
� 2n ��1 / 2 t (n�1 / 2)

f (s) � (s � a)�1 F (t) � e�at

f (s) � (s � a)�1 F (t) � eat
f (s) � (s � a)�2 F (t) � t e�at

f (s) � (s � a)�2 F (t) � t eat
f (s) � (s � a)�3 F (t) � 0.5 t 2 e�at

f (s) � (s � a)�3 F (t) � 0.5 t 2 eat
f (s) � (s � a)�4 F (t) � (1⁄6) t 3 e�at

f (s) � (s � a)�4 F (t) � (1⁄6) t 3 eat
f (s) � (s � a)�5 F (t) � (1⁄24) t 4 e�at

f (s) � (s � a)�5 F (t) � (1⁄24) t4 eat
f (s) � (s � a)�n F (t) � (1 / (n � 1)!) t (n�1) e�at

f (s) � (s � a)�n F (t) � (1 / (n � 1)!) t (n�1) eat
f (s) � s(s � a)�3 / 2 F (t) � ��1 / 2 t�1 / 2 (e�at � 2at e�at)
f (s) � (s 2 � a2)�1 F (t) � a�1 sin at
f (s) � (s 2 � a2)�1 F (t) � a�1 sinh at
f (s) � s(s 2 � a2)�1 F (t) � cos at
f (s) � s(s 2 � a2)�1 F (t) � cosh at
f (s) � (s 4 � a4)�1 F (t) � 0.5 a�3 sinh at

� 0.5 a�3 sin at
f (s) � s(s 4 � a4)�1 F (t) � 0.5 a�2 cosh at

� 0.5 a�2 cos at
f (s) � s 2 (s4 � a4)�1 F (t) � 0.5 a�1 sinh at

� 0.5 a�1 sin at
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TABLE 6.13 One-dimensional Laplace Transforms* (Continued )

Image function Original function

f (s) � s 3 (s4 � a4)�1 F (t) � 0.5 cosh at � 0.5 cos at
f (s) � (s 4 � 4a4)�1 F (t) � 0.25 a�3 sin at cosh at

� 0.25 a�3 cos at sinh at
f (s) � s(s 4 � 4a4)�1 F (t) � 0.5 a�2 sin at sinh at
f (s) � s 2 (s4 � 4a4)�1 F (t) � 0.5 a�1 sin at cosh at

� 0.5 a�1 cos at sinh at

f (s) � s 3(s4 � 4a4)�1 F (t) � cosh at cos at
f (s) � 4a3(s 4 � 4a4)�1 F (t) � sin at cosh at � cos at sinh at
f (s) � (s 3 � a2s)�1 F (t) � a�2 � a�2 cos at
f (s) � (s 4 � a2s 2)�1 F (t) � a�2t � a�3 sin at
f (s) � (s 2 � a2)�2 F (t) � 0.5 a�3 sin at

� 0.5 a�2t cos at
f (s) � (s 2 � a2)�2 F (t) � 0.5 a�2t cosh at

� 0.5 a�3 sinh at
f (s) � s(s 2 � a2)�2 F (t) � 0.5 a�1t sin at
f (s) � s(s 2 � a2)�2 F (t) � 0.5 a�1t sinh at
f (s) � s 2 (s2 � a2)�2 F (t) � 0.5 a�1 sin at � 0.5 t cos at
f (s) � s 2 (s2 � a2)�2 F (t) � 0.5 a�1 sinh at � 0.5 t cosh at
f (s) � s 3 (s2 � a2)�2 F (t) � cos at � 0.5 at sin at
f (s) � s 3 (s2 � a2)�2 F (t) � cosh at � 0.5 at sinh at
f (s) � (s 2 � a2) (s 2 � a2)�2 F (t) � t cos at
f (s) � (s 2 � a2) (s 2 � a2)�2 F (t) � t cosh at
f (s) � (s 2 � a2)�3 F (t) � (3⁄8) a�5 sin at

� (1⁄8) a�3t 2 sin at
� 3⁄8 a�4t cos at

f (s) � (s 2 � a2)�3 F (t) � (3⁄8) a�5 sinh at
� (1⁄8) a�3t 2 sinh at
� 3⁄8 a�4t cosh at

f (s) � s (s 2 � a2)�3 F (t) � (1⁄8) a�3t sin at
� (1⁄8) a�2t 2 cos at

f (s) � s (s 2 � a2)�3 F (t) � (1⁄8) a�2t 2 cosh at
� (1⁄8) a�3t sinh at

f (s) � s 2 (s2 � a2)�3 F (t) � (1⁄8) a�3 sin at
� (1⁄8) a�1t 2 sin at
� 1⁄8 a�2t cos at

f (s) � s 2 (s2 � a2)�3 F (t) � (1⁄8) a�1t2 sinh at
� (1⁄8) a�3 sinh at
� 1⁄8 a�2t cosh at

f (s) � s 3 (s2 � a2)�3 F (t) � (3⁄8) a�1t sin at
� (1⁄8) t 2 cos at

f (s) � s 3 (s2 � a2)�3 F (t) � (3⁄8) a�1t sinh at
� (1⁄8) t 2 cosh at

f (s) � s 4 (s2 � a2)�3 F (t) � (3⁄8) a�1 sin at
� (1⁄8) at 2 sin at � 5t cos at

f (s) � s 4 (s2 � a2)�3 F (t) � (3⁄8) a�1 sinh at
� (1⁄8) at 2 sinh at � 5t cosh at

f (s) � s 5 (s2 � a2)�3 F (t) � cos at � (1⁄8) a2t 2 cos at
� (7⁄8) at sin at

f (s) � s 5 (s2 � a2)�3 F (t) � cosh at � (1⁄8) a2t 2 cosh at
� (7⁄8) at sinh at
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TABLE 6.13 One-dimensional Laplace Transforms* (Continued )

Image function Original function

f (s) � (3s 2 � a2) (s 2 � a2)�3 F (t) � 0.5 a�1t 2 sin at
f (s) � (3s 2 � a 2) (s 2 � a2)�3 F (t) � 0.5 a�1t 2 sinh at
f (s) � (s 2 � 3a2s) (s 2 � a2)�3 F (t) � 0.5 t 2 cos at
f (s) � (s 2 � 3a2s) (s 2 � a2)�3 F (t) � 0.5 t 2 cosh at
f (s) � 8a3s 2 (s 2 � a2)�3 F (t) � sin at � a2t 2 sin at � at cos at
f (s) � (s 4 � 6a2s 2 � a4) (s 2 � a2)�4 F (t) � (1⁄6) t 3 cos at
f (s) � (s 4 � 6a2s 2 � a4) (s 2 � a2)�4 F (t) � (1⁄6) t 3 cosh at
f (s) � (s 3 � a2s) (s 2 � a2)�4 F (t) � (1⁄24) a�1t 3 sin at
f (s) � (s 3 � a2s) (s 2 � a2)�4 F (t) � (1⁄24) a�1t 3 sinh at
f (s) � (s 2 � 2sa � a2 � b2)�1 F (t) � b�1 e�at sin bt
f (s) � (s 2 � 2sa � a2 � b2)�1 F (t) � b�1 eat sin bt
f (s) � (s 2 � 2sa � a2 � b2)�1 F (t) � b�1 eat sinh bt
f (s) � (s � a) (s 2 � 2sa � a2 � b2)�1 F (t) � e�at cos bt
f (s) � (s � a) (s 2 � 2sa � a2 � b2)�1 F (t) � eat cos bt
f (s) � (s � a) (s 2 � 2sa � a2 � b2)�1 F (t) � eat cosh bt
f (s) � (s � a)�1 (s � b)�1

when a � b
F (t) � (b � a)�1 e�at � (b � a)�1 e�bt

f (s) � s(s � a)�1 (s � b)�1

when a � b
F (t) � (a � b)�1a e�at

� (a � b)�1b e�bt

f (s) � (s � a)1 / 2 � (s � b)1 / 2 F (t) � 0.5 ��1 / 2 t�3 / 2 (e�bt � e�at)
f (s) � s(s 2 � a2)�1 (s 2 � b2)�1

when a2 � b2
F (t) � (b2 � a2)�1 cos at

� (b2 � a2)�1 cos bt
f (s) � ((s � a)1 / 2 � (s � b)1 / 2)�1 F (t) � (2b � 2a)�1 / 2 ��1 / 2 t�3 / 2 e�bt

� (2b � 2a)�1 / 2 ��1 / 2 t�3 / 2 e�at

f (s) � s�3 / 2 e�a/ s F (t) � ��1 / 2 a�1 / 2 sin (2a1 / 2 t 1 / 2)
f (s) � ln ((s � a)�1 (s � b)) F (t) � t�1 e�at � t�1 e�bt

f (s) � ln ((s � a)�1 (s � b)) F (t) � t�1 eat � t�1 ebt
f (s) � ln ((s 2 � a2)�1 (s 2 � b2)) F (t) � 2 t�1 cos bt � 2 t�1 cos at
f (s) � ln (1 � s�2a2) F (t) � 2 t�1 � 2 t�1 cos at
f (s) � ln (1 � s�2a2) F (t) � 2 t�1 � 2 t�1 cosh at
f (s) � s�1 ln s F (t) � �ln t � �
f (s) � �s�1 (� � ln s) F (t) � ln t
f (s) � s�1 ln2 s F (t) � ln2 t � 2� ln t � � 2

� (1⁄6) � 2

f (s) � (1⁄6) s�1 � 2 � s�1 ln2 s � 2
s�1 � ln s � s�1 � 2

F (t) � ln2 t

f (s) � tan�1 (s�1 a) F (t) � t�1 sin at

*The character F represents the original function; f represents the
image function. The character t represents a real variable; s repre-
sents a complex variable; a and b represent constants; n represents a
positive integer. The character e represents the natural logarithm base,
approximately equal to 2.71828. The symbol � represents Euler’s con-
stant, approximately equal to 0.577216. The symbol � represents the
circumference-to-diameter ratio of a circle in a plane, approximately equal
to 3.14159.

General

one-dimensional f (s) � e�st F (t) dt
	�

0

Laplace transform
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TABLE 6.14 Lowercase Greek Alphabet

Symbol
Character

name Common representations


 alpha current gain of bipolar transistor in common-base
configuration; alpha particle; angular acceleration;
angle; direction angle; transcendental number; scalar
coefficient

� beta current gain of bipolar transistor in common-emitter
configuration; magnetic flux density; beta particle;
angle; direction angle; transcendental number; scalar
coefficient

� gamma gamma radiation; electrical conductivity; Euler’s
constant; gravity; direction angle; scalar coefficient;
permutation; cycle

� delta derivative; variation of a quantity; point evaluation;
support function; metric function; distance function;
variation of an integral; Laplacian

� epsilon electric permittivity; natural logarithm base
(approximately 2.71828); eccentricity; signature

� zeta impedance, coefficient; coordinate variable in a
transformation

� eta electric susceptibility; hysteresis coefficient; efficiency;
coordinate variable in a transformation

� theta angle; phase angle; angle in polar coordinates; angle
in cylindrical coordinates; angle in spherical
coordinates; parameter; homomorphism

� iota definite description (in predicate logic)

 kappa dielectric constant; coefficient of coupling; curvature

� lambda wavelength; Wien Displacement Law constant; ratio;
Lebesgue measure; eigenvalue

� mu micro-; magnetic permeability; amplification factor;
charge carrier mobility; mean; statistical parameter

� nu frequency; reluctivity; statistical parameter; natural
epimorphism

! xi coordinate variable in a transformation

" omicron order

� pi ratio of circle circumference to diameter
(approximately 3.14159); radian; permutation

� rho electrical resistivity; variable representing an angle;
curvature; correlation; metric; density

� sigma electrical conductivity; Stefan-Boltzmann constant;
standard deviation; variance; mathematical partition;
permutation; topology
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TABLE 6.14 Lowercase Greek Alphabet (Continued )

Symbol
Character

name Common representations

� tau time-phase displacement; torsion; mathematical
partition; topology

# upsilon —

	 or $ phi angle; phase angle; dielectric flux; angle in spherical
coordinates; Euler phi function; mapping; predicate

$ chi magnetic susceptibility; characteristic function;
chromatic number; configuration of a body

% psi angle; mapping; predicate; chart

� omega angular velocity; period; modulus of continuity
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TABLE 6.15 Uppercase Greek Alphabet

Symbol
Character

name Common representations

& alpha —

' beta magnetic flux density

� gamma gamma match; general index set; curve; contour

� delta delta match; three-phase AC circuit with no common
ground; increment; difference quotient; difference
sequence; Laplacian

( epsilon voltage; energy

) zeta impedance

* eta efficiency

+ theta order

, iota current

- kappa magnetic susceptibility; degrees Kelvin

. lambda general index set

M mu mutual inductance

/ nu Avogadro’s number (6.022169 � 1023)

0 xi —

1 omicron order

2 pi product; infinite product; homotopy

3 rho Power

4 sigma summation; series; infinite series

5 tau time constant; temperature

6 upsilon —

� phi magnetic flux; Frattini subgroup

7 chi reactance

8 psi dielectric flux

� omega ohms; volume of a body
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Symbol Character name Common representations

. decimal or radix point separates integral part of number from fractional part

∀ universal qualifier read ‘‘for all’’

# pound sign number; pounds

∃ existential qualifier read ‘‘there exists’’ or ‘‘for some’’

% per cent sign read ‘‘parts per hundred’’ or ‘‘percent’’

‰ per mil sign read ‘‘parts per thousand’’ or ‘‘permil’’

& ampersand logical AND operation

@ at sign read ‘‘at the rate of ’’ or ‘‘at the cost of ’’

( ) parentheses encloses elements defining coordinates of a point; encloses elements of a set
of ordered numbers; encloses bounds of an open interval

[ ] brackets encloses a group of terms that includes one or more groups in parentheses;
encloses elements of an equivalence class; encloses bounds of a closed
interval

{ } braces encloses a group of terms that includes one or more groups in brackets;
encloses elements comprising a set

[ ) or ( ] half-brackets encloses bounds of a half-open interval

] [ inside-out brackets encloses bounds of an open interval

( ) or [ ] parenthesis or brackets (enlarged) encloses elements of a matrix

* asterisk multiplication; logical AND operation

� cross multiplication; logical AND operation; vector (cross) product of two vectors

+ uppercase Greek letter pi (enlarged) product of many values
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TABLE 6.16 General Mmathematical Symbols and Their Common Meanings* (Continued )

Symbol Character name Common representations

● dot multiplication; logical AND operation; scalar (dot) product of two vectors

� plus sign addition; logical OR operation

- uppercase Greek letter sigma (enlarged) summation of many values

, comma separates large numbers by thousands; separates elements defining
coordinates of a point; separates elements of a set of ordered numbers;
separates bounds of an interval

� minus sign subtraction; logical NOT symbol

� plus/minus sign read ‘‘plus or minus’’ and defines the extent to which a value can deviate
from the nominal value

/ slash or slant division; ratio; proportion; separates parts of a Web site uniform resource
locator (URL)


 — division

: colon ratio; separates hours from minutes; separates minutes from seconds

:: double colon mean

! exclamation mark factorial

� inequality sign read ‘‘is less than or equal to’’

� inequality sign read ‘‘is less than’’

�� inequality sign read ‘‘is much less than’’

� equal sign read ‘‘is equal to’’; logical equivalence

3 inequality sign read ‘‘is greater than or equal to’’

� inequality sign read ‘‘is greater than’’

�� inequality sign read ‘‘is much greater than’’

� congruence sign read ‘‘is congruent with’’
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Symbol Character name Common representations

	 unequal sign read ‘‘is not equal to’’

� equivalence sign read ‘‘is logically equivalent to’’

� approximation sign read ‘‘is approximately equal to’’

4 — read ‘‘is proportional to’’

� squiggle read ‘‘is similar to’’

. . . triple dot read ‘‘and so on’’ or ‘‘and beyond’’

� vertical line read ‘‘is exactly divisible by’’

� � vertical lines absolute value of quantity between lines; length of vector quantity denoted
between lines; distance between two points; cardinality of number; modulus

� vertical line (elongated) denotes limits of evaluation for a function

�� vertical lines (elongated) determinant of matrix whose elements are enumerated between lines

ℵ uppercase Hebrew letter aleph transfinite cardinal number; Continuum Hypothesis

� intersection sign set-intersection operation

� union sign set-union operation

5 null sign set containing no elements (empty set or null set)

� — read ‘‘is an element of ’’

�/ — read ‘‘is not an element of ’’

� — read ‘‘is a proper subset of ’’

� implication sign read ‘‘logically implies’’
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TABLE 6.16 General Mmathematical Symbols and Their Common Meanings* (Continued )

Symbol Character name Common representations

� — read ‘‘is a subset of ’’

�/ — read ‘‘is not a proper subset of ’’

∠ angle sign angle; angle measure

� — read ‘‘is perpendicular to’’

6 del or nabla vector differential operator

� radical or surd root; square root

⇔ or ↔ double arrow read ‘‘if and only if ’’ or ‘‘is logically equivalent to’’

⇒ right arrow logical implication

� three dots read ‘‘therefore’’

→ right arrow logical implication; convergence; mapping

↑ upward arrow read ‘‘above’’ or ‘‘increasing’’

↓ downward arrow read ‘‘below’’ or ‘‘decreasing’’

7 — partial derivative; Jacobian; surface of a body

� — integral

�� — double integral

�
E

— Riemann integral
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TABLE 6.16 General Mmathematical Symbols and Their Common Meanings* (Continued )

Symbol Character name Common representations

�
�

— contour integral

��
S

— surface integral

��� — triple integral

� degree sign (superscript) degree of angle; degree of temperature

� infinity sign infinity; an arbitrarily large number; an arbitrarily great distance away

*For meanings of Greek letters, refer to Tables 6.14 and 6.15.
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TABLE 6.17 Comparison of Values in Decimal,
Binary, Octal, and Hexadecimal Numbering
Systems for Decimal 0 through 256

Decimal Binary Octal Hexadecimal

0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14
21 10101 25 15
22 10110 26 16
23 10111 27 17
24 11000 30 18
25 11001 31 19
26 11010 32 1A
27 11011 33 1B
28 11100 34 1C
29 11101 35 1D
30 11110 36 1E
31 11111 37 1F
32 100000 40 20
33 100001 41 21
34 100010 42 22
35 100011 43 23
36 100100 44 24
37 100101 45 25
38 100110 46 26
39 100111 47 27
40 101000 50 28
41 101001 51 29
42 101010 52 2A
43 101011 53 2B
44 101100 54 2C
45 101101 55 2D
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TABLE 6.17 Comparison of Values in Decimal,
Binary, Octal, and Hexadecimal Numbering
Systems for Decimal 0 through 256 (Continued )

Decimal Binary Octal Hexadecimal

46 101110 56 2E
47 101111 57 2F
48 110000 60 30
49 110001 61 31
50 110010 62 32
51 110011 63 33
52 110100 64 34
53 110101 65 35
54 110110 66 36
55 110111 67 37
56 111000 70 38
57 111001 71 39
58 111010 72 3A
59 111011 73 3B
60 111100 74 3C
61 111101 75 3D
62 111110 76 3E
63 111111 77 3F
64 1000000 100 40
65 1000001 101 41
66 1000010 102 42
67 1000011 103 43
68 1000100 104 44
69 1000101 105 45
70 1000110 106 46
71 1000111 107 47
72 1001000 110 48
73 1001001 111 49
74 1001010 112 4A
75 1001011 113 4B
76 1001100 114 4C
77 1001101 115 4D
78 1001110 116 4E
79 1001111 117 4F
80 1010000 120 50
81 1010001 121 51
82 1010010 122 52
83 1010011 123 53
84 1010100 124 54
85 1010101 125 55
86 1010110 126 56
87 1010111 127 57
88 1011000 130 58
89 1011001 131 59
90 1011010 132 5A
91 1011011 133 5B
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TABLE 6.17 Comparison of Values in Decimal,
Binary, Octal, and Hexadecimal Numbering
Systems for Decimal 0 through 256 (Continued )

Decimal Binary Octal Hexadecimal

92 1011100 134 5C
93 1011101 135 5D
94 1011110 136 5E
95 1011111 137 5F
96 1100000 140 60
97 1100001 141 61
98 1100010 142 62
99 1100011 143 63

100 1100100 144 64
101 1100101 145 65
102 1100110 146 66
103 1100111 147 67
104 1101000 150 68
105 1101001 151 69
106 1101010 152 6A
107 1101011 153 6B
108 1101100 154 6C
109 1101101 155 6D
110 1101110 156 6E
111 1101111 157 6F
112 1110000 160 70
113 1110001 161 71
114 1110010 162 72
115 1110011 163 73
116 1110100 164 74
117 1110101 165 75
118 1110110 166 76
119 1110111 167 77
120 1111000 170 78
121 1111001 171 79
122 1111010 172 7A
123 1111011 173 7B
124 1111100 174 7C
125 1111101 175 7D
126 1111110 176 7E
127 1111111 177 7F
128 10000000 200 80
129 10000001 201 81
130 10000010 202 82
131 10000011 203 83
132 10000100 204 84
133 10000101 205 85
134 10000110 206 86
135 10000111 207 87
136 10001000 210 88
137 10001001 211 89
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TABLE 6.17 Comparison of Values in Decimal,
Binary, Octal, and Hexadecimal Numbering
Systems for Decimal 0 through 256 (Continued )

Decimal Binary Octal Hexadecimal

138 10001010 212 8A
139 10001011 213 8B
140 10001100 214 8C
141 10001101 215 8D
142 10001110 216 8E
143 10001111 217 8F
144 10010000 220 90
145 10010001 221 91
146 10010010 222 92
147 10010011 223 93
148 10010100 224 94
149 10010101 225 95
150 10010110 226 96
151 10010111 227 97
152 10011000 230 98
153 10011001 231 99
154 10011010 232 9A
155 10011011 233 9B
156 10011100 234 9C
157 10011101 235 9D
158 10011110 236 9E
159 10011111 237 9F
160 10100000 240 A0
161 10100001 241 A1
162 10100010 242 A2
163 10100011 243 A3
164 10100100 244 A4
165 10100101 245 A5
166 10100110 246 A6
167 10100111 247 A7
168 10101000 250 A8
169 10101001 251 A9
170 10101010 252 AA
171 10101011 253 AB
172 10101100 254 AC
173 10101101 255 AD
174 10101110 256 AE
175 10101111 257 AF
176 10110000 260 B0
177 10110001 261 B1
178 10110010 262 B2
179 10110011 263 B3
180 10110100 264 B4
181 10110101 265 B5
182 10110110 266 B6
183 10110111 267 B7



Data Tables 515

TABLE 6.17 Comparison of Values in Decimal,
Binary, Octal, and Hexadecimal Numbering
Systems for Decimal 0 through 256 (Continued )

Decimal Binary Octal Hexadecimal

184 10111000 270 B8
185 10111001 271 B9
186 10111010 272 BA
187 10111011 273 BB
188 10111100 274 BC
189 10111101 275 BD
190 10111110 276 BE
191 10111111 277 BF
192 11000000 300 C0
193 11000001 301 C1
194 11000010 302 C2
195 11000011 303 C3
196 11000100 304 C4
197 11000101 305 C5
198 11000110 306 C6
199 11000111 307 C7
200 11001000 310 C8
201 11001001 311 C9
202 11001010 312 CA
203 11001011 313 CB
204 11001100 314 CC
205 11001101 315 CD
206 11001110 316 CE
207 11001111 317 CF
208 11010000 320 D0
209 11010001 321 D1
210 11010010 322 D2
211 11010011 323 D3
212 11010100 324 D4
213 11010101 325 D5
214 11010110 326 D6
215 11010111 327 D7
216 11011000 330 D8
217 11011001 331 D9
218 11011010 332 DA
219 11011011 333 DB
220 11011100 334 DC
221 11011101 335 DD
222 11011110 336 DE
223 11011111 337 DF
224 11100000 340 E0
225 11100001 341 E1
226 11100010 342 E2
227 11100011 343 E3
228 11100100 344 E4
229 11100101 345 E5
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TABLE 6.17 Comparison of Values in Decimal,
Binary, Octal, and Hexadecimal Numbering
Systems for Decimal 0 through 256 (Continued )

Decimal Binary Octal Hexadecimal

230 11100110 346 E6
231 11100111 347 E7
232 11101000 350 E8
233 11101001 351 E9
234 11101010 352 EA
235 11101011 353 EB
236 11101100 354 EC
237 11101101 355 ED
238 11101110 356 EE
239 11101111 357 EF
240 11110000 360 F0
241 11110001 361 F1
242 11110010 362 F2
243 11110011 363 F3
244 11110100 364 F4
245 11110101 365 F5
246 11110110 366 F6
247 11110111 367 F7
248 11111000 370 F8
249 11111001 371 F9
250 11111010 372 FA
251 11111011 373 FB
252 11111100 374 FC
253 11111101 375 FD
254 11111110 376 FE
255 11111111 377 FF
256 100000000 400 100

TABLE 6.18 Flip-flop States

A: R-S flip-flop
R S Q �Q
0
0
1
1

0
1
0
1

Q
1
0
?

�Q
0
1
?

B: J-K flip-flop
J
0
0
1
1

K
0
1
0
1

Q
Q
1
0

�Q

�Q
�Q

0
1
Q
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TABLE 6.19 Logic Gates and Their Characteristics

Gate type
Number
of inputs Remarks

NOT 1 Changes state of input.

OR 2 or more Output high if any inputs are high.
Output low if all inputs are low.

AND 2 or more Output low if any inputs are low.
Output high if all inputs are high.

NOR 2 or more Output low if any inputs are high.
Output high if all inputs are low.

NAND 2 or more Output high if any inputs are low.
Output low if all inputs are high.

XOR 2 Output high if inputs differ.
Output low if inputs are the same.

XNOR 2 Output low if inputs differ.
Output high if inputs are the same.
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TABLE 6.20A American Wire Gauge
(AWG) Diameters

AWG Millimeters Inches

1 7.35 0.289
2 6.54 0.257
3 5.83 0.230
4 5.19 0.204
5 4.62 0.182
6 4.12 0.163
7 3.67 0.144
8 3.26 0.128
9 2.91 0.115

10 2.59 0.102
11 2.31 0.0909
12 2.05 0.0807
13 1.83 0.0720
14 1.63 0.0642
15 1.45 0.0571
16 1.29 0.0508
17 1.15 0.0453
18 1.02 0.0402
19 0.912 0.0359
20 0.812 0.0320
21 0.723 0.0285
22 0.644 0.0254
23 0.573 0.0226
24 0.511 0.0201
25 0.455 0.0179
26 0.405 0.0159
27 0.361 0.0142
28 0.321 0.0126
29 0.286 0.0113
30 0.255 0.0100
31 0.227 0.00894
32 0.202 0.00795
33 0.180 0.00709
34 0.160 0.00630
35 0.143 0.00563
36 0.127 0.00500
37 0.113 0.00445
38 0.101 0.00398
39 0.090 0.00354
40 0.080 0.00315
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TABLE 6.20B British Standard Wire
Gauge (NBS SWG) Diameters

NBS
SWG Millimeters Inches

1 7.62 0.300
2 7.01 0.276
3 6.40 0.252
4 5.89 0.232
5 5.38 0.212
6 4.88 0.192
7 4.47 0.176
8 4.06 0.160
9 3.66 0.144

10 3.25 0.128
11 2.95 0.116
12 2.64 0.104
13 2.34 0.092
14 2.03 0.080
15 1.83 0.072
16 1.63 0.064
17 1.42 0.056
18 1.22 0.048
19 1.02 0.040
20 0.91 0.036
21 0.81 0.032
22 0.71 0.028
23 0.61 0.024
24 0.56 0.022
25 0.51 0.020
26 0.46 0.018
27 0.42 0.0164
28 0.38 0.0148
29 0.345 0.0136
30 0.315 0.0124
31 0.295 0.0116
32 0.274 0.0108
33 0.254 0.0100
34 0.234 0.0092
35 0.213 0.0084
36 0.193 0.0076
37 0.173 0.0068
38 0.152 0.0060
39 0.132 0.0052
40 0.122 0.0048
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TABLE 6.20C Birmingham Wire
Gauge (BWG) Diameters

BWG Millimeters Inches

1 7.62 0.300
2 7.21 0.284
3 6.58 0.259
4 6.05 0.238
5 5.59 0.220
6 5.16 0.203
7 4.57 0.180
8 4.19 0.165
9 3.76 0.148

10 3.40 0.134
11 3.05 0.120
12 2.77 0.109
13 2.41 0.095
14 2.11 0.083
15 1.83 0.072
16 1.65 0.064
17 1.47 0.058
18 1.25 0.049
19 1.07 0.042
20 0.889 0.035

TABLE 6.21 Maximum Safe
Continuous DC Carrying Capacity,
in Amperes, for Various Wire Sizes
(AWG) in Open Air

Wire size, AWG Current, A

8 73
9 63

10 55
11 47
12 41
13 36
14 31
15 26
16 22
17 18
18 15
19 13
20 11
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TABLE 6.22 Resistivity of Various
Gauges of Solid Copper Wire, in
Micro-ohms per Meter, to Three
Significant Figures

Wire size, AWG Resistivity, �� /m

2 523
4 831
6 1320
8 2100

10 3340
12 5320
14 8450
16 13,400
18 21,400
20 34,000
22 54,000
24 85,900
26 137,000
28 217,000
30 345,000

TABLE 6.23 Permeability Figures for Some
Common Materials

Substance Permeability (approx.)

Aluminum Slightly more than 1
Bismuth Slightly less than 1
Cobalt 60–70
Ferrite 100–3000
Free space 1
Iron 60–100
Iron, refined 3000–8000
Nickel 50–60
Permalloy 3000–30,000
Silver Slightly less than 1
Steel 300–600
Super permalloys 100,000 to 1,000,000
Wax Slightly less than 1
Wood, dry Slightly less than 1
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TABLE 6.24 Common Types of Solder Used in Industry

Solder type Melting point Common uses

Tin/ lead 50/50
rosin core

430 F
220 C

Electronics

Tin/ lead 60/40
rosin core, low heat

370 F
190 C

Electronics

Tin/ lead 63/37
rosin core, low heat

360 F
180 C

Electronics

Silver
high heat, high current

600 F
320 C

Electronics

Tin/ lead 50/50
acid core

430 F
220 C

Sheet-metal bonding

TABLE 6.25 Bands in the Radio Spectrum

Standard
designation

Frequency
range

Wavelength
range

Very Low (VLF) 3 kHz–30 kHz 100 km–10 km
Low (LF) 30 kHz–300 kHz 10 km–1 km
Medium (MF) 300 kHz–3 MHz 1 km–100 m
High (HF) 3 MHz–30 MHz 100 m–10 m
Very High (VHF) 30 MHz–300 MHz 10 m–1 m
Ultra High (UHF) 300 MHz–3 GHz 1 m–100 mm
Super High (SHF) 3 GHz–30 GHz 100 mm–10 mm
Extremely High (EHF) 30 GHz–300 GHz 10 mm–1 mm
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TABLE 6.26 Schematic Symbols Used in Electronics

Component Symbol

Ammeter

Amplifier general

Amplifier, inverting

Amplifier, operational

AND gate

Antenna, balanced

Antenna, general

Antenna, loop

Antenna, loop, multiturn

Battery

Capacitor, feedthrough

Capacitor, fixed

Capacitor, variable

Capacitor, variable, split-rotor

Capacitor, variable, split-stator
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TABLE 6.26 Schematic Symbols Used in Electronics (Continued )

Component Symbol

Cathode, electron-tube, cold

Cathode, electron-tube, directly heated

Cathode, electron-tube indirectly heated

Cavity resonator

Cell, electrochemical

Circuit breaker

Coaxial cable

Crystal, piezoelectric

Delay line

Diac

Diode, field-effect

Diode, general

Diode, Gunn

Diode, light-emitting

Diode, photosensitive
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TABLE 6.26 Schematic Symbols Used in Electronics (Continued )

Component Symbol

Diode, PIN

Diode, Schottky

Diode, tunnel

Diode, varactor

Diode, zener

Directional coupler

Directional wattmeter

Exclusive-OR gate

Female contact, general

Ferrite bead

Filament, electron-tube

Fuse

Galvanometer

Grid, electron-tube

Ground, chassis
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TABLE 6.26 Schematic Symbols Used in Electronics (Continued )

Component Symbol

Ground, earth

Handset

Headset, double

Headset, single

Headset, stereo

Inductor, air core

Inductor, air core, bifilar

Inductor, air core, tapped

Inductor, air core, variable

Inductor, iron core

Inductor, iron core, bifilar

Inductor, iron core, tapped

Inductor iron core, variable

Inductor, powdered-iron core

Inductor, powdered-iron core, bifilar



Data Tables 527

TABLE 6.26 Schematic Symbols Used in Electronics (Continued )

Component Symbol

Inductor, powdered-iron core, tapped

Inductor, powdered-iron core, variable

Integrated circuit, general

Jack, coaxial or phono

Jack, phone, two-conductor

Jack, phone, three-conductor

Key, telegraph

Lamp, incandescent

Lamp, neon

Male contact, general

Meter, general

Microammeter

Microphone
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TABLE 6.26 Schematic Symbols Used in Electronics (Continued )

Component Symbol

Microphone, directional

Milliammeter

NAND gate

Negative voltage connection

NOR gate

NOT gate

Optoisolator

OR gate

Outlet, two-wire, nonpolarized

Outlet, two-wire, polarized

Outlet, three-wire

Outlet, 234-V

Plate, electron-tube

Plug, two-wire, nonpolarized
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TABLE 6.26 Schematic Symbols Used in Electronics (Continued )

Component Symbol

Plug, two-wire, polarized

Plug, three-wire

Plug, 234-V

Plug, coaxial or phono

Plug, phone, two-conductor

Plug, phone, three-conductor

Positive voltage connection

Potentiometer

Probe, radio-frequency

Rectifier, gas-filled

Rectifier, high-vacuum

Rectifier, semiconductor

Rectifier, silicon-controlled
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TABLE 6.26 Schematic Symbols Used in Electronics (Continued )

Component Symbol

Relay, double-pole, double-throw

Relay, double-pole, single-throw

Relay, single-pole, double-throw

Relay, single-pole, single-throw

Resistor, fixed

Resistor, preset

Resistor, tapped

Resonator

Rheostat

Saturable reactor

Signal generator

Solar battery
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TABLE 6.26 Schematic Symbols Used in Electronics (Continued )

Component Symbol

Solar cell

Source, constant-current

Source, constant-voltage

Speaker

Switch, double-pole, double-throw

Switch, double-pole, rotary

Switch, double-pole, single-throw

Switch, momentary-contact

Switch, silicon-controlled

Switch, single-pole, rotary

Switch, single-pole, double-throw

Switch, single-pole, single-throw
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TABLE 6.26 Schematic Symbols Used in Electronics (Continued )

Component Symbol

Terminals, general, balanced

Terminals, general, unbalanced

Test point

Thermocouple

Transformer, air core

Transformer, air core, step-down

Transformer, air core, step-up

Transformer, air core, tapped primary

Transformer, air core, tapped secondary

Transformer, iron core

Transformer, iron core, step-down

Transformer, iron core, step-up

Transformer, iron core, tapped primary

Transformer, iron core, tapped secondary
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TABLE 6.26 Schematic Symbols Used in Electronics (Continued )

Component Symbol

Transformer, powdered-iron core

Transformer, powdered-iron core,
 step-down

Transformer, powdered-iron core,
 step-up

Transformer, powdered-iron core,
 tapped primary

Transformer, powdered-iron core,
 tapped secondary

Transistor, bipolar,NPN

Transistor, bipolar, PNP

Transistor, field-effect,N-channel

Transistor, field-effect, P-channel

Transistor, MOS field-effect,N-channel

Transistor, MOS field-effect, P-channel

Transistor, photosensitive,NPN

Transistor, photosensitive, PNP
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TABLE 6.26 Schematic Symbols Used in Electronics (Continued )

Component Symbol

Transistor, photosensitive, field-effect,
N-channel

Transistor, photosensitive, field-effect,
P-channel

Transistor, unijunction

Triac

Tube, diode

Tube, heptode

Tube, hexode

Tube, pentode

Tube, photosensitive

Tube, tetrode
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TABLE 6.26 Schematic Symbols Used in Electronics (Continued )

Component Symbol

Tube, triode

Voltmeter

Wattmeter

Waveguide, circular

Waveguide, flexible

Waveguide, rectangular

Waveguide, twisted

Wires, crossing, connected

Wires, crossing, not connected
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TABLE 6.27A VHF Television
Broadcast Channels

Channel Frequency, MHz

2 54–60
3 60–66
4 66–72
5 76–82
6 82–88
7 174–180
8 180–186
9 186–192

10 192–198
11 198–204
12 204–210
13 210–216

TABLE 6.27B UHF Television
Broadcast Channels

Channel Frequency, MHz

14 470–476
15 476–482
16 482–488
17 488–494
18 494–500
19 500–506
20 506–512
21 512–518
22 518–524
23 524–530
24 530–536
25 536–542
26 542–548
27 548–554
28 554–560
29 560–566
30 566–572
31 572–578
32 578–584
33 584–590
34 590–596
35 596–602
36 602–608
37 608–614
38 614–620
39 620–626
40 626–632
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TABLE 6.27B UHF Television
Broadcast Channels (Continued )

Channel Frequency, MHz

41 632–638
42 638–644
43 644–650
44 650–656
45 656–662
46 662–668
47 668–674
48 674–680
49 680–686
50 686–692
51 692–698
52 698–704
53 704–710
54 710–716
55 716–722
56 722–728
57 728–734
58 734–740
59 740–746
60 746–752
61 752–758
62 758–764
63 764–770
64 770–776
65 776–782
66 782–788
67 788–794
68 794–800
69 800–806
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TABLE 6.28 Common Q Signals and Their Meanings

Signal Query and response

QRA What is the name of your station?
The name of my station is —.

QRB How far from my station are you?
I am — miles or — kilometers from your station.

QRD From where are you coming, and where are you going?
I am coming from —, and am going to —.

QRG What is my frequency, or that of —?
Your frequency, or that of —, is— (kHz, MHz, GHz).

QRH Is my frequency unstable?
Your frequency is unstable.

QRI How is the tone of my signal?
Your signal tone is: 1 (good), 2 (fair), 3 (poor).

QRK How readable is my signal?
Your signal is: 1 (unreadable), 2 (barely readable), 3 (readable with
difficulty), 4 (readable with almost no difficulty), 5 (perfectly
readable).

QRL Are you busy? Or, Is this frequency in use?
I am busy. Or, This frequency is in use.

QRM Are you experiencing interference from other stations?
I am experiencing interference from other stations.

QRN Is your reception degraded by sferics or electrical noise?
My reception is degraded by sferics or electrical noise.

QRO Should I increase my transmitter output power?
Increase your transmitter output power.

QRP Should I reduce my transmitter output power?
Reduce your transmitter output power.

QRQ Should I send (Morse code) faster?
Send (Morse code) faster.

QRS Should I send (Morse code) more slowly?
Send (Morse code) more slowly.

QRT Shall I stop transmitting? Or, Are you going to stop transmitting?
Stop transmitting. Or, I am going to stop transmitting.

QRU Do you have information for me?
I have no information for you.

QRV Are you ready for —?
I am ready for —.

QRW Should I tell — that you are calling him/her/them?
Tell — that I am calling him/her/them.

QRX When will you call me again?
I will call you again at —.



Data Tables 539

TABLE 6.28 Common Q Signals and Their Meanings (Continued )

Signal Query and response

QRY What is my turn in order?
Your turn is number — in order.

QRZ Who is calling me?
You are being called by —.

QSA How strong are my signals?
Your signals are: 1 (almost inaudible), 2 (weak), 3 (fairly strong), 4
(strong), 5 (very strong).

QSB Are my signals varying in strength?
Your signals are varying in strength.

QSD Are my signals mutilated? Or, is my keying bad?
Your signals are mutilated. Or, your keying is bad.

QSG Should I send more than one message?
Send — messages.

QSJ What is your charge per word?
My charge per word is —.

QSK Can you hear me between your signals? Or, Do you have full break-
in capability?
I can hear you between my signals. Or, I have full break-in
capability.

QSL Do you acknowledge receipt of my message?
I acknowledge receipt of your message.

QSM Should I repeat my message?
Repeat your message.

QSN Did you hear me on — (frequency, channel, or wavelength)?
I heard you on — (frequency, channel, or wavelength).

QSO Can you communicate with —?
I can communicate with —.

QSP Will you send a message to —?
I will send a message to —.

QSQ Is there a doctor there? Or, Is — there?
There is a doctor here. Or, — is here.

QSU On what frequency, channel, or wavelength should I reply?
Reply on — (frequency, channel, or wavelength).

QSV Shall I transmit a series of V’s for test purposes?
Transmit a series of V’s for test purposes.

QSW On which frequency, channel, or wavelength will you transmit?
I will transmit on — (frequency, channel, or wavelength).

QSX Will you listen for me? Or, Will you listen for —?
I will listen for you. Or, I will listen for —.

QSY Should I change frequency, channel, or wavelength?
Change frequency, channel, or wavelength to —.
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TABLE 6.28 Common Q Signals and Their Meanings (Continued )

Signal Query and response

QSZ Should I send each word or word group more than once?
Send each word or word group more than once.

QTA Should I cancel message number —?
Cancel message number —.

QTB Does your word count agree with mine?
My word count disagrees with yours.

QTC How many messages do you have to send?
I have — messages to send.

QTE What is my bearing relative to you?
Your bearing relative to me is — (azimuth degrees).

QTH What is your location?
My location is —.

QTJ What is the speed at which your vehicle is traveling?
My vehicle is traveling at — (miles or kilometers per hour).

QTL In what direction are you headed?
I am headed toward —. Or, My heading is — (azimuth degrees).

QTN When did you leave —?
I left — at —.

QTO Are you airborne?
I am airborne.

QTP Do you intend to land?
I intend to land.

QTR What is the correct time?
The correct time is — Coordinated Universal Time (UTC).

QTX Will you stand by for me?
I will stand by for you until —.

QUA Do you have information concerning —?
I have information concerning —.

QUD Have you received my urgent signal, or that of —?
I have received your urgent signal, or that of —.

QUF Have you received my distress signal, or that of —?
I have received your distress signal, or that of —.
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TABLE 6.29 Ten-Code Signals and Their Meanings

Ten-code signals used in the Citizens Radio Service.

Signal Query and response

10-1 Are you having trouble receiving my signals?
I am having trouble receiving your signals.

10-2 Are my signals good?
Your signals are good.

10-3 Shall I stop transmitting?
Stop transmitting.

10-4 Have you received my message completely?
I have received your message completely.

10-5 Shall I relay a message to —?
Relay a message to —.

10-6 Are you busy?
I am busy; stand by until —.

10-7 Is your station out of service?
My station is out of service.

10-8 Is your station in service?
My station is in service.

10-9 Shall I repeat my message? Or, Is reception poor?
Repeat your message. Or, Reception is poor.

10-10 Are you finished transmitting?
I am finished transmitting.

10-11 Am I talking too fast?
You are talking too fast.

10-12 Do you have visitors?
I have visitors.

10-13 How are your weather and road conditions?
My weather and road conditions are —.

10-14 What is the local time, or the time at —?
The local time, or the time at —, is —.

10-15 Shall I pick up — at —?
Pick up — at —.

10-16 Have you picked up —?
I have picked up —.

10-17 Do you have urgent business?
I have urgent business.

10-18 Have you any information for me?
I have some information for you; it is —.

10-19 Have you no information for me?
I have no information for you.



542 Chapter Six

TABLE 6.29 Ten-Code Signals and Their Meanings (Continued )

Ten-code signals used in the Citizens Radio Service.

Signal Query and response

10-20 Where are you located?
I am located at —.

10-21 Shall I call you on the telephone?
Call me on the telephone.

10-22 Shall I report in person to —?
Report in person to —.

10-23 Shall I stand by?
Stand by until —.

10-24 Are you finished with your last assignment?
I am finished with my last assignment.

10-25 Are you in contact with —?
I am in contact with —.

10-26 Shall I disregard the information you just sent?
Disregard the information I just sent.

10-27 Shall I move to channel —?
Move to channel —.

10-30 Is this action legal or is it illegal?
This action is illegal.

10-33 Do you have an emergency message?
I have an emergency message.

10-34 Do you have trouble?
I have trouble.

10-35 Do you have confidential information?
I have confidential information.

10-36 Is there an accident?
There is an accident at —.

10-37 Is a tow truck needed?
A tow truck is needed at —.

10-38 Is an ambulance needed?
An ambulance is needed at —.

10-39 Is there a convoy at —?
There is a convoy at —.

10-41 Shall we change channels?
Change channels.

10-60 Please give me your message number.
My message number is —.

10-63 Is this net directed?
This net is directed.
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TABLE 6.29 Ten-Code Signals and Their Meanings (Continued )

Ten-code signals used in the Citizens Radio Service.

Signal Query and response

10-64 Do you intend to stop transmitting?
I intend to stop transmitting.

10-65 Do you have a net message for —?
I have a net message for —.

10-66 Do you wish to cancel your messages number ——through —?
I wish to cancel my messages number — through —.

10-67 Shall I stop transmitting to receive a message?
Stop transmitting to receive a message.

10-68 Shall I repeat my messages number — through —?
Repeat your messages number — through —.

10-70 Have you a message?
I have a message.

10-71 Shall I send messages by number?
Send messages by number.

10-79 Shall I inform — regarding a fire at —?
Inform — regarding a fire at —.

10-84 What is your telephone number?
My telephone number is —.

10-91 Are my signals weak?
Your signals are weak.

10-92 Are my signals distorted?
Your signals are distorted.

10-94 Shall I make a test transmission?
Make a test transmission.

10-95 Shall I key my microphone without speaking?
Key your microphone without speaking.

Ten-code signals used in law enforcement

10-1 Are you having trouble receiving my signals?
I am having trouble receiving your signals.

10-2 Are my signals good?
Your signals are good.

10-3 Shall I stop transmitting?
Stop transmitting.

10-4 Have you received my message in full?
I have received your message in full.

10-5 Shall I relay a message to —?
Relay a message to —.

10-6 Are you busy?
I am busy; stand by until —.
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TABLE 6.29 Ten-Code Signals and Their Meanings (Continued )

Ten-code signals used in law enforcement

Signal Query and response

10-7 Is your station out of service?
My station is out of service.

10-8 Is your station in service?
My station is in service.

10-9 Shall I repeat my message?
Repeat your message.

10-10 Is there a fight in progress at your location?
There is a fight in progress at my location.

10-11 Do you have a case involving a dog?
I have a case involving a dog.

10-12 Shall I stand by? Or, Shall I stand by until —?
Stand by. Or, Stand by until —.

10-13 How are your weather and road conditions?
My weather and road conditions are —.

10-14 Have you received a report of a prowler?
I have received a report of a prowler.

10-15 Is there a civil disturbance at your location?
There is a civil disturbance at my location.

10-16 Is there domestic trouble at your location?
There is domestic trouble at my location.

10-17 Shall I meet the person who issued the complaint?
Meet the person who issued the complaint.

10-18 Shall I hurry to finish this assignment?
Hurry to finish this assignment.

10-19 Shall I return to —?
Return to —.

10-20 What is your location?
My location is —.

10-21 Shall I call — by telephone?
Call — by telephone.

10-22 Shall I ignore the previous information?
Ignore the previous information.

10-23 Has — arrived at —?
—has arrived at —.

10-24 Have you finished your assignment?
I have finished my assignment.

10-25 Shall I report in person to —?
Report in person to —.
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TABLE 6.29 Ten-Code Signals and Their Meanings (Continued )

Ten-code signals used in law enforcement

Signal Query and response

10-26 Are you detaining a subject?
I am detaining a subject.

10-27 Do you have data on driver license number —?
Here is data on driver license number —.

10-28 Do you have data on vehicle registration number —?
Here is data on vehicle registration number —.

10-29 Shall I check records to see if — is a wanted person?
Check records to see if — is a wanted person.

10-30 Is — using a radio illegally?
— is using a radio illegally.

10-31 Is there a crime in progress at your location (or at —)?
There is a crime in progress at my location (or at —).

10-32 Is there a person with a gun at your location (or at —)?
There is a person with a gun at my location (or at —).

10-33 Is there an emergency at your location (or at —)?
There is an emergency at my location (or at —.)

10-34 Is there a riot at your location (or at —)?
There is a riot at my location (or at —).

10-35 Do you have an alert concerning a major crime?
I have an alert concerning a major crime.

10-36 What is the correct time?
The correct time is — local (or — UTC).

10-37 Shall I investigate a suspicious vehicle?
Investigate a suspicious vehicle.

10-38 Are you stopping a suspicious vehicle?
I am stopping a suspicious vehicle (of type —).

10-39 Is your (or this) situation urgent?
My (or this) situation is urgent, use lights and/or siren.

10-40 Shall I refrain from using my light or siren?
Refrain from using your light or siren.

10-41 Are you just starting duty?
I am just starting duty.

10-42 Are you finishing duty?
I am finishing duty.

10-43 Do you need, or are you sending, data about —?
I need, or am sending, data about —.

10-44 Do you want to leave patrol?
I want to leave patrol and go to —.
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TABLE 6.29 Ten-Code Signals and Their Meanings (Continued )

Ten-code signals used in law enforcement

Signal Query and response

10-45 Is there a dead animal at your location (or at —)?
There is a dead animal at my location (or at —).

10-46 Shall I assist a motorist at my location (or at —)? Or, are you
assisting a motorist at your location (or at —)?
Assist a motorist at your location (or at —). Or, I am assisting a
motorist at my location (or at —).

10-47 Are road repairs needed now at your location (or at —)?
Road repairs are needed now at my location (or at —).

10-48 Does a traffic standard need to be fixed at your location (or at —)?
A traffic standard needs to be fixed at my location (or at —).

10-49 Is a traffic light out at your location (or at ——?
A traffic light is out at my location (or at —).

10-50 Is there an accident at your location (or at —)?
There is an accident at my location (or at —).

10-51 Is a tow truck needed at your location (or at —)?
A tow truck is needed at my location (or at —).

10-52 Is an ambulance needed at your location (or at —)?
An ambulance is needed at my location (or at —).

10-53 Is the road blocked at your location (or at —)?
The road is blocked at my location (or at —).

10-54 Are there animals on the road at your location (or at —)?
There are animals on the road at my location (or at —).

10-55 Is there a drunk driver at your location (or at —)?
There is a drunk driver at my location (or at —).

10-56 Is there a drunk pedestrian at your location (or at —)?
There is a drunk pedestrian at my location (or at —).

10-57 Has there been a hit-and-run accident at your location (or at —)?
There has been a hit-and-run accident at my location (or at —).

10-58 Shall I direct traffic at my location (or at —)?
Direct traffic at your location (or at —).

10-59 Is there a convoy at your location (or at —)? Or, does — need an
escort?
There is a convoy at my location (or at —). Or, —needs an escort.

10-60 Is there a squad at your location (or at —)?
There is a squad at my location (or at —).

10-61 Are there personnel in your vicinity (or in the vicinity of —)?
There are personnel in my vicinity (or in the vicinity of —).

10-62 Shall I reply to the message of —?
Reply to the message of —.
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TABLE 6.29 Ten-Code Signals and Their Meanings (Continued )

Ten-code signals used in law enforcement

Signal Query and response

10-63 Shall I make a written record of —?
Make a written record of —.

10-64 Is this message to be delivered locally?
This message is to be delivered locally.

10-65 Do you have a net message assignment?
I have a net message assignment.

10-66 Do you want to cancel message number —?
I want to cancel message number —.

10-67 Shall I clear for a net message?
Clear for a net message.

10-68 Shall I disseminate data concerning —?
Disseminate data concerning —.

10-69 Have you received my messages numbered — through —?
I have received your messages numbered — through —.

10-70 Is there a fire at your location (or at —)?
There is a fire at my location (or at —).

10-71 Shall I advise of details concerning the fire at my location (or at
—)?
Advise of details concerning the fire at your location (or at —).

10-72 Shall I report on the progress of the fire at my location (or at —)?
Report on the progress of the fire at your location (or at —).

10-73 Is there a report of smoke at your location (or at —)?
There is a report of smoke at my location (or at —).

10-74 (No query)
Negative.

10-75 Are you in contact with —?
I am in contact with —.

10-76 Are you going to —?
I am going to —.

10-77 When do you estimate arrival at —?
I estimate arrival at — at — local time (or — UTC).

10-78 Do you need help?
I need help at this location (or at —).

10-79 Shall I notify a coroner of —?
Notify a coroner of —.

10-82 Shall I reserve a hotel or motel room at —?
Reserve a hotel or motel room at —.

10-85 Will you (or —) be late?
I (or —) will be late.
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TABLE 6.29 Ten-Code Signals and Their Meanings (Continued )

Ten-code signals used in law enforcement

Signal Query and response

10-87 Shall I pick up checks for distribution?
Pick up checks for distribution. Or, I am picking up checks for
distribution.

10-88 What is the telephone number of —?
The telephone number of — is —.

10-90 Is there a bank alarm at your location (or at —)?
There is a bank alarm at my location (or at —).

10-91 Am I using a radio without cause? Or, Is — using a radio without
cause?
You are using a radio without cause. Or, — is using a radio without
cause.

10-93 Is there a blockade at your location (or at —)?
There is a blockade at my location (or at —).

10-94 Is there an illegal drag race at your location (or at —)?
There is an illegal drag race at my location (or at —).

10-96 Is there a person acting mentally ill at your location (or at —)?
There is a person acting mentally ill at my location (or at —).

10-98 Has someone escaped from jail at your location (or at —)?
Someone has escaped from jail at my location (or at —).

10-99 Is — wanted or stolen?
— is wanted or stolen. Or, there is a wanted person or stolen article
at —.
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TABLE 6.30 The International
Morse Code

Character Symbol

A �–
B – � � �
C – � – �
D – � �
E �
F � � – �
G – – �
H � � � �
I � �
J � – – –
K – �–
L �– � �
M – –
N – �
O – – –
P �– – �
Q – – �–
R �– �
S � � �
T –
U � �–
V � � �–
W �– –
X – � �–
Y – �– –
Z – – � �
0 – – – – –
1 �– – – –
2 � �– – –
3 � � �– –
4 � � � �–
5 � � � � �
6 – � � � �
7 – – � � �
8 – – – � �
9 – – – – �
Period �– �– �–
Comma – – � �– –
Query � �– – � �
Slash – � �– �
Dash – � � � �–
Break (pause) – � � �–
Semicolon – �– �– �
Colon – – – � � �
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TABLE 6.31 Phonetic Alphabet as
Recommended by the International
Telecommunication Union (ITU).
Uppercase Indicates Syllable
Emphasis

Letter Phonetic

A AL-fa
B BRAH-vo
C CHAR-lie
D DEL-ta
E ECK-o
F FOX-trot
G GOLF
H ho-TEL
I IN-dia
J Ju-li-ETTE
K KEE-low
L LEE-ma
M MIKE
N No-VEM-ber
O OS-car
P pa-PA
Q Que-BECK
R ROW-me-oh
S see-AIR-ah
T TANG-go
U YOU-ni-form
V VIC-tor
W WHIS-key
X X-ray
Y YANK-key
Z ZOO-loo
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TABLE 6.32 Coordinated Universal Time (UTC) with Conversion for the
Various Time Zones within the United States*

UTC EDT EST/CDT CST/MDT MST/PDT PST

0000 2000* 1900* 1800* 1700* 1600*
0100 2100* 2000* 1900* 1800* 1700*
0200 2200* 2100* 2000* 1900* 1800*
0300 2300* 2200* 2100* 2000* 1900*
0400 0000 2300* 2200* 2100* 2000*
0500 0100 0000 2300* 2200* 2100*
0600 0200 0100 0000 2300* 2200*
0700 0300 0200 0100 0000 2300*
0800 0400 0300 0200 0100 0000
0900 0500 0400 0300 0200 0100
1000 0600 0500 0400 0300 0200
1100 0700 0600 0500 0400 0300
1200 0800 0700 0600 0500 0400
1300 0900 0800 0700 0600 0500
1400 1000 0900 0800 0700 0600
1500 1100 1000 0900 0800 0700
1600 1200 1100 1000 0900 0800
1700 1300 1200 1100 1000 0900
1800 1400 1300 1200 1100 1000
1900 1500 1400 1300 1200 1100
2000 1600 1500 1400 1300 1200
2100 1700 1600 1500 1400 1300
2200 1800 1700 1600 1500 1400
2300 1900 1800 1700 1600 1500
2400 2000 1900 1800 1700 1600

*Asterisks indicate previous day from UTC.
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Weisstein, E., Eric Weisstein’s Treasure Troves of Science (www.treasure-troves.com)

Copyright 2001 The McGraw-Hill Companies, Inc.   Click Here for Terms of Use.



555

Index

Absolutely convergent infinite series, 210
Absolute refractive index, 392–393
AC amperage, 280
AC amplitude, 274
AC conductance, 278
Acceleration:

angular, 367, 368
average, 359
centripetal, 369–370
instantaneous, 360

Acoustic waves:
intensity of, 388–389
speed of, in ideal gas, 388
speed of, versus temperature, 388

Actinium, 449
AC voltage, 282
Addition:

Boolean, 196–197
of 1, Boolean, 197
of identical quantities, Boolean, 197
of opposites, Boolean, 197
property, 34
vector, 89–90

Additive identity:
in arithmetic, 21
Boolean, 197

Additive inverse, 21, 33
Admittance, 278
Alnico, 460
Alpha:

as function of beta, 311
definition of, 310

Alternate exterior angles, 107
Alternate interior angles, 106
Alternating current, 273–285
Alternating infinite sequence, 205
Alternating infinite series, 208
Alumel, 460
Alumina, 460
Aluminum, 415–416
Aluminum antimonide, 461
American Wire Gauge, table of, 476, 518
Americium, 452
Amplitude:

AC, 274
average, 275
effective, 276
instantaneous, 274, 276
negative peak, 275
peak, 275
peak-to-peak, 276
positive peak, 275

Ampere, 265
Angle addition, 105
Anderson bridge, 339
Angle-angle-angle triangles, 110–111
Angle bisection, 103, 104
Angle notation, 102–103
Angle-side-angle triangles, 110
Angle subtraction, 105
Angular acceleration:

definition of, 367
vs torque, 368

Angular frequency, 327, 367
Angular impulse, 368
Angular momentum, 368
Angular speed, average, 366–367
Antenna:

1⁄4-wave vertical, 336–337
1⁄2-wave dipole, 336
efficiency, 335
harmonic, 337–338
radiation resistance, 335
resonant unterminated long wire, 338

Antimony, 430–431
Arccosecant:

definition of, 144
graph of, 146–147, 148
hyperbolic, see hyperbolic arccosecant

Arccosine:
definition of, 144
graph of, 145, 147
hyperbolic, see hyperbolic arccosine

Arccotangent:
definition of, 144
graph of, 148–149
hyperbolic, see hyperbolic arccotangent

Archimedes’ Principle, 376

Copyright 2001 The McGraw-Hill Companies, Inc.   Click Here for Terms of Use.
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Arcsecant:
definition of, 144
graph of, 147–148
hyperbolic, see hyperbolic arcsecant

Arcsine:
definition of, 144
graph of, 144, 146
hyperbolic, see hyperbolic arcsine

Arctangent:
definition of, 144
graph of, 145–146, 147
hyperbolic, see hyperbolic arctangent

Area thermal expansion, 380
Argon, 417
Arithmetic-geometric series, 213
Arithmetic interpolation, 25
Arithmetic mean, 25
Arithmetic series, 212
Arsenic, 423
Associativity:

of addition, 22
of addition, Boolean, 198
of disjunction, 202
of multiplication, 23
of multiplication, Boolean 199
of vector addition, 93–95
of vector-scalar multiplication, 95–96

Astatine, 447
Atomic numbers, table of, 475, 486–488
Atom, mass of, 382
Audibility, threshold of, 389
Average:

acceleration, 359
amplitude, 275
translational kinetic energy, 383
value of function over interval, 240

Balmer series, 408
Bandpass filter:

constant-k, 299
definition of, 298–299
series m-derived, 299–301
shunt m-derived, 301

Bandstop filter:
constant-k, 302
definition of, 302
series m-derived, 302–304
shunt m-derived, 304

Barium, 433
Barium-strontium oxides, 461
Barium-strontium titanate, 461
Barium titanate, 461
Berkelium, 453
Bernoulli differential equation, 248

Bernoulli’s Law for fluids, 379
Beryllia, 461
Beryllium, 412
Beryllium oxide, 461
Beta:

as function of alpha, 311
definition of, 310

Beta distribution, 256–257
Binary numbers, 8
Binomial distribution:

expectation of, 254
standard deviation of, 255
variance of, 254

Binomial formula, 31
Binomial random variable formula, 254
Binomial series, 215
Bipolar transistors, 308–315
Birmingham Wire Gauge, table of, 476,

520
Bisection:

of angle, 103
Bismuth, 446
Bohrium, 457
Boolean algebra, 195–200
Boron, 412
Bounded infinite sequence, 205
Bridge circuits:

Anderson, 339
definition of, 339
Hay, 339–340
Maxwell, 340–341
Owen, 341–342
Schering, 341–342
Wheatstone, 343
Wien, 343–344

British Standard Wire Gauge, table of,
476, 519

Broadcast channels:
UHF TV, table of, 477, 536–537
VHF TV, table of, 477, 536

Bromine, 423–424

Cadmium, 429
Cadmium borate, 461
Cadmium selenide, 461
Cadmium silicate, 461
Cadmium sulfide, 462
Cadmium tungstate, 462
Caesium, 432–433
Calcium, 418
Calcium phosphate, 462
Calcium tungstate, 462
Californium, 453–454
Capacitive reactance, 277–278
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Capacitive susceptance, 279–280
Carbon, 412–413
Carborundum, 467
Cardinality, 5
Cardioid:

equation of, 63–64
graph of, 71

Cartesian plane, 44–59
Cartesian three-space, 67, 73
Cartesian vs. polar coordinates, 58–59
Cathode-follower circuit, 321
Cathode resistance, required external,

323
Celestial latitude, 65–66
Celestial longitude, 65–66
Centripetal acceleration, 369–370
Centripetal force, 369–370
Cerium, 434
Cesium, 432–433
Chain rule, 222
Characteristic curve, semiconductor

diode, 308
Characteristic impedance:

of 1⁄4-wave matching section, 331
of coaxial cable, 328
of two-wire line, 328

Charge:
versus current and time, 263–264

Charging, 264
Chemical symbols, table of, 475, 486–488
Chi-square distribution, 257–258
Chlorine, 417
Chromel, 462
Chromium, 419–420
Chromium dioxide, 462
Circle:

equation of, in Cartesian coordinates,
53

equation of, in polar coordinates, 59
graph of, in Cartesian coordinates, 53–

54
graph of, in polar coordinates, 61–62
interior area of, 126
perimeter of, 126

Circular functions, 139–149
as imaginary powers of e, 141–142
basic, 139–140
inverse, 144–149
right-triangle model of, 141
secondary, 140

Circular identities, 149–161
Circular sector:

interior area of, 130
perimeter of, 129–130

Coaxial cable, characteristic impedance
of, 328

Cobalt, 420–421
Coincident sets, 5
Collisions:

and momentum, 366
elastic, 366

Common-base circuit, 310
Common-collector circuit, 313
Common-drain circuit, 317
Common-emitter circuit, 309
Common exponential:

definition of, 180
exponential of, 184
graph of, 181
of ratio, 185
product of, 183
product of natural and, 184
ratio of, 183
ratio of natural to, 185
ratio to natural, 184
reciprocal of, 183

Common logarithm:
definition of, 174
graph of, 175
in terms of natural logarithm, 176
of power, 178
of power of 10, 179
of product, 177
of ratio, 178
of reciprocal, 178
of root, 179

Common-source circuit, 316
Commutativity:

negative, of cross product, 92–93
of addition, 22
of addition, Boolean, 197
of conjunction, 203
of disjunction, 202
of dot product, 91–92
of multiplication, 22
of multiplication, Boolean, 199
of vector addition, 89–90
of vector-scalar multiplication, 90–91

Complementary events, 251
Complex admittances in parallel, 280
Complex conjugates, 17
Complex impedances in parallel, 280
Complex impedances in series, 278
Complex numbers, 14–20

equality of, 15
exponential form of, 186
magnitudes, 35
operations with, 15–16
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Complex numbers (Cont.):
polar form of, 18–20

Complex vectors, 17–18
Composite lenses, 399–400
Compton effect, 408
Conditionally convergent infinite series,

209
Conditional probability, 252
Conductance, AC, 278
Cone, right circular, 131–132
Conical solid:

general, 133–134
right circular, 132, 133

Conjunction, 200
Constantan, 462
Constants, table of, 474, 485
Continuity, 6
Continuity principle, 377
Continuous random variable, 249–250
Contradiction, 204
Contraposition, 204
Convergent infinite sequence, 206
Convergent infinite series, 208–209, 211
Concave lens, 398–399
Concave spherical surface, 391–392
Convex lens, 396–398
Convex spherical surface, 392, 393
Coordinates:

Cartesian plane, 44–59
Cartesian three-space, 67, 73
cylindrical, 67–68, 74
geometric, 72, 76–78
log-log, 71–72, 76
polar plane, 57–64
semilog, 69–71, 75
spherical, 68–69, 74

Copper, 421
Copper oxides, 462–463
Copper sulfides, 462–463
Corresponding angles, 107–108
Cosecant:

definition of, 140, 141
graph of, 143, 145
hyperbolic, see hyperbolic cosecant
of complementary angle, 158
of negative angle, 150
of supplementary angle, 160
periodicity of, 152

Cosine:
definition of, 140, 141
graph of, 142–143
hyperbolic, see hyperbolic cosine
of angular sum, 155
of angular difference, 156

of complementary angle, 157
of double angle, 153–154
of half angle, 154–155
of negative angle, 150
of supplementary angle, 159
periodicity of, 151–152

Cotangent:
definition of, 140, 141
graph of, 144, 146
hyperbolic, see hyperbolic cotangent
of complementary angle, 159
of negative angle, 151
of supplementary angle, 161
periodicity of, 153

Coulomb, 263
Coulomb’s Law, 264
Critical angle, 396
Cross multiplication, 27
Cross product, 79, 92–93, 97, 231
Cube, surface area of, 137
Cubical solid, volume of, 137
Curium, 452–453
Curl, 233
Current:

carrying capacity, table of, 477, 520
demand, 290
standing-wave ratio, 332–333
vs charge and time, 265
vs resistance and power, 266
vs resistance, energy, and time, 266
vs voltage and complex impedance,

281–282
vs voltage and power, 266
vs voltage and reactance, 281
vs voltage, frequency, and capacitance,

281
vs voltage, frequency, and inductance,

281
vs voltage, energy, and time, 266

Cylinder:
general, 135
right circular, 134

Cylindrical coordinates, 67–68, 74
Cylindrical solid:

general, 136
right circular, 134

Dalton’s Law, 382
DC component, 275
De Broglie wavelength, 407–408
Decimal expansions, 11
Decimal numbers, 7
Declination, 66, 73
Definite integral, 241
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Del operator, 231–232
De Moivre’s Theorem, 20
De Morgan’s Law:

for conjunction, 203
for disjunction, 202

Density, mass, 374
Denumerable number sets, 6–11
Derivative:

definition of, 218–219
higher-order, 220
of constant, 220
of cross product, 231
of difference of two functions, 220
of dot product, 231
of down-ramp wave, 227, 229
of function multiplied by a constant,

220–221
of function raised to a power, 222
of product of functions, 221
of quotient of functions, 221
of sine wave, 227, 228
of square wave, 230
of sum of two functions, 220
of triangular wave, 227, 229
of up-ramp wave, 227, 229
of vector function, 230–231
partial, 222–223
reciprocal, 221
second, 220
table of, 475, 489

Difference:
of powers, 30
powers of, 30

Differential equation:
Bernoulli, 248
definition of, 244
Euler, 248
exact, 248–249
homogeneous, 245
linear, first-order, 244–245
linear, homogeneous, second-order,

245–246
linear, non-homogeneous, second-order,

246–248
separation of variables, 245

Differentiation:
scalar, 218–230
vector, 230–233

Diffraction:
through grating, 402–403
through slit, 402

Diode tube:
3⁄2-power law for, 318
perveance, 318

Diopter of lens, 399
Direct current, 263–272
Direction angles, 81, 82
Direction cosines, 81, 83
Discharging, 265
Discontinuity, 6
Discrete random variable, 249–250
Discriminant, 37
Disjoint sets, 4–5
Disjunction, 201, 202
Displacement, average acceleration, and

time, 359
Displacement ratio, 364
Displacement, velocity, and time, 358
Distance addition, 105
Distance notation, 102
Distance subtraction, 105
Distribution:

beta, 256–257
binomial, 254–255
chi-square, 257–258
exponential, 258
gamma, 257
normal, 255–256
uniform, 256

Distributivity:
of del involving cross product, 232
of del involving dot product, 231–232
of del involving scalar functions, 231
of division over addition, 27
of cross product over vector addition,

96–97
of dot product over vector addition, 96
of multiplication over addition, 23
of multiplication over addition,

Boolean, 199
of scalar multiplication over scalar

addition, 96
of scalar multiplication over vector

addition, 96
Divergence, 233
Divergence Theorem, 243–244
Divergent infinite sequence, 206–207
Divergent infinite series, 209, 211
Domain, 6
Doppler effect, for acoustic waves, 389–

390
Dot product, 79, 91–92, 97, 231
Down-ramp wave:

derivative of, 227, 229
indefinite integral of, 237, 239

Dubnium, 456
Dynamic base resistance, 308
Dynamic collector resistance, 309
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Dynamic emitter feedback conductance,
309–310

Dynamic emitter resistance, 309
Dynamic resistance, 307
Dynamic stability factor, 311
Dysprosium, 437–438

Eddy-current power loss, 290–291
Effective amplitude, 276
Efficiency:

of machine, 364–365
of transformer, 289

Einsteinium, 454
Elastic collision, 366
Elasticity, modulus of, 375–376
Elastic kinetic energy, 372
Elastic potential energy, 371, 372
Electron tubes, 318–326
Elimination of cases, 204
Electrical unit conversions, table of, 474,

480–482
Electrical wavelength, 329–330
Electromagnetic field:

angular frequency, 327
definition of, 326
free-space wavelength, 326–327
frequency vs wavelength, 326
period, 327

Ellipse:
equation of, in Cartesian coordinates,

54
equation of, in polar coordinates, 60
graph of, in Cartesian coordinates, 54–

55
graph of, in polar coordinates, 63
interior area of, 127
perimeter of, 127

Ellipsoidal solid, volume of, 136–137
EM field, see electromagnetic field
Emissivity, 384–385
Energy:

AC, 284
apparent, 285
average translational kinetic, 383
kinetic, 363, 372
of photon, 407
potential, 363, 371, 372
reactive, 285
real, 284–285
relativistic, 406–407
vs current, resistance, and time, 272
vs current, voltage, and time, 272

vs power and time, 271
vs voltage, resistance, and time, 272

Entropy gain, 386
Entropy loss, 386
Equality of vectors, 85–86
Equations:

basic, in one variable, 36
elementary rules, 36
factored, in one variable, 37
graphic solutions of pairs of, 56–57
simple, 35–38
simultaneous, 38–44

Equilateral triangle, 111–113
Equivalence, logical, 201
Erbium, 438
Euler differential equation, 248
Europium, 436
Exact differential equation, 248–249
Excluded middle, 201
Expectation, 253, 254
Exponential distribution, 258
Exponential functions, 180–186
see also common exponential
see also natural exponential

Exterior angles:
negative, 121
of plane polygon, 121
positive, 121

Even-multiple negation:
Boolean, 196
propositional, 201

Factored equations in one variable, 37
Factorial, 24, 211–212
Fermium, 454
Ferrite, 463
Field-effect transistors, 315–318
Filament power demand, 324
Filter:

bandpass, 298–301
bandstop, 302–304
highpass, 296–298
lowpass, 294–296

First Law of Thermodynamics, 385
Flip-flops, table of, 476, 516
Fluid flow rate, 376–377
Fluid viscosity, 378
Fluorine, 414
Flux density, magnetic, 287
Force:

centripetal, 369–370
ratio, 364
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Forward current, 307
Forward transconductance:

common source, 316
Fourier series:

general, 215–216
for full-rectified sine wave, 217–218,

219
for half-rectified sine wave, 217–218
for square wave, 216
for ramp wave, 216–217
for triangular wave, 217–218
table of, 475, 496

Fourier transforms, table of, 475, 497–
498

Four-leafed rose:
equation of, 62–63
graphs of, 68, 69

Francium, 448
Free-space wavelength, 326–327
Frequency:

angular, 327, 367
definition of, 273
vs wavelength, 326

Friction:
kinetic, 361–362
static, 361

Full-rectified sine wave, 217–218, 219
Function, 5

continuity, 6
domain, 6
one-one, 5
onto, 5–6
range, 6

Gadolinium, 436–437
Gallium, 422
Gallium arsenide, 463
Gallium phosphide, 463
Gamma distribution, 257
Garnet, 463
Geometric polar plane, 77–78
Geometric series, 212–213
Geometric xy-coordinates, 72, 76, 77
Geometric interpolation, 25–26
Geometric mean, 25
Germanium, 422–423
Germanium dioxide, 463
German silver, 466
Gold, 443–444
Gradient, 233
Greek alphabet:

lowercase, table of, 476, 503–504

uppercase, table of, 476, 505
Greenwich meridian, 65

Hafnium, 440
Half-rectified sine wave, 217, 218
Half-wave cavity, 292–293
Half-wave transmission line, 293–294
Harmonic antenna, 337–338
Harmonic series, 213
Hassium, 457
Hay bridge, 339–340
Heat gain, 384
Heat loss, 384
Helium, 411
Helium/neon, 463
Hexadecimal numbers, 8
Higher-order derivatives, 220
Highpass filter:

constant-k, 296–297
definition of, 296
series m-derived, 297–298
shunt m-derived, 298

Holmium, 438
Homogeneous differential equation, 245
Hooke’s Law, 370–371
Hybrid parameters:

common base, 314–315
common collector, 315
common emitter, 313–314

Hydrogen, 411
Hydrostatic pressure, 376
Hyperbola:

equation of, in Cartesian coordinates,
55

equation of, in polar coordinates, 60–61
graph of, in Cartesian coordinates, 55–

56
graph of, in polar coordinates, 64

Hyperbolic functions, 161–174
as powers of e, 161–162
as series, 162
inverse, 165–169

Hyperbolic arccosecant:
definition of, 165–166, 169
graph of, 167, 168

Hyperbolic arccosine:
definition of, 165–166, 169
graph of, 166–167

Hyperbolic arccotangent:
definition of, 165–166, 169
graph of, 168–169
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Hyperbolic arcsecant:
definition of, 165–166, 169
graph of, 167–168

Hyperbolic arcsine:
definition of, 165–166, 169
graph of, 166

Hyperbolic arctangent:
definition of, 165–166, 169
graph of, 167

Hyperbolic cosecant:
definition of, 161–162
graph of, 164
of negative variable, 171

Hyperbolic cosine:
definition of, 161–162
graph of, 163
of difference, 174
of double value, 172
of half value, 172
of negative variable, 170–171
of sum, 173

Hyperbolic cotangent:
definition of, 161–162
graph of, 164–165
of negative variable, 171

Hyperbolic secant:
definition of, 161–162
graph of, 164–165
of negative variable, 171

Hyperbolic sine:
definition of, 161–162
graph of, 162
of difference, 173
of double value, 171–172
of half value, 172
of negative variable, 170–171
of sum, 173

Hyperbolic tangent:
definition of, 161–162
graph of, 163–164
of difference, 174
of double value, 172
of half value, 172–173
of negative variable, 171
of sum, 173

Hyperbolic identities, 169–174
Hysteresis power loss, 291

Ideal Gas Law, 381–382
Idempotence:

of conjunction, 202
of disjunction, 202

Identity element:
additive, 21

multiplicative, 21
Imaginary numbers, 13–14
Impedance:

definition of, 276
transformation, 289–290

Implication, logical, 201
Impulse:

angular, 368
linear, 365

Indefinite integral:
definition of, 234
of constant, 235
of constant raised to variable power,

237
of down-ramp wave, 237, 238
of function multiplied by constant, 236
of reciprocal, 236
of reciprocal multiplied by constant,

236
of sine wave, 237, 238
of square wave, 239
of sum of functions, 236–237
of triangular wave, 239
of up-ramp wave, 237, 238
of variable, 235–236
of variable multiplied by constant, 236
of variable raised to integer power, 237
table of, 475, 490–495

Independent events, 251
Indium, 429–430
Indium antimonide, 463
Inductive reactance, 277
Inductive susceptance, 278–279
Inequalities, 32
Inertia, moment of, 367–368
Infinite sequence:

alteration of initial terms, 207
alternating, 205
bounded, 205
boundedness and convergence, 207
convergent, 206
divergent, 206–207
negative, 205
nondecreasing, 205–206
nonincreasing, 206
positive, 205
term-by-term reciprocal, 207
uniqueness of limit, 206

Infinite series:
absolutely convergent, 210
alteration of initial terms, 210
alternating, 208
conditionally convergent, 209
convergent, 208–209, 210, 211
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divergent, 209, 211
negative, 208
partial sum, 208
positive, 208
uniqueness of sum, 209

Inflection point, 226–227, 228
Input capacitance, of tube, 321
Input power sensitivity, for tube, 326
Instantaneous:

acceleration, 360
amplitude vs phase angle, 276
velocity, 359

Integers, 8–10
Integral:

definite, 234–235
indefinite, 234–239, 475, 490–495
line, 241–242
surface, 242–244

Integration:
by parts, 235
constant of, 234
linearity, 235
scalar, 234–240
vector, 240–244

International Morse Code, table of, 478,
549

Interpolation:
arithmetic, 25
geometric, 25–26

Intersection between curves, angle of,
224–225

Inverse:
additive, 21, 33
circular functions, 144–149
hyperbolic functions, 165–169
multiplicative, 21–22

Iodine, 431–432
Ionizing-radiation dose, 410
Iridium, 442–443
Iron, 420
Iron oxides, 464
Irrational numbers, 12
Isosceles triangle, 111–113
Isotropic substance, 381

Joule, 271

Kinetic energy:
average translational, 383
definition of, 363
elastic, 372
elastic collisions and, 366
of rotation, 369

Kinetic friction, coefficient of, 361–362

Kirchhoff ’s Law:
for DC amperage, 266–267
for DC voltage, 268–269

Krypton, 424

Lanthanum, 433–434
Laplace transforms, table of, 475, 500–

502
Laplacian, 233
Latitude, 64–65, 72
Lawrencium, 455
LC bridged T null network, 344–345
Lead, 445–446
Lead peroxide, 464
Lemniscate:

equation of, 61
graph of, 65

Lens:
composite, 399–400
concave, 398–399
convex, 396–398

Linear equation:
point-slope form of, 47–49
slope-intercept form of, 44–47

Linear differential equation, 245–248
Linear impulse, 365
Linearity of integration, 235
Linear momentum:

conservation of, 365–366
definition of, 365
relativistic, 406

Linear thermal expansion, 380
Line integral:

around closed curve, 242
definition of, 241
direction of, 241–242
separation of paths, 242

Lithium, 411
Local maximum, 225–226
Local minimum, 225–226
Logarithms, 174–180
see also common logarithm
see also natural logarithm

Logical equivalence, 201
Logical implication, 201
Logic gates, table of, 476, 517
Log-log coordinates, 71–72, 76
Longitude, 64–65, 72
Long wire antenna, resonant

unterminated, 338
Loss:

caused by high standing-wave ratio,
334–335

in matched lines, 333–334
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Loudness, 389
Lowpass filter:

constant-k, 294
definition of, 294
series m-derived, 294–295
shunt m-derived, 295–296

Lutetium, 439–440
Lyman series, 408–409

Maclaurin series, 214
Magnesium, 415
Magnesium fluoride, 464
Magnesium silicate, 464
Magnesium tungstate, 464
Magnetic flux density, 287
Magnetic permeability, 287
Magnetic unit conversions, table of, 474,

482
Magnetizing force, 287–288
Magnetomotive force, 287
Magnet steel, 464
Magnification:

microscopic, 401–402
telescopic, 400–401

Manganese, 420
Manganese dioxide, 464
Manganin, 464
Mass:

density, 374
increase, relativistic, 406
of atom, 382
of molecule, 382

Mathematical symbols, general, table of,
476, 506–510

Maxwell bridge, 340–341
Mean:

arithmetic, 25
geometric, 25

Mean free path, 383
Measurement error, 259–260
Meitnerium, 458
Mendelevium, 454–455
Mercuric iodide, 465
Mercuric oxide, 465
Mercury, 444
Mercury cadmium telluride, 465
Microscopic magnification, 401–402
Midpoint principle, 102
Miscellaneous unit conversions, table of,

474, 483–484
Modulus of elasticity, 375–376
Modus ponens, 203
Modus tollens, 203
Molecule, mass of, 382

Molybdenum, 426–427
Moment of inertia, 367–368
Momentum:

angular, 368
collisions and, 366
elastic, 366
linear, 365–366

Monel, 465
Morse code, International, table of, 478,

549
Multiplication:

by zero, in arithmetic, 24
by zero, Boolean, 198
Boolean, 195–196
of identical quantities, Boolean, 198
of opposites, Boolean, 199
of photon, 407
property, 35
vector-scalar, 86–89, 90–91, 95–96

Multiplicative identity:
in arithmetic, 21
Boolean, 198

Multiplicative inverse, 21–22
Mutually exclusive events, 251
Mutual perpendicularity, 108

Nabla, 231
Natural exponential:

definition of, 180
exponential of, 184
graph of, 182
of imaginary number, 185
of ratio, 185
product of, 183
product of common and, 184
ratio of, 183–184
ratio of common to, 184
ratio to common, 185
reciprocal of, 183

Natural logarithm:
definition of, 176
graph of, 176–177
in terms of common logarithm, 177
of complex number, 179–180
of power, 178
of power of e, 179
of product, 177–178
of ratio, 178
of reciprocal, 179
of root, 179

Natural numbers, 6–7
Negation:

Boolean, 195–196
of product, Boolean, 199
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of sum, Boolean, 198
propositional, 200–201

Negative:
commutativity, 92–93
infinite sequence, 205
infinite series, 208
peak amplitude, 275
powers, 29

Neodymium, 435
Neodymium-YAG, 465
Neodymium/yttrium/aluminum/garnet,

465
Neon, 414
Neptunium, 451
Newton’s First Law, 360
Newton’s Second Law, 360
Newton’s Third Law, 361
Nichrome, 465
Nickel, 421
Nickel / cadmium, 465
Nickel hydroxide, 465
Nickel / iron, 466
Nickel oxide, 466
Nickel silver, 466
Niobium, 426
Nitrogen, 413
Nobelium, 455
Noise figure, 306
Nondecreasing infinite sequence, 205–

206
Nondenumerable number sets, 12–20
Nondisjoint events, 251–252
Nonincreasing infinite sequence, 106
Nonstandard form of vector, 83–85
Normal distribution, 255–256
Normal to curve at a point, 223–114
Null networks:

definition of, 344
LC bridged T, 344–345
RC bridged T, 345
RC parallel T, 345–346

Number conversion, table of, 476, 511–
516

Numbers:
binary, 8
complex, 14–20
decimal, 7
hexadecimal, 8
imaginary, 13–14
integers, 8–10
irrational, 12
natural, 6–7
octal, 8
prime, 29

rational, 11
real, 12–13

Odd-multiple negation:
Boolean, 196
propositional, 201

Octal numbers, 8
Ohm, 269
Ohmic power loss, 290
Ohm’s Law:

for DC amperage, 265–266
for DC resistance, 269
for DC voltage, 267–268

One-one function, 5
One-to-one correspondence, 6
Onto function, 5–6
Operations, precedence of, 31–32
Orthogonal polynomials, table of, 475,

499–500
Osmium, 442
Output impedance, source follower, 318
Owen bridge, 341–342
Oxygen, 413

Palladium, 428
Parabola:

equation of, 49
graphs of, 49–53

Parallelepiped, 138
Parallelogram:

definition of, 113–117
diagonals of, 114–115
interior area of, 122–123
perimeter of, 122

Parallel principle, 108
Partial derivative:

of multivariable function, 222–223
of two-variable function, 222

Partial sum, 208
Pascal’s Principle, 376
Paschen series, 409
Peak amplitude, 275
Peak-to-peak amplitude, 276
Pendulum, 374
Period:

definition of, 273
of electromagnetic field, 327
of oscillation, 373, 374

Permeability:
definition of, 287
table of, 477, 421

Perpendicular bisector, 103–104
Perpendicularity, 103, 104, 108
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Perveance:
diode tube, 318
triode tube, 318, 319

Phase, 273
Phase angle:
RC, 278
RL, 277
vs time and frequency, 273
vs time and period, 274

Phonetic alphabet, table of, 478, 550
Phosphorus, 416
Photon:

energy, 407
momentum, 407

Plane polygon:
sum of exterior angles, 121
sum of interior angles, 119–120

Plate amplification factor, 320
Plate-cathode voltage, DC, 322
Plate current vs perveance in triode, 319
Plate efficiency, 325
Plate input power, DC, 325
Plate power dissipation, 325
Plate resistance:

DC internal, 319
required external, 323

Platinum, 443
Platinum/tellurium, 466
Plutonium, 451–452
Point-point-point triangle, 109
Point-slope form of linear equation, 47–

49
Poiseuille’s Law for fluids, 379
Polar plane, 57–64, 81–83
Polar vs. Cartesian coordinates, 58–59
Polonium, 446–447
Positive infinite sequence, 205
Positive infinite series, 208
Positive integer roots, 24
Potassium, 417–418
Potassium chloride, 466
Potassium cyanide, 466
Potassium hydroxide, 466
Potential energy:

definition of, 363
elastic, 371, 372

Power:
AC, 283
apparent, 284
on rotating object, 369
radiated by surface, 385
reactive, 284
real, 283–284
vs current and resistance, 271

vs current and voltage, 271
vs energy and time, 270

Power loss:
eddy-current, 290–291
hysteresis, 291
ohmic, 290
total, in inductor or winding, 291–292
total, in transformer, 291

Power-of–10 notation, 190–193
plain-text exponents, 191–192
rounding, 193–194
rules for use, 192–193
significant figures, 194–195
‘‘times sign,’’ 191
truncation, 193

Power series, 213
Powers:

difference of, 30
negative, 29
of difference, 30
of negative reals, 34
of positive reals, 34
of signs, 26
of sum, 30
product of, 30
quotient of, 30
rational-number, 29
sum of, 29

Praseodymium, 434
Precedence of operations, 31–32
Prefix multipliers, 473, 478
Pressure:

definition of, 375
hydrostatic, 376

Primary circular functions, 139–140
Prime factors, 29
Prime meridian, 65
Prime numbers, 29
Principle of n points, 102
Prism, rectangular, 137–138
Probability:

combinations, 252–253
complementary events, 251
conditional, 252
definition of, 249
expectation, 253
independent events, 251
mutually exclusive events, 251
nondisjoint events, 251–252
permutations, 252
tree diagrams, 252–253
variance, 253–254
with continuous random variable, 249–

250
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with discrete random variable, 249
Product:

added to a quantity, Boolean, 200
of powers, 30
of quotients, 28
of signs, 26
of sums, 27
quantity added to, 200

Promethium, 435
Proof by cases, 203
Proper subsets, 4
Propositional logic, 200–204
Protactinium, 450
Protoactinium, 450
Proustite, 467
Pseudorandom numbers, 258–259
Pyramid:

volume of, 130–131
Pythagoras, Theorem of, 118–119
Pythagorean Theorem:

for hyperbolic cotangent and cosecant,
170

for hyperbolic secant and tangent, 170
for hyperbolic sine and cosine, 170
for secant and tangent, 150
for sine and cosine, 149
for right triangle, 118–119

Q signals, table of, 477, 538–540
Quadratic formula, 37
Quadrature, unit imaginary, 27
Quadrilateral, sum of interior angles,

119
Quantum numbers:

orbital, 409
principal, 409

Quarter-wave cavity, 292
Quarter-wave transmission line, 293
Quotient:

of powers, 30
of products, 28
of quotients, 28
of signs, 26

Radiation resistance, 335
Radioactive decay, 410
Radio spectrum, table of, 477, 522
Radium, 448–449
Radon, 447–448
Ramp wave, 216–217
Random variable:

continuous, 249–240
discrete, 249

Range:
of function, 6

Rational-number powers, 29
Rational numbers, 11
RC bridged T null network, 345
RC parallel T null network, 345–346
Reactance:

capacitive, 277–278
inductive, 277

Real numbers, 12–13
Reciprocal:

derivatives, 221
of negative reals, 33
of quotient, 28
of positive reals, 33
of product, 28
of reciprocal, 27

Rectangle:
definition of, 115–116
interior area of, 124
perimeter of, 124

Rectangle diagonals, 116
Rectification efficiency, 306–307
References, suggested additional, 553
Reflection:

from concave spherical surface, 391–
392

from convex spherical surface, 392,
393

from flat surface, 390–391
Reflection coefficient:

vs load resistance, 333
vs SWR, 333

Refraction:
through concave lens, 398–399
through convex lens, 396–398

Refractive index:
absolute, 392–393
relative, 393–394

Regular polygon:
interior area of, 125
interior area of, around circle, 129
interior area of, in circle, 128
perimeter of, 125–126
perimeter of, around circle, 128–129
perimeter of, in circle, 127–128

Relative refractive index, 393–394
Relativistic:

addition of speeds, 403–404
dilation of time, 404–405
energy, 406–407
linear momentum, 406
mass increase, 406
spatial contraction, 405–406
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Reluctance:
definition of, 286
in parallel, 286–287
in series, 286
of a magnetic core, 286

Resistance:
vs current and power, 269
vs current, energy, and time, 270
vs voltage and power, 270
vs voltage, energy, and time, 270

Resistance parameters:
common base, 311–312
common collector, 312–313
common emitter, 312

Resistivity, table of, 477, 521
Resonance, 387–388
Resonant frequency:

half-wave cavity, 292–293
half-wave transmission line, 293–294
LC, 292
quarter-wave cavity, 292
quarter-wave transmission line, 293

Reynolds number for fluids, 378–379
RF transmission lines, 327–335
Rhenium, 441–442
Rhodium, 428
Rhombus:

definition of, 117
interior area of, 123
perimeter of, 123

Rhombus diagonals, 117
Right ascension, 66, 73
Right-triangle model, of circular

functions, 141
RC phase angle, 278
RL phase angle, 277
Root-mean-square (rms) speed, 383
Roots, positive integer, 24
Rounding, 193–194
Rubidium, 424
Ruthenium, 427–428
Rutherfordium, 456

Samarium, 435–436
Scalar differentiation, 218–230
Scandium, 418
Schematic symbols, table of, 477, 523–

535
Schering bridge, 341–342
Scientific notation, 189–195
Screen amplification factor, 320
Screen current, 323
Screen power, DC, 325
Screen resistance:

DC internal, 319
dynamic internal, 320
required external, 323

Screen voltage, DC, 322–323
Seaborgium, 456–457
Secant:

definition of, 140, 141
graph of, 143, 145
hyperbolic, see hyperbolic secant
of complementary angle, 158–159
of negative angle, 151
of supplementary angle, 160–161
periodicity of, 153

Secondary circular functions, 140
Second derivative, 220
Second Law of Thermodynamics, 386
Selenium, 423
Semiconductor diodes, 306–308
Semilog coordinates:
x-linear, 69–70, 75
y-linear, 70–71, 75

Separation of variables, 245
Sequences, 204–207
Series, 208–218

arithmetic, 212
arithmetic-geometric, 213
Fourier, 215–219
geometric, 212–213
harmonic, 213
Maclaurin, 214
power, 213
Taylor, 214

Sets, 3
cardinality, 5
intersection, 4
union, 4

Shear modulus, 378
Shear rate, 378
Shear strain, 378
Shear stress, 377
SHM, see simple harmonic motion
Side-angle-side triangles, 109–110
Side-side-side triangles, 109
Signal output power, from tube, 325
Signal-plus-noise-to-noise ratio, 305–306
Signal-to-noise ratio, 305
Significant figures, 194–195
Signs:

power of, 26
product of, 26
quotient of, 26

Silica, 467
Silicon, 416
Silicon carbide, 467
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Silicon dioxide, 467
Silicon oxides, 467
Silicon steel, 467
Silver, 428–429
Silver solder, 467
Simple equations, 35–38
Simple harmonic motion (SHM):

definition of, 371
energy in, 372
instantaneous acceleration in, 373–374
instantaneous speed in, 373
period of oscillation in, 373

Simultaneous equations, 38–44
2�2 addition method, 40–41
2�2 general equations, 42–44
2�2 substitution method, 38–40
existence of solutions, 38
n�n sets of linear equations, 41

Sine:
definition of, 140, 141
graph of, 142
hyperbolic, see hyperbolic sine
of angular difference, 156
of angular sum, 155
of complementary angle, 157
of double angle, 153
of half angle, 154
of negative angle, 150
of supplementary angle, 159
periodicity of, 151

Sine wave:
derivative of, 227, 228
indefinite integral of, 237, 238

Slope-intercept form of linear equation,
44–47

Snell’s Law, 394–396
Sodium, 414–415
Sodium iodide, 467
Sodium silicate, 468
Solder data, table of, 477, 522
Source follower, 317
Spatial contraction, relativistic, 405–406
Specific gravity:

for gas, 375
for liquid, 374
for solid, 374

Specific heat capacity, 383–384
Speeds, addition of, relativistic, 403–404
Sphere, surface area of, 136
Spherical coordinates, 68–69, 74
Spherical solid, surface area of, 136
Spiral:

equation of, 63
graph of, 70

Square:
interior area of, 124–125
perimeter of, 124

Square wave:
definition of, 216
derivative of, 230
indefinite integral of, 239

Standard deviation:
definition of, 255
of binomial distribution, 255

Standard form of vector, 83–85
Standard International unit conversions,

table of, 473, 479–480
Standard temperature and pressure

(STP), 381
Standing-wave ratio (SWR):

current, 332–333
definition of, 332
loss caused by high, 334–335
reflection coefficient vs, 333
voltage, 332–333

Static forward current transfer ratio, 308
Static friction, coefficient of, 361
Static resistance, 307
Steel, 468
Stokes’ Theorem, 243–244
STP, see standard temperature and

pressure
Strain:

definition of, 375
shear, 378

Stress:
definition of, 375
shear, 377

Strontium, 425
Subscripts, 189
Subsets, 4
Suggested additional references, 553
Sulfur, 416–417
Sulfur hexafluoride, 468
Sulfuric acid, 468
Sum:

of powers, 29
of quotients, 28
powers of, 30
product of, 27

Superscripts, 190
Supply voltage, required DC, for tube,

321–322
Surface integral, 242–244
Susceptance:

capacitive, 279–280
inductive, 278–279

SWR, see standing-wave ratio
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Tangent:
definition of, 140, 141
graph of, 143, 144
hyperbolic, see hyperbolic tangent
of angular difference, 156–157
of angular sum, 156
of complementary angle, 157–158
of double angle, 154
of half angle, 155
of negative angle, 150
of supplementary angle, 160
periodicity of, 152
to curve at a point, 223

Tantalum, 440–441
Tantalum nitride, 468
Taylor series, 214
Technetium, 427
Telescopic magnification, 400–401
Tellurium, 431
Ten-code signals:

in Citizens Radio Service, table of, 478,
541–543

in law enforcement, table of, 478, 543–
548

Terbium, 437
Thallium, 445
Thallium oxysulfide, 468
Theorem of Pythagoras, 118–119
Thermal expansion:

area, 380
linear, 380
volume, 380–381

Thermal noise power, 305
Thermal noise voltage, 305
Thermodynamics:

First Law of, 385
Second Law of, 386

Thorium, 449–450
Thorium oxide, 468
Three-leafed rose:

equation of, 62
graphs of, 66, 67

Three-point principle, 101–102
Threshold of audibility, 389
Thulium, 439
Time conversion, table of, 478, 551
Time dilation, relativistic 404–405
Tin, 430
Tin / lead, 468
Tin oxide, 469
Titanium, 419
Titanium dioxide, 469

Toroidal solid, 139
Torque:

definition of, 362
vs angular acceleration, 368

Torricelli’s Law for fluids, 379–380
Torus, 139
Transconductance, of tube, 320
Transformer:

efficiency, 288–289
impedance transformation, 289–290
PS turns ratio, 289
SP turns ratio, 289
voltage transformation, 289

Transitivity:
in algebra, 32–33
of equivalence, 204
of implication, 204

Transmission lines, RF, 327–335
Trapezoid:

interior area of, 125
perimeter of, 125
within triangle, 117
median of, 117–118

Tree diagrams, 252–253
Triangle:

angle-angle-angle, 110–111
angle-side-angle, 110
equilateral, 111–113
interior angles, sum of, 118
interior area of, 122
isosceles, 111–113
perimeter of, 122
point-point-point, 109
right, 118–119
side-angle-side, 109–110
side-side-side, 109

Triangular wave:
definition of, 217, 218
derivative of, 227, 229
indefinite integral of, 239

Truncation, 193
Tungsten, 441
Turns ratio, 289
TV broadcast channels:

UHF, table of, 477, 536–537
VHF, table of, 477, 536

Twin Paradox, 405
Two-point principle, 101, 102
Two-wire line, characteristic impedance

of, 328

UHF TV broadcast channels, table of,
477, 536–537
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Uniform distribution, 256
Unit circle, 140
Unit conversions, electrical, table of, 474,

480–482
Unit conversions, magnetic, table of, 474,

482
Unit conversions, miscellaneous, table of,

474, 483–484
Unit conversions, Standard

International, table of, 473, 479–480
Unit imaginary quadrature, 27
Units:

absolute-value impedance, 356
acceleration, 352
angular acceleration, 352
angular velocity, 352
area, 351
capacitance, 355
charge-carrier mobility, 357
complex impedance, 355–356
conductance, 353–354
conductivity, 354
displacement, 349
electric charge quantity, 352
electric current, 350
electric field strength, 356
electric susceptibility, 357
electromagnetic field strength, 357
electromotive force, 353
energy, 353
force, 352
frequency, 354–355
inductance, 355
luminous intensity, 350
magnetic field intensity, 358
magnetic flux, 357
magnetic flux density, 357
magnetic pole strength, 358
magnetomotive force, 358
mass, 349–350
material quantity, 350
period, 354
permittivity, 357
plane angular measure, 351
power, 354
reactance, 355
resistance, 353
resistivity, 353
solid angular measure, 351
temperature, 350
time, 350
unit electric charge, 352

velocity, 351
volume, 351

Universal Gravitation, Law of, 361
Unnilenium, 458
Unnilhexium, 456–457
Unniloctium, 457
Unnilquadium, 456
Unnilpentium, 456
Unnilseptium, 457
Ununbium, 459
Ununhexium, 460
Ununnillium, 458
Ununoctium, 460
Ununquadium, 459
Unununium, 458–459
Up-ramp wave:

derivative of, 227, 229
indefinite integral of, 237, 238

Uranium, 450–451

Vanadium, 419
Variance, 253–254
Vectors:

addition, associativity of, 93–95
algebra of, 78–97
complex, 17–18
cross product of, 79, 92–93, 97
dot product of, 79, 91–92, 96, 97
equality of, 85–86
in the polar plane, 79–81
in the xy-plane, 78–79
in xyz-space, 81–83
nonstandard form of, 83–85
standard form of, 83–85
sum of, 79

Vector-scalar multiplication, 86–89, 90–
91, 95–96

Velocity, instantaneous, 359
Velocity factor:

definition of, 328
of transmission lines, table, 329

Vertical angles, 106
VHF TV broadcast channels, table of,

477, 536
Viscosity, fluid, 378
Voltage:

AC, 282
amplification, for tube, 324
gain, for tube, 324
induced by motion of conductor, 288
induced by variable magnetic flux, 288
standing-wave ratio, 332–333
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Voltage (Cont.):
transformation, 289
vs current and complex impedance,

283
vs current and power, 268
vs current and reactance, 282
vs current, energy, and time, 268
vs current, frequency, and capacitance,

282–283
vs current, frequency, and inductance,

282
vs resistance and power, 268
vs resistance, energy, and time, 268

Voltage amplification:
common source, 317
source follower, 317

Volt, 267
Volume thermal expansion, 380–381

Water glass, 468
Watt, 270
Wavelength:

electrical, 329–330
free-space, 326–327
vs frequency, 326
vs frequency and speed, 387
vs period and speed, 387

Wheatstone bridge, 343
Wien bridge, 343–344
Wire gauge:

American, table of, 476, 518
Birmingham, table of, 476, 520
British Standard, table of, 476, 519

Wolfram, 441
Work:

definition of, 362–363
on rotating object, 369
principle of, 364

Xenon, 432
xy-plane, 44–59, 78–79
xyz-space, 67, 73, 81–83

YAG, 469
YIG, 469
Ytterbium, 439
Yttrium, 425
Yttrium/aluminum/garnet, 469
Yttrium/ iron /garnet, 469

Zero denominator, 24
Zero numerator, 23
Zeroth power, 24
Zinc, 422
Zinc aluminate, 469
Zinc beryllium silicate, 469
Zinc beryllium zirconium silicate, 469
Zinc cadmium sulfide, 469
Zinc germanate, 470
Zinc magnesium fluoride, 470
Zinc orthosilicate, 470
Zinc oxide, 470
Zinc silicate, 470
Zinc sulfide, 470
Zirconia, 470
Zirconium, 425–426

1⁄4-wave matching section:
characteristic impedance of, 331
length of, 330–331

1⁄4-wave vertical antenna, 336–337
1⁄2-wave dipole antenna, 336
3⁄2-power law:

for diode tube, 318
for triode tube, 319



ABOUT THE AUTHOR

Stan Gibilisco is one of McGraw-Hill’s most versatile, pro-
lific, and best-selling authors. His clear, friendly, easy-to-
read writing style makes his electronics titles accessible to
a wide audience, and his background in mathematics and
research makes him an ideal handbook editor. He is the
author of The TAB Encyclopedia of Electronics for Techni-
cians and Hobbyists, Teach Yourself Electricity and Elec-
tronics, and The Illustrated Dictionary of Electronics.
Booklist named his McGraw-Hill Encyclopedia of Personal
Computing one of the ‘‘Best References of 1996.’’

Copyright 2001 The McGraw-Hill Companies, Inc.   Click Here for Terms of Use.




