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Sets and Functions

This introductory chapter is devoted to general notions regarding sets, functions, se-
guences, and series. The aim is to introduce and review the basic notation, terminology,
conventions, and elementary facts.

1 Sets

A setis a collection of some objects. Given a set, the objects that form it are called its
elementsGiven a setd, we writex € A to mean that is an element ofl. To say that

x € A, we also use phrases likeis in A, x is a member of4, 2 belongs to4, and A
includesz.

To specify a set, one can either write down all its elements inside curly brackets (if
this is feasible), or indicate the properties that distinguish its elements. For example,
A ={a,b, c} is the set whose elements areh, andc, andB = {z : z > 2.7} is the
set of all numbers exceedirg7. The following are some special sets:

(: Theempty setlt has no elements.
N={1,2,3,...}: Set ofnatural numbers

7z =1{0,1,-1,2,-2,...}: Set ofintegers

Z. ={0,1,2,...}: Set ofpositive integers

Q= {%:m e Z,n € N}: Set ofrationals

R = (—00,00) = {z : —00 < x < +00}: Set ofreals
[a,b] = {x € R:a <z < b}: Closed intervals

(a,b) = {x € R:a < z < b}: Open intervals

R =[0,00) = {z € R: z > 0}: Set ofpositive reals
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Subsets

A set A is said to be &ubsebdf a setB if every element ofd is an element oB. We
write A C B or B D A to indicate it and use expressions likeis contained inB,
B containsA, to the same effect. The setisand B are the same, and then we write
A= B,ifandonlyif A C BandA D B. We write A # B whenA andB are not the
same. The sef is called aproper subsetf B if A is a subset oB andA andB are
not the same.

The empty set is a subset of every set. This is a point of logicAlee a set;
the claim is that) c A, that is, that every element dfis also an element oft,
or equivalently, there is no element éfthat does not belong td. But the last is
obviously true simply becaudehas no elements.

Set Operations

Let A andB be sets. Theianion denoted bydU B, is the set consisting of all elements
that belong to either or B (or both). Theirintersection denoted byA N B, is the
set of all elements that belong to bathand B. Thecomplemenof A in B, denoted
by B\ A4, is the set of all elements db that are not inA. Sometimes, wheB is
understood from contex3 \ A is also called the complement dfand is denoted by
A¢. Regarding these operations, the following hold:

Commutative laws:

AUB = BUA,
ANB = BNA.

Associative laws:

Distributive laws:

AN(BUC) = (ANB)U(ANC),
AUBNC) = (AUB)N(AUQ).

The associative laws show that) BUC and AN BN C have unambiguous meanings.
Definitions of unions and intersections can be extended to arbitrary collections of

sets. Letl be a set. For eache I, let A; be a set. Thenionof the sets4;,7 € I, is

the setd such thatr € Aifand onlyifx € A; for somei in I. The following notations

are used to denote the union and intersection respectively:

U4, (A

i€l i€l
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WhenI =N = {1,2,3,...}, itis customary to write

Ja [
=1 =1

All of these notations follow the conventions for sums of numbers. For instance,

13
mAi:Ag,ﬁAGﬂ-'-ﬂAlg

=5

OAi:Alu--UAn,
i=1

stand, respectively, for the union over= {1,...,n} and the intersection ovdr =
{5,6,...,13}.
Disjoint Sets

Two sets are said to bdisjoint if their intersection is empty; that is, if they have no
elements in common. A collectiopd; : i € I} of sets is said to bdisjointedif A;
andA; are disjoint for alk andj in I with ¢ # j.

Products of Sets

Let A andB be sets. Theiproduct denoted byA x B, is the set of all pairéz, y) with
xin Aandy in B. Itis also called theectanglewith sidesA and B.

If Ay,..., A, are sets, then their produdt; x --- x A, is the set of all n-tuples
(z1,...,z,) Wherez; € Aq,..., 2z, € A,. This product is called, variously, a rect-
angle, or a box, or an n-dimensional boxAlf = --- = A,, = A,thenA4; x --- x A,

is denoted byA™. Thus,R? is the planeR? is the three-dimensional spad?. is the
positive quadrant of the plane, etc.

Exercises:

1.1 Let F be a set. Show the following for subsets B, C, and A; of E.
Here, all complements are with respectfpfor instance A° = E \ A.
1. (A=A
2. B\A=BnNA°
3. B\ANC=(BNC)\(ANnC(O)
4. (AUB)¢ = A°N B°
5. (AN B)¢ = A°U B¢
6. (Uiel A)° = ﬂie[ Af
7. (ﬂiel A)° = Uie[ Af
1.2 Leta andb be real numbers with < b. Find

o0 o0

1 1 1 1
nL:Jl[a+ 'I’l’ n]7 n:l[a 'I’l’ i n]
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1.3 Describe the following sets in words and pictures:

1. A={zeR?:2?+2} <1}
2. B={zeR*: 2 +23 <1}
3.C=B\4
4. D=CxB
5. 8§=CxC

1.4 Let A, be the set of point$r,y) € R? lying on the curvey = 1/2",
0 <z < oco. Whatis(),,5; 4,7

2 Functions and Sequences

Let £ and F' be sets. With each elementof F, let there be associated a unique
elementf(z) of F. Thenf is called afunctionfrom F into F', andf is said tomap F
into F. We write f : E — F to indicate it.

Let f be a function fromE into F. Forz in E, the pointf(z) in F is called the
imageof = or the value off atz. Similarly, for A C E, the set

{y € F:y= f(x)forsomer € A}

is called themageof A. In particular, the image aF is called thaangeof f. Moving
in the opposite direction, faB C F,

2.1 Y (B)={z€E: f(z) e B}

is called thanverse imagef B underf. Obviously, the inverse af is E.

Terms like mapping, operator, transformation are synonyms for the term “function
with varying shades of meaning depending on the context and on the seis$f". We
shall become familiar with them in time. Sometimes, we wiite> f(x) to indicate
the mappingf; for instance, the mapping — 22 + 5 from R into R is the function
f : R — R defined byf(x) = 2° + 5.

Injections, Surjections, Bijections

Let f be a function from¥ into F'. Itis called annjection or is said to bénjective or
is said to beone-to-oneif distinct points have distinct images (that isgit4 y implies
f(x) # f(y)). ltis called asurjection or is said to besurjective if its range isF,
in which casef is said to be from& onto F'. It is called abijection, or is said to be
bijective if it is both injective and surjective.

These terms are relative foand F'. For examplesy — e is an injection froniR
into R, but is a bijection fronR into (0, c0). The functionz — sinz fromR into R is
neither injective nor surjective, but it is a surjection fréonto[—1, 1].
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Sequences

A sequencas a function fromN into some set. Iff is a sequence, it is custom-
ary to denotef(n) by something likex,, and write(x,,) or (x1,x2,...) for the se-
qguence (instead qf). Then, thex,, are called theermsof the sequence. For instance,
(1,3,4,7,11,...) is a sequence whose first, second, etc. termsare 1, z = 3, ...

If Ais a setand every term of the sequeficg) belongs to4, then(z,,) is said to
be a sequence iA or a sequence of elements4f and we write(z,,) C A to indicate
this.

A sequencgz,,) is said to be asubsequencef (y,) if there exist integergd <
k1 < ko < k3 < ---such that

Tn = Yk,
for eachn. For instance, the sequen¢e 1/2,1/4,1/8,...) is a subsequence of
(1,1/2,1/3,1/4,1/5,...).
Exercises:

2.1 Letf be a mapping fronk into F'. Show that

1. f710) =0,

2. f~Y(F)=E,

3. fFHB\C)=f1(B)\ fH(O),
4. [T Uier Bi) = Ui, f71(BI),
5 7 (Mier Bi) = Nies fH(Bi),

for all subsets3, C, B; of F.

2.2 Show thatr — e~ 7 is a bijection fromR . onto (0, 1]. Show thatr —
log x is a bijection from(0, c0) ontoR. (Incidentally,log x is the loga-
rithm of = to the base:, which is nowadays called the natural logarithm.
We call it the logarithm. Let others call their logarithms “unnatural.”)

2.3 Letf be defined by the arrows below:
1 5
A
0 1 2
This defines a bijection fro¥ onto Z. Using this, construct a bijection

from Z ontoN.

2.4 Letf : NxN — N be defined by the table below whefg, ;) is the entry

in the it row and thejth column. Use this and the preceding exercise to
construct a bijection fror, x Z ontoN.



6 SETS AND FUNCTIONS

1

1 1 3 6 10 15 21
2 2 5 9 14 20

3 4 8 13 19

4 7 12 18

5 11 17

6 16

2.5 Functional InversesLet f be a bijection fromE onto F'. Then, for each
y in F there is a unique in E such thatf(xz) = y. In other words, in
the notation of (2.1)f~!({y}) = {«} for eachy in F and some unique
x in E. In this case, we drop some brackets and wfité(y) = z. The
resulting functionf —! is a bijection fromF onto E; it is called the func-
tional inverse off. This particular usage should not be confused with the
general notation of ~!. (Note that (2.1) defines a functigfr ' form F
into £, whereF is the collection of all subsets @&f and€ is the collection
of all subsets ofv.)

3 Countability

Two setsA and B are said to have the same cardinality, and then we wkite B, if
there exists a bijection from onto B. Obviously, having the same cardinality is an
equivalence relation; it is

1. reflexive:A ~ A,
2. symmetriccA ~ B = B ~ A,
3. transitive:A ~ BandB ~ C = A~ C.

A set is said to bdinite if it is empty or has the same cardinality 85 2,...,n} for
somen in N; in the former case it has elements, in the latter exacthy. It is said to
becountabléif it is finite or has the same cardinality &5 in the latter case it is said to
have a countable infinity of elements.

In particular,N is countable. So arg, N x N in view of exercises 2.3 and 2.4.
Note that an infinite set can have the same cardinality as one of its proper subsets. For
instanceZ ~ N, Ry ~ (0,1], R ~ Ry ~ (0,1); see exercise 2.2 for the latter.
Incidentally,R, R, etc. are uncountable, as we shall show shortly.

A set is countable if and only if it can be injected irith or equivalently, if and
only if there is a surjection fron¥ onto it. Thus, a sefl is countable if and only if
there is a sequende;,,) whose range isl. The following lemma follows easily from
these remarks.
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3.1 LEMMA. If A can be injected intd3 and B is countable, them is countable. If
A is countable and there is a surjection frafnonto B, then B is countable.

3.2 THEOREM.The product of two countable sets is countable.

PROOF. Let4 andB be countable. If one of them is empty, thén< B is empty and

there is nothing to prove. Suppose that neither is empty. Then, there exist injections
f: A~ Nandg: B — N. For each paifz,y) in A x B, leth(z,y) = (f(z),9(v));

thenh is an injection fromA x B into N x N. SinceN x N is countable (see Exercise
(2.4)), this implies via the preceding lemma thii B is countable O

3.3 COROLLARY.The set of all rational numbers is countable.

PROOF. Recall that the sét of all rationals consists of ratias /n with m € Z and
n € N. Thus, f(m,n) = m/n defines a surjection frod x N ontoQ. SinceZ andN
are countable, so B x N by the preceding theorem. Hendgjs countable by Lemma
3.1. O

3.4 THEOREM.The union of a countable collection of countable sets is countable.

PROOF. Letl be a countable set, and ldt be a countable set for ea¢hn I. The
claim is thatA = [ J,.; A; is countable. Now, there is a surjectign: N — A; for
eachi, and there is a surjectian: N — I; these follow from the countability of and
the A;. Note that, thenh(m,n) = f4m)(n) defines a surjectioh from N x N onto
A. SinceN x N is countable, this implies via Lemma 3.1 théis countable. m]

The following theorem exhibits an uncountable set. As a corollary, we showRthat
is uncountable.

3.5 THEOREM.Let E be the set of all sequences whose terms are the digitsl 1.
Then,FE is uncountable.

PROOF. LetA be a countable subset éf. Letzq,zs,... be an enumeration of the
elements of4, that is, A is the range ofx,,). Note that each,, is a sequence of zeros
and ones, say,, = (zn,1,Zn,2,...) Where each terne,, ,,, is either0 or 1. We define
a new sequence= (y,) by lettingy,, = 1 — z,, . The sequencg differs from every
one of the sequencas, z2, . . . in at least one position. Thug,s notinA butisinFE.
We have shown that ifi ¢ F and is countable, then there igyjac E such that
y ¢ A. If E were countable, the preceding would hold fbor= FE, which would be
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absurd. Hencely must be uncountable. O
3.6 COROLLARY.The set of all real numbers is uncountable.

PROOF. Itis enough to show that the interf¢all ) is uncountable. For eache [0, 1),

let 0.z 2025 - - - be the binary expansion af (in casex is dyadic, sayr = k/2™ for
somek andn in N, there are two such possible binary expansions, in which case we
take the expansion with infinitely many zeros), and we identify the binary expansion
with the sequencér, zo, .. .) in the setE of the preceding theorem. Thus, to each

x in [0, 1) there corresponds a unique elemg(t) of E. In fact, f is a surjection
onto the sett’ \ D where D denotes the set of all sequences of zeros and ones that
are eventually all ones. It is easy to show thais countable and hence that\ D is
uncountable. From this it follows th#, 1) is uncountable. O

Exercises:

3.1 Dyadics.A number is said to be dyadic if it has the foky2™ for some in-
tegersk andn in Z,.. Show that the set of all dyadic numbers is countable.
Of course, every dyadic number is rational.

3.2 LetD denote the set of all sequences of zeros and ones that are eventually
all ones. Show thab is countable.

3.3 Suppose that is uncountable and tha is countable. Show that \ B
is uncountable.

3.4 Letx be areal number. For eache Z., let x,, be the smallest dyadic
number of the fornk /2™ that exceeds. Show thateg > 1 > x5 > - --
and thatz,, > x for eachn. Show that, for every > 0, there is am, such
thatz,, —xz < eforalln > n..

4 Onthe Real Line

The object is to review some facts and establish some terminology regarding the set
R of all real numbers and the s&t= [—o0, +00] of all extended real numbers. The
extended real number systaonsists ofR and two extra symbols;oo andoco. The
relation< is extended t® by postulating that-co < = < +oc for every real number

x. The arithmetic operations are extendedRtas follows: for eaclr € R,

xr+o0o=x—(—0) = o©

r+(—0)=r—-—00 = —

xr-o0 =
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z-(—00) = (—z) -0
zf/oo=x/(—c0) = 0
X+ = 0
(~00) +(00) = o0
0000 =(—00) (—0) = oo
o0 (—0) = —o0.

The operation$ - (£o00), (—00) — (—o0), +00/+00, and—oo/—oo are undefined.

Positive and Negative

We callz in R positiveif z > 0 andstrictly positiveif = > 0. By symmetry, theng

is negativeif 2 < 0 and strictly negative ift < 0. A function f : E — R is said to

be positiveif f(z) > 0 for all z in E andstrictly positiveif f(x) > 0forall z in E.
Negative and strictly negative functions are defined similarly. This usage is in accord
with modern tendencies, though at variance with common dsage

Increasing, Decreasing

A function f : R — R is said to bencreasingif f(x) < f(y) whenever: < y. Itis
said to bestrictly increasingf f(z) < f(y) wheneverr < y. Decreasing and strictly
decreasing functions are defined similarly by reversing the inequalities.

These notions carry over to functiofis £ — R with £ C R. In particular, since a
sequence is a function d, these notions apply to sequenceRinThus, for example,
(z,) C Risincreasing ift; <z, < --- and is strictly decreasing if;, > x5 > - - -.

Bounds

Let A C R. Areal numbeb is called arupper boundor A provided thatd C [—oo, b],
and thenA is said to bebounded abovby b. Lower bounds and being bounded below
are defined similarly. The set is said to béboundedf it is bounded above and below;
thatis, if A C [a, b] for some real intervdl, b].

These notions carry over to functions and sequences as follows. Givéh— R,
the functionf is said to be bounded above, below, etc. according as its range is bounded
above, below, etc. Thus, for instangeis bounded if there exist real numbers< b
such thatx < f(x) < bforall zin E.

Supremum and Infimum

If A C R is bounded above, then it has a least upper bound, that is, an upper#ound
such that no number less thais an upper bound; we call that least upper bound the
supremurof A. If A is not bounded above, we define the supremum te-be The

10ften used concepts should have the simpler names. Mindbending double negatives should be avoided,
and as much as possible, the mathematical usage should not conflict with the ordinary language.
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infimumof A is defined similarly; it is—cc if A has no lower bound and is the greatest
lower bound otherwise. We let
inf A, supA

denote the infimum and supremum.f respectively. For example,

inf{1,1/2,1/3,...} =0, sup{1,1/2,1/3,...} =1,

inf(a,b] = infla,b] = a, sup(a,b) =sup(a,b] =b.
In particular,inf ) = +o0o andsup) = —oc. If A is finite, theninf A is the smallest
element of4, andsup A is the largest. Even whe# in infinite, it is possible thaitnf A
is an element of4, in which case it is called theainimumof A. Similarly, if sup A is

an element of4l then itis also called themaximunof A.
If f: F— R,itiscustomary to write

inf f(z) =inf{f(z):z € D}
zeD
and call it the infimum (or maximum) of over D C E, and similarly with the supre-
mum. In the case of sequendes,) C R,
infx,, supz,

denote, respectively, the infimum and supremum of the rande;,of Other such
notations are generally self-explanatory; for example,

inf x, = inf{ay, Tx41,...}, SUp Tk = sup{z,1, Tna,. ..}
n>k E>1

Limits
If (z,,) is an increasing sequencely thensup z,, is also called théimit of (,,) and
is denoted bylim x,,. If it is a decreasing sequence, thefiz,, is called the limit of

(z,,) and again denoted Bjm x,.
Let (x,) C R be an arbitrary sequence. Then

4.1 z, = inf x,, Ty, =supz,, mEeN,

m
nz n>m

define two sequencegt,,) is increasing, andz,, ) is decreasing. Their limits are called
thelimit inferior and thelimit superior, respectively, of the sequen¢e, ):

4.2 liminf z, =limg, = sup inf z,,
m n2

4.3 limsup ,, = lim Z,, = inf sup x,,
m n>m

Figure 1 is worthy of careful study. Note that, in general,
4.4 —oo < liminf z,, <limsupz,, < +oc.

If liminf 2, = limsup z,,, then the common value is called thmit of (x,) and is
denoted byim z,,. Otherwise, if limits inferior and superior are not equal, the sequence
(x,,) does not have a limit.
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Figure 1: Lim Sup and Lim Inf. The pairs:, z,,) are connected by the solid lines for
clarity. The pairgn, z,,) form the lower dotted line angh, z,,) the upper dotted line.

Convergence of Sequences

A sequencéz,,) of real numbers is said to lmonvergentf lim x,, exists and is a real
number.

An examination of Figure 1 shows that this is equivalent to the classical definition
of convergence:(z,,) converges tor if for every e > 0, there is amn, such that
|z, —x| < eforalln > n.. The phrase “there is. ... for alln > n.” can be expressed
in more geometric terms by phrases like “the number of terms outsidec, © + ¢) is
finite,” or “all but finitely many terms are i — ¢,z + €),” or “|z,, — z| < e for alln
large enough.”

The following is a summary of the relations between convergence and algebraic
operations. The proof will be omitted.

4.5 THEOREM.Let (z,) and(y,,) be convergent sequences with limiteand y re-
spectively. Then,

1. lim cz,, = cx,
2. lim(x, +yn) =z + v,
3. limx,y, = vy,

4. lim z,, /y, = x/y provided that,,,y # 0.

In practice, we do not have the sequence laid out before us. Instead, some rule is
given for generating the sequence and the object is to show that the resulting sequence
will converge. For instance, a function may be specified somehow and a procedure
described to find its maximum; starting from some point, the procedure will give the
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successive points,, xs, . . . which are meant to form the sequence that converges to
the pointz where the maximum is achieved.

Often, to find the limit of(z,,), one starts with a search for sequences that bound
(z,,) from above and below and whose limits can be computed easily: suppose that

Yn < xp < z, foralln, limy,, = lim z,,
thenlim z,, exists and is equal to the limit of the other two. The art involved is in

finding such sequencés,,) and(z,,).

4.6 EXAMPLE. This example illustrates the technique mentioned above. We want to
show that(n'/™) converges. Note that'/” > 1 always, and put,, = n'/" — 1, and
consider the sequnde,,). Now, (1 + x,,)™ = n, and by the binomial theorem

-1
(a—l—b)” — CL"—I—?’Lan_lb-i-n(né )an_2b2+-~-+bn
> ”(n_l)an—2b2
2
fora,b > 0andn > 2. So,
-1
n=1+4z,)" > n(n2 )xfw
or
2
< <
0sans n—1

It follows thatlim z,, = 0, and hence

limn'/™ = 1.

Exercises:

4.1 Show that ifA D B theninf A < inf B < sup B < sup A. Use this to
show that, ifA; D A5 D ---, then

inf 4; <inf Ay <-.-<infA, <..- <

<sup A, <---<supAy <supAj.

Use this to show that,,) is increasing(z,,) is decreasing, anidm z,, <
lim Z,, (see (4.1) — (4.3) for definitions).

4.2 Show thatup(—z,) = — inf z,, for any sequencér,,) in R. Conclude
thatlim sup(—z,,) = — liminf z,,.
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4.3 Cauchy Criterion. Sequencéz,,) is convergent if and only if for every
e > 0 there is am,. such thafx,,, — x| < eforallm > n > n.. Prove
this by examining Figure 1 on the definition of the limit.

4.4 Monotone Sequences. (x,,) is increasing, thetim x,, exists (but could
be +00). Thus, such a sequence converges if and only if it is bounded
above. Show this. State the version of this for decreasing sequences.

4.5 Iterative Sequence®ften,z,; is obtained frome,, via some rule, that
iS, zp+1 = f(x,) for some functionf. If (z,,) is so obtained from some
function f, it is said to be iterative. Ifx,,) is such andf is continuous
andlimz, = x exists, thenw = f(x). This works well for identifying
the limit especially wherf is simple and: = f(z) has only one solution.
In general, with complicated function§ the reverse is true: To find
satisfyingz = f(«), one starts at some poinf, computess; = f(zg),
x9 = f(x1), ..., and tries to show that = limz,, exists and satisfies

x = f(x).

4.6 Domination.A sequencé€z,,) is said to be dominated by a sequefigg)
if x, <y, for eachn. Show that, if so
1. inf z,, <infy,,
2. sup x, < Sup yn,
3. liminf z,, <liminfy,,
4.

lim sup x,, < lim sup y,,.

In particular, if the limits existlim z,, < limy,.

Incidentally, (z,,) defined by (4.1) is the maximal increasing sequence
dominated by(z,,), and(z,,) is the minimal decreasing sequence domi-
nating(x.,).

4.7 Comparisons.Let (z,) be a positive sequence. Them,,) converges to
0 if and only if it is dominated by a sequen¢g,) with limsup y,, = 0.
Show this.

Favorite sequencey,,) used in this role are given by, = 1/n, y, = r"
for some fixed number € (0,1), andy,, = nPr™ with p € (—o0, +00)
andr € (0,1).

4.8 Existence of Least Upper Boundset A be a nonempty subset & and
let B = {b : bis an upper bound ofl}. Assuming thatB is nonempty,
show thatB has a minimum element.
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5 Series

Given a sequencer,,) C R, the sequencegs,,) defined by

51 Sp = Z T;
=1
is called the sequence of partial sumgef ), and the symbolic expression

5.2 Zaﬁn

is called theseriesassociated witlfx,,). The series is said tconvergeto s, and then
we write
oo

53 Z Ty =S
1
if and only if the sequencegs,,) converges te.
Sometimes, we write; + x5 +- - - for the series (5.2). Sometimes, for convenience

of notation, we shall consider series of the fopny” or >~°°, depending on the index
set. Here are a few examples:

> 1
Zx” forz € (—1,1),
1—2
n=0
o0 n
Zx—' = ¢ forzeR,
n!
n=0
) - a0
—n 6
S ol
no_
Zx = 1 forz e (—1,1).
n=m

The following result is obtained by applying the Cauchy Criterion (Exercise 4.3) to
the sequence of partial sums.

5.4 THEOREM.The series  z,, converges if and only if for every> 0 there is an
n. such that

m

5.5 \in\ge
i=n

forall m >n > n..

In particular, takingn = n in (5.5) we obtairjz,| < e. Thus we have obtained the
following:

5.6 COROLLARY.If " z,, converges, thetim z,, = 0.
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The converse is not true. For examplien1/n = 0 but > 1/n is divergent. In
the case of series with positive terms, partial sums form an increasing sequence, and
hence, the following holds (see Exercise 4.4):

5.7 PROPOSITIONSuppose that the,, are positive. Ther_ x,, converges if and
only if the sequence of partial sums is bounded.

In many cases, we encounter series whose terms are positive and decreasing. The
following theorem due to Cauchy is helpful in such cases, especially if the terms in-
volve powers. Note the way a rather thin sequence determines the convergence or
divergence of the whole series.

5.8 THEOREM.Suppose thatz,,) is decreasing and positive. Thén x,, converges
if and only if the series
Ty + 2x9 +4x4 + 828 + - - -

converges.
PROOF. Lets,, = x + - - - + x,, as usual and puf, = 1 + 2z + - - - + 2Fz5.. Now,
for n < 2%, sincer; > x93 > --- >0,

Sn < rprH (ot axs)+(wat - xr)+ o+ (Tor + -+ Topr1_q)
< x1+21’2+4x4+~~+2kx2k

t/w

and forn > 2F,

Sp > mtxa+(rztxa)+ (w5 +--zs)+ -+ (Tor-1 g + -0+ Tor)
1 X
> 5951 + x9 +2.’)§'4+"'+2k—1$2k
= St

Thus, the sequencés,, ) and(t,,) are either both bounded or both unbounded, which
completes the proof via Proposition 5.7 ]

5.9 EXAMPLE. > 1/nP converges ifp > 1 and diverges ip < 1. Forp < 0, the
claim is trivial to see. Fop > 0, the termsz,, = 1/n? form a decreasing positive
sequnce, and thus, the preceding theorem applies. Now,

i 2 = (2177,
k=0

which converges i2!~? < 1 and diverges otherwise. Sineé—? < 1 if and only if
p > 1, we are done.
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5.10 EXAMPLE. The series

o0

1
; n(logn)r

converges ifp € (1,00) and diverges otherwise. Here we start the series with 2
sincelog1 = 0. Since the logarithm function is monotone increasing, Theorem 5.8
applies. Nowg,, = 1/n(logn)? and so

2Pz =) 2F = —
kz:; 2 21: 2k(log2k)P  (log 2)P 21: kp’

which converges if and only j > 1 in view of the preceding example.

Ratio Test, Root Test

The ratio test ties the convergenceXfz,, to the behavior of the ratias, ,; /«,, for
largen; it is highly useful.

5.11 THEOREM.
1. Iflimsup |zp41/2s| < 1, thend_ z,, converges.

2. Ifliminf |z,41/2z,] > 1, then)_ x,, diverges.

PROOF. (1) flimsup |z,+1/2,| < 1, then there is a numbere [0, 1) and an integer
no such thatz,, 1 /z,| < rforalln > ng. Thus|z,,, x| < |z, |7 forall k > 0, and
therefore, forn > n > ng,

m 0 © P10
2wl < 3 Jil < ool Ym0 = lan | 3
=n =n

i=n

Givene > 0 choosen, so that|z,,|r"<~™ /(1 — r) < e. Then Cauchy’s criterion
works with thisn. and}_ z,, converges.

(2) If liminf |2,,41/2,| > 1 then there is an integer, such thafx,, 1| > |z,
for all n > ny. Hence,|z,,| > |z,,| for all n > ny which shows thatz,,) does not
converge td as it must in order fop _ x,, to converge (see Corollary 5.6). O

The preceding test gives no information in cases where

liminf |x,11/2,| <1 < lmsup|z,p1/2n]-
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For instance, for the two seriés 1/n andy_ 1/n2, both thelim inf and thelim sup
are equal tal, but the first series diverges whereas the second converges. Also, the

series
5.12 L R
' 2 3 22 32 23 33 24 34

obviously converges t8/2; yet, the ratio test is miserably inconclusive:

liminf 22t — 1im (;) -0

Tn

n . 3 "
lim sup Tntl _ Jim (2> = 00.
The following test, called theoot test is a stronger test — if the ratio test works, so
does the root test. But the root test works in some situations where the ratio test fails;
for example, the root test works for the series (5.12).

5.13 THEOREM.Leta = limsup |z,|'/™. Then} x, converges iz < 1, and
diverges ifa > 1.

PROOF. Suppose that< 1. Then, there is & € (a, 1) such thatz,,|*/" < b for all
n > ng, whereng is some integer. Theng,,| < b™ for all n > ng, and comparing
> a,, with the geometric seri€s’ b™ shows thad  «,, converges.

Suppose that > 1. Then, a subsequence |af,| must converge ta > 1, which
means thafz,,| > 1 for infinitely manyn. So,(z,) does not converge to zero, and
hence)_ x,, cannot converge. O

Power Series

Given a sequencg:,,) of complex numbers, the series

5.14 icnz"
0

is called gpower seriesThe numbersy, c1, . . . are called the coefficients of the power
series; here is a complex number.

In general, the series will converge or diverge, depending on the choice Ad
the following theorem shows, there is a numbet [0, cc], called the radius of conver-
gence, such that the series convergds|if< r and diverges ifz| > r. The behavior
for |z| = r is much more complicated and cannot be described easily.

5.15 THEOREMLeta = limsup |¢,|'/™ andr = 1/a.

1. If|z] < r, then)_ ¢,2" converges.
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2. If |z| > r, then)_ ¢, 2™ diverges.

PROOF. Put:,, = ¢,2™ and apply the root test with

lim sup |z, |Y/™ = |2| limsup |e,|V/™ = alz| = M

5.16 EXAMPLE.
1. > 2"/nl =e* andr = cc.
2. Y z" converges fofz| < 1 and diverges fofz| > 1; r = 1.
3. Y 2"/n? converges fofz| < 1 and diverges fofz| > 1;r = 1.

4. > 2" /n converges fofz| < 1 and diverges fofz| > 1; r = 1; for z = 1 the
series diverges, but fog| = 1 butz # 1 it converges.

Absolute Convergence

The seriesy_ z,, is said toconverge absolutely > |x,| is convergent. If the:,, are
all positive numbers, then absolute convergence is the same as convergence. Using
Cauchy'’s criterion (see Theorem 5.4) on both sides of

m m
2wl < il
i=n i=n
shows that ify " z,, converges absolutely then it converges. But the converse is not true:

for example,
> (=1 /n

converges but is not absolutely convergent.

The comparison tests above, as well as the root and ratio tests, are in fact tests for
absolute convergence. If a series is not absolutely convergent, one has to study the
sequence of partial sums to determine whether the series converges at all.
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Rearrangements

Let (kq, k2, ...) be a sequence in which every integer> 1 appears once and only
once, that isp — k,, is a bijection fromN ontoN. If

Yn = Tk,, NE N,

for such a sequendé,, ), then we say thalty,,) is a rearrangement ¢k, ).

Let (y,) be a rearrangement ¢f,,). In general, the series y,, and_ z,, are
quite different. However, iy z,, is absolutely convergent, then so)sy, and it
converges to the same number as dpées,,. The converse is also true: if every rear-
rangement of the seriés x,, converges, then the serigsz,, is absolutely convergent
and all its rearrangements converge (to the same sum).

On the other hand, ¥ _ z,, is not absolutely convergent, its various rearrangements
may converge or diverge, and in the case of convergence, the sum generally depends
on the rearrangement chosen. For instance,

1 11 1 1 1 1
2 + 3 4 * 5 6 + 7
is convergent, but not absolutely so. Its rearrangement

325 7 49

(with + + — + + — + + — pattern) is again convergent, but not to the same sum. In
fact, the following theorem due to Riemann shows that one can create rearrangements
that are as bizarre as one wants.

5.17 THEOREM.Let )z, be convergent but not absolutely. Then, for any two
numbers: < b in R there is a rearrangemenX_ y,, of > x,, such that

n n
lim inf Z y; = a, limsup Z y; = b.
1 1

We omit the proof. Note that, in particular, taking= b we can find a rearrangement

> yn, with suma, no matter what: is.

Exercises:
5.1 Determine the convergence or divergence of the following:
LY (Va+1-yn)

2. S (V¥ 1 yi)/n
3. X(sinn)/(ny/n)
4. 3 (=1)"n/(n? +1).

In case of convergence, indicate whether it is absolute convergence.
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5.2 Show that ify " z,, converges then so do@s \/z,,/n .

5.3 Show that ify x,, converges andy,,) is bounded and monotone (either
increasing or decreasing), th@nz,y,, converges.

5.4 Find the radius of convergence of each of the following power series:

1. Y n2zm,
2.y 272" /nl,
3. > 2mz2m/n?,
4.y n3zm/3m.
5.5 Suppose that(z) = > ¢, 2". Express the sum of the even teris o, 22",
and the sum of the odd terms, cz,,+ 122"+, in terms off.

5.6 Suppose that(z) = 3" c,2". EXpressy . c3, 2" in terms off.

5.7 RearrangementsLet }_ z,, be a series that converges absolutely. Prove
that every rearrangement ®f z;,, converges, and that they all converge to
the same sum.

5.8 Riemann’s TheorenProve Riemann’s theorem 5.17 by filling in the de-
tails in the following outline:

1. Let(x;") denote the subsequence consisting of the positive elements
of (z,,) and let(z,,) denote the subsequence of negative elements of
(z,,). Both of these sequences must be infinite.

2. Both sequenceg:;) and(x;; ) converge to zero.

3. Both series z;} and}_ z;, diverge.

4. Suppose that,b € R and define a rearrangement as follows: start
with the positive elements and choose elements from this set until
the partial sum exceeds Then, choose elements from the set of
negative elements until the partial sum is less thaifhen, choose
elements from the set of positive elements until the partial sum ex-
ceedsh. Continue this proceedure of alternating between elements
of the positive and negative sets indefinitely.

5. Prove that the procedure described above can be continued ad infini-
tum.

6. Prove that this rearrangement has the properties stated in Riemann’s
theorem.

7. Extend the above arguments to the case whgre= too.

5.9 Poisson distributionLet p,, = e~*\" /n! where\ is a positive real. Show
that

1. p, >0,
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2.3 e =1,
3.3 e = A

5.10 Borel Summability.Consider a serie§" -, z,, with partial sumss,, =
i, x;. We say that the seriesBorel summabléf

oo
lim E SnPn
A—o0
n=0

converges, wherg, are the Poisson probabilities defined in Exercise 5.9.
For what values of is the geometric seri€s - =" Borel summable?
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Metric Spaces

Basic questions of analysis on the real line are tied to the notions of closeness and
distances between points. The same issue of closeness comes up in more complicated
settings, for instance, like when we try to approximate a function by a simpler function.
Our aim is to introduce the idea of distance in general, so that we can talk of the distance
between two functions with the same conceptual ease as when we talk of the distance
between two points in the plane. After that, we discuss the main issues: convergence,
continuity, approximations. All along, there will be examples of different spaces and
different ways of measuring distances.

6 Euclidean Spaces
This section is to review the spaB# together with its Euclidean distance. Recall that
each element dR™ is ann-tuplex = (x4, ..., z,), where ther,; are real numbers. The

elements oR" are callecpointsor vectors and we are familiar with the operations like
addition of vectors and multiplication by scalars.

Inner Product and Norm

Forz andy in R™, theirinner productz - y is the number
n

6.1 x-y:inyi.
1

If we regardz andy as column vectors, then- y = 2y, Forz in R", thenormof z
is defined to be the positive number

6.2 |zl = Vo -z = Tz

The norm satisfies the following:

6.3 lz]| > 0 for everyz in R™,
6.4 |lz|| = 0ifand only ifz = 0,
6.5 Iz + y|| < |lz|| + ||y|| for all z andy in R™.

23
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Of these, 6.3 and 6.4 are obvious, and 6.5 is immediate from the following, which is
called theSchwartz inequality

6.6 PROPOSITION|z - y| < ||z||||y|| for all x andy in R™.

PROOF. Consider the function

FO) = Iy —af?
N lyll* = 2A(z - y) + fl=]*.

This function is clearly positive and quadratic and its minimum occurs at

_xry
lylI*
For this value of\ we have
-y (z-y)? 2
0< fli3)=— + [l]l
[yl ly[I?
from which Schwartz’s inequality follows immediately. m|

Euclidean Distance

Forz andy in R", theEuclidean distancbetween: andy is defined to be the number
|z — y||. It follows from the properties given above that, forally, z in R™,

2. ||z —yll = lly — =],
3. |z —y|| = 0ifand only ifz = y,
4. Nz —yll+lly — 2l = [z — =] .

The last is called th&iangle inequality on R2, if the pointsz, v, z are the vertices of
a triangle, this is simply the well-known fact that the sum of the lengths of two sides is
greater than or equal to the length of the third side.

The sefR™ together with the Euclidean distance is calledimensional Euclidean
space The Euclidean spaces are important examples of metric spaces.

Exercises:

6.1 Show that the mappin@:, y) — z - y from R™ x R™ into R is a linear
transformation inz and is a linear transformation in (and therefore is
said to be bilinear). Conclude that

(z+y)-(@+y)=v-z+22-y+y- -y

Use this and the Schwartz inequality to prove (6.5).
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6.2 Show that|z + y||> + [lz — yl|* = 2[|z[|* + 2||y||*. Interpret this in
geometric terms, oR?2, as a statement about parallelograms.

6.3 Pointsz andy are said to beorthogonalif = - y = 0. Show that this
is equivalent to saying that the lines connecting the origim tmdy are
perpendicular. In general, lettingbe the angle between the lines through
x andy, we haver - y = ||z||||y|| cos a.

7 Metric Spaces

Let £ be a set. Anetricon E is a functiond : E x E — R, that satisfies the following
forall z,y, zin E:

1. d(z,y) = d(y,x),
2. d(z,y) =0ifand only ifx = y,
3. d(z,y) +d(y, 2) = d(, ).

A metric spaces a pair(F, d) whereFE is a set and is a metric onE. In this context,
we think of £ as a space, call the elementsiofpoints, and refer tal(z,y) as the
distance frome to y.

EXAMPLES.

7.1 Euclidean spacesConsiderR™ with the Euclidean distanc&(z,y) = ||z — y||
on it. It follows from (1)—(4) thatl is a metric onR™. Thus,(R", d) is a metric space
and is callech-dimensional Euclidean space.

7.2 Manhattan metricOnR"™ define a metriel by
1

This d is called the Manhattan metric, ér-metric, onR”, and (R", d) is a metric
space again. Note that far > 1 this metric is different from the Euclidean metric of
the preceding example.

7.3 SpaceC. Let C denote the set of all continuous functions from the intefval
intoR. Forz andy in C, let

d(z,y) = sup |z(t) —y(t)].

0<t<1
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It is clear thatd(z,y) is a positive real number, thakz,y) = d(y,x), and that
d(xz,y) = 0if and only if x = y. As for the triangle inequality, we note that

2(t) = 2(D)] < |2(t) — y(O)] + [y (1) — 2(t)] < d(z,y) + d(y, 2)

for everyt in [0, 1], from which we havel(z,y) + d(y,2) > d(x,z). Thus,d is a
metric onC, and(C, d) is a metric space. This metric space is important in analysis.

Usage

In the literature, it is common practice to cdll a metric space ifE, d) is a metric
space for some metrit If there is only one metric under consideration, this is harmless
and saves time. For instance, the phrase “Euclidean $pdceefers to(R™, d) where

d is the Euclidean metric. For a while at least, we shall indicate the metric involved in
each case in order to avoid all possible confusion.

Distances from Points to Sets and from Sets to Sets
Let (E, d) be a metric space. Farin EandA C FE, let
74 d(z, A) = inf{d(z,y) : y € A4};

this is called the distance from the pointo the setd. ForA C F andB C FE, the
distance fromA to B is defined by

7.5 d(A, B) = inf{d(z,y) : x € A,y € B}.
Thediameterof a setA C F is defined to be
7.6 diamA = sup{d(z,y) : x € A,y € A}.

A set is said to b&oundedf its diameter is finite.

Balls
Let (E,d) be a metric space. Farin E andr in (0, o),
7.7 B(z,r)={y € E : d(z,y) <r}
is called theopen ballwith centerz andradiusr, and
7.8 B(z,r)={y € E:d(z,y) <r}

is the correspondinglosed ball

For example, ifE = R? andd is the usual Euclidean metric, thé(z, r) becomes
the set of all points inside the sphere with centend radius-, andB(x, r) is the set
of all points inside or on that sphere.

Exercises and Complements:
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7.1 Discrete metricLet E be an arbitrary set. Define

1 ifzx ,
d(,y) = [ 0 ifxiz.

Show that thisi is a metric onE. It is called the discrete metric af.

7.2 Metrics onR™. For each number > 1,
dp(x,y) = O lwi —wil")'/?
1

defines a metrid, onRR"™. Note thatd; is the Manhatten metric, ant} is
the Euclidean metric. Finally,

doo(xay) = Sup |‘T1 - y2|
1<i<n

is again a metric ofR™. Show this.

7.3 Equivalent Metrics. Two metricsd andd’ are equivalent if there exist
strictly positive constants; andcs such that for all, y:

erd (z,y) < d(z,y) < cod'(2,y).
Show thatdy, do, andd,, are all equivalent to each other.

7.4 Weighted Metrics ofR™. The metrics introduced in the preceding exercise
treat all components af—y equally. This is reasonableli* is thought of
geometrically and the selection of a coordinate system is unimportant. On
the other hand, it = (z1,. .., z,) stands for a shopping list that requires
buying z;1 units of product one, and, units of product two, and so on,
then it would make much better sense to define the distance between two
shopping listsc andy by

d(x,y) =Y wilr; — il
1

wherezq,...,w, are fixed, strictly positive numbers, with; being the
value of one unit of product Show that this/ is indeed a metric. More
generally, paralleling the metrics introduced in the previous exercise,

dp(z,y) = (Z wilz; —yilP)VP, @y €RY,

is a metric oriR™ for eachp > 1 and each fixed, strictly positive vectar
(the latter means); > 0, ..., w, > 0).
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7.5 12-Spaces.Instead ofR™, now consider the spad@™ of all infinite se-
quences iR, that is, eachr in R is a sequence = (x1,zs,...) of real
numbers. In analogy with thé, metrics introduced ofR™ in Exercises
7.2 and 7.4, we define

da(,y) = (3 Jas — yif2)V/2.
1

This d, satisfies all the conditions for a metric except tigtr, y) can be
oo for somex andy. To remedy the latter, we Idt be the set of alk in

R with
(o]
me < 00.
1

Then, by an easy generalization of the Schwartz inequality, it follows that
ds(x,y) < oo for all z andy in E. Thus,(E,ds) is a metric space. Itis
generally denoted bif.

7.6 Metrics onC. Consider the sef of all continuous functions fron, 1]
into R. The interval[0, 1] can be replaced by any bounded interab],
in which case one write§([a, b]). A number of metrics can be defined
on C in analogy with those in Exercise 7.2. The analogy is provided by
the following observation: every in R™ can be thought of as a function
zfrom {1, 2 .. 2}into R, namely, the function: with z(t) = z; for
t = i/n. Thus, replacing the s¢t- 2, ... 2} with the interval[0, 1] and
replacing the summation by integration, we obtain

dp(@,y) = (/0 lz(t) — y(t)|Pdt) /P

for all z andy in C. Since any continuous function ¢@, 1] is bounded,
the integral here is finite and it is easy to check the conditions fotlfhis

be a metric, except perhaps for the triangle inequality. So, for paeh,
this d,, is a metric onC. Incidentally, the metric of Example 7.3 can be
denoted byl in analogy withd., in Exercise 7.2.

7.7 Open Balls.Let E = R2. Describe the open bal¥(z, ), for fixed x and
r, under each of the following metrics:
1. d, of Exercise 7.2.
2. d; of Exercise 7.2.
3. d., of Exercise 7.2.
4. d, of Exercise 7.4 withv; = 1 andw, = 5.

7.8 Open Balls inC. For the metric space of Example 7.3, describe:, r)
for a fixed functionz and fixed number > 0. Draw pictures!
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7.9 Product Spaced.et (F4,dy) and(E», d2) be arbitrary metric spaces. Let
E = E, x E, and define, forr = (21, 22) in E andy = (y1,y2) in E,

d(z,y) = [di(21,y1)* + do(z2, y2)*]"/2.

Show thatl is a metric onE. The metric spacgF, d) is called the product
of the metric spaceF, d;) and(Es, ds).

8 Open and Closed Sets

Let (E, d) be a metric space. All points mentioned below are point& oéll sets are
subsets oF. Recall the definition 7.7 of the open b&(x, ) with centerz and radius
T.

8.1 DEFINITION. A setA is said to beopenif for every z in A there is an- > 0 such
that B(z,r) C A. A setis said to belosedif its complement is open.

For example, if£ = R with the usual distance, the intervals b), (—oo, b), (a, o)
are open, the intervals, b], (—oo, b], [a, 00) are closed, and the interv@l, b] is neither
open nor closed.

8.2 PROPOSITIONEvery open ball is open.

PROOF. Fixx andr. To show thaiB(z, r) is open, we need to show that for everin
B(x,r) thereis &g > 0 such thatB(y, q) C B(z,r). This is accomplished by picking
g =r—d(z,y). Sincey isin B(x,r), we haved(z,y) < r and, henceg > 0. And,
every point of B(y, q) is a point of B(z, r), because € B(y,q) meansi(z,y) < g
which implies that

d(z,z) < d(z,y) +d(y,x) < g+ d(y,z) =r.

8.3 THEOREM.The setd) and E are open. The intersection of a finite number of
open sets is open. The union of an arbitrary collection of open sets is open.

PROOF. The first assertion is trivial from the definition.

We prove the second assertion for the intersection of two open sets. The general
case follows from the repeated aplication of the case for two.A.ahd B be open.
Letx € AN B. SinceA is open and: is in A, there isp > 0 such thatB(z,p) C A.
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Similarly, there is & > 0 such thatB(z, q) C B. Letr = pAg, the smaller op andg.
Then,B(z,r) C B(z,p) C AandB(z,r) C B(x,q) C B. Hence,B(z,r) C ANB.
So,A N Bis open.

For the last assertion, I€t4; : i € I'} be an arbitrary collection of open sets. We
want to show thatd = U; A4; is open. Letr be inA. Then,xz € A; for somei € I.
SinceA; is open, there is an > 0 such thatB(z,r) C A. SinceA; C A, this shows
that B(z,r) C A. So,A is open. O

The following characterization is immediate from the preceding theorem together
with Proposition 8.2.

8.4 PROPOSITIONA set is open if and only if it is the union of a collection of open
balls.

PROOF. IfA is the union of a collection of open balls, thednmust be open in view
of 8.2 and 8.3. To show the converse, debe open. Then, for everyin A, there is
an open bald, = B(z,r(z)) contained inA. Obviously, the union of all thesé,, is
exactly A. O

Closed Sets

Recall that a subset @ is closed if and only if its complement is open. Thus, the fol-
lowing theorem is immediate from Theorem 8.3 above and the fact that the complement
of a union is the intersection of complements and vice versa.

8.5 THEOREM.The set$) and E are closed. The union of finitely many closed sets is
closed. The intersection of an arbitrary collection of closed sets is closed.

Every closed ball is closed. This last observation can be proved along the lines of
8.2:ify € E\ B(x,r) thend(y,x) > r, and pickingp = d(x,y) — r > 0 we see that
B(y,p) C E\ B(x,r), which proves that \ B(z,r) is open. In particular, for each
x in E, the singletor{z} is closed. It follows from this and the preceding theorem that
every finite set is closed.

Interior, Closure, and Boundary

Let A be a subset off. The collection of all closed sets containirgis not empty
(since E belongs to that collection.) The intersectidnof that collection is a closed
set by the last theorem. Clearly,is the smallest closed set that contaihghat is, if
B D AandB is closed therB > A. The setA is called theclosureof A.

We define thénterior of A similarly as the largest open set containedlirand we
denote it byA°. In other wordsA° is the union of all open sets containedAn Note
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that
8.6 A° C AcC A.

We define thdooundaryof A to be the sepA = A\ A°.

For example, ifA is the open ballB(z,r) in the Euclidean spacg = R", the
A° = A, A = B(z,r), anddA is the sphere of radiuscentered at. If £ = R with
the usual metric, and it = (a, b], thenA = [a,b] and A° = (a,b) anddA = {a, b}.
The following seems self evident.

8.7 PROPOSITIONA set is closed if and only if it is equal to its closure. A setis open
if and only if it is equal to its interior.

Open Subsets of the Real Line

We takeFE = R with the usual distance. Then, every open ball is an open interval, and
according to Proposition 8.4, every open set is the union of a collection of open balls.
The following sharpens the picture by taking into account the special nature of the real
line.

8.8 THEOREM.A subset ofR is open if and only if it is the union of a countable
collection of disjoint open intervals.

PROOF. The “if” part is immediate from Proposition 8.4 and the fact that every open
ball is an interval in this case.

To prove the “only if” part, letA be an open subset &. Recall that the sep of
all rationals is countable. For eaghn QN A, let

ag=suply <q:y ¢ A}, by=inf{y>q:y¢&A}

Then,
B = U (aqvbQ)

qeQNA

is the union of a countable collection of open intervals. We show next4hatB by
showing thatd ¢ B andB C A.

Let z be in A. SinceA is open, there is a balB(z,r) contained inA. Take a
rational numbey, in this ball. Clearly,B(z,r) C (aq,bq). Thus,z is in B. Since this
is true for everyr in A, we have thatd C B.

Fix ¢ € QN A. Clearly,(aq,b) C A. Hence,B C A.

We have shown thatt = B, and B has the desired form except that the intervals
(aq,b,) are not necessarily disjoint. Note thatife (a4, b,) then(a,,b,) = (aq,bq)
andq € (a,,b,). Let us writeq ~ r if and only if (a4, b,) = (ar,b,). This defines
an equivalence relation on the €¢tn A. Thus, by picking exactly ong from each
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N Lo o N oy N R o 1
0 1

Figure 2: The seD = UD,.

equivalence class, we can form a $et Q N A such that(a,, b,) N (a,, b)) = 0 for
all distinctq andr in I, and

A=DB= U(aq,bq).

qel

8.9 EXAMPLE.

The Cantor SetStart with the unit intervaB = [0, 1]. To eachg in the setl =
{1/2; 1/4, 3/4; 1/8, 3/8, 5/8, 7/8; 1/16, 3/16,...,15/16;...} we associate an
open intervalD, in the following fashion:D, /, is the open intervall/3, 2/3) which
is the middle third ofB. Deleting it fromB leaves two closed intervalf), 1/3] and
[1/3, 1]. Let Dy, be the interval1/9, 2/9), which is the middle third of0, 1/3],
and letDs,4 be (7/9, 8/9), which is the middle third of2/3, 1]. Deleting those
middle thirds, we are left with four closed intervals of lengtfd each. LetD, s,
D3 /s, D55, D75 be the open intervals that make up the middle thirds of those closed
intervals. Delete the middle thirds, and continue in this manner (see Figure 2). Then,

D=|JD,

qel

is the union of the countably many disjoint open intendals ¢ € 1. It is an example
of a non-trivial open set. Incidentally, note that the lengths offijesum to

1 1 1 1 1 1 1 _
st g gttt =L
Thus, the “length” ofD is 1. But the setC’ = B \ D is not empty.

The setC = B\ D is called theCantor set It is obviously a closed set. The
construction above shows th@tis obtained by starting witl® and deleting the middle
third of every interval we can find. Thus, there is no open interval contain€d irhat
is, there are no open balls @. Hence, the interior of’ must be empty, and' is pure
boundary:

c°=0, C=C, 0C=C.

Also, since the length ob is equal to the length d8, the length ofC' = B \ D must
be0. In summary, the Cantor set is very thin.



8. OPEN AND CLOSED SETS 33

y=f (x)
V'S

A LA B B e L LA B e €0

Figure 3: The cantor function.

Nevertheless; has at least as many points as the intej@al]. We prove this next
by showing, via construction, that there exists an injectiérom [0, 1] into C..
To this end, we start by defining an increasing functjofrom D into [0, 1] by
letting
f(x)=4¢q, IfzeD,.

Then, we define the functiopon [0, 1] by settingg(1) = 1 and
gly)=inf{z e D: f(x) >y}, 0<y<]l1.

We show first thay(y) € C for everyy. This is obvious fory = 1. Lety € [0,1);
note thatg(y) is the infimum of the union of all interval®, with ¢ > y; clearly,
that infimum cannot belong t®; so g(y) must belong ta” (since it is obvious that
g(y) € B). Finally, we show thay : [0,1] — C is an injection by showing that if
y < z, theng(y) < ¢g(z). Fixy < z. Note that there is at least ogan I such that
y < ¢ < z, and the corresponding sBY, is contained infz € D : f(x) > y} but not
in{z e D: f(x) > z}. It follows that the numbey(y) is to the left of the intervaD,,
whereag(z) is to the right. Sog(y) < ¢(2) if y < z. Henceg : [0,1] — C'is an
injection.

Exercises and Complements:
8.1 Let(E,d) be a metric space. Show that
A = {zeE:d(z,A) =0}
A° = {z€FE:dx A% >0}
0A = {ze€FE:d(z,A)=0andd(z,A°) = 0}.
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8.2 Let(E,d) be a metric space. Fid C E. Show thatd, = {z € F :
d(z,A) < €} is an open set containing for eache > 0. Show that

A == ﬂ6>0A€.

8.3 Boundednesd.et (E, d) be a metric space. Show that a subdeif E is
bounded if and only if it is contained in some ball, that is, if and only if
A C B(z,r) for somez andr.

8.4 TakeFE = R andd the usual metric. Le C E. Show that ifA is closed
and bounded above, thenp A belongs toA (that is, A has a maximum).
Similarly, if A is closed and bounded below, then it has a minimum. Show
that an open set cannot have a minimum, that is\f A cannot belong to
A.

8.5 LetD be the open set of Example 8.9. Find its interior and boundary.

8.6 DensenessA set D is said to bedensen E if D = E. Let D be dense in
E. Show that every in FE is at0 distance fromD. Thus, every open ball
has at least one point @. Show that the se of all rationals is dense in
R, the set of all pairs of rationals is denseR#p, etc.

8.7 Separability. The metric spacé’ is said to be separable if there exists a
countable seD that is dense irE. So, for example, the Euclidean spaces
R, R?, R?, ... are separable.

8.8 Discrete metric spaced.et E be arbitrary and suppose thats the dis-
crete metric (see (7.1) for it) of. Show that each subsdtis both open
and closed. For < 1, every open ballB(x,r) consists of exactly the
point x. Note thatB(x,1) = {z}, B(z,1) = E for everyz (Moral:
B(z,r) is not necessarily the closure Bf(z,7)). If E is countable, then
it is separable (trivially). IfE is uncountable, it is not separable. Show

this.

9 Convergence

Let (E,d) be a metric space. Our goal is to discuss the notion of convergence for a
sequence of points iB. We do so by employing the concept of convergend®,ifor
which we refer to Section 4 of Chapter .

9.1 DEFINITION. A sequencéz,,) in E is said to beconvergentn E if there exists
a pointz in E such thatim d(«z,,, ) = 0. And, then,(x,,) is said toconvergeo z, the
pointz is called theimit of (z,,), and the notation: = lim «,, is used to indicate it.

REMARK: The preceding definition includes, implicit in it, the fact that a convergent
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sequence has exactly one limit. To see this, supposé:ithaconverges ta: and toy,
that is,lim d(z,, «) = 0 andlim d(x,,,y) = 0. Then,

0 <d(z,y) <d(z,z,) +d(zn,y)

by the triangle inequality, and the right side converges to zero. Tdusy) = 0,
which means that = .

The following brings together a number of re-wordings of convergence. Each is a
slight alteration of the others. No proof seems needed.

9.2 THEOREM.The following statements are equivalent:
1. (x,) converges ta.
2. For everye > 0 there is am, such thatd(z,,, x) < e forall n > n..
3. The sefn : d(x,,z) > e} is finite for eache > 0.

4. Foreverye > 0, the ball B(z, ¢) includes all but a finite number of the termsg.

9.3 COROLLARY.Every convergent sequence is bounded.

PROOF. Lef(z,) be convergent and its limit. In view of the equivalence of 1 and 4
in Theorem 9.2B(x, 1) includes all but a finite number of the terms. Letr be the
maximum of the distances fromto those terms;,, outsideB(z, 1), if there are any;
otherwise, set = 1. Clearlyr < oo and B(x,r) contains(z,,), which means that
(x,,) is bounded. O

Subsequences

It follows from Theorem 9.2 that we may remove a finite number of terms, or rearrange
the terms, without affecting the convergence. The following generalizes this.

9.4 PROPOSITIONIf a sequence converges 19 then every subsequence of it con-
verges to the same

PROOF. Let(z,) be a sequence with limit. Let (y,,) be a subsequence of it, that
iS, yn = zy, for somek; < ko < ---. Now, by Theorem 9.2, for every > 0 the
ball B(z, €) includes all the terms,, except for some finite number of them; therefore
the same must be true for the tergs So, by Theorem 9.2, the subseque(gg)
converges ta. a
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Convergence and Closed Sets

Think of a particle that moves i by jumps: firstitis atr, then atx, then atzs, and
so on. The following gives meaning to the term “closed set” if you think of sequences
in this fashion.

9.5 THEOREM.A set is closed if and only if it includes the limit of every sequence in
it.

PROOF. “Only if” part. Suppose thatl is a closed set and thét,,) is a sequence in
A with limit . We show that, then; must belong te4. For, otherwise, ift were in
A¢, there would exist alm > 0 such thatB(x,e) C A° sinceA° is open andB(z, €)
would include infinitely many terms sinceis the limit, which would contradict the
fact that all ther,, are inA.

“If” part. We show that ifA is not closed then there is a sequefieg) in A that
converges to some pointin A¢. Suppose thatl is not closed. Thenl¢ is not open.
Thus, there exists anin A° such thatB(x, r) N A has at least one point for each> 0.
Hence, for each in N, there is an:,, in A such thatl(z,,, z) < 1/n. Obviously,(x,,)
is in A and converges to which is not inA. O

Exercises:

9.1 Discrete metric spacesSuppose that is the discrete metric o. Show
that (z,,) is convergent if and only if it is ultimatelgtationary that is, if
and only if it has the fornfzy, zo, ..., z,, z, x, x, . . .) for somen.

9.2 Let(F,d) be arbitrary. Show that ifz,,) converges ta: and(y, ) con-
verges toy, thend(z,,, y,,) converges tal(z, y). Hint: first show that, for
arbitraryx, y, z in E,

ld(z,y) —d(z,2)| < d(y, ).
Use this to write

|d(z, yn) — d(, )]

IN

|d($7za Z/n,) - d(xm y)‘
+Hd(zn, y) — d(z,y)|
< d(Yn,y) +d(zn, 2),

and take limits.

9.3 Show that if«,,) converges ta, thend(z,,, A) converges tal(z, A) for
each fixed subset of E.
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10 Completeness

Let (E,d) be a metric space. Recall that a sequepgg in E is convergent if there

is anz in E such thatim d(x,,,z) = 0. This definition has two shortcomings. First,
starting with(z,,), we rarely have a candidatefor the limit. Second, often we are

not interested in computing the limit itself; it is generally sufficient to know that the
limit exists and has such and such properties. This section is aimed at rectifying these
shortcomings.

Cauchy Sequences

10.1 DEFINITION. A sequencgr,,) in E is said to beCauchyif for everye > 0 there
is ann. such thatl(z,,, x,) < eforallm > n > n..

The following is nearly a re-statement of this definition in slightly more geometric
terms.

10.2 LEMMA. A sequencéxz,,) is Cauchy if and only if for every > 0 there is a ball
of radiuse that contains all but finitely many of the termsg.

PROOF. Suppose thdt:,) is Cauchy. Lete > 0. Then, there isi. such that
d(xm, xy) < eforallm > n > n.. Thus, in particular, the balB(x,,_, €) contains all
the terms except possibly, . . ., z,_—1. This proves the necessity of the condition.

Conversely, suppose that for every- 0 there is a balB(x, €) with somez as its
center such that all but a finite number of the terms are in the ball. Giverd), now
pick x so thatB(x, ¢/2) contains all ther,, except perhaps finitely many, that is, there
is n. such that:,, € B(z,¢/2) for all n > n.. Now, if m > n > n,, then

AT, ) < d(@Tm, z) +d(z,2,) < €/2+€/2 =€.

Hence,(z,,) is Cauchy. This proves the sufficiency. a

10.3 THEOREM.
1. Every convergent sequence is Cauchy.
2. Every Cauchy sequence is bounded.

3. Every subsequence of a Cauchy sequence is Cauchy.
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PROOF. The first claim is immediate from the preceding lemma and Theorem 9.2. The
second claim is proved, via the preceding lemma, by following the proof of Corollary
9.3. The last claim is immediate from the preceding lemma. |

The following shows that if a sequence is Cauchy and you can find a subsequence
of it that converges to some poinf then the original sequence converges to

10.4 PROPOSITIONA Cauchy sequence that has a convergent subsequence is itself
convergent.

PROOF. Let(x,) be Cauchy. Let: be the limit of a convergent subsequence of it.
Picke > 0. By Lemma 10.2, there is a bdll(y, ) that contains all but a finite number

of thex,,. That ballB(y, ¢€) must contain all but a finite number of the subsequence as
well. Thus,z must be inB(y, €). Then,B(z, 3¢) containsB(y, €) and hence contains

all but a finite number of the,,. Thus,(z,,) is convergent ang = lim z,, in view of
Theorem 9.2. m|

Complete Metric Spaces

All the results above suggest that all Cauchy sequences should be convergent, which is
in fact what we hope for. Unfortunately, this is not true in general. Here is an example.
Suppose thall = Q, the set of all rationals, with the metric it inherits from the
real line. Letz = /2, which is not a rational number, and lgt,,) be a sequnce in
Q that converges ta in the sense of convergencel for instance, picke,, to be a
rational number in the intervdk:, = + 1/n) for eachn. Over the metric spad®, the
sequencéxz,,) is Cauchy, but fails to be convergent@simply because is not inQ.
The problem here is not with the Cauchy sequence, but with the §patke spacé&)
has holes in it!
The following introduces the extra notion we want.

10.5 DEFINITION. The metric spacgF, d) is said to becompleteif every Cauchy
sequence i’ converges to a point of.

The following is immediate from Theorem 9.5.

10.6 PROPOSITIONIf (E,d) is complete and> C FE is closed, thenD,d) is a
complete metric space.

The following shows that familiar spaces are complete. Other examples are listed
in exercises.
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10.7 THEOREM Every Euclidean space is complete.

PROOF. We start with the one-dimensional Euclidean space, ndnélgt (z,,) C R
be Cauchy. Then, for every> 0 there is a ball of radius (namely an open interval
of length 2¢) that contains all but finitely many of the,. Therefore, the numbers
2z = liminf 2, andy = limsup z,, must belong to that ball, which means tifat

y —x < 2e. Since this is true for every > 0, we must haver = y, that is,(z,,) is
convergent. This proves thigtis complete.

Now, fix £ > 2 and consider the Euclidean spaké. We writex = (a,b, ... ,c)
for eachz in R* for simplicity of notation (in other words, the coordinateszofire
a,b,..., o).

Consider a Cauchy sequence of points= (a,,, by, - . ., c,) in R¥. Givene > 0,
then, for allm andn large enough, we have

(T, Tn) = (|am — an|2 + [bm — bn|2 ot lem — Cn|2)1/2 <6,
which shows that
|am — an| <€, |bm —bn| <€, ..., |em—cnl <e.

In other words, the sequencegs,), (b,), ..., (¢,) in R are Cauchy. We have just shown
thatR is complete. So, these sequences must be convergéht say, with limits
a,b, ..., crespectively. Now, let = (a,b,...,c) and note that

Az, 2)? = |an — af* + by — b + -+ + ey — cf?

converges t@. Hence lim d(z,,x) = 0, and(z,,) is convergent. This completes the
proof thatR” is complete. O

Exercises and Complements:
10.1 Show that the following metric spaces are complete:

1. E = R? with the Manhattan metrid.
2. F arbitrary,d is the discrete metric.

In fact, eachR* is a complete metric space with any one of the metfjcs
introduced in Exercises 7.2 and 7.4.

10.2 Show that the spaégintroduced in Exercise 7.5 is complete. Incidently,
so is the spacé of Example 7.3 and Exercise 7.6.

10.3 Two Cauchy sequencés,,) and (y,) are said to be equivalent if their
merger(z1, y1, T2, Yo, - . .) IS Cauchy. In this case, we write,,) = (y,,).
Show that this defines an requivalence relation. That is,

1. (zn) = (z4)
2. (zn) = (yn) implies that(y,,) = (z,)
3. (zn) = (yn), (yn) = (2,) implies that(x,,) = (z,).
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11 Compactness

Let (E,d) be a metric space. It will be convenient to referEoas a metric space,
without mentioningl. We shall use the picturesque phrase “the collecidn: i € I}
covers B” to mean that;c;A; D B.

11.1 DEFINITION. A setC C FE'is said to becompacif every collection of open sets
that covers” has a finite sub-collection that cove?s The metric spacéF, d) is said
to be compact ifF is so.

We shall show that, for many metric spaces, compact sets are precisely the sets that
are bounded and closed. The following are aimed in that direction. The proofs are
excessively detailed in order to facilitate understanding.

11.2 PROPOSITIONEvery compact set is bounded.

PROOF. LetC be compact. For eachin C, let B, be a ball of radiug centered ai:.
Obviously, then, the collectiofiB, : = € C'} of open sets coverS. Hence, there must
be a finite sub-collection, say of séi. , ..., B, , that coverg. Since the union of
ballsB,,, ..., B;, must be bounded, this implies th@tis bounded as well. O

11.3 PROPOSITIONEVvery closed subset of a compact set is compact.

PROOF. LetD be compact. Le€ C D be closed. Fix a collection of open sets that
coversC'. Adding the open sef \ C' to that collection, we obtain a collection of open
sets that cover®. SinceD is compact, the latter collection has a finite sub-collection
that still coversD. RemovingE'\ C from that sub-collection (if it were in), we obtain a
finite sub-collection of the original collection that covérs Thus,C' must be compact.

O

Compact Subspaces

Recall that every subsé? of E can be regarded as a metric space by itself, with the
metric it inherits fromE. WhetherD is open or not as a subset &f, it is open
automatically when it is regarded as a metric space. The concept of compactness does
not suffer from such foolishness.

11.4 PROPOSITIONA setD is compact as a metric space if and only if it is compact
as a subset of.
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PROOF. A subset ab is an open ball in the spade if and only if it has the form
B n D for some open balB of the space®. Since an open set is the union of all the
open balls it contains, it follows that is an open subset of the spabef and only if

A = BN D for some open subsét of the spacd’. Now, the definition of compactness
does the rest. O

Cluster Points, Convergence, Completeness

This is to look into the connections between compactness and convergence.

11.5 DEFINITION. A pointz in E is called acluster point? of a subsetd of £
provided that every open ball centeredratontains infinitely many points od.

11.6 THEOREM Every infinite subset of a compact set has at least one cluster point
in that compact set.

PROOF. We shall show that @ is compact, andl C ', and A has no cluster point
in C, thenA is finite. LetA andC be such. Since noin C'is a cluster point o#4, for
everyz in C there is an open balB(z, r) that contains only finitely many points df.
Those open balls coveér obviously. Since” is compact, there must be a finte number
of them that cove€' and, thereforeA. Since each one of those finitely many balls has
a finte number of points ofl, the total number of points id must be finite. O

The following is the way compactness helps in discussing convergence. In particu-
lar, together with Proposition 10.4, it shows that every Cauchy sequence in a compact
set is convergent.

11.7 THEOREM Every sequence in a compact set has a subsequence that converges
to some point of that set.

PROOF. LetC be compact. Letz,) C C. If the setA = {z1,zo,...} is finite,
then at least one point of, sayx, appears infinitely often in the sequence, and hence
(z,z,...)is asubsequence, which obviously converges to A C C'. Now suppose
that A is infinite. By the preceding theorem, thdnhas a cluster point in C. Since
each one of the ball®(x,1/n), n = 1,2,..., has infinitely many points i, we
may pickk, so thatzy, isin B(x, 1), pick kx > k; so thatzy, is in B(z,1/2), pick

ks > ks so thatry, is in B(z,1/3), and so on. Obviouslyy, ) convergesta. O

20ther terms in common use include limit point, adherence point, point of accumulation, etc.
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11.8 COROLLARY.Every compact set is closed.

PROOF. LetC be compact. The preceding theorem implies that every convergent
sequence i’ converges to a point af. Thus,C is closed by Theorem 9.5. m]

11.9 COROLLARY.Every compact metric space is complete. Every Cauchy sequence
in a compact metric space is convergent.

PROOF. The second statement is immediate from Theorem 11.7 and Proposition 10.4.
The first follows from the second by the definition of completeness. |

Compactness in Euclidean Spaces

We have seen that, for an arbitrary metric space, every compact set is bounded and
closed (Proposition 11.2 and Corollary 11.8). In the case of Euclidean spaces, the
converse is true as well. This is called tHeine-Borel Theorem

11.10 THEOREMA subset of a Euclidean space is compact if and only if itis bounded
and closed.

We start by listing an auxiliary result that is trivial at least RyrR?, R3. We omit
its proof.

11.11 LEMMA. Let B be a bounded subset of a Euclidean spaceThen, for every
€ > 0 there is a finite collection of closed balls of radiathat coversB.

Here is the proof of Theorem 11.10.

PROOF. As mentioned above, 11.2 and 11.8 prove the necessity part. We now prove
the sufficiency of the condition.

Let F be a Euclidean space and{gbe a closed and bounded subsetofSuppose
thatC' is not compact. Then, there is a collectip; : i € I'} of open sets that covers
C but is such that

11.12 no finite sub-collectioq 4; : i € I'} coversC.

(a) Lete = 1/2. By the preceding lemma, we can find a finite numiseof closed
balls By, ..., B,, of radiuse that coverC. Then,C = (CNB;)U---U(CNB,,).In
view of (11.12), at leastone &¢f N B4, ..., C N B,, cannot ever be covered by a finite
sub-collection of thed;; let that one be denoted lay;. Now, C; is closed, its diameter
is at moste = 1 (since theBy, have diametet), and (11.12) is true fof’; .
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(b) Applying the arguments of the preceding paragraph with 1/4 to the set
C, we get a new set’; C C; that is closed, has diameter at mage, and (11.12)
holds forC,. Repeating this wite = 1/6, 1/8, 1/10,... we obtain further sets
Cs,Cy, Cs, . .. with the same properties but with diameters at mg8t 1/4, 1/5,. ...
ClearlyC; D Cy D C5 D ---.

(c) Since (11.12) holds for eact,, it must be that na@’,, is empty (covering an
empty set takes no effort). Thus, we may pickfrom C1, > from C5, and so on to
obtain a sequende:,, ).

(d) This sequence is Cauchy: givern> 0 choosen so thatl/2n < ¢, and then
Zn,Tnt1,... are all in a ball of radiug since all these terms are i}, which has
diameter less thatyn. SinceFE is Euclidean, itis complete (see Theorem 10.7), which
means that every Cauchy sequence converges. Hence, the sefugnoenverges to
some point in E. Since, for each, (z,, : m > n) C C,, andC, is closed, the limit
xo belongs taC;,, by Theorem 9.5.

(e) Since thed; coverC, there must exist ahin I such thatg is in A;. Fix thati.
SinceA; is open, there is an> 0 such that

B(.’Eo,é) C A;.

Now chooser large enough that/n < ¢/2. Since,xy € C,, and diamC,, < 1/n <
€/2, we see that

Cp C B(xo,¢).
In other words,A; coversC,,. This contradicts the earlier assertion that (11.12) holds
for all C,,. This completes the proof. a

Exercises:

11.1 Supremumsl.et A be a non-empty subsetBf Suppose thad is bounded
above but has no greatest element. Show that, thgn is a cluster point
of A.

11.2 Show that the union of a finite number of compact sets is again compact.

11.3 Give an example of an infinite subseffothat has no cluster points. Give
an example of one with exaclty two cluster points. Identify the cluster
points of the set

1 1 .
A={xeR:z=— + — for somem,n in N}.
m n

11.4 Sequences iR. By the Heine-Borel theorem, every closed intefuab] C
R is compact. Thus, every bounded sequend® fras a convergent subse-

quence (cf. Theorem 11.7). Another consequence is the following useful
result:

Let (z,,) be a bounded sequencelin Suppose that all convergent subse-
guences of it have the same limit Then,(x,,) converges ta.
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Prove this by following the steps below.
(a) Show thatz = liminfz, andz = limsup x,, are cluster points of

(b) Show that there is a subsequencéwf) that converges to. Similarly,

then, there is a subsequence that converges to

(c) By the hypothesis that all convergent subsequences have the same limit,
we conclude that = z, which means thdim z,, exists (and is ifR since

(x,,) is bounded).



Functions on Metric Spaces

Elementary analysis is mostly about functions frérmto R, or functions froniR™ into
R, or, somewhat more generally, functions fr@®f into R”. Our aim is to consider
functions from one metric space to another. Replacing Euclidean spaces by metric
spaces introduces no new difficulties and is immensely useful for dealing with various
problems concerning differential and integral equations.

For mappings from a metric space to another we employ either notations like
T, S,U or notations likef, g, h. Generally, the transformation notation is cleaner: we
write Tz for the image ofr underT and7~!B for the inverse image of3, which
becomef(x) and f ~1(B) in the standard function notation.

12 Continuous Mappings

Throughout this sectiorf, E’, etc. will be metric spaces with corresponding metrics
d, d’, etc. Given a mappin@ from E into E’, we write Tz for the image of the point

z of E andT !B for the inverse image of the subsgtof E/. On a first reading, the
reader may wish to takB’ = R andd/(z,y) = |« — y| as usual.

12.1 DEFINITION. A mappindl’ : E — E'is said to becontinuous at the point of
E provided that for every > 0 there is & > 0 such that
yeEE, dxy <d = d(TzTy) <e

The mappindl’ is said to becontinuousf it is continuous at every: of E.

REMARKS: (@) In the definitiong is allowed to depend onandz.

(b) WhenFE = E’ = R with the usual metric, the preceding is the classical defini-
tion of continuity.

(c) The condition fofl" to be continuous at can be rephrased in more geometric
terms as follows: for every > 0 there is a > 0 such thatl" maps the open ball
B(z, ) of E into the open balB’ (T, ¢) of E’. Here,

B(z,0) ={y € E:d(x,y) <46}, B'(Tz,e)={ye L :d(Tx,y) <e}.

45
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Continuity and Open Sets

12.2 THEOREM.A mappingT : E — E’is continuous if and only T~ B is an
open subset aF for every open subsé? of E’.

PROOF. Suppose thdtis continuous. LeBB C E’ be open. We want to show that,
then,A = T~ Bis open, thatis, for everyin A there iss > 0 such that3(z, ) C A.
To this end, fixz in A, note thaty = Tz is in B, and therefore, there is> 0 such
that B’ (y, ) C B (sinceB is open). By the continuity of’, for thate, there is & > 0
such thatl’ mapsB(x, d) into B (y, €). SinceB’(y,e) C B, we haveB(x,0) C A as
needed.

Suppose thal'~! B is open inE for every open subsd® of E’. Letz in E be
arbitrary. We want to show that, thef, is continuous at:. To this end, fixe > 0.
Since B'(T'z, €) is open, its inverse image is open, thatdis= T-'B’(Tx,¢€) is an
open subset of. Note thatz is in A; therefore, there is& > 0 such thatB(z, ) C A,
and therll’ mapsB(z, §) into B'(T'z, €). So,T is continuous at:. a

Continuity and Convergence

If (x,) is a sequence if, we writer,, 4 2 to mean thatz, ) converges ta in £

in the metricd, that is,d(x,,z) — 0. Similarly, we writey,, LA y to mean that the
sequencey, ) in E’ converges tgy in the metricd’. The following is probably the
most useful characterization of continuity.

12.3 THEOREM.A mappingT : E — E’ is continuous at the point of E if and
only if

(zn) C B, znix = T:z:"dHTz.

PROOF. Suppose tht is continuous at. Let (x,,) C E be such that:, 4 2.

We want to show that, thei[z,, % Tz, which is equivalent to showing that for
everye > 0 the ball B'(Tx, ¢) contains all but finitely many of the poinfSz,,. To
this end, fixe > 0. By the continuity ofT" at x, there is§ > 0 such thatl" maps
B(z,6) into B'(T'z,¢). Sincex,, € B(z,d) for all but finitely manyn, it follows that
Tz, € B'(Tz, ¢) for all but finitely manyn, which is as desired.

Suppose thal’ is not continuous at. Then, there is > 0 such that for every
d > 0 thereisy in E such thatd(z,y) < 6 andd'(Tx,Ty) > e. Thus, for that,
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takingo =1, 1/2, 1/3, ... we can picky = z1,x9, x3, ... such thatd(z,,z) < 1/n
andd'(T'z,,,Tx) > e. Hence, there is a sequenge,) C E such thatz, < 2 but
(T'z,,) does not converge tHz. a

Compositions

The following result is recalled best by the phrase “a continuous function of a continu-
ous function is continuous”.

12.4 THEOREM.f T : E — E'’is continuous att € F andS : £/ — E" is
continuous atl'z € E’, thenSoT : E — E" is continuous att € E. If T is
continuous and is continuous, the® o T' is continuous.

PROOF. The second assertion isimmediate from the first. To show the fi(st, Jetc
FE be such that,, 4 & If T is continuous at, theTz,, L by the last theorem;

and if S is continuous af’x, this in turn implies thatS(Tx,,) 4, S(Tx) by the last
theorem again, which means ttfat 7" is continuous at. |

EXAMPLES.

12.5 ConstantslLetT : £ — E’ be defined byl'z = b whereb in E’ is fixed. This
T is continuous.

12.6 Identity.LetT : E — E be defined byl'x = . ThisT is continuous, as is easy
to see from Theorem 12.2 or 12.3.

12.7 Restrictions.LetT : E — E’ be continuous. FoD C FE, the restriction of
T to D is the mappingS : D — E’ defined by puttingSz = Tz for eachz € D.
Obviously, the continuity of” implies that ofS.

12.8 Discontinuity.Let f : R — R be defined by settingi(x) = 1 if « is rational and
f(x) = 0if zisirrational. This function is discontinuous at evarg R. To see it, fix
z in R. For everys > 0, the ball B(«x, §) has infinitely many rationals and infinitely
many irrationals. Thus, it is impossible to satisfy the condition for continuity @br
anye < 1).

12.9 Lipschitz continuity. A mappingT : E — E’ is said to satisfy a Lipschitz
condition if there exists a constafit € (0, co) such that

d(Tz,Ty) < Kd(z,y)
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for all z,y in E. Every such mapping is continuous: giver- 0, choose) = ¢/K no
matter what is.

12.10 Coordinate mappingsLet £ = R", then-dimensional Euclidean space, fix
in{1,...,n}, and defineP; : R" — R by P,z = z;, theith coordinate of:. Then,P;
satisfies the Lipschitz condition above with= 1 and, thus, is continuous.

Real-Valued Functions

Functionsf from a metric spacé’ into R can be combined through arithmetic oper-
ations to obtain new functions. For instange} g is the function whose value at

is f(z) + g(z). In defining f /g, however, one must exercise some caution at paints
whereg(z) = 0. Itis best to limit the definition of /¢ to the sefz € E : g(z) # 0}.
The following is immediate from Theorem 12.3.

12.11 PROPOSITIONIf f : E +— Randg : E — R are continuous, then so are
f+a, f—g, f-g, f/gexceptthat, inthe last casg¢/g should be treated as a function

on{z : g(x) # 0}.

R"-Valued Functions

These are functions from a metric spdcento the Euclidean spade™ (with the Eu-
clidean distance). The following reduces the notion of continuity for such mappings
to the case of real-valued functions. We use the projection mappingsroduced in

Example 12.10P;z is theit" coordinate of the vectar in R”.

12.12 PROPOSITIONA mappingdl” : E — R™ is continuous if and only if the map-
pingsPyoT,..., P, oT fromE intoR are continuous.

PROOF. Lefl’ be continuous. Ther;; o T is continuous for eachbecause a contin-
uous function of a continuous function is continuous.

Suppose thaP, oT, ..., P,oT are continuous. To show that, thénis continuous,
we start by observing that

12.13 lu—vll = | > |Pu—Po]?, uveR"
1

Now, fix x € F ande > 0. Using the definition of continuity foP’; o T' at 2 with
€; = €/+/n, we findg; > 0 such that

d(z,y) < §; = |PTz — PiTy| < ¢/v/n.
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Let$ = min{dy,...,d,}. Thend > 0 and

d(z,y) <d = |P/Tz— PTy| < ¢/+/nforeachi
= ||Tz—-Ty| <e

in view of 12.13 used withh = T'x andv = T'y. ad

Exercises:

12.1 Continuity of metrics.Recall the definition of the product spagex E
from Exercise 7.9 in Chapter with;,d;) = (E2,d2) = (F,d). Show
thatd : E x F — R_ is continuous.

12.2 Continuity of pairs.Let f : E — E’ andg : E — E’ be continuous. De-
fineh: E— E'x E' by h(z) = (f(z), g(z)). Show thath is continuous.

12.3 Closed setslf T : E +— E'is continuous, the !B is a closed subset
of E for every closed subsé of E’. Show. Forf : £ — R continuous,
show that the setsr € F : f(x) < b}, {zx € E: f(z) =b},{zr € FE:
f(z) > b} are closed int.

12.4 Indicators. For A C F let 14 be the indicator of4, thatis,14(x) = 1 if
x € Aandla(z) = 0if z ¢ A. Show thatl 4 is continuous at all points
x € E except forz € JA.

12.5 Left and Right ContinuityLet f : R — E’. Order properties of the real
line enable us to refine the notion of continuity as follows. The function

f is said to beright-continuousat z € R provided thatf(z,,) LS f(x)
for every decreasing sequengs,) C R with limit z. Similarly, f is said

to beleft-continuousat z if f(x,,) 4, f(x) for every increasing sequence
(z,) with limit 2.

Show thatf is continuous at if and only if it is both right-continuous and
left-continuous at:.

12.6 Functional inverses.Let f : R, — R, be a continuous and strictly
increasing bijection. Lef~!(y) be that pointz for which f(z) = .
Show that the functiorf ~! is continuous and strictly increasing.

12.7 Legendre Transforma\ function f : R — R is calledconvexf

flpz +qy) < pf(z) +qf(y)

forall z,y € R and allp, q € (0,1) satisfyingp + ¢ = 1. TheLegendre
transformof a convex functiory is the functiong : R — R defined by

9(y) = max(zy — f(x)).
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Show thaty is convex and that
f(@) = max(zy — g(y))-

State any extra “smoothness” assumptions you might need.

12.8 SectionsLet f : E; x E; — R be continuous. Show that, for eaghn
Es, the mappingr — f(z,y) from E; into R is continuous. Similarly,
y — f(z,y) is continuous for eack. Unfortunately, the converse does
not hold: it is possible to have — f(z,y) continous for eacly and
y — f(x,y) continuous for eacl even thougly is not continuous. Give
an example of such a function.

13 Compactness and Uniform Continuity

As before,E, E’, etc. are metric spaces with metriésd’, etc. This section is on the
effect of compactness on continuity.

13.1 THEOREMLetT : E — E’ be continuous. I is compact, then the range of
T is a compact subset df’'.

PROOF. LetD C E’ be the range df’. Assuming thaf is compact, we need to show
that D is compact. Le{B; : ¢ € I} be a collection of open subsets Bf that covers
D. Then, the continuity of” implies via Theorem 12.2 that the seds = T 'B;,

i € I, are open. Moreove{,A; : i € I} coversE: if zisin E thenTz isin D, and
hence, I’z is in B; for somei, which implies thatz is in the corresponding!;. Now
the compactness df implies that there exists a finte sétC I suchthaf{A4; : i € J}
coversE. Thus, ifx € E, thenz € A; for somei in J and thereforel'x € B; for
somei in J. Thatis,{B; : i € J} coversD. So,D must be compact. |

Recall that every compact set is closed and bounded. Thys,:ifE — R is
continuous and is compact, then the range ¢fis bounded and closed, which im-
plies thatf attains a maximum and a minimum, that is, theresgy@ndx,, such that
f(zo) < f(z) < f(zq) forall z € E (see Exercise 11.1 in Chapter to the effect that if
D c Ris closed and bounded thaxf A andsup A belong toD). We have thus shown
the following:

13.2 COROLLARY.Let E be compact andf : E — R continuous. Thenf is
bounded and attains a maximum and a minimum.

The conclusion fails i is not compact. For instancé(z) =z on E = (0,1) is
bounded but has neither a maximum nor a minimum. Af§e) = 1/x onE = (0,1)
is not bounded and has neither a maximum nor a minimum.
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Uniform Continuity

Recall the definition of continuity?” : £ — E’ is continuous provided that for every
2 in E and every > 0 there is & > 0 (depending on: ande) such thatl(z,y) < §
impliesd'(Tx,Ty) < e for all y in E. The importance of the following is to remove
the dependence dfon x.

13.3 DEFINITION. A mappingl’ : E — E’ is said to beuniformly continuous
provided that for every > 0 there is & > 0 such that

r,yeE, dxy)<d = d(Tz,Ty)<e.

Obviously, every uniformly continuous function is continuous. The converse is
false. For example, the functigh: (0,1) — R defined byf(z) = 1/z is continuous
but not uniformly so. The failure here is not due to the unboundednegs dfor
instance, the functioffi : (0,1) — [—1, 1] defined byf(z) = sin 1/z is continuous but
not uniformly so. The mappings of Examples 12.5, 12.6, 12.9, and 12.10 are uniformly
continuous. In fact, they are all special cases of 12.9 on Lipschitz continuity. Being
Lipschitz almost encapsulates the notion of uniform continuity

13.4 PROPOSITIONLetT : E — E’ be Lipschitz continuous. Théhis uniformly
continuous.

PROOF. Fixe > 0 and choosé = ¢/K. Thisd works and is independent of O

(Exercise 13.6 provides an “almost converse” to this result). The following shows
the important role of compactness on uniform continuity.

13.5 THEOREMLetT : E — E’ be continuous. IE is compact, theff is uniformly
continuous.

PROOF. Fixe > 0. We search fop > 0 that will fulfill the condition for uniform
continuity. Sincel" is continuous, for each in E there is§(x) > 0 such that

13.6 d(z,y) < d(z) = d'(Tx,Ty) < €/2.

The collection of open ballB(z, d(z)/2), z € E, coversE. SinceE is compact, there
must exist a finite number of them, say those corresponding to. ., x,,, that cover
E. Define

0= %min{é(ml), o 0(zn)}
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Then,é > 0 and it remains to show that thisworks. Letz,y in E be arbitrary and
suppose thai(z,y) < J. By the way thery, ..., z,, are chosen, there is arsuch that
zisin B(l‘i, (5(1‘1)/2), that is,

d(z,x;) < %(5(3:1').
Moreover, for the samg
dly,z;) < d(y,z) +d(z,z;) <5+ %5(9@) < (zy).
Thus,d(z, z;) < 0(z;) andd(y, z;) < 6(z;), which by 13.6 imply that
d'(Tz, Ty) < ¢/2, andd' (Ty, Tz;) < €/2.

Thus,d'(Tx,Ty) < e by the triangle inequality. O

Exercises:

13.1 Metrics. Show that, for fixedr, in E, the functionz — d(z, z¢) from E
into R is uniformly continuous.

13.2 CompositionsLetT : F — E’ andS : E’ — E" be uniformly continu-
ous. Show that, therff o T : £/ — E” is uniformly continuous.

13.3 HomeomorphismsRecall that for a bijectiorf : E — E’ we define the
functional inversef ! by settingf~!(y) = =z if and only if f(z) = .
A homeomorphisnrom E onto E’ is a bijection that is continuous and
whose functional inverse is also continuous. Incidentally, two spates
andE’ are said to bbomeomorphiif there exists a homeomorphism from
one to the other. Compactness helps in checking for homeomorphisms.
Show that iff : E — E’ is a continuous bijection anfl is compact, then
f is a homeomorphism.

13.4 Extensions.Let D be dense inE (see Exercise 8.6 in Chapter for the
definition). Note that this means that every point/of\ D is a cluster
point of D. Suppose thaf : D — R is uniformly continuous. Show
that, then, there exists a unique continuous funcfion® — R such that
f(z) = f(z) forall z in D. Then,f is called thecontinuous extensioof
fontoFE.

13.5 Cantor function.Let E = [0, 1], andC' be the Cantor set, and = E'\ C;
see Example 8.9 in Chapter . Note thatis dense inE, sinceC has no
open intervals contained in it.

Show that the functiory constructed in 8.9 of Chapter is a uniformly
continuous function fronD into [0, 1]. By the preceding exercise, then,
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f has a continuous extensighonto £ = [0, 1]. In fact, f is uniformly
continuous (why?).

The functionf is called theCantor function It is increasing and continu-
ous. Its derivative exists at everyin D and is equal td. So, althoughy
increases frond to 1 in a continuous fashion, all its increase is on the set
C, andC has “length™0.

13.6 Lipschitz ContinuityA mapping?’ : R™ — R is uniformly continuous if
and only if for everye > 0 there existds, such that

|Tx—Ty| < K.- ||z —y|| +e¢

for all z andy in R™. Prove this.
Hints: (a) The “if” part is easy. Choose

5= 2
Ke/2

(b) For the “only if” part: fixe > 0 andz andy; choose a chain of points
T = T, T1,Ta,..., T, = y With distances|az; — z;41|| < 0; ask, how
many such points do we need, and note that

[Tz —Ty| < Z |Tx; — Txip1] < ne;
1

figure outm needed and then whai, should be.

14 Sequences of Functions
Let £ andE’ be metric spaces with respective metd@ndd’. Let (7},) be a sequence

of mappings from¥ into E’.

14.1 DEFINITION. The sequendd’,) is said toconverge pointwiséo a mapping
T : FE — E' provided that the sequen¢€,,z) converges td'z in E’ for each point
in E.

In other words, for each in £/, we must have
14.2 limd'(T,x, Tx) =0,
that is, for everye > 0 there must be am. , such thatd'(T,,z,Tz) < e for all

n > ne,. If n., can be chosen to be free of we obtain the following stronger
concept of convergence:
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f (%)

Figure 4: Here(f,,) converges tof, wheref(z) = 0 for 2 < 1 and f(z) = 1 for
x > 1. Convergence is pointwise but not uniform.

14.3 DEFINITION. The sequendd’,) is said toconverge uniformlyo a mappingl’
provided that

lim sup d'(T},x, Tx) = 0.
" zeE

Obviously, uniform convergence ¢f;,) implies pointwise convergence (and the
limit 7" is the same). That the converse is generally false can be seen from Figures
4 and 5 below: here the functionfs : [0,00) — [0, 1] converge pointwise, but not
uniformly.

Cauchy Criterion

As with sequences of points, it is important to have a criterion for the uniform conver-
gence of T,,) expressed in terms of the, themselves. The following Cauchy criterion
does this:

14.4 THEOREM Suppose thaE’ is complete. Ther(l},) is uniformly convergent if
and only if for every > 0 there is anmn, with

14.5 supd' (Tpx, Tyw) < e forallm >n > n..
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Fa()

Figure 5: Thesd,, converge tof = 0 pointwise, but not uniformly.

Fa(x)

Figure 6: These,, converge td uniformly (and hence pointwise).
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PROOF. Suppose théf,,) converges uniformly, say, t&. Then, for everyg > 0,
there is am, such that’(T,,x, Tz) < ¢/2 for all n > n.. Thus, form,n > n,

d Tz, Tyx) < d(Thx, Tz) + d (Tx, Typx) < €/2+¢/2=¢

for all z. So,(T,) is Cauchy (for every > 0 there isn. such that 14.5 holds).
Let (7,,) be Cauchy. Then, in particular, for eaghn E the sequencél,,z) in
E'’ is Cauchy. Sincd’ is complete, this implies thdfl,,«) converges to some point
of E', call it Tx. This defines a mapping : £ — E’. We want to show thatT,,)
converges td" uniformly. Since(T,,) is Cauchy, for every > 0 there is am,. such
that
d (T, Tpx) <e  forallm,n > n.

for all x. Now, letm — oo; then, (T,,x) converges tdl'z and the continuity of
y — d'(Tyz,y) implies thatd' (T, Tnx) — d'(T,z,Tx). Thus, as we needed to
show, fore > 0 there is am, with

d(T,z,Tz) <e foralln>n.andallzx € E.

Continuity of Limit Functions

As can be seen from Figure 4, the pointwise limit of a sequence of continuous functions
is not necessarily continuous. In fact, the primary use of uniform convergence is to
ensure the continuity of the limit function.

14.6 THEOREM.Suppose that each, is continuous and7,,) converges td" uni-
formly. ThenT is continuous.

PROOF. Fixz in E. Note that for alln andy
d(Tz,Ty) < d(Tz,Tpz) + d (Thx, Toy) + d' (Thy, Ty).

Givene > 0, there is am, such that the first and third terms on the right side are
less thane/3 each forn = n.; This comes from the uniform convergence (af,)

of T. Moreover, the continuity of,, at the pointz implies the existence of =

Jde. Such that the second term on the right with= n. is less thare/3 for all y €
B(z,d). Hence, for every > 0 there is & = ¢, , such thatd(z,y) < ¢ implies that
d'(Tz,Ty) < eforall y; that is,T" is continuous at. |

Exercises:

14.1 Let0 < a < b < 1. Let f,, : [a,b] — R, be defined byf, (x) = z™.
Show that(f,,) converges uniformly tg' = 0.
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14.2 LetT, : [0,1] — [0,1] be defined byl},z = 2™ (1 — ). Show tha{(T;,)
is uniformly convergent.

14.3 Letf : R — R be uniformly continuous. Defing,(z) = f(x + 1/n).
Show that( f,,) converges uniformly tg.

14.4 Let(f,) be defined as a sequence of functions fr&m into R, by

(@) = Va, fa(@) = Vo i fa(@) = \Jz + o+ vz, .. Show

that( f,,) is convergent and find the limit function.

15 Spaces of Continuous Functions

Throughout this sectioF, d) will be a compact metric space, and all functions are
from E into R. On a first reading, the reader should tdke= [a, b], a closed interval.
Our aim is to illustrate the uses of the foregoing concepts in the analysis of the function
spaceC(E,R) of all continuous functions fronk into R. For brevity, we writeC for
C(E,R).

The setC is a vector space: if andg are inC then so isaf + bg for eacha in
R andb in R. Moreover, various arithmetic operations are well-defined orf + g,
f—g,f-g,andf/gall belong toC if f andg are inC, except that in the case ¢f/g
one must worry abouj(z) = 0.

Although each point ot is a function, in many respects is like a Euclidean
space. We may, for instance, define a nornCds follows. Letf € C. Being a
continuous function on a compact metric spates bounded and attains its maximum
and minimum. It follows that

15.1 1 fIl = gleaglf(af)l

is a well-defined positive real-number; it is called tiermof f. It is indeed a norm:

15.2 £l =0; [Ifl = Oifand only if f = 0;
15.3 llefll = lel - I£1
15.4 1f+gll < 171+ llgll-

As with Euclidean spaces, we may use the norm above to define a metfic \b/e
define the distance betwe¢randg to be

15.5 d(f,g) = IIf —gll.

Convergence inC

The following shows that the convergence in the metric sgateequivalent to the
uniform convergence of functions dn.
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15.6 THEOREM.A sequencéf,) in C is convergent if and only if the sequence of
functionsf,, : £ — R is uniformly convergent.

PROOF. The definition of convergence for a sequence of points in a metric space and
the definition of uniform convergence for a sequence of functjgnsk — R are such
that the claim is simply that

limd(f,, f) =0 < limsup|fa(z)— f(z)| = 0.
n n zeE

But this is obvious in view of 15.5 and 15.1. O

Conceptually, then, the somewhat complex concept of uniform convergence of a
sequence of functions is equivalent to the simpler concept of convergence of a sequence
in a metric space.

Lipschitz Continuous Functions

A function f € C is said to beLipschitz continuousf there exists a constart” such
that
15.7 lf(x) — fly)| < K -d(z,y) forallz,yecE.

Let Bx be the set of allf in C satisfying 15.7. Then, clearly, the set of all Lipschitz
continuous functions is exactly the union of tBg's.

If E = [a,], f is differentiable, and the derivativ€' is bounded (that is, there
exists aK such that f'(z)] < K for all z € [a,b]), thenf is Lipschitz continuous.
Consider a fixed< and letAx denote the set of all differentiable functiofisvhose
derivativesf’ are continuous and bounded By The setA is not closed, which can
be seen from Figure 7 whef¢,,) C Ak, (f.) convergestq inC, but f isnotinAg.

In fact, the closure ofd i is preciselyBx. We leave this without proof. Instead, we
show the following partial result with general.

15.8 PROPOSITIONBf is a closed subset of.

PROOF. We use the characterization Theorem 9.5 from Chapter (fLetC Bx
converge to the poinf in C. We need to show that is in Bx. Now, for arbitraryx
andy in E,

[f(@) = f)l < 1f(@) = fal@)] + | falx) = fa(w)| + | faly) = ()]
< H.f_fn”+Kd(xvy)+”fn_f”
for all n. Since||f,, — f|| — 0, this shows thaf satisfies 15.7. a

As mentioned above, the set of all Lipschitz continuous functions coincides exactly
with Ux Bi. Even though eaclBk is closed, the union is not. This fact can be seen
from the sequence of functions shown in Figure 8. In fact, its closure is precisely
that is, everyf in C is the limit of a sequence of Lipschitz continuous functions.
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Q.
ol

Figure 7: A sequence of differentiable functions whose derivatives are bounded but
whose limit is not differentiable.

Q.
ol

Figure 8: A sequence of Lipschitz continuous functions converging to a continuous
function that is not Lipschitz.
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Completeness

The spac€ is not bounded. Therefore it cannot be compact. But, at least, it is com-
plete.

15.9 THEOREM.The spac¢ is complete.

PROOF. Let(f,) C C be Cauchy, that is, for every > 0 there is amm,. such that
lfrn = fmll < eforallm > n > n.. This is equivalent to the condition 14.5 (here
E’ = Rwhich is complete). Thus, by Theorem 14(4, ) is uniformly convergent as a
sequence of functions afi. But, by Theorem 15.6, uniform convergence is equivalent
to convergence if. So,(f,,) is convergent irc. O

Functionals

SinceC is a metric space, we may speak of functions defined @s we speak of
functions defined orE’. For linguistic clarity, a function fron€ into R is called a
functional Here are some examples of functionals: fog C,

15.10 M(f) = max f(x)
15.11 P.(f) = f(z), € E fixed
where¢ : R¥ — Ris fixed andzy, . . ., z;, are fixed inE.

Here are some further examples of functionals, in the particular case \khere
[a, b]:

b
15.13 L(f) = / F@)de,

b
15.14 Lo(h) = [ o@)f@)da.

where¢ € C is some fixed function.
The functionalM is uniformly continuous; in fact, it is Lipschitz continuous with
Lipschitz constank’ = 1:

[M(f) = M(g)l = [max f(z) —maxg(z)|
< max|f(z) - g(z)]
= If—dll
= d(f,9)-

Even easier is the Lipschitz continuity of the coordinate mapping

[Pe(f) = Pe(g)l = [f(2) — g(x)] < [If = gl-
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Assuming that the function : R* — R is continuous, the functiof’ is continuous:
if || £, — f|l = 0, then the sequence of point§, (z1), ..., f.(zx)) € R* converges
to the point(f(z1),..., f(x1)) € R* asn — oo, and the continuity of implies that

E(fn) = F(f).

The functionalL is a linear transformation froré into R. It is uniformly contin-
uous; in fact, it is Lipschitz continuous with Lipschitz const@t= b — a. S0 iSLg

with Lipschitz constank = ff |p(2)|da.

Exercises:

15.1 If f andg are two continuous functions on a compact metric space, show

that
| max f(z) — max g(x)| < max|f(z) - g(z)|.
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Differential and Integral
Equations

The aim of this chapter is to discuss several applications of metric space ideas to some
classical problems of engineering analysis.

We shall start with one theorem, the fixed point theorem for contractions on a metric
space, and show how various problems can be beaten to submission with it.

16 Contraction Mappings

The aim of this section is to prepare the stage for some applications to differential and
integral equations encountered frequently in engineering. Throughbigta metric
space with some metri¢

We shall use the term “transformation @i to mean a mapping fronk' into .
If T is a transformation ot’, then the imag& '« of x is a point inFE, and the image
of Tz is T(Tz), for which we will write T2z. In other words, we are writing? for
T o T. Similarly, we define further iterates by

T e =T(T"2), xz€ E,n>0,

with Tz = x for all . So,T° is the identity, " is T, etc.

Given a pointz in E, if we writezg = =, 21 = Tz, 2 = T2, 23 = T3x, ..., we
obtain a sequende:,,) in E; this sequence is called tloebit starting atz. One should
think of z,, = T™x as the position at time of a particle that starts at and moves
successively td@'z, Tz, . ...

16.1 DEFINITION. A transformatioff’ on £ is said to be aontractionif it is Lips-
chitz continuous with some Lipschitz constank 1.

In other wordsT" is a contraction off if there exists a constant € [0,1) such
that

16.2 d(Tz,Ty) < ad(z,y) forallz,y € E.

63
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Figure 9: The orbit oft under the mag".

Fixed Point Theorem

A point z is said to be dixed pointof a transformatio” if Tz = x. Figure 10 shows
atransformatiol” on E = [0, 1]; there,z* is the unique fixed point df’, and the orbit
(T"x) of xg converges to the fixed point".

The following theorem shows that every contraction of a complete metric space
has a unique fixed point. Its proof shows how to obtain the fixed point by a method of
successive approximations.

16.3 THEOREM.Suppose thakt’ is complete. LeT" be a contraction orE’. Then, T
has a unique fixed point and for each paintin E, the orbit(7™x) converges to that
fixed point.

PROOF. Fixxg in E and let(xg,x1, s, ...) be its orbit. We show first that this
sequence is Cauchy. Indeed, suppose that n. Thenz,, = T™xo andx, =
Traxg =TT "z = Ty —m. Hence, sincd(T™x, T™y) < o™d(z,y) in view
of 16.2, we have

" d(zo, Tr—m)

d(@m,xn) <
< a™ [d(mﬂv xl) + d(xh 1’2) + -+ d(xn—m—ly In—m)]

Now note thatd(z;, z;11) = d(T zo, T?z1) < o'd(xg,z1). Thus,

d(xmaxn) < Oémd(xo,xl)[l+a+a2+,,,+anfmfl]

1— ™
= amd(x())l’l) 1— o
o 4o, 21)

<
- l1—«

Sincea < 1, the right side goes thasm — oco. Hence, the sequenée,,) is Cauchy.
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y

i : : ;
X Xo  Xq xO 1

Figure 10: A contraction ofo, 1].

SinceF is complete, the sequenge,, ) must converge to some poinin E. Then,
by the continuity off",

Tz =T(limz,)=lmTz, =limz,1; =z,

that is,z is a fixed point. To complete the proof, we now show that the fixed point is
unique. To this end, lef be another fixed point. Then,

Tr=z and Ty=y,

and hence, by the contraction conditiafiz,y) = d(Tz,Ty) < ad(x,y). Since
a < 1, this is possible only ifi(x,y) = 0, thatis,x = y. m|

The preceding theorem can be used to prove existence and uniqueness of solutions
to a wide variety of equations. Besides showing that= x has a solution, the proof
gives a practical method for arriving at it. Indeed, start from an arbitrary pgiand
successively compute;, = Tx, o = Txy, z3 = Txo, .... Thex, get close tax
(geometrically fast):

d(xpy1,2) = d(Txy, Tr) < ad(z,,x),
which shows that
16.4 d(zp,x) < a"d(zg, ).

Exercises:
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OxO 1

Figure 11: Exercise 16.1.

16.1 For the transformatidfi : [0, 1] +— [0, 1] shown in Figure 11 find the orbit
of the pointz, indicated.

16.2 For the transformatioft : [0,1] — [0, 1] given byTz = 0.3 + 0.2z +
0.5z, Figure 12 shows that there are exactly two fixed points. Find them.
Show that, for arbitrary:, # 1, the orbit ofz, converges to the smaller
fixed pointz*.

16.3 Branching processesin a chain reaction, each particle gives rise to a
random number of new particles. Each of these new particles act inde-
pendently and produces random numbers of newer particles. And this
continues indefinitely. Lep, be the probability that a particle produdes
particles; hereg, p1, po, . . . are positive numbers with’ p;, = 1. Starting
with one patrticle, we now consider the probability that the chain reaction
fizzles out, that is, the population of particles becomes extinct. xl,et
be the probability that theth generation is extinct already. Note that the
(n+ 1)th generation consists of particles that alB generation offspring
of the individuals of the first generation. In order for the population to be

extinct at or before thén + l)th generation, populations initiated by the
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Figure 12: Exercise 16.2.

2 3
generati ons

o
'_\
1

Figure 13: Exercise 16.3.
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particles of the first generation must all become extinct. Thus,

oo
Tnt+1 = Zpk(xn)k

k=0

In other wordsy,, 1 = Tz, whereT : [0,1] — [0, 1] is defined by
Tx = Zpkmk, z € 0,1].
k=0

Now, the probabilityz* of eventual extinction for the population is the
limit of z,,, and thus satisfies

¥ =Tz*.

(a) Show thatr; = py. Show that the sequende,,) increases to the
extinction probabilityx*.

(b) Assume thapy > 0. If pg + p; = 1 (so thatp, = p3 = --- = 0) show
thatz* = 1.

(c) Show that the mapping — T'x is increasing and convex.

(d) Leta = > ;2 prk, that is,a is the expected number of particles
produced by one particle. Show thatif< 1, thenz = Tz has only one
solution and the fixed point is* = 1.

(e) Suppose that > 1. Then, show that = T'x has exactly two solutions.
One solution igl, the other is the extinction probability*. Show this by
examining the graph df’ and using (a).

16.4 LetT : [0,1] — [0,1] be defined by
Tx =4z(1 — x).

Show thafl” has exactly two fixed points. Compute them. Give an example
of an orbit that converges to the fixed pairit= 0. Note the highly chaotic
nature of the orbits.

16.5 LetT' : [0,1] — [0,1] be defined b’z = 2z (mod 1), thatis, Tz = 2z
if 2r < 1andTz = 2z — 1if 2x > 1. The only fixed pointisc* = 0.

Incidentally, if x = 0.wjwows - - - is the binary representation afthen
Tz = Owowswy--- andT%z = 0.wswaws - --, etc. Note the highly
chaotic nature of the orbits by plottif@™z).

16.6 LetT : R™ — R" be a linear transformation, sdyx = Ax where A
is somen x n matrix. Give a condition o that guarantee®’ to be a
contraction (with the Euclidean metric &f).
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16.7 LetTx = Ax + b where A is n x n matrix andb is a fixed vector in
R™. ConsiderE = R™ with the weighted Manhattan metrit{z,y) =
Yo w; - |z; — y;| where the weightsuvy, ..., w,, are strictly positive.
Show that, to assume th@tis a contraction of this metric spadg it is
sufficient to have

n
Zwi\am <wj, j=1,...,n.
i=1

17 Systems of Linear Equations

In this section we discuss the use of the fixed point theorem in solving systems of linear
equations. As a by-product, we get a chance to discuss the importance of choosing the
right metric for a particular application.

Let E = R™; we do not specify the metric just yet. Fixe R™ and consider the
system of linear equations

17.1 xi:Zaijxj—l—bi, i=1,...,n,
j=1

where thea;; are real numbers. Writingl for then x n matrix of elements:;;, the
system 17.1 is equivalent to
17.2 r = Az +b.

In other words, the problem is to find the fixed point of the transformafiorR™ —
R™ defined by
17.3 Tr = Az +0b.

If T is a contraction, then we can use Theorem 16.3 and obtain the unique solution of
Tx = x by the method of successive approximations.

The conditions under whicl’ is a contraction depend on the choice of metric on
E =R". We discuss three cases.

Maximum Norm

Suppose thaf is the metric associated with the maximum norm:

d(a,y) = max [; il

Then, sincl'c — Ty = Az — Ay = A(xz — y),

n
d(Tz,Ty) = mgxli%mﬂw—yﬁl
J:
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IA

mgxz lag;| - lz; — yjl
i

IA

m?XZ lai;]| max |zk — yil

J
(max > lagd(z, y).
J
Thus, the contraction condition 16.2 is satisfied if

17.4 azmgXZ\aij| < 1.
J

Manhattan Metric
Suppose that is the Manhattan metric:

d(z,y) = Z lzi — yil-
i=1
Then,

d(Tx,Ty) = Z | Zaij(ﬂﬁj — ;)|
ZZ laij| - |25 — y;l
(m]?LXZ laij])d(z,y),

IN

IN

and the contraction condition is satisfied if

175 oczmjaxzi:\am <1

Euclidean Metric

Suppose thaf is the ordinary Euclidean distance. Then,
2

d(Tz, Ty)?

> Zaij(ifj )

%

IN

Z Za?j Z(xj - yj)2

i J

3 el
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where we used Schwartz’s inequality at the second step. Thus, the contraction condi-
tion 16.2 is satisfied if

17.6 a=>» Y a} <l
J

%

Conclusion

Under each of the metrics discuss&#, is a complete metric space. Hence, if at least
one of the conditions 17.4-17.6 holds, Theorem 16.3 applies to show that there exists
a unique solution to 17.1. The sequence of successive approximatitns®), ...
(whose limit is the fixed point) has the following form:

17.7 a* ) = A2® 4 p E=0,1,...,

and we can choose any poirlf) € R” as the initial point.

Each of the conditions 17.4-17.6 is sufficient for applying this method. None is
necessary; it is easy to give examplesAufwhere one condition holds but not the
others.

18 Integral Equations

The most interesting applications of fixed point theorems arise when the underlying
metric space is a function space. Here we discuss the existence and uniguencess of
solutions to Fredholm and Volterra equations.

Fredholm Equation

A Fredholm equatiorfof the second kind) is an integral equation of the form

b
18.1 f(z) = o(x) + A/ K(z,y)f(y)dy.

Here, the functiond( : [a,b] x [a,b] — R and¢ : [a,b] — R are given\ € Ris an
arbitrary parameter, anfl : [a,b] — R is the unknown function. The functioR is
called thekernelof the equation. The equation is said toHmmogeneoui$ ¢ = 0 and
non-homogeneoustherwise.

The Fredholm equation is the continuous version of the system of linear equations
17.1. To see this, suppose that the interval is discretized and is replaced-by
equidistant pointas = zp < 1 < --- < z, = b. Then, writingy; = f(z;) and
b, = ¢(x;) anda;; = MK (x;,z;)/n, we see that 18.1 becomes

i =bi+ Y aiy;.
J

Whether this discretization is appropriate is a different matter.
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Let C be the collection of all continuous functiofsfrom [a, b] into R, and let the
metric onC be defined through the maximum norm:

18.2 d(f,g9) = If —gll = sup [f(x)—g()].
a<z<b

With this metric,C is a complete metric space (see Theorem 15.9 in Chapter ).
Suppose thak is continuous on the squafe, b] x [a, b] and thatp is continuous
on [a, b]. Then, the functiof defined by

b
18.3 Tf(z) = ¢(x) + A/ K(z,y)f(y)dy

is continuous orja, b] for each continuous functiofi on [a,b]. In other words, the
mappingf — T'f is a transformation o@. Now, the Fredholm equation 18.1 becomes

18.4 f=Tf,

and thus, solving 18.1 is equivalent to finding the fixed points of the transformiBtion
oncC.

To this end, in order to apply the fixed point theorem 16.3, all we need to show is
thatT is a contraction (recall th@tis complete). The following shows thétis indeed
so if the parametek is small enough.

18.5 THEOREM.Suppose thap and K are continuous. Then there exists > 0
such that the equation 18.1 has a unique solufidor each\ in (=g, Ao). Moreover,
the solutionf is continuous.

PROOF. Sincel is continuous on the squafe, b] x [a, ], it is bounded there (con-
tinuous functions on compact spaces are bounded). So, there is a censtarguch
that| K (x,y)| < cforall z,y. Thus,

7§~ Tg| = max]x / K@) - )
A e —a)manIf() o)
= e b-a)- [ =gl

Choose\g = 1/c- (b — a). Then, for each € (—Xg, A\o), the preceding shows that
is a contraction oi€. By Theorem 16.3, consequently, there is a unique fixed point
in C of the transformatiofl’. a

IN

18.6 EXAMPLE. Suppose thdt (z,y) = zy on [0, 1] x [0, 1]. Let¢ € C be arbitrary
and consider the Fredholm equation

18.7 f(x) =o(x) + A/O zyf(y)dy
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The proof of 18.5 shows that, fok| < 1, there is a unique solutiofi And the solution
is the limit of the sequence

f0:¢7 flsz07 fQZTfla fSZTf27"'
where, in general,

1
Tf(z)=9¢(x) + A1’/ yf(y)dy.

0

Now, we start computing. Defining = fol yo(y)dy, we have

folz) = o(x)
Al = Tfl@) = o)+ [ ysly)dy
= ¢(x) +alx
flz) = Th) = ¢(@)+ [y y(6(y) +ary)dy
= ¢(x)+a/\x+a%:c
folw) = Th) = 6@+ [y y(@y) +aky+a’y)dy
= qﬁ(a:)Jra/\era%zo:Jra%sx
fa@) = Tha@) = é@+ada(1+3+(3) ++(3)").

In fact, it becomes clear from this that a fixed pajfrexists for all\ € (-3, 3) and the
solution to 18.7 is

18.8 f(@) = Tim f,(x) = Sa

3—A

z + ¢(x)

with a = [ é(y)dy.
Going back to 18.7, the special form of the ker&élsuggests a quicker method.
Indeed, let

1
c= / yf (y)dy.
0
Then, using 18.7 in the form
f(@) = o(x) + Axe,
we get
1 1 1 A
c= / zf(x)dx = / zo(x)dx +/ xAzedr = a+ —c.
0 0 0 3
Solving this forc, we see that

3a

J(@) = 9(w) + Ao = 6(a) + —a
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as before provided that # 3. Note that this is the solution for arbitrasy = 3. But
the method of successive approximations workgXpr< 3 only.

Studying the iterative method in the preceding example, we can get a theoretical
understanding of the nature of solutions. To this end, we re-do the computations of
fo =9, i = Tfo, fo = Tf1,...once more, now with an arbitrary kerngl, and
omitting the limits of integration we get

folz) = ¢(x)
Al@) = Tflx) = o@) +A[K(x,y)dy)dy
folz) = ThHz) = ¢@)+A[K(zy)fi(ydy
= @)+ A [K(z,9)[o(y) + A [ K(y, 2)d(2)dz]dy
= ¢(z) + A [ K(2,y)o(y)dy + N [ Ka(z,2)d(2)dz
where
Ka(e,2) = / K(z,9)K (4, 2)dy.
Continuing,
fs(@) = Tfala
= +>\/ny y)+)\/K(y,z)¢(z)dz
+A2 / Ka(y, 2)¢(2)dz]
= ¢(x) +)\/K(x,z)¢(z)dz
+)\2/Kg(x,z)qb(z)dz+>\3/K3(x,z)qb(z)dz
where

Ks(z,z2) = /K(x,y)Kg(y,z)dz.

The pattern is now clear. We have
n 4 b
18.9 fule) = 6la) + SN [ Kala)o(w)dy
i=1 a
with K; = K, andK,, K3, ... defined recursively via
b
18.10 Kipi(z,y) = / K(z,2)K;(z,y)dy.

Theorem 18.5 shows that whéX] < A, the sequencé, converges to the fixed point
f,»where

o] b
18.11 f(z) = o) + ZAZ’/ Ki(x,y)p(y)dy
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Since this is true for arbitrary, we can change the order of summation and integration.
Thus, with

18.12 Ry(z.y) = ) A'Ki(z,y),
=1
we have b
18.13 f(z) = ¢(x) + / R(z,y)o(y)dy-

Although 18.10, 18.12, 18.13 together give an “explicit” solution to the Fredholm
equation, this explicitness is only theoretical. For, compufings of the same order
of difficulty as solving 18.1 (in fact, even harder).

On the other hand, if the kern& is simple enough, analytic solutions might be
possible. The following illustrates the computations for such a special case.

18.14 EXAMPLE. Suppose that
K(z,y) = pi(2)g(y) =,y € [a,b]
j=1

for some continuous functions, .. ., p, andgq, . .., g, onJa, b]. For¢ continuous on
[a, b], consider the Fredholm equations 18.1. Nowy, i C satisfies 18.1, then

18.15 f@) = (@) + A 2p;(x)
j=1

where ,
18.16 Zj =/ W fydy, j=1,....,n

In view of 18.15, then
b
2z = / qi(z) f(x)dx
b n b
/ qi(z)¢p(x)dx + )\Z (/ qi(x)pj(x)dx> 2.
a j=1 a

Thus, letting
b b
18.17 ¢ = / gi(x)p(x)dz, a;j = / ¢i(x)pj(z)dx,
we obtain .
18.18 zi:ci+)\Zaijzj7 1=1,2,...,n.

j=1
Note that the:; anda;; are known. If we can solve 18.18 for thgs, then 18.15 gives
the solutionf.
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In vector-matrix notation, 18.18 becomes
z=c+ NAz,

whose solution is easy to discern. We can solve itzdfor arbitraryc) as long as
I — M is invertible, that is, as long d¥ X is not an eigenvalue fad. Thus, we have
a solutionz for arbitraryb provided that\ € (—1/Xg, 1/\g) where, is the modulus
of the largest eigenvalue of.

Volterra Equation

Let K be a continuous function dn, b] x [a, b] and letg be a continuous function on
[a, b]. Consider the equation

18.19 f(z) +)\/ K(z,y)f(y)dy, x € [a,b].

It is called theVolterra equation It differs from the Fredholm equation only slightly,
and in form only. If we define

A _J K(z,y) ify<uw,
K(z,y) _{ 0 if y >,

then 18.19 becomes the Fredholm equation 18.1 with kdtheHowever, it is easier
to attack 18.19 directly.

18.20 THEOREMFor each) € R, the Volterra equation 18.19 has a unique solution
f that is continuous offu, b].

PROOF. LetC = C([a,b],R), the set of all continuous functions frofa, 4] into R,
with the usual uniform metrigf f — g||. Let ¢ be the maximum ofK (z, y)| over all
x,y € [a,b]; this number is finite sincé& is continuous. Define the transformation
T:f—TfonC by

Tf(a) = ola) + X | Kag)f iy
Now, for f andg in C,

1@ ~To@)] = I [ Ken)lf) - st
Aele = )l = gl € a. ]

IN
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We use this, next, to bourit? f — T2g = T(Tf — Tg):

12 f(@) - Tg()] = 1A [ K(@)[Tf) - Tow)dy
< W [ K@l - ol - gldy
< PP [ - adylf - ol
N2E2 (2 — a)2
< PEE=alyr g
Iterating in this manner, we see that
. . AFck(z — a)k
T f(2) - Thg(w) < PEEE Ty p g
for all z € [a, b]. Hence,
Ae(b — a)lF
7 g - g < Oy )

Recalling that” /n! tends tad asn — oo for anyr € R, we conclude that there exists
k such thafl'* is a contraction: simply takielarge enough to havig\|c(b— a)]* /k! <

1. Finally, the existence and uniquenessfof C satisfyingf = T f follows from the
next theorem. Obviously, if = T'f, thenf solves 18.19. |

Generalization of the Fixed Point Theorem

18.21 THEOREMLet E' be a complete metric space andfebe a continuous trans-
formation onE. If T* is a contraction for somé > 1, thenT has a unique fixed point.

PROOF. Fixk such thatl/ = T* is a contraction. By Theorem 16.3, thdii,has
a unique fixed pointr, andlim, U™xq = « for every pointzy in E. Now, by the
continuity of T,

Tr = limTU"xq
= lmTT*"z

lim T*" Tz,

z,
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to t
Figure 14: A moving particle.

that is,z is a fixed point ofl". To show that it is the only fixed point @ we note that

every fixed point ofl is a fixed point of’* = U, wheread/ has only one fixed point,
namelyz. |

Exercises:

18.1 Solve the Fredholm equation 18.1 for arbitraryn [a, b] = [0, 27], with
the kernel

K(z,y) =sin(z +y).
18.2 Do the same witfu, b] = [0, 1] and K (z,y) = (z — y)*.
18.3 Letp be a continuous function ¢, b]. Show that

F(@) = b(2) + / )i —y)dy, @ e 0.8

has a unique solutiofi for each continuous functiog.

19 Differential Equations

We continue with applications of the fixed point theorem by discussing Picard’s method
of successive approximations for solving systems of differential equations.

We start with the simplest case where the differential equation describes the po-
sition of a particle moving ofR. The picture of the motion is given in Figure 14.
The motion is described by the initial data and 2y and by a continuous function
v: R x R — R as follows. The particle starts from at timet,; its velocity at timet

is v(t, x) if its position then isc. Thus, lettingz(¢) denote the position of the particle
at timet, we have

¢
19.1 z(t) = xo Jr/ v(s,z(s))ds, t>t.

to
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The pointsty andzy and the velocity functiom are given. We are interested in the
existence and uniqueness of the function

In the classical formulation of this problem, it is usual to express 19.1 as a differ-
ential equation:

19.2 dx

dt
The following isPicard’s Theorem

=o(t,x), xz(tg) = xo.

19.3 THEOREM.Letv be defined and continuous ¢, o) x [a,b], andzy be in
(a,b), and suppose that satisfies a Lipschitz condition in its spatial argument:

194 lv(t,x) —v(t,y)| < K|z —y|, =,y ¢€la,b].

Then, there is &; > t; such that 19.1 has a unique soluti¢n(t) : to <t < t1}.

PROOF. By the continuity of, we have

19.5 lv(t,z)| <e, to<t<t], a<az<b

for some constant Choose > 0 so that

19.6 Ko<l and a<xzyg—cd <xzg<zp+cod<h.

Lett; = min{#|,to+J}. LetC* be the space of all continuous functions [to, t1] —
[0 —¢d, xo+cd] with the usual supremum metric; thatfis;—y|| = sup,, <;<;, |2(t)—
y(t)].

The seC* is a closed subset of the spatigto, ¢1], R). Since the latter is complete,
C* is complete.

Consider the transformatidhi defined by

t
19.7 Txz(t) = xg +/ v(s,x(s))ds, t € [to,t1].
to
Forz € C*, we have from 19.5 that
t
|Tx(t) — xo] < |v(s, z(s))|ds < c(t —to) < cd,
to

which shows thaf’x € C*. Moreover, forz,y € C*,
t
Tz(t) —Ty@t)| < / lu(s,z(s)) —v(s,y(s))lds
to

t
Kla(s) — y(s)|ds
to
Kol =yl

IN

IN
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in view of 19.4. Thus||Tz — Ty|| < Ké|lz — y| and K¢ < 1 by the wayd was
chosen. SoJ is a contraction oif*. SinceC* is complete, Theorem 16.3 applies to
show thatl” has a unique fixed point. But, x = Tz means that solves 19.1. This
completes the proof. ad

The preceding can be easily generalized to the case of systems of differential equa-
tions

19.8 dz;

dt
Before listing it, we mention that the term “domain” means “an open and connected
subset of a Euclidean space”, and we note that 19.1 can be interpretee fay by
the convention that integrals frotp to ¢ are the negatives of integrals franto ty. The
following is the analog of Theorem 19.3 for motiongRft.

:Ui(tﬂxla-“axn), 1=1,2,...,n.

19.9 THEOREM Letwv be a continuous function from some domain
DCRxR"

into R™. Suppose thatty, zg) € D and thatu(t, ) = (v1(t, x), ..., v, (¢, x)) satisfies
the following Lipschitz condition for sonfé:

: : — < =il
19.10 max fvi(t, ) —vi(t,y)| < K max |; -y

Then, there is an interval, — §, ¢y + &] in which the system 19.8 has a unique solution
{x(t) : to — 6 < t < to + 6} satisfyingz(to) = wo.

REMARK: In integral notation, we may write 19.8 as
t
x;(t) = xo; + / vi(8,21(8), ..., xn(s))ds, i=1,...,n.
to

The claim of the preceding theorem is that this has a unique sol{tign : tg — ¢ <
t <ty + d}. In vector notation, we may re-write this as

t
z(t) = xo —|—/ v(s,z(s))ds, |t —to| <6,
to

which is exactly the same as 19.1 except that here[t, — d, ¢y + 0] — R™ and
v:D+— R".
Let the metric orR™ be

d(w,y) = max [z; il

Then, the Lipschitz condition 19.10 can be written as

19.11 d(v(t,z),v(t,y)) < Kd(x,y).
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It should be clear by now that the proof of Theorem 19.3 will go through for Theo-
rem 19.9 as well, with some notational changes. We give the proof for the sake of
completeness.

PROOF. By the continuity ofy, . .., v,, we have
lvi(t,z)| <c i=1,...,n

for somec > 0, for all (¢,2) in some domainD’ C D containing(to,xo). Choose
0 > 0 so that
Ké<1

and
(t,z) € D'if t € [ty — 6,to + 6] andd(x, zg) < cd,

where the metrid is the usual maximum norm dR". B
Let C* be the space of continuous functians [tg — d, ty + 6] — B(xo, ¢d), and
let the metric orC* be defined by

[ = yll = maxd(x(t), y(t))-

It is clear thatC* is complete. Define, far € C*,

t
Tz(t) =z —|—/ v(s,z(s))ds, to—0<t<ty+9.
to
We proceed to show thét is a contraction o™, which will complete the proof via
Theorem 16.3.
First, we show thal'z € C* for x € C*. For suchz, it is clear thatT'z is a
continuous function, and
i
d(Tz(t),zo) = max | [ vi(s,z(s))ds| < cd
k3 to
fortin [to — d,to + d] in view of the boundedness of by c¢. Thus, Tz € C* if z € C*.
Moreover, forz,y € C*,

ITe Tyl = maxd(Ta(t), Ty(t))

= mtaxmiaX\/t [vi(s, 2(s)) — vi(s, y(s))]ds]

< mpx [ d(u(s.a() = ol 5(9)ds
< max t Kd(xz(s),y(s))ds
< K|z -yl
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which follows from the Lipschitz condition 19.11 an SinceK§ < 1, this shows that
T is a contraction og*. a

The preceding theorem ensures the existence and uniqueness of a sotatibe
system 19.8 of differential equations. Successive approximationsam be obtained
as follows. Define

2O = x0, telto— 0, to+0d]
() = Tal(t)

t
= 1 —|—/ v(s, ™M (s))ds, t € [to—0,to + 3]

to
Then, the sequenceé™ of functions converges to the solution
Exercises:
19.1 Solve the system

dt

:Za”x](t)ﬁ—bl(t), i:1,2,...,n
j=1

for smoothb and initial conditionz:(0) = x,. How does the method of
successive approximations work?



Convex Analysis

The aim of this chapter is to discuss basic concepts in convex analysis.

20 Convex Sets and Convex Functions

20.1 DEFINITION. A setC C R" is called aconvex seif
tr+(1-tyeC

forallz,y € Cand0 <t < 1.

20.2 DEFINITION. AnR U {oo}—valued functionf defined oriR™ is called aconvex
functionif

tf(@)+ (1 =0)f(y) = fltz+ (1 - t)y)

forallz,y € R"and0 < ¢t < 1.

An example of a convex set and function are shown in Figure 15. An example of a
nonconvex set and function are shown in Figure 16. There are two important sets that
one associates with functions defined® {oo}.

20.3 DEFINITION. Theepigraphof anR U {oc}—valued functionf, denote ep{f),
is defined by

epi(f) ={(z,r) e R" xR : f(z) <r}.

20.4 DEFINITION. Given a convex functiofi Theeffective domainfanR U {co}-
valued functionf, denote don{f), is defined by

dom(f) ={x e R": f(z) < oo}.

83
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Figure 15: (a) A convex set. (b) A convex function.
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Figure 16: (a) A nonconvex set. (b) A nonconvex function.
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The notions of set convexity and function convexity are closely related:

20.5 THEOREMA function is convex if and only if its epigraph is convex.

PROOF. First suppose thgtis convex. Fix(z,r) and(y, s) in epi(f) and fix0 <
t < 1. Then

fltz+ (1 —=1t)y) tf(z) + (1 =1)f(y)

<
< tr+(1—t)s.

Therefore(tz + (1 — t)y,tr + (1 —t)s) € epi(f). Thatis, epi( f) is convex.
Now, suppose that epjf) is convex. Fixz,y in R™ and fix0 < ¢ < 1. Then,
t(x, f(z)) + (1= 1)(y, f(y)) € epi(f).

Thereforet f(z) + (1 —t)f(y) > f(tx + (1 — t)y). Thatis,f is convex. i

21 Projection

Given a pointz in R™ and a convex set’, the following theorem establishes the exis-
tence and unigueness of a pointdhclosest to the point. Such a point is called the
projectionof x onC.

21.1 THEOREMLetC be a nonempty closed convex seRfhand letx be a pointin
R™. Then, there exists a unique solution to

min ||z — z||2.
zeC

PROOF. We start by proving existence. Rix € C. Putr = ||zp — z| and let
B(r,z) = {z: ||z — < r} denote the closed ball of radiusentered at. Clearly,
min ||z —z||*> = min |z —z|%
zeC z€CNB(r,x)
Putf(z) = ||z —z||?. As we saw in Theorer@?, a continuous function on a nonempty
compact set (in this casé N B(r, z)) attains its infimum. Therefore there exists an

z* € C such that
2" —z| < |z —

forall z € C.
Now, consider the question of uniqueness. Supposerthist not unique. That is,
suppose that there exists att in C' that is distinct fromz* and for which

2" — 2| = [l — |-
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Figure 17: Clearly: — Z is orthogonal tar* — z** if 2* andz** are equidistant from
xX.

Putz = (z* + 2**)/2. By convexity ofC, Z belongs toC. Furthermoregx — Z is
orthogonal tac* — z** (see Figure 17):

:c—x*+ai—$** T(* )
5 5 ¥ —x

= Sl@—a)+@—a")" (@ —2) + (@—2"))

(o=@ ~a™)

(e =2 = lla = 2*]1?)

(=N N R

Now compare the distance id with the distance ta:

lo —2*|* = (¢—2")"(z 2"
= @-z+z—-2)(z—24+7 2"
= lo-alP +2(-2)7(@ - 2*) + |z - "
= Jo—2l° + |z - 2*|*
> |z — 7|2

The strict inequality contradicts the minimality of. Therefore, the minimum must
have been unique to start with. ]

The next theorem gives a useful characterization of the projectieroafC'.

21.2 THEOREMA pointz is the projection ofc on C' if and only if z belongs toC'
and
(z—2)T(x—2) <0

forall zin C.

Note that the above inequality can be interpreted geometrically as the statement
that the vector fronx to z makes an obtuse angle with the vector frarto any other
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Figure 18: The angle between the vector frano « and the vector fronz to z is
clearly obtuse it is in C' andC' is convex.

pointin C (see Figure 18).

PROOF. First suppose that — z)”(z — z) < 0 for all z € C and thatz belongs to
C. Fix z in C and compute as follows:

lz=al* = l(z-2)+ @ -2
= Jz—z|*+ |z —z||®? +2(z — 2)T(z — 2).
Since all terms on the right are nonnegative, it follows that
Iz —2|* > [l - z]*.

Sincez was arbitrary, we see that the inequality holds forzaith C. Thereforez is
the projection oft onC.
Now, suppose that is in C and that there exists:ae C for which

21.3 (z—2)T(x —z) > 0.
While z might be further fromz thanz, we shall show that some points on the line
segment connectingto z are closer tham (see Figure 19). To this end, put

z(t) =tz+ (1 - )z
and

F(&) = |l2(t) — ||,
Itis easy to check that' (0) = 2(z — z)” (z —x), which is strictly negative. Therefore,
there exists & < ¢ < 1 such thatf(¢) < f(0). Butz(f) € C and soz cannot be the

projection ofz on C. This contradiction implies that the strict inequality (21.3) must
be wrong. ]

When the se€ is a linear subspace &", an explicit formula can be given for the
projection ontaC":

21.4 THEOREM.Suppose that’ = {z : z = ATy for somey € R™} whereA is an
m x n matrix of rankm. Then the following are equivalent:



21. PROJECTION 89

--- these points ar e closer

Figure 19: Clearly some points on the line segment connegtiteyz lie closer tox
thanz when the angle is acute as shown here.

1. z is the projection oft on C.
2. 7= AT(AAT) ! Ax.
3

.zeCandzTz=zTzforall z € C.

Note: The setC is the span of the set af-vectors given by the rows ol. The rank
assumption simply means that these vectors are linearly independent. Itis easy to check
that A has rankm if and only if AA” is nonsingular.

PROOF. (1) implies (2): By definition, z solvesmin,cr~ f(y) Wheref(y) = ||z —
ATy||? = 2Tx — 2(Ax)Ty + yT AATy. Lety denote a point at which the gradient of
f vanishes:

Vf(g) = —24x +24AT5 = 0.

SinceAAT is nonsingulary is uniquely given by
§=(AAT) 1 Ax.

Hencegz = ATy = AT(AAT) 1Az,
(2) implies (3): Suppose that = AT(AAT)"'Ax. Then,z = ATy, where
7 = (AAT)~1 Az. Hencez belongs taC. Suppose that also belongs t@. That is,
z = ATy for somey € R™. Then,
2T =yl AAT(AATY 1Az = yT Az = 27 .

(3) implies (1):Suppose that € C andz”z = z7 2 for all z € C. Pickingz = z,
we see that”z = z7z. That is,

Yet, for anyz in C' we have
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X e

Figure 20: The separating hyperplane theorem.

Combining these two equations, we see that
(z—2)T(x—z)=0.

Therefore, Theorem 21.2 implies thats the projection ofc on C. m|

22 Supporting Hyperplane Theorem

22.1 DEFINITION. AhalfspaceH is a set of the forn{z : a’2 < b}, wherea # 0.
TheboundarydH is the hyperplangz : a”z = b}.

The projection theorems of the previous section provide the key tool to proving the
importantsupporting hyperplane theorem:

22.2 THEOREM.Suppose that’ is a nonempty closed convex seiRh and thatz is
a point not inC'. Then there exists a halfspaéesuch thatC ¢ H, CNJH # 0, and
x ¢ H.

PROOF. Letz denote the projection of onC. Leta = x — z. Sincex ¢ C and
T c C,weseethat # 0. PutH = {z: a2 < aTz}. By Theorem 21.2(C is a
subset ofH. Sincea”z — o’z = ||a||? > 0, it follows thatz ¢ H. Sincez € C and
Z € OH,we getthatC N 0H # 0. m|



Measure and Integration

This chapter is devoted to integration on abstract spaces. As special cases, it covers the
Riemann integral, line and surface integrals, and Stieltjes integrals.

23 Motivation

The integral introduced in elementary calculus courses is called the Riemann integral.
Let’s briefly review the definition of the integral fromto b of a real-valued function
f. LetP denote a partition of the interval, b]:

Aa=20 <21 < Ty <+ < Tp_1<xy=~0

Associated with this partition, is an upper estimate of the integral

n

U(f,P)= Z sup  f(z)(x; —xi—1)

i—1 Ti-1STSmg

and a lower estimate

n

L(f,P) = Zz‘ inf_ f(2) (@i — xim).
=1 TiT1STST
Clearly,
L(f,P) <U(f,P).

The functionf is said to beRiemann integrablever the intervala, b] if

sup L(f,P) = inf U(f,P).
P P

The basic result regarding Riemann integration is th#ti§ continuous, then the Rie-
mann integral exists.

There are at least three problems with the Riemann integral. The first problem
is that highly discontinuous functions aren’t integrable. For example, consider the
function f that is one at every irrational point and is zero at every rational. Then, for
every partitionP,

U(f,P)=b—a

91
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and
L(f,P)=0.

The second problem is that one would like to be able to integrate functions whose
domain is more general than simply the reals. Of course, Riemann integrals are ex-
tended to functions defined @&i*, but even that is not as general as one would prefer.

The third problem is that one would often like to interchange a limit with an in-
tegral. Although it is not apparent from the definition given above, it turns out that
justifying such an interchange for Riemann integrals is difficult.

To circumvent these difficulties, the idea is to partition the range instead of the
domain (after all, the range is always the reals). Suppose firstftlista positive
function defined on an arbitrary setand partition[0, n) using dyadic interval§k —
1)/2™ k/2™). Let

Bin={x € E: f(zx)e[(k—1)/2" k/2™)}

denote the set of points in the domain that map j(to- 1) /2™, k/2™). The following
sum is a lower estimate of the area undler

nan

Z 2%,“(3]6,”)7

k=1

where u(By,,) denotes the length or, more generally, the measurB,0f. As n
increases, this sum increases. Therefore, it has a limit (possibly infinite) which is
called theLebesgue integradf f over E:

n2™

[ f@ntds) =1im Y Su(Br).
E k=1

Note thatyu is a function from subsets @ into R . To capture the notion of being
a “measure” of the subsets,should possess the following properties:

1. if Ay, Ay, ..., are disjoint subsets df, thenp (U, Ay,) = >, 1(An);
2. p(0) =o0.

A function on subsets of with these two properties is called@easureon E.

At this point the picture seems pretty clear. All that remains is to construct the
measurg: in the cases of interest (such as the usual notion of lengik)oilowever,
the following theorem due to Ulam shows that there aren’t many measures that can be
constructed this way.

23.1 THEOREM.If 4 is a finite measure defined on all subsets0of], then there
exists a countable collection of points, z2, . .. in [0, 1] such thatu({z1, 2, ...}¢) =
0.
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Hence, there does not exist a measure defined on all subsgtsipfor which
u([a,b]) = b—a. Thatis, there does not exist a measure which corresponds to our idea
of length. The problem is that we have asked for too much. It is not necessary (and
evidently not possible) to define our measures on all subsdis dhe collections of
sets on which we will define our measures will be called algebras. This is the subject
of the next section.

24 Algebras

Let F be a set (generally this set will be uncountably infinite although we by no means
require this). We wish to assign “measures” to the sizes of various subseéts lbof

would be nice to assign a measure to arbitrary subsets, but as we shall see this is im-
possible to do in such a way that certain natural additivity properties hold. Hence, we
must restrict our attention only to certain subset&ofVe will call such subsetsiea-

surable If a setA is measurable, it stands to reason that its complement should also
be measurable (and its measure should be the total meastirmfus the measure of

A). Given a finite disjoint collection of measurable sets, it makes sense that their union
should be measurable since the measure of the union should be the sum of the measures
of each set. Using the fact that complements of measurable sets are measurable, it is
easy to see that finite non-disjoint unions of measurable set should also be measurable
since they can be pieced together from disjoint measurable sets. Finally, it is reason-
able to assume that countable unions of measurable sets should also be measurable,
since the sums involved in the appropriate definition involves only positive numbers
and so must either converge to a finite number or to infinity. A collection of measur-
able sets will be called a-algebraon E. To summarize the foregoing,caalgebra is

a non-empty collectiod of subsets of with the following two properties:

Ae&E=>FE\A€g,

Al,AQ,...GS:UTOAnGS.

In other words, ar-algebra is a collection of subsets Bfthat is closed under the
operations of complementation and countable unions. It follows thaakebra is
closed under finite unions, finite intersections, and countable intersections as well. In
particular, the seti and E belong to everyr-algebra onF.

The simplestr-algebra onF is £ = {0, E'}; it is called thetrivial o-algebra The
largest is the collection of all subsets; it is called tligcretes-algebra

The intersection of an arbitrary family (countable or uncountable)-afgebra on
E is again as-algebra. IfC is a collection of subsets df, the intersection of aly-
algebras containing is the smallest-algebra that contair it is called thes-algebra
generatediy C and is denoted by (C).

If £ is a metric space, then thealgebra generated by the collection of all open
subsets is called thBorel o-algebraon E; it is denoted by3(E), and its elements are
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called Borel sets. Thus, every open set, every closed set, every set obtained from open
and closed sets through various set operations are all Borel sets.

Monotone Class Theorem

This is a very useful theorem which simplifies the task of showing that a given col-
leciton is as-algebra. Throughout this subsectidnjs an arbitrary set.

A collectionC of subsets of~ is called ar-systenif it is closed under finite inter-
sections, that is, if
24.1 A, BeC=ANBeC.

A collectionD of subsets oF is called ad-systenon F if

() EeD,
24.2 () A, BeDandBC A= A\BeD,
(i) (A,)cDandA, A= AeD.

On the last line, we wrotéA,,) C D to mean thatA,,) is a sequence of elements of
D, and we wroted,, /* Ato meanthatd; C A C ---andU,A,, = A.

24.3 PROPOSITIONLetE be a collection of subsets éf. Then£ is ac-algebra on
E if and only if€ is both ar-systme and a d-system éh

PROOF. If€ is o-algebra then it is obviously a-system and a d-system. To show
the converse, suppose tlgais both ar-system and a d-system. Now, 24.2i and 24.2ii
show that€ is closed under complements. SindeJ B = (A° N B°)¢, this implies
that€ is closed under unions (ifl, B € £ then A¢, B¢ € £, and thusA° N B¢ € &
sincef is aw-system, and hended® N B€)© € £). This implies that is closed under
countable unios as well: i1, As,... € £, put

Blel, BQZAQ, B3:A3,....
Each B,, belongs to£ by what we have just shown. Obviouslig;, ¢ By C ---
anduU, B, = cup,A,. Thus, using property 24.2iii of athe d-systemwe see that
UnA4, € €. |

The following lemma is needed in the proof of the main theorem. Its proof is
obtained by checking the conditions of 24.2 one by one; we leave it as an exercise.

24.4 LEMMA. LetD be a d-system oR. Fix D € D and let
ld={AeD:ANDeD}.

Then,ND is again a d-system.
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The following the main result of this section. It is called Dynkin’'s monotome class
theorem.

24.5 THEOREMIf a d-system containszasystem, then it contains also thealgebra
generated by that-system.

PROOF. LetC be ar-system. LetD be the smallest d-system dnthat containg.
We need to show thab > ¢(C). To that end, since(C) is the smallestr-algebra
containingC, it is sufficient to show thab is ac-algebréor this, it is in turn sufficient
to show thatD is ar-system (and then Proposition 24.3 implies that the d-sy®em
ac-algebra).

Fix BeCandletD, = {Ae€D: AN B € D}. SinceB € C C D, Lemma 24.4
shows tha; is a d-system. MoreoveR), O C sinceANB € C C DforeveryA € C
by the fact that is aw-system. Sd; must contain the smallest d-system containing
C,thatis,D; D D. In other wordsA N B € D for everyA € D andB € C.

Next, fix A € D and letD, = {B € D : AN B € D}. We have just shown
thatD, D C. Moreover, by Lemma 24.4 agaif; is a d-system. THusD, O D. In
other words,A N B € D for everyA € D andB € D, that is,D is ar-system. This
completes the proof. ]

Exercises:

24.1 Partitions. A partition of E is a countable disjointed collection of subsets
whose union iz, It is called a finite partition if it has only finitely many
elements.

1. Let{A, B,C} be a partition off. Describe ther-algebra generated
by this partition.

2. LetC be a partition ofE). Let £ be the collection of all countable
unions of elements af. Show that€ is ac-algebra. Show that, in
fact,€ = o(C).

Generally, ifC is not a partition, the elements ofC) cannot be obtained
through such explicit constructions.

24.2 LetB andC be two collections of subsets &. If B C C, theno(B) C
o(C). If BC o(C) C o(B), thena(B) = o(C). Show these.

24.3 Borel o-algebra onR. Show thatB(R) is generated by the collection of
all open intervals. Hint: recall that every open subsdRa$ a countable
union of open intervals.

24.4 Continuation. Show that every interval dR is a Borel set. In particular,
(=00, ), (—o0, x], (z,y], [z, y] are all Borel sets. Every singletdn} is
a Borel set.
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24.5 Show tha3(R) is also generated by any one of the following:

the collection of all intervals of the forifx, o),
the collection of all intervals of the forifx, y],
the collection of all intervals of the forfa, y],

the collection of all intervals of the forift-oo, z],

o > bR

the collection of all intervals of the forifx, co) with « rational.

25 Measurable Spaces and Functions

A measurable spads a pair(E, £) whereFE is a set and is ac-algebra onE. Then,
the elements of are calledneasurable set&VhenF is a metric space artl= B(E),
the Borelo-algebra on®, the measurable sets are also cabBedel sets

Let (E, &) andF, F) be measurable spaces andfléte a mapping fron¥ into F.
Then, f is said to bemeasurableelative tof and.F if f~!(B) € & foreveryB € F
(these are the functions we wish to be able to integratey. dhd F' are metric spaces
andé = B(F) andF = B(F) andf : E — F'is measurable relative thandF, tthen
f is also called &orel function

Measurable Functions

The following proposition reduces the checks for measurability:

25.1 PROPOSITIONLet (E, £) and (F, F) be measurable spaces. In order fpr:
E — F to be measurable relative t6 and F, it is necessary and sufficient that
f~Y(B) € E for everyB € F, for some collectiorF, that generates-.

PROOF. Necessity part is trivial. To prove the sufficiency AgtC F be such that
o(Foy) = F and suppose that=!(B) € & for everyB € F,. We need to show that,
then,

Fi={BeF: [ (B)e&}
is equal toF. For this, it is sufficient to show thak; is ac-algebra, sinces; O Fy

by hypothesis andr is the smallest-algebra containingry. But checking thatF; is
ac-algebra is easy in view of the relations given in Exercise 2.1. |
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Borel Functions

Let £ and F' be metric spaces and IEtand F be their respective Boret-algebras.
Let f : E — F. SinceF is generated by the open subsetdoin order for f to be a
Borel function, it is necessary and sufficient tifat! (B) € & for every open subsé?
of F'; this is an immediate corollary of the preceding proposition. In particulgrjsf
continuous, therf ~1(B) is open inE for every openB C F. Thus, every continuous
functionf : E — F'is Borel measurable. The converse is generally false.

Compositions of Functions

Let (E,E&), (F,F), and(G, G) be measurable spaces. lfet E +— F andg : F — G.

Then, their compositiog o f : = — g(f(z)) is a mapping fromZ into G. The fol-
lowing proposition will be recalled by the phrase “measurable functions of measurable
functions are measurable”.

25.2 PROPOSITIONIf f is measurable relative t6 and F, and if g is measurable
relative toF and g, theng o f is measurable relative t6 andG.

PROOF. Recall thatg o f)~1(C) = f~1(¢g~1(C)) foreveryC C G. If C € G and
g is measurable, theB = ¢g~1(C) is in F. Therefore, iff is measurablef~!(B) =
g7 (C))isin & for everyC € G. m]

Numerical Functions

By a numerical functionon E, we mean a mapping fromt into R or some subset
thereof. Such a function is said to pesitiveif all its values are iR, and is said
to be real-valued if all its values are B If (E, &) is a measurable space afids a
numerical function o, then f is said to be€-measurabldf it is measurable with
respect t&€ andB(R).

Let (E, £) be a measurable space and fete a numerical function ofy. Using
Proposition 25.1 with' = R andF = B(R) and recalling Exercise 24.5, we see that
the following holds.

25.3 PROPOSITIONThe numerical functiorf is £-measurable if and only if any one
of the following is true:

1. {x: f(z) <r} e &foreveryr € R,
2. {z: f(x) >r} e &foreveryr e R,

3. {z: f(x) <r} e Eforeveryr € R, etc.
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25.4 COROLLARY.Suppose thaf : E — F whereF is a countable subset &.
Then,f is £-measurable if and only ifx : f(z) = a} € £ foreverya € F.

PROOF. Necessity is trivial since each singlefar is a Borel set. For the sufficiency,
fix r € R and note thaf{z : f(z) < r} is the union of{z : f(z) = a} over all
a < r,a € F, and therefore belongs 1 since it is a countable union of the sets
{z: f(z) = a} € €. Thus,f is E-measurable by the preceeding proposition. O

Positive and Negative Parts of a Function
Let (E, £) be a measurable space. lfebe a numerical function of. Then?
fr=fvo, fm=—(f1r0)

are called the positive part gfand negative part of, respectively. Note that botfi™
and f— are positive functions and

f=r-f.

25.5 PROPOSITIONThe functionf is £-measurable if and only if botli™ and f~
are £-measurable.

The proof is left as an exercise. The decompositfor f™ — f~ enables us to
state most results for positive functions only, since it is easy to obtain the corresponding
result for arbitraryyf.

Indicators and Simple Functions
Let A C E. Itsindicator, denoted byl 4, is defined by

1 ifxeA,
114(“””)_{ 0 ifrgA

Obviously,1 4 is £-measurable if and only il € £.
A function f on E is said to besimpleif it has the form

25.6 f= iailAi
1

3Fora,b € R we writea V b for the maximum ofz andb, anda A b for the minimum. The notation
extends to functionsf V g is the function whose value atis f(z) V g(z); similarly for f A g.
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for some integen, real numbersiy, ..., a,, and measurable sets,, ..., A,. Itis
clear that, then, there exist an integer> 1, distinct real numbers,, ..., b,,, and a
measurable partitioBs, . .., B,, } of E such thatf = >_7" b;1p,, this latter repre-
sentation is called theanonical formof the simple functiory.

Every simple function oF is £-measurable; this is immediate from Corollary 25.4
applied to the canonical form gt Conversely, iff is £-measurable, takes only finitely
many values, and all those values are real, the&nsimple.

In particular, every constant is a simple function. Moreovef, éndg are simple,
then so are

f+ga ffgv f.97 f/g7 f\/gv f/\ga

except that, in the case ¢/ g one must make sure thais nevero.

Approximations by Simple Functions

We start by constructing a sequence of simple functions that approximate the identity
functiond from R, intoR,.. For eachn € N, let

n £ ko k+1 n __
5.7 dn(m):{k/z if £ <az< ke{0,1,...,n2" —1},

. 271 ’
n if x> n.
The figure below is fotl,. The following lemma should be self-evident.

25.8 LEMMA. Eachd,, is a simple Borel function oR_,.. Eachd,, is right-continuous
and increasing. The sequengs,) is increasing pointwise to the functiah: = — z.

The following theorem characterizes &imeasurable positive functions, and via
Proposition 25.5, alf-measurable functions.

25.9 THEOREMA positive function ot is £-measruable if and only if it is the limit
of an increasing sequence of simple positive functions.

PROOF. NecessityLet f : E — R, be&-measurable. Let thé, be defined by 25.7.
Since eachl,, is a measurable function frof, into R_., and since measurable func-
tions of measurable functions are measurable, the fungfiea d,, o f is £-measurable
for eachn. Sinced,, is simple, so isf,,. Finally,lim f,,(z) = limd, (f(z)) = f(x)
sincelimd, (y) = y for all R,.. Thus, f is the limit of the sequencgf,,) of simple
positive functions ang; < fo < ---sinced; <ds < ---.

SufficiencylLet f; < fo < --- be simple and positive and Igt= lim f,,. Now, for
eachr € E andr € R, we havef(z) < r if and only if f,,(x) < r for all n; thus,

{zeE:flz)<r}=n2{z€FE: folz) <r}

for eachr € R. Since thef,, are simple (and therefore measurable), each factor on
the right side belongs t6 and, therefore, so does the intersection. Herfcis, £-
measurable by Proposition 25.3. O
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Limits of Sequences of Functions

Let (E, £) be a measurable space and(lgt) be a sequence of numerical functions on
E.

25.10 THEOREMSuppose that each, is £-measurable. The, each one of

inf f,, sup f,, liminff,, limsup f,

is again€-measurable. Moreover, ifm f,, exists, then it i€£-measurable.

PROOF. For € F andr € R, we havenf f, (x) > rifand only if f,,(x) > r for all
n. Thus, for eachr € R,

{zeE:inff(z) >r}=nN{ze€F: fo(x)>r}

Now, {x : f,(x) > r} € £ for eachn by the measurability of,,, and therefore the in-
tersection on the right side belongsiaincef is closed under countable intersections.
Thus,inf f,, is £-measurable by Proposition 25.3.
The proof thatup f,, is £-measurable follows via similar reasoning upon noting
that
{xeFE:supfp(z) <r}t=Mp{z € E: folz)<r}

It follows from these that

liminf f, = sup inf f,, limsup f, = inf sup f,
m n>m mop>m

are both&-measurable. Finallyim f,, exists if and only ifliminf f,, = limsup f,,
and therlim f,, is the common limit; so, it must b&measurable. O

Monotone Classes of Functions

Often we are interested in showing that a certain property holds for all measurable
functions. The following are useful in such quests.

Let M be a collection of positive functions afi. Then, M is called amonotone
class of functiongrovided that

() leM,
25.11 () f,g€M,anda,be R, = af +bg € M,
(i) (fu) <M, andf, /" f=feM

The following is called the monotone class theorem for functions.

25.12 THEOREMLet M be a monotone class of functions B Suppose that, €
M for every A € C for somer-systenC that generates the-algebra&. Then, M
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includes all positive&€-measurable functions and all bound€emeasurable functions.

PROOF. We start by showing that € M for every A € £. To this end, let
D={Ac&:14e M}

Using the properties 25.11 g1, it is easy to check thaD is a d-system. Moreover,
D D C by hypothesis. Thus, by Dynkin’s monotone class theorm o(C) = £. In
other words,l 4 € M for everyA € €£.

Consequently, in view of property 25.11(iii includes all simple€-measurable
functions.

Let f be a positivec-measurable function. By Theorem 25.9, there exists a se-
guence of positive simple functiorfs  f. Since eaclf,, in in M by the preceeding
step, 25.11(iii) implies thaf is in M.

O

Notation

We shall writef € £ to mean thatf is an£-measurable function. Thug, stands
both for ac-algebra and for the collection of all numerical functions measurable with
respect to it. Furthermore, we shall use the notation

Fr=A{feF:f=0}

for any collection ofF of numerical functions. Thus, in particuldt, is the collection
of all positive€-measurable functions.

Exercises:

25.1 Trace spaceslLet (F, £) be a measurable space andletC E be fixed.
Show that

D={AND:A€cé&}

is ac-algebra orD. Then,D is called the trace of on D, and(D, D) is
called the trace ofE, £) on D.

25.2 o-algebra generated by a functiorLet E be a set and letF', 7) be a
measurable space, Létbe a mapping fron¥ into F' and set

FHF) ={f71(B): BeF}.

Use Exercise 2.1 to show thfit ! (F) is ac-algebra onF; it is called the
o-algebra onE generated by . It is the smallest-algebra ont such that
f is measurable relative to it arsl.
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25.3 Product spaced.et (E, £) and(F, F) be measurable spaces. A rectangle
A x B is said to be measurable if € £ andB € F. Show that the
collection of all measurable rectangles form-aystem. Ther-algebra on
E x F generated by that-system is denoted by @ F and is called the
producto-algebra. Furthe(E x F, £ @ F) is called the product dfE, £)
and(F,F), and is denoted byF, ) x (F,F) also. If (E,&) = (F, F),
then it is usual to writeF? for E x F and&? = £ ® F. In particular,
(R%, B(R?)) = (R,B(R)) x (R,B(R)), and by an obvious extension,
(R™, B(R™)) = (R, B(R)) x --- x (R, B(R)), n times.

25.4 Continuation. Let (E,&), (F,F), (G,G) be measurable spaces. Let

f + E — F be measurable relative H and F, and letg : £ — G
be measurable relative thandgG. Then,

hz) = (f(z),9(z)), =€k,

defines a mapping fromy into F' x G. Show thath is measurable relative
tof andF ® G.

In particular, a functionf : £ — R™ is measurable relative t6 and
B(R™) if and only if its coordinates are measurable relativeCt@and
B(R); recall that the coordinates ¢f are the functionsfy, ..., f,, such

thatf(z) = (f1(@), ... fala)), x € E.

25.5 Discrete spacesA measurable spadd, &) is said to baliscreteif E is
countable and is theo-algebra of all subsets @f. Then, show that every
numerical function of is £-measurable.

25.6 Suppose thdtis generated by a countable partitionfof Show that, then,
a numerical function oty is £-measurable if and only if it is constant over
each member of that partition.

25.7 Approximation by simple functionsShow that a numerical function of
FE is £-measruable if and only if it is the limit of a sequence of simple
functions.

25.8 Arithmetic operations.Let f and g be £-measurable. Show that, then,
each one of

f+a9. f—9, f-9. flg. [Vg, fAg
is £-measurable provided that it be well-defined.

25.9 Functions onR. Let f : R — R, be increasing. Show that it is a Borel
function.

25.10 Step functionsA function f : R — R is called a step function if it has

the form
f= Z aila,
1
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where each; is an interval. Show that every sug¢hs a Borel function.

25.11 Right-continuous functionsShow that every right-continuous function
f : R+~ Ris Borel measurable. Similarly, every left-continuous function
is Borel. Hint for right-continuousf: defined,, (z) = (k + 1)/2" if
k/2" <ax < (k+1)/2™ forsomek = 0,1,2,...forn =1,2,.... Show
thatd,, is Borel. Letf,(z) = f(d.(z)). Show that eacly,, is a step
function, and show thaf,, — f asn — oo.

26 Measures

Let E, £) be a measurable space measureon (E, £) is a mapping: : £ — R, such
that

1. pu@) =0,
2. p(Und,) =, n(Ay) for every disjointed sequencel,,) C £.

The latter condition is calledountable additivity
A measure spacis a triplet(E, £, 1) whereFE is a setf is ac-algebra on®, and
1 is a measure ofiE, ).

26.1 PROPOSITIONLet i« be a measure ofi£, £). Then, the following hold for all
measurable setd, B, andA,,, n > 1:

Finite additivity: A N B = () implies thatu(A U B) = u(A) + u(B).
Monotonicity: A C B implies thatu(A4) < u(B).
Sequential continuity: A,, A implies thatu(A,)  u(A).

Boole's inequality: p(UnA,) <>, u(Ay).

PROOF. Finite additivity is a particular instance of the countable additivify. ahke
A1 = A, Ay = B, A3 = A4 = --- = (. Monotonicity follows from it and the
positivity of u: if A C B,

1(B) = p(A) + n(B\ A) = p(A)

sinceu(B\ A) > 0. Sequential continuity follows from (and is equivalent to) countable
additivity: suppose that,, , A; then,

By =A4;, By=As\ A1, Bs=A3\ A, -
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are disjoint, their union igl, and the union of the first is A,,; hence, the sequence of
numbersu(A,,) increases by the monotonicity of and

lim p(An) = lim p(Uy B;) = li,gnz p(Bi) = > u(Bi) = n(UFBy) = u(A).

Finally, Boole’s inequality follows from the observation that

(AU B) = u(A) + u(B\ A) < p(A) + u(B).

Arithmetic of Measures

Let (E, &) be a measurable space.,dfis a measure on it and if > 0 is a constant,
thency is again a measure. ffandv are measures dif, &), soisu+v. If py, pa, . ..
are measures, then sguis= > i, it is obvious thafu (@) = 0, and if Ay, A, ... are
disjoint then

p(Undn) = > pm(UnAy)
iZum(An)
= iium(fln)
z::uw(lAn),

where the crucial step (where the order of summation is changed) is justified by the

elementary fact that
Z Z Amn = Z Z Amn
m n n m

if @y > 0 forall m,n.

Finite, o-finite, X-finite measures

Let 1 be a measure ofF,£). It is said to befinite if u(E) < oo. Itis called a
probability measuréf p(E) = 1. Itis said to bes-finite if there exists a measurable
partition (E,,) of E such thatu(E,,) < oo for eachn. Itis said to beX-finite if there
exist finite measureg,, us, . .. such thatu = > u,. Note that every finite measure
is trivially o-finite, everyo-finite measure is-finite. The converses are false (see
Exercise 26.4).
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Specification of Measures

Itis generally difficult to specify:.(A) for eachA, simply because there are too maty
in ac-algebra. The following proposition is helpful in reducing the task to specifying
u(A) for thoseA belonging to ar-system that generates the giverlgebra.

26.2 PROPOSITIONLet i and v be measures o(F, ). Suppose thau(E) =
v(E) < oo, and thaty andv agree on ar-system generating§. Thenu = v.

PROOF. LetC be ar-system witho(C) = £. Suppose that(A) = v(A) for every
A € C. We need to show that, thep(A) = v(A) for everyA € £. This amounts to
showing that

D={Ac&: uA)=v(A)}

containsE. Now, D D C by hypothesis, and it is straightforward to check thais a
d-system. Thus, by Dynkin’s monotone class theorBnm o(C) = €. a

26.3 COROLLARY.LEt ; andv be probability measures dR, 5(R)). Then,u = v
if and only if, for everyr € R,

p((—o0, z]) = v((—00, z]).

PROOF. The collectiog of all intervals of the form(—oo, x] is ar-system generating
B(R). THus, the preceding proposition applies to prove sufficiency. Necessity is trivial.
O

The following proposition extends 26.2 #efinite measures.

26.4 PROPOSITIONLet x andv be o-finite measures of\F, £). Suppose that they
agree on ar-systentC generatingg. Suppose further that there is a partiti¢®’,,) of
E suchthatt, € Candu(E,) = v(E,) < oo for everyn. Then,u = v.

PROOF. For each, define the measures, andv,, on (E, &) by
pn(A) =u(ANE,), v, (A)=v(ANE,), Acf.

SinceE,, € C,and sinceA N E,, € C for everyA € C, we have
un(A) = u(ANE,) =v(ANE,) =v,(A)for A eC.

And, by hypothesisy,,(E) = u(E) = v(F) = v,(E) < co. Thus, the last proposi-
tion applies to show that,, = v,, for eachn. This completes the proof singe= > 1,
andv = > v,. O



106 MEASURE AND INTEGRATION

Image of Measure

Let (E,€) and(F, F) be measurable spaces. Lebe a measure ofZ, &) and let
f + E — F be measurable relative ®vand F. Then,

26.5 po f~H(B)=pu(f7'(B)), BEF,

is well-defined sincg —1(B) € £ for eachB € F. Itis easy to check that = y0 f 1
is @ measure ofiF, F). Itis called theamage ofu under f.

Almost Everywhere

Often we face situations where a certain statement is true for every, and £, is
almost the same &5 in the sense thaf, € £ andu(E\ Ep) = 0. In that case, we say
that the statement is true fatmost every: in E or that the statement is true almost
everywhere.

Incidentally, a setvV C FE is said to be neglibible if there is af € £ such that
N c Aandu(A) = 0. So, a statement holds almost everywhere if and only if it fails
only over a neglibible set.

EXAMPLES.

26.6 Dirac measurelet (E, ) be a measurable space. kix E. Define

1 ifzecA
590(’4)_{ 0 ifzgA

for eachA € £. Then,d, is a measure o(F, ). Itis called theDirac measuresitting
atz.

26.7 Counting measured.et (F, &) be a measurable space andllebe a countable
subset ofF. Define a measureon (E, £) by

V:Z(Sx.

zeD

Note thatv(A) is the number of points ial N D. Such measures are called counting
measures.

26.8 Discrete measure spaceset F be countable and be the collection of all
subsets off. Specifying a measure oft7, £) is equivalent to assigning a number
m(x) in R, to each point: in £ and then letting

p(A) =Y m(x), AcE.

T€EA
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Then,m is called the mass function correspondingtdn particular, ifE = {1,2,...,n},
every measurg on (E, £) can be regarded a a vector¥.

26.9 Purely atomic measuretet (E, £) be a measurable space, I2te a countable
subset of/, and letm(x) be a positive number for eache D. Define

w(A) = m(z)i,(A), Ack.

zeD

Then, i is a measure ofF, £). It puts the mass:(z) at the pointz, and there are
only countable many pointslike that. Suchu are said to be purely atomic, the points
x with p({z}) > 0 are called the atoms ¢f.

26.10 Lebesgue measure&.measurg: on (R, B(R)) is called the_ebesgue measure
onRif u(A) is the length ofA for every intervalA. The collectiorC of all intervals

form am-system that generaté{R) and thus, by Proposition 26.4, there can be at
most one such measure. The whole point of all measure theory is the following theorem
which, unfortunately, we don't prove.

26.11 THEOREMThere exists a measure @R, B(R)) which assigns to each interval
A its length.

It is impossible to display:(A) explicity for each Borel setl, but countable ad-
ditivity and various properties list in Proposition 26.1 enable us to figire) out for
most reasonable sets. For instanceu({z}) = 0 for everyz € R, u(A) = 0 for
every countable set C R, u(A) = 0 for the cantor se#}, and so on. Of course, there
are many sets with strictly positive measure.

Similarly, Lebesgue measure &7 is the “area” measure, Lebesgue measure on
R3 is the “volume” measure, and so on. All Lebesgue measurd &7, R3, etc. are
o-finite.

More generally, given an intervdd C R, it makes sense to talk of Lebesgue mea-
sure on(E, B(€)); this is the restriction of Lebesgue measurdfoto the trace space
(E,B(E)). Similarly, one can talk of Lebesgue measure on a domdittior on a do-
main inR™. In all cases we shall usg, to denote the Lebesgue measure on a domain
inR™.

Exercises:
26.1 Show thaD in the proof of 26.2 is a d-system.

26.2 Restrictions.Let (E, £, 1) be a measure space. LBte £ and letD =
{A € £: A c D}. Then,(D,D) is the trace of £,£) on D. Define
v(A) = u(A) for A € D. Then,v is a measure ofiD, D); itis called the
restrictionof p to D.
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26.3 Uniform distribution. Let D C R be an interval of finite length. Let
w(B) = A (B)/\ (D) for Borel subsets3 of D. Show thatu is a prob-
ability measure or(D, D) whereD = B(D). Itis called theuniform
distributionon D.

26.4 X-finiteness. Let E = {a, b} with the discretes-algebra, and define
u({a}) = 0, u({b}) = +oo0. Show that this defines B-finite measure
1 that is noto-finite.

26.5 Atoms, atomic measures, diffuse measues.(F, £) be such thez} €
& for everyx € E. A point z is said to be aratomfor the measure:
if u({z}) > 0. If x has no atoms, then it is said to d#fuse If p puts
no mass outside the set of its atoms, then fiugely atomic In general,
1 will have some atomic part and some diffuse part. This is to show this
decomposition.

1. Letu be finite. Show that it has at most countably many atoms. Hint:
let D be the set of atoms, note th&t = U, D,, whereD,, = {z :
u{x}) € [1/n, 1/(n—1)),n =1,2,.... Use the finiteness gf to
conclude that each,, is a finite set, and therefore, thBt must be
countable.

2. Letyu beX-finite. Show that it has at most countably many atoms.
3. Let D be the set of atoms of 8-finite measure:. Define

v(A)=pu(AND), XA =pu(AND®, Act.
Then,v is purely atomic\ is diffuse, and

w=v+A

27 Integration

Let (E, &) be a measurable space. Recall thattands also for the collection of all
£-measurable functions and thét is the sub-collection consisting of positive
measurable functions. Given a measuren (E, ), our aim is to define the “integral
of f with respect tq.” for all reasonable functiong in £. We shall denote it by any of
the following:

uf:/Eu(d:v)f(m)=/Efdu.

When E is an interval ofR and f is continuous and: is the Lebesgue measure,
the integral will coincide with the usual Riemann integral fobn E. WhenE =
{1,...,n} and€ is the discreter-algebra, every measureis specified by a row vec-
tor (p1, . .., ptn) With p; denotingu({i}), and every functiory € £ corresponds to a
column vector(f1, ..., fn) with f; = f(¢); in this case the integral f will coincide
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with the product of the row vectqius, . . ., uy,) with the column vector with entires
f1,--., fn. As this last case illustrates, it is best to think of the integral as a product.
After we define it, we shall show that it has the properties of products.

Definition of the Integral

We define the integralf in three steps: first for simple positivg then forf € £,
finally for reasonable € £.

Step 1. Let f be a nonnegative simple function. If its cannonical fornmyis=
31 aila,, then we define

27.1 pf = Z%M(Ai)-
1

Step 2.Let f € &,. Let(d,) be defined by 25.7 and recall from the proof of
Theorem 25.9 thdim d,, o f = f. Now, for eachn, the functiond,, o f is simple and
positive, and the integral(d,, o f) is defined by the preceding step. We shall show in
the remarks below that the numberl,, o f) form an increasing sequence, and hence,
lim p(d,, o f) exists (it may bet-co). Sincef = limd,, o f, we define

27.2 wf =1lim p(d, o f).

Step 3.Let f € £ be arbitrary. Thenf* and f~ belong to€. , and their integrals
are defined by the preceding step. Noting that = — f—, we define

27.3 wf=pf* —pf”

provided that at least one term on the right is finite. Otherwisefif = uf~ = +oo0,
theny f does not exist.

REMARKS: (a) Formula 27.1 holds for nonnegative simple functions even when
> -1 a;14, is not the canonical representation for

F=ala, = bilp, = uf =Y ap(A) = biu(By).
1 1 1 1

This is easy to check using the finite additivity,af
(b) If f andg are nonnegative simple functions aath € R, thenaf + bg is
again a nonnegative simple function, and

plaf +bg) =apf+bpg.

This can be checked using the preceding remark.

(c) If fis a nonnegative simple function, then 27.1 shows thyat> 0 (it can be
+00).

(d) If f andg are nonnegative simple functions afik g, then the preceding two
remarks applied t¢ andg — f show thatuf < pg.

(e) In Step 2 of the definition, we havk o f < dy o f < --- and the preceding
remark shows that(d; o f) < u(dy o f) < --- as claimed.
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Integral over a Set

Let f be a measurable function anda measurable set. Thefil 4 € £. Theintegral
of f over A is defined to be the integral ¢fl 4; it exists if and only ifu(f14) exists.
The following notations are used for it:

27.4 u(r1a) = [ pan)s@ = [ fan

Integrability

A function f € £ is said to bentegrableif nf exists and is a finite number. Thus,
f € € isintegrable if and only ifuf* < co anduf~ < oo, or equivalently, if and
only if u|f| < oo (note that f| = f + 7).

Elementary Properties

Here are some familiar properties of the integrals. A few others are put into the exer-
cises.

27.5 PROPOSITION.

(a) Positivity. If f € £, thenuf > 0.

(b) For f € £+, uf = 0 ifand only if f = 0 almost everywhere.

(c) Monotonicity. If f,g € £, andf < g, thenuf < pg. If f,g € £andf,g are
integrable, andf < g, thenuf < ug.

(d) Finite additivity over sets.Let f € &;. If {A;,..., A} is a measurable
partition of A € £, then

27.6 /Afdu:zm:/A fdu.
= Ja,

PROOF. (a) Iff > 0, then the definition of.f yieldsuf > 0.
©fo< f<g,thend, o f <d,ogandso

puldn o f) < p(dn 0 g)

by the monotonicity of integration for simple functions. Now, the left-hand side con-
verges touf and the right-hand side convergesit@. Hencepf < ug. The general
case is similar.

(b) Linearity for simple functions and monotonicity imply the following chain of
inequalities:

0< %u({fv D f(@) 2 %}) = 1/‘(1]”2%) = u(%lfzy < pu(flyz1) <pf=0.

n
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Since the two ends of this chain of inequalities are equal, it follows that all the inequal-
ities are in fact equalities. Hence,

p{z: flz) = 1/n}) =0 Vn

and so
{a: f(2) >0} = Up{a: f(z) > 1/n}.

Taking the measure of both sides, we get
0<p({z: fz)>0}) <D u({z: f(z) = 1/n}) =0.

Again, equating this anchored chain of inequalities, we seefthad a.e.

(d)Fix f € £&;. LetAq,..., A, € £ be disjoint with unionA. If f is simple, 27.6
is immediate from Remark b applied to the simple functigns,, ..., f14, whose
sumisf1 4. Applying this to simple functiond,, o f, we see that

m

Zﬂ(lfhdn of)=p(ladno f).
1

Note thatl g(x)d,, o f(z) = d,,(15(x) f(z)) for eachz by the way the functiod,, is
defined. Putting this observation into the preceding expression and lettingo we
obtain

m m

Z n(f1la,) Z lign pldn o (f1a,))
1

1

lim p1(dp o (f14))
lim 1u(f1.4),

where the interchange of the limit and the sum is justified by the finitenesas of O

Monotone Convergence Theorem

This is the key result in the theory of integration. It allows interchanging the order of
taking limits and integrals under reasonable conditions.

27.7 THEOREMLet(f,) C &; be increasing. Then,

p(lim f,) = im pfy,.
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PROOF. Letf = lim f,; it is well-defined sincef; < f» < ---and is positive and-
measurable. Sq,f is well-defined. By the monotonicity of integrationf; < ufs <
-+ < uf. Therefordim p f,, exists and

lim pfn < pf.

It remains to show thdim,, pf,, > pf. Thisis accomplished in steps.
Step 1.1 € Ry, B €&, andf(x) > bforz € B, thenlim,, u(f,15) > bu(B).
First, note tha{ f1 > b} C {f2 > b} C ---and that

Up{fn > b} ={z: fu(xz) > bforsomen} = {f > b}.
PutB,, = {f., >b}NB. Then,B,, /andu,B, = {f > b} N B = B. Thus,
27.8 lirrln w(B,) = u(B)
by the sequential continuity @f under increasing limits. Now, note that
Inlp > falp, > blpB,,
and so the monotonicity of integration yields that
w(fulp) = p(blp,) = bu(By).
Taking limits on both sides and using 27.8, we get
27.9 lim p(frlp) > bu(B).

Step 2. The same inequality holds evefy(if) > b for x € B.

Forb = 0, thisis trivial. Forb > 0, apply Step 1 witth—e to see thatim,, u(f,15) >
(b—e)u(B). Sincec is arbitrary, we can let it go to zero to obtain the desired inequality.

Step 3. Ifg is a simple function angd < f, thenlim,, uf, > ug.

Let >1" b;1p5, denote the canonical representation jorThen, our assumptions
imply that f(x) > g(x) = b, for z € B;. Hence, we may apply the result of Step 2 to
conclude that

liTILnM(fnlBi) >biu(B;) i=1,...,m.

Hence, by Proposition 27.5d applied to the functfpnwe see that
limpfy = lm p(fals,)
1

= Z lim /"L(f’ﬂlBi)
1

m

> bip(Bi) = pg.
1

Y
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Step 4lim, pfn, > pf.
Putg = d,, o f. Step 3 applied with thig yieldslim,, uf,, > p(dm, o f). Letting
m — oo we get the desired result. m]

A particular consequence of the monotone convergence theorem is that, in defini-
tion 27.2, the special sequengg, o f) can be replaced by any sequeri¢g) C &+
increasing tof.

Linearity of Integration

27.10 PROPOSITION( f,g € &4 anda,b € Ry, then

plaf +bg) = apf + bug.

The same holds for arbitrary,g € £ anda,b € R provided that both sides are
well-defined. It holds, in particular, if andg are integrable.

PROOF. Iff, g are simple, the result is established by direct checking as was remarked
inb. Forf,g € &, anda,b € R,, choose(f,,) and(g,) to be sequences of simple
positive functions increasing thandg, respectively. Then,

plafn +bgn) = apfn + bugn,

andaf, +bg, /" af +bg, fn / f,g9n /" f. Taking limits on both sides and using the
monotone convergence theorem completes the proof, dfe £ are arbitrary, write
f=f"—f andg = f* — ¢~ and go through the same steps. O

Fatou’s Lemma

This gives a useful inequlaity for arbitrary sequences of positive measurable functions.

27.11 LEMMA. Let(f,) C E¢. Thenu(liminf f,,) < liminf puf,.

PROOF. Definey,, = inf,>p, fn. Then,liminf f,, is the limit of the increasing
sequencég,,) C £, and thus

/Jf(hm inf fn) = M(hmgm) = lim pgm

by the monotone convergence theorem. On the other hgnds f,, for all n > m,
which yieldspg,, < pf, foralln > m, which in turn means thatg,, < inf, >, pfn.
Hence, as needed,

lim pg, < lim inf pf, = liminf uf,.
m n>m
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O

27.12 COROLLARY.
(a) Let(f,) C E. If f,, > g for all n for some integrable functiog, then

p(liminf f,,) < liminf pf,.
(b) Let(f,) C &. If f,, < g for all n for some integrable functiog, then

p(limsup f,,) > limsup pfp.

PROOF. Lely be an integrable function. Suppose thas real-valued sothat O

Dominated Convergence Theorem

This is the second important tool for interchanging the order of taking limits and inte-
grals.

A function f is said to be dominated by a functignif |f| < g; note thaty > 0
necessarily. A sequence of functiof)$,) is said to bedominatedy g if | f,,| < g for
eachn. If g can be taken to be a finite constant, tlfg) is said to be bounded.

27.13 THEOREMSuppose thatf,,) C £ is dominated by an integrable functign
If lim f,, exists, then it is integrable and

/L(hm fn) = lim .u.fn»

PROOF. By assumption;g < f,, < g for everyn, andg and—g are both integrable.
Thus, iuf,, exists and is sandwiched between the finite numberg and 1g. Now,
both statements of the last corollary apply and we get

p(liminf f,,) <liminf pf, <limsup pf, < p(limsup fp,).

If lim f,, exists, thediminf f,, = limsup f,, = lim f,,, andlim f,, is integrable since
it is dominated byg. Hence, the extreme members of the preceding expression are
finite and equal, which means that equality holds throughout. o
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If (f.) C €isbounded, say by the consténand if the measurg is finite, then we
can takey = b in the preceding theorem. The resulting corollary is callechitnended
convergence theorem:

27.14 THEOREMLet(f,) C & be bounded. Suppose thais finite. Iflim f,, exists,
then

p(im f,,) = lim p fr.

27.15 EXAMPLE. Let(E, £) = (R4, B(R4)) and letf,, be the sequence of functions
shown in Figure??. Note that the functions are not monotone and there is no integrable
function that dominates them. Alspf,, = 1 for all n and solim pf,, = 1, whereas,

lim f,, = 0 and sou lim f,, = 0.



