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Chapter 1

Basics

1.1 Goniometric functions

For the goniometric ratios for a poipton the unit circle holds:

cos(¢) =z, , sin(¢) =y, , tan(¢) = %”
P

sin?(z) + cos?(x) = 1 andcos—2(z) = 1 + tan?(z).
cos(a £ b) = cos(a) cos(b) F sin(a) sin(b) , sin(a £ b) = sin(a) cos(b) + cos(a) sin(b)
tan(a) & tan(b)

tan(a £b) = 1 F tan(a) tan(b)
Thesum formulas are:
sin(p) +sin(g) = 2sin(5(p +q)) cos(3(p — q))
sin(p) —sin(q) = 2cos(z(p+q))sin(z(p - q))
cos(p) +cos(q) = 2cos(3(p+q)) cos(z(p — q))
cos(p) — cos(q) —2sin(3(p + ¢)) sin(3(p — q))
From these equations can be derived that
2cos?(z) = 1 +cos(2x) , 2sin®(z) =1 — cos(22)
sin(m — ) =sin(z) , cos(m —x) = — cos(x)
sin(37 —z) =cos(z) , cos(3m — ) = sin(z)

Conclusions from equalities
sin(z) =sin(a) = z=ax2krorz=(m—a)=*2kr, k€N
cos(x) =cos(a) = wx=ax2kmorzx=—az£2knr

tan(z) = tan(a) = a=a=xkmrandz # g +km

The following relations exist between the inverse goniometric functions:

T 1
———— | =arccos [ ——] , sin(arccos(z)) = V1 — z2
\/x2+1> <\/x2+1) ( ()

1.2 Hyperbolic functions

arctan(x) = arcsin <

The hyperbolic functions are defined by:

e’ —e”" e’ +e " sinh(z)
— h(x) = tanh(z) =
5 , cosh(z) 5 , tanh(z) cosh(z)

sinh(z) =

From this follows thatosh?(z) — sinh®(z) = 1. Further holds:

arsinh(z) = In|z + Va2 + 1| , arcosh(z) = arsinh(y/z2 — 1)
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1.3 Calculus

The derivative of a function is defined as:

df .. flx+h)— f(r)
ar o h

Derivatives obey the following algebraic rules:

_ ydr — xdy

dlz+y)=detdy , d(zy) = xdy + ydz , d(x) 5
Y

Y

For the derivative of the inverse functigit"” (y), defined byf ™ (f(z)) = z, holds at point? = (z, f(z)):
<dfinv(y)> . (df(x)) _,
dy P dx ) p

4 _dfdg

de Igdx
Further, for the derivatives of products of functions holds:

Chainrule: iff = f(g(x)), then holds

n

o™ =3" <Z> k) g0

k=0

For theprimitive functionF'(z) holds: F’(x) = f(x). An overview of derivatives and primitives is:

y=f(z) | dy/dx = f'(x) | f(z)dz
ax™ anz™ 1 a(n + 1)~ tpntl
1/x —r2 In |z|
a 0 ax
az a® h;(a) a®/ lil(a)
?log(x) (xIn(a))~! (zln(z) — z)/In(a)
In(x) 1/x zln(x) —z
sin(x) cos(z) —cos(x)
cos(x) —sin(z) sin(x)
tan(z) cos~?(x) —1In| cos(z)|
sin™! () —sin"?(z) cos(x) In | tan($z)|
sinh(z) cosh(z) cosh(z)
cosh(z) sinh(z) sinh(z)
arcsin(x) 1/vV1 — a2 xarcsin(z) + v1 — z2
arccos(x) —1/V/1 — 22 xarccos(z) — V1 — a?
arctan(z) (1+a2%)7t zarctan(z) — 1 In(1 + 2?)
(a+2%)~V2 | —z(a+2?)3/? X In|z + Va + 22|
(a® — 2?)~1 2z(a? + 2%)7?2 %ln|(a+x)/(a—x)|

Thecurvaturep of a curve is given byp =

(1+ (y)?)3/?
ly”|

The theorem of De 'l Bpital: if f(a) = 0 andg(a) = 0, then islim —— = lim

f(z) f'(x)

r—a g’ (m)

r—a g(;j(}
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1.4 Limits
i r—1 t ©
li Sll’l(x) 1 ’ 1 € —1 . lim aH(CE) =1, hm(l + k)l/k e, lim (1 + E) — e
z—0 x r—0 T z—0 x k—0 T—00 X
In? 1 P
limz®In(z) =0, lim n*(z) =0, lim In(@ +a) =a , lim ¥ _o alsjal > 1.
z]0 L—00 x® z—0 xX x—oo q%
lin%) <a1/“’ - 1) =1In(a) , linbm =1, lim Jz=1
xr— xr— €T r—00

1.5 Complex numbers and quaternions

1.5.1 Complex numbers

The complex number = a + bi with ¢ andb € IR. a is thereal part, b theimaginary partof z. |z| = Vva? + b2.
By definition holds:i? = —1. Every complex number can be writtenas- |z| exp(iy), with tan(¢) = b/a. The
complex conjugatef z is defined ag = z* := a — bi. Further holds:

(a+bi)(c+di) = (ac—0bd)+i(ad+ bec)
(a+bi)+ (c+di) = a+c+i(b+d)
a+bi  (ac+ bd)+i(bc — ad)
c+di 2+ d?

Goniometric functions can be written as complex exponents:

1, . i
sin(xz) = ?(e” —e™™)

i

1, . .
cos(z) = E(em +e7%)

From this follows thatos(iz) = cosh(z) andsin(iz) = isinh(z). Further follows from this that
et = cos(z) £ isin(z), S0e’* # 0Vz. Also the theorem of De Moivre follows from this:

(cos(p) + isin(p))™ = cos(np) + isin(nep).

Products and quotients of complex numbers can be written as:

oz = Jal [l (cos(pr + o) +isin(er + 02))
z 2 i si
2 M(cos(apl — p2) +isin(p1 — ¢2))
22 |22

The following can be derived:
|21 + 22| < [z1] + |22] , 21 — 22| 2 [ |21 = |22 |

And from z = rexp(if) follows: In(z) = In(r) + 46, In(2) = In(z) + 2nmri.

1.5.2 Quaternions

Quaternions are defined as:= a + bi + cj + dk, with a, b, c,d € IR andi? = j2 = k? = —1. The products of
i, j, k with each other are given by = —ji = k, jk = —kj =i andki = —ik = j.
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1.6 Geometry

1.6.1 Triangles

The sine rule is:
a b c

sin(a)  sin(f)  sin(y)

Here,« is the angle opposite tq 3 is opposite td andy opposite ta-. The cosine rule isa? = b%+c? —2bc cos(a).
For each triangle holdsi + 3 + v = 180°.

Further holds:
tan(z(a+6))  a+b

(a=@) a=b

—+
&
=
—
[SIE NI

The surface of a triangle is given Byibsin(y) = Sah, = v/s(s — a)(s — b)(s — ¢) with h, the perpendicular on
aands = 1(a+b+c).

1.6.2 Curves

Cycloid: if a circle with radiusa rolls along a straight line, the trajectory of a point on this circle has the following
parameter equation:

x=a(t+sin(t)) , y=a(l+ cos(t))

Epicycloid: if a small circle with radius: rolls along a big circle with radiug, the trajectory of a point on the small
circle has the following parameter equation:

x = asin <R+at> + (R+a)sin(t) , y=acos (Mt> + (R + a) cos(t)
a a

Hypocycloid: if a small circle with radius: rolls inside a big circle with radiu®, the trajectory of a point on the
small circle has the following parameter equation:

—a

z = asin <R;“t> + (R —a)sin(t) , y:—acos<R t> + (R — a) cos(t)

A hypocycloid witha = R is called acardioid. It has the following parameterequation in polar coordinates:
r = 2a[l — cos(p)].

1.7 \ectors

Theinner products defined byz - b= " a;b; = || - [b| cos(¢)

wherey is the angle betweet andb. Theexternal products in IR? defined by:
= ayb, — a.b, €r €y €
axb= a,by — agb, =|a; ay a
azby — ayby

Further holdsi@ x b| = |@| - |b|sin(y), and@ x (b x &) = (@-)b— (@- b)é.
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1.8 Series

1.8.1 Expansion

The Binomium of Newton is:

where n -—L
k) El(n — k)

By subtracting the serie3_ * andr > r* one finds:

k=0 k=0
n 1 — gl
SR
1—r
k=0
> 1
and for|r| < 1 this gives thegeometric series)  r* =
P 1—r
N
Thearithmetic seriess given by:» "(a +nV) = a(N + 1) + $N(N + 1)V
n=0

The expansion of a function around the pains$ given by theTaylor series

(z —a)"

n!

(z—a)?

f(z) = fla) + (2 = a) f'(a) +

@)+ + f™ ) +R

where the remainder is given by:
nh’n n
Ry (h) = (1= 0)"— {1 (6h)

and is subject to:

mthrl Mthrl
< < —_
(n+1)! — n()_(n—i—l)!
From this one can deduce that -
[0
1 _ « — n
(=3 (2)

One can derive that:

n=1 n=1 n=1
n e 1)n+1 2 e ( 1)n+1
2 = = 1 2 1 ( - Ta = 1 2
SR =nme Do+, YR T S VT
k=1 n=1 n=1
> 1 L > 71'2 > 1 7.‘_4 e (_1)n+1 71.3
,1214”2 RN g m—12 8’ ;(Qn—m_%’ ;(271—1)3_32

1.8.2 Convergence and divergence of series

If Z [t | convergesz u,, also converges.

If lim u, #0 thenz uy, is divergent.

n—oo

An alternating series of which the absolute values of the terms drop monotonously to 0 is convergent (Leibniz).
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If fpoc f(z)dz < oo, thenY_ £, is convergent.

n

If u, > 0Vnthenis) u, convergentf > In(u, + 1) is convergent.

n

If u, = c,z™ the radius of convergengeof > u,, is given by:1
n p

oo
. 1. . . .
The serleSE —is convergent ip > 1 and divergent ifp < 1.
n

n=1

n

= lim V/|ep| = lim
n—oo n—oo

Cn+41
cn |

If: lim = p, than the following is true: ip > 0 thanz Unp andZ v, are both divergent or both convergent, if

n—oo Uy

= 0 holds: |f2 vy, IS convergent, thaE u,, is also convergent

If Lis defined by:L = lim 3{/|n,|, orby: L = lim
n—0o0 n—oo

L <1.

1.8.3 Convergence and divergence of functions

Un+1

n

, then is> " u,, divergentifL > 1 and convergent if

f () is continuous inc = a only if the upper - and lower limit are equai¥n flx) = 1i{n f(z). This is written as:

fla™) = f(a®).

If f(x)is continuous iz and li%n fl(z) = lifn f'(z), than f(x) is differentiable inc = a.

We define:| f||lw := sup(|f(z)| |z € W), and lim f,(x) = f(x). Than holds:{f,} is uniform convergent if

n—oo

fll=0,0r:V(e > 0)3(N

)V(” > N)an -

fll <e.

Weierstrass’ test: i} ||u,||w is convergent, tha  w,, is uniform convergent.

We defineS(z

=3t

)andF(y

/f x,y)dx := F. Than it can be proved that:

[ Theorem | For

Demands oniW

| Than holds onW

rows f» continuous, f is continuous
{f»} uniform convergent
C series | S(x) uniform convergent, S is continuous
u,, continuous
integral | f is continuous F'is continuous
rows f» can be integrated, f» can be integrated,
{f»} uniform convergent [ f(x)dz = lim [ fpdx
n—oo
I series | S(z) is uniform convergent, S can be integrated, Sdz = )" [ u,dx
u,, can be integrated
integral | f is continuous [ Fdy = [ f(z,y)dzdy
rows {fn} €C5 {f/} unif.conv— ¢ | ' = ¢(x)
D series | u, €C71; S u, conv; Y ul ue. | S(z) = ul,(x)
integral | df/dy continuous F, = [ fy(z,y)dx
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1.9 Products and quotients

Fora,b,c,d € IR holds:

Thedistributive property : (a +b)(c + d) = ac + ad + bc + bd
Theassociative property a(bc) = b(ac) = ¢(ab) anda(b + ¢) = ab+ ac
Thecommutative property: a + b = b+ a, ab = ba.

Further holds:

a2n _ b2n on1 a27l+1 _ b2n+1 n
— n—1_4 2n—2 2n—3 Qii 2n—1 — 2n—ki12k
QI a a b+a b b Ty N Za b
k=0
Bib3
(a+b)(a®>+ab+b*)=a®>+b*, (a+b)(a—0b)=a®+b*, a " =a® F ba + b*
a

1.10 Logarithms

Definition: ®log(z) = b < a® = . For logarithms with base one writesin(z).

Rules log(2™) = nlog(x), log(a) + log(b) = log(ab), log(a) — log(b) = log(a/b).

1.11 Polynomials

Equations of the type
Z akxk =0
k=0

haven roots which may be equal to each other. Each polynopiia) of ordern > 1 has at least one root ifi. If
all ax, € IR holds: whenz = p with p € € a root, tharp* is also a root. Polynomials up to and including order 4
have a general analytical solution, for polynomials with ordef there does not exist a general analytical solution.

Fora,b,c € IR anda # 0 holds: the 2nd order equatien:? + bz + ¢ = 0 has the general solution:

. —b+ Vb% — dac
- 2a

Fora,b,c,d € IR anda # 0 holds: the 3rd order equatian:® + bx? + cz + d = 0 has the general analytical
solution:

3ac — b2 b
Y
e 92K 3a
K 3ac—b? b V3 3ac — b?
pr— * = _—— —_— _— -7 K
F2= %3 > P RPK 3a 2 ( 942K )

1/3
9abe — 27da? — 2b° . V3V4ac3 — 2% — 18abed + 27a2d? + 4db3>

ith i —
w ( 5443 1802

1.12 Primes

A primeis a number= IN that can only be divided by itself and 1. There are an infinite number of primes. Proof:

suppose that the collection of priméswould be finite, than construct the numher= 1 + [] p, than holds
peP

q = 1(p) and soQ cannot be written as a product of primes fréThis is a contradiction.
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If 7(z) is the number of primes. «, than holds:

im M:l and lim :(x) =1
M0 2/ n(a) T g
5 In(t)

For eachV > 2 there is a prime betweeN and2X.
The numbers, := 2F + 1 with k& € IN are calledFermat numbersMany Fermat numbers are prime.

The numbers\/,, := 2F — 1 are calledMersenne numbersThey occur when one searches farfect numbers
which are numbers € IN which are the sum of their different dividers, for example= 1 + 2 + 3. There
are 23 Mersenne numbers fbr< 12000 which are prime: fok € {2,3,5,7,13,17,19,31,61,89, 107, 127, 521,
607,1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213}.

To check if a given numbet is prime one can use a sieve method. The first known sieve method was developed by
Eratosthenes. A faster method for large numbers are the 4 Fermat tests, who don’t prove that a number is prime but
give a large probability.

1. Take the first 4 primedi = {2, 3,5, 7},
2. Takew(b) = b"~! mod n, for eachb,

3. If w = 1 for eachb, thenn is probably prime. For each other valuewfn is certainly not prime.




Chapter 2

Probability and statistics

2.1 Combinations

The number of possibleombinationf k£ elements fromm elements is given by

(1) = m

The number opermutationof p from n is given by

(n i!p)! = <Z)

The number of different ways to classify elements in groups, when the total number of elementd/isis

NI
H?’li!

2.2 Probability theory

The probabilityP(A) that an eventl occurs is defined by:

wheren(A) is the number of events whetoccurs anch(U) the total number of events.

The probabilityP(—A) that A does notoccur is: P(—A) = 1 — P(A). The probabilityP(A U B) that A and
B bothoccur is given by:P(AU B) = P(A) + P(B) — P(AN B). If A andB are independent, than holds:
P(ANB)=P(A)- P(B).

The probabilityP(A|B) that A occurs, given the fact tha occurs, is:

P(AN B)

P(AIB) =~

2.3 Statistics
2.3.1 General

The averageor meanvalue (x) of a collection of values is{z) = >, z;/n. Thestandard deviatiorv, in the
distribution ofz is given by:

[
n

a2
n—1

When samples are being used the sample variaiggiven bys? =



10 Mathematics Formulary by ir. J.C.A. Wevers

Thecovariancer,, of x andy is given by::

n

Z(xi — (@) (i = (9))

n—1

Thecorrelation coefficient,,, of « andy than becomes:,, = 0., /0,0,.

The standard deviation in a variabféx, y) resulting from errors in: andy is:

af \*>. (of \° ofof
2 _ —J _J _J ~J

2.3.2 Distributions

1. The Binomial distribution is the distribution describing a sampling with replacement. The probability for

success ig. The probabilityP for k successes in trials is then given by:

n

Ple=i) = () -

The standard deviation is given by = /np(1 — p) and the expectation valueds= np.

2. The Hypergeometric distribution is the distribution describing a sampling without replacement in which the

order is irrelevant. The probability férsuccesses in a trial with possible successes aBdyossible failures

is then given by:
<A> < B )
Pla—k) = SF/\n=F/

(")

3. The Poisson distributionis a limiting case of the binomial distribution when— 0, n — oo and also
np = A is constant.

The expectation value is given by=nA/(A + B).

ATe™A

P(x) o

This distribution is normalized ty ~ P(z) = 1.

=0

4. The Normal distribution is a limiting case of the binomial distribution for continuous variables:

Pla) = - 127T exp (_; (x —0<m>>2>

5. The Uniform distribution occurs when a random numbeis taken from the set < = < b and is given by:

1 .
P(x):b—a if a<z<b

P(z) =0 in all other cases

—a)?

(z) = 3(b—a) ando® = (b 5
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6. The Gamma distribution is given by:

P e 1e—x/ﬂ "
= <y <
{ (CL‘) ﬂaf(a) it 0< Yy = o0

with o > 0 and3 > 0. The distribution has the following propertiea:) = a3, 0? = a32.
7. The Beta distribution is given by:
o711 — x)ﬁ_l
Ble, B)

P(z) =0 everywhere else

P(z) = if 0<z<1

and has the following propertie§r) = aiﬂ’ o= (a+6)2€f+ﬂ+ ok
For P(x?) holds:a = V/2 andj3 = 2.
8. The Weibull distribution is given by:
P(z) = %xo"le"’” if 0<z<coAaAB>0

P(z) =0 inall other cases
The average i$z) = 3/°T'((a + 1)a)

9. For atwo-dimensional distribution holds:
Py(zq) :/P(xhxg)dxg , Pa(x2) :/P(xl,xg)dacl

with

g(z1,2)) // 1, 9) P(ay, 25)dwrds =Y Y g+ P

r1 T2

2.4 Regression analyses

When there exists a relation between the quantitiasdy of the formy = ax + b and there is a measured sgt
with relatedy;, the following relation holds foez andb with & = (21, xo, ..., z,) andé'= (1,1, ..., 1):

J—al —bee< & é>"+
From this follows that the inner products are 0:

7)—b(E,7) =0
&) —b(e,&) =0

@) — a(Z,
€) — a(Z,

with (Z,%) = Y. 22, (Z,7) = > 2y, (Z,€) = Y. x; and (€, €) = n. a andb follow from this.

A similar method works for higher order polynomial fits: for a second order fit holds:

7 —ax? —bi —cée< 22, 7,& >

with 22 = (22,...,22).

T n

Thecorrelation coefficient: is a measure for the quality of a fit. In case of linear regression it is given by:

_ ny xy—. 3y
Va2 = (Za))n sy - (Cy)?)
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Calculus

3.1 Integrals

3.1.1 Arithmetic rules

The primitive functionF'(x) of f(x) obeys the rule”’(xz) = f(x). With F(z) the primitive of f(x) holds for the
definite integral

If w= f(z) holds:

b f(b)
/ o(f (@)df () = / g(u)du
a f(a)

Partial integration : with F* andG the primitives off andg holds:

[ 1) g@ts = 16t - [ 6L as

A derivative can be brought under the intergral sign (see section 1.8.3 for the required conditions):

z=h(y) z=h(y)
[ s = [ o000 D+ fni). ) Y
z=g(y) r=g(y)

3.1.2 Arc lengts, surfaces and volumes
The arc lengtit of a curvey(x) is given by:

The arc lengtit of a parameter curve'(Z(

with

/wﬂwz/wﬂmmz/mm+m@+m@)

The surfaced of a solid of revolution is:
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The volumeV of a solid of revolution is:

V= 7r/f2(1:)dac

3.1.3 Separation of quotients

Every rational functionP(z)/Q(x) where P and ) are polynomials can be written as a linear combination of
functions of the typéz — a)* with k € Z, and of functions of the type

pr+q
((z =)+ 22"
with b > 0 andn € IN. So:

p(z) _ = Ak " Ak.%‘—l—B
P L G T G

Recurrent relation: fon # 0 holds:

/ dx B i T n 2n—1 / dx
(x2 + 1)t 2p (22 4 1)» 2n (24 1)»

3.1.4 Special functions

Elliptic functions

Elliptic functions can be written as a power series as follows:

, —~ (2n=-DU L,
\/1—Ek2sin®(z) =1— (27(1)”(271)1)]62 sin®"(x)
— "
s — 1!
! =1+ Z (2n2 ‘1') E*" sin®" ()
1 — k2 sin?(2) = (@)

with n!l = n(n — 2)!1.

The Gamma function

The gamma functiof' (y) is defined by:

oo

I'(y) = /e_””xy_ldx
0
One can derive thdf(y + 1) = yI'(y) = y!. This is a way to define faculties for non-integers. Further one can
derive that

L(n+1)= g@n — DIl and ™ (y) = /e_ﬁ"gﬁy_1 In" (z)dz
0

The Beta function

The betafunctiorB(p, q) is defined by:
1
Blp.q) = [ar (1= 2) o
0
with p andg > 0. The beta and gamma functions are related by the following equation:
L(p)I'(q)

B(p,q) = T+ )
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The Delta function

The delta functiord(x) is an infinitely thin peak function with surface 1. It can be defined by:

| | 0 for|z| >e¢
6(z) = lim Ple,) with Ple,a)=§ 1 oo o,
2e
Some properties are:
/ S(x)de =1, / F(z)d(z)dz = F(0)

3.1.5 Goniometric integrals

When solving goniometric integrals it can be useful to change variables. The following holds if one defines
tan(3z) := t:

2dt 11—t 2t
T W= sl =

Each integral of the typd R(z,vaxz? + bz + ¢)dz can be converted into one of the types that were treated in
section 3.1.3 After this conversion one can substitute in the integrals of the type:

/R(a:,\/x2+1)da: ;. z=tan(yp),dr = de of Va2+1l=t+z

cos ()

/R(m7 V1—a?)dx : 1z =sin(p),dr =cos(p)dp of V1—a2=1—tx
/R(x, Vaz—1Dde : x= ! ydx = sm(gp)) dp of Va2 —1=z—t

cos(¢) cos?(p

dx

These definite integrals are easily solved:

/2

/ cos™ (z) sin™ (z)dx =

0

(n—DU(m — D! [ 7/2 whenm andn are both even
(m+n)!l 1 inall other cases

Some important integrals are:

/ xdr w2 / 22dx B 7L2 / 23dx B 7T74
e +1  12a2 ’ (er+1)2 37 Jer—1 15
0 —o0 0

3.2 Functions with more variables

3.2.1 Derivatives

Thepartial derivativewith respect tac of a functionf (x, y) is defined by:

<8f> ~ lim f(xo + h,y0) — f(x0,y0)

ox h—0 h
Thedirectional derivativein the direction ofx is defined by:

af im flzo +rcos(a), yo + rsin(e)) — f(zo, yo) — (V, (sin, cosa)) = M
da 7o r vl
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When one changes to coordinais: (u, v), y(u, v)) holds:
of _ofox  ofoy
ou  Oxdu Oyou
If z(t) andy(t) depend only on one parameterolds:

of _ofde  ofdy
ot  Oxdt Oydt

Thetotal differentialdf of a function of 3 variables is given by:

_0f . 0f L Of
df = &de—i- aydy+ szz

So
df  of af@ af%

dez ~ Oz 87yda: 0z du
Thetangentin point %, at the surface (x, y) = 0 is given by the equatiolfi, (Zo)(x — zo) + fy(Zo)(y — yo) = 0.

Thetangent planeén Z is given by: f, (Zo)(z — xo) + fy(Z0)(y — yo) = z — f(Zo).

3.2.2 Taylor series

A function of two variables can be expanded as follows in a Taylor series:

n

1 oP oP
oo b+ =32 (g + s ) £ + R0
with R(n) the residual error and
oP P = (P mypem 07 f(a,b)
(s + g ) Hlt) = 32 (0 o
3.2.3 Extrema

When f is continuous on a compact boundarythere exists a global maximum and a global minumumffam
this boundary. A boundary is called compact if it is limited and closed.

Possible extrema of(x,y) on a boundary” € IR? are:

1. Points orVV wheref(x,y) is not differentiable,
2. Points wheré/ f = 0,

3. If the boundary is given byy(z,y) = 0, than all points wher® f(z,y) + AV (xz, y) = 0 are possible for
extrema. This is the multiplicator method of Lagrangés called a multiplicator.

The same as ii?? holds inIR? when the area to be searched is constrained by a coripastdV is defined by
v1(z,y, z) = 0andys(z, y, z) = 0 for extrema off (x, y, z) for points (1) and (2). Point (3) is rewritten as follows:
possible extrema are points WhéVef (z, y, z) + M1V (x,y, 2) + A2Va(z,y, 2) = 0.
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3.2.4 TheV-operator

In cartesian coordinatés;, y, z) holds:

v = 2ot P62
9z T oy Y 0z ¢
_ofL  oi 0f

gradf = axez—i- 3yey+ 8262
.. Oagy Oa,  Oa,
diva = or +87y 0z

g = (L= 0w, (0 Do) (O 00,
N oy 0z /) " 0z ox )" 0r Oy ) ~
02F  2f 0%
2, _ 97 9 9T
Vi = 8x2+8y2+822

In cylindrical coordinatesr, ¢, z) holds:

v = 26412049
or " rop ¥ 0z 7
_of 19r.  0f.

gradf = 8rer+r6@ew+8zez

da, r 10 da,
diva = i+a7+,& i

or r 1 dy 0z

cwld — lﬁaz_% . 8a7~_8az o %_‘_ai_}@ar .
we =\ dp Oz er 9. or ) or r o rop ©

of 1of 10f 0
or2  ror  r20p? 022

Vo=

In spherical coordinates;, 6, ¢) holds:

v - Jg410,, L 9,
T o " o0 rsinf dp ©

af . 1af. 1 9f,

d = . - - =
grad/ ar° + 90’ rsin@@gpew

. Oa, 2a, 10ay ag 1 da
diva = —— .

v or + r +r(‘39 +rtan9+rsin9 Op

10a ag 1 Oag 1 Oa, Oa a

1 — [(29% o Gm e (L Y Y8 )L

cma (r 00  rtanf rsinf 8@)6 <rsin9 Op or r Cot

Oag a9 10ar
or r r 00 e
0%f 20f 1 0%f 1 of 1 0% f

2, _ o 205 1o g L oy
Vilo= 8r2+rar+r2892+r2tan959 r2gin? 6 02

General orthonormal curvilinear coordinatesv, w) can be derived from cartesian coordinates by the transforma-
tion # = Z(u, v, w). The unit vectors are given by:

s Lor L vor 108
u_h18u7 v_h261)7 w_hgé’w

where the termé; give normalization to length 1. The differential operators are than given by:

Lo, 10, 1o,

gradf = hi ou + ho R + hs Ow
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- 1 0
le a = h1h2 3 (au (h’2h3au) ( h’lav) (h h2aw)>
— h3aw h2a1; (hl au) a(hSQw) —
la = - - g
curta h2h3 < ) h3h1 ( ow ou €t

hgav _ hlau
h h2
0. haohs af hshy Of hiho Of
v f o hlhghg |:6’LL ( hl 8U T 8’[1 hg Bv *ow a’LU h3 3w

Some properties of the-operator are:

div(¢?) = ¢dive + grade - ¢ curl(¢7) = ¢eurld + (gradg) x ¢ curl gradg = 0
div(@ x ) = U (curld) — @ - (curly)  curl curly = grad dive' — V2§ div curly = 0
div grad¢ = VZ¢ V20 = (V2vy, V20q, V203)

Here,v is an arbitrary vectorfield and an arbitrary scalar field.

3.2.5 Integral theorems

Some important integral theorems are:
Gauss: ﬁ(ﬁ- )d*A = ///(divﬁ)cﬁv
Stokes for a scalar fieId%(qﬁ - @)ds = //(ﬁ x grad¢)d? A
Stokes for a vector field%(ﬁ & )ds = //(curh'f- il)d* A

this gives: #(curlﬁ- i)d*A =0

Ostrogradsky: gé{ (7l x 7)d*A / / / curld )d® A
#(QW)CFA = ///(gradgb)dgv

Here the orientable surfadg @4 is bounded by the Jordan curvg).

3.2.6 Multiple integrals

Let A be a closed curve given bf(x,y) = 0, than the surfacd inside the curve inR? is given by

-ffoa- ffa

Let the surfaced be defined by the function = f(z,y). The volumeV bounded byA and thexy plane is than
given by:

V:/ f(z,y)dxdy

The volume inside a closed surface definedby f(z,y) is given by:

:///d3V:/ f(x,y)dxdy:///dxdydz
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3.2.7 Coordinate transformations

The expressiong®A andd®V transform as follows when one changes coordinates to (u, v, w) through the
transformatione(u, v, w):

V:///f(x,y,z)dmdydz:///f(f(f[)) % dudvdw
In IR? holds:
0T |z,
ou | Yu Yo

Let the surfaced be defined by = F(x,y) = X (u,v). Than the volume bounded by thg plane andF is given
by:
0X 0X
ANd? A — 2(i7)) | 222« 225 — 2 2
//f(x)d A= //f(x(u)) ’ 50 < 9o ‘dudv = //f(x,y,F(x,y))\/l—i—@F + 0y F2dxdy
s G G

3.3 Orthogonality of functions

The inner product of two functiong(z) andg(x) on the intervala, 4] is given by:

b

(f.9) = / f(2)g(z)dx

or, when using a weight functign(z), by:

b

(f.9) = / p(2) (2)g(x)da

a

Thenorm || f|| follows from: || f||? = (f, f). A set functionsf; is orthonormalif (f;, f;) = &;;.

Each functionf(x) can be written as a sum of orthogonal functions:
flx) = Zcigi(x)
=0

andy_ c¢? < | f|*. Let the sey; be orthogonal, than it follows:

fa gi
(97‘,79@‘)

C; =

3.4 Fourier series

Each function can be written as a sum of independent base functions. When one chooses the orthogonal basis
(cos(nx), sin(nx)) we have a Fourier series.

A periodical functionf (x) with period2L can be written as:

7o) =0+ 37 [owcon () - busin ()]
n=1

Due to the orthogonality follows for the coefficients:

L L L
1

aozﬁ/f(t)dt, an:%/f(t)cos (T) dt | bn:%/f(t)sin (anf) B




Chapter 3: Calculus 19

A Fourier series can also be written as a sum of complex exponents:

f(z) = Z et

with i
Cn = i/f’(;ﬂ)e*i”""/’d:n
"o

The Fourier transformof a functionf(z) gives the transformed functiof(w):

oo

! / f(z)e ™ ™%dx

f(w):ﬁ

The inverse transformation is given by:

N |

1)+ 00) = oz [ Flreras

wheref(z™) and f(z~) are defined by the lower - and upper limit:

fla™) =lim f(z) , f(a®) = lim f(z)

zTa zla

For continuous functions i§ [f (") + f(z7)] = f(x).
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Differential equations

4.1 Linear differential equations
4.1.1 First order linear DE

The general solution of a linear differential equation is giveryhy= yu + yp, whereyy is the solution of the
homogeneous equati@mdyp is aparticular solution

A first order differential equation is given by’ (x) + a(z)y(x) = b(z). Its homogeneous equationy§x) +
a(z)y(z) = 0.
The solution of the homogeneous equation is given by

i = hexp ( / a(x)dm)

Substitution ofexp(Ax) in the homogeneous equation leads tocharacteristic equation + a = 0
= A= —a.

Suppose thai(x) = a =constant.

Supposé(x) = aexp(uz). Than one can distinguish two cases:
1. )\ # p: a particular solution isyp = exp(ux)

2. A\ = u: aparticular solution isyp = x exp(ux)

When a DE is solved byariation of parameterane writes:yp(x) = yu(x)f(z), and than one solvef(z) from
this.

4.1.2 Second order linear DE

A differential equation of the second order with constant coefficients is givep’'tfy) + ay'(z) + by(z) = c(x).
If ¢(x) = ¢ =constant there exists a particular solutign= ¢/b.

Substitution ofy = exp(\z) leads to the characteristic equatidh+ a\ + b = 0.
There are now 2 possibilities:
1. A\ # Xo: thanyp = aexp(Az) + Bexp(Aaz).
2. A\ = e = Xl thanyy = (o + Bz) exp(Ax).
If c(z) = p(z) exp(ux) wherep(z) is a polynomial there are 3 possibilities:
1 A1, A2 # pt yp = q(x) exp(pz).
2. M = p, A2 # ptyp = 2q(x) exp(pz).
3. =Xy = u yp = 22q(z) exp(ux).
whereg(z) is a polynomial of the same order g&r).

When:y" (z) + w?y(x) = wf(x) andy(0) = y'(0) = 0 follows: y(x) = [ f(z)sin(w(z — t))dt.

Ct—sy

20
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4.1.3 The Wronskian

We start with the LDE/” (x) + p(x)y'(z) + ¢(x)y(x) = 0 and the two initial conditiong(z) = Ko andy’(zg) =
K;. Whenp(z) andg(x) are continuous on the open internfahere exists a unique solutigriz) on this interval.

The general solution can than be writteryds) = ¢1y1(z) + coy2(z) andy; andy, are linear independent. These
are alsaall solutions of the LDE.

TheWronskianis defined by:

W (y1,y2) =‘ YLV — ey

T

y1 andys are linear independent if and only if on the interyavhen3x, € I so that holds:
W (y1(o),y2(z0)) = 0.

4.1.4 Power series substitution

When a serieg = > a,x" is substituted in the LDE with constant coefficiept{z) + py'(z) + qy(x) = 0 this
leads to:

Z [n(n — 1Danz" 2 4 pna,z™ ' + qana:"] =0

n

Setting coefficients for equal powersokqual gives:
(n+2)(n+1)apt2 + p(n+ 1)apt1 + gan, =0

This gives a general relation between the coefficients. Special cases-afel, 2.

4.2 Some special cases

4.2.1 Frobenius’ method

Given the LDE

d*>y(z) = b(x)dy(z) c(x) B
dx? + r dr + 22 y(z) =0

with b(z) andc(z) analytical atz = 0. This LDE has at least one solution of the form
o0
yi(x) = a™ Z a,x” with 1 =1,2
n=0

with r real or complex and chosen so that# 0. When one expandgz) andc(z) asb(z) = b + bz + baz? + ...
andc(z) = ¢ + c1x + ca2? + ..., it follows for r:
r2+(b0—1)r+c():0
There are now 3 possibilities:
1. ry = ro: thany(z) = y1(z) In |z| + ya(z).

2. 11 —re € IN: thany(z) = ky1(x) In|z| + yo(x).

3. r —ro # Z: thany(x) = y1(z) + y2(z).




22 Mathematics Formulary by ir. J.C.A. Wevers

4.2.2 Euler
Given the LDE 2y(2) (@)
d7y(x dy
2
T 122 + ax dr
Substitution ofy(z) = z" gives an equation far: 72 + (a — 1)r + b = 0. From this one gets two solutioms and
ro. There are now 2 possibilities:

1. ry # ro: thany(z) = Cra"™ + Cox™.

+by(x) =0

2. ry =ry =i thany(z) = (Cy In(z) + Cy)z"

4.2.3 Legendre’s DE
Given the LDE

d*y(x) dy( )
— g2 -

(1—2%) 5 2x

The solutions of this equation are given @6(17) = aPn( ) + byz( ) where thelLegendre polynomial?(x) are

defined by:
n _ p2\n
Pn(x): d ((1 Jj) )

dxm 2nn!

+n(n—1Dy(z) =0

For these holdsf{ P, ||? = 2/(2n + 1).

4.2.4 The associated Legendre equation

This equation follows from thé-dependent part of the wave equatigA¥ = 0 by substitution of
& = cos(). Than follows:

P(§) _
- (-5 ) o0 - ) - mPe) =0
Regular solutions exists only @ = [(I 4+ 1). They are of the form:

/2d\m|p0(§) e _52)|m\/2 dlml+t

Pl‘m|(f) = (1 - 52)7” dg\m| - 2U]1 dé’\m|+l - 1)l

For|m| > lis P)m‘(f) = 0. Some properties aP’(¢) zijn:

1
1
B(](S)Pz(/)(ﬁ)dﬁ = — ll’ E Plo -
_/1 2l +1 1— 26t + t2

This polynomial can be written as:

:\\H

/54—\/52 1cos(#
0

4.2.5 Solutions for Bessel's equation
Given the LDE

Ay (z dy(x
z* d3;(2)+x d;)+(x2—v2)y(x):0

also calledBessel's equatigrand the Bessel functions of the first kind
(oo}
(_1)7nx2m
Jy(x) ="
(-73) x Z:O 22m+um!1"(1/ +m 4+ 1)

m=
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for v := n € IN this becomes:

S (71)mx2m
Whenv # Z the solution is given by(z) = aJ, (x) + bJ_,(z). But because forn € Z holds:
J_n(z) = (=1)"J,(z), this does not apply to integers. The general solution of Bessel's equation is given by

y(x) = aJ,(z) + bY, (z), whereY, are theBessel functions of the second kind

Ju(@)cosvm) = J-v(@) o0q v (2) = Tim ()

Sin(Vﬂ') v—n

Y, (z) =
The equationr?y” (x) + 2y (z) — (2% + v?)y(z) = 0 has the modified Bessel functions of the first kidz) =
i~V J,(iz) as solution, and also solutiod§, = w[I_,(x) — I, (x)]/[2sin(v7)].

Sometimes it can be convenient to write the solutions of Bessel's equation in terms of the Hankel functions

ngl)(x) = Ju(z) +1iYn(2) | H’I(L2) (z) = Ju(x) — Yy ()

4.2.6 Properties of Bessel functions
Bessel functions are orthogonal with respect to the weight fungiioh= z.

J_n(z) = (=1)"J,(x). The Neumann function¥,, (z) are definied as:

1

1 o0
Ny (x) = %Jm(x) In(x) + o Z "

n=0

The following hOldS:lin%) I (x) = 2™, lir% Ny (x) =2x~™ form #£ 0, 1ir% No(z) = In(z).

eiikreiwt 2 2
Tlggo H(r)= 7 lll)n;o Jn(z) = — cos(x — xy) }LH;O J_n(z) = — sin(x — x,,)

with z,, = Im(n+ 3).

Jn1(x) + Jpo1(x) = 2?n*]n(ff) » Int1 (@) = Jna (@) = _2%

The following integral relations hold:

I (x) = % /exp[i(m sin(f) — m#)]do = %/cos(m sin(f) — m6)do
0

[=)

4.2.7 Laguerre’s equation

Given the LDE

Solutions of this equation are the Laguerre polynomig/éx):

m!
m=0




24 Mathematics Formulary by ir. J.C.A. Wevers

4.2.8 The associated Laguerre equation
Given the LDE

Py() | (m+1 ) 1) dy(z) | <n+ é<m+1>> y(x) =0

dx? x dx T

Solutions of this equation are the associated Laguerre polynofijj(s):

n—m
—m d

o dxnfm (e_xx”l)

(=1)™n!

(n —m)!

L (x) =

429 Hermite

The differential equations of Hermite are:

d*He,, (z) dHe,,(x)
+ 2nH,(z) =0 and I + nHe,(z) =

d*H,,(x) dH,,(z)
-2
dx? v dx

Solutions of these equations are the Hermite polynomials, given by:

12)6”‘(6“)(—%%2))

2" dx™ = 2"/?He, (¢V/2)

H, () = (~1)" exp (
0" (exp(~a2))
dz™

He, (z) = (—1)"(exp (z*) = 272H,, (z/V/2)

4.2.10 Chebyshev

The LDE 2U, (@) dU ()
.2 n\T) n (T
(1—2%) o 3x .

+nn+2)U,(x) =0

has solutions of the form
sin[(n 4 1) arccos(x)]

Un(x) =

V1—z?
The LDE 2T, (2) I (2)
2 nl\l) n\L 2 _
(1—2%) T2 z——+mn T,(z)=0

has solutiond’, (z) = cos(n arccos(z)).
4.2.11 Weber

The LDEW))(z) + (n + 3 — 222)W,,(z) = 0 has solutionsW,, (z) = He,(z) exp(—32?).

4.3 Non-linear differential equations

Some non-linear differential equations and a solution are:

Yy =a\/y*+b? y = bsinh(a(z — z9))
Yy =ay/y? —b? y = beosh(a(z — x9))
Yy = a\/b?® —y? y = beos(a(x — x9))
y' = a(y? + b?) y = btan(a(x — x¢))
y' = a(y? — b?) y = beoth(a(z — x9))
y' = a(b? —y?) y = btanh(a(z — o))
’_ b—y _ b
vy < b > YTIy Cbhexp(—azx)
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4.4 Sturm-Liouville equations

Sturm-Liouville equations are second order LDE’s of the form:

i <p<x> dﬂf)) +alw)y(x) = Mn(2)y )

The boundary conditions are chosen so that the operator

L= (s ) +ato)

is Hermitean. The normalization functien(z) must satisfy

b
/ m(@)ys(@)y; (2)de = 5,

Wheny, (z) andy,(x) are two linear independent solutions one can write the Wronskian in this form:

C

W(y1,y2) _ ‘ Y1 Y2 _ p(x)

(T

where(' is constant. By changing to another dependent variablg, given by: u(z) = y(z)+/p(z), the LDE
transforms into th@ormal form

T 4 H@u() =0 with I<x>=i(f;’ ff))) 19'(x)  q(x) — Amfa)

2 p(x) p(x)

If I(x) > 0, thany”/y < 0 and the solution has an oscillatory behaviour (f) < 0, thany”/y > 0 and the
solution has an exponential behaviour.

4.5 Linear partial differential equations
45.1 General

Thenormal derivatives defined by:

ou e
= (Vu, i)

A frequently used solution method for PDE’ssisparation of variablesone assumes that the solution can be written
asu(x,t) = X ()T (t). When this is substituted two ordinary DE’s f&f(x) and7'(¢) are obtained.

4.5.2 Special cases
The wave equation

Thewave equatiorin 1 dimension is given by

Pu ,0%

o2 =~ o2
When the initial conditions(z,0) = ¢(x) anddu(z,0)/0t = ¥(x) apply, the general solution is given by:

x+ct

(oot et) + (o -t + 5 [ W@

r—ct

u(z,t) =

|~
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The diffusion equation

Thediffusion equations:

ou

= — DV?

o Vou
Its solutions can be written in terms of the propagaf®(s, 2, t). These have the property that
P(z,2',0) = §(x — 2’). In 1 dimension it reads:

P(x,2',t) =

1 (—(x -z )2>
exp
2V Dt 4Dt
In 3 dimensions it reads:
1 —(7 - 7")?
P )= —— = =7
(@,2%1) 8(mDt)3/2 eXp( 4Dt

With initial conditionu(z,0) = f(z) the solution is:

u(x,t) /f Pz, 2 t)dz

Ou 0%u

ot *D@ = g(z7t)

The solution of the equation

is given by

u(z,t) = /dt’/dx'g(x',t')P(x,x’,t—t')

The equation of Helmholtz

The equation of Helmholtz is obtained by substitution0f, t) = v(¥) exp(iwt) in the wave equation. This gives
for v:

This gives as solutions far.

1. In cartesian coordinates: substitutionvof A exp(ik - &) gives:

(&) :/-~-/A(k)ei’;'5dk

with the integrals ovek 2 = k2.

2. In polar coordinates:

= > (AT (k1) + By Npy (kr))e'™?
m=0

3. In spherical coordinates:

Y(0,¢)

e l
v(r,0,0) =3 > [Au iy 1 (kr) + BunJ s (kr)] 7

=0 m=—1
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4.5.3 Potential theory and Green’s theorem

Subject of the potential theory are tReisson equatioV?u = — f(&) wheref is a given function, and thieaplace
equationV2u = 0. The solutions of these can often be interpreted as a potential. The solutions of Laplace’s
equation are callebarmonic functions

When a vector field’ is given by = grady holds:

b

[@00ds = () - ol@)

In this case there exist functiopsandw so thaty' = grady + curld.

Thefield linesof the field7(#') follow from:
Z(t) = M(Z)

/g/[uv% + (Vu, Vo)|d*V = ?{ug:;d%l

Thefirst theorem of Greers:

Thesecond theorem of Greést

Ov ou
2. 2,131 — ov _ou\ o
///[UVU vVauld*V #(uan Uan)dA
g S

A harmonic function which is 0 on the boundary of an area is also 0 within that area. A harmonic function with a
normal derivative of O on the boundary of an area is constant within that area.

TheDirichlet problemis:

Viu(@)=—f(Z), TER , u(@)=g(x) forall ¥ecS.
It has a unique solution.
TheNeumann probleris:

V2u(Z) = —f(Z), F€R , a%<m) — h(7) forall 7€ 5.
n

The solution is unique except for a constant. The solution exists if:

/4/f(f)d3v Ssé{h(f)dzfl

A fundamental solutionf the Laplace equation satisfies:
V2u(Z) = —6(%)

This has in 2 dimensions in polar coordinates the following solution:
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-

The equatiorV?v = —§(Z — ¢ ) has the solution

- 1
(@)= ——
Ar|zZ = €|

After substituting this in Green’s 2nd theorem and applying the sieve property df filmection one can derive

Green'’s 3rd theorem:
10u 0 (1
d3 — d?A
// { on~ “on ( ﬂ
S

—.

TheGreen functiorG(z, £ ) is defined by:V2G = —4(Z — £ ), and on boundan§ holdsG(Z, ) = 0. ThanG can

be written as: )

m*‘g(ﬂ%f)

G(7,€) =

Thang(Z, 5) is a solution of Dirichlet's problem. The solution of Poisson’s equatitm = — f () when on the
boundarysS holds: u(Z) = ¢(Z), is:

)= [ awrriv - f o200
R

S
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Linear algebra

5.1 \ector spaces
G is a group for the operation if:
1. Va,be G = a®b e G:agroup iclosed
2. (a®b) ®c=a® (b® c): agroup isassociative
3. Je € G sothatu ® e = e ® a = a: there exists anit element
4. Ya € GJa € G so thata ® @ = e: each element has amnverse

If
506a®b=0b®a

the group is called\belianor commutative Vector spaces form an Abelian group for addition and multiplication:
1-d=d, \Npa) = (A)d, (A + p)(@+b) = Xd + Ab + pd + pb.

W is alinear subspacé Vi, Wy € W holds: Ay + pils € W.

W is aninvariant subspacef V' for the operator if Vi € W holds: Aw € W.

5.2 Basis

For an orthogonal basis holdg;, €;) = c¢d;;. For an orthonormal basis holdg;, €;) = d;;.

The set vector$d,, } is linear independent if:

Z)\’C_il =0 & Vz)\, =0
The set{d, } is a basis ifitis 1. independent and2.=< dy, a3, ... >= > \d;.

5.3 Matrix calculus

5.3.1 Basic operations

For the matrix multiplication of matriced = a;; andB = by, holds with” the row index and the column index:

ArkL ks = ont L (AB) = 3 agby
k

where” is the number of rows anfithe number of columns.

Thetransposeof A is defined by:a]; = aj;. For this holdAB)" = BT A" and(A”")~! = (A~!)”. For the
inverse matrixholds: (A - B)~! = B~1. A~1. The inverse matrix~! has the property that - A=! = Il and can
be found by diagonalizatior{:4;;| 1) ~ (1T|A;j1).

29
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The inverse of 2 x 2 matrix is:

b\ ' 1 d —b
d T ad—be\ —¢ a

Thedeterminant functiorD = det(A) is defined by:

o 2

det(A) = D(J*l, 6*2, ceay J*n)

For the determinantet(A) of a matrixA holds:det(AB) = det(A) - det(B). Een2 x 2 matrix has determinant:

det(z Z)zad—cb

The derivative of a matrix is a matrix with the derivatives of the coefficients:

dA daij dAB dA dB
el B A
i~ e Mg a T
The derivative of the determinant is given by:
ddet(A) ddl - - ddQ N - ddn
— 2 —D(—, ... D(@y, —=,....,dp) + ...+ D@1, ..., —=
dt ( dt ) aan)+ (ala dt ) 7ab)+ + (al dt )

When the rows of a matrix are considered as vectorsaaank of a matrix is the number of independent vectors
in this set. Similar for theolumn rank The row rank equals the column rank for each matrix.

Let A : V — V be the complex extension of the real linear operator” — V" in a finite dimensional’. ThenA
and A have the same caracteristic equation.

WhenA,;; € IR andu; + iv; is an eigenvector ofl at eigenvalue\ = \; + i), than holds:
1. A0y = M0 — Aotz and Avs = Aot + A\ Uo.
2. U* =9 — iUy is an eigenvalue at* = \; — iAs.
3. The linear spar: 71, U5 > is an invariant subspace df.
If k,, are the columns afl, than the transformed spacefis given by:
R(A) =< A&y, ..., AG, >=<ky, ... ky >

If the columnsk,, of an x m matrix A are independent, than the nullspacéA) = {0}.

5.3.2 Matrix equations

We start with the equation

The equation
A-Z2=0

has exactly one solutiog 0 if det(A) = 0, and ifdet(A) # 0 the solution ig).

Cramer’s rule for the solution of systems of linear equations is: let the system be written as
A Z=b=dix1+ ...+ dntn=0b

thenz; is given by:
D(a:la e a:j—l? b7 a:_7‘-‘1-17 sty Jn)
det(A)

Tj =
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5.4 Linear transformations

A transformationA is linear if: A\ + 07 ) = AAZ + SAy.

Some common linear transformations are:

[ Transformation type | Equation |
Projection on the linec @ > P(Z)=(a,z)a/(d,a)
Projection on the plangi, ) = 0 Q(F)=2— P(¥)
Mirror image in the line< @ > S(¥)=2P(%)-7
Mirror image in the planéa, 2) = 0 T(X)=2Q(Z) —¥=2—2P(Z)

For a projection holdst — Py (Z) L Py (Z) and Py (Z) € W.
If for a transformationd holds: (AZ, §) = (&, Ay) = (AZ, Ay), thanA is a projection.

Let A : W — W define a linear transformation; we define:
o If Sisasubsetol: A(S) :={AZ € W|¥ e S}
e If TisasubsetoW: A~ (T) :={Z e V|A(Z) € T}

Than A(S) is a linear subspace &7 and theinverse transformationi— (') is a linear subspace &f. From this
follows thatA(V) is theimage spacef A, notation:R(A). A~ (0) = Ey is a linear subspace &f, thenull space
of A, notation:A/(A4). Then the following holds:

dim(N(A)) + dim(R(A)) = dim(V)

5.5 Plane and line
The equation of a line that contains the poimmdl; is:
FT=d+ANb—a)=a+ I\

The equation of a plane is:

—

Z=ad+Ab—a)+pu(@—a)=a+ \r + pia
When this is a plane i3, thenormal vectorto this plane is given by:

771><’F2

ny = ———
|7“1 X ’/‘2|

A line can also be described by the points for which the line equdti¢a, ©) + b = 0 holds, and for a plane V:

(@, %) + k = 0. The normal vector to V is thari/|a|.

The distancel between 2 pointg andqis given byd(p, ¢) = || — 7|

In IR? holds: The distance of a poiptto the line(a, ) + b = 0 is

B @, 7)) +b
a0y - @)+

Similarly in IR?: The distance of a pointto the plan€a, ) + k = 0 is

(@, p) + K|
|al

dp,V) =

This can be generalized f@R™ andC™ (theorem from Hesse).
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5.6 Coordinate transformations
The linear transformatiod from IK™ — IK™ is given by (i = IR of C):
y=A""zg
where a column ofd is the image of a base vector in the original.
The matrixA? transforms a vector given w.r.t. a basisnto a vector w.r.t. a basis. It is given by:
Af = (B(Ady), ..., B(Ady))
whereg(Z') is the representation of the vectomw.r.t. basiss.
Thetransformation matrixS#? transforms vectors from coordinate systerimto coordinate systerf:
Sh =15 = (B(@), ... B(@n))
andsSy - S§ =1
The matrix of a transformatioA is than given by:

AP = (ABe, .., Ale,)

«

For the transformation of matrix operators to another coordinate system htfds: S A3S5, A% = SgASS@’
and(AB)) = A}BS.

[e3 a?

Further isAf = SJ A%, Ag = A%S5. A vector is transformed Vi&,, = S5 X 5.

5.7 Eigen values

Theeigenvalue equation
AZ = \T

with eigenvalues\ can be solved witfA — A\IT) = 0 = det(A — AII) = 0. The eigenvalues follow from this
characteristic equation. The following is trugst(A) = [[\; andTr(A) = > a; = > .

The eigen values,; are independent of the chosen basis. The matrid af a basis of eigenvectors, with the
transformation matrix to this basiS,= (E,,, ..., E\, ), is given by:

A= S7tAS = diag(\1, ..., An)

When 0 is an eigen value of thanEy(A) = N (A).

When\ is an eigen value ofl holds: A™Z = \"Z.

5.8 Transformation types

Isometric transformations

A transformation igsometricwhen: || AZ|| = ||Z||. This implies that the eigen values of an isometric transformation
are given by = exp(iy) = |A| = 1. Than also holds{AZ, Ay) = (Z,¥).

WhenW is an invariant subspace if the isometric transformatiamith dim(A) < oo, than alsd¥V * is an invariante
subspace.
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Orthogonal transformations

A transformationA is orthogonalif A is isometricandthe inverseA— exists. For an orthogonal transformation
holdsO”TO = II, so:OT = O~!. If AandB are orthogonal, thad B andA~! are also orthogonal.

Let A : V — V be orthogonal with dirfl’) < co. ThanA is:
Direct orthogonal if det(A) = +1. A describes a rotation. A rotation iR? through anglep is given by:

R () e )

So the rotation angle is determined by Trd) = 2cos(p) with 0 < ¢ < 7. Let A; and ). be the roots of the
characteristic equation, than also holtig\,) = R(\3) = cos(p), andA; = exp(ip), Aa = exp(—iyp).

In IR3 holds: \; = 1, A2 = \} = exp(ip). A rotation overE), is given by the matrix

1 0 0

0 cos(p) —sin(yp)
0 sin(p) cos(p)

Mirrored orthogonal if det(A) = —1. Vectors fromE_; are mirrored byA w.r.t. the invariant subspadé*,. A
mirroring in IR? in < (cos(3¢), sin(3¢)) > is given by:

§— < cos(p)  sin(e) >

sin(p)  —cos(e)

Mirrored orthogonal transformations i3 are rotational mirrorings: rotations of axisa; > through angleo and
mirror plane< @, >*. The matrix of such a transformation is given by:

-1 0 0

0 cos(yp) —sin(y)
0 sin(p) cos(p)

For all orthogonal transformatiors in 1?3 holds thatO (%) x O(7) = O(Z x ¥).

IR™ (n < o) can be decomposed in invariant subspaces with dimension 1 or 2 for each orthogonal transformation.

Unitary transformations

Let V be a complex space on which an inner product is defined. Than a linear transforbAasemitary if U is
isometricand its inverse transformatiod — exists. An x n matrix is unitary ifU”U = II. It has determinant
| det(U)| = 1. Each isometric transformation in a finite-dimensional complex vector space is unitary.

Theorem: for an x n matrix A the following statements are equivalent:
1. Ais unitary,
2. The columns ofA are an orthonormal set,

3. The rows of4 are an orthonormal set.

Symmetric transformations

A transformationA on IR" is symmetridf (A%, ) = (#, Ay). A matrix A € IM™*" is symmetric ifA = AT. A

linear operator is only symmetric if its matrix w.r.t. an arbitrary basis is symmetric. All eigenvalues of a symmetric
transformation belong téz. The different eigenvectors are mutually perpendicular 1§ symmetric, tham? =

A = A" on an orthogonal basis.

For each matrix3 € IM™*™ holds: BT B is symmetric.




34 Mathematics Formulary by ir. J.C.A. Wevers

Hermitian transformations

A transformationd : V — V with V' = C™ is Hermitianif (HZ,y) = (Z, Hy). TheHermitian conjugated
transformationA” of A is: [a;;] = [a3,]. An alternative notation isA” = AT. The inner product of two vectors
# andy can now be written in the form(z, i7) = 777

If the transformations! and B are Hermitian, than their produetB is Hermitian if:
[A,B] = AB — BA = 0. [A, B] is called thecommutatoiof A and 5.

The eigenvalues of a Hermitian transformation belongrto

A matrix representation can be coupled with a Hermitian operatoMW.r.t. a basi<; it is given by L,,,, =
(€7rza Larz)-

Normal transformations

For each linear transformatiof in a complex vector spaceé there exists exactly one linear transformatiBrso
that(AZ, ) = (&, By). This B is called theadjungated transformationf A. Notation: B = A*. The following
holds: (CD)* = D*C*. A* = A~ if Aisunitary andd* = A if A is Hermitian.

Definition: the linear transformatiod is normalin a complex vector spadé if A*A = AA*. Thisis only the case
if for its matrix S w.r.t. an orthonormal basis holddf A4 = AAT.

If Ais normal holds:
1. For all vectorst € V and a normal transformatiof holds:

(AT, AY) = (A"AT,¢) = (AA"Z,§) = (A"Z, A"Y)

2. r'is an eigenvector ofl if and only if ' is an eigenvector oft*.
3. Eigenvectors ofl for different eigenvalues are mutually perpendicular.
4. If E, if an eigenspace from than the orthogonal complemeRt- is an invariant subspace df.
Let the different roots of the characteristic equatiomdbe 3; with multiplicities n;. Than the dimension of each

eigenspacé’; equalsn;. These eigenspaces are mutually perpendicular and each weetdr can be written in
exactly one way as

F=Y & with eV,
This can also be written as}; = P,Z whereP; is a projection ori/;. This leads to thepectral mapping theorem
let A be a normal transformation in a complex vector sgdcgith dim(V') = n. Than:

1. There exist projection transformatioRs 1 < i < p, with the properties

° P1Pj:0f0rz7éj,
o P+ ..+ P, =1,
o dimP; (V) + ... +dimP,(V) =n

and complex numbers;, ..., o, sothatd = oy Py + ... + o, Pp.
2. If Ais unitary than hold$o;| = 1 Vi.

3. If Ais Hermitian tharw; € IR Vi.
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Complete systems of commuting Hermitian transformations

Considern Hermitian linear transformationd; in an dimensional complex inner product spdce Assume they
mutually commute.

Lemma: if E, is the eigenspace for eigenvalddrom A, thanF, is an invariant subspace of all transformations
A;. This means that if € F\, thanA;7 € E,.

Theorem. Considenm commuting Hermitian matriced;. Than there exists a unitary matiixso that all matrices
Ut AU are diagonal. The columns of are the common eigenvectors of all matrices

If all eigenvalues of a Hermitian linear transformation im-alimensional complex vector space differ, than the
normalized eigenvector is known except for a phase fastpfi«).

Definition: a commuting set Hermitian transformations is calledhpletdf for each set of two common eigenvec-
torsv;, v; there exists a transformatioty, so thatv; andv; are eigenvectors with different eigenvalues4gf.

Usually a commuting set is taken as small as possible. In quantum physics one speaks of commuting observables.
The required number of commuting observables equals the number of quantum numbers required to characterize a
state.

5.9 Homogeneous coordinates

Homogeneous coordinates are used if one wants to combine both rotations and translati@meatrix transfor-
mation. An extra coordinate is introduced to describe the non-linearities. Homogeneous coordinates are derived
from cartesian coordinates as follows:

. wx X
_ | wy | Y

Y T wz o Z
cart w w

hom hom

soz = X/w,y = Y/wandz = Z/w. Transformations in homogeneous coordinates are described by the following
matrices:

1. Translation along vectdtXy, Yo, Zo, wo):

wg 0 0 Xo

[ 0 w 0 Y
= 0 0 wWo Zo
0 0 0 w

2. Rotations of the:, y, z axis, resp. through angles 3, +:

1 0 0 0 cos@ 0 sinfB O
0 cosaa —sina 0 0 1 0 0
Ra(a) = 0 sina cosa O Ry(8) = —sinB 0 cosB O
0 0 0 1 0 0 0 1
cosy —siny 0 O
| siny cosy 0 O
0 0 0 1

3. A perspective projection on image plane- ¢ with the center of projection in the origin. This transformation
has no inverse.

SO O =
o o= O
~ = O O
O O OO
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5.10 Inner product spaces

A complex inner product on a complex vector space is defined as follows:

1. (@b) = (b,d),
2. (@, 31y + Baba) = B1(d@,b1) + B2(@,bo) forall @, by, by € V andpy, B2 € C.
3. (@,@) >0foralld eV, (d,a)=0ifand onlyifd = 0.

Due to (1) holds(d,a) € IR. Theinner product spac&'™ is the complex vector space on which a complex inner
product is defined by:

For function spaces holds:

For eachi the length||@ || is defined byi|@ || = \/(@,@). The following holds{|@ || — |6 || < ||l@+b&] < ||@||+|b]],
and withy the angle betweefi andb holds: (7, b) = ||@|| - |6 ]| cos(¢).

Let {a,...,d,} be a set of vectors in an inner product spate Than theGramian Gof this set is given by:
Gi; = (d;, d;). The set of vectors is independent if and onlgét(G) = 0.

A set isorthonormalif (&;,@;) = d;;. If €1, €, ... form an orthonormal row in an infinite dimensional vector space
Bessel's inequality holds:

1211 > > 1@, 7))
i=1
The equal sign holds if and only ifim ||Z,, — Z| = 0.

The inner product spad@ is defined inC'> by:

2 = {d’: (a1, az,...) | Z lan|? < oo}
n=1

A space is called #lilbert spaceif it is ¢? and if also holds:lim |a,+1 — a,| = 0.
n—oo

5.11 The Laplace transformation

The class LT exists of functions for which holds:

1. OneachintervdD, A], A > 0 there are no more than a finite number of discontinuities and each discontinuity
has an upper - and lower limit,

2. 3ty € [0,00 > anda, M € IR so that fort > ¢, holds:|f(t)| exp(—at) < M.

Than there exists a Laplace transform for

The Laplace transformation is a generalisation of the Fourier transformation. The Laplace transform of a function
f(t)is, withs € € andt > 0:

F(s) = / F(t)e—tdt
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The Laplace transform of the derivative of a function is given by:

£ (@) == 00) = sfOD(0) = = 57(0) + 5" F(s)
The operator has the following properties:

1. Equal shapes: if > 0 than

2. Damping:L (e” ' f(t)) = F(s + a)

3. Translation: Ifa > 0 andg is defined byg(t) = f(t —a) if t > a andg(t) = 0 for ¢t < a, than holds:
L(g(t)) = e L(f(2))-

If s € IR than holdsR(Af) = L(R(f)) andS(Af) = L(S(f)).

For some often occurring functions holds:

ﬁeat (5 _ a)—n—l
n!
s—a
Cat Cos(wt) (S — a)2 i 2
. w
e sin(wt) G0t
o(t—a) exp(—as)

5.12 The convolution

The convolution integral is defined by:

(f +g)(t)

/fwma—uMu
0

The convolution has the following properties:
1. fxgelLT
2. L(f xg) = L(f) - L(9)
3. Distribution: f« (g+h) = f*xg+ f*h
4. Commutative;f x g = g * f
5. Homogenity:f « (Ag) = Af x g

If L(f) = Fy- Fy, thanisf(t) = f1 * fo.

5.13 Systems of linear differential equations

We start with the equatioi = AZ. Assume thaf’ = 7exp(\t), than follows: A7 = A7. In the2 x 2 case holds:
1. A\ = Ao thanZ(t) = > @ exp(\it).
2. A1 # Ao thanZ(t) = (ut + 0) exp(At).
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Assume that\ = « + i is an eigenvalue with eigenvectdr than \* is also an eigenvalue for eigenvectot.
Decompose’ = u + i, than the real solutions are

c1[ti cos(Bt) — wsin(Bt)]e™ + co[vcos(Bt) + @ sin(Bt)]e™

There are two solution strategies for the equafion A"
1. Let¥ = Texp(\t) = det(A — \2I) = 0.

2. Introduce:i = v andy = v, this leads tai = @ andy = ©. This transforms a-dimensional set of second
order equations into 2n-dimensional set of first order equations.

5.14 Quadratic forms
5.14.1 Quadratic forms in IR?

The general equation of a quadratic form i§" Az + 227 P + S = 0. Here, A is a symmetric matrix. 1A =
S7LAS = diag(\1, ..., \n) holds: @7 Aw + 27 P+ .S = 0, so all cross terms are @.= (u, v, w) should be chosen
so that detS) = +1, to maintain the same orientation as the systemny, z).

Starting with the equation
az? + 2bzy + ey’ +dr+ey+ f =0
we have|A| = ac — b%. An ellipse hagA| > 0, a paraboldA| = 0 and a hyperbol¢4| < 0. In polar coordinates

this can be written as: ep
r= -
1 — ecos(0)

An ellipse has < 1, a parabola = 1 and a hyperbola > 1.

5.14.2 Quadratic surfaces iniz?

Rank 3: ) ) )
z Y z
pﬁ +qb7 +T§ =d

e Ellipsoid:p =¢=r =d =1, a, b, c are the lengths of the semi axes.
e Single-bladed hyperboloigi=g=d=1,r = —1.

e Double-bladed hyperboloid:=d=1,p=q=—1.

e Conelp=q=1,r=-1,d=0.

Rank 2: ) )
x Y z
pﬁ+qb72+rg:d

e Elliptic paraboloidp =g¢=1,r=—-1,d=0.

e Hyperbolic paraboloidp =r = —-1,¢=1,d = 0.
e Ellipticcylinder:p=q¢=—-1,r=d=0.

e Hyperbolic cylinderp=d=1,¢=—-1,r =0.

e Pairof planesp =1,¢q=—-1,d = 0.

Rank 1:
py’ +aqz =d

e Parabolic cylinderp, ¢ > 0.
e Parallel pair of planes! > 0, ¢ = 0, p # 0.
e Double planep # 0, ¢ =d = 0.




Chapter 6

Complex function theory

6.1 Functions of complex variables

Complex function theory deals with complex functions of a complex variable. Some definitions:
fisanalyticalonG if f is continuous and differentiable ¢h
A Jordan curves a curve that is closed and singular.

If K is a curve inC with parameter equation = ¢(t) = x(t) + iy(t), a <t < b, than the lengtiL of K is given

' - T (5

a

dz
dt

b
dt= [ 16 (o)t

The derivative off in pointz = a is:

If f(2) =u(z,y) + iv(x,y) the derivative is:
_Ou . Ov Ou  Ov

= % + ’L% = —’Lafy + 87;
Setting both results equal yields the equations of Cauchy-Riemann:
ou v ou ov

dx 9y T 9y Oz

f'()

These equations imply that?u = V2v = 0. f is analytical ifu andv satisfy these equations.

6.2 Complex integration

6.2.1 Cauchy’s integral formula

Let K be a curve described by= ¢(t) ona < t < bandf(z) is continuous ori{. Than the integral of over K
is:

S

b
/ﬂawzjfwmewﬂmym”ﬂw—Fw
K a

Lemma: let K be the circle with center and radiug taken in a positive direction. Than holds for integer

1 dz _{Oifm;zél

27i (z —a)™ 1if m=1
K

Theorem: if L is the length of curved( and if| f(z)| < M for z € K, than, if the integral exists, holds:

/f(z)dz

K

<ML

39
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Theorem: let f be continuous on an ar€aand letp be a fixed point of7. Let F'(z) = f: f&d¢forall z € G
only depend orx and not on the integration path. Thal{z) is analytical onG with F'(z) = f(z).

This leads to two equivalent formulations of tinain theorem of complex integratiolet the functionf be analytical
on an ared . Let K and K’ be two curves with the same starting - and end points, which can be transformed into
each other by continous deformation witliih Let B be a Jordan curve. Than holds

/f(z)dz - /f(z)dz o ff(z)dz ~0
K K B

By applying the main theorem a#¥* /2 one can derive that

6.2.2 Residue

A pointa € € is aregular pointof a functionf(z) if f is analytical ina. Otherwises is asingular pointor pole of
f(z). Theresidueof f in a is defined by

Res £(2) = 5  f(2)d
K

where K is a Jordan curve which enclosesn positive direction. The residue is O in regular points, in singular
points it can be both 0 and 0. Cauchy’s residue proposition is: |étbe analytical within and on a Jordan curkfe
except in a finite number of singular pointswithin K. Than, if K is taken in a positive direction, holds:

1 n

o § F:)a =3 Res 1(2)
K k=1

Lemma: let the functionf be analytical i, than holds:

Res 42

z=a z —aq

= f(a)
This leads to Cauchy’s integral theorem: Afis analytical on the Jordan curd€, which is taken in a positive

direction, holds:
b f(Z)d [ f(a) if a inside K
omi | z—a™> 7 ) 0if a outside K
K

Theorem: let K be a curve K need not be closed) and I&¢) be continuous ot. Than the function

)= [ 4%
K

is analytical withn-th derivative
(). _ P(§)d€
) = ”!/ (€ — 2)ntt
K
Theorem: let K be a curve and: an area. Lep (¢, z) be defined fog € K, z € G, with the following properties:

1. ¢(&, 2) is limited, this mean$p(€,2)| < M foré € K, z € G,

2. Forfixed¢ € K, ¢(¢, 2) is an analytical function of on G,
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3. For fixedz € G the functionsp(¢, z) andd¢ (€, z) /0~ are continuous functions gfon K.

Than the function

f(2) = / o€, 2)de
K

is analytical with derivative

£ = [ 2

K

Cauchy’s inequality: let f(z) be an analytical function within and on the cirdle: |z—a| = Rand let|f(z)| < M
for z € C. Than holds Ut
£ @) < 7

6.3 Analytical functions definied by series

The series  f,.(z) is calledpointwise convergerdn an area with sumF'(z) if

N
Ves0V2ecINge R n>n, | |f(2) — Z fn(z)| <e

n=1

The series is calledniform convergeni

N
vg>03N0€an>n03zeG f(Z) - Z f’ﬂ(z) <e
n=1

Uniform convergence implies pointwise convergence, the opposite is not necessary.

o0
Theorem: let the power serie$ a,z™ have a radius of convergenée R is the distance to the first non-essential
n=0
singularity.
o If lim {/|a,| = L exists, thanR = 1/L.
n—oo
o If lim |ap41]/]an| = L exists, thankR = 1/L.
n—oo

If these limits both don't exist one can fimiwith the formula of Cauchy-Hadamard:

1
— = lim sup {/|ay,|
R n—oo

6.4 Laurent series

Taylor's theorem: let f be analytical in an are&@ and let pointa € G has distance to the boundary o7. Than
f(2) can be expanded into the Taylor series near

f"(a)

n!

f(z) = icn(z —a)" with ¢, =
n=0

valid for |z — a| < r. The radius of convergence of the Taylor seriezis. If f has a pole of ordek in a than
ClyeeeyCle1 = 0, Ck 7é 0.

Theorem of Laurent: let f be analytical in the circular ar€@ : r < |z — a| < R. Thanf(z) can be expanded into
a Laurent series with center

> 1 f(w)dw

= —a)” with ¢, = — ¢ ————— Z
f(z) Z cn(z—a)" with ¢, omi f (w—ayi n e
K

n=—oo
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valid forr < |z — a| < R andK an arbitrary Jordan curve i which encloses point in positive direction.

o0
Theprincipal partof a Laurent series isd_ ¢_,,(z — a)~™. One can classify singular points with this. There are 3
n=1

cases:

1. There is no principal part. Thanis a non-essential singularity. Defirféa) = ¢, and the series is also valid
for |z — a| < R andf is analytical ina.

2. The principal part contains a finite number of terms. Than there exists & so that
lim (z — a)* f(2) = c_ # 0. Than the functioy(z) = (z — a)* f(2) has a non-essential singularitydn
One speaks of a pole of ordelin z = a.

3. The principal part contains an infinite number of terms. Theis,an essential singular point ¢f such as
exp(1/z) for z = 0.

If f andg are analyticalf(a) # 0, g(a) = 0, ¢’(a) # 0 thanf(z)/g(z) has a simple pole (i.e. a pole of order 1) in

z = a with
ro 1) f@)

=ag(z)  ¢(a)

6.5 Jordan’s theorem

Residues are often used when solving definite integrals. We define the notfioas{z||z| = p, 3(z) > 0} and
C,; = {zllz| = p,S(2) < 0}y andM™*(p, f) = max lf(2)], M~ (p, f) = max |f(z)|. We assume thaf(z) is
zeC, zeC,

analytical for&(z) > 0 with a possible exception of a finite number of singular points which do not lie on the real
axis, lim pM™*(p, f) = 0 and that the integral exists, than
p—00

o0

/ f(z)dz = 27TiZResf(z) in $(z) >0

ReplaceM ™ by M~ in the conditions above and it follows that:

oo

/ f(x)dz = —27riZResf(z) in $(z) <0
Jordan’s lemmalet f be continuous fofz| > R, S(z) > 0 and lim M (p, f) = 0. Than holds forx > 0
p—00

lim [ f(2)e’**dz=0

pP— 00
+
CP

Let f be continuous fofz| > R, 3(z) < 0and lim M~ (p, f) = 0. Than holds forx < 0

p—00

lim [ f(2)e"**dz =0

p—00
Co

Let z = a be a simple pole of (z) and letC; be the half circlgz — a| = 6,0 < arg(z — a) < 7, taken froma + &

toa — 4. Thanis )
_— -1
51?01 9 f(z)dz = 5 lj_esf(z)

Cs




Chapter 7

Tensor calculus

7.1 \ectors and covectors

A finite dimensional vector space is denotedibyV. The vector space of linear transformations frono W is
denoted byZ(V, W). Consider(V,IR) := V*. We namée/* thedual spaceof V. Now we can defingectorsin V
with basis¢ andcovectorsn V* with basisc. Properties of both are:

1. Vectors:# = z'¢; with basis vectorg;:

Transformation from systernto i’ is given by:

. -/ -/ .
¢y =Auci=0,€V , z" =A; 2

~ ~d . A i
2. Covectors¥ = z;¢ with basis vectorg

Here theEinstein conventiors used:

The coordinate transformation is given by:

, Oxt RN
KOS Oxt

From this follows thatdi - AF = §F and A%, = (A7),

i

In differential notation the coordinate transformations are given by:

Ox g andi:(’?x 0

dat = == _ =
. oz ozY  Oz¥ Ozt

The general transformation rule for a tengois:

e _ |07
51...8m il

Coun Putn Gz Hptm
. P1.--Pn
QxPr  QaPr Qust  Qusm TrTm

For anabsolute tensof = 0.

43
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7.2 Tensor algebra
The following holds:
aij(Ti + Yi) = aijri + aijyi, DUt aij(z; +y;) # aijxi + aijy;
and
(aij + aji)xix; = 2a,5x25, but: (a;; + aj;)zy; # 2a52:y;
en(a;; — aj;)x;x; = 0.

The sum and difference of two tensors is a tensor of the same ripk: BY. Theouter tensor productesults in
a tensor with a rank equal to the sum of the ranks of both tensigfs: B* = CF{™. Thecontractionequals two
indices and sums over them. Suppose we takes for a tensorA;:P", this results in | A7)P" = B;"P. Theinner

productof two tensors is defined by taking the outer product followed by a contra::tion.

7.3 Inner product

=

Definition: the bilinear transformatio® : V x V* — IR, B(:a{j) = g}(f) is denoted by &,/ >. For thispairing
operator< -,- >= § holds:

J(T) =< T,y >=yix' | <C1,& >=4!
LetG : V — V* be a linear bijection. Define the bilinear forms

g:VxV—IR g9(&,

h:V*x V" — IR Wz, ) =

Both are not degenerated. The following hold$GZ, Gy) =< &, Gy >= g(Z, 7). If we identify V andV* with
G, thang (or h) gives an inner product oW.

The inner product, ), on A¥(V) is defined by:

1
(@, ¥)a = (2, V)zo(v)

The inner product of two vectors is than given by:
The matrixg;; of G is given by
~J o
gi;¢" = G¢;

The matrixg® of G~ is given by:

- —15k
g"le, =GTle

For thismetric tensolg;; holds: g;;g’F = ¢¥. This tensor can raise or lower indices:
Ly = gijxi ) zt = gijl‘j

=

. i .
anddu® =¢ = g¥¢;.
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7.4 Tensor product

Definition: let/ andV be two finite dimensional vector spaces with dimensionandn. Leti* x V* be the
cartesian product @f andV. A functiont : U* x V* — IR; (4;0) — t(u;v) = t*Pu,ug € IR is called a tensor
if ¢ is linear ini and. The tensors form a vector space denoted by® V. The element§” € V ® V are called
contravariant 2-tensor§! = T%¢; @ ¢&; = T 9; @ 8;. The element§’ € V* ® V* are called covariant 2-tensors:

T = Tl-jé*l e = T;;dz’ ® dz’. The elementd’ € V* ® V are called mixed 2 tensor§’ = Ti'jé”l ®c =
T’ dz' ® 9;, and analogous fdf € V @ V*.

The numbers given by

o8 — 45 &7

with 1 < o < m andl < g < n are the components of

Takez € U andy € V. Than the functiorr ® ¥, definied by

(Z @) (U, 0) =< T,0 >y< §,T >y

is a tensor. The components are derived fr¢f® ¢');; = u;v7. The tensor product of 2 tensors is given by:
2 form: (T @ @) (P, ) = v'piwtq, = T%p;
0 . b,q) =V piw qr = Pidk
0 : N SV SR
5 form: (P ® Q)(V, W) = pv*qrw” = Tyv'w

1 NN , ,
(1) form: (¥ @ P)(q, W) = v qiprw® = Tigw"

7.5 Symmetric and antisymmetric tensors

Atensort € V @ Vis called symmetric resp. antisymmetrie/if, 7 € V* holds:¢(Z,7) = t(i/, 7 ) resp.t(Z,7) =
A tensort € V* ® V* is called symmetric resp. antisymmetricWi, ¥ € V holds: ¢(Z,35) = #(
t(Z,7) = —t(y,Z). The linear transformationS and.A4 in V ® W are defined by:

—

@) resp.

S(@.g) = 3t +1(F))

Analogous inV* @ V*. If ¢ is symmetric resp. antisymmetric, th&h = ¢ resp. At = ¢.

The tensorg; V &; = €;¢; = 25(€; ® €;), with 1 < i < j < n are a basis i§(V ® V) with dimension}n(n + 1).
The tensorsg; A €; = 2A(¢; ® €;), with 1 < i < j < n are a basis itd(V @ V) with dimensiongn(n — 1).

The complete antisymmetric tensois given by:e;kErim = 6i105m — dimbji-

The permutation-operatots,, are defined bye 23 = e231 = e312 = 1, ea13 = e132 = eg21 = —1, for all other
combinations:,,, = 0. There is a connection with thetensor:e,,. = g~/%¢,,, andeP?” = g1/2¢ra,

7.6 Outer product
Leta € A¥(V) andB € AY(V). Thana A B € A*+(V) is defined by:

(k +1)!
K1l

If candB € AL(V) =V*holds:aAB=a® (- 3®a

alfB=

Ala® )
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-,

The outer product can be written d&: x b); = ;;,a7b*, @ x b=G™ " «(GaAnGb).

Taked, b, d € IR*. Than(dt A dz)(a,
of the parallelogram spanned ﬁyindl;.
Further

X b
5) aogbs — boay is the oriented surface of the projection on theplane

. ag bo Co
(dt Ndy N dz)(d,b,¢) =det| az by co
ag by 4

is the oriented 3-dimensional volume of the projection onitheplane of the parallelepiped spanneda)yZ andc.

(dt A dz A dy A dz)(@, b, d) = det(a, b, ¢ d) is the 4-dimensional volume of the hyperparellelepiped spanned by
@, b, ¢andd.

7.7 The Hodge star operator

A*(V) andA™~*(V) have the same dimension beca(i$g= (,,",) for 1 < k < n. Dim(A™(V)) = 1. The choice

n

of a basis means the choice of an oriented measure of volume, a vpluimé’. We can gauge so that for an
orthonormal basis; holds: u(e;) = 1. This basis is than by definition positive orienteg if= ¢ Aé ANE =1

Because both spaces have the same dimension one can ask if there exists a bijection betweeVi tteesmaextra
structure this is not the case. However, such an operation does exist if there is an inner product défiaed tire
corresponding volumg. This is called théHodge star operatoand denoted by. The following holds:

vweAk(V)El*wEA"*"(V)VQEAk(V) 0N *xw = (9, U)))\‘LL

For an orthonormal basis ifiR® holds: the volumey = dx A dy A dz, xdz A dy A dz = 1, xdz = dy A dz,
xdz = dx N dy, *dy = —dx N dz, *(dx A dy) = dz, *(dy A dz) = dz, *(dz A dz) = —dy.

For a Minkowski basis inR* holds: iy = dt Adz Ady Adz, G = dt ® dt — dx ® do — dy @ dy — dz ® dz, and
xdt Ndx ANdy ANdz =1andx1 = dt A dx A dy A dz. Furtherxdt = dx A dy A dz andxdz = dt A dy A dz.

7.8 Differential operations

7.8.1 The directional derivative
Thedirectional derivativan pointd is given by:

of
oz’

Lazf =< d,df >= a

7.8.2 The Lie-derivative

TheLie-derivativeis given by: ‘ o } }
(Lzw)? = w'0pv? — v* O’

7.8.3 Christoffel symbols

To each curvelinear coordinate systeinwve add a system of?3 functionsFé.k of i, defined by

o*t _, OF
Auiouk — IF oui

These ar&hristoffel symbols of the second kirhristoffel symbols are no tensors. The Christoffel symbols of the

second kind are given by:
i ./ 0 ;
P A
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with F;'.k = F?;j- Their transformation to a different coordinate system is given by:

The first term in this expression is 0 if the primed coordinates are cartesian.
There is a relation between Christoffel symbols and the metric:

;‘k = %gir(ajglcr + Okgrj — Orgjk)

andl'gy,, = 95(In(y/[g]))-

Lowering an index gives thehristoffel symbols of the first kind, = ¢*'T"ju..

7.8.4 The covariant derivative

Thecovariant derivativeV ; of a vector, covector and of rank-2 tensors is given by:

Via" = 0;a" + I‘;kak

Via; = 0ja; — I‘fjak

Vyag = 0ya3 — I gad +T5. a5
Vytag = OyGag — I‘fmagg — Ffmaag
V., = 9,0 + Fi‘easﬂ + Fgaaas

Ricci’s theorem:
Vogas = Vg™’ =0

7.9 Differential operators

The Gradient
is given by:
_ . of 0
_ 1 _ ki ZS Y
grad(f) = G df = g™ 55 5%
The divergence
is given by:
1
div(a') = V;a' = —0, a®
(a") NG (Vg a”)
The curl
is given by:

rot(a) =G ' x-d-Gd = —eP""V a, = V,a, — V,a,

The Laplacian

is given by:

A(f) = div grad(f) = *d * df = V,9"0,f = g7V, V;f = \}gaii <\/§gij§§j>
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7.10 Differential geometry

7.10.1 Space curves

We limit ourselves tdR? with a fixed orthonormal basis. A point is represented by the vetter(zt, 22, 23). A
space curve is a collection of points represented by Z(t). The arc length of a space curve is given by:

o= Y+ )+ ()

The derivative ofs with respect ta is the length of the vectaiz/dt:

ds\* _ (d& di
dt) — \dt’dt
The osculation planen a point P of a space curve is the limiting position of the plane through the tangent of the

plane in pointP and a point) when( approache$> along the space curve. The osculation plane is parallel with
Z(s). If  # 0 the osculation plane is given by:

G=T4+ N+ pi so det(§—&,7,2)=0
In a bending point holds, if 0
F=F+\Ne+pui

Thetangenthas unit vectod = #, themain normalunit vectorii = i and thebinormalb = # x Z. So the main
normal lies in the osculation plane, the binormal is perpendicular to it.

Let P be a point and) be a nearby point of a space cur¥gs). Let Ay be the angle between the tangentsin
and@ and letAq be the angle between the osculation planes (binormalB)and(@. Then thecurvaturep and the
torsion in P are defined by:

2 2 2
p? = d—(p = lim % = @
ds As—0 \ As ’ ds
andp > 0. For plane curveg is the ordinary curvature and= 0. The following holds:
p? = (0,0) = (%) and 7% = (b,b)
Frenet's equations express the derivatives as linear combinations of these vectors:
Z:pﬁ , T.L_':—plz'—&—ﬂ_)) , b=—71i
From this follows thatlet(Z, &, ) = p2T.

Some curves and their properties are:

Screw line T/p =constant

Circle screw line T =constantp =constant
Plane curves T=0

Circles p =constanty =0

Lines p=17=0

7.10.2 Surfaces inRk?

A surface inIR? is the collection of end points of the vectafs= #(u,v), soz" = 2" (u®). On the surface are 2
families of curves, one with =constant and one with =constant.

The tangent plane in a poift at the surface has basis:

51 = 815 and Co = 82j'
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7.10.3 The first fundamental tensor

Let P be a point of the surfac& = #(u®). The following two curves througt?, denoted byu® = u*(¢),
u® = v(7), have as tangent vectors ih

dZ du® . dz  dv® _
= @ T T 0T

Thefirst fundamental tensasf the surface inP is the inner product of these tangent vectors:

dz dz (@t du® dv”
di dr ) "\ Tar

The covariant components w.r.t. the basjs= 0, % are:

Japg = (Eavgﬁ)
For the angle) between the parameter curvesiinu = t, v =constant and, =constanty = 7 holds:

gi12

cos(¢>) - V911922

For the arc lengti of P along the curve.*(¢) holds:
ds? = gapdu®du®

This expression is called thi@e element

7.10.4 The second fundamental tensor
The 4 derivatives of the tangent vectésdzz = 0,Cp are each linear independent of the vecigrsc, and N,
with N perpendicular t@, andé,. This is written as:

0als =T 58, + hapN

This leads to:

[ =(C",0ac5) , hag=(N,0ae5)= det (&1, G, Dals)

_

V/det |g|

7.10.5 Geodetic curvature

A curve on the surfacg(u®) is given by:u® = u®(s), thanz = Z(u“(s)) with s the arc length of the curve. The

length ofZ is the curvature of the curve inP. The projection of? on the surface is a vector with components
pY =i 4T g’

of which the length is called thgeodetic curvaturef the curve inp. This remains the same if the surface is curved
and the line element remains the same. The projectiaghasf N has length

p = hapu®u”
and is called theormal curvatureof the curve inP. Thetheorem of Meusniestates that different curves on the
surface with the same tangent vectoirirhave the same normal curvature.

A geodetic lineof a surface is a curve on the surface for which in each point the main normal of the curve is the
same as the normal on the surface. So for a geodetic line is in eactppcind, so

d>u 5 du® du?®
+ [ —
ds? B ds ds
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The covariant derivativ®’ /dt in P of a vector field of a surface along a curve is the projection on the tangent plane
in P of the normal derivative irP.

For two vector fields/(¢) andw(t) along the same curve of the surface follows Leibniz’ rule:

d@, @) _ (o Vo (VT
a \"d Yt

dv” du®
8\ =
(dt “!‘F’;ﬁﬂ’u ) C7

Along a curve holds:

— (v*Cy)

7.11 Riemannian geometry
TheRiemann tensoR is defined by:

RM

bsT" = VaVaTH — VgV Th

This is a(}) tensor withn?(n? — 1) /12 independent components not identically equal to 0. This tensor is a measure
for the curvature of the considered space. If it is O, the space is a flat manifold. It has the following symmetry
properties:
Raﬁuu = R;U/aﬁ = _Rﬁauu = _Raﬁuu
The following relation holds:
[Va,Va]TH = R

v oo

) + Ry, 5T¥
The Riemann tensor depends on the Christoffel symbols through
R3,, = 0,15, — 0,15, + 5,13, —T5,T3,
In a space and coordinate system where the Christoffel symbols are 0 this becomes:
ng = %gaa (aﬁa,ugou - aﬁaugau + aaaugﬁu - aaaugﬁy)

TheBianchi identitiesare: VaRaguw + Vo Ragay + ViuRagur = 0.

The Ricci tensoris obtained by contracting the Riemann tensB,z = Rg#ﬂ, and is symmetric in its indices:
R.p = Rga. TheEinstein tensof7 is defined by:G*# = R*# — 1 45_ It has the property thaf sG*# = 0. The

Ricci-scalar isR = g*’ R 3.




Chapter 8

Numerical mathematics

8.1 Errors

There will be an error in the solution if a problem has a number of parameters which are not exactly known. The
dependency between errors in input data and errors in the solution can be expressemimitien number. If
the problem is given by = ¢(a) the first-order approximation for an errés in a is:

dx _ a¢'(a) da

z  ¢la) a

The number(a) = |a¢’(a)|/|¢(a)|. ¢ < 1 if the problem is well-conditioned.

8.2 Floating point representations

The floating point representation depends on 4 natural numbers:
1. The basis of the number systeén
2. The length of the mantisga
3. The length of the exponent

4. The signs.

Than the representation of machine numbers becohﬂ(&:) = s-m - (3°|where mantissan is a number with

(-based numbers and for which holds5 < |m| < 1, ande is a number withy 5-based numbers for which holds
le] < B9 — 1. The number 0 is added to this set, for example with- e = 0. The largest machine number is

Amax = (1 - ﬂit)ﬂﬁ(I71

and the smallest positive machine number is
7ﬁ(1
Amin = ﬂ

The distance between two successive machine numbers in the inftgval 57] is s~ If  is a real number and
the closest machine numberi$(x), than holds:

rd(z) = z(1+¢)  with  |e[ < 1p'?
r=r1d(z)(1+¢) with [¢]<ipt?

The number, := %61*t is called the machine-accuracy, and

z —rd(x)

/

g€ =1 =7

An often used 32 bits float format is: 1 bit fey 8 for the exponent an2B for de mantissa. The base here is 2.

51
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8.3 Systems of equations

We want to solve the matrix equatiofiz = b for a non-singulard, which is equivalent to finding the inverse matrix
A~ Inverting an x n matrix via Cramer’s rule requires too much multiplicatigi{) with n! < f(n) < (e—1)n!,
so other methods are preferable.

8.3.1 Triangular matrices

Consider the equatioliz = ¢ whereU is a right-upper triangular, this is a matrix in whi€h; = 0 for all j < 4,
and allU;; # 0. Than:

Tn = Cn/U%n

(Cn—l_'Uﬁ—ann)/Uﬁ—Ln—l

Tn—1

z1 = (a—Y Uyz;)/Un

=2
In code:

for (k = n; k > 0; k--)
{
S = c[kl;
for = k+ 1, j <n; j++)
{
S -= ULKI] * x[i;

}
x[k] = S [/ UIK][K];
This algorithm requiregn(n + 1) floating point calculations.

8.3.2 Gauss elimination

Consider a general set7 = b. This can be reduced by Gauss elimination to a triangular form by multiplying the

first equation with4;; /A, and than subtract it from all others; now the first column contains all 0's extgpt

Than the 2nd equation is subtracted in such a way from the others that all elements on the second row are 0 except
Aqo, €etc. In code:

for (k = 1; k <= n; k++)

{
for ( = ki j <= n; j++) UL = ALKILD;
clk] = blk];

for (i = k + 1; i <= n; i++)

L = A[i][k] / U[K][K];
for = k + 1; j <= n; j++)
A[ilil -= L * UKl

}
bli] -= L * c[K];
}
}
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This algorithm require%n(n2 — 1) floating point multiplications and divisions for operations on the coefficient
matrix and%n(n — 1) multiplications for operations on the right-hand terms, whereafter the triangular set has to be
solved with1n(n + 1) operations.

8.3.3 Pivot strategy

Some equations have to be interchanged if the corner elementslélg), ... are not alk# 0 to allow Gauss elimina-
tion to work. In the following,A(™ is the element after theth iteration. One method is: jzﬁgz_l) = 0, than search

for an eIementAI(f,i_l) with p > k that is## 0 and interchange theth and thenth equation. This strategy fails only
if the set is singular and has no solution at all.

8.4 Roots of functions

8.4.1 Successive substitution
We want to solve the equatidfi(x) = 0, so we want to find the roat with F'(a) = 0.

Many solutions are essentially the following:

1. Rewrite the equation in the form= f(z) so that a solution of this equation is also a solutiorF¢f) = 0.
Further, f () may not vary too much with respectioneara.

2. Assume an initial estimatiary, for « and obtain the series, with z,, = f(z,,—1), in the hope thatlim z,, =

n— 00
«.

Example: choose

h(z) F(z)
xTr) = —E— = —_
J@) =0 =) =" G
than we can expect that the rawy with
To = ﬂ
Ty = Tp_1-— Eh(xnfl)
g(xn—l)

converges tav.

8.4.2 Local convergence

Let «a be a solution oft = f(z) and letx,, = f(z,—1) for a givenz,. Let f’(x) be continuous in a neighbourhood
of a. Let f'(«r) = A with |A] < 1. Than there exists &> 0 so that for each:, with |zo — «| < § holds:

1. lim n, = q,

n—oo

2. If for a particulark holds: z; = «, than for eacln > £ holds thatr,, = a. If 2, # « for all n than holds

— — Ty - A
lim =% 4y Tl g gy 2T
n—oo O — Typ—1 n—00 Tp_1 — Tp—2 n—oo Ty — Tp—1 1—A
The quantityA is called theasymptotic convergence factdhe quantityB = —!°log |4| is called theasymptotic

convergence speed
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8.4.3 Aitken extrapolation
We define

. Tpn — Tp—1
A= lim /2" —7°

n—00 Tp_1 — Tp-2

A converges tg/(a). Than the row

will converge toa.

8.4.4 Newton iteration

There are more ways to transforf(z) = 0 into x = f(x). One essential condition for them all is that in a
neighbourhood of a roat holds that f'(z)| < 1, and the smallef’(z), the faster the series converges. A general
method to construct(x) is:

f(z) =z = ®(z)F(x)

with ®(z) # 0 in a neighbourhood af. If one chooses:

1
- F'(z)

d(x)

Than this becomes Newtons method. The iteration formula than becomes:

_ F(xn_l)
F’(xn,l)

Tp = Tp-1
Some remarks:
e This same result can also be derived with Taylor series.
e Local convergence is often difficult to determine.
e If x,, is far apart fronm the convergence can sometimes be very slow.

e The assumptiod” () # 0 means thatv is a simple root.

For F(x) = 2* — a the series becomes:

This is a well-known way to compute roots.

The following code finds the root of a function by means of Newton's method. The root lies within the interval
[x1, x2] . The value is adapted until the accuracy is better thaps. The functionfuncd is a routine that
returns both the function and its first derivative in poirith the passed pointers.

float SolveNewton(void (*funcd)(float, float*, float*), float x1, float x2, float eps)
{

int j, max_iter = 25;

float df, dx, f, root;

root = 0.5 * (x1 + x2);
for = 1; j <= max_iter; j++)
{

(*funcd)(root, &f, &df);

dx = f/df;
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root = -dx;
if ( (x1 - root)*(root - x2) < 0.0 )
{
perror("Jumped out of brackets in SolveNewton.");
exit(1);
if ( fabs(dx) < eps ) return root; /* Convergence */
}
perror("Maximum number of iterations exceeded in SolveNewton.");
exit(1);
return 0.0;

}

8.4.5 The secant method

This is, in contrast to the two methods discussed previously, a two-step method. If two approximatomk:,,
exist for a root, than one can find the next approximation with

Tn — Tp—1

F(xn) - F(xnfl)

Tn+l = Tp — F(xn)
If F(z,)andF(z,—1) have a different sign one is interpolating, otherwise extrapolating.
8.5 Polynomial interpolation

A base for polynomials of ordet is given byLagrange’s interpolation polynomials

Tr — I

=

Lj(z) =

T; — T

ol
<lo

The following holds:
1. EachL;(z) has ordem,
2. Lj(z;) = 0;5fori,j=0,1,...,n,

3. Each polynomiap(z) can be written uniquely as
pl) =Y c;Li(x) with ¢; = p(a;)
j=0

This is not a suitable method to calculate the value of a ploynomial in a given:peint. To do this, the Horner
algorithm is more usable: the value= Y, c,z* in 2 = a can be calculated as follows:

float GetPolyValue(float c[], int n)
{

int i; float s = c[n];
for i =n-1;,i>=0; i)

{

s =s *a+ (i
}
return s;

}
After it is finisheds has valuen(a).
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8.6 Definite integrals

Almost all numerical methods are based on a formula of the type:

b n
/f(x)dw = chf(a?
a =0
with n, ¢; andz; independent off () and R(f) the error which has the for(f) = Cf(9)(¢) for all common

methods. Here € (a,b) andg > n + 1. Often the points:; are chosen equidistant. Some common formulas are:

e The trapezoid rulen = 1,29 = a, 21 = b, h = b — a:

/f

e Simpson'srulen =2,z =a,z1 = 3(a+b), z2 =b,h = 1(b—a):

NJ\D*

h3
f(xo) + f(z1)] = Ef”(f)

/ Flade = 21gta0) + 41e) + 1) - 2 FO(E)
e The midpoint rulen = 0,29 = 1 (a+b),h =b—a
/ F@)da = hf(ao) + (6

The interval will usually be split up and the integration formulas be applied to the partial interyalaifes much
within the interval.

A Gaussian integration formula is obtained when one wants to get both the coeffigiemd the points:; in an
integral formula so that the integral formula gives exact results for polynomials of an order as high as possible. Two
examples are:

1. Gaussian formula with 2 points:

h

rom=s () s ()] o

—h

2. Gaussian formula with 3 points:

h

/f@mng[w(}h¢§>+&ﬂm+5fowé>]+u£mfw@)

—h

8.7 Derivatives

There are several formulas for the numerical calculatioff 6f):

e Forward differentiation:
flx+h)— f(x)

fay = B2 e
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e Backward differentiation:

i) = TOZIEZD ey

¢ Central differentiation: i - ) )
iy Jl@th)—fl@e—h) h®
e The approximation is better if more function values are used:

—f(z x —8f(x — T — 4
Pla) = L@ 20 +8f @t h) —8f(@ = h) + flw=2h) I

12h 30
There are also formulas for higher derivatives:

—f(@+2h) +16f(z + h) = 30f(x) + 16f(z —h) = f(z = 2h) hifw)(g)
1212 90

£ (8)

£

f(x) =

8.8 Differential equations

y) for x > zo and initial conditiony(zy) = x¢. Suppose we find

We start with the first order DE/ () = f(x,y
Z2),..., y(zn). Than we can derive some formulas to obtajn; as

approximationszy, za, ..., z, for y(z1), y(
approximation fory(z,,+1):

e Euler (single step, explicit):
2

-y (&)

Zn+1 = Zn + hf(.’L'n,Zn) + 9

e Midpoint rule (two steps, explicit):
3

Pye)

Znt1 = Zn—1 + 2hf(Tn, 2n) + 3

e Trapezoid rule (single step, implicit):

h3
Zn+l = Zn T %h(f(l‘m zn) + f(@nt1, 2nt1)) — 7y///(€>

12
Runge-Kutta methods are an important class of single-step methods. They work so well because theyéejution
can be written as:

Ynt1 = Yn + hf(§n,y(&n)) With &, € (Tn, Tni1)
Because,, is unknown some “measurements” are done on the increment furiction f (, y) in well chosen
points near the solution. Than one takes g1 ; — z,, a weighted average of the measured values. One of the
possible 3rd order Runge-Kutta methods is given by:

kr = hf(zn,zn)
ke = hf(xn+%h,zn+%k1)
ks = hf(zn+3h, 2z, + 3ks)
Zngl = Zn + g(2ky + ko + 4ks3)
and the classical 4th order method is:
ki = hf(zn,zn )
ky = hf(z,+ hzn—i— kl)
ks = hf(z,+ 1h 2y + %kg)
ks = hf(zn+h,z,+ks)
Zng1 = Zn+ (ki + 2ko + 2k + ka)

Often the accuracy is increased by adjusting the stepsize for each step with the estimated error. Step doubling is
most often used for 4th order Runge-Kutta.
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8.9 The fast Fourier transform

The Fourier transform of a function can be approximated when some discrete points are known. Suppose we have
N successive samplés, = h(t) with ¢, = kA, k = 0,1,2,..., N — 1. Than the discrete Fourier transform is
given by:

N-1
H, = § hke%rzkn/]\/
k=0

and the inverse Fourier transform by
N-1

1 —2mikn
hk:NZHne 2mikn/N

n=0

This operation is ordeN2. It can be faster, ordeN -2 log(NV), with the fast Fourier transform. The basic idea is
that a Fourier transform of lengtN' can be rewritten as the sum of two discrete Fourier transforms, each of length
N/2. One is formed from the even-numbered points of the orighathe other from the odd-numbered points.

This can be implemented as follows. The ardaya[1..2*nn] contains on the odd positions the real and on the
even positions the imaginary parts of the input datata[1] is the real part andata[2] the imaginary part of
fo, etc. The next routine replaces the valuesl@éa by their discrete Fourier transformed valuessifn = 1,
and by their inverse transformed valuessifjn = —1. nn must be a power of 2.

#include <math.h>
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

void FourierTransform(float data[], unsigned long nn, int isign)
{

unsigned long n, mmax, m, j, istep, i;

double wtemp, wr, wpr, wpi, wi, theta;

float tempr, tempi;

J

for i = 1,1 <n;i+=2)
if (j>1i)
{

SWAP(data[j], datali]);
SWAP(data[j+1], data[i+1]);
}
m=n > 1;
while (m >= 2 & & j > m )
{
jo=m;
m >>= 1,

J += m;
}
mmax = 2;
while ( n > mmax ) /* Outermost loop, is executed log2(nn) times */
{
istep = mmax << 1;
theta isign * (6.28318530717959/mmax);
wtemp = sin(0.5 * theta);
wpr = -2.0 * wtemp * wtemp;
wpi = sin(theta);
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wr = 1.0;
wi = 0.0;
for (m = 1, m < mmax; m += 2)
{
for (i = m; i <= n; i += istep) /* Danielson-Lanczos equation */
{
j = i + mmax;
tempr = wr * data[j] - wi * data[j+1];
tempi = wr * data[j+1] + wi * datal[j];
data[j] = data]i] - tempr;

data[j+1] = data[i+1] - tempi;
datali] += tempr,
data[i+1] += tempi;

}
wr = (wtemp = wr) * wpr - wi * wpi + wr;
wi = wi * wpr + wtemp * wpi + wi;

}

mmax=istep;

}
}




