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P r e f a c e  

In these notes, a detailed account is presented of the relation between classifying 

spaces and classifying topoi. To make the notes more accessible, I have tried to keep 

the prerequisites to a minimum, for example by starting with an introductory chapter 

on topos theory, and by reviewing the necessary basic properties of geometric realiza- 

tion and classifying spaces in the first part of Chapter III. Furthermore, I have made 

an attempt to present the material in such a way that it is possible to read the special 

case of discrete categories first. This case already provides a good general picture, 

while it avoids some of the technical complications involved in the general case of 

topological categories. Thus, to reach the comparison and classification theorems for 

discrete categories in Section IV.l, the reader can omit w167 and most of w in 

Chapter II, as well as the second parts of w and w in Chapter III. 

In the past several years I have been helped by discussions with several people 

which were directly or indirectly related to the subject matter of these notes. In this 

respect, I am particularly indebted to W.T. van Est, S. Mac Lane, G. Segal and J.A. 

Svensson. Above all, A. Joyal taught me not to underestimate the Sierpinski space. 

A summary of the main results appeared in the Comptes Rendus de l'Acadfimie 

des Sciences (t. 317, 1993). The present version was mainly written during the fall of 

1994, which I spent at the University of Aarhus. I am most grateful for the hospitality 

and support of the mathematical institute there. I would also like to thank A. Dold 

for the possibility to publish these notes in the Springer Lecture Notes Series, and for 

some advice on exposition. Finally, I would like to thank Elise Goeree for her careful 

typing of the manuscript. 

This research is part of a project funded by the Dutch Organization for Scientific 

Research (NWO). 

Utrecht, Spring 1995. 
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I n t r o d u c t i o n  

These notes arose out of two related questions. First, what does the so-called classi- 

fying space of a small category actually classify? And secondly, what is the relation 

between classifying spaces and classifying topoi? 

These questions can perhaps best be explained by describing the well-known case of 

a group G. The classifying space BG classifies principal G-bundles (or covering spaces 

with group G), in the sense that for any suitable space X (e.g., a CW-complex) there 

is a bijective correspondence between isomorphism classes of such covering projec- 

tions E --~ X and homotopy classes of maps X --* BG. Furthermore, the cohomology 

groups of this space BG are exactly the Eilenberg-Mac Lane cohomology groups of 

the group G. 

On the other hand, there is the classifying topos of the group G, introduced by 

Grothendieck and Verdict in SGA4, and defined as the category of all sets equipped 

with an action by the group G. I will denote this category by 13G. The topos/3G has 

the same properties as the space BG, for tautological reasons: the cohomology of the 

topos 13G is the group cohomology of G, because the definitions of topos cohomology 

and group cohomology are verbally tile same in this case. And for any other topos 7-, 

the fact that topos maps from 7- into 13G correspond to principal G-bundles over 7- 

is an elementary consequence of tile definition of a map between topoi. 

To compare the classifying space BG and the classifying topos BG of G-sets, one 

first has to put these two objects in one and tile same category. For this reason, we 

replace the space BG by its topos Sh(BG) of all sheaves (of sets) on BG. 

More generally, it will be explained in Chapter I how for any space X, the topos 

Sh(X) of sheaves on X contains basically the same information as the space X it- 

self, and should be viewed simply as tile space X disguised as a topos. This view is 

supported by the fact that for two spaces X and Y, continuous mappings between 

X and Y correspond to topos mappings between Sh(X) and Sh(Y). Moreover, for a 

sufficiently good space X (e.g., a CW-complex), the cohomology groups of the space 

X are the same as those of the topos Sh(X). 

To come back to the comparison between the space BG and the topos BG of 

G-sets, we note that after having replaced BG by its topos Sh(BG), the two can be 

related by a mapping Sh(BG) --~ 13G. This topos map is a weak homotopy equiva- 

lence, although BG is a much smaller and simpler topos than Sh(BG). The known 

isomorphisms between the cohomology and homotopy groups of the space BG and 

those of the topos BG are induced by this map Sh(BG) --+ BG. Furthermore, it 
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follows that  for a CW-complex X,  there is a bijective correspondence between homo- 

topy classes of maps between spaces X ---* B G  and homotopy classes of topos maps 

S h ( X )  --~ BG. In this way, the fact that  the space B G  classifies principal  G-bundles 

can be seen as a consequence of the fact that  the topos /3G does. 

The first purpose in these notes will be to extend this relation between classi- 

fying space and classifying topos from the well-known and e lementary  case of a group 

G to that  of an arbi t rary  small category C. In Chapter  I, we will recall how the 

classifying topos /~C of C is constructed as the topos of all presheaves on C, i.e. of all 

contravariant  set-valued functors on C. In Chapter  III, w it will be recalled how the 

classifying space BC is constructed as the geometric realization of the nerve of C. As 

for groups, it  is known that  the two constructions define the same cohomology (for 

locally constant ,  abelian coefficients). We will relate the two constructions, by first 

replacing the space BC by its topos S h ( B C ) ,  and then constructing a weak homotopy 

equivalence of topoi (see Theorem 1.1 in Chapter  IV): 

p :  Sh (BC)  , UC. (1) 

The construction of this map p is based on a comparison of various types of geometric 

realization, for spaces as well as for topoi and using different kinds of intervals, to be 

presented in Chapter  III. 

Of course, a lot more information is contained in a weak homotopy equivalence 

(1) than in the mere fact that  the space BC and the topos BC have isomorphic 

cohomology groups. For example,  from the existence of such a map S h ( B C )  ---* BC, 

one can conclude that  for any CW-complex X there is a bijective correspondence 

between homotopy classes of maps of spaces X --* B C  and homotopy classes of maps 

of topoi S h ( X )  ~ BC: 

[x,  BC] = [S~(X), UC]. (2) 

Using this bijective correspondence, one can transfer known classification results for 

the topos BC to the space BC. Indeed, define a principal C-bundle E on a space X 

to be a system of sheaves E(c),  one for each object  c in C, on which C acts by sheaf 

maps c~.: E(c)  ~ E(d) for each arrow c~: c ---* d in C, in a functorial way. Moreover, 

the bundle E should satisfy the following three conditions for being principal,  for each 

point x in X (where E(e)~ denotes the stalk of E(c) at x): 

(i) [-Jcec E ( c ) ,  is non-empty. 

(ii) The action is transitive: given y E E(c)~; and z C E(d)~:, there are arrows 

c~ : b ---* c and fl : b --* d in C and a point w E E(b)~ for which a . (w)  = y and 

/3.(w) = z. 

(iii) The action is free: given y E E(c) .  and parallel  arrows ~,/3 : c ==~ d in C so that  

c~.(y) = /3 . (y ) ,  there exists an arrow i f :  b --*c in C and a point z C E(b)~, for 

which ~3' = /37  and "/.(z) = y. i 
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Note that in case C is a group (viewed as a category with only one object), this defi- 

nition of principal bundle agrees with the usual one. 

A basic result of topos theory, which we will review in Section II.2, states that 

there is an exact correspondence between such principal C-bundles over X and topos 

maps S h ( X )  --+ BC. Using this correspondence and the bijection (2) above, one 

obtains for a CW-complex X and a small category C the following theorem, to be 

proved in Section IV.l:  

T h e o r e m .  Homotopy classes of  maps X ~ B C  are in bijective correspondence 

with concordance classes of  principal C-bundles over X .  

Here two principal bundles over X are said to be concordant if they lie at the 

two ends of some principal bundle over X x [0, 1]. 

This theorem of course contains the classical fact that  the classifying space B G  

Of a group G classifies principal G-bundles. The theorem also extends a result of G. 

Segal, which states that for a monoid with cancellation M, its classifying space B M  

classifies a suitably defined notion of principal M-bundle. 

Thus, the weak equivalence (1) and the theorem above together provide an answer 

to the two questions stated at the beginning of this introduction, for the case of a 

discrete category C. 

Much of the work in these notes is concerned with the problem of extending these 

results to topological categories. Recall that a topological category C is given by a 

space of objects Co and a space of arrows C1, together with continuous operations 

for source and target C1 :::t Co, for identity arrows Co --+ C1, and for composition 

C1 xc0 C1 --+ C1. For example, any topological group or monoid is a topological cat- 

egory (with a space of objects which consists of just one point), as is any topological 

groupoid, such as the holonomy groupoid of a foliation (Haefliger(1984), Bott(1972), 

Segal(1968)). The construction of the classifying topos of a topological category will 

be described in detail in w while the classical construction of the classifying space 

will be reviewed in w The general considerations concerning geometric realization 

will again provide a map as in (1) relating the classifying space and the classifying 

topos. This map will in general not be a weak homotopy equivalence. However, there 

is an interesting case, which includes that of discrete categories, where the map is 

a weak homotopy equivalence. This is the case of topological categories C with the 

property that their source map s : C1 --+ Co is ~tale, i.e. is a local homeomorphism. 

Such topological categories will be called s-4tale. For example, many of the topological 

groupoids arising in the theory of foliations are s-dtale, as are topological categories 

constructed from diagrams of spaces (see w below). For s-4tale topological cat- 

egories, the map (1) is a weak homotopy equivalence, as said; moreover, it will be 

shown in w that the correspondence between topos maps into BC and principal 

C-bundles, already referred to above, generalizes to the case of s-dtale topological 

categories C. It follows that the theorem just stated also holds for s-dtale topological 
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categories. 

As an illustration of the use of classifying topoi for discrete and s-fitale categories, 

we will present in w a relatively straightforward topos theoretic proof of Segal's 

theorem on the weak homotopy type of the Haefliger groupoid F q. 

For an arbitrary topological groupoid (not necessarily s-&ale) the "naively" con- 

structed classifying topos BC need not contain much information. To obtain a suitable 

comparison with the classifying space BC, we will consider a different classifying topos 

for C, described by Deligne. Recall that in Deligne(1975), the notion of a sheaf on a 

simplicial space Y is introduced, and the topos Sh(Y) (Deligne writes I ) )  of all such 

sheaves is considered as an alternative for the geometric realization IYI. In partic- 

ular for a topological category C, and its associated simplicial space Nerve(C), the 

topos Sh(Nerve(C)) provides an alternating for the classifying space BC. This topos 

Sh(Nerve(C)) will be called the Deligne classifying topos of C, and be denoted by 

DC. 

Deligne shows in op. cir. that for a suitable simplicial space Y the realization 

and the topos of sheaves Sh(Y) have isomorphic cohomology groups. In w it will 

be shown that  this isomorphism in cohomology is induced by a map, and that the 

topos Sh(Y) has the same weak homotopy type as the geometric realization IYI. In 

particular, this will show that for any topological category C, the Deligne classifying 

topos DC and the classifying space BC have the same weak homotopy type. From 

this last result, one can obtain an answer to the question what BC classifies: it will be 

shown that homotopy classes of maps X --+ BC correspond to concordance classes of 

sheaves of linear orders on X equipped with a suitable augmentation into the category 

C. 

These notes by no means provide a complete picture of the comparison between 

classifying spaces and classifying topoi for topological categories, and many questions 

remain. One obvious question for the case of a topological group(oid) G is the precise 

relation between linear orders augmented by G which are shown to be classified by BG 

in these notes, and principal G-bundles. Another question concerns the relationship 

between the "small" classifying topoi BC and DC of a topological category, and the 

classifying "gros" topoi defined over the topological gros topos by Grothendieck and 

Verdier (see e.g. SGA4 (tome 1), p.317)). 



Chapter I 

Background in Topos Theory 

w Basic  def init ions 

A topos is a "generalized" topological space. Indeed according to Grothendieck,  topoi 

(should) form the proper  subject  of s tudy for topology. The basic idea is similar to 

that  of various well-known dualities. For example,  Gelfand duali ty states that  one 

could replace a compact  Hausdorff space X by its ring C(X) of complex-valued func- 

tions; mappings between such spaces can be described in terms of these rings, and 

the space X can be recovered (up to homeomorphism) from C(X). 
Similarly, one can use the "ring" (category) of sets instead of the ring of complex 

numbers,  and replace a space X by the collection of all its "continuous set-valued 

functions"; i.e. the sheaves of sets on X,  described in detail  in the next section. 

As for Gelfand duality, mappings between spaces can be described in terms of these 

sheaves, and the space X can be recovered from the collection of all its sheaves. 

The definition of a topos is meant  to capture the basic propert ies of this category 

of all sheaves on a space X,  and similar categories. Sheaves of sets are taken as basic 

here, since abelian sheaves, simplicial sheaves, etc., can all be defined in terms of 

sheaves of sets. We present the definition of a topos in the "Giraud form", which 

requires some elementary categorical notions to be explained first. (For background 

in category theory, Chapters I - IV of Mac Lane(1971) suffice.) 

Let g be a category. (It is our convention that  the objects  of g can form a proper  

class, but  that  for any two objects A and B the collection Horn(A, B) of all arrows 

from A to B is a set. If the objects  of g form a set as well, g is said to be "small".) 

1.1. D e f i n i t i o n .  A category g is said to be a topos iff it satisfies the Giraud 

axioms (G1-G4), to be s tated below. 

(G1) The category g has finite limits. 

This axiom needs no further explanation. For the second axiom, we recall that  a 

sum (coproduct) ~ i e l  Ei, indexed by some set I ,  is said to be dis:joint if for any two 

dist inct  indices j and k the diagram 



6 BACKGROUND IN TOPOS THEORY 

0 ,Ek 

Ej �9 Z Ei 

is a pullback; here the maps into the coproduct are the canonical ones, and 0 denotes 

the initial object of g" (this is the sum of the empty family). If each Ei is equipped 

with an arrow El ~ A into a given object A, then the sum also has such an evident 

arrow ~ El --~ A. Thus for any map B --~ A, there is a canonical map 

B •  --~ B XA ~ E i .  (1) 

Sums in s are said to be stable if this map (1) is always an isomorphism - in other 

words, if sums commute with pullbacks. The second Giraud axiom now is: 

( G 2 )  All (set-indexed) sums exist in g, and are disjoint and stable. 

For the next axiom, consider an object E in g and a monomorphism r : R ~ E x E. 

For any object T in $, composition with r defines a subset 

Horn(T, R) C_ Horn(T, E x E) ~ Horn(T, E) x Horn(T, E). 

If, for every object T, this subset is an equivalence relation on the set Hom(T, E),  

then the monomorphism r : R ~ E x E is said to be an equivalence relation on E. 

For example, if f : E ~ F is any arrow, then the pullback E •  E ~ E • E is an 

equivalence relation on E. A diagram 

rl 
R ~ E  I-+F 

r2 

in s is said to be exact if f is the coequalizer of rl and r2 and 

R r2) E 

rl I I f 

E--- i -~F 

is a pullback. It is said to be stably exact if for any arrows F ~ A ~ B, the diagram 

B X A R  =3 B X A E  -+ B X A F ,  

obtained by pullback along B --~ A, is again exact. The third Giraud axiom is: 

(Ca) (a) For every epimorphism E -* F in g, the diagram 

E • E ::$ E --* F is stably exact. 

(b) For every equivalence relation R ~ E • E, there 

exists an object E / R  which fits into an exact diagram 

R =t E ~ E /R .  
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It follows that  any exact diagram in g is s tably exact. It also follows tha t  all small 

colimits exist in the category g, since these can be constructed from sums and co- 

equalizers of equivalence relations (as in G3 (b)); see Mac L a n e -  Moerdijk (1992), p. 

577. 

For the last axiom, recall that  a collection of objects  {Gi : i E I}  of ~" is said to 

generate c when for any two parallel arrows u, v : E ::t F in E, if uo t  = vo t  for every 

arrow t : Gi ---+ E from every Gi, then u = v. The collection {Gi : i E I}  of objects  is 

said to be small if it is a set (rather than a proper class). 

(G4) The category ~ has a small collection of generators. 

If {Gi : i E I} is a set of generators,  then every object  E in ~" is a colimit of 

such generating objects.  

A morphism between topoi f : 9 t- ~ L" consists of a pair of functors ("inverse" and 

"direct" image functors) 

f* :C - -+~"  and f , : Y - + g  

with the following two properties: 

(i)  f* is left adjoint to f .  ; i.e. there is a natural  isomorphism 

HomT(f*E,  F )  ~ Home(E,  f . F ) ,  

(i i)  f* commutes with finite l imits (i.e., is "left exact").  

Such morphisms f : .T" ~ g and 9 : ~ --~ f" can be composed in the evident way, 

( f o g ) ' = g * o f * ,  ( f o g ) . = f .  o g . .  

Since the inverse image f* of any morphism f is a left adjoint,  it commutes with 

colimits. Therefore, since every object  of ,Y is a colimit of generators,  f* is completely 

determined (up to natural  isomorphism) by its behaviour on generators. Furthermore,  

any functor f* : C --+ ~- which commutes with colimits must have a right adjoint,  nec- 

essarily unique up to isomorphism (Mac Lane (1971), p. 83). Thus topos morphisms 

can be described more economically, and we see will some explicit  examples of this 

later.  

The collection of all morphisms f : f -+ E has itself the s tructure of a category: 

an arrow 6 between two morphisms f ,  g : f" --+ g is a natural  t ransformation 

5 : f * - ~ g *  

between the inverse image functors. By tile remarks above, this category Horn(5 r ,  E) 

is equivalent to the category of functors f* : g --* ~" wl~ich commute  with colimits 

and finite limits,  and natural  transformations between them. 
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A morphism f : r --4 g is said to be an equivalence if there exists a morphism 

g : g + - T ' a n d  isomorphisms f o g  -~ idE and g ~  ~ idj:. This is equivalent 

to the requirement that the unit  idc ~ f . f *  and the counit f * f .  --~ id7 are natural  

isomorphisms. The topoi g and 5 r are said to be equivalent if there exists such an 

equivalence f ,  and one writes 

g ~ 5  c 

in this case. In practice, one often tacitly identifies equivalent topoi, just  as one iden 

titles homeomorphic spaces. However, given two topoi g and .T', one cannot always 

identify isomorphic morphisms ~" ~ g, as will be clear, e.g. from the discussion of 

pushouts of topoi in Section 3. 

If g' is a topos and B is an object in g, one can form the "comma-category" E / B ,  

with as objects the arrows E ~ B in S, and as arrows in g / B  the commutive triangles 

in g. This category E / B  again satisfies the Giraud axioms for a topos: it inherits all 

the required exactness properties fiom g; and if {Gi : i E I} is a set of generators 

for S, then the collection of all arrows Gi ---* B (for all i E I)  is a set of generators 

for g. The functor E ~ (re2 : E x B ~ B)  : g --, E / B  commutes with colimits and 

finite limits, and hence is the inverse image flmctor of a topos morphism E / B  ~ g. 

(Its direct image part HB is described explicitly, e.g. in Mac Lane-Moerdijk (1992)@. 

60.) 

w First examples 

In this section we describe the topos of sheaves on a space and the topos of 

presheaves on a small category. Before doing so, we should mention the simplest 

example of a topos, viz. the category of all small sets, denoted N or (sets). (One 

readily verifies the Giraud axioms (G1-4) for N; for a collection of generators, one can 

take the one-element collection consisting of the one-point set.) 

For any other topos g, there is a morphism 3' : g --* N, unique up to isomorphism. 

It can be described explicitly, in terms of the terminal object 1 of g, by 

3'*(S) = ~ 1 , 3'.(E) = Home(1 ,E ) ,  
sES 

for any set S and any object E in g. One often writes A for 3̀ * and F for 3'.. The 

functor A is called the constant sheaf ill.actor, and F the global sections functor. 

Now let X be a topological space. A continuous map f : E -~ X is said to be a 

local homeomorphism (or, an dtale map, or an dtale space over X) if both f and its 

diagonal E ~ E xx  E are open maps. This is equivalent to the requirement that 

for any point 9 E E there exist open neighbourhoods Vy _C E and Uy(y ) C_ X so that 

f restricts to a homeomorphism f : Vy & Us(y ). A sheaf on X is such an ~tale map 

f :  E ~ X. A map c 2 between sheaves ( f :  E ~ X) ~ ( / ' :  E '  --* X) is a continuous 
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map c 2 : E --* E '  so that J"o~ = f .  This defines a category of all sheaves on X, denoted 

Sh(X) 

[In the literature, one often defines a sheaf (of sets) as a functor F : O(X)  ~ ~ (sets), 

defined on the poser O(X)  of all open subsets of X, and having for each open cover 

U = [J Ui the "unique pasting property" that the diagram 

F(U) ~ I~ F(U~) ~ rIF(U, n Uj) 
i i,j 

is an equalizer of sets. These definitions are of course equivalent, as is explained in 

any book on sheaf theory; see e.g. Godement(1958), Swan(1964).] 

The category Sh(X)  is a topos. Indeed, finite limits and eolimits are constructed 

just as for topological spaces, because these constructions preserve ~tale maps. More 

explicitly, if E ~ X and F -~ X are two O, ale maps then so are E • x F -~ X and 

E + F -* X, and these represent the product and sum in the category Sh(X) .  The 

same applies to infinite sums. Similarly, in an exact diagram of topological spaces 

o v e r  X ,  

R - - - ~ E  ) F 

�89 
X, 

if f and g are fitale then so is h, while if h and f are fitale then so is g. Thus Sh(X)  

inherits all the relevant exactness properties from topological spaces. For the set of 

generators, one can take the collection of all embeddings U ~-* X of open subsets of 

X. To see that these generate, take two distinct parallel maps a and b between sheaves 

a 

E ,~F 

X. 

Let e E E be a point with a(e) -r b(e), and let V~ be a small neighbourhood of e so 

that  f : V~ --* f(V~) = U is a homeomorphism onto the open set U. Then f -1  defines 

a map of sheaves from (U ~ X) to (E ---* X) with the property that a o f  -~ r b o f  -~. 

From the topos Sh(X)  of sheaves on X, one can recover the lattice O(X)  of open 

subsets of X, essentially as the subcategory consisting of all sheaves (E ~ X) with the 

property that the unique map into the terminal object 1 = (id : X --~ X)  of Sh(X)  is 

a monomorphism. Thus we can recover the space X from Sh(X)  provided the points 

of X are determined by their open neighbourhoods. This is the case precisely when 

the space X is sober. [Recall, from SGA IV, vol. 1, p. 336, that a closed set F in X 

is irreducible if it cannot be written as tile union of two smaller closed sets, and that 

X is sober if every such irreducible closed set F is of the from F = {x} for a unique 

point x. Every Hausdorff space is sober.] In this text, all spaces will be assumed to be 

SObeF. 
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A continuous map f : Y ~ X between spaces induces two well-known adjoint  

functors 

f * : S h ( X ) ~ S h ( Y )  , f . : X h ( Y ) ~ S h ( X )  

between the categories of sheaves of sets. In terms of fitale spaces, f* is s imply 

pullback (fibered product)  along f .  It evidently preserves (finite) l imits and colimits. 

The right adjoint f .  is more easily described in terms of sheaves as functors: for a 

sheaf F :  O ( Y )  ~ ~ (sets) ,  

L ( F )  = F o f - '  : O ( X )  o, --, O ( Y )  o, --, ( s ~ t s )  . 

These two functors const i tute a morphism of topoi, denoted 

f :  S h ( Y )  ~ S h ( X )  . 

Conversely, suppose ~, : S h ( Y )  --* S h ( X )  is any morphism of topoi. Then the functor 

~*, when restr icted to subobjects  of the terminal  object ,  gives an operat ion ~* : 

O ( X )  --* O ( Y )  which preserves finite intersections and arbi t rary  unions. For a point 

Y e Y, define Fy = X - I.J{U e O ( X ) :  y ~ ~*(U)}. Then Fy is an irreducible closed 

set, so if Y is sober there is a unique point x = ~(y)  so that  Fu = {x}. This defines 

a map ~ : Y ~ X with the proper ty  that  for any open set U C_ X,  and any point 

y C Y, ~(y)  E U iff y C ~*(U). In this way, the map c 2 : Y ~ X is determined by the 

inverse image functor ~*. 

For sober spaces X and Y, these constructions set up a correspondence between 

continuous maps Y ---* X and (isomorphism classes of) topos morphisins S h ( Y )  

S h ( X ) .  Thus, the assignment 

X H S h ( X )  

of the topos of sheaves to a sober space X doesn' t  change the notion of mapping,  and 

the topos S h ( X )  should simply be viewed as a faithful image of the space X in the 

world of topoi. Indeed, we will in the sequel often simply write X when it is evident 

that  we mean the topos of sheaves on the space X. For example,  when g is another 

topos, an arrow 

X ---, g 

denotes a topos morphism S h ( X )  ~ g. In Section 4 below, we will discuss how 

algebraic invariants of the space X such as homotopy and cohomology groups can be 

defined in terms of the topos S h ( X ) .  

For the second e lementary  example of a topos, consider a small  category C. A 

presheaf (of sets) on C is a functor 

S :  C ~ ~ (sets) . 

Thus S assigns to each object  x E C a set S(x) ,  and to each arrow a : x ~ y in C a 

function S ( a ) :  S(y)  ~ S(x ) ,  called restriction along a and denoted 
L 

s ~ s . a =  S(a) (s )  ( fo rs  E X(y)). 
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The functoriality of S is then reflected in the usual identities s. 1 = s and (s. a ) .  /3 = 

s.  (c~fl) for an action. As morphisms ~ : S --* T between two such presheaves we take 

the natural transformations. Thus ~ is given by functions c2x : S ( x )  ~ T ( x )  (for each 

object x in C), which respect the restrictions: 

~ , x ( s .  ~ )  = ~ , ~ ( s )  �9 ~ ,  

for s and a as above. This category of all presheaves on C is denoted as a functor 

category se t s  c~ or as 

B C .  

This category BC is a topos, called the classifying topos of the category C. To 

see that the Giraud axioms are satisfied, note first that  all limits and colimits of 

presheaves can be constructed "pointwise", as in 

(li_m S,)(x) = li_m S,(.T~) , ( 1~  S,)(x) = li_m S , ( x ) .  

Therefore all limits and colimits of presheaves, in particular pullbacks, sums and 

coequalizers, inherit all exactness properties from the category of sets. Thus it is 

clear that  BC satisfies the Giraud axioms (G1)-(G3). 

For the axiom (G4) on generators, consider the "Yoneda embedding" Yon : C 

BC, defined by 

Yon(x)(y) = H o m c ( y , x ) .  

Thus Yon(x) is the representable presheaf  given by x. The so-called Yoneda lemma 

states that for any presheM S, there is a natural isomorphism 

0 = Os: Horace(Yon(x), S) ~ S (x ) ,  (1) 

defined for a natural transformation c 2 : Yon(x) --* S by 

0(~,) = ~,~ ( ida) .  

Naturality of 0 means that for any morphism ~b : S ~ T of presheaves, the diagram 

Hom~c(Yon(z), S)  Os , S ( z )  

l 
Hom~c (Yon(x), T) or , T(r 

commutes, where ~b. denotes "composition with r  In particular, r is completely 

determined by all composites Yon(x) ~ S r T from representable presheaves 

Yon(x). Thus, the collection of these presheaves, for all x E C, generates BC. This 

proves that BC satisfies axiom (G4). 

A functor f : D --~ C between small categories induces an evident operation 

f* on presheaves, by composition: 

f*  : BC ~ BD , f * ( S ) ( y )  = S ( f y )  . 
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This functor f* evidently preserves l imits and colimits, since these are all computed  

pointwise. Furthermore,  f* has a right adjoint f .  : BD --* BC, defined by 

f . ( T ) ( x )  = Hom~D(/*(Yon(x)),  T ) .  

The adjunetion isomorphism 

H o m B a ( f * ( S ) , T )  ~- H o m B c ( X , f . ( T ) )  

can he described as follows: given ~ : i f ( S )  --~ T, construct 9? : S ---* f . ( T )  with 

components ~ :  S(x) ~ f . ( T ) ( x )  defined via the isomorphism 0 in (1) as 

S ( x )  . . . . . . . . . . . .  ~-~ . . . . . . . . . . .  f . ( T ) ( x )  

O--I l 
Hom~c(Yon(x),  S) f;  Hom~D(/*Yon(x), f ' S )  ~" �9 HomL~D(/*Yon(x), T) 

where ~ .  denotes composition with ~. Conversely, given ~ : S --* f . ( T ) ,  construct  

(~ : i f ( S )  ---* T with components Cy : f * ( S ) ( y )  = S ( f y )  ~ T ( y ) ,  using the evident 

map Yon(y) -~ f * ( Y o n ( f y ) ) ,  as 

S ( f y )  . . . . . .  . . . . . .  7~ . . . . . . . .  ~- T ( y )  

1 
f . ( T ) ( f y )  Hom(f*(Yon(fy) ) ,  T) ~ Hom(Yon(y), T). 

Thus the functor f : D -* C induces a morphism of topoi, (again) denoted 

f : BD --~/3C , 

given by these adjoint functors f*  and f . .  

This construction of a topos morphism BD + BC from a functor D --~ C extends 

to natural  transformations.  Indeed, a t ransformation r : g --~ f between two functors 

f , g  : D =t C induces another t ransformation 

~ : f*  --* g* : B C  :3  B D  , 

defined for a presheaf S on C and an object  y in D by 

(~-s)y : f * ( S ) ( y )  = S ( f y )  s(~) S ( g y )  = g* (X) ( y )  . 

Unlike the case of (sober) topological spaces, it is not true that  all topos mor- 

phisms BD -+ /3C come from functors D --~ C. Indeed, there are many more mor- 

phisms BD --* BC then there are functors D --* C, as will be evident from Chapter  II, 

Section 2. In general, one cannot reconstruct the category C from the presheaf topos 

BC either, because the representable presheaves are not characterized by a purely 

categorical property. (The closest one gets is by considering the class of all projective 

and connected presheaves: These are exactly the retracts  of representable presheaves. 

If all idempotents  split in C, then every such retract  is itself representable,  up to 

isomorphism.) 
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w Some construct ions of topoi 

In this section we will describe the "universal" constructions of topoi, such as 

(fibered) products,  amalgamated  sums (pushouts) and inductive limits,  to be used in 

later chapters. 

Colimits of topoi all exist (Moerdijk(1988)), and are generally quite easy to de- 

scribe. For example,  for two topoi g and ~ their sum g + ~ is by definition the topos 

for which there exists an equivalence of categories 

Hom(g,G)  x Hom(~- ,~)  24 Hom(g + ) r , ~ ) ,  (1) 

for any topos G, and natural  in G. This sum g + ,~" can simply be constructed as the 

"categorical product":  objects of g + F are pairs (E,  F )  where E is an object  of g 

and F one of ~-, while arrows (E,  F )  --+ (E' ,  F ' )  in g + b r are pairs of arrows E -+ E '  

in g and F -+ F '  in b t-. It is easy to see that  this category of pairs again satisfies 

the Giraud axioms for a topos. The equivalence (1) associates to a pair of morphisms 

f : g  --+G a n d g : F  --+ G the unique (up to isomorphism) h : g  + ~- --+ G w i t h  

h*(G) = ( f*E ,g*E) .  

Thus the sum of topoi is constructed as the product  of categories. Note that  

for the two examples in the previous section, this corresponds to the usual sum of 

topological spaces and small categories: since a sheaf on the disjoint sum of spaces is 

the same thing as a pair of sheaves, one has 

s h ( x  + z )  ~- sh (x )  + s h ( z ) ,  

Similarly, for small categories C and D, 

z3(c + D) ~ Z3(C) + Z~(O) 

For two morphisms of topoi f : g --+ U and g : g --+ G, their  pushout (amalga- 

mated  sum) ~r Ug G is described as follows. There is a square 

g 
g ~G 

'1 1 
r ,,, b ~ oe 

which commutes up to a given isomorphism a : u f  "~ vg, and with the following 

universal property:  for any topos 7-l, the functor h o m  the category H o m ( F  Ua G, 7-[) 

to the category of triples 

( c ~ : F - - + ~ ,  ~ / , : G - - + ~ ,  g : p f  ~ ~bg), 

which sends a map h : FtOa ~7 ---+ ~ to (h.u, hv, h o o~), is an equivalence of categories. 

This universal proper ty  determines f LJa G uniquely, up to equivalence of topoi. 

Analogous to the case of sums, this pushout of topoi can be constructed explici t ly 

as a fibered product  of categories: F Uc G is the category with as objects  triples 
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(F, G, a) where F is an object of ~" and G one of 9, while a : f * F  --% g*G is an 

isomorphism in g. Arrows ( F , G , a )  --* ( F ' , G ' , a ' )  in 5 r Uc 9 are pairs of arrows 

b : F ---, F '  in 9 r and c : G ~ G' in G, so that a 'o f* (b )  = 9*(e) o a. Colimits and finite 

limits in this category of triples 9 r Uc G can be constructed in the evident way from 

those in ~" and g (since f* and g* commute with colimits and finite limits), and one 

readily verifies that the Giraud axioms for a topos hold for ~- Uc G. The morphisms u 

and v, required for the square (2), are defined by the evident inverse image functors 

u * ( F , a , a )  = F , v * ( F , a , a )  = G ,  

while a : u f  ~ vg in (2) is the natural  isomorphism with components 

a(F,a,~) = a:  ( u f ) ' ( F , a , a )  = f ' F  ~ g * a  = ( v g ) * ( F , a , a )  . 

For maps X ~ A --* B of topological spaces, there is a canonical morphism, 

comparing the pushout of topoi with that of spaces: 

sh(x)  WSh(A) SA(B) --, Sh(X w~ B). 

In Section 4 of Chapter III we will prove (and use) that this morphism is an equiva- 

lence of topoi for a closed embedding A ~ X between paracompact spaces. 

Finally, we will use inductive limits (colimits) of sequences of topoi. For such 

a sequence 

Eo ~ c, ~ ~ . . . .  , 

the colimit Coo = lira ~'n is a topos equipped with morphisms v~ : E~ --~ Coo and 

isomorphisms an : v~fn "-% v~-l ,  all together with the following universal property: 

For any topos 7Y, the evident functor from the category Hom(Eoo,TY) to the cate- 

gory of pairs (u,/3) where u = (u~) is a sequence of morphisms u~ : C~ -~ 7Y and 

~ : unf~ --% Un-1, is an equivalence of categories. 

Again, this inductive limit of topoi can be constructed as an inverse limit of cat- 

egories. Define ,~'~ to have as objects all pairs (E, a), where E = (E , )  is a sequence 

of objects E ,  in E~ while a is a sequence of isomorphisms a,~ : f~(E,~) 2 .  E,~_~. The 

arrows b :  (E, a) ~ (E',  a') in Eoo are sequences of arrows b, : E~ ---* E :  in Cn, com- 

patible with the a and a' in the sense that b,~-a o an = a" o f~(bn). This category 

Coo is a topos, in which the finite limits and colimits are constructed in the evident 

way from those in each topos E~. For tile required universal property, the morphisms 

v~ : E~ --* Eoo are given by the evident inverse image functors 

v : , ( E , . )  : E . ,  

while the natural  isomorphism a ,~  : v,,f,~ & v,~-i has components 

(a,)(E,~) = an :  (v,~fn)*(E,a) = I~(E, ,)  ~ E,~-I = v ; _ , ( E , a )  . 
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Later on, we will show and use that for a sequence of closed subspaces X0 C Xa C . . .  

of a paracompact space X = U~ Xn, the canonical comparison map 

lira Sh(X,~) ~ Sh(limXn) 

is an equivalence of topoi (cf. Chapter III, Section 4). 

We will also use some products of topoi. For two topoi L" and 5 L-, their prod- 

uct C x .T is the topos with the property that for any other topos G, there is an 

equivalence of categories 

Hom(G,E) x Horn(G, f )  ~ Hom(•,E x ~-),  

natural in ~. This property determines C x 3 v uniquely (up to equivalence of topoi). 

For two topoi C and ~-, such a product E • ~- always exists, and is most easily 

constructed explicitly in terms of sites (cf. Mac Lane - Moerdijk, Chapter VII, Exercise 

15). We will not need such an explicit description. The only property we will use is 

that  for two topological spaces X and Y the canonical comparison map 

Sh(X • Y)  ---, Sh(X) • Sh(Y) (3) 

is an equivalence of topoi, whenever at least one of X, Y is locally compact. [For 

a proof, combine the fact that  the functor which associates to a locale its topos of 

sheaves commutes with all products (see e.g. Joyal-Tierney(1984)) with the result 

that  the product of two spaces agrees with their product as locales if one of the spaces 

is locally compact (see Dowker-Strauss(1977) and Isbell(1981)).] 

w Cohomology and homotopy 

In this section we review the standard definition for the cohomology and homotopy 

groups of a topos. Common references include SGA4 (vol. 2), Milne(1980), Artin- 

Mazur(1969). 

Let C be a topos. We write Ab(C) for the abelian category of abelian group objects 

in C. For example, for the topos Sh(X) of sheaves on X, this category Ab(Sh(X)) 

is the familiar category of abelian group valued sheaves. And for the topos BC of 

presheaves on small category, Ab(13C) is the category of abelian presheaves, i.e. con- 

travariant functors from C into the category Ab of abelian groups. The Giraud axiom 

(G4) for generators implies that the abelian category Ab(E) has enough injectives. 

The global sections functor F : C --~ S (Section 2) sends abelian group objects to 

abelian groups, so induces a functor (again denoted) P : Ab(,~) ~ Ab, which is left 

exact and preserves injectives. For any abelian group object A in C, the cohomology 

groups Hn(E, A) are defined as the right derived functors of F, i.e. 

Hn(c~,A) = R"I ' (A) (n >_ 0) .  (1) 
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The construction of these groups H~(g, A) is flmctorial, contravariant in g and co- 

variant in A, as usual. For any object B E g, one also considers the right derived 

functors of the functor H o m e ( B , - ) ,  which sends an abelian group A to the group of 

arrows B -4 A in g ("sections of A over B"). These groups are denoted H~(g, B; A). 

For such an object B E g, the functor B* : g ~ g /B  (sending E to E x B ---* B, see 

Section 2) induces a functor B* : Ab(g) ---* Ab(g/B) which is exact and preserves in- 

jectives. Thus Ha(g, B; A) ~- H~(g/B, B*(A)), and one also denotes the latter group 

simply by H~(g/B, A). 

For a topological space X and an abelian sheaf A on X, the topos cohomology 

groups Hn(Sh(X), A) are the usual sheaf cohomology groups (cf. Godement (1958), 

Iversen(1986)). For a small category C, the topos cohomology groups H~(BC, A) are 

(isomorphic to) to cohomology groups of the category C; see Proposition II.6.1, be- 

low. 

For any topos morphism f : 9 v --+ s the direct image functor f .  defines a left 

exact functor f .  : Ab(9 c) ~ Ab(s which preserves injectives, and has the property 

that it respects the global sections functors, in the sense that there is a natural iso- 

morphism P(f . (A))  ~ F(A), for any A E Ab(.~). The Grothendieck spectral sequence 

(Grothendieck(1957)) for the composite F o f .  is known as the Leray spectral sequence 

for f ,  and takes the from 

E~ 'q = HP(E, Rqf.(A)) ~ HP+q(9 c, A) .  (2) 

There is another fundamental spectral sequence, associated to any suitable simpli- 

cial object X. = {Xp}p>0 in a topos g. Such an object X. gives rise to an augmented 

chain complex in Ab(g), 

0 1--- Z e-- Z - X o  ~-~o Z , X  1 e - . - . . .  (3) 

Here Z - ( - )  : g -4 Ab(g) denotes the free abelian group functor, sending an object E 

to the sum ~ n c z E  in g; for E = 1, we simply write l for l .  1 =/X(Z);  the boundary 

0 is defined in the usual way from the face operators of the simplicial object X. by 

alternating sums. This object X. is said to be locally acyclic if the complex (3) is 

exact. For any such locally acyclic X., there is a spectral sequence 

E~ 'q = HPHq(E/X., A) ~ UP+q(g, A) (4) 

Here A is any abelian group object in g, and, as above, we write A for X;(A) in the 

cohomology Hq(E/Xp, A). 

An important  special case of such locally acyclic simplicial objects are the hyper- 

covers of g. To define these, recall first from Quillen(1967) that a map f : Y -4 X. 

between simplicial sets is a trivial fibration if any commutative square of the form 
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has a diagonal filling (as indicated by the dot ted arrow). Here A[n] is the s tandard  

n-simplex and A In] its boundary. Thus f is a trivial  fibration precisely when the 

map 

X~ = Hom(A[n],  X.) --, Hom(A [n], X.) x nom(X[nl,r.) Hom(A[n],  Y.) (5) 

is a surjective map between sets. If K = 1, this is the familiar requirement that  X. 

is a contractible Kan complex. Call a map f : Y + X. between simplicial  objects  in 

a topos g a local trivial fibration if the similar map (5) is an epimorphism in s A 

hypercover of g is by definition a simplicial object  X. in g so that  the map X. + 1 

is such a local tr ivial  fibration. (Thus X. is "locally" (or "internally") a contract ible 

Kan complex in g, in some sense.) Every hypercover is locally acyclic, and gives 

rise to a spectral  sequence (4). Denote by H C ( g )  the category of hypercovers and 

homotopy classes of maps. One can then form a "Verdier cohomology" direct l imit  

over all hypercovers (a generalized Cech cohomology): 

[-I~rdi~T(g , A) = lim H v HomE(X.,A) 
x eric(e) 

= lira H V H ~  . 
~ X .  

The direct l imit  of the spectral  sequences (4) collapses, and gives an isomorphism 

HveTe,~r" v (g, A) ~ HP($, A ) .  (6) 

The hypercovers of $ are also used to define the ("~tale") homotopy groups 7r~(g', p) 

of the topos $ with a chosen base-point p, i.e. a topos morphism p : S --~ g from 

the topos S of sets. Before we give the general definition, we discuss the special case 

n = 1 of the fundamental group. The profinite fundamental  group is discussed in 

SGA1. The more general case requires the topos to be locally connected. To define 

this notion, first call a non-zero object  E of $ connected if E cannot be decomposed 

as a sum E = E1 + E2, except in the trivial  ways where E1 = 0 or E2 = 0. The topos 

$ is called locally connected if every object  E in $ can be decomposed as a sum of 

connected objects,  say E = ~ i e l  El. This decomposit ion is essentially unique, and its 

index set I is the set of connected components of E, denoted 7r0(E). This construction 

defines, for any locally connected topos g, a fimctor 

~ro : $ --* S , 

which is left adjoint to the coustant sheaf functor A : S ~ g. For the terminal  

object  1 of $, one also writes ~r0(g) for %(1), and calls this set the set of connected 

components  of g: in part icular ,  g is a connected topos iff rr0(s is a one-point set. 

Next, an object  E of g is called locally constant if there exists a set S, an epi U --~ 1 

in g, and an isomorphism E x U -~ ~ e s  U over U. For example,  in the case where g 

is the topos of sheaves on a space X,  an object  (~tale map) E -~ X is locally constant 

precisely when it is a covering projection. Thus, we also refer to locally constant 

objects  of g as covering spaces of g. For a locally connected topos $, consider the full 
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subcategory S L C ( $ )  of $, consisting of sums of locally constant objects.  If p : S ~ $ 

is a point  of 8, its inverse image functor restricts to a functor p* : S L C ( $ )  ~ S.  An 

infinite version of Grothendieck 's  Galois theory (Artin-Mazur(1969),  Moerdijk(1989)) 

gives an essentially unique progroup G such that  there is an equivalence of categories 

between S L C ( $ )  and the category BG of sets equipped with an action by G. The point 

p is needed for the construction of G, and the equivalence identifies p* : S L C ( $ )  ---* $ 

with the canonical functor "forget the action": BG ~ 3. One denotes G by ~rl ($, p), 

and refers to it as the fundamental group of E. 

This "enlarged" (when compared to the profinite one) fundamental  group has 

many of the familiar properties of the fundamental  group of a topological space. For 

example,  for any abelian group A there is a canonical isomorphism 

H I ( C , A ( A ) )  "~ Hom(Trl(g',p), A ) ,  

analogous to the Hurewicz theorem for topological spaces which states that  the first 

homology group is the abelianization of the fundamental  group. 

One can also define higher homotopy groups of a locally connected topos E with 

a base-point p. These higher homotopy groups are again progroups, called the Stale 

homotopy groups of ($,p)  and denoted ~rn(~',p) (or 7r~t(g,p)). For n = 1, this agrees 

with the fundamental  group just described. The construction of these higher homo- 

topy groups can be outl ined as follows. For any hypercover X. of C, the connected 

components form a simplicial set 7ro(X.). A base-point of such a hypercover (over 

the point p of $) is by definition a vertex x0 of the simplicial set p*(X.). This 

vertex x0 yields a corresponding vertex x0 of 7r0(X.) - its image under the map 

p*(X.) --* p*ATr0(X.) ~ ~r0(X.) induced by the unit of the adjunction between A 

and 7to. The ~tale homotopy groups are defined as the progroups ("formal inverse 

l imits")  

~r,($,p) = lira 7r,(~r0(X.), Xo), 
- -  (x,~0) 

indexed by all the pointed hypercovers and homotopy classes of maps between them 

(or rather,  some "small" cofinal subsystem of these). 

A topos morphism f : J~ ---, C indnces for each point q : $ --~ f" of 5 v homomor- 

phisms 

~n(f)  : 7rn(.~', q) ~ 7rn($, f q ) .  

As for topological spaces, these depend only on the homotopy class of f .  More ex- 

plicitly, let I denote the unit interval, and also (by the conventions of Section 2) its 

topos of sheaves. Two morphisms fo, J'l : U ---* $ are said to be homotopic if there is a 

topos morphism H : I • ~- ~ 5" such that  H o i k  ~ fk for k = 0, 1 (where i0, il  : 1 ~ I 

are the inclusions of the base-points).  The homotopy H is said to be relative to the 

base-points q of 5 v and p of C if the square 

I x S 1• I •  

1 1 
S P ~-s 
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commutes up to isomorphism. If so, then ~r,(fo) = 7r=(f~) as maps between progroups. 

Similarly, if f0 and fl  are homotopic maps and A is a locally constant abelian group 

in A, then f~(A) ~- f~(a), and (modulo this isomorphism) f~ = 31" : H=( g, A) 

H'~(.~, f ;  a ). 

In particular, this applies to an arrow a : f0 ~ fl  between two topos morphisms, 

i.e. a natural transformation ~ : f~ ~ f~, because such an ~ can be interpreted as a 

"natural" homotopy. Indeed, let ~ be the Sierpinski space, i.e., the two point space 

with an open point 1 and a closed point 0. Its topos Sh(E) of sheaves is simply the 

arrow category of the category of sets. Similarly, the product Sh(E) • .T" is the topos 

with as objects arrows F0 --* F1 in ~- and as arrows the commutative squares. Thus 

is a "Sierpinski homotopy" Sh(E) • ~- ~ g. By composition with a continuous 

surjection p : 1 ~ E which preserves the endpoints, one obtains a homotopy between 

fo and fl .  Thus, if topos morphisms fo and fl are related by a natural transformation, 

they operate identically on cohomology with locally constant coefficients, and on @tale 

homotopy (if the natural transformation respects the base-points). 

As usual, we will denote the collection of homotopy classes of topos morphisms 

from ~- to g by 

[J:, g]. 

For a topological space X with a base-point x0, one thus has the usual homotopy 

groups Try(X, x0) and the 6tale homotopy groups ~r~t(Sh(X), :Co) of the topos of sheaves 

(with point :Co : S ---, Sh(X) corresponding to x0 E X). If the space X has a basis of 

contractible open sets, then these progroups are actually ordinary groups, and there 

is a natural isomorphism (Artin-Mazur(1969), Section 12) 

~:'(Sh(X), :Co) ~ ~n(X, :Co). (7) 

A topos morphism f : U ~ g between locally connected topoi is said to be 

a weak homotopy equivalence if f induces an isomorphism 7r0(f) --~ r0(g) between 

the sets of connected components, and, for any base-point q of ~-, isomorphisms 

r , (9  v ,q)  -% r , ( g ,  fq) (for n > 1). By the "toposophic Whitehead theorem" (Artin- 

Mazur(1969), Section 4) f is a weak homotopy equivalence iff f induces isomorphisms 

for ~r0 and 7rl, and for each locally constant abelian group A in g an isomorphism 

f * :  H"(g ,  A) -% H"(U, f ' a )  (for u _> 0). 

In many examples, f will have the property that f* : 5 r ~ g is full and faithful. 

Such an f is called a connected morphism. Any such connected morphism induces an 

isomorphism 7r0(.T') --% 7r0(g) of connected components, and a surjection of fundamen- 

tal groups. 





Chapter II 

Classifying Topoi 

w Group actions 

Let G be a (discrete) group, and let B G  be the topos of right G-sets. This is 

a special case of the presheM topos BC introduced in Chapter  I, Section 2, when 

G is viewed as a category with one object.  As a simple and motivat ing example 

of a classifying topos, we will describe in this section how the topos B G  "classifies" 

principal G-bundles. 

Recall that  for a topological space X, a principal G-bundle on X is a surjective 

sheaf p : E --* X,  equipped with a continuous fiberwise left G-action ~ : G x E --+ E 

(denoted ~(g, c) = g" e) which is free and transit ive on each fiber. Thus the map 

(a,  ~r2) : G x E ~ E Xx E 

is a homeomorphism (of 6tale spaces over X).  It follows that  the map p : E -~ X 

must  be a covering projection. 

A map between two such principal bundles E = (E,  p, ~) and E'  = (E' ,  p', c~') is a 

map ~p : E --* E '  of sheaves on X which preserves tile action. Any such map cp must 

be an isomorphism. This defines a category Prin(X,  G) of principal G-bundles over X.  

1.1. P r o p o s i t i o n .  There is a natural equivalence of  categories 

Hom(X, B G ) ~  Prin( X ,  G) . 

Note that ,  according to the conventions of Chapter  I, Section 2, the X on the left of 

this equivalence stands for the topos S h ( X )  of all sheaves. 

We prove the proposition, and make some further comments on natura l i ty  after 

the proof. 

P r o o f .  Let f : X ~ B G  be a morphism of topoi. Consider the right G-set 

G, given by G acting on itself by mult ipl icat ion from the right. This G is an object  

of 13G. Let 

E = f * ( G ) .  
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This sheaf E is surjective; indeed, G x G ::t G --~ 1 is a coequalizer in 13G, and f* 

preserves products and coequalizers, so E Xx E ::t E ---* X is a coequalizer of spaces. 

For each g E G, the left multiplication )~g(x) = g " x defines a map )~g : G --~ G in 

the category BG. Thus one obtains a map f*()~g) : E ~ E of sheaves. For a point 

y E E, write g- y = f*(),g)(y).  This defines an action a of G on E. To see that it is 

free and transitive, note that the map 

gEG 

is an isomorphism in BG. Since f* preserves sums, products and isomorphisms, it 

sends this map ~ into an isomorphism 

&: ~_, E - ~ E x x E  ~ g ( y ) = ( g . y , y ) .  
gEG 

This means precisely that the action by G on E is principal. 

Conversely, suppose p : E --* X is a principal G-bundle over X. If S is any object 

from B G  (i.e., a right G-set), consider the "tensor-product" 

S |  

(also often denoted S x a  E), obtained from S x E by the identifications (s �9 g, e) 

(s ,g  �9 e). We denote equivalence classes by s | e. The natural  map Ps : S x a  E --* 

X ,  ps (s  | e) = p(e), is a well-defined local homeomorphism. Thus S @a E is a sheaf 

on X. The construction is evidently Nnctorial in S, so this defines a functor 

- |  E : BG---* S h ( X )  . 

To see that this functor preserves eolimits and finite limits, it suffices to check this 

for the stalk at each point z E X. But for a G-set S, 

( S |  s ~ S |  E~ ~ S ,  

where the latter isomorphism is natural  in S but depends on the point x in a non- 

canonical way: choose y E E~ - then s H s |  is an isomorphism S ~ S |  

precisely because the G-action on the stalk E~ is free and transitive. In any case, 

since (S |  E)x ~ S for each point x, it is clear that - |  E preserves colimits and 

finite limits. Thus, as explained in Chapter I, this functor is the inverse image part 

of a topos morphism X --* BG,  uniquely determined up to isomorphism. 

Finally, it is straightforward to check that these constructions, from a principal 

bundle out of a topos morphism and conversely, are mutually inverse up to natural  

isomorphism. In outline, for any right G-set S there is a canonical isomorphism 

S |  ~- S 

of right G-sets. For a given morphism f : X ~ B G  this gives the required natural  

isomorphism - |  E -~ f* for E = f*(G). Conversely, for any principal bundle E, 
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there is a canonical isomorphism of principal bundles G |  E ~ E.  

The equivalence in the s ta tement  of the proposition is both natura l  in X and 

in G. For X ,  this means that  for any continuous map ~ : Y --* X between spaces, the 

square 

Hom(X, BG) ~ - Pr in(X,  G) 

1 ~ 
Hom(Y, BG) ~ , Prin(Y, G). 

commutes,  where ~* on the left denotes "compose with c:", while ~* on the right is 

"pullback". For G, it means that  for any homomorphism of groups ~b : G ~ H,  there 

is a commuta t ive  square 

Horn(X,/3G) ~ , Pr in(X,  G) 

1 
Hom(X, B H)  ~ - Pr in(X,  H).  

Here r  on the left is given by composition with the morphism BG ~ 13H induced 

by r (see Section 1.2). On the right, ~b! is defined for any principal G-bundle E by 

~b!(E) = H | E , 

where H is viewed as a right G-set with action a defined by a(h ,9  ) = h .  ~(9). 

Recall from Chapter  I, Section 4, that  [X, BG] denotes the collection of homo- 

topy classes of topos morphisms. 

1.2. C o r o l l a r y .  There is a natural bijection between [X, BG] and the collec- 

tion of isomorphism classes of principal bundles. 

P r o o f .  This follows from the equivalence of Proposit ion 1.1. For, on the one 

hand, if f and g : X --* BG are homotopic maps,  then the corresponding principal  

G-bundles E = f*(G) and F = g*(G) are "concordant"; i.e. there is a principal  

bundle H o n  X • [0,1] so that  E ~- H I X  • {0} and F ~- H]X  x {1}. Since every 

principal  G-bundle over [0, 1] is constant,  it follows that  E and F are isomorphic. 

Conversely, on the other hand, if a : E --+ F is an (iso-)morphism between principal  

G-bundles over X,  then a corresponds under the equivalence of Proposi t ion 1.1 to a 

natural  t ransformation between the classifying maps f and 9 : X ~ t3G. Thus, as 

explained in Section 1.4, these maps are homotopic. 

Although we will not use this more general case, it should be noted that  for 

any topos s one can define the notion of a principal G-bundle over s and prove 

an equivalence Horn(g, BG)-~Pr in (g ,  G), analogous to Proposit ion 1.1, in exact ly  the 

same way. 
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w Diaconescu's theorem 

In this section, we will ex tend Proposi t ion 1.1 from groups to a rb i t ra ry  (small)  

categories. Let C be such a category, with classifying topos BC of all presheaves on 

C, as described in Chapter  I, Section 2. For a topological space X ,  a C -bundle over 

X is a covariant  functor  E : C ---* Sh(X). In other  words, a C-bund le  consists of a 

sheaf E(c) for each object  c in C, and a sheaf map  E ( a ) :  E(c) --* E(d) for each arrow 

a : c ---* d, denoted 

E (~ ) (y )  = ~ . y  (y E E ( c ) ) ,  

so tha t  the usual  ident i t ies  idc.  y = y and /3. (or. y) = (/34) - y are satisfied. Such a 

C-bundle  E is said to be principal (or flat, or filtering) if for each point  x E X the 

following condi t ions  are satisfied for the  stalks E(c)x: 

( i)  (non-empty)  There  is at least one object  c E C for which the stalk E(c)~ is 

non-empty .  

(i i)  ( t ransi t ive)  For any two points  y E E(c)~ and z E E(d)x, there  are arrows 

a : b ---+ c and /3  : b ---+ d from some object  b E C, and a point  w E E(b)x, so tha t  

a . w = y a n d f l . w = z .  

(iii) (free) For any two parallel  arrows c~,/3 : c ::t d and any y E E(c),: for which 

or. y = /3. y, there  exists an arrow 7 : b --* c and a point  z E E(b)~ so tha t  

~7  = / 3 7  and 7 ' z = y. 

2.1.  E x a m p l e s .  (a) A group G can be viewed as a one-object  category. In this 

case the  above not ion  of principal  C-bundle  agrees with the usual  one, discussed in 

the previous section. 

(b) Let M be a monoid,  again viewed as a one-object  category. T h e n  M is said 

to have right cancel la t ion if k m =  ern implies k = g, for any k,g, m E M (in other  

words, if every arrow in M is epi). In this case, a pr incipal  M - b u n d l e  over X is a 

surject ive sheaf E --~ X with a cont inuous (fiberwise) left act ion by M,  which is free 

in the  sense tha t  m -  e = n �9 c implies m = n (for any c E E) ,  and  t rans i t ive  as in 

condi t ion  (ii) above. These are exact ly the pr incipal  M-bundles  discussed in Segal 

(1978), p.378 (except tha t  Segal considers right actions,  hence assumes tha t  M has 

left cancel lat ion) .  

(c) A par t ia l ly  ordered set P can be viewed as a category, with exact ly  one arrow 

p -* q iff p _< q. In this case, a pr incipal  P - b u n d l e  over X is a family  {Up : p E P}  

of open subsets  in X with the  following properties:  if p _< q then  Up _C Uq; the Up 

together  cover X;  the Up are "locally" directed, in the sense tha t  Up N Uq is covered 

by al lU~ w i t h r _ < p a n d r  < q .  

(d) If the category C has finite l imits ,  then a C-bundle  E : C ~ Sh(X) over X is 

pr incipal  iff it sends all finite l imits  in C to finite l imits  in Sh(X). More generally, for 

any small  category C, a pr incipal  bundle  E mus t  c o m m u t e  with all those finite l imi ts  

which exist in C. (See Mac Lane-Moerdijk(1992),  Chapter  VII.)  
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For two principal C-bundles E and E '  over X,  a morphism ~ : E ---* E '  is by 

definition a natural  transformation; i.e. 9~ is a family of sheaf maps 9% : E(c)  --* E'(c) 

(for c E C) so that  9~a(a. 9) = a .  c2c(y ) for any c~ : c ~ d in C and any point y E E(c).  

In this way, the principal  C-bundles over X form a category, denoted 

Pr in(X,  C) . 

2.2. T h e o r e m .  For any small category C and any topological space X ,  there is 

a natural equivalence of  categories 

H o m ( X ,  BC)  ~ P r i n ( X , C )  . 

P r o o f .  The proof will follow the same pat te rn  as that  of Proposit ion 1.1. In one 

direction, let f : X --, BC be a morphism of topoi. By composition with the Yoneda 

embedding Yon : C --+/3C, one obtains a functor 

E = f* o Yon : C -* S h ( X )  . 

To see that  E is a principal  bundle,  we verify conditions (i)-(iii). For condition (i), 

note that  Ecer Yon(c) --* 1 is an epimorphism to the terminal  object  1 in BC. Since 

f* preserves epis and sums, P'cec E(c) --~ X must he surjective. For condition (ii), 

observe that  for any two objects c and d of C, the evident map 

~)-~c~b~d Yon(b) --* Yon(c) x Yon(d) 

is an epimorphism in BC. Applying f* thus yields an epimorphism of sheaves 

~~c--b--d E(b) --~ E(c) x E(d) , 

so that  condition (ii) is satisfied. Finally, for a,/3 : c =~ d, condition (iii) follows 

similarly, by applying f* to the equalizer diagram 

Yon(b) --* Yon(c) =~ Yon(d) 

o,-~, = f l ,  7 

in BC. 

Conversely, suppose E is a principal C-bundle over X. For any presheaf S on C, 

one can define a "tensor product" 

S |  E ;  

This is the quotient of the sum of sheaves ~.~c,~s(~) E(c) ,  obtained by the identifi- 

cations 

( s .  ~ ,  e) ~ (s,  a .  e) 

for any a : c ~ d ,  s E S(d) and e E E(c). Again, we denote the points of,5' |  E by 

s | e. This construction defines a functor 

- |  : BC ~ Sh(X), 
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which clearly commutes with colimits (since S | E is itself constructed as a colimit). 

The assumption that E is principal will ensure that - | E is also left exact. Indeed, 

to prove this, it suffices to show that for any point x E X, the stalk functor 

S~(S| ~ S| 

is left exact, i.e. commutes with finite limits. To this end, let I t  be the category 

with as objects pairs (c, y) where y E E~(c), and as arrows a : (c, y) ~ (d, z) those 

arrows a : c --+ d in C for which a �9 y = z. Then the conditions that E is principal 

exactly mean that each category I ov (the dual of /~) is a filtering category (Mac 

Lane(1971), p. 207). Furthermore, a presheaf S On C gives by composition a functor 

S~ : I~P --+ C ~ ~ (sets), and there is a canonical isomorphism 

S N c E ~  ~ lim S~. 
iop 

Thus S H S NC E,  preserves finite limits, since these commute with filtered colimits 

(Mac Lane (1971), p. 211). This proves that the flmctor - @c E : BC ~ S h ( X )  

commutes with colimits and finite limits, and hence is the inverse image functor of a 

topos morphism X ~ BC, uniquely determined up to isomorphism. 

To complete the proof of the theorem, it must be verified that these constructions, 

of a principal bundle from a topos morphism, and of a topos morphism out of a 

principal bundle, are mutually inverse up to natural  isomorphism. 

In one direction, start with a principal bundle E, construct a morphism f : X --* 

BC with f* = - | E, and define a new principal bundle E '  by E'(c) = if(Yon(c))  = 

Yon(c) Nc E. The evident map cr : E'(c) = Yon(c) @c E ~ E(c),  defined by the 

formula cr([a : b ~ c] | z) = a .  z, is clearly an isomorphism (representable functors 

are "units" for the tensor product). 

The other way round, start with a morphism f and construct E = f* o Yon, and 

then a new morphism with inverse image functor - |  For each presheaf S on C, 

there is a canonical map 

T : S Q c  E ---* i f ( S )  , r ( s Q e ) = f * ( ~ ) ( 2 )  

(here s E S(c), with corresponding map ~:  Yon(c) ~ S, and z E E(c)).  If S is itself 

representable, say S = Yon(d), the r is the standard isomorphism Yon(d) | E 

E(d). Since every presheaf S is a colimit of representables while r is natural  in S, it 

follows that r is an isomorphism for each S. 

This proves the theorem. 

2.3. R e m a r k .  Just as in Proposition 1.1, the equivalence of Theorem 2.2 is 

again natural  in X and C. For a map f : Y --* X of spaces and a functor c 2 : C ~ D, 
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this is expressed by the following two squares which commute (up to isomorphism): 

Horn(Y, BC) ~ ~ Prin(Y, C) 

t l 
Hom(X, BC) ~ , Prin(X, C) 

1 1 
Hom(X, BD) ~ - Prin(X, D) 

Here the vertical maps on the left are defined by composition with f : Y ~ X and 

: BC ~ BD, respectively. On the right, f* is the operation of pulling back principal 

bundles, whereas ~! is described as follows: for a principal bundle E on X, and an 

object d E D, 

~,(E)(d) = ~*(Yon(d)) |  E ,  

Where c2*(Yon(d)) = Yon(d) o ~2 = D(~ ( - ) ,  d) : C ~ --~ (sets) is the inverse image 

of the representable presheaf Yon(d) on D (cf. Chapter I, Section 2). 

Next, call two principal C-bundles E0 and E1 on a space X concordant if there 

exists a principal bundle E on X • [0, 1] so that Eo ~- io(E) and E1 ~ i;(E) (where 

i0, il : X ~ X • [0, 1] are the evident inclusions). This defines an equivalence relation 

on principal bundles. Write 

kc(x) 

for the collection of equivalence classes ("concordance classes") of principal bundles. 

Note that if ~v : E0 --~ E1 is a map between principal C-bundles on X, then E0 and E1 

are concordant: one can construct a concordance E on X • [0, 1], with E I X  • (0, 1] 

~r*(E1) for the projection 7r: X • [0, 1] ~ X,  and E[X x {0} ~ ~r*(E0), by glueing 

a point z C Eo(c)x to the section ~(z) on {z} x (0, 1]. 

/ .  v(z) = ~(w) 
/ 

z ~ /  (x, 1) 
1D 

/ , /  / 
(x,0) 

(Under the equivalence of Proposition 2.2, this is really the construction of a homo- 

topy from a natural homotopy in Chapter I, Section 4.) 

2.4. Coro l l a ry .  For any space X and any small category C, there is a natu- 

ral isomorphism 

[X, BC] ~ k c ( X ) .  

P r o o f .  Immediate from Prop. 2.2. 
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2.5.  R e m a r k .  For any topos g, there is an equivalence be tween morphisms  

g -+ BC and pr incipal  C-bundles  over g, similar to Proposi t ion 2.2. (This  is discussed 

in detail  in Mac Lane-Moerdi jk  (1992), Chapter  VII.)  This  more  general  version is 

often referred to as "Diaeonescu's  theorem" (Diaconescu (1975)). 

w The classifying topos of a topological category 

Let C be a topological category (this not ion is discussed in detail ,  e.g., in Segal(1968) 

and Bott(1972)).  Thus  C is given by a space Co of objects  and  a space C1 of arrows, 

and the s t ruc ture  maps  for a category are all cont inuous.  We will often denote  these 

maps  by s , t  : C1 ~;  Co for source and target,  m : C1 xr C1 + C1 for composi t ion  

and  u : Co --* C1 for uni ts ;  re ( f ,  g) is also denoted f o g, while we often wri te  lx or 

id~ for u(x) .  

A C-sheaf is a sheaf (&ale space) p : S --* Co equipped with a cont inuous  right 

act ion c~ : S • C1 --* S, denoted c~(x, f )  = x . f .  Thus  x .  f is defined whenever  

p(z)  = t ( f ) ,  and satisfied the usual  identi t ies for an action: 

( x . f ) . g  = x - ( f o g )  , x-lp(, , )  = x , p(x . f )  = s ( f ) .  

A map  between C-sheaves is defined to be a map  of sheaves over Co which respects 

the action.  This  defines a category of C-sheaves, denoted 

B C .  (1) 

3.1.  E x a m p l e s .  (a) A small  category C as considered in Section 1.2 can be 

viewed as a topological category with the discrete topology. In this case, a C-sheaf is 

the  same th ing as a presheaf on C, and the no ta t ion  BC in (1) is consis tent  with the  

one in t roduced  in Chapter  I, Section 2. 

(b) A topological space X can be viewed as a topological category X, in which all 

arrows are identi t ies .  (So X0 = X = X,, etc.) An X-sheaf is a sheaf on X (Chapter  

I, Section 2), and  BX = S h ( X ) .  

(c) Let G be a topological group act ing from the right on a space X.  Let XG be 

the associated t rans la t ion  category: it has X as space of objects ,  and  X • G as space 

of arrows, where (x,g) is an arrow x - g --~ x. An Xa-shea f  is a sheaf p : S ~ X on 

X ,  with an act ion by G on S so that  p is G-equivar iant .  Thus  B ( X a )  is the category 

of G-equivariant sheaves on X.  

(d) As a special case of (c), assume X is a point  and G is connected.  Thus  G = X a  

is a one-object  topological category. Since the act ion of a connected  group on a dis- 

crete set mus t  be tr ivial ,  BG collapses to the category of sets. 

(e) A map  f : Y --+ X between topological spaces gives rise to a topological cat- 

egory K ( F )  with Y as space of objects  and Y Xx Y as space of arrows. There  is a 

un ique  arrow (y, y') from y' to y in I f ( f )  iff f ( y )  = f (y ' ) .  An action of this category 
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on a sheaf S --~ Y is also called descent data on S. For example,  if E ~ X is any sheaf 

on X,  the pullback sheaf f*(E) = E x x Y  --* Y has an evident such action, defined by 

(e, y ) .  (y, y') = (e, y').  This defines a functor Sh(X)  ~ B(K( f ) ) .  When this fnnctor 

is an equivalence of categories, the map f is said to be an effective descent map (for 

sheaves). This is the case, for example,  when f is an open or proper  surjection. 

3.2. P r o p o s i t i o n .  The category BC of C-sheaves is a topos, called the clas- 

sifying topos of the topological category C. 

P r o o f .  We will prove this proposition under the assumption (true in all cases 

to be considered later) that  the source map s : C1 --* Co is an open map; see also 

Remark 3.3 below. 

For two C-sheaves S --~ Co and T --~ Co, their product  SXc0 T in Sh(C0) has a 

unique C-action making the projections S• T --~ S and SXc0 T --* T C-equivariant.  

Wi th  this action, S x c 0 T  is the product  of S and T in the category BC. In other 

words, products  in BC can be constructed as products in Sh(C0). Exact ly  the same 

applies to other finite limits,  sums, and coequalizers of equivalence relations, occurring 

in the Giraud axioms (G1-3) for a topos. Thus BC inherits all the relevant exactness 

properties,  expressed in these axioms, from Sh(C0). It remains to be shown that  

BC has a set of generators. For any open subset U C_ Co, the space t - l ( U )  C_ C1 is 

equipped with a natural  action by C, given by the source map s : t - l ( U )  ~ Co and 

the composition 

t - l ( u )  xc0 C1 ---+ t - l ( l j  ") . 

Thus, s : t - l (U) --+ Co would be a C-sheaf if s were an ~tale map. Let {7 be the 

collection of all C-sheaves G for which there exists a surjective C-equivariant map 

t - l ( U )  -~ G. This collection is small, since there is only a set of such open U, only 

a set of equivalence relations to put on t - I (U) ,  and only a set of possible topologies 

to put  on the quotient G = t-~(U)/R. To see that  G generates BC, take an arb i t ra ry  

C-sheaf p :  S ~ Go, and a p o i n t  y C S. Let U be an open subset of Co on which 

there e x i s t s a s e c t i o n c r  : U ~ S through y, s a y a ( x )  = y. Let c 2 : t - l ( U )  ~ S b e  

the map c2(g ) = ~(tg) "g, and let G C_ S be the image of ~. Thus G is closed under 

the action by C on S. Furthermore,  since p : S --~ Co is ~tale while s : t - l ( U )  ~ Co 

is (assumed) open, the  identi ty p o ~ = s implies that  !P is open. Thus G is an open 

subset of S, hence itself a C-sheaf, which obviously belongs to the collection G. This 

shows that  any C-sheaf S is the union of C-sheaves in G, so that  ~ generates BC. 

This proves the proposition. 

3.3. R e m a r k .  The category BC can be constructed,  as a (bicategorical) col- 

imit ,  from the topoi Sh(C0), Sh(C1), Sh(C1 Xc0 C 1 ) , " - .  Thus, the fact that  BC is 

a topos is a special case of the existence of such colimits of topoi, first proved in 

Moerdijk(1988), Section 2. (See also Makkai-Par~ (1989), p. 108.) 

The construction of the classifying topos BC is functorial in C. More precisely, 
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a cont inuous  func tor  ~ : C ---* D between topological categories induces  by pul lback 

along ha : Co --~ Do an evident  functor  

~* : BD ~ BC . 

Since colimits and finite l imits  in BC and BD are computed  as colimits and  finite 

l imits  of under ly ing  sheaves (as in the proof of Proposi t ion 3.2), ~* commutes  with 

these. Thus  c2" is the  inverse image functor  of a morph i sm of topoi ~ : BC --* BD. 

Fur thermore ,  exact ly  as for discrete categories discussed in Chap te r  I, Section 2, a 

cont inuous  na tu ra l  t r ans format ion  r : c 2 ~ ~b between two such functors  ~,  ~ : C 

D induces a map  ~ be tween topos morphisms %~b : BC =~ ED. In par t icular ,  if 

~o : C --~ D is an equivalence of topological categories, so tha t  there  are X : D --* C 

and cont inuous  na tu ra l  i somorphisms ~o X ~ idD and X~ ~- idc, t hen  the  induced  

m ap  c 2 : BC --* BD is an equivalence of topoi. 

More generally, a cont inuous  functor  ~ : C ~ D is said to be fully faithful if the 

square 

C1 "P ~ D 1 

Co• ~,x~ . Do • Do 

is a fibered product .  It  is said to be essentially surjective if, for the  subspace Iso(D) C_ 

Da of inver t ib le  arrows, the map  from the pul lback along t : Iso(D) ~ Do, 

so~r2 : C 0 x o 0 I s o ( O ) ~ O o  

is an open (or proper) surject ion.  This  condi t ion expresses in a s t rong sense tha t  for 

any object  y of D there is an isomorphism 7j --~ ~0(z) for some object  z in C. The  

functor  c 2 is said to be a (categorical) weak equivalence if c 2 is bo th  fully fai thful  and  

essential ly surjective. 

3 .4 .  P r o p o s i t i o n .  For any categorical weak equivalence ~ : C --, D for  the 

pullback above, the induced map BC ~ BD is an equivalence of topoi. 

P r o o f .  Wri te  P0 = Co xD0 Iso(D) tbr the pul lback above, with maps  sTr2 : P0 --* Do 

and  ~rl : Po + Co. One  can make P0 into the space of objects  of a topological category 

P, by defining P l  as the fibered product  

P1 * D1 

1 1 
PoxPo ~ • s~L-Do x Do. 

Thus,  the  objects  of P are of the form (z, a : y.z,~ (x)) where x is an object  in C and  

a an i somorphism in D, and the arrows fi-om (z, a :  y ~ o  (z)) to (z' ,  a ' :  y ' ~ o  (z '))  

are s imply  arrows /3 : y ~ y'  in D. Then  7r 1 : P0 --~ Co extends  to a cont inuous  

functor  P + C, sending such an arrow fl to the un ique  arrow ~ : z --~ z '  for which 
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a ' o f l  = 90(6) o a .  This  functor  7r, : P ~ C has a section cr : C --~ P, sending an  object  

x E Co to (x, 1~,(,) : 90(x)~90(x)), and defined in the obvious way for arrows. Thus  

we have cont inuous  functors  
7r 1 

C ~ P  ~ D 

where s~r2cr = 90 and ~r2c~ -- idc. Furthermore, there is an evident continuous natural 

isomorphism 0 : ide -~ a~rl, with components 

6x,. : y-% 90(z) = a .  

Thus ~rl is a categorical equivalence, and hence includes an equivalence of topoi BP 

BC. It now suffices to prove that s~2 : P -+ D induces an equivalence of topoi as 

well. In other words, since sTr2 is assumed to be proper or open, it remains to prove 

the proposition in the special case where 90 : Co -+ Do is itself a proper or open 

surjection, and we will return to this notation. To construct an inverse for the functor 

90* : BD -+ BC, consider a C-sheaf S -+ Co. If x,x '  are two points in Co with 

90(x) = ~(x ' ) ,  there is a un ique  arrow in C, denoted ~7,~, : x --~ x', for which 

90(V~,~,) = l~,(x). This  gives a map  

V : Co xa0C0 ~ C1.  

Pul l ing  back the  act ion by C on S along V thus equips the sheaf S --~ Co with descent 

da ta  (see Example  3.1(e)) for the map  90 : Co --* Do. Since this map  90 is of effective 

descent,  there is a sheaf T on Do, un ique  up to isomorphism,  for which there  is an 

i somorphism u : 90"(T) ~ S of sheaves on Co, compat ib le  with descent data.  It is 

now straightforward to descend the action by C on S to an act ion by D on T,  in such a 

way tha t  u is ac tual ly  an isomorphism 90"(T) = S of C-sheaves. This  const ruct ion,  of 

T out  of S, provides an inverse (up to isomorphism) for the functor  90* : BD --~ BC. 

w Diaconescu's  theorem for s-6tale categories 

A topological category C is said to be s-~tale if its source map  s : C1 --~ Co is 

an ~tale map,  i.e. a local homeomorphism.  The  modes t  purpose in this section is to 

ex tend  the  correspondence of Theorem 2.2 ("Diaconescu 's  theorem")  to such s-6tale 

topological categories. Note tha t  it cannot  possibly hold for the  classifying topos of 

an a rb i t ra ry  topological category, since such a topos may  be degenerate  (cf. Example  

3.1(d)). 

A C-bund le  on a space X is a sheaf p : E -+ X,  equipped with a cont inuous  

fiberwise left C-act ion,  given by maps  

~ r : E - + C o  , a : C 1  • E - + E .  

The map  a is defined for all pairs (g, c) where g E C1, e E E and s(g) = 7r(e), and 

is denoted  a(g , e) = g �9 e. T h a t  a is an action is expressed by the usual  ident i t ies  



32 CLASSIFYING TOPOI 

lc" e = e and g-  (h .  e) = (g o h) .  e; that it is fiberwise means that  p(g- e) = p(e). 

Such a C-bundle is said to be principal if the three conditions of Section 2 hold. We 

repeat them here for convenience: For any point z E X, 

(i) The stalk E~ is non-empty. 

(ii) For any two points y E E ,  and z E E~, there are a w E E, ,  and arrows 

c~: 7r(w) --, ~r(y) and r 7r(w) ~ ~r(z), such that a . w  = y and r = z. 

(iii) For any point y E E~, and any pair of arrows a,/~ in C with s(c~) = 7r(y) = s(/~) 

and cr .y = / 3 . y ,  there exists a point w E Ez and an arrow 7 : 7r(w) --* ~r(y) in 

C s u c h t h a t 3 ' . w = y i n E ~ a n d a T = 3 7 i n C .  

With the obvious notion of action preserving map, these principal C-bundles over X 

form a category denoted 

Prin(X, C) . 

4.1. T h e o r e m .  For any topological space X a*td any s-dtaIe category C, there is 

a natural equivalence 

Hom(X, BC) ~- Pr in (X,C)  . 

P roof .  The proof is analogous to that of Theorem 2.2. For the construction of a 

topos morphism f : X ~ BC out of a principal bundle E, we again use the "tensor- 

product" construction. Thus, for a C-sheaf S (an object of BC), we can construct 

a sheaf S | E on X, by factoring out the fibered product space S Xco E by the 

equivalence relation generated by the identifications 

( s .  ~ ,e )  ~ ( s , ~ .  e ) .  

The equivalence class of a pair (s,e) will again be denoted by s | e. There is a 

projection S | E -+ X, sending each equivalence class s | e to the point p(e) E X; 

it is well-defined on equivalence classes since the action by C on E is fiberwise. To 

see that  S | E is a sheaf on X, we must show that this projection S | E ~ X is 

an 6tale map. To this end, construct S | E as a coequalizer 

S x c o  ClXco E =~; SXco E --~ S |  (1) 

The two parallel maps here are given by the two actions, and send a triple (s, a,  e) to 

(s.a,  e) and (s, cr.e), respectively. Now S • C1 xc0 E and S Xc0 E are both sheaves on 

X,  via the composite projections S Xc0 C1 Xc0 E -+ E ~ X and S Xc0 E ~ E ~ X; 

indeed, these projections are both 6tale, since 6tale maps are stable under pullback 

and composition, while the maps E ~ X , S --* Co and s : C1 ~ Co are all assumed 

6tale. The two parallel maps in (1) are maps of sheaves on X, so their coequalizer 

S | E is again a sheaf on X. 

Thus we have constructed a functor 

- |  B e  ~ (sheaves o n X ) .  
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This functor evidently commutes with colimits. To see that  it commutes with finite 

limits,  note that  for a C-sheaf S and a point x E X,  we have 

(S |  = S |  = l i r a  ~'~ , 
lOV 

where I~ is the category with E~ as a space of objects and C1 xc0 E ,  (=  pullback 

along s : C1 ~ Co) as space of arrows. This category has a discrete topology, because 

p : E --~ X and s : C1 ---* Co are both dtale. Thus, exact ly as for Theorem 2.2, 

I ~ is a filtering category when E is principal,  so that  S ~-* (S |  E)x commutes 

with finite limits. Since this holds for each point x C X,  the functor S ~-* S |  E 

also commutes with finite l imits,  hence is the inverse image of a topos morphism f ,  

uniquely determined up to isomorphism. 

For the converse construction, of a principal bundle E from a morphism f : X 

BC, observe first that  the &ale map s : C1 ---* Co has the s tructure of a C-sheaf, 

with (right) action given by composition. Thus s : C1 ---* Co underlies an object  of 

BC, which will be denoted by (;. The inverse image functor f* of any morphism 

f : X ~ BC thus gives an induced sheaf on X,  defined as 

E ~ = f - ( ~ : ) .  

4.2. L e m m a .  This sheaf E I on X has the structure of  a principal C-bundle. 

P r o o f .  In the proof, we shall explici t ly use the assumption that  Co is sober. 

(Recall that  all spaces are assumed sober.) We will also use that ,  since a : C1 --+ Co 

is dtale, for each open U C Co the space t - l ( U )  is a C-sheaf, with sheaf project ion 

s : t - I ( U )  --+ Co and action given by composition. These sheaves t - l ( U )  generate the 

topos BC (of. the proof of Proposit ion 3.2). Note that  C: is the maximal  generator.  

In part icular ,  for each U we have 

f* ( t -~(U))  C_ f*(C)  = E f . 

For the proof of the lemma, we first define a project ion lr : E f --+ Co and an action 

Cl Xc0 E f --+ E ]. For the construction of % l e t x E X a n d l e t e E E ~  ] = f * ( C ) ~ b e  

any point in the stalk over x. Consider the family 

Ny = {U C Co [ U open, e �9 f*( t -~U)~} . 

As subobjects  of C in BC, the objects t - l (U)  satisfy the identit ies 

t-l(U) nt- l(V)=t- l(unv) t - l ( U u ~ )  = Ut-'(ui), 

for any open sets U, V, Ui in Co. Since f* preserves colimits and finite l imits,  it follows 

that  the collection Ny of open sets is closed under intersection, and has the proper ty  

that  for any family of open subsets {Ui} with U U~ E Ny, some Ui must already belong 

to Ny. Thus the set K = Co - U{U _c Co [ U open, U ~ Ny} is an irreducible closed 
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set. Since Co is sober, K has a un ique  generic point ,  which we call ~v(e). Thus  ~r(e) 

is the un ique  point  in Co with the proper ty  tha t  for each open U C Co, 

7r(e) E U iff e �9 f * ( t - l ( V ) ) ~  . (2) 

This  const ruct ion,  for each point  e �9 E f, defines a map  7r : E l ~ Co. This  m a p  is 

ev ident ly  cont inuous ,  since r r -x (v)  = f * ( t - ~ Y )  C_ E ! by (2). 

To define the  fiberwise left act ion by C on E S, consider again a point  x E X,  

another  one e �9 E f and an arrow a : s(c~) ~ t(c~) in C so tha t  7r(e) = s (a) .  Since 

the source map  s : Ca --* Co is 6tale, there exists an open ne ighbourhood U of ~r(e) 

in Co and  a section r : U --~ C1 of s so tha t  c2~(Tre ) = c~. Compos i t ion  with 9~,, t hen  

defines a map  of C-sheaves (an arrow in BC) 

~ :  t - i (u)  ~ ~ ,  ~(F3) = ~%(t(~)) o Z.  

Define the act ion of ce on e by 

c~. e = f * ( ~ ) ( e )  �9 E~ . (3) 

This  act ion is readily seen to be cont inuous in cx and e. 

It  remains  to be shown tha t  this act ion CI • E I  --* E ]  satisfies the condi t ions  

(i) - (iii) for being principal .  For the first condit ion,  observe that  for the  t e rmina l  

object  1 in BC, the un ique  ma p  (~ --~ 1 is an epimorphism.  Since f* : B C  -+ S h ( X )  

preserves ep imorphisms  as well as the t e rmina l  object ,  the  m ap  E I --* 1 mus t  be epi 

in S h ( X ) ;  or in other  words, each stalk E~ is non-empty .  For condi t ion  (ii), consider 

for any open set U C Co, and any two sections ~ , ~  : U --* C1 of the source m ap  

s : C1 -*  Coy the induced arrow in the topos BC, 

( ~ , ~ )  : t - ' ( U )  -~ C • 

(the product  on the right is tha t  of C-sheaves). These maps,  for all open U C_ Co and 

all pairs of sections ~, ~,  together  form a surject ive map  

t -~(U)  --, C • 
U,~,,,p 

in BC. Since f* preserves products ,  sums and epis, the  induced m ap  of sheaves on X ,  

f * ( t - x U )  -~ E s •  E s 
U,,,o,~ 

is again surjective.  Thus,  if x E X ,  and y, z �9 E~ / are two points  in the stalk over x, 

there are such U, 9~,'r and a point  w E f * ( t - l U ) ~  for which 

f*(C2)(w ) = y and f*(~b)(w) = z . 

Now wri te  a = ~(Trw) and fl = ~b(Trw). Then,  by defini t ion (3) of the  action,  ~ = ~ 

and  ~ = ~oZ on a possibly smaller  ne ighbourhood U' C_ U of 7r(w), and  a .  w = y while 
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/3- w = z. This shows that  the action on E ] satisfies the second condition for being 

principal.  

The verification of the third condition is similar; we omit  the details. 

The lemma now being verified, we complete the proof of the theorem. It remains 

to be shown that  the two constructions, of a morphism f : X ~ B(2 out of a principal  

bundle E by i f ( S )  = S | E,  and of a principal bundle E ! out of a morphism f 

by E f = f*((~), are mutual ly  inverse, up to natural  isomorphism. For this, observe 

first that  for any (principal) (2-bundle E over X ,  with structure map ~r : E ~ Co as 

before, and for any open subset U C Co, there is a natural  isomorphism 

,flU: t-l(U) | E -~ 7F-I(U) ~ E ,  (4) 

defined for any arrow c~ with t(c~) E U and any point y E E with 7r(y) = s (a ) ,  by 

g u ( a  N y) = a ' y .  In part icular ,  for U = Co, this gives an isomorphism 1~ |  E ~ E. 

This shows that ,  s tar t ing with a principal bundle E,  and constructing a map f : X 

B(2, the bundle E s associated to f is isomorphic to the bundle we s tar ted with: 

E ] = f*(C)  = (Y | E ~- E .  

The other way round, s tar t ing with a map f : X --~ •(2, we need to construct  a 

natural  isomorphism ~ : - |  E I --~ f* between functors from B(2 into S h ( X ) .  For 

each (2-sheaf S, define the component 

']s : S | E I ~ i f ( S )  

as follows: for s C S, and Y E E f over some point 7r(y) E Co, choose first a section 

a : U --* S of the sheaf S --~ Co through s. This section gives a map e : t - l ( U )  --* S 

in BC, defined by # ( a )  = a ( t ( ~ ) ) . a .  Define ~s(s | y) = f*(#) (y ) .  This gives a 

well-defined natural  t ransformation 7/: - |  E ~ f*. For a generator S = t - l ( U )  of 

/3C, the component ~s : t -~ (U) |  E f ~ f * ( t - l U )  is precisely the isomorphism #v in 

(4) above. Thus # is an isomorphism when restr icted to generators. Since tt is natural  

in S, it  follows that  #s  is an isomorphism for each C-sheaf S. This completes the 

proof of Theorem 4.1. (We will be more explicit  about  natura l i ty  of the equivalence 

in Remark  4.5 below.) 

Writ ing kc(X)  for the collection of concordance classes of principal  C-bundles 

over X (exactly as for discrete categories in Section 2), the theorem yields the follow- 

ing immedia te  corollary, by passing to homotopy classes of maps: 

4.3. C o r o l l a r y .  For any topological space X and any s-dtale topological cate- 

gory C, there is a natural bijective correspondence 

[X, UC] ~ k c ( X ) .  

4.4. T o p o l o g i c a l  g r o u p o i d s .  A topological groupoid is a topological category 

C equipped with an addit ional  operat ion i : C1 ~ C1 giving for each arrow c~ : x -~ y 
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in C a two-sided inverse i(c~) = c~ -1 : y --+ x. For example,  every topological group 

is a topological groupoid, with the one-point space as space of objects.  A topological 

groupoid is s-6tale iff all its structure maps (source, target ,  composition, units and 

inverse) are local homeomorphisms. Topological groupoids which are s-dtale play a 

central role in the theory of foliations (see e.g Haefliger(1958), (1984)) and typical ly  

arise from germs of homeomorphisms (or diffeomorphisms). For example,  for any 

topological space M there is an s-6tale topological groupoid F (M)  with M as space of 

objects,  and with as space of arrows the space of all germs of (local) homeomorphisms,  

with the sheaf topology. For an s-dtale topological groupoid C and a space X,  a C- 

bundle E ~ X over X is principal precisely when the map 

ClXcoE---~E• (o~, e) ~--~ (c~ �9 e, e) 

is an isomorphism. Thus principal C-bundles are exactly the "C-structures" consid- 

ered in Haefliger(1958), and the collection of isomorphism classes of such is usually 

denoted Hi(X, C). Thus Theorem 4.1 in this case provides a bijection 

7roHom(X, BC) ~ H I ( X , C ) .  

We conclude this section with some remarks on Theorem 4.1. 

4.5. R e m a r k .  Just  as for discrete categories, the natura l i ty  of the equivalence 

in Theorem 4.1 can be expressed by a commutat ive (up to isomorphism) diagram, 

for any map f : Y --~ X between spaces and any functor ~o : C ---* D between s-dtale 

topological categories: 

Horn(Y, BC) ~ , Prin(Y, C) 

t r 
Hom(X, BC) ~ , Pr in(X,  C) 

Horn(X, BD) ~ , Pr in(X,  D). 

The vertical  maps on the left are again defined by composition, while f"  denotes 

the pullback of bundles. The covariant operat ion ~ : Pr in(X,  C) ~ Pr in(X,  D) on 

principal bundles is defined as follows. Denote by ~b the space Co xD0 [)1 of pairs 

(x,j~) where x �9 Co and /~ �9 D1 is an arrow /3: c2(x ) -~ y, with s(j3) = cp(x). Since 

3 : D1 "-+ D o  is (assumed) ~ta.le, so is the projection pl : Co • --* Co. Furthermore,  

for an arrow c~ : x'  ~ x in C1, the action 

(x, 8 ) .  ~ = (x', ~ o ~ ( ~ ) )  

gives ~ the s tructure of a C-sheaf, i.e. an object  of BC. For the topos morphism 

: BC --* BD induced by ~ : C --+ D, this C-sheaf �9 is exactly the inverse image ~*(I)) 

of the object  I) considered in the proof of Theorem 4.1. For the map P2 : ~ --+ Do, 
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sending a pair  (x,/3) to y = t(/3), the  space r also carries a left act ion by the  category 

D, given by composi t ion:  for an arrow 5 : y --* z in D, 

~. (x, Z) = r  o 9) .  

For a pr incipal  C-bund le  E = (p : E ~ X, ~r : E ~ Co, etc.) over X,  define 

: ! ( E )  = �9 |  E .  

Thus,  a point  of c2,(E ) can be denoted (x,/3) | e where x E Co, ~ : T(x)  --~ y in D 

and  e E E with ~r(e) = x. This  space ~ ( E )  has a left D-action,  induced from tha t  on 

q~, and a na tu ra l  project ion c2~(E ) ~ X,  induced from p : E --~ X.  In this way, c2~(E ) 

becomes a pr incipal  D-bundle  over X ,  and this is exact ly the bundle  corresponding to 

the composi te  map  X --+ BD. Indeed,  write h : X --+ BC for the  map  corresponding 

to E under  the equivalence of Theorem 4.1, so tha t  h*(S) = S |  E for any C-sheaf 

S. The  pr incipal  D-bundle  E ~'h, corresponding to the composi te  ~ o h : X --+ BD 

under  the equivalence,  is const ructed as 

q } |  

= ~,(E).  

4.6  R e m a r k .  Let C be an s-~tale topological category. It is a consequence of 

Theorem 4.1 tha t  for any topological category D there is an equivalence of categories 

be tween topos morphisms  BD ~ /3C and principal  C-bundles  over D. These are 

pr incipal  C-bundles  over the space Do of objects  in the sense of Theorem 4.1, with an  

addi t ional  right act ion by D, compat ib le  with the pr incipal  left C-act ion.  (More gen- 

erally, for any topos g, there is an equivalence between maps  g ---* BC and  pr incipal  

C bundles  over g. In other  words, X in Theorem 4.1 can be any topos. We will not  

use this more  general  result.) 

w S h e a v e s  o n  s i m p l i c i a l  s p a c e s  

Recall  tha t  the simplicial  model  category ~x has as objects  finite n o n - e m p t y  sets 

[n] = { 0 , . . . , n }  (for n >_ 0), and as arrows a : [n] --* [m] monotone  funct ions 

(a ( i )  _< a ( j )  whenever  i _< j ) .  A simplicial  space Y is a contravar iant  functor  from 

into spaces. Its value Y([n]) is denoted Yn, and its action on an arrow a as above 

by Y(a )  : Ym ---* Yn. In Deligne(1975), a sheaf 5' on Y is defined to be a sys tem 

of sheaves S ~ on Yn (for n r 0), together  with sheaf maps  S ( a )  : Y ( a ) * S  '~ ~ S ~ 

for each a : [n] --~ [m]. These maps  are required to satisfy the usual  functor ia l i ty  
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conditions: SOd ) = id, and for c~: [n] --~ [m] and f l :  [m] --+ [k], the diagram 

y(z). y(~). (s ~) ~r ~(o? z(z).  (sin) 

Y(flc O• ( S ' )  s(~) , Sk 

commutes. A morphism f : S --+ T between such sheaves consists of maps f~ : S ~ --+ 

T ~ of sheaves on Yn, for each n _> 0, which are compatible with the structure maps 

S(a) and T(a). This defines a category of sheaves on the simplicial space Y, which 

we denote by 

S h ( Z )  . 

This category of sheaves is a topos; cf. Proposition 5.1 below. 

Many important  applications arise in the special case where Y is the nerve of a 

topological category C. This is the simplicial space Nerve(C) with space of n-simplices 

Nerve(C)~ the fibered product space C1 • • ""  xr C1 of all composable strings of 

arrows (z0 ~ Xl *-- " -  ge xn); for n = 0 this is just the space Co of objects. For 

this particular case, the topos Sh(Nerve(C)) of sheaves will be denoted by DC, and 

referred to as the Deligne classifying topos of C. Recall that for a general topological 

category C, the more naive and much "smaller" classifying topos BC described in 

Section 3 may contain no information about C (Example 3.1 (d)). It does, of course, 

when C is s-6tale, as can be seen fi'om the classification theorem 4.1. When C is not 

s-6tale, DC takes the role of BC. In Theorem 7.5 we will construct a weak homotopy 

equivalence 2)C --+ BC for any s-6tale category C. 

The construction of the category Sh(Y) is a special case of the more general con- 

text of a diagram of spaces Y indexed by some small category K, i.e. a covariant 

functor Y from K into spaces. For an object k C K we denote the value of Y at k 

by Yk; the value of an arrow a :  k ~ t i s  denoted Y(a) : Yk--+ Ye. A s h e a f o n  the 

diagram Y is defined to be a system of sheaves S k on Yk (for each object k E K), 

together with morphisms of sheaves S ( a ) :  Y(a)*(S t) --+ S k for each arrow a : k --+ g. 

With the evident morphisrns, this defines a category Sh(Y) of sheaves on the diagram 

Y. 

From the category K and the diagram Y one can construct a topological cate- 

gory YK: the objects of YK are the pairs (k,y) where k C K and y E Yk; and an 

arrow (k,y) ---+ (~.,z) in YK is an arrow a : k -+ e such that Y(a)(y) = z. The 

topology on YK is that of the disjoint sum: its space of objects is Eke~Yk, and its 

space of arrows is E~ Ydo,,(~) (where a ranges over all arrows in K). The source map 

s : E~ Yaom(~) + Ek Yk sends the summand Ydo,,(~) indexed by a to the summand 

Yk, where k = dom(a),  via the identity map. The target map t : E~ Yaom(~) --+ EkYk 

sends this summand Ydom(~) to Yt, where g = cod(a), via the map Y(a). Notice that 

this topological category YK is evidently s-6tMe. 

With this category YK, the category Sh(Y) of sheaves, as just defined, can be 

described as a classifying topos: 
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5.1. P r o p o s i t i o n .  For any diagram Y of spaces, indexed by a small category 

K, there is a natural equivalence of topoi 

S h ( Y )  ~- B(YK) .  

Proof .  This follows directly by a comparison of definitions. 

Since YK is an s-6tale category, we obtain: 

5.2. Coro l l a ry .  For Y as in the previous proposition, and for  any topological 

space X ,  there is a natural equivalence 

Hom(X,  S h ( Y ) )  ~- Prin(X, YK), 

natural in X and Y .  

The principal YK-bundles occurring in this corollary can be described in terms 

of principal K-bundles, in the following way. (We will continue to work here with a 

small (discrete) category K, but Proposition 5.3 below holds equally well for a topo- 

logical category.) Recall that a principal K-bundle E over X consists of a system of 

sheaves E k on X (one for each object k E K), and sheaf maps E(a )  : E k ---* E ~ for 

each a : k ---* g in K, so that the principality conditions of Section 2 are satisfied. Call 

such a bundle E augmented (over Y) if E is equipped with a natural  map aug: E ~ Y 

of diagrams of spaces. Thus aug is a system of maps aug k : E k ---* Yk, so that for any 

arrow a : k --* g in K, the identity 

Y(a) o aug k = aug ~ o E(a )  

holds. With the obvious morphisms of principal bundles which respect the augmen- 

tation, one obtains a category 

AugPrin(X, K, Y) 

of principal K-bundles over X with an augmentation to Y. 

5.3. P r o p o s i t i o n .  For X and Y as above, there is a natural equivalence of  

categories 

Prin(X, YK) ~ AugPrin(X, K, Y) 

P roo f .  Let E be a principal YK-bundle on X, with structure map 

7r : E ~ (YK)0 = EkYk �9 

Then for each object k E K, the inverse image E k = ~r-l(Yk) is a sheaf on X equipped 

with a map ~r k : E k --~ Yk, defined as the restriction of 7r. Furthermore, if a : k --+ 

is an arrow in K, one can define a map E(a)  : E k ~ E e in terms of the given action 
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by YK on E:  for any point e E E k , there is an arrow 5 :  k, Tr(e)) ~ (g, Y(c@r(e)) in 

YK, and we define 

E ( ~ ) ( e )  = ~ . e .  

It is e lementary  to verify that  this augmented bundle E is again principal.  

Conversely, from an augmented principal bundle F ,  one can define a YK-bundle 

with underlying sheaf E = EkeKF k, s tructure maps 7r : E --~ Y = (YK)o given by the 

augmentat ion F k ~ Yk(k �9 K), and evident action by arrows in YK. This action is 

again principal.  

These two constructions provide the desired equivalence of categories. 

We will examine this more closely in the special case of simplicial spaces. To 

this end, consider again the simplicial model category 4, and its opposite &op. It is 

well-known that  the classifying topos HA of simplicial sets "classifies" linear orders 

with end points (see Mac Lane-Moerdijk(1992), p. 463). A similar result holds for 

~op, but  without the endpoints. For a precise formulation (Proposit ion 5.4 below), 

define a linear order over a topological space X to be a sheaf L on X,  together with 

a subsheaf O _C L Xx L, such that  for each point x C X the stalk L~ is non-empty 

and linearly ordered by the relation 

y<_z iff ( y , z ) � 9  (fory, z e L ~ ) .  

A mapping L ~ L' between two such linear orders is a mapping of sheaves on X 

which for each point x �9 X restricts to an order-preserving map Lx ~ L" of stalks. 

This defines a category 

Lin(X)  

of linear orders over X.  In the following proposition, using the notat ion of Section 

1.2, B(A ~ denotes the topos of presheaves on A ~ i.e. of cosimplicial sets. 

5.4. P r o p o s i t i o n .  For any topological space X ,  there is a natural equivalence of 

categories 

Hom(X,B(A~ ~- L i n ( X ) .  

P r o o f .  By Theorem 2.2, there is a natural  equivalence of categories, between 

topos maps X ---* ~(/A ~ and principal A~ over X. Now a/A~ over X 

is the same thing as a simplicial sheaf on X,  and such a simplicial sheaf is principal  

whenever each stalk Ex is a principal simplicial set (i.e. a principal bundle over the 

one-point space). Following the definition given at the beginning of Section 2, a 

simplicial set S is principal iff it satisfies the following three conditions: 

(i) S is non-empty;  

(i i)  given y E S~ and z �9 Sm there are arrows a :  [n] --~ [k] a n d / ? :  [m] --~ [k] in ~, 

and a w �9 Sk so that  a*(w) = y and/?*(w) = z; 

( i i i)  given y �9 Sn and a , / ? :  [m] ~ [,] in ~ with a*y =/?*y,  there exists a 7 :  [n] --* [k] 

in ~ and a z �9 Sk so that  7*z = y and 7 a  = 7/?. 
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Thus,  the  following l e m m a  will comple te  the  proof. 

5 .5 .  L e m m a .  A simplicial set S is principal i f f  S is the nerve of  a (uniquely 

determined) non-empty linear order. 

P r o o f .  (~=) For a l inear  order  (L, <_), i ts  nerve Nerve(L)  is the  s impl ic ia l  set  

defined by 

Nerve~(L) = { ( y o , ' " , y ~ )  l Yo _ < ' "  _< Y~ in L } .  

To show tha t  this  is a pr inc ipa l  s impl ic ia l  set, we verify the  condi t ions  ( i)-( i i i)  jus t  

s ta ted .  Condi t ion  (i) holds since L is assumed non-empty .  For condi t ion  (ii), suppose  

given sequences y = ( Y 0 , ' " , Y ~ )  and z = ( z 0 , ' - ' , z m )  in L. Let  k = n + m + 1, and 

define w = (w0 _< . . -  < wk) to be the  sequence m a d e  up f rom all the  yi and  all the  

zj, by pu t t i ng  t hem in the r ight  order.  Then  there  are s t r ic t ly  increas ing funct ions  

: In] ~ [k] and 3 : [rn] --* [k] so tha t  yl = w~(0 and zj = wrs(j), for i = 0 , - - . , n  

and  j = 0 , . . - ,  m. Thus  y = a*w and z =/3*w,  as required.  For condi t ion  (iii),  pick 

y = ( y 0 , . - . ,  y~) and  arrows a ,  3 : fro] =~ In] in ~ wi th  the  p rope r ty  t ha t  a*y = /3*y .  

To find z and "y as in (iii) above,  view y as a mono tone  m a p  y : [n] --* L, and factor  

it  as a sur jec t ion  followed by an inject ion,  say 3' : [n] --~ [k] followed by z : [k] --+ L. 

Thus  z C Nervek(L) and y = ~*z. Fur the rmore ,  7 a  = 7/3 since a*y = / 3 * y  while z is 

inject ive.  This  shows tha t  Nerve(L)  is a pr inc ipa l  s implicia l  set. 

(=~) Let S be  a pr inc ipa l  s impl ic ia l  set. As po in ted  out  in E x a m p l e  2.1(d),  S mus t  

preserve  all f inite l imi ts  which exist  in ~~ Or in other  words,  S sends any finite col- 

imi t  d i ag r am  in/A to a finite l imi t  d i ag ram of sets. In pa r t i cu la r ,  since any ob jec t  [n] 

in ~ can be cons t ruc ted  as a col imi t  by  glueing copies of [1] together ,  viz. the  col imi t  of 

[o] [o] [o] 

[1] [1] . . .  [1] 

(n copies of [1]), it  follows tha t  there  is a pul lback  

S,~ - $1 • $I • " '" • $I . 

This  means  t ha t  S is the  nerve of a ca tegory  L. 

Also,  any pr inc ipa l  functor  preserves jo in t ly  m o n m n o r p h i c  families.  Or  in o ther  

words,  any sur jec t ive  fami ly  

in A is sent to an inject ive  funct ion 

: ,s',, - - ,  s , , , ,  x . . .  x 

In par t i cu la r ,  when appl ied  to the  sur jec t ive  fami ly  {00: [0] --* [1], 0 , :  [0] ~ [1]}, this  

shows t ha t  (do, d l )  : $1 ~ So x So is inject ive.  Therefore ,  the  ca tegory  L, of which S 
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is the nerve, must  be a preorder. 

We now show that  if S is principal then this preorder must be a non-empty linear 

order. Firs t ,  L is non-empty since S is, by condition (i) for being principal.  Next,  to 

show that  the order on L is total ,  pick y, z E L = So. Since S is principal,  there are 

arrows a :  [0] ~ [k] and f l :  [0] --+ [k] in & and a w e Sk so that  a*w = y and fl*w = z. 

Since S is the nerve of the preorder L, this means that  w = (wo <_ "." <_ wk) while 

y = w~(0) and z = w~(0). Thus y_< z o r  z_< y, according to whether a(0)  _< /3(0) 

or /3(0)  _< a(0).  Finally, to show that  the preorder is ant isymmetr ic ,  suppose y _< z 

as well as z _< y in L. Thus (y,z) G S~ and (z,y) E S~, while do(y,z) = da(z,y) 

and d~(y,z) = do(z,y). Since S is principal there must be a k _> 0, and arrows 

a :  [1] --, [k] and ~ :  [1] --* [k], and a w 6 Sk, for which (y ,  z )  = a*w and (z ,  y)  = / 3 " ~  

while Ooa = 01fl and Old = 00/3. Thus a = fl, hence y = z. 

This completes the proof of the lemma, and hence of Proposit ion 5.4. 

Now let Y be a simplicial space, as in the beginning of this section. We will 

write 

Lin(X,  Y)  

for the category of linear orders over X equipped with an augmentat ion into Y. Ex- 

plicitly, if L ---* X is a linear order over X,  then Nerve(L) is a simplicial  sheaf on X,  

i.e. a simplicial space with fitale maps into X. An augmentat ion of L into Y is a 

map  of simplicial spaces a u g :  Nerve(L) ---* Y. A morphism (L, aug) ---* (L',  aug') in 

the category Lin(X, Y )  is a map L ~ L' of linear orders over X with the proper ty  

that  the induced map f : Nerve(L) ---* Nerve(L') of simplicial spaces respects the 

augmentat ions.  

5.6. C o r o l l a r y .  Let Y be a simplicial space. For any topological space X ,  there 

is a natural equivalence of categories 

Hom(X, Sh(Y))  ~- Lin(X, Y ) .  

P r o o f .  This a special case of Proposit ion 5.3. Indeed, the simplicial space Y is a 

covariant functor on K = &op, and Sh(Y)  = B(YK) by Proposit ion 5.1. Thus, map- 

pings X --~ Sh(Y)  correspond by Corollary 5.2 and Proposit ion 5.3 to Y-augmented 

principal K-bundles.  By Proposit ion 5.4, these are precisely the Y-augmented linear 

orders over X.  

A linear order can also be viewed as a topological category, with L as space of 

objects,  and the order sheaf O C_ L x L as space of arrows. For any topological 

category C, write Lin(X,  C) for the category of linear orders over X equipped with 

a continuous functor L ~ C. In terms of the notat ion L i n ( X , Y )  of the previous 

corollary, this category Lin(X, C) is just  the same as Lin(X, Nerve(C)).  Thus, for 

the Deligne classifying topos DC, the previous corollary specializes to the following: 
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5.7. Corollary.  For any topological category C and any topological space X ,  

there is a natural equivalence of categories 

Hom(X, DC) ~ L i n ( X , C ) .  

For homotopy classes of maps, and the obvious notion of concordance, one ob- 

tains the following consequence, analogous to Corollary 4.3. Here Lin~(X, C) is the 

collection of concordance classes of objects from Lin(X ,  C). 

5.8.  Corollary.  

bijection 

For C and X as in the previous corollary, there ~s a natural 

[X, DC] ~ L i n ~ ( X , C ) .  

w C o h o m o l o g y  o f  c l a s s i f y i n g  t o p o i  

This auxiliary section contains some remarks on the cohomology of the classifying 

topos /~C of a category C, for later use in Chapter IV. 

For a discrete category C, it is well-known how to compute the cohomology of the 

topos BC of presheaves on C (cf. Chapter I, Section 2). Let A be an abelian group in 

/3C (an object of Ab(BC), in the notation of Section 1.4). Using the nerve of C, one 

can define a cochain complex C(C,  A), with 

C~(C, A) = 1-I A(c~); 

the coboundary d:  Cn-I (C,  A )  ---4 Cn(c ,  A) is described as 

n--1 

(da) f, I. = ~-~(-1)/aa,(co ~ . . . . . .  ) + ( -1)nA(fn)aa. (  . . . . . . . . .  ), 
co ~ ... ~ c n  i = O  

where di(co +~ ... ~ cn) denotes the familiar simplicial boundary: 

{ c 1 ~  ... ~ c ~  ( i = 0 )  
d~(~o L- s. f, oj,+, 

. . .  ~ -  c.) = C o  ~ -  . . .  c ~ _ 1  ~ - -  c ~ + ,  ~ -  . . .  ~ -  c. (0 < i < n) 

c 0 ~  ... +--c,-a ( i = n ) .  

The cohomology of this complex is (usually called) the cohornology of the category C 

with coefficients in A, and is denoted 

H(C,A) .  

It is the same as the eohomology of the topos ~C: 

6.1. Propos i t ion .  For any small category C, and any abelian presheaf A on 

C, there is a canonical isomorphism 

H(C,  A) ~- H ( B C ,  A). 
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P r o o f .  The proof is an immediate  consequence of the existence of canonical 

projective resolutions in /~C. We will use the following notation: for a presheaf of 

sets S (i.e. an object  of BC), Z[S] denotes the free abelian presheaf on S; it can be 

constructed "pointwise", in the sense that  l[S](c) is the free abelian group on the set 

S(c). For any abelian presheaf A, one has the usual adjunction formula 

Homab(~c)(Z[S], A) ~ Homt~c(S, A) (1) 

(where on the right, A is viewed as a presheaf of sets). In part icular ,  for any object  c 

in C, (1) yields for the representable presheaf Yon(c) (cf. Section 1.2) that  

Hom(Z[Yon(e)], A) ~ A(c). (2) 

In part icular ,  /[Yon(c)] is projective. Now define a chain complex 

. . . .  ~ ~ ~ z  

by 

ZfWon(c,& 
Co ~ . . .  ~ c  n 

and with boundary maps P,~ ~ Pr,-1 defined flom the simplicial s t ructure of the nerve 

of C, in the usual way. For a fixed object  c, the abelian group P,(c) is free on the 

set of all composable strings c0 ~ ... ~ c~ ~ c; so P.(c) is the complex computing 

the simplicial homology (with integral coefficients) of the nerve of the category c/C. 

Since c/C has an initial  object,  Nerve(c/C) is contractible,  hence P.(c) is exact. This 

shows that  . . -  --* P1 --* P0 + Z is a projective resolution of Z. Thus, for any abelian 

presheaf A on C, the cohomology H ' (BC,  A) can be computed using this project ive 

resolution, as the cohomology of the complex Hom(P., A). But,  by (2) this is exact ly 

the complex C ( C ,  A) described above. 

6.2. R e m a r k .  In the special case for the category /h ~ , and the associated topos 

B(z~ ~ of cosimplicial sets, there is a much smaller projective resolution. For any 

n _> 0, let Pn be free on the representable cosimplicial set Yon([n]) = 4  ( [ n ] , - ) .  Define 

a boundary 0 : P,~ --* Pn-i  as the al ternat ing sum of the maps Of : Pn ~ Pn-1 induced 

by the maps "omit i": [ n -  1] ~-* In]. For a fixed k _> 0, the complex pk = P([k])  com- 

putes the integral simplicial homology of the s tandard k-simplex, hence pk is exact. 

Thus P. is a projective resolution of l in I3(/h~ It follows that  for any cosimplicial 

abelian group A, the groups H(B/~op, A) can be computed directly from the familiar 

complex . . .  ~ A 2 --~ A 1 ~ A ~ 

6.3. R e m a r k .  For a fimctor 9~ : D + C between categories, and the induced 

map ~ : BD ~ BC, the right derived fimctors R%2. can be described explici t ly in the 

following well-known form. For an abelian presheaf A on D and any object  c E C, 

Rq~.(A)(c)  = Hq(~/c,  A). (3) 
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Here c2/c is the "comma category" with as objects  the pairs (d, u : 99d -~ c) and as 

arrows f : (d,u)  --* (d ' ,u ' )  those f : d ~ d' in D for which u' o p ( f )  = u. On the 

right of (3), A stands for the evident induced functor on ~/c,  obtained from A by 

composit ion with the projection ~/c  --+ D. Thus the Leray spectral  sequence (Section 

1.4) for the map c 2 : BD --+ BC takes the form 

E~ 'q = H ' ( C ,  H q ( ~ / - ,  A))  =~ HP+q(D, A). 

After these int roductory remarks, we will develop some analogues for topological 

categories. For an s-dtale topological category C, Proposit ion 6.1 takes the following 

f o r m :  

6.4. P r o p o s i t i o n .  For any s-dtale topological category C and .for" any abelian 

C-sheaf A, there is a natural spectral sequence 

E~ 'q = HPHq(Nerve.(C), A )  ~ HP4q(]3C, A). 

Before embarking on the proof, we should explain the notation. Given an abelian 

group object  A in BC, i.e. an abelian C-sheaf, there is for each n >_ 0 a sheaf A~ on 

Nerve~(C), defined at the level of stalks by 

( . . . . .  ) 
a = A~,, for c~ ~ x 0 + - -  x I 6 -  . . .  6 - -  x n . 

Furthermore,  for a monotone map 7 : In] ---, [m] and the induced simplicial operator  

7* : Nerve,~(C) --* Nerve,(C),  the sheaf A'~ on Nerven(C) induces a sheaf 7,(A ~) :=  

(7*)*(A ~) on Nervem(C), related to A TM via a homomorphism of abelian sheaves 

0 , :  3',(A ~) --+A-"~ , 

which is described at the level of stalks by using the action of C on A: for a point 

= (x0 ~ ... ~- xm) in Nerve, ,(C),  the stalk of 7~(/i ~) at c~ is A~(,,), and the 

action of the arrow c~(~)+1 o ... o c~m on A gives a m a p  Axw(n) --+ A ...... i.e. a map 

7,(/i~)~ ~ (~m)~. This defines the stalk of 0~ at the point c~ E Nerve,~(C). These 

maps 0~ make n ~-+ Hq(Nerve~(C), A'~) into a cosimplicial group, for each fixed q >_ 0; 

its eohomology makes tip the E~-tei'm in 6.4. 

P r o o f  of  6.4. Define for each n _> 0 a C-sheaf Dn as follows: the total  space 

of Dn is Nerven+l (C), the 6tale projectSon p,~ : Dn --+ Co is defined by 

p,dxo 6- ... ~ xn+,) = xn+l, 

and the action by C on Dn is defined by composition: for an arrow fl : y --+ xn+l in 

C, 

x 0 g ~ x l  6 - . . .  6- x,+l  . f l =  x 0 ~ . . . ~ x ~  6- y . 

These sheaves D~, for n _> 0, together define a simplicial object  D. in the topos /~C,  

with as stalk at a point x C Co the simplicial set Nerve(x/C) .  In part icular ,  since the 
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category x / C  has an initial object ,  D. is locally acyclic. Thus, by (4) of Section 1.4 

there is a s tandard spectral  sequence 

HPH q (13C/D., 7C(A)) ~ HP+q(BC, A), (2) 

where 7r, : B(C)/D,~ ~ BC is the evident morphism of topoi (cf. the end of Section 

1.1). Next,  there is a morphism of (simplicial) topoi 

),n: BC/D,~ ---* Sh(Nerve~(C)) ( a l l  n > 0), 

with inverse image ~ described as follows. Using the face map d=+l : D= = 

Nerve~+l(C) ~ Nerve~(C), each object  F C Sh(Nerve , (C)) ,  i.e. each ~tale map 

p : F --+ Nerve~(C), gives an induced ~tale map d*~+l(F ) ~ D,~; when we equip 

d~+l (F  ) with the trivial  C-action, this fitale map can be viewed as a map d*+~(F) ---* 

D= in BC. Define ~*(F)  to be this last map,  viewed as an object  of BC/D,~. The 

direct image functor 

~ . :  BC/D~ -~ Sh(Nerve,,(C)) 

can be described explicit ly at the level of stalks, for any object  w : E --* D~ of 13C/D~, 

by 

A~.(w : E --* D=) . . . . . . . . .  = w- l (xo  4--... ~ Xn ~- Xn). 

This functor A~. is evidently exact, hence induces an isomorphism in cohomology. 

Since $=.Tr:(A) =/ i ,~ ,  this isomorphism takes the form 

Hq(BC/Dn,  ~r:d) ~- gq(Nerve~(C),  A~). 

Using this isomorphism, the spectral sequence in (2) yields the one in the s ta tement  

of the proposition. 

Next,  for a continuous functor c 2 : D --* C into an s-~tale category C, we will 

write the Leray spectral  sequence for the topos map /3D --+ BC in a more explicit  

form, analogous to Remark 6.3. To this end, recall that  any open subspace U C_ Co 

gives rise to a C-sheaf s : t - l (U)  --+ Co, with action given by the composit ion op- 

eration of C. For any other C-sheaf S, there is a bijective correspondence between 

C-equivariant maps t - l (U)  --~ S and sections of S over U: 

H o m u c ( t - l ( U ) , S )  ~ ]['(U,S). 

For the topos map ~ : BD ~ BC, the pullback ~* ( t - lU)  of this C-sheaf will be 

denoted 

U(~). 

So the points of U (~) are pairs (a,  x) where x is an object  of D (a point in Do) and a 

is an arrow in C with sa = ~x and t a  C U. This space U (~) is made into a D-sheaf 

via the ~tale project ion 7r : U (v) --~ Do defined by ~r(a, x) = x, and the action by D 

given by composition: (a,  x ) .  fl = (a  o ~(/~), s(/~)). It follows that  the direct image 
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functor 99. : BD --. BC can be described explicitly. For any D-sheM F ,  the sections 

of the sheaf c2.(F ) over an open set U C_ Co are given by 

F(U, ~2.F) ~- Hom~a(U (~), F ) .  (3) 

An open set U C_ Co not only gives rise to an object  U (~) of BD, but  also to a 

topological category equipped with a functor into D, together denoted 

7rv : ~/U ~ D. (4) 

The objects  of the category 99/U are the points of U (~), i.e. the pairs (a,  x) with 

x E Do and a : ~(x)  --~ y an arrow of C into some point y E U. The arrows 

: ( a , x )  ~ ( a ' , x ' )  in 99/U are arrows 5 : x ~ x' in D with the proper ty  tha t  

a '  o 99(5) = a.  The topology on ~/U is given by suitable fibered products:  for the 

objects  one has 

(~ /U)o  = U Xc0 C~ XCo Do, 

while the space of arrows is topologized similarly as the pullback 

(~/U)I = U XCo C1 XCo D1. 

Note that  the project ion functor rru in (4), defined in the evident way, is ~tale (since 

the category C is assumed s-~tale). 

The object  U (~') of BD and the category ~/U over D are related as follows: 

6.5. L e m m a .  There is a natural equivalence of topoi over BD: 

~D/U(~) u ~(~/U) 

P r o o f .  Recall that  the topos ("comma category") BD/U (~) on the left hand side 

has as objects D-sheaves F equipped with a D-equivariant map F --* U (v). Given an 

object  E of B(99/U), one obtains by composition E ~ (99/U)o ~ Do a sheaf on Do, 

with evident (right) action by D, and D-equivariant map E --~ U (*) = (~/U)o. It is 

straightforward that  this construction defines an equivalence of ca;egories. 

6.6. P r o p o s i t i o n .  Let ~ : D -~ C be a continuous functor into an s-dtale 

category C. Then for any abeliau D-sheaf A, the value R%2.(A) of the q-th right de- 

rived functor of ~. : BD ---+ BC is the sheaf associated to the presheaf on Co defined 

for open sets U C Co by 

U H Hq(B(~/U), ~rb(A)). 

P r o o f .  Fix  an integer q >_ 0 and an abelian D-sheaf A, and define a presheaf 

Pq(A) on the space Co of objects of C, as in the s ta tement  of the proposition: 

Pq(A)(U) = Hq(B(~/U), 7rhA), 

for U C_ Co open, where ~ru is the projection functor 99/U ~ D as in (4). An in- 

clusion of open subsets V C U induces a continuous functor 99/V ---* u/U, hence 
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a morphism of topoi B(~/V)  ~ B(~/U),  hence a homomorphism of cohomology 

groups Hq(B(ga/U), r@A) ~ Hq(I3(~/V),Tr~A). This defines the restr ict ion maps 

Pq(A)(U) ---, Pq(A)(V) for the presheaf Pq(A). Denote the associated sheaf of this 

presheaf by /Sq(A). We claim that  /Sq(A) carries a natural  action by C from the 

right. Indeed, suppose a : x ~ y is an arrow in C, and V is any open neigh- 

bourhood of y. We can now use the assumption that  C is s-~tale, to find a neigh- 

bourhood U C_ Co of x and a section a~ : U ~ C, of the source map,  with 

as(z) = a. If we choose U small enough, then t o a ~  : U ~ Co will map U into 

the neighbourhood V of y. Then this section a~ will induce a continuous functor 

comp(c%) : ~/U ---, ~a/V, simply by composition with the appropr ia te  value of ~ .  

This functor gives a morphism of topoi B(cz/U ) ~ B(T/V) ,  and hence a homomor- 

phism Hq(13(~/V), ~r~A) --* Hq(13(cp/U), roSA). This holds for all neighbourhoods V 

of y, natural ly  in V, so that  one obtains a homomorphism 

a * :  lim Hq(B(~/V),  7r~A) ~ lira Hq(13(T/U), r@A), 
y E V  ~ x E U  

or in other words, a map of stalks 

a* : /Sq(A)y  --,/Sq(A)~. 

This defines the action by C on/Sq(A),  making/Sq(A) into a C-sheaf. The construction 

is evidently functorial in A. The desired isomorphism 

Rq~.(A) ~- Pq(A) (5) 

now follows by the uniqueness of right-derived functors: First ,  a short exact sequence 

0 ~ A ---* B ~ C -~ 0 induces for each open set U C Co a long exact sequence 

... ~ gq(B((p/U), ~rSd) ~ Hq(B(~/U), ~rSB ) ~ Hq(B(~/U), ~rSC) ~ ..., 

hence a long exact sequence 

... ~ Pq(A) --. Pq(B)  -- . /Sq(C) ~ .... 

Second, if A is an injeetive D-sheaf, then for any object  E of the topos BD, the coho- 

mology groups Hq(/3D, E,  A) (the values of the right-derived functors of Homuo(E,  - ) )  

vanish for q _> 0. But, by definition, these cohomology groups are those of the slice 

topos 13DIE. Choosing E = U (*) and using the equivalence of Lemma 6.5, we find that  

Hq(B(~/U), ~bA) = 0 whenever q > 0 and A is injective. It follows that  /Sq(A) = 0 

for q > 0 and injective A. Finally it follows by (3) that  /50 is the functor ~. .  Thus, 

by uniqueness of derived functors, there is an isomorphism (5), natural  in q and A. 

This proves the proposition. 

Now let K be a discrete (small) category, and let Y be a K-indexed diagram 

of spaces, as in Proposit ion 5.1. For the associated s-~tale category l/i(, there is an 

evident project ion functor 
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and an associated topos map ~r : Sh(Y) = B(YK) --+ BK. For an abelian sheaf A on 

the diagram Y, the sheaf maps A(cr) : Y(a)*(A e) --+ A k, for arrows a : k --+ 2 in K, 

induce homomorphisms of cohomology groups 

H*(Yt, A t) ~ H*(Yk, Ak), 

making H*(Y, A )  into a contravariant abelian group-valued functor on K. As a spe- 

cial case of Proposit ion 6.6 we now obtain: 

6.7. C o r o l l a r y .  For any diagram Y of spaces on a small category K, and for any 

abelian sheaf A on Y ,  there is a natural spectral sequence 

E~ 'q = HP(K, Hq(Y,  A ) )  ~ HP+q(Sh(Y), A). 

P r o o f .  According to Proposition 6.6, it suffices to show for the project ion ~r : 

YK --+ K that  

Hq(13(Tr/k), r ; (A))  % Hq(Yk, Ak). (6) 

Here ~r/k is the topological category with as objects  pairs (4 : 2 --* k, y) where a is 

an a r r o w i n  K and y E Yr. An arrow (or :g - -~  k ,y)  --* ( 4 ' : 2 '  ~ k ,y ' )  in ~r/kis an 

arrow/3 : (2, y) -* (2', y') in YK, i.e. an arrow f l :  2 -~ g' with Y(l t ) (y)  = y', such that  

c~'/3 = a .  The functor ~rk : ~r/k --~ Y is the evident projection, sending (a  : 2 --* k ,y )  

to (t, y). Consider the functors i = ik and j = jk in the diagram 

y~ c J �9 7r//~ 

~ P ~ i(y) -- (k, y) 

j (y)  = ( id :  k -~ k ,y)  

Y~ 

(where the space Yk is viewed as a topological category with ident i ty  arrows only). 

For the associated topos morphisms 

Sh(Y~) J , u(~/k)  

Sh(Y) ,  

j induces an isomorphism 

H*(B(rr/k), B) --+ H*(Yk, f f  B)  (7) 

for any ~r/k-sheaf B. One way to see this uses the continuous flmctor p : ~r/k --* Yk 

defined on objects  by p(~ ,  y) -- Y ( 4 ) ( y )  : for the  induced topos  ,nap p : U ( ~ / k )  -~ 

Sh(Yk), one has j* = p.. Thus j* preserves injectives and commutes with the global 

sections functors. This gives the claimed isomorphism (7). For the special case where 

B = ~r~(A), it specializes to the desired isomorphism (6). This proves the corollary. 
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(The spectral sequence of Corollary 6.7 is analogous to the Bousfield-Kan spec- 

tral sequence for the diagram Y (Bousfield-Kan(1972)). In fact, for a locally constant 

sheaf A, the two correspond to each other via the isomorphism is cohomology between 

S h ( Y )  and the classifying space of YK, provided by Theorem IV.2.1.) 

For the special case where K =1~ ~ Remark 6.3 allows us to write the spectral 

sequence of 6.7 in a simpler form, involving for each q > 0 the cohomology of the 

simplicial group H q (Y, A):  

6.8. Coro l l a ry .  For any sirnplicial space Y and any abelian sheaf A on Y,  

there is a natural spectral sequence 

E~ 'q = HPHq(Y,  A )  ~ HV+q(Sh(Y), A). 

For later use~ we also mention the following consequence of 6.7. 

6.9. Coro l l a ry .  Let Y be a diagram of spaces on a small category K, as be- 

fore. If, for each k E K, the space Yk is contractible, then ~r : S h ( Y )  -+ 13K is a weak 

equivalence of topoi. 

P r o o f .  This follows from the toposophic Whitehead theorem (see Chapter I). 

Indeed, it is obvious that the functor r~* induces an equivalence between covering 

spaces of /3K and of Sh(Y) .  Moreover, if A is any abelian group in/3K, the spectral 

sequence of Corollary 6.7 collapses to an isomorphism H(13K, A)-Z+H(Sh(Y),  ~r*A). 

w Some homotopy equivalences between classi- 

fying topoi 

In this section we will compare several topoi related to the classifying topos/3C of 

an s-6tale category C. First, for such a C, we prove that there is a weak equivalence 

DC -+ BC, comparing the Deligne classifying topos to/3C (Theorem 7.6 below). The 

other two comparisons (Propositions 7.7 and 7.8) are of a more technical nature, and 

will be used for our later comparison between classifying topoi and classifying spaces. 

These homotopy equivalences involve a comparison of the fundamental groups, 

and we begin with a few remarks about this. Recall from Section 4 of Chapter I that  

the construction of the fundamental group and of the higher homotopy groups of a 

topos requires the topos to be locally connected. For a topos of tile form/3C, we have: 

7.1. L e m m a .  For any topological category C for which the spaces Co and Cl 

of objects and arrows are both locally connected, the topos BE is also locally connected. 
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P r o o f .  We need to show that  under the assumptions of the lemma, the "constant 

functor" A : (sets) -+ BC, which to a set S associates the constant C-sheaf S • Co --+ 

Co with the trivial  action, has a left adjoint.  This required left adjoint 7r : BC ---+ (sets) 

is constructed as follows. For a C-sheaf E = (E ,p  : E --+ Co, E • C1 --+ E) ,  both 

its s t ructure map p and the pullback E • C1 --+ C1 of it along t : C1 --+ Co are 

dtale. So E and E • Ca are locally connected spaces since Co and Ca are assumed 

to be. Let 7r0(E) and % ( E  • Ca) be their  sets of connected components,  and define 

rr(E) to be the coequalizer of the two maps rr0(E • C1) =t rr0(E) induced by the 

project ion and action maps E • C1 ~ E. This construction, of the set rr(E) from 

the C-sheaf E, defines the required left adjoint r~ : BC + (sets) for A. 

We will call a topological category C locally connected if it satisfies the assumption 

in the s ta tement  of Lemma 7.1. 

For any topological category C and its classifying topos BC, call a C-sheaf E 

invertible if the action by arrows of C is invertible; this means that  the map 

E• xcoE , (e,a) H(a,c.a) 

is a homeomorphism. Let 27C be the full subcategory of BC consisting of such invert- 

ible C-sheaves. This category 2-C is again a topos, and the inclusion 2-C ~ BC is 

the inverse image functor of a connected morphism of topoi 

O: BC --+ ZC. 

When C is a locally connected category, ZC is a locally connected topos: the proof of 

l emma 7.1 carries over verbat im to this case. 

7.2. L e m m a .  For any locally connected topological category C, the morphism 

0 : BC ---+ ZC induces an isomorphism of fundamental groups. 

P r o o f .  It obviously suffices to prove that  the inclusion flmctor 0* : 2"C --+ /3C 

restricts to an equivalence of categories on locally constant objects  (cf. Chapter  I, 

Section 4). For this, we need to show that  every locally constant object  of BC in fact 

belongs to the smaller category ZC. Consider the Sierpinski-space N, with open point 

1 and closed point 0. Let Sh(E  • C1) be the topos of sheaves on the product  space 

E • C1. A sheaf F on N • C1 is the same thing as a pair of sheaves F0 a n d / ' 1  on C1, 

together with a map u : Fo --+ Fa. Thus there is a canonical morphism of topoi 

: S h ( E  • Ca) -~ B C ,  

defined from the source and target  maps s , t  : C1 =t Co, by lz*(E)o = t*(E) and 

#*(E)I = s*(E), and map u :  #*(E)0 --+ #*(E)I given by the action of C on E. If E 

is locally constant ,  then so is the sheaf it*(E) on E • C1, i.e. #*(E) is a covering space 

of E x C1. By contract ibi l i ty of E, it follows that  u : #*(E)0 -o tl,*(E)a must  be an 



52 CLASSIFYING T O PO I  

i somorphism.  This  says precisely tha t  E belongs to ZC. Thus  every locally cons tan t  

object  of BC belongs to ZC,  as required. 

We now tu rn  to the comparison between DC and BC. Recall  tha t  the  topos 

DC of sheaves on the simplicial  space Nerve(C) is the classifying topos of the s-6tale 

category 

(~ = Nerve(C)~o, 

(cf. Section 5). Explicit ly,  the objects  of C are strings ~ = (:Co g! x~ ~- . . .  g2 x~) of 

composable  arrows in C; for two such strings c~ and /3 = (Y0 ~ ~ *-- Yl *- "'" +- Ym), an 

arrow ~7 ~ fi in (~ is a morph i sm 7 : [m] --4 [n] in the simplicial  category ~ so tha t  

7"(c~) = ,~. There  is an evident  "last vertex" functor  

This functor  A takes an arrow 3' : ~ --~ /3as above to the composi t ion a~(~)+l o. �9 .oa . ,  : 

x~ ~ ym = x.y(m). The functor  A induces a morph ism of topoi 

A : � 9  ~ B C .  

It is not  difficult to see tha t  its inverse image flmctor A* : BC ~ DC is full and  

faithful,  so tha t  (cf. Section 1.4) A : DC ~ / 3 C  is a connected morph i sm of topoi. 

7.3.  L e m m a .  For any locally connected s-~tale category C, the map A : 7)C ~ 13C 

induces an isomorphism o f fundamental groups. 

P r o o f .  By L e m m a  7.2, it clearly suffices to show that  the restr ic t ion of A* : 

BC ~ BC = DC to inver t ib le  sheaves is an equivalence of categories 

A* : / C  :*IC. 

To define an inverse for this functor  A" on inver t ible  sheaves, let T be ~ simplicial  

sheaf on Nerve(C),  inver t ib le  when viewed as a l~-sheaf. Then  its res tr ic t ion T o 

to Nerveo(C) = Co carries a na tu ra l  action T o xc0 C1 --* T o by C, defined as the  

composi te  

TO XCo C1 = do(TO) T(~) T1 T ( ~  -1 dl(TO) ~ TO , 

where p is the  project ion.  This gives T o the  s t ruc ture  of an inver t ib le  C-sheaf, which 

we denote  by A!(T). It remains  to observe that  for any S in ZC and T in 271~, there  

are na tu ra l  i somorphisms )@C(S) -~ S and A*A,(T) ~ T.  For example ,  for T,  one 

has A*A,(T) ~ = ( d n - l ' "  do)*(T~ where d n - 1 - "  do : Nerve~(C) --* Nerveo(C), and  

the i somorphism A*A,(T) ~ --+ T ~ is T ( d n _ , . . .  do):  (dn-a"" do)*(T ~ --* T n. 

7.4. L e m m a .  

an isommThism 

For any abeliau C-sheaf A, the map A : DC ~ 13C induces 

A*: H " ( B C ,  A) ~ Hn('DC, A'A) (n > 0). 
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Proof .  This is immediate fl'om the comparisons of the two spectral sequences in 

Proposition 6.4 and in Corollary 6.8, since the sheaf A defined for Proposition 6.4 is 

precisely )~*(A). 

From Lemmas 7.3 and 7.4 we deduce: 

7.5. T h e o r e m .  For any locally connected s-dtale topological category C, the 

map A : :DC --~ BC is a weak homotopy equivalence of topoi. 

Proof .  This follows by the toposophic Whitehead theorem (Chapter I, Section 

4), because A induces an isomorphism in ~r0 since A is connected, in ~rl by Lemma 7.3 

and in cohomology by Lemma 7.4. 

The next two comparisons, in Propositions 7.6 and 7.7 below, are of an auxil- 

iary nature. They will only be used in the proof of the comparison theorem 2.1 in 

Chapter IV. 

To state the first, consider the category of simplices A(C) of a topological cate- 

gory C. The objects of A(C) are strings (.~:0 ~ . . . .  ,~c~), and the arrows (Zo *-- 

�9 .- *-- z~) --+ (Y0 *-- "'" ~ g,~) are simplicial arrows 7 : In] --~ Ira] so that 

7*(Y0 ~ "'" ~ Ym) = (z0 ~ . . . .  z . ) .  Thus A(C) is the dnal of the category 

(~ considered just above. For any topological category C, the target map of the as- 

sociated category A(C) is 4tale. Now let A,,.(C) C_ A(C) be the topological category 

with the same space of objects as A(C), but with only those arrows given by injective 

7 : [n] --~ [m]. This is of course again a t-dtale category. There is a "first vertex" 

functor 

4 :  Am(C) ~ C, 99(Zo . . . .  ~- z~) = z0, 

similar to the last vertex functor A : C ~ C. It induces a morphism of topoi 

: B(A~C)  --, Be .  

7.6. P r o p o s i t i o n .  For any locally connected s-~tale topological category C, the 

map 99 : B(AmC) --+ BC is a weak homotopy equivalence of topoi. 

Proof .  Exactly as for the map A : DC --~ BC in Lemma 7.3, it is easy to see 

that 9o is a connected morphism, inducing an equivalence Z(AmC) + 2"C of invertible 

sheaves and hence an isomorphism of fundamental  groups. Thus, by the toposophic 

Whitehead theorem, it suffices to show that ~ induces isomorphisms in cohomology 

with locally constant coefficients. To this end, consider the functor 9o : A, ,C --+ C 

together with the identity functor l, : C + C, and tbr any open set U _C Co the 

associated categories 99/U and ~,/U, as in (4) of Section 6. Also write U for the trivial 

topological category, with U as space of objects and with identity arrows only. There 

are continuous functors t : t /U ~ U : 71, where t is given by the target and r/(x) is the 

identity at x (in the category C). Then t o */ is the identity functor on U, and ~t is 

related to the identity functor on i,/U via. a continuous natural  transformation. Thus, 
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as explained in Section 3, the continuous functor t : ~/U ~ U induces a weak homo- 

topy equivalence of topoi B ( t / U )  --, B U  = Sh(U) .  (In fact S h ( U )  is a deformation 

retract of B ( t / U ) . )  Similarly, there are continuous functors 

defined as follows: an object of qp/U is a pair (G,/~) where a is a string ~ = (x0 ~!_ 

x, ~ .- .  ~ -  x~) and fl is an arrow x0 ~ x, into some point x G U. The functor r 

sends this pair to the augmented string (x ~ x0 ~----- - - ' 0  ~ ~ "  x~) together with the 

identity arrow x --* x. The functor e sends this pair (5,/~) simply to the point x. This 

definition of r and e on objects is extended in the evident way to arrows. Finally, the 

functor u sends an object x to the pair (x, u(x)), consisting of the string z of length 0 

and the identity arrow at x. Thus e o u is the identity functor, and there are natural  

transformations 

id(~o/u} ~ T ~- u o ~. 

It follows that  r induces a (weak) homotopy equivalence B ( ~ / U )  ---* S h ( U )  (cf. Section 

1.4). By combining these homotopy equivalences, we find that for a locally constant 

abelian group A in BC, Proposition 6.6 gives an isomorphism 

R % 2 . ( ~ ' A )  ~- RqL. ( t 'A)  (q >_ 0). 

But ~ is the identity functor, so R % .  = 0 for q > 0. Thus ~ :/~(AmC) --+/3C induces 

the required isomorphism in cohomology, and the proposition is proved. 

Finally, for an s-&ale category C, we consider tile following enlargement of the 

classifying topos BC, to be used for tile comparison theorems in Chapter IV. Define 

a quasi-C-sheaf  S to be a C-sheM, except that the action (s, a) H s �9 a of C on S 

need not satisfy the identity law s �9 u(t,s ) = s (here p : S ~ Co is the structure map 

of S, and u(ps)  is the identity arrow at ps in C). With the evident notion of action- 

preserving map between such quasi-C-sheaves, these form a category denoted /3C. 

This category is a topos; in fact, /~C = BC' where C' is obtained from C by adding 

"new" identity arrows: C~ = C1 + Co. The evident full inclusion functor BC ~ BC 

is the inverse image of a topos morphism 

~ : / ~ C  -*/~C. 

For any quasi-C-sheaf S, with sheaf projection p : S ---* Co, one can construct a 

C-sheM S C S by 

= {s ~ s i s .  , , (vs)  = ~}. 

Since the "quasi-action" of C on S does satisfy the composition law ("(s �9 a)  - ~ = 

s .  (a/~)"), the identity 

s .  ~(vs)  = ( s .  ~,(vs)) .  ,,(p~) 
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holds for any point s E S. Thus there is a retraction map 

= ~ s  : x - ~  , r ( s ) = s  u(ps) .  

The functor r  : /~C ~ BC which sends S to S is right adjoint to the inclusion 

functor r : BC ---+/~C. (The unit of the adjunction is the identity map T = T for 

any C-sheaf T, and the counit is the inclusion 5 ~ S for any quasi-C-sheaf S.) But, 

using the natural retraction r, it is clear that  r is exact. In particular, r induces iso- 

morphisms in cohomology r : H(BC,  A)-:-*H(/~C, r for any abelian C-sheaf A. 

The morphism r :/~C ~ BC also induces isomorphisms in homotopy (when defined, 

i.e. when BC and/~C are locally connected). 

In fact, the topos BC is a natural deformation retract of/~C: the functor r  is 

also left adjoint to the embedding BC ~ / ~ C .  (This time the counit r 1 6 2  ~ T of 

the adjunction is the identity, while the unit S ~ r is the retraction map r.) 

Thus r  is the inverse image of a morphism of topoi r : BC ~ BC, with ~br ~ id 

and r~b a natural retract of the identity functor. For later reference: 

7.7. P r o p o s i t i o n .  The classifying topos BC of any topological category C is 

a natural deformation retract o.f the larger topos 13C of quasi-C-sheaves. 





Chapter  III 

Geometr ic  Real izat ion 

w G e o m e t r i c  r e a l i z a t i o n  o f  s i m p l i c i a l  s p a c e s  

The main purpose in this chapter  will be to define a new geometric realization in 

the context of topoi, and show how the various classifying topoi, considered before, 

can be constructed in this way. As a motivation, and for later comparison, we begin 

by reviewing the well-known s tandard geometric realization for simplicial  sets and for 

simplicial spaces. 

Recall from Chapter  II, Section 5, the simplicial model category A of finite ordered 

sets. A simplicial set is a presheaf on A, i.e. a contravariant  set-valued functor on A. 

For such a simplicial set X,  one writes X~ for X([n]) and a * :  X~ --~ X,~ for X(a), for 

any arrow a : [m] --~ [n] in A. As usual, di denotes the map 0[ : Xn ~ X , - 1 ,  where 

0 i :  [n - 1] ~ [n] is the injective map which omits i from its range. Furthermore,  A s 

denotes the s tandard  topological n-simplex (about which we shall have to be more 

explicit  shortly).  Each arrow a :  [n] --* [m] gives an affine map  A s ~ A m, so as to 

make {A ~ : n > 0} into a cosimplicial space (a functor from A into spaces). For a 

simplicial  set X,  its geometric realization ]X[ is the topological space obtained from 

the disjoint sum ~n>0 Xn x A s (where X ,  is given the discrete topology) by factoring 

out the equivalence relation generated by the identifications 

(~'(x), t) ~ (x, ~(t)), 

for any arrow a : [n] -~ [m] in A, any x G Xm and any t E A n. In other words, 

]XI = X. | A is the tensor product  of two functors from the category A into spaces, 

a covariant one A and a contravariant one X (the la t ter  taking values in discrete 

spaces). For basic propert ies of this geometric realization one may consult many 

s tandard  sources, e.g. Milnor(1957), Gabriel-Zisman(1967), May(1967), or Fritsch- 

Piccinini(1990). 

The same geometric realization can also be constructed by i tera ted adjunction 
~(~d) 

spaces (pushouts):  Let ~k C_ Xk be the set of non-degenerate k-simplices in X 

(those not in the image of ,~* for a surjection ~ : [k I ~ [m] where m < k). Then 

construct  a sequence of spaces 

IXl ~~ c_ IXl m c_ IXlO> c_... 
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by induction,  together  with maps 7rk : Xk x A k ~ IXI (k). By definition, IXI (~ is the 

set X0 of vertices of X equipped with the discrete topology, and ~r0 : X0 x A ~ ---+ IX[ (~ 

is the evident homeomorphism. Next, IXI(k) is constructed from IXI (k-l) and ~rk-1 as 

the pushout of topological spaces 

X~ "d) x O/', k " , x~  ''~) x ,,,,k 

1 l- 
i X l ( ~ - , )  ~ , iXl ( , : ) .  

(1) 

Here OA k is the boundary of A k, and Xk is given the discrete topology. From the 

map ~rk-1 : Xk-x x z~ k-1  ~ IX[ (k-l) one defines the map X (ha) • OA k ---+ X (k-l) on 

the left of (1): the restr ict ion of the la t ter  map to the i-th face A k-1 '--* OA k is the 

composit ion Xk x Ak-a ~ Xk-1 x Ak-a ~k-~ [X[(k_l)" The map ~rk : Xk • Ak ~ IX[ (k) 

is defined by extending the map 7rk on the right of (1) to degenerate simplices in the 

s tandard  way. Now the geometric realization is defined as the union of the [X[ (k), 

with the weak topology: 

IXl = U IXl (~)- 
k>O 

We remark that ,  rather  than restricting to the set X~ ~d) of non-degenerate k- 

simplices, one may  also use the full set Xk in the construction of the i tera ted pushouts 

(1). The resulting bigger realization is well-known to be homotopy equivalent to the 

s tandard  one IX[. For the realization of simplicial spaces below, we will only use this 

thicker realization. 

For later purposes, it is necessary to be more explicit  about  a model  for the 

s tandard  n-simplex A s. Let I = [0, 1] C_ R be the unit interval, and define 

/4kn = { ( X l , ' ' ' , x n )  l, xi C I ,  xa _<" -  _< z , } .  

The embedding of the i-th face 0 i : / V  ~-x ~ A s, for i = 0,- - -, n, is defined by 

{ ( 0 , ~ 1 , " ' , x . - 1 )  i = 0 

a ~ ( x , , . . . , x , _ , )  = ( ~ , , . . . , x , x , , . . . , x o _ , )  0 < i < n 

( X l , ' ' " ,  X n - 1 ,  1) i = n. 

Then the boundary of A n is defined as 

O/~n = 0 oi(/~kn--1) ~- {( x h ' ' "  , xn) e &"Ix1 : 0 or x~ = 1 or 3i(xi = xi+,)}. 
i = 0  

1.1. R e m a r k .  It is impor tant  to note that  we have only used the order relation 

_ on I and its endpoints  0, 1. Thus any topological space J with an order _< and 

endpoints 0, 1 (an "interval") gives rise to a cosimplicial space Aid } (a functor k H 

A~j) from ~ into spaces), and hence a realization for any simplicial set X:  

I X I ( j  I = X .  |  I. 
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This tensor product  can again be constructed by i terated pushouts,  now of the form 

so that  

k • • 

.X,(k-l) c ,_ v (k) 
I(J)  ~ (J )  , 

(2) 

Ixl(J) U v(k) = ~ .  ( j ) .  

Note that  this construction is functorial: If ~ : J --* J '  is a continuous map of 

"intervals" (~ preserves the order-relat ion as well as the endpoints)  then r induces a 

natura l  continuous map 

c2x : IXl(J) ~ IXl(j,), 

for any simplicial set X. 

1.2. E x a m p l e .  Let E = {0,1} be the Sierpinski space, with a closed point 

0 and an open point 1, and order 0 < 1. Then 

A~z ) = pt, 

A~z ) = E, 

OA~z ) --- {0, 1} with discrete topology, 

OA~z) = A ~ )  = {(0,0),(0,  i ) , (1 ,  1)}, 

and so on: 0 A ~ )  = A(~) for n >_ 2. Thus, when one constructs the geometric 

realization of a simplicial  set X with respect to the interval E, the series of pushouts 

(2) (for J = E) stops after one step: 

In other  words, the realization IXI(z) is the space X1 x E factored out by the equiv- 

alence relation which identifies (x,0) and (z, 1) if x is degenerate or if doz = dlx.  

Surely this is not a very interesting realization. 

Next,  we should make some remarks concerning the geometric realization of sim- 

plicial spaces. For a simplicial space X,  the notat ion IX I will always denote the 

"thickened" geometric realization, as described in Segal(1974). Thus, IX] is obta ined 

from En_>0 X~ x A ~ by making the identifications 

(~*(x) ,  t) ~ (~, ~(t))  (3) 

as for a simplicial  set, but  now only all injective order-preserving functions a : [n] 

[rn], with associated maps a* : Xm --~ X,~ and a : A n ~ A TM, and for all x E Xm and 

t E A~. This geometric realization has various well-known basic properties,  described 

in the Appendix  of Segal(1974). In part icular ,  we mention the proper ty  tha t  for a 



60 GEOMETRIC REALIZATION 

map f :  X ~ Y between simplicial spaces, its realization Ifl : Ix[ ~ lYI is a weak 

homotopy equivalence whenever f= : X~ ~ Y= is (for each n >_ 0). Recall also that if 

all the degeneracies si : X=-I ~ X= of a simplicial space X are closed cofibrations, 

then the thickened realization IXI is homotopy equivalent to the realization which is 

defined by the identifications (3) for all c~, not just injective ones. 

As before, one can build up this thickened realization by iterated pushouts, defining 

ixl(~ c_ txlO) c_ ixlO) _c.. .  

inductively, by IXl (~ = x0, and by the pushout diagram 

X ~ x 0 A  ~c , X , ~ x A  ~ 

iXl<,~-,> ~ ~ IXl(% 

(4) 

where the left-hand vertical map v,, is defined just  as in the discrete case: on the i-th 

face Xn x A ~-1 ~ X~ x 0A ~-1 it is the composite of di x 1 : X~ x A ~- '  ~ X~-I x A ~-1 

and the map u~_~ : X~-I x A ~-~ --~ IXI (~-~). (The "thickening" is reflected by the 

fact that,  in (4), one does not just consider non-degenerate simplices in X~, as in (1) 

above.) The thickened realization is now constructed as 

IXl = U Ixl r (5) 
n > O  

again with the weak topology. 

w C l a s s i f y i n g  s p a c e s  

This section contains some remarks oil the sheaf cohomology of classifying spaces. 

In accordance with the remarks in the preface, we will treat the case of discrete (small) 

categories first. 

For a small category C, its classifying space BC is the (ordinary) geometric re- 

alization of the simplicial set Nerve(C). We will give a "cellular" description of the 

cohomology groups H(BC, A) of this classifying space BC with coefficients in any 

abelian sheaf A on BC. To this end, first recall from Chapter II, Section 7 the cat- 

egory of simplices AC associated to an arbitrary small category C: The objects of 
~ n  AC are pairs (n,c~) where n > 0 and c~ = (x0 ~ xl ~ . . .  ~ xn) is an n-simplex 

in the nerve of C. An arrow u : (n ,c  0 ~ (rn,~) in AC is by definition an arrow 

u : In] --* [rn] in A with the property ~ = u*(~). The "first vertex" functor 

~ : A C - ~ C  
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sends an object  (n, a )  to x0, and an arrow u :  (n, a )  ~ (m,/~) to/~1 o . . -  o/3~(0) : x0 = 

Y~(0) --~ y0 (where fl = (Yo ~- " '  ~- y,,~)). This functor ~ : A C  ~ C is well-known to 

induce a homotopy equivalence of classifying spaces 

Bc 2 : B A C  ~ BC. 

Indeed, this follows immedia te ly  from Quillen's "Theorem A ' ,  since for any fixed 

object  x E C the category qz/x is contractible: in the notat ion of Quillen (1973), the 

natural  t ransformations 

(x0 ~ -  . . . .  �9 ~ -  x~, 50 -~  5)  0 0  ( x  ~ -  xo ~-  �9 ~-  ~n, 5 !~, x)  ~ (5,  x !!, x)  (1) 

connect the ident i ty  functor to the constant functor on ~ / x  with value (x, x -~ x) (or 

more explicitly, with value ((0, 5), x ~ z)) .  

We now associate to each abelian sheaf A on the classifying space BC a contravari- 

ant functor 7(A) from AC into abelian groups: 

7 ( A ) :  (AC)  ~ ~ mb . 

For each object  (n, a)  of AC as above, there is an associated map from a copy A2 of 

the s tandard  n-simplex A ~ into the classifying space, denoted 

7r~ :A2--* BC.  

Furthermore,  if u :  (n, a)  --+ (m, ~) is an arrow in AC then u :  In] --+ [m] induces an 

affine map (again denoted) u : A '  2 --+ A ~  between s tandard  simplices, for which 

71"/3 0 ~t ~ 71"c, . 

Now define the functor 7(A) on objects  by 

7 (m)(n ,~)  = F ( A ; ,  ~r*(m)). 

An arrow u :  (n, a )  --* (m, f l ) induces  a homomorphism 

; (  u '~r;A "~ 

and this defines 7(A) on arrows. 

This construction is of course functorial in A. In other words, denoting (as in 

Chapter  I, Section 4) the category of abelian sheaves on BC by A b ( S h ( B C ) ) ,  and the 

category of abelian presheaves on AC by Ab(B(AC)) ,  we have a functor 

",/: A b ( S h ( B C ) )  ~ A b ( B ( A C ) ) .  (2) 

This functor is evidently left-exact. Its r ight-derived functors Rq7 are described by 

the following lemma.  
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2.1.  L e m m a .  For any q >_ 0 and any abelian sheaf A on B C  there is a canonical 

isomorphism 

Rq'~(A)(n, a) "~ H ~ ~ ~* . (A~, ~(A)) 

P r o o f .  Define for each abel ian sheaf A on B C  a functor  7-/q(A) : (AC)  ~ ~ Ab, by 

7"tq(A)(n, a)  = Hq(A~,  r~(A)) .  Then  clearly a short exact  sequence 0 ~ A'  -+ A -+ 

A" --+ 0 of abel ian  sheaves induces a long exact s e q u e n c e . - .  --* 7-/n(A ') --+ "H~(A) -+ 

7-{~(A '') ~ 7-/~+~(A ') ---+ . - . .  Fur thermore ,  if A is an inject ive sheaf on BC,  its re- 

s t r ict ion to the closed subset  ~r~(A)~ C_ B C  is soft, so Hq(Tr~(A~), A) = 0 for q > 0. 

Now 7r~(A)~ is a possibly degenerate  n-s implex,  and 7r~ : A~ ~ Try(An) is a proper  

m ap  with contract ib le  fibers, so (by "proper base-change",  Godemen t  (1958), p. 202) 

Hq(A~,~r*(A)) ~ Hq(~ro(A~),A) ~ 0. This shows tha t  7-/q(A) = 0 whenever  A 

is inject ive and  q > 0. By uniqueness  of derived functors,  there is an i somorphism 

7-lq(A) ~- RqT(A),  na tu ra l  in A. This  proves the lemma.  

Thus,  for sui table  sheaves A, the cohomology groups Hq(BC,  A) of the classi- 

fying space B C  can be computed  in te rms of the cohomology of the category A C  (cf. 

Chapter  II, Section 6): 

2.2.  C o r o l l a r y .  I f  A is a sheaf on the classTfying space B C  with the prop- 

erty that Hq(A2,  r* (A) )  = 0 for  each n-simplex A 2 ---* BC,  then there is a natural 

isomorphism 

Hq(BC,  A) ~- Hq(AC,  TA). 

The corollary applies in par t icular  when the sheaf A on B C  is locally constant .  It 

also applies to a slightly larger class of "pseudo-constant"  sheaves, defined as follows. 

Let A ~ be a s t andard  n-s implex,  and let 0~ : A ~-1 ~ A ~ be the inclusion of the last 

face. By recursion on n, we first define a sheaf A on A ~ to be pseudo-cons tant  if A 

is cons tan t  on A ~ - 0~(A~-1),  and if the restr ict ion of A to this last face A ~-1 C A ~ 

is a pseudo-cons tant  sheaf on A ~-1. Then  a sheaf A on BC is defined to be pseudo- 

cons tant  if for any n-s implex  a = (Zo ~ . - .  ~-~ x~) of Nerve(C),  with corresponding 

m ap  ~r~ : A~ --+ BC,  the  sheaf A restricts to a pseudo-constant  sheaf Try(A) on A n. 

2.3.  L e m m a .  I f  A a pseudo-constant sheaf on A s then Hq(A n ,A)  = 0 for  

each q > 0. 

P r o o f .  By induc t ion  on n. The case n = 0 is clear. Suppose the  l e m m a  holds for 

n - 1. Let {Ui}i~o be a fundamen ta l  system of open neighbourhoods  of the  last face 

0n(A =- t )  C_ A s. Let V = A ~ - 0 n ( A " - t ) .  For a sui table  choice of the Ui, the sets 

V and V N Ui are contract ible ,  while the sheaf A is cons tan t  over V and  V N Ui. So 

Hq(V, A) = 0 = Hq(V N U~, A) for q > 0. Thus  the Mayer-Vietoris  sequence for the  
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cover A ~ = V UUI takes the form 

0 ---+ H~ ~, A) -+ 

H 1 (A n, A) 

.. ---* Hq(A ~, A) 

H~ A) �9 H~ A) ---* H~ N V, A) --+ 

HI(Ui, A) -+ 0 

Hq(U~, A) "-+ 0 . . .  

Thus Hq(A~,A)  ~ Hq(U~,A) is an isomorphism, for each q > 0 and each i. But,  by 

compactness of 0 , ( A " - I ) ,  one has lim Hq(Ui, A) "~ H ' ( 0 , ( A " - I ) ,  A), and the la t ter  
.--+ 

group vanishes for q > 0, by the induction hypothesis for A ~-1. Thus Hq(A'~,A) ~- 

lim Hq(Ui, A) = 0 for q > 0, as required. 

2.4.  C o r o l l a r y .  For any pseudo-constant sheaf A on BC, there is a natural 

isomorphism Hq(BC,  A)-=*Hq(AC, 7A), for all q > O. 

Analogous descriptions apply to topological categories. For a topological category 

C, one can form the simplicial space Nerve(C), where a point of the space Nerve~(C) 

of n-simplices is denoted 

~n  
z ( X 0 ~ - X l t - - - - . . I  Xn), 

as before. The classifying space BC is defined by the (thickened) realization, as 

BC = INerve(C)l. 

For such a topological category C, recall from Chapter  II, Section 7 the topologi- 

cal category Am(C) of simplices, and the associated continuous "first vertex" functor 

~,: zxm(c)  --+ c .  

L e m m a  2.5. For any topological category C, the continuous functor c 2 : Am(C) ---+ 

C induces a weak homotopy equivalence of the classifying spaces BArn(C) 2* BC.  

The proof of this lemma is based on a suitable topological version of Quillen's Theo- 

rem A (Quillen(1973)). To state this version, let r : D ~ C be any continuous functor 

between topological categories. For an arbi t rary  map of spaces f : X --+ Co, there is a 

new topological category r  Its objects  are the triples (x, u, y) where y E Do, x E X 

and u :  r  --+ f (x )  is an arrow in C. Its arrows c~: (x, u, y) ~ (x', u', y') only exist 

i f x  = x',  and are arrows a : y--+ y ' in  D for which u ' o r  = u. This category 

r  is equipped with the evident topology: the space of objects  ('r is the fibered 

product  X Xc0 C1 Xc0 Do, and the space of arrows ( r  can similarly be represented 

as a fibered product .  

Now consider the special case where X is the space Nerve~(C) of n-simplices in a 

given topological category C, and where f : X ~ Co is the "last vertex" map 

A~ : Nerve~(C) -4 Co, 

sending an n-simplex (x0 +-- . . .  ~-- xn) to x,~. Using the general propert ies  of the 

thickened geometric realization mentioned in the previous section, Quillen's proof 
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(op. cit.) now carries over verbat im, to show that  if tile given continuous functor 

: D ~ C has the proper ty  that ,  for each n >_ 0, the evident project ion 

en :  B ( r  --~ Nerve~(C) 

is a weak homotopy equivalence, then so is B~b : BD ~ BC. 

P r o o f  of  l e m m a .  Apply these considerations to the par t icular  functor ~ : 

Am(C) ---+ C in the s ta tement  of the lemma. For each n > 0, we may view Nerve~(C) 

as a topological category with identi ty arrows only, and there are explicit  continuous 

functors 
-r n 

 ,/Nerv%(C) F " NervedC), 

such that  sn o u~ = id, and such that  there are explicit  continnous natural  transfor- 

mations id --* r~ ~-- u~ o sn, exactly as in the proof of Proposit ion II.7.6. By the 

homotopies produced by these natural  transformations,  the map B(~/Nerve~(C))  

Nerve~(C), induced by e~, is a homotopy eqnivalence. Since this holds for each 

n _> 0, the topological version of Quillen's Theorem A, just  described, yields that  

B ~  : BArn(C) --~ BC is a weak homotopy equivalence. This proves Lemma 2.5. 

Recall from Chapter  II, Section 3 the construction of tile classifying topos BC of 

C-sheaves for a topological category C, and its associated category A b ( B C )  of abelian 

C-sheaves. This applies in part icular  to the topological category Am(C),  to give an 

abelian category Ab(13Am(C)) .  For the category Ab S h ( B C )  of abelian sheaves on 

the classifying space, there is again a fnnctor 

7 :  Ab S h ( B C )  --~ A b ( B A m ( C ) )  , (3) 

similar to the one for a discrete category C in (2). Indeed, consider for each n > 0 

the evident continuous maps 

Nerve~(C) x A m 

Nerve,(C).  

"") BC 

(4) 

Here p~ is s imply the projection, while ~r~ is the map X ,  x A n ~ IX[ ('0 ~ IX I which 

exists for any simplicial space X.  Then for each n > 0, one obtains a sheaf 

A (n} = (pn). 7r:(A) 

on the space Nerve~(C). These sheaves together define a sheaf 

=doj E A(") 
n > O  
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on the space E~_>0 Nerve~(C) of objects of Am(C). Furthermore,  this sheaf 7(A) 

carries a natura l  continuous action (from the right) by the arrows of Am(C). At the 

level of the stalks, this action is explicit ly described as follows: Consider an arrow 

u : (n ,a )  ~ ( m , ~ ) i n  Am(C),  where a = (x0 ,~  "-" ~2_ x~) and /3 = (y0 (~* 

"'" ~ Ym); SO U : [n] --~ Ira] is a strictly monotone function with the proper ty  that  

u*(/3) = a.  Let A~ C_ Nerve~(C) • A ~ be the copy of A ~ corresponding to a ,  and 

similarly for A ~  C_ Nervem(C) • A TM. Then u induces an embedding u : A~ '-~ A ~  

for which ~rm o u = ~r~. Hence u yields a homomorphism 

u*:  F ( A ~ ,  Try(A)) ~ r ( A : ,  ~r*(A)). (5) 

Since p. in (4) is a proper map, the group r(A L ~;~A) is precisely the stalk of "~(A) 

at (m,/3); and similarly for F(A],~r~*A). So (5) may al ternat ively be wri t ten as a 

homomorphism 

u*:  7(A)(m,~) --* 7(A)(~,~). 

This defines the action by the arrow u on the sheaf 7(A).  It is readily verified that  

this action is continuous. 

This construction, of the abelian A,,~(C)-sheaf 7(A) from the abelian sheaf A on 

the space BC,  defines the functor 7 announced in (3). It is clearly a left-exact functor. 

Its r ight-derived functors can be described in a way analogous to Lemma 2.1. 

2.6. L e m m a .  Let C be any topological category. For the stalks of the right- 

derived f~nctors of the f~nctor "~ : At, Sh(BC)  -+ Ab(BA, , (C)) ,  there is for  each 

abelian sheaf A on BC a natural isomorphism 

q n 
RqT(A)(~,,) ~ H (A ,A) ,  

for any point (n ,a )  in Am(C). (On the right, A is identified with its restriction to 

zx~ c_ B e . )  

P r o o f .  Define for each q > 0 and each abelian sheaf A on BC an ahelian Am(C)- 

sheaf 7-lq(A), as follows. For each n _> 0, let 7tq(A) (n) be the sheaf on Nerve~(C) 

defined as 

~q(A)  (~) R pn.(~rnA), (6) 

where p~ and ~r~ are the maps described in (4). Since p~ is proper,  the stalk of 

7-/q(A) (~) at a point (n, a)  of Nerve~(C) is given by 

~q(A~(~) q ,, , ,(n,+ = S ( A , A ) .  (7) 

Much as for the construction of the Am(C)-sheaf A, one can now define an explicit  ac- 

tion by Am(C), on the sheaf 7tq(A) := Zn>_O 7-U(A) (n) over the space E~_>0 Nerves(C) 

of objects  of Am(C). This defines a functor 7~q: Ab S h ( B C )  ~ Ab(BAm(C)),  for each 

q _> 0. Exact ly as in Lemma 2.1, these functors 7-~ q have the exactness and effacing 

propert ies  which uniquely determine the right derived functors RqT. Therefore there 
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is an isomorphism 7-/q(A) ~ Rqf (A) ,  natural in A. The isomorphism in the statement 

of the lemma now follows by (7). 

Analogous to 2.4, one obtains the following immediate consequence. 

2.7. Coro l l a ry .  For any topological category C and any pseudo-constant abelian 

sheaf A on the classifying space BC,  there is a natural isomorphism 

Hq(BC,  A) ~- Hq(BAm(C), 7(m)), 

for  each q 2 0 .  

w Geometric  realization by cosimplicial topoi  

In this section we will consider analogous geometric realization functors, which take 

values in topoi rather than in spaces. This realization uses cosimplicial topoi. For 

example, if Y' is a cosimplicial space (i.e., a covariant flmctor from /A into spaces), 

then n ~-* S h ( Y  ~) is a cosimplicial topos. 

If D is a cosimplicial topos and X is a simplicial set, one can form a "tensor 

product" 

IXl(v) = x | D 

which can again be constructed by iterated pushouts, as 

IXI(D) = lira k IXIl~), (1) 

lar (k - l )  
where IXl}~) is defined from ~. (v) by the pushout of topoi (cf. Chapter I, Section 

E~exp"~ OOk �9 ExEx~ "~ Dk 

(v) 

3) 

(2) 

Here the boundary OD k is constructed by forming suitable pushouts of faces in the 

category of topoi. For example, OD 1 = D ~ + D ~ and OD 2 is a pushout of three copies 

of D 1, constructed by the two pushouts squares 

O1 

'~ D I U D I 

T 
/90+790 

Do 

0~ 1 
/?l 

T 
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y ( k )  y (k-a) {~ 
This defines ~ (v) from ~ (v) for k > 0. The construction starts off by IXI ) = 

E~ex0 Z)~ 

where IlXllr ~ 
pushout 

We will not use this construction for a general cosimplicial topos D ,  but only 

in the case where J is a topological interval as above with associated cosimpliciM 

space Ai j  ) of standard simplices, and D is the associated cosimplicial topos Sh(Aig)) 

of sheaves. For a simplicial set X,  one thus obtains a topos-theoretic realization with 

respect to the interval J, denoted IIxID: 

IlXllJ = x | Sh (A ia ) ) .  (3) 

(So the notations (1) and (3) are related by HxID = IXIsh(ai,)). ) This realization 

IIXlla is thus explicitly constructed using colimits and pushouts of topoi, as 

IlXllJ = l ~ l l X l l ~  k) , (4) 

= E ~ x 0  Sh(/X}~j)), and IIXG ~) is constructed from IIXllts k-l) as the 

IlXll(J k-l) �9 IlXll~ ~). 

Note that IIX[Is depends functorially on J ,  just as the topological realization IXlr 

does (cf. Remark 1.1). 

As an example, we consider this topos theoretic realization []X][z of a simplicial 

set X with respect to the Sierpinski interval P, (cf. Example 1.2). Recall that  

= p , ,  = = 

Taking sheaves gives a cosimplicial topos 

s = sh (a?~) ) ,  sh (zq~) ) ,  Sh(a~) , . . .  

The realization using this cosimplicial topos doesn't  collapse as quickly as its topolog- 

ical counterpart in Example 1.2, because the boundary operator 0 does not commute 

with the operation of taking sheaves, Indeed, Sh(A~)) is the category of triples 

(E0, Ex, a : Eo --+ E,) ,  where E0 and E1 are sets and a is a function. Next, OSh(A~)) 
is the category whose objects are of the form (E0, El, E2, o'o, o'1, a2) where ai are 

functions as in 

E1 

Eo ~, , E2, 

but this triangle need not commute. Oi1 the other hand, Sh(A~)) is the category 

whose objects are commuting triangles of the form (6). For n >_ 3, one again has 
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O S h ( A ' ~ ) )  ~- S h ( O A ' ~ ) )  = Sh(A~)) .  Note that this example also shows that  

OSh(A'~j ) )  --* Sh(A~s)) need not be an embedding of topoi. 

Now let X be a simplicial set. In Example 1.2 we described the topological realiza- 

tion {Xl(r. ) with respect to the Sierpinski interval. The topos theoretic realization is 

not  the category of sheaves on this topological realization. To see this, let us compute 

IIXII~ by iterated pushouts. First, IlXll~ ~ is the category of X0-indexed sets, with 

typical object denoted E = {E,},ex0. Next, IlXll~ ) fits into a pushout 

1 1 
IlXll(~) , IlXll~ ). 

The topos on the upper right of this diagram is the category of x[~d)-indexed families 

of sheaves on E, i.e. families of functions F = {cry: : F,,o --* F~,l},:ex~.d). The 

topos on the upper left is the category X[~d)-indexed families of pairs of sets F = 

{(F.,,o,F.,,x)}~ex~,d). Thus a typical object of the topos IlXll~ a) is a triple ( E , F , O ) ,  

where E = {E~}~ex0 is an indexed family of sets (an object of IlXll~~ and F = {c~ :  

F=,o ~ F=,x}=ex~,d) is a family of arrows, while 0 provides isomorphisms 

0=.o : F,:.o ~ Ed,~: , Ox,, : F~:,I "~ Eeo~ , 

for each x E X[ =d). In other words, IlXll~ > is equivalent to the category with as 

typical object a pair (E, a), where E is a family of sets {E.,}~ex o and a gives for each 

non-degenerate x E X1 a function 

a~ : Edlz ""* Edoz . 

(As a notational convention, we may, for x C X1 degenerate, define c~ to be the 

identity: Ed~., = Ego., .) In the next stage, IIXl[(~ ) is constructed as the pushout 

[[xl[~ ) , IIX[l~ =). 

An explicit computation, based on the description of pushouts in Chapter I, Section 

3, and similar to the computation of IlXll~ ) just given, shows that the pushout-topos 

IlXll~ ) is equivalent to the category of pairs (E, a), where E = {E,}=ex0 is an indexed 

family of sets, a is an indexed family of functions ~,: : Edlx ~ Edo., (all x E X1), 

where a., = identity if x is degenerate, and moreover such that for any y E X~ ha) the 

triangle 

Ey, 
Or y /  
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commutes. (Here y0 denotes the zeroth vertex y0 = dldly = dld~y of y, and similarly 

Yi ~-- dod2y ~-- d l d 2 y  and Y2 = dodoy = dodty.) Since OSh(A~)) = Sh(A~2)) for 

k _> 3, the sequence of iterated pushouts in the construction of I[Xl[~ stops here, and 

IIXll~ = [[xil(~ ) is the category of such triples (E, a). 

For the special case where the simplicial set X is the nerve of a small category C, 

with typical n-simplex of the form 

A f .  
C O 4-------  C 1 4 - - -  . . .  ( C n 

the realization IINerve(C)ll~ is precisely the category of contravariant functors from C 

into sets, as is clear from the explicit calculation of Ilxllz just described. We record 

this in the following theorem. 

3.1. T h e o r e m .  For any small category C, there is a natural equivalence of 

topoi 

IINerve(C)ll~ -~ BC. 

Just as for the ordinary geometric realization considered in the previous two sec- 

tions, there is an analogous "thickened" topos theoretic realization IXlv . for any 

simplicial space X and cosimplicial topos D ,  constructed as the tensor product of 

topoi Sh(X,~)| ". (It is thickened, in the sense that the tensor product is now taken 

over the subcategory ~.m _C ~ consisting of injective functions only.) For the special 

case where D' = Sh(Aij))  for a topological interval J ,  we will again denote this topos 

by IlxHJ. More concretely, and parallel to the case of simplicial sets, this topos I[XHj 

is constructed as a colimit of topoi IlXllJ = lhnllXll(J k), where IlXll(f ) = Sh(Xo), and 

where IlXll(J k) is constructed from IlXll(j k-l) as a pushout of topoi 

Sh(Xk) x 0Sh(a~j))  , Sh(Xk) x Sh(af j ) )  

ilXll~ ~-') , ilXll~ ~), 

(7) 

This is completely analogous to (3)-(5) for simplicial sets, except that, first, the topol- 

ogy of the spaces Xk is taken into account, and, secondly, we do not restrict to the 

subspaces X~ '~a) C Xk of non-degenerate k-simplices. These modifications are exactly 

the same as for the topological thickened geometric realization in Section 1. 

As an example, consider again the case where J is the Sierpinski space E. For 

a simplicial space X,  the calculation of the topos Ilxl[~ proceeds exactly as for the 

case of a simplicial set. In particular, for a topological category C one can apply this 

calculation to Nerve(C), to obtain the following result for the topos /3C of quasi-C- 

sheaves, described in Chapter II, Section 7. 

3.2. T h e o r e m .  

of topoi 

For any topological category C, there is a natural equivalence 

IINerve(C)l[~ ~ B C .  
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Observe that ,  since IlNerve(C)l[~ is defined as a "thickened" topos theoretic real- 

ization, the ident i ty  arrows in C are t reated as ordinary arrows. This explains the 

occurrence in Theorem 3.2 of the "thickened" classifying topos /JC instead of the 

s tandard  one BC. Recall from Chapter  II, Proposit ion 7.7 that  BC is a natural  de- 

formation re t ract  of / JC.  

w Sheaves and geometric  realization 

For a simplicial space X,  one can construct the topos Sh(lX[) of sheaves on the 

geometric realization of X,  but one can also first take sheaves for each space X=, and 

then take the topos theoretic realization (with respect to the s tandard  unit interval 

I ) ,  as discussed in the previous section. The purpose of this section is to relate these 

two constructions. The topos theoretic realization lIXIlt will s imply be denoted by 

IIxH. 
Let us consider the topos IIxII more closely. An object  E of IIXII is a system 

{E,  : n > 0} of sheaves, where each E~ is a sheaf on the product  Xn x A =, and 

these sheaves are required to be compatible,  in the sense that  for each n and each 

i ff {0 , . - .  ,n},  there is an isomorphism (d; x 1)*(En_,) 

words, in the diagram below both squares are pullbacks. 

(1 x vq~)*(En); in other 

En-1 < .C  ) En 

X~-I x A ~-1 , ~'• x A ~-1 el• X~ x A ~. 

Now let S be any sheaf on the realization IXh i.e. an 4tale map f : S ~ IxI. 
Consider for each n _~ 0 the canonical maps u~:  Xn x A n -* IIxliKnl _c Ilxll (cf. (4) of 

Section 1). Then S pulls back to a sheaf u~(S) on X~ x A n, and (by commuta t iv i ty  

of Section 1, (4), and the definition of v~ there) these sheaves have the required 

compat ib i l i ty  property. In this way, we obtain a functor 

Sh( fX l )  ~ tlXll, S ~ {u~(S)}~_>0 . 

This functor evidently commutes with colimits and finite limits,  since each u~ does. 

Therefore, it is the inverse image, part  of a topos morphism 

~ :  IlXll - ,  Sh( lXl) .  (2) 

Thus, by definition, 

~ ' ( 6 ' ) ,  = u : ( S )  (n _< 0). (3) 

Observe that  the sheaf S can be reconstructed from these sheaves u~(S) on X~ x A ~. 

Explicit ly,  since f : S --+ [X[ is an 6tale map and IX[ has the weak topology with 
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respect to the fi l tration ix i  (o) g ]Xl(1) C iXl o) c . . . ,  it follows first tha t  S has the 

weak topology with respect to its closed subspaces S (~ G S (1) g SO) g "" ', where 

S (~) = f - l ( lX l (~ )  ). Next, in the diagram 

S(n- -1 )  

l X n X !A n-I ( 

�9 ,< ( s )  

,' X,~ x A"  

(4) 

the bo t tom square is a pushout by construction of IX] (~), while all vertical faces are 

pullback squares. It follows that  the top face (4) is also a pushout square. Indeed, 

since Xn x A n --~ IXI (~) is a quotient map, so is its pullback u~(S) -+ S (n) along the 

&ale map S (~) --+ IX] (~). Thus it suffices to prove that  the top face is a pushout of 

sets, which is easy. 

It follows that  for two sheaves S and T on IXI, a compat ible  family of sheaf 

maps u~(S) ~ u*~(T) induces a unique continuous map S --+ T of sheaves on IX]. 

Thus, the fnnctor ~* in (3) is fully faithful; or, in other words, the topos morphism 

~ :  IIX]l ~ Sh(IXl)  is co,,,ected. 

In the rest of this section, we will be concerned with the reverse construction, 

of a sheaf on IXI from an object. E of the topos ]]XII , i.e. from a compat ible  family of 

sheaves E~ on Xn • A N. The construction is by pushouts similar to diagram (4). More 

precisely, from the sheaves E~ we construct a sequence of mappings /~(~) -~ ]XI (=), 

with the proper ty  that  the two squares in the diagram 

E n - t  ( . C �9 En 

IXl (n- l ) ,  X n x a A ~ c  , X ~ x a  ~. 

(5) 

are pullbacks, as follows. For n = 0, define/~(0) = E0 with evident map to ]X] (~ = X0. 

Given ~(n-a),  define ~(n) to be the pushout of the two top horizontal maps in (5). 

This defines a sequence of spaces and closed embeddings,  

/~(0) C_ j~(') C_ E(:) C_ . . .  (6) 

Def ine/~  to be the colimit of this sequence (i.e., the union, equipped with the weak 

topology). Then thc fr together define a map f : E --* IXl. 
The problem now is that  this map f : /~ --+ IXI need not be &ale, i.e. /~ need 

not be a sheaf. We will prove that, /~ is a sheaf in two special cases: the first is when 

each Xn is a paracompact  Hausdorff space, or briefly, when the simplieial space X is 
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paracompact  Hausdorff. The  second special case is where the sheaves E,, on X~ x A ~ 

have a par t icular ly  s imple form. The a rguments  for these two special cases are similar.  

The  first, paracompact  Hausdorff, case is based on the  following two lemmas.  For 

the first l emma,  fix a paracompact  Hausdorff space Y, and an increasing sequence of 

closed subspaces 

Y o C _ Y ~ C _ . . . ,  Y =  U Y ~ .  

Let p : F --~ Y be a cont inuous map,  and write F = U~ Fn where F~ = p-I(Y,~). 

Assume tha t  Y and F carry the weak topology with respect to these f i l trat ions {Yn} 

and {F~}. 

4.1.  L e m m a .  For  a m a p  p : F ---* Y an d  f i l t ra t i ons  Y = U Y~ and F = U F~ as 

above, i f  each restriction p~ = pIF,~ : F,, --~ Y,, is dtale, then so is p : F ---* Y .  

P r o o f .  Clearly p : F --~ Y is an open map.  For if U C_ F is open,  then  

p(U) f3 Y,~ = p ( g  C) p-~(Yn)) = pT,(U N Fn) is open in Y~ because each p~ : Fn --* Y~ is 

assumed open. Thus  p(U) is open in Y. 

Next,  to show tha t  p has "enough sections",  pick a point  ( C F and  wri te  Y = P(~). 

Fix the smallest  n with y E Y~. By induc t ion  we will const ruct  for each k _> n a neigh- 

bourhood Uk of y in Yk and a section sk : Uk ~ Fk of p~ with s~(y) = ( so tha t ,  

(i) gk-t- 1 N Yk = g k  , 

(ii) sk+l[Uk = sk : Uk --* F .  

Star t ing  with k = n, let r : V ~ F,~ be any section of pn defined on an open 

ne ighbourhood V of y, with r(y)  = (. (Such a section exists since pT, is assumed to be 

6tale.) Let Un be a neighbourhood of y with y E Un C_ Un C V, and let sn = riffs. By 

paracompactness  of Yk+l, the section sk : ~-Jk ~ *ilk _C Fk+l can be ex tended  to a section 

a : W ---* Fk+l defined on an open neighbourhood W of / )k  in Yk+l (see Godemen t  

(1958), p. 150). Let W1 be an open set in Yk+~ wi th / ]k  C_ W1 _C 1~  C_ W, and define 

Uk+l = Uk U (W1 - Yk)- This set. is open in Yk+l. Indeed,  if O G Yk+l is any open 

set with O N Yk = Uk, then  Uk = (O A W1) N Yk, so Uk+~ = (O N W~)U(W~--Yk) .  

Fu,rthermore, since/~'k+l C W we can define sk+l :/9"k+1 ---* Fk+l to be the restr ic t ion 

of a to / ]k+ l .  This  completes  the definit ion of the open sets Uk C_ Yk and the sections 

sk : Uk ~ Fk for all k >_ n. Now let 

u = U  u~, s=Us,~:u--,r. 
k>n k>n 

Then  s is a cont inuous  section of p, since U Cl Yk = Uk and s[(U A Yk) = sk is con- 

t inuous  for each k >_ n. Fur thermore ,  s(U) C_ F is open,  because for each k _> n the  

set s (U)  fl Fk = s(U) N p - l (Yk )  = s(U Cl s - lp -a (Y~) )  = s(Uk) is open in Fk. 

Then  p : s(U) ~ U and s : U --* s(U) are mutua l ly  inverse maps,  so p mus t  be a 

homeomorph i sm from the open neighbourhood s(U) of ( in F onto U. This  shows 

tha t  p is 6tale, and proves the lexnma. 
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For the second lemma, consider, for a closed subspace A C_ Y of a given space 

Y and a m a p  f : A ~ B, thead junc t ion  space Z = Y U A B .  In other words, the 

square 

f 
A " B  

Y , Y U A B = Z  

is a pushout. Then B is a closed subspace of Z, and the square is also a pullback 

(fibered product). A typical open set in Z is constructed by starting with an open 

U C B, and then choosing any open V C Y with VClA = f - i ( U ) .  Then V + U  C Y + B  

is saturated for the equivalence relation a ~ f ( a )  (for all a E A) which defines Z as a 

quotient of Y + B .  Hence the image VUA U o f  V + U i n  Z is an open set. We will 

assume that Y and B are paracompact Hausdorff spaces. It then follows that Z is a 

paracompaet Hausdorff space as well. (Hausdorffness of" Z is easy; for paraeompact- 

ness, see Michael (1957).) 

4.2. L e m m a .  For A C Y and f : A --~ B as above and for  any diagram 

F ,  ~D g ) G  

Y �9 ~ A - - f ~ B  

in which both squares are pullbacks, ~f p, q, r are all dtale maps, then so is the induced 

map 

l r = r U q  : FUDG---~ Y U A B  

of adjunction spaces. 

Proof .  In tile square 

F + G  , F U D G  

r+q I 1 ~r 

Y + B  ) X U A B  

both horizontal maps are quotient maps; so ~r is a continuous open map since r and 

q are. To show that 7r is in fact a local homeomorphism, first note that B is a closed 

subspace of YUA B and (YUA B)  - B = Y - A. And similarly D is a closed subspace 

of FUDG and F UD G - -  E = F - D. Thus lr is a local homeomorphism over the open 

subset (YUA B)  - B.  It remains to be shown that each point ~ C 7r-l(B) has an open 

neighbourhood V~ in Y such that 7rlV ~ is a homeomorphism V~,~r(V~). To this end, 

choose such a point {, write b = ~r(~) E B, and use ~taleness of the map q to find an 

open neighbourhood U of b in B and a section s : U --* E through (. This section 

pulls back to a section f # ( s )  : f - l ( ~ )  _~ D of the map p. Since f -~(U)  is closed in 

Y, we can now use paracompactness of Y to extend f # ( s )  to a section t : N -* E of 
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r on an open neighbourhood N of f - ' (U) .  Now let W = f - ' ( U )  U (N - A). Then 

W is an open subset of Y, and W N A = f - l (U) .  So, as noted before the s ta tement  

of the lemma, W gives an open subset 

V : =  WUA U C_ Y UA B. 

Furthermore,  

t U s  : WUA U ~ F U D G  

is a well-defined section of ~r defined on V. Its image t U s(V) is open in F UD G, since 

t u s ( v )  = t (W)  UD s(U) and t(W), s(U) are open in F and G respectively, while 

t ( W )  n D = t ( W )  n T-~(A) = t ( W  C~ t - l ~ - ~ ( A ) )  = t ( W  n A) = f # ( s ) ( f - l ( U ) )  = 

g-~(s(U)). Thus (t U s)(V) is the desired neighbourhood V~ of ( on which rr restricts 

to a homeomorphism, with inverse t t3 s. 

4.3. R e m a r k .  Keeping the notat ion and the assumptions of the preceding lemma, 

both squares in the diagram 

F �9 FUDG.~ G 

Y , Y U A B ' r  B 

are again pullback squares. Indeed, one readily verifies that  these squares are set- 

theoretic pullbacks. But any commutat ive  square of continuous maps 

S , T  

K , L  

which is a set- theoretic pullback and in which vertical maps are fitale is also a topo- 

logical pullback, since the map S ~ K • T into topological pullback is a continuous 

bijection between ~tale spaces over K ,  hence a homeomorphism. 

Using these two lemmas, one concludes that  the construction of the m a p / )  ~ IX] 

from an object  E of the topos IlXll, described around (5) and (6) above, in fact results 

in an 6tale map,  i.e. an object  of 'dh(IXl). This shows that  every object  of [IXll is in 

the image of the functor ~* :  Sh(IXl)  ~ IlXll in (3) , and hence proves the following 

theorem. Recall that  IIXll stands for the topos theoretic realization IlXll/with respect 

to the s tandard  unit interval I.  

4.4. T h e o r e m .  For any paracompact Hausdo~ff simplicial space X ,  the rnor- 

phism ~ :  IlXll - .  Sh(IXl)  is an eq,,ivalence of topoi. 

This theorem applies in part icular  to any simplicial set X ,  viewed as a simpli- 

cial space with the discrete topology. For the nerve of a small (discrete) category C, 
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we s tate  this explici t ly as follows. 

4.5. C o r o l l a r y .  For any small (discrete) category C, there is a canonical equiv- 

alence of topoi IINerve(C)ll-~ Sh (BC) .  

For applicat ion in the next chapter,  we need to describe one more case where, 

for an object  E of the topos IIXII, the construction o f /~  ~ IXI actual ly yields an 

~tale map.  Recall that  such an E is a compat ible  system of sheaves E~ on X~ x A ~ 

(for n _> 0). For each point x E X ,  this sheaf thus restricts to a sheaf E~I({x } x A ~) 

on the s tandard  n-simplex. If, for each n > 0 and each point x E X~, this restr ic ted 

sheaf is a pseudo-constant sheaf on A ~ (cf. Section III.2) then we call E itself pseudo- 

constant. (Note, however, that  these sheaves E~ on X~ • A ~ are allowed to vary 

arbi t rar i ly  in the X~-coordinate.)  

4.6. P r o p o s i t i o n .  For any simplicial space X ,  each pseudo-constant object E of 

the topos IlXll is contained in the image of the functor ~p*: Sh(IXl) - ,  IlXll. 

P r o o f .  In the proof, we will, for any dtale map g : Z --+ Y, call an open set 

U C Z small if g restricts to a homeomorphism on U. Exact ly as in the proof of 

Theorem 4.4, we will show that  the map f : /~  --~ IXI is a local homeomorphism; but  

now we use that  E is pseudo-constant,  rather than paracompactness  of X.  Recall 

that  /~ is constructed as a colimit of spaces /~(0) C_ /~(1) C_ . . .  equipped with maps 

f(~) : E(~) --~ [XI (~). Suppose, for the moment ,  that  it has been shown that  each of 

these maps/~(~) --~ IXI (=) is 6tale; and that ,  moreover, for each each "small" neigh- 

bourhood U=-I in /~(~-1) there exists a small neighbourhood U~ in /~(n) such that  

U= fl/~(n-1) =/~(=). Then it will follow that  /~ -o IX I is dtale, with small  neighbour- 

hoods of the form UU~ for such a sequence {Un}, exact ly as in the proof of Lemma 

4.1. It thus suffices to prove for each inclusion/~(,~-1) C/~(n) that  if j~(~-l) __+ IX](=-1) 

is 6tale, then/~(~) ~ IX] (=) is also 6tale and moreover has this extension proper ty  for 

small  neighbourhoods. 

For this, let U = U~_~ C_ /~(~-~) be a small open set. Since both squares in (5) 

are pullbacks, Un-1 pulls back along X,, x (gA ~ --~ ]XI(~-I) to a small neighbourhood 

U' of E,d(X,~ x aA~).  In other words, U' corresponds to a section s of E~ defined 

on an open subset V of Xn • 0A ~. Let b be the barycenter  of A n, and define the 

(open) cone C(V) C X~ x A ~ to be the set of points (x, t) E X= x A = for which there 

a r e a  E [0,1) and t ' E  (gA ~ so that  (x , t ' )  E V ' a n d t  = a t ' + ( 1 - a ) b .  S inceEn  is 

assumed pseudo-constant ,  there is a uuique extension of the section s to a section 

on C(V). The image of .~ defines an open set W C E~. Consider now the pushout 

square defining/~(~) from/~(~-1) (cf. below (5)): 

E~I(X~ • a ~ )  ~ ~ �9 E~  

1 1 
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Then the open set W just  defined has the proper ty  that  i - l ( W )  = a- l (U) ,  and 

hence defines (by the description of the pushout-topology just  before the s ta tement  of 

Lemma 4.2) a unique open set U, of/)(n) so that  j-I(U,~) = U = U,-1 and b-~(Un) = 

W. Furthermore,  exact ly as in the proof of lemma4.2,  the map/)(n)  ~ [X[(~) restricts 

to a homeomorphism on Un. Thus, as for Lemma 4.2, this proves that  /)(~) --~ Ixl(n) 
is ~tale, and shows at the  same t ime that  the small  open set U , - I  C_ /)(~-1) can be 

extended to a small open set Un _C/~("), as required above. 

This proves the proposition. 



Chapter IV 

Comparison Theorems 

w Discrete  categories 

In this chapter, we will derive several theorems providing a homotopy theoretic 

comparison between classifying topoi and classifying spaces. We will begin with the 

relatively easy case of comparing the classifying space of a small category to the topos 

of presheaves on that category. 

Let C be a small (discrete) category, with topos of presheaves/~C as described in 

Section 2 of Chapter I, and with classifying space BC as described in Section 2 of 

Chapter III. The general approach to geometric realization provides a map comparing 

these two constructions. Indeed, for the simplicial set Nerve(C) one can construct its 

topos-theoretic realization, both with respect to the standard unit interval I = [0, 1] 

and with respect to the Sierpinski interval E. For the first realization, Corollary 4.5 

of the previous chapter states that 

IINerve(C)lb ~ Sh (BC) ,  

while for the second realization, Theorem 3.1 of that chapter states that 

IlNerve(C)]lc -~ •c. 

The evident continuous map of intervals p : I ~ ~3, defined by 

p ( t ) = f  0 , t = 0 ,  

1 , t > O ,  

thus induces a morphism of topoi, (again)denoted p :  IlNerve(C)llz-+ ]]Nerve(C)[[~, 

or equivalently 

p : BC ~ / $ C .  

(Here we follow the convention in Section 1.2 of identifying a space with its topos of 

sheaves.) 

1.1. T h e o r e m .  For any small category C this map p : BC ---+ 13C, from the 

classifying space to the classifying topos, is a weak homotopy equivalence of topoi. 
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Before proving the theorem, we should give a more explicit description of the 

inverse image functor p* : BC --* Sh(BC) of the morphism p occurring in the state- 

ment of the theorem. For an object S of BC, i.e. a functor S : C ~ --* (sets), one 

may picture the sheaf p*(S) on BC as built up in stages, following the filtration of 

BC by its skeleta BC (~). The space BC (~ is the set of objects of C, equipped with 

the discrete topology. Then p*(S) t~ is the sheaf on BC~ ~ which has the set S(c) as 

stalk over an object c E C. Next, for each non-identity arrow a : q --~ co there is a 

1-simplex A~ C_ BC, with endpoints co and q .  The restriction of p*(S) to this copy 

A~ is constant over A 1 -- {Co}, with stalk S(q), while the stalk S(co) over co is glued 

to this constant sheaf over A~ - {co} via the map S ( a ) :  S(co) ~ S(Cl): 

y �9 

O 

Z �9 

-Q X 

c S(c,) ;v,z E S(co), 
= = 

C O ~ , C  1 

Next, for a pair of (non-identity) arrows a --- (co ~- cl ~- c~) there is a 2-simplex 

A~ _ BC, with vertices co, q ,  c2 and faces corresponding to a l ,  a2 and al  o a2. The 

restriction of the sheaf p*(S) to this 2-simplex A~ is constant over the complement in 

A~ of the face 02(A~) (this is the face corresponding to a~, opposite c2), with stalk 

S(c2). Over the face c02(A~) = A~I the sheaf p* (S) has already been described. These 

two parts are glued together to produce a sheaf on A~, by using the restriction maps 

S(CO) ~ S(c2) and S(Cl) --~ S(c2) given by a l  o a~ and by a2. More generally, given 

the sheaf p*(S) (n-~) on BC (n-l), this sheaf is extended to a sheaf p*(S) (n) on BC (n) 

as follows: BC (n-l) is a closed subspace of B C ( ' )  with inclusion map in : BC (n-0 '-* 

BC (~), say. Write Y~ for the open complement BC (~) - BC (~-1), with inclusion 

map j~ : Ir ~-+ BC (~). The space Y,, is a disjoint sum of interiors of n-simplices 

A ~ ~, one for each non-degenerate n-simplex a = (Co g-~ Cl +- " -  ge c~). Define a 

locally constant sheaf L,  on Y~ = O~ Int(A~), which is constant over Int(A~) with 

stalk S(cn) (where c~ depends on a). Now glue this locally constant sheaf L~ on 

Y~ to the sheaf p*(S) (~-1) already constructed, by "Artin glueing", using the map 

p*(S) (n-l) "-~ i~.j*(L~) defined in the evident way from the operators S(ai o . . . o  a~): 

s(c,) S(c.), f o r  e a c h ,  = (Co c . )  a s  a b o v e .  

There are two properties of the sheaf p*(S) on BC that we will use. First, p*(S) 
is a pseudo-constant sheaf on BC. Secondly, for any n-simplex a = (co *-- .-- *-- c~) 

with associated map ~r~ : A~, ~ BC as in Section III.2, there is a natural  isomorphism 

F(A~,r%*(S)) ~ S(co). (1) 

These two properties are obvious from the description of p*(S) just given. 
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P r o o f  of  T h e o r e m  1.1. If the category C splits into connected components  

as C = ~ C i ,  then BC is the sum of the connected spaces BC~, while /~C is the 

sum of the connected topoi BCi. From this it is clear that  p induces an isomorphism 

 o(BC) ~ 

To prove that  p induces an isomorphism of fundamental  groups, it suffices to show 

that  the functor p* : BC ~ Sh(BC) restricts to an equivalence of categories on 

the full subcategories of BC and Sh(BC) consisting of locally constant objects.  An 

object  S of BC is locally constant precisely when for each arrow a : c --* d in C 

the operator  S(a) : S(d) --~ S(c) is an isomorphism, i.e. S is morphism-invert ing.  

And a sheaf E on BC is locally constant precisely when E is a covering projection. 

But there is a s tandard  equivalence of categories p! : {covering spaces of  BC} -* 

{morphism-inverting functors C ~ --* (sets)}, considered in Gabriel-Zisman(1967) 

and Quillen(1973). For a covering space E ~ BC,  the functor p!(E) : C ~ ~ (sets) 

sends an object  c to the fiber of E over c (viewed as a 0-simplex of BC);  the action 

of an arrow a : c ~ d in C on p!(E) is defined using path-l if t ing in E. One readily 

verifies that  p* and p! are mutual ly  inverse functors, up to natural  isomorphism, thus 

providing the required equivalence between categories of locally constant objects.  

Next, we note that  p induces isomorphisms in cohomology with locally constant  

coefficients. Let A : C ~ --* Ab be a morphism-invert ing functor into the cate- 

gory of abelian groups. We claim that  p induces an isomorphism H*(BC, A) --* 

H*(BC,p*A). (Recall from Proposit ion II.6.1 that  H'(BC, A) is the same as the 

cohomology H*(C, A) of the category C.) Consider the diagram of functors 

Ab(BC) P*~ Ab Sh(BC) 

At,(B(AC)). 

Here 7 is the functor defined in (2) of Section III.2, and ~2" is induced by the "first 

vertex" functor ~ : AC ~ C described there. By (1) above the diagram commutes,  

up to natural  isomorphism. But p*(A) is a pseudo-constant abelian sheaf on BC,  so 

7 induces an isomorphism Hn(BC, p'A) --* Hn(B(AC) ,  7p 'A)  as in Corollary III.2.4. 

If A is moreover locally constant (morphism-inverting),  then ~2" also induces an iso- 

morphism H*(BC, A) ~ H*(/~(AC),~*A);  indeed, the Leray spectral  sequence of 

Chapter  II, Remark 6.3, collapses since each comma category ~/c is contract ible  (cf. 

(1) of Section III.2). By the isomorphism T*A "~ 7p'A, we conclude that  p induces 

an isomorphism H*(BC, A) -:~ H*(BC, p'A), as claimed. 

The theorem now follows from the toposophic Whi tehead theorem stated in Sec- 

tion 1.4. 

Recall from Chapter  II that  for a small category C and a space X,  the collec- 

tion of concordance classes of principal C-bundles is denoted kc(X) .  

1.2. C o r o l l a r y .  For any small category C and any CW-complex X,  there is 
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a natural isomorphism 

kc(X)  ~ [X, B C ] .  

Of course, for a group G (viewed as a one-object category) this result specializes 

to the classical result that B G  classifies principal G-bundles. For a monoid with can- 

cellation, one recovers Segal's theorem (cf. Chapter II, Example 2.1(b)). 

P r o o f .  The corollary is a direct consequence of the existence of the weak homo- 

topy equivalence of Theorem 1.1. Indeed, since p : BC --~ BC induces isomorphisms 

of homotopy groups ~r~(Be, x) --, ~r:*(BC,px) for any point x in B e ,  a standard 

argument (using induction on the cells of X) shows that for any CW-complex X the 

map p induces an isomorphism 

IX, Bc] IX, 

The corollary now follows by composing this isomorphism with that of Chapter II, 

Corollary 2.4. 

w s-Eta le  categor ies  

Recall that  a topological category C is said to be s-~tale if its source map s : Ca --* Co 

is 6tale, i.e. a local homeomorphism. In this section, we will extend the comparison 

between the classifying space and the classifying topos (Theorem 1.1) to such s-~tale 

categories. 

For an s-~tale category C, the construction of a map B C  ---* BC, from the classi- 

fying space to the classifying topos, is somewhat more involved then the construction 

for a discrete category in the previous section. Exactly as there, the functoriality of 

geometric realization provides a natural topos morphism 

p :  IINerve(C)ll, ~ IINerve(C)llc, (1) 

relating the realizations for tile unit interval and for the Sierpinski interval. Fur- 

thermore, by Theorem 3.2 of Chapter II, the Sierpinski realization is the topos of 

quasi-C-sheaves, 

IINerve(CIIc ~ /~C, (2) 

of which the classifying topos BC is a natural deformation retract by Proposition 7.7 

in Chapter II, 
r 

/~C , ' -BC. (3) 
r 

Next, by Theorem 4.4 of Chapter II the natural map 

~ :  HNerve(g)llz --* Sh(BC)  (4) 
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is an equivalence if C is paracompact  Hausdorff. Thus, for such a paracompact  Haus- 

dorff s-fitale category C, the above maps compose to give a canonical map p making 

the diagram 

Sh(BC) ~ ~ BC 

l 
[INerve(C)][i p " BC 

(5) 

commute  up to natural  isomorphism. But even without the assumption that  C is 

paracompact  Hausdorff, there is a topos morphism/5 : Sh(BC) --~ BC, unique up to 

isomorphism, such that  ~bp ~ t6~ as in (5). Indeed, from the explicit  construction of 

the morphism p, it is not hard to see that  every object  in the image of the functor p* 

is pseudo-constant (of. the discussion following Theorem 1.1). Thus, by Proposit ion 

4.6 of Chapter  III,  there is for every object  S of /~C a sheaf E on BC - unique up 

to isomorphism - with the property that  p*S "~ ~*E. Since the morphism c 2 is 

connected (i.e. 4" is full and faithful), a choice of such a sheaf E for every object  S 

will give a functor q" : /~C ~ Sh(BC) such that  ~'q* ~ p*. Since c2" is faithful 

and ~*q* commutes with colimits and finite limits,  so does q*. Thus q* is the inverse 

image of a topos morphism q : Sh(BC) ~ / ~ C  with the proper ty  that  q~ ~ p. Now 

the morphism/5,  defined as t5 = ~/,q, completes the diagram (5) as required. 

We can now state and prove the analogue of Theorem 1.1. We assume that  the 

topological category C is locally connected, so that ,  by Lemma 7.1 of Chapter  II, the 

classifying topos BC is also locally connected, as required for the construction of the 

~tale homotopy groups (cf. Section 1.1). 

2.1.  T h e o r e m .  

natural rnorphisrn 

For any locally connected s-dtale topological category C, the 

/5 : BE ---, BE 

is a weak hornotopy equivalence. 

P r o o f .  The proof follows roughly the same pat te rn  as for the discrete case, cf. 

Theorem 1.1. Thus it will be shown that/5 induces isomorphisms in 7r0, in cohomology 

with locally constant coefficients, and in the fundamental  group. The theorem then 

follows by the toposophic Whi tehead Theorem. 

First ,  that/5 induces an isomorphism 7r0(BC) = rcoSh(BC)2.rCo(BC) is clear. Next, 

to see that /5  induces isomorphism in cohomology, note first that  any abelian C-sheaf 

A induces a pseudo-constant  sheaf/5 "(A), as in the construction of the morphism/5 

above. Wi th  the notat ion of the previous section, it follows by Lemma 2.3 of Chapter  

III  that  Hq(A2,p*A) = 0 for each q > 0, and for each point c~ E Nerve~(C). Thus, by 

Corollary 2.4 of Chapter  III, there is an isomorphism 

Hq(BC,/5"A) ~- Hq(I3(A,~C),,/p*A) 

for any q >_ 0. If furthermore A is locally constant,  then Proposit ion 7.6 of Chapter  

II gives an isomorphism Hq(BC, A) ~- Hq(B(AmC),~*A). Since c2" ~ 7 o/5 * as 
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in the proof of Theorem 1.1, it follows that for such a locally constant A the topos 

morphism/3 induces an isomorphism Hq(/3C, A) "~ Hq(BC,fi  *A). 

Finally, we show that fi induces an isomorphism 7h(Sh(BC)) --~ ~h(/3C), for any 

chosen (but not explicitly written) base-point in BC. For this, it suffices to show 

that i6 * : BC ~ Sh(BC) restricts to an equivalence of categories between locally 

constant objects in /3C and covering spaces of BC. To this end we give an explicit 

description of the locally constant objects in BC, viz. as the invertible C-sheaves S 

for which the sheaf projection p : S ~ Co is a covering projection. Indeed, in the 

proof of Lemma 7.2 of Chapter II it was observed that if S is locally constant then S 

must be "invertible", since S restricts to a covering space #*(S) on E x C1. The same 

argument shows that p : S --~ Co is a covering projection, since p is the pullback of 

#*(S)o along the map u : Co ~ C1 which associates to each x E Co its identity arrow 

u(z). Conversely, suppose that S is an invertible C-sheaf for which p is a covering 

projection, say with fiber the set F.  Then there is an ~tale surjection cr : U --~ Co for 

which there exists an isomorphism 0 : F • U-z~S • U over U. To show that S is 

locally constant as a C-sheaf, we need to produce a similar C-equivariant isomorphism. 

To this end, consider the sheaf U c whose points are pairs (y, a),  where y E U and 

a : x --~ ~(y) is some arrow in C. In other words, U c is the fibered product U• 

This space U c is a C-sheaf, when equipped with the sheaf projection s~r2 : U c --* Co 

sending a point (y, a)  to the source s(a) ,  and with action by C given by composition. 

(Note that the map sTr2 is indeed 6tale since s : Cl --* Co and ~ : U --~ Co are.) Now 

since S is invertible, the action induces an isomorphism 

w : S • 2 1 5  ~,,(s,~) = ( ~ , s ' ~ ) .  

The inverse of w may suggestively be written as 

(~,s)  ~ (s .  ~ - ' , ~ ) .  

(although there is no such thing as an arrow a -1). One can now define the desired 

isomorphism of C-sheaves 

p : A ( F ) •  c ~ S •  c 

(where the product is that of C-sheaves), where A ( F )  is the constant C-sheaf F • Co 

Co with trivial C-action, as follows: a point in A ( F )  • U c is a quadruple (e, x, y, a) 

where e E F, x C Co, y C U and a : x --~ a(y); define 

p(~, x, y, ~) = (~,0(~, y ) .  ~, (u, ~)). 

This map p is C-equivariant, since for any arrow/3 : x' ~ x in C we have 

p((~, x, u, ~) . /~)  = p(~, .~', u , ~  o ;~) 

= (~10(~, u)" ~/3, (u, ~/~)) 

= (~,0(~, u ) '  ~, (u, ~ ) ) . /~  

= ~,(e,~,y, ~) -/~. 
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Furthermore, p is an isomorphism, with inverse defined, for s C S, y E U and a : 

p(s) --~ y, by 

p-1  (S, (y,  (3r -~- ( 0 - 1 ( 8  �9 Cg -1 , y) ,  p(S) ,  y ,  O~). 

With this explicit description of locally constant C-sheaves, the equivalence between 

the category of such and the category of covering spaces of BC is clear: In one 

direction, the functor/5 * : BC --* Sh(BC) sends locally constant C-sheaves to cov- 

ering projections of BC, since any inverse image functor preserves locally constant 

objects. In the converse direction, any such covering space E --~ BC pulls back along 

Co '-+ BC to a covering space of Co, equipped with an invertible C-action via the map 

[0, 1] • C1 ~ BC. This defines a functor/5! from covering spaces of BC into invertible 

C-sheaves, i.e. into locally constant objects of the topos BC. These two funetors/5!, 

and/5 * together provide the required equivalence of categories. 

This completes the proof of the theorem. 

2.2. R e m a r k .  For the case where C is an ~tale topological groupoid, as in 

II.4.4, Theorem 2.1 can be proved more easily, by a direct comparison of hypercovers; 

see Moerdijk(1991). 

Call an s-fitale category C locally contractible if its space Co of objects (or equiv- 

alently, its space C1 of arrows) has a basis of contractible sets. Then the classifying 

space BC also has such a basis, and hence the homotopy groups of the space BC 

coincide with the ~tale homotopy groups of the topos Sh(BC) (cf. Section 1.4). 

In this case, Theorem 2.1 above and Corollary 4.3 of Chapter II together imply the 

following result, by exactly the same proof as for Corollary 1.2 in the previous section. 

2.3. Coro l l a ry .  For any locally contractible s-dtale category C and any C W -  

complex X ,  there is a natural bijection 

[X, BC] ~ kc(X).  

Thus, BC "classifies" concordance classes of principal C-bundles. 

w Segal ' s  t h e o r e m  on  Fq 

As an illustration of the use of tile Comparison Theorem 2.1, we will present in this 

section a proof of Segal's theorem; cf. Segal(1978). (This proof is also described in 

Moerdijk(1991).) To state this theorem, let M be the monoid of smooth embeddings 

of Rq into itself. Thus M is a discrete category with just one object. Also, let F q be 

the 4tale groupoid (cf. Chapter II, 4.4) with R q as space of objects, while the arrows 

x --* y in F q are all germs of diffeomorphism ~ : U --* V where U and V are neigh- 

bourhoods of x and y respectively, and c2(x ) = y. This set of arrows is equipped with 
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the sheaf topology, so that  the source and target maps of the groupoid F q are ~tale. 

This groupoid plays an impor tant  role in the theory of foliations, since it "classifies" 

(in some sense) the smooth foliations of codimension q (cf. Haefliger(1984)). 

3.1. T h e o r e m .  (Segal) The  c lass i fy ing  spaces B F  q and  B M  are weakly  h o m o t o p y  

equivalent .  

To prove Segal's theorem, we use Theorem 2.1, and prove instead the equivalent 

s ta tement  that  the classifying topoi B F  q and B M  are weakly homotopy equivalent. 

This turns out to be remarkably easy and explicit. We need the following auxil- 

iary categories. Let 7)q be the discrete category with open disks in R q as objects  

and smooth embeddings as arrows. The monoid M is a subcategory of D q, and the 

inclusion 

i : M ,--, 7) q 

is an equivalence of categories, since every open disk is diffeomorphic to ftq. The 

category 77 q is a subcategory of the category of topological spaces, and the inclusion 

Y : /Sq ~ ( spaces )  

is a diagram of spaces on ~q, in the sense of Chapter  II, Section 5. Write 

for the associated s-4tale topological category (as in Proposit ion II.5.1, with 7) q for 

K). Thus, the space of objects  of 79 q is the disjoint sum of all open disks W __ ftq, 

and we denote an object  of D q as a pair (W, x), where x ' is  a point in the disk W. An 

arrow a :  (W, x) --+ (V, y) in D q is a smooth embedding c~: W ~ V with a ( x )  = y. 

There is an obvious projection functor ~r : 7) q ~ 7~ q (as in Section II.5), as well as 

an obvious functor r : D q --+ F q, defined on objects by r ( W , x )  = x and on arrows by 

taking germs. 

All these functors induce morphisms between classifying topoi, as in the d iagram 

Fq & D q & Dq ,_o M 

B F  q J -  B D  q & B D  q ~ 13M. 

Here i :/3"/;) q ~ B M  is an equivalence of topoi, since i : M --- Dq is an equivalence 

of categories (see Section 1.2). Furthermore,  since each open disk is contractible,  

7r : BDq -+ B ~  q is a weak homotopy equivalence by Chapter  II, Corollary 6.9. Thus, 

the following proposit ion completes the proof of Theorem 3.1. 

3.2. P r o p o s i t i o n .  The topos mo77)hism r : 13I) q ---+ B F  q is a na tura l  defor-  

m a t i o n  re trac t ion .  

More explicitly, this proposition asserts that  there is a topos morphism j : 13F q --+ 
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B/ )  q such that  r o j ~- id while j o r is "Sierpinski homotopic" to the ident i ty  (i.e. 

there is a natural  t ransformation between the inverse image functors, cf. Chapter  I, 

Section 4). 

P r o o f  of  3.2. By Theorem 4.1 of Chapter  II, topos morphisms BF q --~ BD q 

correspond to Fq-equivariant pr incipal / )q-bundles  over R q (cf. Remark II.4.6). These 

are 6tale maps E --+ Iq q with a left Dq-action which is principal,  and a right [ 'q-action 

which respects the left Dq-action. Define such a bundle E,  in terms of the target  map 

t of the groupoid F q, by 

E = { (W,a )  I W an open disk in R q ,a  an arrow in F q, t (~)  E W}. 

This space E is topologized as the disjoint sum of the subspaces t - l ( W )  C_ F~. The 

6tale project ion 

s : E ~ W ,  ( W , a )  H s ( a )  

makes E into a sheaf on R q. This sheaf is Fq-equivariant, by the obvious right I 'q- 

action given by composition, 

( w , ~ )  .7  = (w,  ~7). 

The space E has the structure of a 7)%bundle, by the map 

~ : E - , 7 : ) 0  ~ , ~ ( W , a ) = ( W , t ( ~ ) ) ,  

and the left action of D q by composition: for an arrow/3 : (W, y) ~ (V, z) in Dq with 

y = t(oO, 

/3. (W,a )  = (V,/3a). (1) 

To see that  this bundle E defines a map 

j : BF q ~ BD q 

(by i f ( S )  = S | E) ,  it suffices to check that  the /)q-action is principal.  This is 

trivial.  For example,  condition (ii) for principal i ty means that  for any point y E •q 

and any two points (W, a)  and (V,/3) in E with s (a )  = y = s(/3), there is a third point 

(U, 7) in E with s(7 ) = y, and arrows ~i: (u, tT) -+ (W, t a )  and r  (U, tT) --+ (V, t f l)  

in 7)q, such that ,  for the action (1), 5. (U, 7) = ( W , a )  and r  (U, 7) = (V,/3). To see 

that  this condition holds, choose an open disk U around y so that  the germs a and/3  

are represented by embeddings a : U ~ W and/3 : U ~ V, and let 7 be the identi ty 

germ at y, and let 5 = a ,  c =/3 .  

To see that  j is a map as required for the proposition, represent the map r : BD q --+ 

BF q by a Dq-equivariant principal Fq-bundle. This is the bundle R defined by 

R = {(w,/3) I w an open disk, /3 an arrow in C q, and s(/3) C W}. 

R is a / )q-sheaf ,  with sheaf projection 

~:  R -~  v g ,  ( w , / 3 )  ~ ( w , ~ ( / 3 ) )  
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and right action given by composition in the category D q. And R has a principal 

Fq-action, defined by the map 

t :  n --, n q t(W, 8) = tO) ,  

and left Fq-action given by composition in the groupoid Fq. To see that this bundle 

indeed defines the map r : B D  q ---* BF q, observe that for any Fq-sheaf S and any 

object (W, x ) in  D q, 

(S  | R)(w,.) ~- S | R(w,~) 

= S | s--l(x) 

= s ~  = ST(w,~) = r ' ( S ) ( w , . ) .  

Now the composition r o j : BF q --, BF q corresponds to the tensor product R |  E,  

and there is an obvious isomorphism c : R | E --* F q given by composition in the 

groupoid F q, 

c((W,/~) | (W, ~)) =/~. 

Thus r o j is isomorphic to the identity on /3F% Furthermore, for the composition 

j o t  : B~D q --+ 13Z) q, there is a natural transformation id --+ (jr)* = r ' j* ,  corresponding 

to the map of ~Dq-equivariant principal Dq-bundles 

g : T Y  --* E |  

which sends an arrow cr : ( W , x )  -~ (V ,y )  in D q to its germ, or more precisely, to 

(w, ~) | (v, ~). 
This completes the proof of Proposition 3.2, and hence also that of Theorem 3.1. 

w C o m p a r i s o n  for topo log ica l  ca tegor ies  

In this section we will prove a comparison theorem for arbitrary topological cate- 

gories. Following Section 5 of Chapter II, if a topological category C is not s-dtale, 

we replace its "small" classifying topos BC by the bigger Deligne classifying topos 

DC, which is the topos of sheaves on the simplicial space Nerve(C). More generally, 

for any simplicial space Y the following result compares the geometric realization IYI 

with the topos S h ( Y )  of sheaves on Y, introduced in Section II.5. 

4.1. T h e o r e m .  For any simplicial space Y ,  its geometric realization IY] has 

the same weak homotopy type as the topos S h ( Y ) .  

In the proof of Theorem 4.1, we will use the auxiliary topological category Simp(Y) 

of simplices of Y. Its objects are pairs ([n], y) where n _> 0 and y E Yn; its arrows 

a :  ([n], y) -+ ([rn], z) are arrows a :  [n] --* [m] in the simplicial category/A such that 



COMPARISON FOR TOPOLOGICAL CATEGORIES 87 

a*(z) = y. This category Simp(Y) is topologized in the obvious way, similar to the 

topology of the categories YK introduced in Chapter II, Section 5. Note in this context 

that  Simp(Y) is the dual of the category Y~o~. 

The following lemma is well-known (see Segal(1974), Waldhausen(1983)), but for 

the convenience of the reader we have included a proof of it. 

4.2. L e m m a .  For any simplicial space Y, the geometric realization ]YI has 

the same weak homotopy type as the classifying space BSimp(Y). 

P r o o f .  We will use the basic property of realization of simplicial spaces, stated 

in Chapter II, Section 1, viz. that. the realization of a map which is a weak homotopy 

equivalence in each degree is again a weak homotopy equivalence. The classifying 

space BSimp(Y) is the realization of the simplicial space Nerve(Simp(Y)), whose 

p-simplices can be written in the forrn 

([no] g~ ' - "  ~2_ [nv],y ) , y E Y~0. (1) 

Let T be the bisimplicial space whose p, q-simplices are of the form 

([no] ~ . - "  g2. [n,,] ~ [q],y),  y C Y~o. (2) 

The simplicial operators of T act in the/,-direction as those of Nerve(Simp(Y)), and 

in the q-direction as those of the representable simplicial set A[nv]. There are obvious 

mappings 

Yq ~ Tp,q ~ Nerv%(Simp(Y)); 

the map ,~ sends a p, q-simplex as in (2) to (al o. .-oapo/~)*(y),  and p is simply defined 

by deleting ft. It now suffices, by the basic property mentioned above, to show that 

induces a weak homotopy equivalence IT.,d ~ L for each q, and that p induces one 

]Tv,. I ---+ Nerv%(Simp(Y)) for each p. For a fixed q, the simplicial space T.q can be 

viewed as the nerve of the topological "comma" category Yq/Simp(Y). This category 

is related to the space Yv (viewed as a topological category with idei~tity arrows only) 

by obvious functors and natural transformations 

Yq ~- Yq/Simp(Y), z ~-+ ([q], z) ~ ([q],z) 
z ~ (([hi,y) & ([q],z)). 

This gives an explicit homotopy equivalence IT.,~I = B(Yq/Simp(Y)) ~_ Yq. For 

a fixed p, the space [Tv. ] is the disjoint, sum ~[,01 . . . . .  [~1 Y~0 x Aq and the map 

ITv,. I ~ Nerv%(Simp(Y) = ~[~01 . . . . .  [~,] Y,~0 induced by p is the projection, which is 

clearly a homotopy equivalence. This proves the lemma. 

P r o o f  of  T h e o r e m  4.1. Recall from Chapter II that  Y can be viewed as a 

covariant diagram on the category Aov, and that Sh(Y) ~ B(Y~ov) as in Proposi- 

tion II.5.1. The topological category Y~ov is s-dtale, so Theorem 2.1 provides a weak 

homotopy equivalence 

B(Y~o~) --+ Sh(Y). 
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But B(Y~o,) is homeomorphic to the classifying space of the dual category (Y~o,)~ 

which is exact ly the category Simp(Y) of simplices of Y. By the preceding lemma, it 

thus follows that  B(Y~o,) has the same weak homotopy type as the realization [Y[. 

Let us call a simplicial space Y locally contractible if each Y,, has a basis of 

contractible sets. Recall that  for a space X,  the collection of concordance classes of 

l inearly ordered sheaves on X with an augmentat ion into Y is denoted by Line(X, Y).  

4.3 C o r o l l a r y .  For any locally contractible simplicial space Y and any C W -  

complex X ,  there is a natural bijection 

[X, IYI] -~ Line(X, Y). 

P r o o f .  This follows from Theorem 4.1 and Corollary II.5.6, exact ly as for Corol- 

lary 2.3. 

For the special case where Y is the nerve of a topological category C, we s tate  

these results explici t ly as follows. 

4.4. C o r o l l a r y .  For any topological category C, the classifying space BC has 

the same weak homotopy type as the Deligne topo~ DC. 

Thus we can transfer Corollary 11.5.8 to topological spaces, to obtain the fol- 

lowing result: 

4.5. C o r o l l a r y .  Let C be a locally contractible topological category. Then BC 

classifies (concordance classes of) C-augmented linear orders, in the sense that there 

is a natural bijection 

[x, Be] ~ Li,~(X, C), 

for any CW-complex X.  
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