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Preface

In these notes, a detailed account is presented of the relation between classifying
spaces and classifying topoi. To make the notes more accessible, I have tried to keep
the prerequisites to a minimum, for example by starting with an introductory chapter
on topos theory, and by reviewing the necessary basic properties of geometric realiza-
tion and classifying spaces in the first part of Chapter III. Furthermore, I have made
an attempt to present the material in such a way that it is possible to read the special
case of discrete categories first. This case already provides a good general picture,
while it avoids some of the technical complications involved in the general case of
topological categories. Thus, to reach the comparison and classification theorems for
discrete categories in Section IV.1, the reader can omit §§3,4,5,7 and most of §6 in
Chapter II, as well as the second parts of §1 and §2 in Chapter III.

In the past several years I have been helped by discussions with several people
which were directly or indirectly related to the subject matter of these notes. In this
respect, [ am particularly indebted to W.T. van Est, S. Mac Lane, G. Segal and J.A.
Svensson. Above all, A. Joyal taught me not to underestimate the Sierpinski space.

A summary of the main results appeared in the Comptes Rendus de I’Académie
des Sciences (t. 317, 1993). The present version was mainly written during the fall of
1994, which I'spent at the University of Aarhus. I am most grateful for the hospitality
and support of the mathematical institute there. I would also like to thank A. Dold
for the possibility to publish these notes in the Springer Lecture Notes Series, and for
some advice on exposition. Finally, I would like to thank Elise Goeree for her careful
typing of the manuscript.

This research is part of a project funded by the Dutch Organization for Scientific
Research (NWO).

Utrecht, Spring 1995.
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Introduction

These notes arose out of two related questions. First, what does the so-called classi-
fying space of a small category actually classify? And secondly, what is the relation
between classifying spaces and classifying topoi?

These questions can perhaps best be explained by describing the well-known case of
a group G. The classifying space BG classifies principal G-bundles (or covering spaces
with group (), in the sense that for any suitable space X (e.g., a CW-complex) there
is a bijective correspondence between isomorphism classes of such covering projec-
tions £ — X and homotopy classes of maps X — BG. Furthermore, the cohomology
groups of this space BG are exactly the Eilenberg-Mac Lane cohomology groups of
the group G.

On the other hand, there is the classifying topos of the group G, introduced by
Grothendieck and Verdier in SGA4, and defined as the category of all sets equipped
with an action by the group G. I will denote this category by BG. The topos BG has
the same properties as the space BG, for tautological reasons: the cohomology of the
topos B@ is the group cohomology of G, because the definitions of topos cohomology
and group cohomology are verbally the same in this case. And for any other topos 7T,
the fact that topos maps from 7 into BG correspond to principal G-bundles over 7
is an elementary consequence of the definition of a map between topoi.

To compare the classifying space BG and the classifying topos BG of G-sets, one
first has to put these two objects in one and the same category. For this reason, we
replace the space BG by its topos Sh(BG) of all sheaves (of sets) on BG.

More generally, it will be explained in Chapter I how for any space X, the topos
Sh(X) of sheaves on X contains basically the same information as the space X it-
self, and should be viewed simply as the space X disguised as a topos. This view is
supported by the fact that for two spaces X and Y, continuous mappings between
X and Y correspond to topos mappings between Sh(X) and Si(Y). Moreover, for a
sufficiently good space X (e.g., a CW-complex), the cohomology groups of the space
X are the same as those of the topos Sh(X).

To come back to the comparison between the space BG and the topos BG of
G-sets, we note that after having replaced BG by its topos Sh(BG), the two can be
related by a mapping Sh(BG) — BG. This topos map is a weak homotopy equiva-
lence, although BG is a much smaller and simpler topos than Sh(BG). The known
isomorphisms between the cohomology and homotopy groups of the space BG and
those of the topos BG are induced by this map Sh(BG) — BG. Furthermore, it
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follows that for a CW-complex X, there is a bijective correspondence between homo-
topy classes of maps between spaces X — B@G and homotopy classes of topos maps
Sh(X) — BG. In this way, the fact that the space BG classifies principal G-bundles
can be seen as a consequence of the fact that the topos BG does.

The first purpose in these notes will be to extend this relation between classi-
fying space and classifying topos from the well-known and elementary case of a group
G to that of an arbitrary small category C. In Chapter I, we will recall how the
classifying topos BC of C is constructed as the topos of all presheaves on C, i.e. of all
contravariant set-valued functors on C. In Chapter II1, §2; it will be recalled how the
classifying space BC is constructed as the geometric realization of the nerve of C. As
for groups, it is known that the two constructions define the same cohomology (for
locally constant, abelian coefficients). We will relate the two constructions, by first
replacing the space BC by its topos Sh(BC), and then constructing a weak homotopy
equivalence of topoi (see Theorem 1.1 in Chapter IV):

p: Sh(BC) — BC. 1)

The construction of this map p is based on a comparison of various types of geometric
realization, for spaces as well as for topoi and using different kinds of intervals, to be
presented in Chapter III.

Of course, a lot more information is contained in a weak homotopy equivalence
(1) than in the mere fact that the space BC and the topos BC have isomorphic
cohomology groups. For example, from the existence of such a map Sh(BC) — BC,
one can conclude that for any CW-complex X there is a bijective correspondence
between homotopy classes of maps of spaces X — BC and homotopy classes of maps
of topoi Sh(X) — BC:

[X, BC] = [Sh(X), BC]. (2)

Using this bijective correspondence, one can transfer known classification results for
the topos BC to the space BC. Indeed, define a principal C-bundle E on a space X
to be a system of sheaves E(c), one for each object ¢ in C, on which C acts by sheaf
maps o, : E(c) — E(d) for each arrow a: ¢ — d in C, in a functorial way. Moreover,
the bundle E should satisfy the following three conditions for being principal, for each
point z in X (where E(c), denotes the stalk of E(c) at z):

(i) Ucec E(c). is non-empty.

(ii) The action is transitive: given y € E(c), and z € FE(d),, there are arrows
a:b—cand 8:b— din C and a point w € E(}), for which a,(w) =y and
Bu(w) = =.

(ii1) The action is free: given y € E(c). and parallel arrows o, 8 : ¢ =3 d in C so that
a,(y) = Pu(y), there exists an arrow 4 : b — ¢ in C and a point z € E(b),, for
which ay = fy and 1.(z) = . \
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Note that in case C is a group (viewed as a category with only one object), this defi-
nition of principal bundle agrees with the usual one.

A basic result of topos theory, which we will review in Section IL.2, states that
there is an exact correspondence between such principal C-bundles over X and topos
maps Sh(X) — BC. Using this correspondence and the bijection (2) above, one
obtains for a CW-complex X and a small category C the following theorem, to be
proved in Section IV.1:

Theorem. Homotopy classes of maps X — BC are in bijective correspondence
with concordance classes of principal C-bundles over X.

Here two principal bundles over X are said to be concordant if they lie at the
two ends of some principal bundle over X x {0, 1].

This theorem of course contains the classical fact that the classifying space BG
of a group G classifies principal G-bundles. The theorem also extends a result of G.
Segal, which states that for a monoid with cancellation M, its classifying space BM
classifies a suitably defined notion of principal M-bundle.

Thus, the weak equivalence (1) and the theorem above together provide an answer
to the two questions stated at the beginning of this introduction, for the case of a
discrete category C.

Much of the work in these notes is concerned with the problem of extending these
results to topological categories. Recall that a topological category C is given by a
space of objects Cy and a space of arrows C;, together with continuous operations
for source and target C; = Cy, for identity arrows Cy — C;, and for composition
C, x¢, €1 — C;. For example, any topological group or monoid is a topological cat-
egory (with a space of objects which consists of just one point), as is any topological
groupoid, such as the holonomy groupoid of a foliation (Haefliger(1984), Bott(1972),
Segal(1968)). The construction of the classifying topos of a topological category will
be described in detail in §I1.3 while the classical construction of the classifying space
will be reviewed in §1I1.2. The general considerations concerning geometric realization
will again provide a map as in (1) relating the classifying space and the classifying
topos. This map will in general not be a weak homotopy equivalence. However, there
is an interesting case, which includes that of discrete categories, where the map is
a weak homotopy equivalence. This is the case of topological categories C with the
property that their source map s : C; — Cy is étale, i.e. is a local homeomorphism.
Such topological categories will be called s-étale. For example, many of the topological
groupoids arising in the theory of foliations are s-étale, as are topological categories
constructed from diagrams of spaces (see §I1.5 below). For s-étale topological cat-
egories, the map (1) is a weak homotopy equivalence, as said; moreover, it will be
shown in §II.4 that the correspondence between topos maps into BC and principal
C-bundles, already referred to above, generalizes to the case of s-étale topological
categories C. It follows that the theorem just stated also liolds for s-étale topological
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categories.

As an illustration of the use of classifying topoi for discrete and s-étale categories,
we will present in §IV.3 a relatively straightforward topos theoretic proof of Segal’s
theorem on the weak homotopy type of the Haefliger groupoid I".

For an arbitrary topological groupoid (not necessarily s-étale) the “naively” con-
structed classifying topos BC need not contain much information. To obtain a suitable
comparison with the classifying space BC, we will consider a different classifying topos
for C, described by Deligne. Recall that in Deligne(1975), the notion of a sheaf on a
simplicial space Y is introduced, and the topos SA(Y) (Deligne writes Y) of all such
sheaves is considered as an alternative for the geometric realization |Y|. In partic-
ular for a topological category C, and its associated simplicial space Nerve(C), the
topos Sh(Nerve(C)) provides an alternating for the classifying space BC. This topos
Sh(Nerve(C)) will be called the Deligne classifying topos of C, and be denoted by
DC.

Deligne shows in op. cit. that for a suitable simplicial space Y the realization
and the topos of sheaves Sh(Y') have isomorphic cohomology groups. In §IV.4 it will
be shown that this isomorphism in cohomology is induced by a map, and that the
topos Sh(Y') has the same weak homotopy type as the geometric realization |Y|. In
particular, this will show that for any topological category C, the Deligne classifying
topos DC and the classifying space BC have the same weak homotopy type. From
this last result, one can obtain an answer to the question what BC classifies: it will be
shown that homotopy classes of maps X — BC correspond to concordance classes of
sheaves of linear orders on X equipped with a suitable augmentation into the category
C.

These notes by no means provide a complete picture of the comparison between
classifying spaces and classifying topoi for tapological categories, and many questions
remain. One obvious question for the case of a topological group(oid) G is the precise
relation between linear orders augmented by G which are shown to be classified by BG
in these notes, and principal G-bundles. Another question concerns the relationship
between the “small” classifying topoi BC and DC of a topological category, and the
classifying “gros” topoi defined over the topological gros topos by Grothendieck and
Verdier (see e.g. SGA4 (tome 1), p.317)).



Chapter 1

Background in Topos Theory

§1 Basic definitions

A topos is a “generalized” topological space. Indeed according to Grothendieck, topoi
(should) form the proper subject of study for topology. The basic idea is similar to
that of various well-known dualities. For example, Gelfand duality states that one
could replace a compact Hausdorff space X by its ring C'(X) of complex-valued func-
tions; mappings between such spaces can be described in terms of these rings, and
the space X can be recovered (up to homeomorphism) from C(X).

Similarly, one can use the “ring” (category) of sets instead of the ring of complex
numbers, and replace a space X by the collection of all its “continuous set-valued
functions”; i.e. the sheaves of sets on X, described in detail in the next section.
As for Gelfand duality, mappings between spaces can be described in terms of these
sheaves, and the space X can be recovered from the collection of all its sheaves.

The definition of a topos is meant to capture the basic properties of this category
of all sheaves on a space X, and similar categories. Sheaves of sets are taken as basic
here, since abelian sheaves, simplicial sheaves, etc., can all be defined in terms of
sheaves of sets. We present the definition of a topos in the “Giraud form”, which
requires some elementary categorical notions to be explained first. (For background
in category theory, Chapters I - IV of Mac Lane(1971) suffice.)

Let £ be a category. (It is our convention that the objects of £ can form a proper
class, but that for any two objects A and B the collection Hom(A, B) of all arrows
from A to B is a set. If the objects of £ form a set as well, £ is said to be “small”.)

1.1. Definition. A category £ is said to be a topos iff it satisfies the Giraud
axioms (G1-G4), to be stated below.

(Gl) The category & has finite limits.
This axiom needs no further explanation. For the second axiom, we recall that a

sum (coproduct) Y ;c; E;, indexed by some set I, is said to be disjoint if for any two
distinct indices 7 and k the diagram
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E; — Y E;

is a pullback; here the maps into the coproduct are the canonical ones, and 0 denotes
the initial object of £ (this is the sum of the empty family). If each E; is equipped
with an arrow E; — A into a given object A, then the sum also has such an evident
arrow Y F; — A. Thus for any map B — A, there is a canonical map

}:BXAE,' — BXAZE.‘. (1)

Sums in £ are said to be stable if this map (1) is always an isomorphism - in other
words, if sums commute with pullbacks. The second Giraud axiom now is:

-(G2) All (set-indexed) sums exist in £, and are disjoint and stable.

For the next axiom, consider an object E in £ and a monomorphismr : B> ExE.
For any object 7 in £, composition with r defines a subset

Hom(T, R) C Hom(T, E x E) 2 Hom(T, E) x Hom(T, E).

If, for every object T, this subset is an equivalence relation on the set Hom(T, E),
then the monomorphism r : R > F x E is said to be an equivalence relation on E.
For example, if f : £ — F is any arrow, then the pullback £ xg E »» E x E is an
equivalence relation on E. A diagram

R E L F

T2

in £ is said to be ezact if f is the coequalizer of r; and ry and

R—~E

l l/

E -5 F
is a pullback. It is said to be stably ezact if for any arrows F — A « B, the diagram
BxsR 3 BxsaE — Bx,F,
obtained by pullback along B - A, is again exact. The third Giraud axiom is:

(G3) (a) For every epimorphism £ — F in £, the diagram
E xp E 33 F — F is stably exact.
(b) For every equivalence relation R = E x E, there
exists an object £/R which fits into an exact diagram

R3 E— E/R.
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It follows that any exact diagram in € is stably exact. It also follows that all small
colimits exist in the category &, since these can be constructed from sums and co-
equalizers of equivalence relations (as in G3 (b)); see Mac Lane - Moerdijk (1992), p.
577.

For the last axiom, recall that a collection of objects {G; : 1 € I} of £ is said to
generate £ when for any two parallel arrows u,v: E =3 Fin £, if uot = vot for every
arrow t : G; — E from every G, then u = v. The collection {G; : i € I} of objects is
said to be small if it is a set (rather than a proper class).

(G4) The category € has a small collection of generators.

If {G; :i € I} is a set of generators, then every object E in £ is a colimit of
such generating objects.

A morphism between topoi f : F — £ consists of a pair of functors (“inverse” and
“direct” image functors)

ff:€—=F and fu: F—o &
with the following two properties:

(i) f* is left adjoint to f. ; i.e. there is a natural isomorphism

Homy(f*E, F) = Home(E, f.F),
(i1) f* commutes with finite limits (i.e., is “left exact”).

Such morphisms f : F — £ and g : G — F can be composed in the evident way,
(fog) =g of", (fog)=fiog..

Since the inverse image f* of any morphism f is a left adjoint, it commutes with
colimits. Therefore, since every object of £ is a colimit of generators, f* is completely
determined (up to natural isomorphism) by its behaviour on generators. Furthermore,
any functor f* : £ — F which commutes with colimits must have a right adjoint, nec-
essarily unique up to isomorphism (Mac Lane (1971), p. 83). Thus topos morphisms
can be described more economically, and we see will some explicit examples of this
later.

The collection of all morphisms f : F — £ has itself the structure of a category:
an arrow 6 between two morphisms f, ¢ : F — £ is a natural transformation

6:]('*__’9*

between the inverse image functors. By the remarks above, this category Hom(F, &)
is equivalent to the category of functors f* : £ — F which commute with colimits
and finite limits, and natural transformations between them.
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A morphism f : F — £ is said to be an equivalence if there exists a morphism
g : £ - F and isomorphisms fog = idg and go f ¥ idr. This is equivalent
to the requirement that the unit idg — f.f* and the counit f*f. — idr are natural
isomorphisms. The topoi £ and F are said to be equivalent if there exists such an
equivalence f, and one writes

ExF

in this case. In practice, one often tacitly identifies equivalent topoi, just as one iden-
tifies homeomorphic spaces. However, given two topoi £ and F, one cannot always
identify isomorphic morphisms F — &, as will be clear, e.g. from the discussion of
pushouts of topoi in Section 3.

If £ is a topos and B is an object in £, one can form the “comma-category” £/B,
with as objects the arrows £ — B in &, and as arrows in £/ B the commutive triangles
in £. This category £/B again satisfies the Giraud axioms for a topos: it inherits all
the required exactness properties from &; and if {G; : ¢ € I} is a set of generators
for £, then the collection of all arrows G; — B (for all 7 € I} is a set of generators
for £. The functor £+ (73 : E x B — B) : £ — £/B commutes with colimits and
finite limits, and hence is the inverse image functor of a topos morphism £/B — £.
(Its direct image part Il is described explicitly, e.g. in Mac Lane-Moerdijk (1992),p.
60.)

§2 First examples

In this section we describe the topos of sheaves on a space and the topos of
presheaves on a small category. Before doing so, we should mention the simplest
example of a topos, viz. the category of all small sets, denoted S or (sets). (One
readily verifies the Giraud axioms (G1-4) for S; for a collection of generators, one can
take the one-element collection consisting of the one-point set.)

For any other topos £, there is a morphism v : £ — &, unique up to isomorphism.
It can be described explicitly, in terms of the terminal object 1 of £, by

Y(S)=>_1, 7(E)=Home(l,E),
sE€S

for any set S and any object E in £. One often writes A for ¥* and I for .. The
functor A is called the constant sheaf functor, and T the global sections functor.

Now let X be a topological space. A continuous map f : E — X is said to be a
local homeomorphism (or, an étale map, or an €tale space over X) if both f and its
diagonal £ — E xx £ are open maps. This is equivalent to the requirement that
for any point y € E there exist open neighbourhoods V, € E and Uy(,) C X so that
f restricts to a homeomorphism f : V, 5 Uj(,). A sheaf on X is such an étale map
J 1 E— X. Amap p between sheaves (f : £ — X) — (f': E' - X) is a continuous
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map ¢ : E — E'sothat f'op = f. This defines a category of all sheaves on X, denoted

Sh(X) .

[In the literature, one often defines a sheaf (of sets) as a functor F' : O(X)% — (sets),
defined on the poset O(X) of all open subsets of X, and having for each open cover
U = UU; the “unique pasting property” that the diagram

F(U) — H FU) =3 HF(Ui nU;)

is an equalizer of sets. These definitions are of course equivalent, as is explained in
any book on sheaf theory; see e.g. Godement(1958), Swan(1964).]

The category Sh{X) is a topos. Indeed, finite limits and colimits are constructed
just as for topological spaces, because these constructions preserve étale maps. More
explicitly, if £ — X and F — X are two étale maps then so are F xx F — X and
E + F — X, and these represent the product and sum in the category Sh(X). The
same applies to infinite sums. Similarly, in an exact diagram of topological spaces
over X,

R—=XF——>F

A

X,

if f and g are étale then so is h, while if A and f are étale then so is g. Thus Sh(X)
inherits all the relevant exactness properties from topological spaces. For the set of
generators, one can take the collection of all embeddings U — X of open subsets of
X. To see that these generate, take two distinct parallel maps a and b between sheaves

o

Let e € E be a point with a(e) # b(e), and let V. be a small neighbourhood of e so
that f: V., — f(W.) = U is a homeomorphism onto the open set U. Then f~! defines
a map of sheaves from (I/ — X) to (E — X) with the property that ao f~! # bo f~1.

From the topos Sh(X) of sheaves on X, one can recover the lattice O(X) of open

E F

subsets of X, essentially as the subcategory consisting of all sheaves (E — X)) with the
property that the unique map into the terminal object 1 = (id : X — X)) of Sh(X) is
a monomorphism. Thus we can recover the space X from Sh(X) provided the points
of X are determined by their open neighbourhoods. This is the case precisely when
the space X is sober. [Recall, from SGA IV, vol. 1, p. 336, that a closed set F' in X
is irreducible if it cannot be written as the union of two smaller closed sets, and that
X is sober if every such irreducible closed set F' is of the from F' = {z} for a unique
point z. Every Hausdorff space is sober.] In this teat, all spaces will be assumed to be
sober.
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A continuous map f : ¥ — X between spaces induces two well-known adjoint

functors

F* i Sh(X) = Sh(Y) , f.:Sh(Y) — Sh(X)

between the categories of sheaves of sets. In terms of étale spaces, f* is simply
pullback (fibered product) along f. It evidently preserves (finite) limits and colimits.
The right adjoint f, is more easily described in terms of sheaves as functors: for a

sheaf F : O(Y)? — (sets),
f(F)=Fo f71:0(X)? — O(Y)? — (sets).
These two functors constitute a morphism of topoi, denoted
f:ShY) — Sh(X).

Conversely, suppose ¢ : SA(Y) — Sh(X) is any morphism of topoi. Then the functor
¢*, when restricted to subobjects of the terminal object, gives an operation ¢* :
O(X) — O(Y) which preserves finite intersections and arbitrary unions. For a point
y €Y, define F, = X —U{U € O(X) : y € ¢*(U)}. Then F, is an irreducible closed
set, so if Y is sober there is a unique point = = o(y) so that F, = {z}. This defines
amap ¢ : ¥ — X with the property that for any open set U C X, and any point
yeY,oly) € Uiff y € *(U). In this way, the map ¢ : ¥ — X is determined by the
inverse image functor ™.

For sober spaces X and Y, these constructions set up a correspondence between
continuous maps ¥ — X and (isomorphism classes of) topos morphisms Sh(Y) —
Sh(X). Thus, the assignment

X — Sh{X)
of the topos of sheaves to a sober space X doesn’t change the notion of mapping, and
the topos Sh(X) should simply be viewed as a faithful image of the space X in the
world of topoi. Indeed, we will in the sequel often simply write X when it is evident
that we mean the topos of sheaves on the space X. For example, when £ is another

topos, an arrow

X £

denotes a topos morphism Sh(X) — £. In Section 4 below, we will discuss how
algebraic invariants of the space X such as homotopy and cohomology groups can be
defined in terms of the topos Sh(X).

For the second elementary example of a topos, consider a small category C. A
presheaf (of sets) on C is a functor

S :C? - (sets) .

Thus S assigns to each object z € C a set S(z), and to each arrow a: z — yin C a

function S(a) : S(y) — S(z), called restriction along @ and denoted
|

s s-a=S(a)(s) (fors € S(y)).
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The functoriality of S is then reflected in the usual identities s-1 = s and (s- ) f =
s-(af) for an action. As morphisms ¢ : S — T between two such presheaves we take
the natural transformations. Thus ¢ is given by functions ¢, : S(z) — T'(z) (for each
object z in C), which réspect the restrictions:

Px(s - a) = py(s) a,

for s and « as above. This category of all presheaves on C is denoted as a functor
category setscop, or as

BC.

This category BC is a topos, called the classifying topos of the category C. To
see that the Giraud axioms are satisfied, note first that all limits and colimits of
presheaves can be constructed “pointwise”, as in

(lim $;)(z) = lim Si(z) , (lim S;)(x) = lim Si() .

Therefore all limits and colimits of presheaves, in particular pullbacks, sums and
coequalizers, inherit all exactness properties from the category of sets. Thus it is
clear that BC satisfies the Giraud axioms (G1)-(G3).
For the axiom (G4) on generators, consider the “Yoneda embedding” Yon : C —
BC, defined by
Yon(z)(y) = Home(y, ).

Thus Yon(z) is the representable presheaf given by z. The so-called Yoneda lemma
states that for any presheaf S, there is a natural isomorphism

0= 05 : Homsc(Yon(:r.),S) = S(m) s (1)
defined for a natural transformation ¢ : Yon(z) — S by
0() = e (ids)

Naturality of # means that for any morphism ¢ : § — T of presheaves, the diagram

Hompc (Yon(z), §) —=—~ S(x)

| |+

Homge (Yon(z), T) ——Z—» T(z)

commutes, where . denotes “composition with ”. In particular, ¢ is completely
determined by all composites Yon(z) % S % T from representable presheaves
Yon(z). Thus, the collection of these presheaves, for all z € C, generates BC. This
proves that BC satisfies axiom (G4).

A functor f : D — C between small categories induces an evident operation
f* on presheaves, by composition:

[ :BC — BD , f"(S)(y)=5(fy)-
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This functor f* evidently preserves limits and colimits, since these are all computed
pointwise. Furthermore, f* has a right adjoint f, : BD — BC, defined by

fu(T)(z) = Hompp(/*(Yon(z)), T) .
The adjunction isomorphism
Homgp (f*(5),T) = Homge(S, f.(T))

can be described as follows: given ¢ : f*(§) — T, construct ¢ : S — f(T) with
components @, : S(z) — f(T)(z) defined via the isomorphism 6 in (1) as

Hompe(Yon(z), S) 75 Hompp(f*Yon(z), f*5) > Hompp(f*Yon(z), T)

where ¢, denotes composition with ¢. Conversely, given ¥ : S — f.(T'), construct
¥ f*(S) — T with components ¢, : f*(S)(y) = S(fy) — T(y), using the evident
map Yon(y) — f*(Yon([fy)), as

‘l’fyl Te-l
F(T) fy) == Hom(f*(Yon(fy)),T) — Hom(Yon(y), T).
Thus the functor f : B — C induces a morphism of topoi, (again) denoted
f:BD — BC,

given by these adjoint functors f* and f,.

This construction of a topos morphism BD — BC from a functor D — C extends
to natural transformations. Indeed, a transformation 7 : ¢ — f between two functors
f,9 : D 3 C induces another transformation

Fiff - g :BCx3BO,
defined for a presheaf S on C and an object y in D by
- " S(ry "
(7s)y : F(S)w) = S(y) "2 Stoy) = 9"(S)(v) -

Unlike the case of (sober) topological spaces, it is not true that all topos mor-
phisms BD — BC come from functors D — C. Indeed, there are many more mor-
phisms BD — BC then there are functors D — C, as will be evident from Chapter 11,
Section 2. In general, one cannot reconstruct the category C from the presheaf topos
BC either, because the representable presheaves are not characterized by a purely
categorical property. (The closest one gets is by considering the class of all projective
and connected presheaves: These are exactly the retracts of representable presheaves.
If all idempotents split in C, then every such retract is itself representable, up to
isomorphism.)
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§3 Some constructions of topoi

In this section we will describe the “universal” constructions of topoi, such as
(fibered) products, amalgamated sums (pushouts) and inductive limits, to be used in
later chapters.

Colimits of topoi all exist {(Moerdijk(1988)), and are generally quite easy to de-
scribe. For example, for two topoi £ and F their sum & + F is by definition the topos

for which there exists an equivalence of categories
Hom(£,G) x Hom(F,G) = Hom(€ + F,G), (1)

for any topos G, and natural in G. This sum £ + F can simply be constructed as the
“categorical product”: objects of £ + F are pairs (E, F) where E is an object of £
and F' one of F, while arrows (E, F') — (', F') in £ + F are pairs of arrows £ — E’
in £ and FF — F'in F. It is easy to see that this category of pairs again satisfies
the Giraud axioms for a topos. The equivalence (1) associates to a pair of morphisms
f:€—Gand g: F — @ the unique (up to isomorphism) h: &€ + F — G with
W(G) = (f* B, g"E).

Thus the sum of topoi is constructed as the product of categories. Note that
for the two examples in the previous section, this corresponds to the usual sum of
topological spaces and small categories: since a sheaf on the disjoint sum of spaces is
the same thing as a pair of sheaves, one has

Sh(X +Y) = ShX) + SA(Y).
Similarly, for small categories C and D,
B(C + D) = B(C) + B(D).

For two morphisms of topoi f: & — F and g: £ — G, their pushout (amalga-
mated sum) F Ug G is described as follows. There is a square

g

£ g
fl o li, 2)
F——=FUeG

which commutes up to a given isomorphism «a : uf = vg, and with the following
universal property: for any topos H, the functor from the category Hom(F Ug G, H)
to the category of triples

(p:FoH,¢p:GoH, Brof = ¢g),

which sends a map h: FUs G — H to (hu, hv, ho«), 1s an equivalence of categories.

This universal property determines F Ug G uniquely, up to equivalence of topoi.
Analogous to the case of sums, this pushout of topoi can be constructed explicitly

as a fibered product of categories: F Ug G is the category with as objects triples
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(F,G,a) where F is an object of F and (G one of G, while ¢ : f*F 5 ¢*G is an
isomorphism in €. Arrows (F,G,a) — (F',G',a’) in F Ug G are pairs of arrows
b:F— F'in Fand c: G — G in G, so that ' o f*(b) = g*(¢) o a. Colimits and finite
limits in this category of triples F Us G can be constructed in the evident way from
those in F and ¢ (since f* and ¢g* commute with colimits and finite limits), and one
readily verifies that the Giraud axioms for a topos hold for F Ug G. The morphisms u
and v, required for the square (2), are defined by the evident inverse image functors

u'(F,G,a) = F |, v*(F,G,a) = G,
while a : uf = vg in (2) is the natural isomorphism with components
aFga =a: (uf)(F,G,a) = f'F — ¢°G = (vg)"(F,G,a).

For maps X <« A — B of topological spaces, there is a canonical morphism,

comparing the pushout of topoi with that of spaces:
Sh(X) Ush(4) Sh(B) — Sh(X Ua B)

In Section 4 of Chapter III we will prove (and use) that this morphism is an equiva-
lence of topoi for a closed embedding A < X between paracompact spaces.

Finally, we will use inductive limits (colimits) of sequences of topoi. For such
a sequence
go'gglg‘gZ—"“ )

the colimit &, = li_r'n &, is a topos equipped with morphisms v, : £, — &, and
isomorphisms @, : v, f, — v,_1, all together with the following universal property:
For any topos H, the evident functor from the category Hom(€w,H) to the cate-
gory of pairs (u,3) where u = (u,) is a sequence of morphisms u, : £ — H and
Br t Unfn = a1, is an equivalence of categories.

Again, this inductive limit of topoi can be constructed as an inverse limit of cat-
egories. Define £ to have as objects all pairs (F,a), where £ = (F,) is a sequence
of objects E, in £, while a is a sequence of isomorphisms «, : f*(E,) = E,—;. The
arrows b : (E,a) — (F',d’) in €, are sequences of arrows b, : E, — E! in &,, com-
patible with the a and ¢ in the sense that b,y 0 a, = al o f(b,). This category
€ is a topos, in which the finite limits and colimits are constructed in the evident
way from those in each topos £,. For the required universal property, the morphisms
v 1 & — &4 are given by the evident inverse image functors

.
vi(E,a)=E,,
while the natural isomorphism «,, : v, f, = v,.; has components

(an)(E,a) =an: (Vnfu)(E,a) = fi(E.) = Eucy =0 _(E,q) .
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Later on, we will show and use that for a sequence of closed subspaces Xy € X; € -+
of a paracompact space X = |J, X,, the canonical comparison map

lim Sh(X,) — Sh(limX,)

is an equivalence of topoi (cf. Chapter III, Section 4).

We will also use some products of topoi. For two topoi £ and F, their prod-
uct £ x F is the topos with the property that for any other topos G, there is an
equivalence of categories

Hom(G,€) x Hom(G,F) > Hom(G,€ x F),

natural in G. This property determines £ x F uniquely (up to equivalence of topoi).
For two topoi € and F, such a product £ x F always exists, and is most easily
constructed explicitly in terms of sites (cf. Mac Lane - Moerdijk, Chapter VII, Exercise
15). We will not need such an explicit description. The only property we will use is
that for two topological spaces X and Y the canonical comparison map

Sh(X x Y) — Sh(X) x Sh(Y) 3)

is an equivalence of topoi, whenever at least one of X,Y is locally compact. [For
a proof, combine the fact that the functor which associates to a locale its topos of
sheaves commutes with all products (see e.g. Joyal-Tierney(1984)) with the result
that the product of two spaces agrees with their product as locales if one of the spaces
is locally compact (see Dowker-Strauss(1977) and Isbell(1981)).]

§4 Cohomology and homotopy

In this section we review the standard definition for the cohomology and homotopy
groups of a topos. Common references include SGA4 (vol. 2), Milne(1980), Artin-
Mazur(1969).

Let € be a topos. We write Ab(E) for the abelian category of abelian group objects
in €. For example, for the topos Sh{X) of sheaves on X, this category Ab(Sh(X))
is the familiar category of abelian group valued sheaves. And for the topos BC of
presheaves on small category, AW(BC) is the category of abelian presheaves, i.e. con-
travariant functors from C into the category Ab of abelian groups. The Giraud axiom
(G4) for generators implies that the abelian category Ab(E) has enough injectives.
The global sections functor I' : £ — § (Section 2) sends abelian group objects to
abelian groups, so induces a functor (again denoted) ' : Ab(E) — Ab, which is left
exact and preserves injectives. For any abelian group object A in £, the cohomology
groups H™(€, A) are defined as the right derived functors~ of I, i.e.

H"(E,A) = R'T(A) (n>0). (1)
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The construction of these groups H™(&, A) is functorial, contravariant in £ and co-
variant in A, as usual. For any object B € £, one also considers the right derived
functors of the functor Homg (B, —), which sends an abelian group A to the group of
arrows B — A in £ (“sections of A over B”). These groups are denoted H*(&, B; A).
For such an object B € £, the functor B*: £ — £/B (sending E to E X B — B, see
Section 2) induces a functor B* : Ab(E) — Ab(E/B) which is exact and preserves in-
jectives. Thus H*(E, B; A) = H™(£/B, B*(A)), and one also denotes the latter group
simply by H*(€/B, A).

For a topological space X and an abelian sheaf A on X, the topos cohomology
groups H*(Sh(X), A) are the usual sheaf cohomology groups (cf. Godement (1958),
Iversen(1986)). For a small category C, the topos cohomology groups H*(BC, A) are
(isomorphic to) to cohomology groups of the category C; see Proposition 11.6.1, be-
low.

For any topos morphism f : F — £, the direct image functor f. defines a left
exact functor f. : Ab(F) — Ab(E), which preserves injectives, and has the property
that it respects the global sections functors, in the sense that there is a natural iso-
morphism I'( f.(A)) = T'(A), for any A € Ab(F). The Grothendieck spectral sequence
(Grothendieck(1957)) for the composite I'o f, is known as the Leray spectral sequence
for f, and takes the from

EN? = HP(E,Rf.(A)) = HPYI(F,A). (2)

There is another fundamental spectral sequence, associated to any suitable simpli-
cial object X. = {X,},>0 in a topos £. Such an object X. gives rise to an augmented
chain complex in Ab(E),

027 -Xo& Z-X;¢-- (3)

Here 7 - (—) : £ — Ab(E) denotes the free abelian group functor, sending an object E
to the sum 37, 7 £ in &; for E = 1, we simply write Z for Z-1 = A\(Z); the boundary
0 is defined in the usual way from the facc operators of the simplicial object X. by
alternating sums. This object X. is said to be locally acyclic if the complex (3) is
exact. For any such locally acyclic X, there is a spectral sequence

EY = HPHY(E/X., A) = HM™9(E, A) (4)

Here A is any abelian group object in £, and, as above, we write A for X;(A) in the
cohomology HY(E/X,, A).

An important special case of such locally acyclic simplicial objects are the hyper-
covers of £. To define these, recall first from Quillen(1967) that a map f: ¥ — X
between simplicial sets is a trivial fibration if any commutative square of the form

A=Y

7
d
e
s

Aln] — X.
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has a diagonal filling (as indicated by the dotted arrow). Here A[n] is the standard
n-simplex and A [n] its boundary. Thus f is a trivial fibration precisely when the
map

X, = Hom(A[n], X.) — Hom(A [n], X.) x Hom(A[n],Y.)  (5)

Hom(Alr] Y')
18 a surjective map between sets. If Y. = 1, this is the familiar requirement that X.
is a contractible Kan complez. Call a map f : Y. — X. between simplicial objects in
a topos & a local trivial fibration if the similar map (5) is an epimorphism in £. A
hypercover of £ is by definition a simplicial object X. in € so that the map X. — 1
is such a local trivial fibration. (Thus X. is “locally” (or “internally”) a contractible
Kan complex in £, in some sense.) Every hypercover is locally acyclic, and gives
rise to a spectral sequence (4). Denote by HC(E) the category of hypercovers and
homotopy classes of maps. One can then form a “Verdier cohomology” direct limit
over all hypercovers (a generalized Cech cohomology):

e ok ,
Veniier(g’A) h—n’lX.GHC(S) H HomE(X.,A)

= li_n}x HPHP(E/X.,A) .
The direct limit of the spectral sequences (4) collapses, and gives an isomorphism
HY e (€,4) = HY(E, A). (6)

The hypercovers of £ are also used to define the (“étale”) homotopy groups m,(€, p)
of the topos £ with a chosen base-point p, i.e. a topos morphism p : § — £ from
the topos S of sets. Before we give the general definition, we discuss the special case
n = 1 of the fundamental group. The profinite fundamental group is discussed in
SGA1. The more general case requires the topos to be locally connected. To define
this notion, first call a non-zero object E of £ connected if E cannot be decomposed
as a sum E = FEy + E,, except in the trivial ways where F; = 0 or F; = 0. The topos
£ is called locally connected if every object F in £ can be decomposed as a sum of
connected objects, say E = 3",y E;. This decomposition is essentially unique, and its
index set I is the set of connected components of F, denoted wo( E). This construction
defines, for any locally connected topos £, a functor

mo: €& — S,

which is left adjoint to the constant sheaf functor A : § — £. For the terminal
object 1 of £, one also writes 79(€) for mo(1), and calls this set the set of connected
components of £: in particular, £ is a connected topos iff mo(&) is a one-point set.
Next, an object E of £ is called locally constant if there exists a set S, an epi U —» 1
in €, and an isomorphism E x U = 3,5 U over U. For example, in the case where £
is the topos of sheaves on a space X, an object (étale map) £ — X is locally constant
precisely when it is a covering projection. Thus, we also refer to locally constant
objects of £ as covering spaces of £. For a locally connected topos £, consider the full
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subcategory SLC(£) of €, consisting of sums of locally constant objects. If p: & — &
is a point of £, its inverse image functor restricts to a functor p* : SLC(E) — §. An
infinite version of Grothendieck’s Galois theory (Artin-Mazur(1969), Moerdijk(1989))
gives an essentially unique progroup G such that there is an equivalence of categories
between SLC(E) and the category BG of sets equipped with an action by G. The point
p is needed for the construction of G, and the equivalence identifies p* : SLC(E) — &
with the canonical functor “forget the action”: BG — S. One denotes G by m1(€, p),
and refers to it as the fundamental group of €.

This “enlarged” (when compared to the profinite one) fundamental group has
many of the familiar properties of the fundamental group of a topological space. For
example, for any abelian group A there is a canonical isomorphism

HY(E,A(A)) = Hom(m(&,p), A),

analogous to the Hurewicz theorem for topological spaces which states that the first
homology group is the abelianization of the fundamental group.

One can also define higher homotopy groups of a locally connected topos £ with
a base-point p. These higher homotopy groups are again progroups, called the étale
homotopy groups of (£, p) and denoted 7, (&, p) {or #¢(&,p)). For n = 1, this agrees
with the fundamental group just described. The construction of these higher homo-
topy groups can be outlined as follows, For any hypercover X. of £, the connected
components form a simplicial set mo(X.). A base-point of such a hypercover (over
the point p of £) is by definition a vertex zo of the simplicial set p*(X.). This
vertex zo yields a corresponding vertex o of mo(X.) - its image under the map
(X)) — p*Ane(X.) = mo(X.) induced by the unit of the adjunction between A
and mp. The étale homotopy groups are defined as the progroups (“formal inverse
limits”™)

7['"(8,[’) = l‘iin(Xzo) 7rn(7r0(X')a ,";0)7

indexed by all the pointed hypercovers and homotopy classes of maps between them
(or rather, some “small” cofinal subsystem of these).

A topos morphism f : F — £ induces for each point q : § — F of F homomor-
phisms

)+ mul(F,q) = ma(€, fq) -

As for topological spaces, these depend only on the homotopy class of f. More ex-
plicitly, let I denote the unit interval, and also (by the conventions of Section 2) its
topos of sheaves. Two morphisms fo, fi : F — £ are said to be homotopic if there is a
topos morphism H : I x F — £ such that Hoi, = fi for k = 0,1 (where 9,4 : 1 — [
are the inclusions of the base-points). The homotopy H is said to be relative to the
base-points ¢ of F and p of £ if the square

IxS—IxF

P
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commutes up to isomorphism. If so, then 7.(fo) = 7.(f1) as maps between progroups.

Similarly, if fo and f, are homotopic maps and A is a locally constant abelian group
in A, then f3(A) = ff(A), and (modulo this isomorphism) f§ = fr : H*(€,A) —
H™(F, frA).

In particular, this applies to an arrow «a : fo — f; between two topos morphisms,
i.e. a natural transformation o : f§ — fy, because such an o can be interpreted as a
“natural” homotopy. Indeed, let £ be the Sierpinski space, i.e., the two point space
with an open point 1 and a closed point 0. Its topos Sh(X) of sheaves is simply the
arrow category of the category of sets. Similarly, the product Sh(X) x F is the topos
with as objects arrows Fy — F; in F and as arrows the commutative squares. Thus
a is a “Sierpinski homotopy” Sh(EZ) x F — £. By composition with a continuous
surjection p : I — ¥ which preserves the endpoints, one obtains a homotopy between
foand fi. Thus, if topos morphisms f; and f; are related by a natural transformation,
they operate identically on cohomology with locally constant coefficients, and on étale
homotopy (if the natural transformation respects the base-points).

As usual, we will denote the collection of homotopy classes of topos morphisms
from F to € by

[F,E&].

For a topological space X with a base-point x¢, one thus has the usual homotopy
groups T, (X, 7o) and the étale homotopy groups 7' (Sh(X), z¢) of the topos of sheaves
{with point z¢ : § — Sh(X) corresponding to zo € X). If the space X has a basis of
contractible open sets, then these progroups are actually ordinary groups, and there
is a natural isomorphism (Artin-Mazur(1969), Section 12)

7 (Sh(X),70) = (X, z0). (7)

A topos morphism f : F — £ between locally connected topoi is said to be
a weak homotopy equivalence if f induces an isomorphism mo(F) — mo(€) between
the sets of connected components, and, for any base-point ¢ of F, isomorphisms
To(F,q) = 7€, fg) (for n > 1). By the “toposophic Whitehead theorem” (Artin-
Mazur(1969), Section 4) f is a weak homotopy equivalence iff f induces isomorphisms
for mp and 7, and for each locally constant abelian group A in £ an isomorphism
fr:H*(E,A) S H(F, f*A) (for n > 0).

In many examples, f will have the property that f*: F — £ is full and faithful.
Such an f is called a connected morphism. Any such connected morphism induces an
isomorphism mo(F) = my(E) of connected components, and a surjection of fundamen-
tal groups.






Chapter II

Classifying Topoi

§1 Group actions

Let G be a (discrete) group, and let BG be the topos of right G-sets. This is
a special case of the presheaf topos BC introduced in Chapter I, Section 2, when
G is viewed as a category with one object. As a simple and motivating example
of a classifying topos, we will describe in this section how the topos BG “classifies”
principal G-bundles.

Recall that for a topological space X, a principal G-bundle on X is a surjective
sheaf p: £ — X, equipped with a continuous fiberwise left G-action a : G x £ — E
(denoted a(g,e) = g - €) which is free and transitive on each fiber. Thus the map

(a,m2) :GxE—->Exx E

is a homeomorphism (of étale spaces over X). It follows that the map p: £ — X
must be a covering projection.

A map between two such principal bundles E = (E,p,a) and E' = (E',p/,o) is a
map ¢ : E — FE’ of sheaves on X which preserves the action. Any such map ¢ must
be an isomorphism. This defines a category Prin(X, G) of principal G-bundles over X.

1.1. Proposition. There is a natural equivalence of categories
Hom(X, BG)>Prin(X,G) .

Note that, according to the conventions of Chapter I, Section 2, the X on the left of
this equivalence stands for the topos Sh(X) of all sheaves.

We prove the proposition, and make some further comments on naturality after
the proof.

Proof. Let f : X — BG be a morphism of topoi. Consider the right G-set
G, given by G acting on itself by multiplication from the right. This G is an object
of BG. Let

E = f(G).
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This sheaf E is surjective; indeed, G x G =3 (' — 1 is a coequalizer in BG, and f*
preserves products and coequalizers, so E x x F =3 F — X is a coequalizer of spaces.

For each g € G, the left multiplication Ay(z) = ¢ - = defines a map A, : G—Gin
the category BG. Thus one obtains a map f*(A;) : £ — E of sheaves. For a point
y € E, write g -y = f*(A;)(y). This defines an action @ of G on E. To see that it is
free and transitive, note that the map

/_\Eé—»éxé X(z) = (9 z,7)
9€G
is an isomorphism in BG. Since f* preserves sums, products and isomorphisms, it
sends this map X into an isomorphism

a@:y ESExxE a(y)=0(9-y,y).
9€G
This means precisely that the action by G on E is principal.
Conversely, suppose p: E — X is a principal G-bundle over X. If S is any object
from BG (i.e., a right G-set), consider the “tensor-product”

S®q E

(also often denoted S x¢ E), obtained from S x E by the identifications (s - g,e) ~
(s,g - €). We denote equivalence classes by s ® e. The natural map ps : S xg F —
X, ps(s ® e) = p(e), is a well-defined local homeomorphism. Thus S ®¢ E is a sheaf
on X. The construction is evidently functorial in S, so this defines a functor

-®c E : BG— Sh(X).

To see that this functor preserves colimits and finite limits, it suffices to check this
for the stalk at each point z € X. But for a G-set S,

(S®GE)IES®GErgSa

where the latter isomorphism is natural in S but depends on the point z in a non-
canonical way: choose y € E, - then s — s ® y is an isomorphism S — S Q¢ E,,
precisely because the G-action on the stalk £, is free and transitive. In any case,
since (S ®q E), = S for each point z, it is clear that — @ E preserves colimits and
finite limits. Thus, as explained in Chapter I, this functor is the inverse image part
of a topos morphism X — BG, uniquely determined up to isomorphism.

Finally, it is straightforward to check that these constructions, from a principal
bundle out of a topos morphism and conversely, are mutually inverse up to natural
isomorphism. In outline, for any right G-set S there is a canonical isomorphism

SRcG =S

of right G-sets. For a given morphism f : X — BG this gives the required natural
isomorphism — ®g E = f* for E = f*(G). Conversely, for any principal bundle E,
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there is a canonical isomorphism of principal bundles G ®¢ E = E.

The equivalence in the statement of the proposition is both natural in X and
in G. For X, this means that for any continuous map ¢ : ¥ — X between spaces, the
square

Hom(X, BG) = Prin(X, G)

. :

Hom(Y, BG) - Prin(Y, G).

commutes, where ¢* on the left denotes “compose with ", while ¢* on the right is
“pullback”. For G, it means that for any homomorphism of groups ¥ : G — H, there
is a commutative square

Hom(X, BG) = Prin( X, G)

.| |

Hom(X, BH) = Prin(X, H).

Here 1. on the left is given by composition with the morphism BG — BH induced
by v (see Section 1.2). On the right, ¥ is defined for any principal G-bundle £ by

W(E) = HRg E

where H is viewed as a right G-set with action o defined by a(h, g) = k- ¥(g).

Recall from Chapter I, Section 4, that [X, BG] denotes the collection of homo-
topy classes of topos morphisms.

1.2. Corollary. There is a natural bijection between [X,BG] and the collec-
tion of isomorphism classes of principal bundles.

Proof. This follows from the equivalence of Proposition 1.1. For, on the one
hand, if f and ¢ : X — BG are homotopic maps, then the corresponding principal
G-bundles E = f*(G) and F = ¢*(G) are “concordant”; i.e. there is a principal
bundle H on X x [0,1] so that £ & H|X x {0} and F = H|X x {1}. Since every
principal G-bundle over [0,1] is constant, it follows that E and F are isomorphic.
Conversely, on the other hand, if « : E — F is an (iso-)morphism between principal
G-bundles over X, then a corresponds under the equivalence of Proposition 1.1 to a
natural transformation between the classifying maps f and g : X — BG. Thus, as
explained in Section [.4, these maps are homotopic.

Although we will not use this more general case, it should be noted that for
any topos &, one can define the notion of a principal G-bundle over £, and prove
an equivalence Hom(€, BG)>Prin(€, G), analogous to Proposition 1.1, in exactly the
same way.
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§2 Diaconescu’s theorem

In this section, we will extend Proposition 1.1 from groups to arbitrary (small)
categories. Let C be such a category, with classifying topos BC of all presheaves on
C, as described in Chapter I, Section 2. For a topological space X, a C -bundle over
X is a covariant functor E : C — Sh(X). In other words, a C-bundle consists of a
sheaf E(c) for each object ¢ in C, and a sheaf map E(«) : E(c) — E(d) for each arrow
a: ¢ — d, denoted

By =ay (y€B(),
so that the usual identities id, -y = y and 8- (@ y) = (Ba) - y are satisfied. Such a

C-bundle E is sald to be principal (or flat, or filtering) if for each point z € X the
following conditions are satisfied for the stalks E(c),:

(i) (non-empty) There is at least one object ¢ € C for which the stalk E(c), is
non-empty.

(it) (transitive) For any two points y € E(c), and z € E(d),, there are arrows
a:b— cand B:b— dfrom some object b € C, and a point w € E(b), so that
a-w=yand f-w =z

(iii) (free) For any two parallel arrows o, : ¢ =3 d and any y € E(c), for which
oy = By, there exists an arrow v : b — ¢ and a point z € E(b); so that

ay=fyand vy -z=y.

2.1. Examples. (a) A group G can be viewed as a one-object category. In this
case the above notion of principal C-bundle agrees with the usual one, discussed in
the previous section.

(b) Let M be a monoid, again viewed as a one-object category. Then M is said
to have right cancellation if km = ¢m implies k = ¢, for any k,{,m € M (in other
words, if every arrow in M is epi). In this case, a principal M-bundle over X is a
surjective sheaf £ — X with a continuous (fiberwise) left action by M, which is free
in the sense that m - e = n - ¢ implies m = n (for any e € F), and transitive as in
condition (ii) above. These are exactly the principal M-bundles discussed in Segal
(1978), p.378 (except that Segal considers right actions, hence assumes that M has
left cancellation).

(c) A partially ordered set P can be viewed as a category, with exactly one arrow
p — q iff p < ¢. In this case, a principal P-bundle over X is a family {U, : p € P}
of open subsets in X with the following properties: if p < ¢ then U, C U,; the U,
together cover X; the U, are “locally” directed, in the sense that U, N U, is covered
by all U, with r < p and r < q.

(d) If the category C has finite limits, then a C-bundle E : C — Sh(X) over X is
principal iff it sends all finite limits in C to finite limits in SA(X). More generally, for
any small category C, a principal bundle E must commute with all those finite limits
which exist in C. (See Mac Lane-Moerdijk(1992), Chapter VIL.)



DIACONESCU’S THEOREM 25

For two principal C-bundles £ and E’ over X, a morphism ¢ : F — E’ is by
definition a natural transformation; i.e. ¢ is a family of sheaf maps ¢. : E(c) — E'(c)
(for ¢ € C) so that pg(a-y) = a-@.(y) for any o : ¢ — din C and any point y € E(c).
In this way, the principal C-bundles over X form a category, denoted

Prin(X,C) .

2.2. Theorem. For any small category C and any topological space X, there is
a natural equivalence of categories

Hom(X,BC) = Prin(X,C).

Proof. The proof will follow the same pattern as that of Proposition 1.1. In one
direction, let f : X — BC be a morphism of topoi. By composition with the Yoneda
embedding Yon : C — BC, one obtains a functor

E=f"oYon:C— Sh(X).

To see that E is a principal bundle, we verify conditions (i)-(iii). For condition (i),
note that Y.e¢ Yon(c) — 1 is an epimorphism to the terminal object 1 in BC. Since
f* preserves epis and sums, X.c¢ E(c) — X must be surjective. For condition (ii),
observe that for any two objects ¢ and d of C, the evident map

ZC‘_b_'d Yon(b) — Yon(c) x Yon(d)

is an epimorphism in BC. Applying f* thus yields an epimorphism of sheaves

> esa E(B) — E(c) x E(d),

so that condition (ii) is satisfied. Finally, for o, : ¢ = d, condition (iii) follows
similarly, by applying f* to the equalizer diagram
>~ Yon(b) — Yon(c) 3 Yon(d)

~ib=rc
ay=0y

in BC.
Conversely, suppose F is a principal C-bundle over X. For any presheaf S on C,
one can define a “tensor product”

S ®c F;

This is the quotient of the sum of sheaves 3 c¢ ses() E(¢), obtained by the identifi-
cations

(s-a,€e) ~ (s, ¢€)
forany a:c—d, s € S(d) and e € F(c). Again, we denote the points of S ®¢ £ by
s ® e. This construction defines a functor

~®cE : BC — Sh(X),
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which clearly commutes with colimits (since S ®c F is itself constructed as a colimit).
The assumption that E is principal will ensure that — ®¢ E is also left exact. Indeed,
to prove this, it suffices to show that for any point € X, the stalk functor

S (S®c E)s = S@cE,

is left exact, i.e. commutes with finite limits. To this end, let I, be the category
with as objects pairs (¢,y) where y € E.(c), and as arrows o : (¢,y) — (d, z) those
arrows « : ¢ — d in C for which a -y = z. Then the conditions that F is principal
exactly mean that each category I (the dual of I;) is a filtering category (Mac
Lane(1971), p. 207). Furthermore, a presheaf S on C gives by composition a functor

Sz 1 [P — C° — (sets), and there is a canonical isomorphism

S@cE, = lim_ S, .

Thus S — S ®c¢ E, preserves finite limits, since these commute with filtered colimits
(Mac Lane (1971), p. 211). This proves that the functor — ®¢c E : BC — Sh(X)
commutes with colimits and finite limits, and hence is the inverse image functor of a
topos morphism X — BC, uniquely determined up to isomorphism.

To complete the proof of the theorem, it must be verified that these constructions,
of a principal bundle from a topos morphism, and of a topos morphism out of a
principal bundle, are mutually inverse up to natural isomorphism.

In one direction, start with a principal bundle E, construct a morphism f : X —
BC with f* = —®c E, and define a new principal bundle E’ by E'(c) = f*(Yon(c)) =
Yon(c) ®c E. The evident map o : F’'(c) = Yon(c) ®¢ E — E(c), defined by the
formula o([a: b — €] ® z) = a - z, is clearly an isomorphism (representable functors
are “units” for the tensor product).

The other way round, start with a morphism f and construct £ = f* o Yon, and
then a new morphism with inverse image functor —®¢F. For each presheaf S on C,
there is a canonical map

7:5®c E — f7(S), 7(s®e€) = F(3)(2)

(here s € S(c), with corresponding map 3 : Yon(c) — S, and z € E(c)). If S is itself
representable, say S = Yon(d), the 7 is the standard isomorphism Yon(d) ®¢ E =
E(d). Since every presheaf S is a colimit of representables while 7 is natural in S, it
follows that 7 is an isomorphism for each S.

This proves the theorem.

2.3. Remark. Just as in Proposition 1.1, the equivalence of Theorem 2.2 is
again natural in X and C. For amap f: Y — X of spaces and a functor ¢ : C — D,
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this is expressed by the following two squares which commute (up to isomorphism):

Hom(Y, BC) - Prin(Y, C)

T |-

Hom(X, BC) = Prin(X, C)

| ;

Hom(X, BD) - Prin(X, D)

Here the vertical maps on the left are defined by composition with f : ¥ — X and
@ : BC — BD, respectively. On the right, f* is the operation of pulling back principal
bundles, whereas ¢ is described as follows: for a principal bundle £ on X, and an
object d € D,

P (E)d) = ¢"(Yon(d)) ®c E,
Where ¢*(Yon(d)) = Yon(d) o o = D(p(—),d) : C° — (sets) is the inverse image
of the representable presheaf Yon(d) on D (cf. Chapter I, Section 2).

Next, call two principal C-bundles E, and E; on a space X concordant if there
exists a principal bundle £ on X x [0,1] so that Ey 2= ¢%(F) and E; = }(E) (where
ig,11 1 X — X x [0, 1] are the evident inclusions). This defines an equivalence relation
on principal bundles. Write

ke(X)

for the collection of equivalence classes (“concordance classes”) of principal bundles.
Note that if ¢ : Ey — E; is a map between principal C-bundles on X, then Ey and E,
are concordant: one can construct a concordance F on X x [0, 1], with E|X x (0,1] =
7*(E1) for the projection m: X x [0,1] — X, and E|X x {0} = 7*(E)), by glueing

a point z € Ey(c), to the section p(z) on {z} x (0, 1].

(=,0)

(Under the equivalence of Proposition 2.2, this is really the construction of a homo-
topy from a natural homotopy in Chapter I, Section 4.)

2.4. Corollary. For any space X and any small category C, there is a natu-
ral isomorphism

[X,BC] & ke(X).

Proof. Immediate from Prop. 2.2.



28 CLASSIFYING TOPOI

2.5. Remark. For any topos £, there is an equivalence between morphisms
&€ — BC and principal C-bundles over £, similar to Proposition 2.2. (This is discussed
in detail in Mac Lane-Moerdijk (1992), Chapter VII.) This more general version is
often referred to as “Diaconescu’s theorem” (Diaconescu (1975)).

§3 The classifying topos of a topological category

Let C be a topological category (this notion is discussed in detail, e.g., in Segal(1968)
and Bott(1972)). Thus C is given by a space Cy of objects and a space C; of arrows,
and the structure maps for a category are all continuous. We will often denote these
maps by s,t: C; 3 C, for source and target, m: C; x¢, C; — C; for composition
and u : Co — Cy for units; m(f, g) is also denoted f o g, while we often write 1, or
id, for u(z).

A C-sheaf is a sheaf (étale space) p: § — Cy equipped with a continuous right
action « : S x¢g, C; — 5, denoted a(z, f) = z- f. Thus z - f is defined whenever
p(z) = #(f), and satisfied the usual identities for an action:

(-f)-g=x-(fog) , -y =z , plz-f)=s(f)

A map between C-sheaves is defined to be a map of sheaves over Cy which respects
the action. This defines a category of C-sheaves, denoted

BC. (1)

3.1. Examples. (a) A small category C as considered in Section 1.2 can be
viewed as a topological category with the discrete topology. In this case, a C-sheaf is
the same thing as a presheaf on C, and the notation BC in (1) is consistent with the
one introduced in Chapter 1, Section 2.

(b) A topological space X can be viewed as a topological category X, in which all
arrows are identities. (So Xo = X = X,, etc.) An X-sheaf is a sheaf on X (Chapter
I, Section 2), and BX = Sh(X).

(c) Let G be a topological group acting from the right on a space X. Let Xg be
the associated translation category: it has X as space of objects, and X x G as space
of arrows, where (z,g) is an arrow z - g — z. An Xg-sheaf is a sheaf p: § — X on
X, with an action by G on S so that p is G-equivariant. Thus B(Xg) is the category
of G-equivariant sheaves on X.

(d) As a special case of (c), assume X is a point and G is connected. Thus G = Xg
is a one-object topological category. Since the action of a connected group on a dis-
crete set must be trivial, BG collapses to the category of sets.

(e) Amap f:Y — X between topological spaces gives rise to a topological cat-
egory K(F') with Y as space of objects and Y xx Y as space of arrows. There is a
unique arrow (y,y") from y' to y in K(f) iff f(y) = f(y’). An action of this category
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on a sheaf S — Y is also called descent data on S. For example, if E — X is any sheaf
on X, the pullback sheaf f*(E) = E xxY — Y has an evident such action, defined by
(e,y) - (y,¥") = (e,y’). This defines a functor Sh(X) — B(K(f)). When this functor
is an equivalence of categories, the map f is said to be an effective descent map (for
sheaves). This is the case, for example, when f is an open or proper surjection.

3.2. Proposition. The category BC of C-sheaves is a topos, called the clas-
sifying topos of the topological category C.

Proof. We will prove this proposition under the assumption (true in all cases
to be considered later) that the source map s : C; — Cy is an open map; see also
Remark 3.3 below.

For two C-sheaves S — Cg and T' — Cy, their product Sx¢,T in Sh(Cy) has a
unique C-action making the projections Sx¢,7' — S and Sx¢,T — T C-equivariant.
With this action, Sx¢,T is the product of S and T in the category BC. In other
words, products in BC can be constructed as products in Sh(Cp). Exactly the same
applies to other finite limits, sums, and coequalizers of equivalence relations, occurring
in the Giraud axioms (G1-3) for a topos. Thus BC inherits all the relevant exactness
properties, expressed in these axioms, from Sh(Cy). It remains to be shown that
BC has a set of generators. For any open subset U C Cy, the space t71(U) C C; is
equipped with a natural action by C, given by the source map s : t7}(U) — Cqy and
the composition

t~H(U) x¢, CL = t71U).

Thus, s : t71(U) — C, would be a C-sheaf if s were an étale map. Let G be the
collection of all C-sheaves G for which there exists a surjective C-equivariant map
t=1(U) - G. This collection is small, since there is only a set of such open U, only
a set of equivalence relations to put on ¢7!(U), and only a set of possible topologies
to put on the quotient G = t~'(U/)/R. To see that G generates BC, take an arbitrary
C-sheaf p : § — G, and a point y € S. Let U be an open subset of Cy on which
there exists a section ¢ : U — S through y, say o(x) = y. Let ¢ : 171 (U) — S be
the map ¢(g) = o(tg) - g, and let G C S be the image of ». Thus G is closed under
the action by C on S. Furthermore, since p : § — C, is étale while s : t7}(U) — Cy
is (assumed) open, the identity p o ¢ = s implies that ¢ is open. Thus G is an open
subset of S, hence itself a C-sheaf, which obviously belongs to the collection G. This
shows that any C-sheaf S is the union of C-sheaves in G, so that § generates BC.
This proves the proposition.

3.3. Remark. The category BC can be constructed, as a (bicategorical) col-
imit, from the topoi Sh(Co), Sh(C;), SA(C; x¢, C1),--. Thus, the fact that BC is
a topos is a special case of the existence of such colimits of topoi, first proved in

Moerdijk(1988), Section 2. (See also Makkai-Paré (1989), p. 108.)

The construction of the classifying topos BC is functorial in C. More precisely,
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a continuous functor ¢ : C — D between topological categories induces by pullback
along ¢ : Co — Dy an evident functor

@*: BD — BC.

Since colimits and finite limits in BC and BD are computed as colimits and finite
limits of underlying sheaves (as in the proof of Proposition 3.2), ¢* commutes with
these. Thus ¢* is the inverse image functor of a morphism of topoi ¢ : BC — BD.
Furthermore, exactly as for discrete categories discussed in Chapter I, Section 2, a
continuous natural transformation 7 : ¢ — ¥ between two such functors ¢, : C =
D induces a map 7 between topos morphisms ¢,1» : BC =3 BD. In particular, if
¢ : C — D is an equivalence of topological categories, so that there are x : D — C
and continuous natural isomorphisms ¢x = idp and x¢ = idc, then the induced
map ¢ : BC — BD is an equivalence of topoi.

More generally, a continuous functor ¢ : C — D is said to be fully faithful if the

square
C : D,
(s.t)l lw)
CoxCo —22% Dy x Dy

is a fibered product. It is said to be essentially surjective if, for the subspace Iso(D) C
B; of invertible arrows, the map from the pullback along t : Iso(D) — Dy,

somy : Coxp, [so(D) — By

is an open (or proper) surjection. This condition expresses in a strong sense that for
any object y of D there is an isomorphism y — ¢(z) for some object z in C. The
functor ¢ is said to be a (categorical) weak equivalence if ¢ is both fully faithful and

essentially surjective.

3.4. Proposition. For any categorical weak equivalence ¢ : C — D for the
pullback above, the induced map BC — BD is an equivalence of topoi.

Proof. Write Py = Cq xp, Is0o(D) for the pullback above, with maps smy : Po — Dg
and m; : Pg — Co. One can make Py into the space of objects of a topological category
P, by defining P, as the fibered product

Pl Dl
PoxPo —"22", Dy x Dy.

Thus, the objects of P are of the form (z,a : y= (z)) where z is an object in C and
o an isomorphism in D, and the arrows from (z,a : y=¢ (z)) to (z/,&' : y' > (2'))
are simply arrows 8 : y — y' in D. Then n, : Py — C, extends to a continuous
functor P — C, sending such an arrow 8 to the unique arrow § : z — 2’ for which
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o' o ff = p(8)oa. This functor 7; : P — C has a section o : C — P, sending an object
z € Cy to (2,1,4) : @(z)>¢(z)), and defined in the obvious way for arrows. Thus
we have continuous functors

CoP ™ D

o
where sm0 = ¢ and 70 = id¢. Furthermore, there is an evident continuous natural
isomorphism 8 : idp — o7, with components

0o Yy > () =a .

~

Thus m; is a categorical equivalence, and hence includes an equivalence of topoi BP =
BC. It now suffices to prove that s73 : P — D induces an equivalence of topoi as
well. In other words, since s7, is assumed to be proper or open, it remains to prove
the proposition in the special case where p : C; — Dy is itself a proper or open
surjection, and we will return to this notation. To construct an inverse for the functor
¢* : BB — BC, consider a C-sheaf S — Cq. If z,2" are two points in Co with
p(z) = ¢(z'), there is a unique arrow in C, denoted V.. : = — ', for which
(V) = 1,(x). This gives a map

VZCOXDOCO_)CI-

Pulling back the action by C on S along V thus equips the sheaf S — Cg with descent
data (see Example 3.1(e)) for the map ¢ : Co — Dy. Since this map ¢ is of effective
descent, there is a sheaf T on DBy, unique up to isomorphism, for which there is an
isomorphism u : *(T}) = S of sheaves on Cy, compatible with descent data. It is
now straightforward to descend the action by C on S to an action by D on T, in such a
way that u is actually an isomorphism ¢*(T) = S of C-sheaves. This construction, of
T out of S, provides an inverse (up to isomorphism) for the functor ¢* : BD — BC.

§4 Diaconescu’s theorem for s-étale categories

A topological category C is said to be s-étale if its source map s : C; — Cp 1is
an étale map, i.e. a local homeomorphism. The modest purpose in this section is to
extend the correspondence of Theorem 2.2 (“Diaconescu’s theorem”) to such s-étale
topological categories. Note that it cannot possibly hold for the classifying topos of
an arbitrary topological category, since such a topos may be degenerate (cf. Example
3.1(d)).

A C-bundle on a space X is a sheaf p : F — X, equipped with a continuous

fiberwise left C-action, given by maps
7:E—-Cy , a:Cy x¢, E—-E.

The map a is defined for all pairs (g,¢) where g € Cy, e € E and s(g) = 7(e), and
is denoted a(g,e) = g - e. That a is an action is expressed by the usual identities
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l.re=eand g-(h-e) = (goh)-e; that it is fiberwise means that p{g - ) = p(e).
Such a C-bundle is said to be principal if the three conditions of Section 2 hold. We
repeat them here for convenience: For any point z € X,

(1) The stalk E, is non-empty.

(ii) For any two points y € E, and z € E,, there are a w € E,, and arrows
a:7(w) — w(y) and §:7(w) — w(z),suchthat - w =y and - -w =2z

(iii) For any point y € E;, and any pair of arrows a, § in C with s(a) = 7(y) = s(6)
and a-y = [ -y, there exists a point w € E; and an arrow v : 7{(w) — =(y) in
C such that v-w =y in E; and ay = 8y in C.

With the obvious notion of action preserving map, these principal C-bundles over X
form a category denoted
Prin(X,C) .

4.1. Theorem. For any topological space X and any s-étale category C, there is
a naturel equivelence

Hom(X,BC) = Prin(X,C).

Proof. The proof is analogous to that of Theorem 2.2. For the construction of a
topos morphism f : X — BC out of a principal bundle E, we again use the “tensor-
product” construction. Thus, for a C-sheaf S (an object of BC), we can construct
a sheaf S @¢ E on X, by factoring out the fibered product space S x¢, £ by the
equivalence relation generated by the identifications

(s-a,e) ~ (s,a-e).

The equivalence class of a pair (s,e) will again be denoted by s ® e. There is a
projection S®c & — X, sending each equivalence class s ® e to the point p(e) € X;
it is well-defined on equivalence classes since the action by C on E is fiberwise. To
see that S ®¢ F is a sheaf on X, we must show that this projection S®c £ — X is
an étale map. To this end, construct S ®¢ F as a coequalizer

SXCO Cixeg, £ 3 SXCOE - S®ckFE. (1)

The two parallel maps here are given by the two actions, and send a triple (s, e, €) to
(s -, €) and (s, a-e), respectively. Now Sx¢, Cy x¢, E and S x¢, F are both sheaves on
X, via the composite projections S x¢, Cy x¢, E — E — X and Sx¢, E — F — X
indeed, these projections are both étale, since étale maps are stable under pullback
and composition, while the maps £ — X |, S - Cgand s : C; — Cgq are all assumed
étale. The two parallel maps in (1) are maps of sheaves on X, so their coequalizer
S Q¢ FE is again a sheaf on X.
Thus we have constructed a functor

—®c £: BC — (sheaves on X).
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This functor evidently commutes with colimits. To see that it commutes with finite
limits, note that for a C-sheaf S and a point = € X, we have

(S ®@c E), = SQc(E;) = li_n}lg,, Sz

where I is the category with E, as a space of objects and Cy x¢, E, (= pullback
along s : C; — Cy) as space of arrows. This category has a discrete topology, because
p: E — X and s : C; — Cy are both étale. Thus, exactly as for Theorem 2.2,
I3 is a filtering category when E is principal, so that S +— (S ®¢ E), commutes
with finite limits. Since this holds for each point z € X, the functor $ — S ®¢ E
also commutes with finite limits, hence is the inverse image of a topos morphism f,
uniquely determined up to isororphism.

For the converse construction, of a principal bundle £ from a morphism f: X —
BC, observe first that the étale map s : C; — Cg has the structure of a C-sheaf,
with (right) action given by composition. Thus s : C; — Cy underlies an object of
BC, which will be denoted by €. The inverse image functor f* of any morphism
f: X — BC thus gives an induced sheaf on X, defined as

Ef = 17(C).
4.2. Lemma. This sheaf Ef on X has the structure of a principal C-bundle.

Proof. In the proof, we shall explicitly use the assumption that Cg is sober.
{Recall that all spaces are assumed sober.) We will also use that, since s : C; — Cq
is étale, for each open U C Cy the space t~!(U) is a C-sheaf, with sheaf projection
s :t71(U) — Cq and action given by composition. These sheaves ¢~'(U) generate the
topos BC (cf. the proof of Proposition 3.2). Note that C is the maximal generator.
In particular, for each U we have

FEN ) € 0 = B

For the proof of the lemma, we first define a projection 7 : Ef — Cq and an action
Ci x¢, Ef — E7. For the construction of 7, let x € X and let e € Ef = f*(C), be
any point in the stalk over z. Consider the family

Ny, ={U C Co|Uopen, ec f*(t7'U).}.
As subobjects of € in BC, the objects t71(U) satisfy the identities
)Nt (V)= oYy Uy = U,

for any open sets U, V, U, in Cq. Since f* preserves colimits and finite limits, it follows
that the collection N, of open sets is closed under intersection, and has the property
that for any family of open subsets {U;} with UU; € N,, some U; must already belong
to N,. Thus the set K = Co —J{U C Co | U open, U ¢ N,} is an irreducible closed
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set. Since Cq is sober, K has a unique generic point, which we call 7(e). Thus = (e)
is the unique point in Co with the property that for each open U C C,

we) e U iff e€ f*(t7(U)). . (2)

This construction, for each point e € Ef, defines a map = : Ef — Cy. This map is
evidently continuous, since 7 Y(U) = f*(¢t7'U) C E/ by (2).

To define the fiberwise left action by C on E/, consider again a point z € X,
another one e € E/, and an arrow a : s(a) — t(a) in C so that 7(e) = s(a). Since
the source map s : C; — Cy is étale, there exists an open neighbourhood U of 7(e)
in Cp and a section ¢, : U — C; of s so that ¢, (me) = a. Composition with ¢, then

defines a map of C-sheaves (an arrow in BC)
Pa :t—l(U) - C, Pa(B) = pa(t(B))o B .

Define the action of « on e by

a-e=f(@a)(e) € EL. ®)

This action is readily seen to be continuous in a and e.

It remains to be shown that this action C; x¢, £ — EJ satisfies the conditions
(i) - (iii) for being principal. For the first condition, observe that for the terminal
object 1 in BC, the unique map C — 1 is an epimorphism. Since f* : BC — Sh(X)
preserves epimorphisms as well as the terminal object, the map Ef — 1 must be epi
in Sh{(X); or in other words, each stalk E is non-empty. For condition (ii), consider
for any open set U C Cq, and any two sections ¢,v : U — C; of the source map
s : Cy — Cy, the induced arrow in the topos BC,

(,9) : tH{U)— € xC

(the product on the right is that of C-sheaves). These maps, for all open U C Cq and
all pairs of sections ¢, ¥, together form a surjective map

St U) » Cx¢€
U

in BC. Since f* preserves products, sums and epis, the induced map of sheaves on X,

> () - B xx B
Uy

is again surjective. Thus, if x € X, and y, z € Ef are two points in the stalk over z,
there are such U, ¢, and a point w € f*(¢71U), for which

F@)(w)=y and f(¥)(w)=z.

Now write o = @(7w) and # = ¥(7w). Then, by definition (3) of the action, p = @q
and ¢ = @g on a possibly smaller neighbourhood U’ C U of 7(w), and a-w = y while
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B-w = z. This shows that the action on Ef satisfies the second condition for being
principal.
The verification of the third condition is similar; we omit the details.

The lemma now being verified, we complete the proof of the theorem. It remains
to be shown that the two constructions, of a morphism f : X — BC out of a principal
bundle E by f*(S) = S ®@¢ E, and of a principal bundle E out of a morphism f
by Ef = f*(é), are mutually inverse, up to natural isomorphism. For this, observe
first that for any (principal) C-bundle E over X, with structure map 7 : E — Cy as
before, and for any open subset U C Cy, there is a natural isomorphism

pu TN U)QcE > (U)CE, (4)

defined for any arrow a with {(a) € U and any point y € E with n(y) = s(«), by
pr(a®y) = a-y. In particular, for U = Cy, this gives an isomorphism C®c E = E.
This shows that, starting with a principal bundle E, and constructing a map f: X —
BC, the bundle E/ associated to f is isomorphic to the bundle we started with:

Ef=f(C)=C®cE = E.

The other way round, starting with a map f : X — BC, we need to construct a
natural isomorphism 7 : — ®¢ Ef — f* between functors from BC into Sh(X). For
each C-sheaf S, define the component

ns S ®c El — ()

as follows: for s € S, and y € Ef over some point 7(y) € Cq, choose first a section
o : U — S of the sheaf S — C, through s. This section gives a map & : "1 (U) = §
in BC, defined by a(a) = o(t(a)) - a. Define ng(s ® y) = f*(5)(y). This gives a
well-defined natural transformation  : — ®¢ E — f*. For a generator S = ¢t~1(U) of
BC, the component ng : t 1 (U) ®¢c E/ — f*(t71U) is precisely the isomorphism gy in
(4) above. Thus g is an isomorphism when restricted to generators. Since y is natural
in S, it follows that ps is an isomorphism for each C-sheaf S. This completes the
proof of Theorem 4.1. (We will be more explicit about naturality of the equivalence
in Remark 4.5 below.)

Writing k¢(X) for the collection of concordance classes of principal C-bundles
over X (exactly as for discrete categories in Section 2), the theorem yields the follow-
ing immediate corollary, by passing to homotopy classes of maps:

4.3. Corollary. For any topological space X and any s-€tale topological cate-
gory C, there is a natural bijective correspondence

[X,BC] = ke(X) .

4.4. Topological groupoids. A topological groupoid is a topological category
C equipped with an additional operation 7 : C; — C,; giving for each arrow a: z — y
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in'C a two-sided inverse i(a) = ™! : y — z. For example, every topological group
is a topological groupoid, with the one-point space as space of objects. A topological
groupoid is s-étale iff all its structure maps (source, target, composition, units and
inverse) are local homeomorphisms. Topological groupoids which are s-étale play a
central role in the theory of foliations (see e.g Haefliger(1958), (1984)) and typically
arise from germs of homeomorphisms (or diffeomorphisms). For example, for any
topological space M there is an s-étale topological groupoid I'(M) with M as space of
objects, and with as space of arrows the space of all germs of (local) homeomorphisms,
with the sheaf topology. For an s-étale topological groupoid C and a space X, a C-
bundle ¥ — X over X is principal precisely when the map

Cixe, E—o Exx E, (a,e)— (a-ee)

is an isomorphism. Thus principal C-bundles are exactly the “C-structures” consid-
ered in Haefliger(1958), and the collection of isomorphism classes of such is usually
denoted H'(X,C). Thus Theorem 4.1 in this case provides a bijection

moHom(X,BC) = H'Y(X,C).
We conclude this section with some remarks on Theorem 4.1.

4.5. Remark. Just as for discrete categories, the naturality of the equivalence
in Theorem 4.1 can be expressed by a commutative (up to isomorphism) diagram,
for any map f : ¥ — X between spaces and any functor ¢ : C — D between s-étale
topological categories:

Hom(Y, BC) = Prin(Y, C)

| Ir

Hom(X, BC) = Prin(X, C)

| :

Hom(X, BD) —~ Prin(X, D).

The vertical maps on the left are again defined by composition, while f* denotes
the pullback of bundles. The covariant operation ¢ : Prin(X,C) — Prin(X,D) on
principal bundles is defined as follows. Denote by ® the space Co xp, D1 of pairs
(z,0) where z € Co and 3 € DB; is an arrow 3 : p(z) — y, with s(8) = ¢(z). Since
s : D1 — Dy is (assumed) étale, so is the projection p; : Cy xp,D; — Coy. Furthermore,
for an arrow o : ' — z in Cy, the action

(2,8)-a = (2, Bop(a))

gives ® the structure of a C-sheaf, i.e. an object of BC. For the topos morphism

@ : BC — BDinduced by ¢ : C — D, this C-sheaf ® is exactly the inverse image ¢*(D)
of the object D considered in the proof of Theorem 4.1. For the map p, : ® — Dy,
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sending a pair (z, 8) to y = ¢(f), the space ® also carries a left action by the category
D, given by composition: for an arrow é : y — z in B,

6 (z,0) = (z,600).
For a principal C-bundle £ = (p: £ — X, 7 : E — Cy,etc.) over X, define
w(E)=®Q@c E.

Thus, a point of ¢ E) can be denoted (z,5) ® e where z € Co, 8 : ¢(z) - y in D
and e € F with n(e) = z. This space ¢(E) has a left D-action, induced from that on
®, and a natural projection (E) — X, induced from p: E — X. In this way, o/(E)
becomes a principal D-bundle over X, and this 1s exactly the bundle corresponding to
the composite map X — BD. Indeed, write h : X — BC for the map corresponding
to E under the equivalence of Theorem 4.1, so that A*(S) = S ®¢ F for any C-sheaf
S. The principal D-bundle E¥*, corresponding to the composite p o h : X — BD
under the equivalence, is constructed as

Eel ( h)*(

@ (
h ((I))
d R F
e E) .

D)
D)

11 n

4.6 Remark. Let C be an s-étale topological category. It is a consequence of
Theorem 4.1 that for any topological category D there is an equivalence of categories
between topos morphisms BD — BC and principal C-bundles over D. These are
principal C-bundles over the space D¢ of objects in the sense of Theorem 4.1, with an
additional right action by D, compatible with the principal left C-action. (More gen-
erally, for any topos &, there is an equivalence between maps £ — BC and principal
C-bundles over €. In other words, X in Thcorem 4.1 can be any topos. We will not
use this more general result.)

§5 Sheaves on simplicial spaces

Recall that the simplicial model category A has as objects finite non-empty sets
[n] = {0,---,n} (for n > 0), and as arrows o : [p] — [m] monotone functions
{a(?) € a(j) whenever ¢ < j). A simplicial space Y is a contravariant functor from
A into spaces. Its value Y([n]) is denoted ¥;,, and its action on an arrow a as above
by Y(a) : ¥, — Y,. In Deligne(1975), a sheaf S on Y is defined to be a system
of sheaves 5™ on Y, (for n # 0), together with sheaf maps S(a) : Y(a)*S™ — S™
for each o : [n] — [m]. These maps are required to satisfy the usual functoriality
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conditions: S(id) = id, and for « : [n] — [m] and B : [m] — [k], the diagram

Y(8) Y(a) (s7) —Z2 Ty gy (5m)
'r lS(ﬂ)
Y(Ba)* (S S(bo) gk

commutes. A morphism f:S — T between such sheaves consists of maps f* : 5™ —
T™ of sheaves on Y,,, for each n > 0, which are compatible with the structure maps
S(a) and T(e). This defines a category of sheaves on the simplicial space Y, which
we denote by

Sh(Y) .

This category of sheaves is a topos; cf. Proposition 5.1 below.

Many important applications arise in the special case where Y is the nerve of a
topological category C. This is the simplicial space Nerve(C) with space of n-simplices
Nerve(C),, the fibered product space C; x¢, x - -+ x¢, Cy of all composable strings of
arrows (zg & 27 « --- € x,); for n = 0 this is just the space Cq of objects. For
this particular case, the topos Sh(Nerve(C)) of sheaves will be denoted by DC, and
referred to as the Deligne classifying topos of C. Recall that for a general topological
category C, the more naive and much “smaller” classifying topos BC described in
Section 3 may contain no information about C (Example 3.1 (d)). It does, of course,
when C is s-étale, as can be seen from the classification theorem 4.1. When C is not
s-étale, DC takes the role of BC. In Theorem 7.5 we will construct a weak homotopy
equivalence DC — BC for any s-étale category C.

The construction of the category Sh(Y') is a special case of the more general con-
text of a diagram of spaces Y indexed by some small category K, i.e. a covariant
functor Y from K into spaces. For an object £ € K we denote the value of Y at k
by Yi; the value of an arrow o : £ — € is denoted Y (a) : Y — Y. A sheaf on the
diagram Y is defined to be a system of sheaves S* on Y; (for each object k € K),
together with morphisms of sheaves S(a) : Y(a)*(S%) — S* for each arrow o : k — £.
With the evident morphisms, this defines a category SA(Y) of sheaves on the diagram
Y.

From the category K and the diagram Y one can construct a topological cate-
gory Yi: the objects of Yk are the pairs (k,y) where ¥ € K and y € Yi; and an
arrow (k,y) — (£,z) in Yk is an arrow o : k& — £ such that Y(a)(y) = z. The
topology on Y is that of the disjoint sum: its space of objects is Szex Y, and its
space of arrows is Lo Yjom(a) (Where a ranges over all arrows in K). The source map
5 : Yg Yom(a) = L Yi sends the summand Ydom(e) indexed by a to the summand
Y%, where k = dom(a), via the identity map. The target map ¢ : £y Yiom(a) — Sk Yk
sends this summand Yiem(s) to Yz, where £ = cod(e), via the map Y (a). Notice that
this topological category Y is evidently s-étale.

With this category Yk, the category Sh(Y) of sheaves, as just defined, can be
described as a classifying topos:
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5.1. Proposition. For any diagram Y of spaces, indezed by a small category
K, there is a natural equivalence of topoi

Sh(Y) = B(Yx).

Proof. This follows directly by a comparison of definitions.
Since Yk is an s-étale category, we obtain:

5.2. Corollary. For Y as in the previous proposition, and for any topological
space X, there is a natural equivalence

Hom(X, Sh(Y)) = Prin(X,Yx),

natural in X and Y.

The principal Yik-bundles occurring in this corollary can be described in terms
of principal K-bundles, in the following way. (We will continue to work here with a
small (discrete) category K, but Proposition 5.3 below holds equally well for a topo-
logical category.) Recall that a principal K-bundle E over X consists of a system of
sheaves E*¥ on X (one for each object k € K), and sheaf maps E(a) : E¥ — E* for
each o : k — £ in K, so that the principality conditions of Section 2 are satisfied. Call
such a bundle E augmented (over Y) if E is equipped with a natural map aug: £ — Y
of diagrams of spaces. Thus aug is a system of maps aug® : E* — Y}, so that for any
arrow a : k — £ in K, the identity

Y(a) o aug® = aug’ o E(a)

holds. With the obvious morphisms of principal bundles which respect the augmen-
tation, one obtains a category

AugPrin(X,K,Y)
of principal K-bundles over X with an augmentation to Y.

5.3. Proposition. For X and Y as above, there is a natural equivalence of
categories

Prin(X,Yx) & AugPrin(X,K,Y)
Proof. Let E be a principal Y-bundle on X, with structure map
7. F— (YK)O = Ekyk .

Then for each object k € K, the inverse image E* = 771(Y}) is a sheaf on X equipped
with a map 7% : EF — Y}, defined as the restriction of 7. Furthermore, if o : k — £
is an arrow in K, one can define a map E(a) : E¥ — E’ in terms of the given action
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by Yk on E: for any point e € EF, there is an arrow & : (k,7(e)) — (£, Y (a)7(e)) in
Yk, and we define
E(a)(e) = a-e.

It is elementary to verify that this augmented bundle F is again principal.

Conversely, from an augmented principal bundle F', one can define a Yi-bundle
with underlying sheaf E = Yiex F*, structure maps 7 : E — Y = (Yx)o given by the
augmentation F* — Y;(k € K), and evident action by arrows in Y. This action is
again principal.

These two constructions provide the desired equivalence of categories.

We will examine this more closely in the special case of simplicial spaces. To
this end, consider again the simplicial model category A, and its opposite A%?. It is
well-known that the classifying topos BA of simplicial sets “classifies” linear orders
with end points (see Mac Lane-Moerdijk(1992), p. 463). A similar result holds for
A%, but without the endpoints. For a precise formulation {Proposition 5.4 below),
define a linear order over a topological space X to be a sheaf L on X, together with
a subsheaf O C L xx L, such that for each point z € X the stalk L, is non-empty
and linearly ordered by the relation

y<z iff (y,z)€0, (fory,z€ L;).

A mapping L — L' between two such linear orders is a mapping of sheaves on X
which for each point £ € X restricts to an order-preserving map L, — L/ of stalks.
This defines a category

Lin(X)
of linear orders over X. In the following proposition, using the notation of Section
1.2, B(4°") denotes the topos of presheaves on A7, i.e. of cosimplicial sets.

5.4. Proposition. For any topological space X, there is a natural equivalence of

categories
Hom(X,B(a?)) = Lin(X).

Proof. By Theorem 2.2, there is a natural equivalence of categories, between
topos maps X — B(£°) and principal 4°7-bundles over X. Now a A?-bundle over X
is the same thing as a simplicial sheaf on X, and such a simplicial sheaf is principal
whenever each stalk £, is a principal simplicial set (i.e. a principal bundle over the
one-point space). Following the definition given at the beginning of Section 2, a
simplicial set S is principal iff it satisfies the following three conditions:

(i) S is non-empty;

(ii) giveny € S, and z € S, there are arrows a : [n] — [k] and 8 : [m] — [k] in &
and a w € Sk so that o*(w) = y and 8*(w) = z;

(iii) giveny € S, and «, 8 : [m] 3 [n] in & with o*y = 7y, there exists ay : [n] — [k]
in A and a z € S so that v*z = y and ya = v8.
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Thus, the following lemma will complete the proof.

5.5. Lemma. A simplicial set S is principal iff S is the nerve of a (uniquely

determined) non-empty linear order.

Proof. («) For a linear order (L, <), its nerve Nerve(L) is the simplicial set
defined by
Nerve,(L) = {(yo, " ,¥n) |yo < -+ <yain L}.

To show that this is a principal simplicial set, we verify the conditions (1)-(iii) just
stated. Condition (1) holds since L is assumed non-empty. For condition (ii), suppose
given sequences y = (yg, ", Yn) and z = (20, *+,2m) In L. Let k =n+m+1, and
define w = (wo < -+ < wy) to be the sequence made up from all the y; and all the
zj, by putting them in the right order. Then there are strictly increasing functions
a:[n] — [k] and B : [m] — [k] so that y; = wa) and z; = wg(j), for 7 = 0,--+,n
and j = 0,---,m. Thus y = a*w and z = §*w, as required. For condition (iii}, pick
¥ = (Yo, -, ¥n) and arrows e, 8 : [m] =3 [n] in A with the property that a*y = 8*y.
To find z and ~ as in (i) above, view y as a monotone map y : [n] — L, and factor
it as a surjection followed by an injection, say 7 : [n] - [k] followed by = : [k] — L.
Thus z € Nerveg(L) and y = v*z, Furthermore, ya = 8 since a*y = 3"y while z is
injective. This shows that Nerve(L) is a principal simplicial set.

(=) Let S be a principal simplicial set. As pointed out in Example 2.1(d), S must
preserve all finite limits which exist in 4°?. Or in other words, S sends any finite col-
imit diagram in A to a finite limit diagram of sets. In particular, since any object [n]
in A can be constructed as a colimit by glueing copies of [1] together, viz. the colimit of

(0] (0] [0]
[1]f/ \3‘1[1];"/ &* / Y[u

(n coples of [1]), it follows that there is a pullback
Sn =Sl XSO S] XSO XSO Sl .

This means that S is the nerve of a category L.
Also, any principal functor preserves jointly monomorphic families. Or in other
words, any surjective family

{og: [m] — [n]}e,
in A is sent to an injective function
(a;7"'7a:):Sn_*Smlx"'XSmk.

In particular, when applied to the surjective family {8, : [0] — [1], 81 : [0] — [1]}, this
shows that (do,dy) : S; — So x Sy is injective. Therefore, the category L, of which S
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is the nerve, must be a preorder.

We now show that if S is principal then this preorder must be a non-empty linear
order. First, L is non-empty since S is, by condition (i) for being principal. Next, to
show that the order on L is total, pick ¥,z € L = Sy. Since S is principal, there are
arrows o : [0] — [k] and B : [0] — [k] in A and a w € Si so that a"w = y and f*w = 2.
Since S is the nerve of the preorder L, this means that w = (w, < --- < wy) while
Y = wa(o) and z = wg). Thus y < z or z < y, according to whether o(0) < 5(0)
or $(0) < «(0). Finally, to show that the preorder is antisymmetric, suppose y < z
as well as z < y in L. Thus (y,z) € S; and (z,y) € S, while do(y,2) = di1(z,y)
and dy(y,z) = do(z,y). Since S is principal there must be a ¥ > 0, and arrows
a:[1] - [k] and B :[1] - [k], and a w € Sk, for which (v, z) = o*w and (z,y) = f*w
while Gpa = 0,8 and dya = 3p5. Thus o = 8, hence y = z.

This completes the proof of the lemma, and hence of Proposition 5.4.

Now let ¥ be a simplicial space, as in the beginning of this section. We will
write

Lin(X,Y)

for the category of linear orders over X equipped with an augmentation into Y. Ex-
plicitly, if L — X is a linear order over X, then Nerve(L) is a simplicial sheaf on X,
i.e. a simplicial space with étale maps into X. An augmentation of L into Y is a
map of simplicial spaces aug : Nerve(L) — Y. A morphism (L,aug) — (L', aug’) in
the category Lin(X,Y) is a map L — L' of linear orders over X with the property
that the induced map f : Nerve(L) — Nerve(L’) of simplicial spaces respects the
augmentations.

5.6. Corollary. Let Y be a simplicial space. For any topological space X, there
s a natural equivalence of categories

Hom(X, Sh(Y)) = Lin(X,Y).

R

Proof. This a special case of Proposition 5.3. Indeed, the simplicial space Y is a
covariant functor on K = 4%, and Sh(Y) = B(Yx) by Proposition 5.1. Thus, map-
pings X — Sh(Y) correspond by Corollary 5.2 and Proposition 5.3 to Y-augmented
principal K-bundles. By Proposition 5.4, these are precisely the Y-augmented linear
orders over X.

A linear order can also be viewed as a topological category, with L as space of
objects, and the order sheaf O C L x L as space of arrows. For any topological
category C, write Lin(X, C) for the category of linear orders over X equipped with
a continuous functor L — C. In terms of the notation Lin(X,Y) of the previous
corollary, this category Lin(X,C) is just the same as Lin(X, Nerve(C)). Thus, for
the Deligne classifying topos DC, the previous corollary specializes to the following:
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5.7. Corollary. For any topological category C and any topological space X,
there is a natural equivalence of categories

Hom(X,DC) = Lin(X,C).

For homotopy classes of maps, and the obvious notion of concordance, one ob-
tains the following consequence, analogous to Corollary 4.3. Here Lin(X,C) is the
collection of concordance classes of objects from Lin(X, C).

5.8. Corollary. For C and X as in the previous corollary, there is a natural
bijection

[X,DC] 2 Lin,(X,C).

§6 Cohomology of classifying topoi

This auxiliary section contains some remarks on the cohomology of the classifying
topos BC of a category C, for later use in Chapter IV.

For a discrete category C, it is well-known how to compute the cohomology of the
topos BC of presheaves on C (cf. Chapter I, Section 2). Let A be an abelian group in
BC (an object of Ab(BC), in the notation of Section I.4). Using the nerve of C, one
can define a cochain complex C"(C, A), with

e, A= JI  Ale)s

CQ+—...é—Cp

the coboundary d : C""}(C, A) — C"(C, A) is described as
n—1
(da) fi fan = Z(_l)iad,(co'—-.“o—cn) + (_l)nA(fn)udn(co‘—..x—cn)v
co— .

© *=Cn 1=0

where d;(cp < ... « ¢,) denotes the familiar simplicial boundary:

GG — .. —¢ (1=0)
di(co & ... & en) =% g ... i iy Ciy1 & . — ¢y (0 << n)
Cg— ... —cpm1 (1=n).

The cohomology of this complex is (usually called) the cohomology of the category C
with coefficients in A, and is denoted

H(C, A).

It is the same as the cohomology of the topos BC:

6.1. Proposition. For any small category C, and any abelian presheaf A on

C, there is a canonical isomorphism

H(C,A) = H(BC, A).
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Proof. The proof is an immediate consequence of the existence of canonical
projective resolutions in BC. We will use the following notation: for a presheaf of
sets S (i.e. an object of BC), Z[S] denotes the free abelian presheaf on S; it can be
constructed “pointwise”, in the sense that Z[S](c) is the free abelian group on the set
S{c). For any abelian presheaf A, one has the usual adjunction formula

HomAb(Bc)(Z[S],A) =~ Homgc(S,A) (1)

(where on the right, A is viewed as a presheaf of sets). In particular, for any object ¢
in C, (1) yields for the representable presheaf Yon(c) (cf. Section 1.2) that

Hom(Z[Yon(c)], A) = A(c). (2)
In particular, Z[Yon(c)] is projective. Now define a chain complex
..*‘*P2—>P1—)P0—*Z

by
P, = Z Z[Yon(c,)],

and with boundary maps P, — P,_; defined from the simplicial structure of the nerve
of C, in the usual way. For a fixed object ¢, the abelian group P,(c) is free on the
set of all composable strings ¢o «— ... «— ¢, « ¢; so P(c) is the complex computing
the simplicial homology (with integral coefficients) of the nerve of the category ¢/C.
Since ¢/C has an initial object, Nerve(c/C) is contractible, hence P.(c) is exact. This
shows that --- — Py — Py — Z is a projective resolution of Z. Thus, for any abelian
presheaf A on C, the cohomology H'(BC, A) can be computed using this projective
resolution, as the cohomology of the complex Hom(P,, A). But, by (2) this is exactly
the complex C'(C, A} described above.

6.2. Remark. In the special case for the category A°?, and the associated topos
B(4°?) of cosimplicial sets, there is a much smaller projective resolution. For any
n > 0, let P, be free on the representable cosimplicial set Yon([r]) =A ([n], —). Define
a boundary @ : P, — P,_, as the alternating sum of the maps 9, : P, — F,_; induced
by the maps “omit :”: [n—1] < [n]. For a fixed k > 0, the complex P*¥ = P([k]) com-
putes the integral simplicial homology of the standard k-simplex, hence P* is exact.
Thus P. 1s a projective resolution of Z in B(4°?). It follows that for any cosimplicial
abelian group A, the groups H (B 4°7, A) can be computed directly from the familiar
complex .- — AZ — Al & AS,

6.3. Remark. For a functor ¢ : D — C between categories, and the induced
map @ : BD — BC, the right derived functors Ry, can be described explicitly in the
following well-known form. For an abelian presheaf A on D and any object ¢ € C,

Rip.(A)(c) = H'(p/c, A). (3)
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Here @/c is the “comma category” with as objects the pairs (d,u : od — ¢) and as
arrows f : (d,u) — (d',«') those f : d — d' in D for which v’ 0 ©(f) = u. On the
right of (3), A stands for the evident induced functor on ¢/c, obtained from A by
composition with the projection ¢/c — D. Thus the Leray spectral sequence (Section
1.4) for the map ¢ : BD — BC takes the form

E}* = H?(C,H(¢/~,A)) = H""(D, A).

After these introductory remarks, we will develop some analogues for topological
categories. For an s-étale topological category C, Proposition 6.1 takes the following
form:

6.4. Proposition. For any s-étale topological category C and for any abelian
C-sheaf A, there is a natural spectral sequence

E?? = HPH¥(Nerve (C), A') = HP*4(BC, A).

Before embarking on the proof, we should explain the notation. Given an abelian
group object A in BC, i.e. an abelian C-sheaf, there is for each n > 0 a sheaf A™ on
Nerve, (C), defined at the level of stalks by

(/i")a = A, for a= (1170 L. & HIn)-

Furthermore, for a monotone map v : [n] — [m] and the induced simplicial operator
4* : Nerve,,(C) — Nerve,(C), the sheaf A" on Nerve,(C) induces a sheaf yi(A") :=
(7*)*(A™) on Nerve,,(C), related to A™ via a homomorphism of abelian sheaves

0, 1(A") — A",
which is described at the level of stalks by using the action of C on A: for a point
a=(z0 & ... ¥ z,) in Nerve,(C), the stalk of 'y;(fi") at a is A,,,, and the
action of the arrow a,(n)+1 0 ... 0 @y on A gives a map A, — A, l.e. a map
1AMy — (A™)s. This defines the stalk of 6, at the point o € Nerve,,(C). These
maps 8, make n +— H?(Nerve,(C), A*) into a cosimplicial group, for each fixed ¢ > 0;
its cohomology makes up the F,-term in 6.4.

Proof of 6.4. Define for each n > 0 a C-sheaf D,, as follows: the total space
of D, 1s Nerve,11(C), the étale projection p, : D, — Cy is defined by

Pul®o — oo & Tapr) = Ty,

and the action by C on D, is defined by composition: for an arrow §:y — z,41 In
C,
oy Ont1 ang1
(mof—ml<—,._ P mn+1)-ﬂ= (m()(—...(——.rn fAR y).
These sheaves D, for n > 0, together define a simplicial object D. in the topos BC,
with as stalk at a point z € Cy the simplicial set Nerve(z/C). In particular, since the
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category z/C has an initial object, D. is locally acyclic. Thus, by (4) of Section 1.4
there is a standard spectral sequence

HPHY(BC/D.,x"(A)) = H"*(BC, A), (2)

where 7, : B(C)/D,, — BC is the evident morphism of topoi (cf. the end of Section
[.1). Next, there is a morphism of (simplicial) topoi

An 1 BC/D, — Sh(Nerve,(C)) (all n >0),

with inverse image A} described as follows. Using the face map dnoy1 @ D, =
Nerve,41(C) — Nerve,(C), each object F € Sh(Nerve,(C)), i.e. each étale map
p : F — Nerve,(C), gives an induced étale map d},,(F) — D,; when we equip
d; . (F) with the trivial C-action, this étale map can be viewed as a map d},,;(F) —
D, in BC. Define X} (F) to be this last map, viewed as an object of BC/D,. The
direct image functor

Ans : BC/D, — Sh(Nerve,(C))

can be described explicitly at the level of stalks, for any object w: E — D,, of BC/D,,,
by

AW : E = Dy)pye oy, = w iz ¢ o = 1y, M Tn).

This functor A,. is evidently exact, hence induces an isomorphism in cchomology.

Since A,o7%(A) = A", this isomorphism takes the form

HYBC/D,,n;A) = H(Nerve,(C), A™).

Using this isomorphism, the spectral sequence in (2) yields the one in the statement
of the proposition.

Next, for a continuous functor ¢ : D — C into an s-étale category C, we will
write the Leray spectral sequence for the topos map BD — BC in a more explicit
form, analogous to Remark 6.3. To this end, recall that any open subspace U C C,
gives rise to a C-sheaf s : t~1(U) — C,, with action given by the composition op-
eration of C. For any other C-sheaf S, there is a bijective correspondence between
C-equivariant maps t~'(U/} — S and sections of S over U:

Homgc (t1(U), S) & I'(U, S).

For the topos map ¢ : BD — BC, the pullback ¢*(¢71U) of this C-sheaf will be
denoted
)

So the points of U¥) are pairs (a, ) where z is an object of D (a point in Do) and «
is an arrow in C with sa = @z and ta € U. This space U'¥) is made into a D-sheaf
via the étale projection 7 : U'¥) — Dy defined by 7(a,z) = z, and the action by D
given by composition: (a,z) - = (e o ¢(8), s(8)). It follows that the direct image
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functor ¢, : BB — BC can be described explicitly. For any D-sheaf F, the sections
of the sheaf o.(F) over an open set U C C, are given by

(U, ¢.F) = Hompp(U¥, F). (3)

An open set U C Cg not only gives rise to an object U) of BD, but also to a
topological category equipped with a functor into D, together denoted

7rUISQ/U—’E’- (4)

The objects of the category (/U are the points of U¥), i.e. the pairs (a,z) with
z € Do and @ : ¢(z) — y an arrow of C into some point y € U. The arrows
§ : (a,z) — (/,2') in ¢/U are arrows § : x — z' in D with the property that
o' 0 ¢(6) = a. The topology on /U is given by suitable fibered products: for the
objects one has

(p/U)o = U x¢, Cy x¢, Do,

while the space of arrows is topologized similarly as the pullback
(W/U)l =U X o Cl X ¢y Dl.

Note that the projection functor my in (4), defined in the evident way, is étale (since
the category C is assumed s-étale).
The object U¥) of BD and the category ¢/U over D are related as follows:

6.5. Lemma. There is a natural equivalence of topoi over BD:
BD/UY) = B(p/U).

Proof. Recall that the topos (“comma category”) BD/U on the left hand side
has as objects D-sheaves F equipped with a D-equivariant map F — U¥). Given an
object E of B(/U), one obtains by composition E — (¢/U)e =3 Do a sheaf on Do,
with evident (right) action by D, and D-equivariant map E — U®) = (¢/U),. It is
straightforward that this construction defines an equivalence of caiegories.

6.6. Proposition. Let ¢ : D — C be a continuous functor into an s-étale
category C. Then for any abelian D-sheaf A, the value Rip,(A) of the g-th right de-
rived functor of . : BD — BC is the sheaf associated to the presheaf on Co defined
for open sets U C Co by

U HY(B(p/U), i (A)).

Proof. Fix an integer ¢ > 0 and an abelian D-sheaf A, and define a presheaf
P?(A) on the space Cy of objects of C, as in the statement of the proposition:

PUANU) = HY(B(#/U), 75 A),

for U € Cy open, where 7y is the projection functor ¢/U — D as in (4). An in-
clusion of open subsets V C U induces a continuous functor ¢/V — /U, hence
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a morphism of topoi B(¢/V) — B(¢/U), hence a homomorphism of cohomology
groups HY(B(p/U), n5A) — HY(B(p/V), 7, A). This defines the restriction maps
Pi(A)U) — P?(A)(V) for the presheaf P(A). Denote the associated sheaf of this
presheaf by pq(A). We claim that PQ(A) carries a natural action by C from the
right. Indeed, suppose o : # — y is an arrow in C, and V is any open neigh-
bourhood of y. We can now use the assumption that C is s-étale, to find a neigh-
bourhood U C Cp of z and a section o, : U — C, of the source map, with
o.{z) = a. If we choose U small enough, then to o, : U — Cp will map U into
the neighbourhood V of y. Then this section o, will induce a continuous functor
comp{cs) : ¢/U — ¢/V, simply by composition with the appropriate value of a,.
This functor gives a morphism of topoi B(w/U) — B(¢/V), and hence a homomor-
phism HY(B(p/V),mA) = H(B(¢/U), 7 A). This holds for all neighbourhoods V

of y, naturally in V, so that one obtains a homomorphism
o :lim  HY(B(p/V),mpA) = lim  HYB(p/U), 7 A),
— yev — el
or in other words, a map of stalks
a* i P1(A), — PY(A),.

This defines the action by C on P7(A), making P?(A) into a C-sheaf. The construction
is evidently functorial in A. The desired isomorphism

Rip.(A) = P1(A) (5)

now follows by the uniqueness of right-derived functors: First, a short exact sequence
0 - A— B — C — 0 induces for each open set U C Cq a long exact sequence

= HI(B(p/U),75;A) = HU(B(p/U), 75 B) — H'(B(¢/U),75C) — ...,

hence a long exact sequence

.= P1(A) — PY(B) — PYC) — ...
Second, if A is an injective D-sheaf, then for any object E of the topos BD, the coho-
" mology groups H?(BD, E, A) (the values of the right-derived functors of Hompp (E, —))
vanish for ¢ > 0. But, by definition, these cohomology groups are those of the slice
topos BD/E. Choosing E = U¥) and using the equivalence of Lemma 6.5, we find that
H(B(p/U),n;A) = 0 whenever ¢ > 0 and A is injective. It follows that P7(A) = 0
for ¢ > 0 and injective A. Finally it follows by (3) that P° is the functor ¢,. Thus,
by uniqueness of derived functors, there is an isomorphism (5), natural in ¢ and A.
This proves the proposition.

Now let K be a discrete (small) category, and let ¥ be a K-indexed diagram
of spaces, as in Proposition 5.1. For the associated s-étale category Yi, there is an
evident projection functor

T Y - K,
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and an associated topos map 7 : Sh(Y') = B(Yk) — BK. For an abelian sheaf 4 on
the diagram Y, the sheaf maps A(a) : Y(a)*(A%) — A*, for arrows a : k — £ in K,
induce homomorphisms of cohomology groups

H*(va Ag) - H*(ka Ak)a

making H*(Y,, A’) into a contravariant abelian group-valued functor on K. As a spe-
cial case of Proposition 6.6 we now obtain:

6.7. Corollary. For any diagram 'Y of spaces on a small category K, and for any
abelian sheaf A on'Y, there is a naturael speciral sequence

EP = BP(K, H'(Y, A')) = HP(Sh(Y), A).

Proof. According to Proposition 6.6, it suffices to show for the projection = :
Yk — K that

H(B(n/k), mi(A)) = H(Y;, A). (6)

Here 7 /k is the topological category with as objects pairs (o : £ — k,y) where a is
an arrow in K and y € ¥;. An arrow (o : € — k,y) — (o' : ¢ — k,y') in 7/k is an
arrow (3 : (¢,y) — (£',y') in Yk, i.e. an arrow 3 : € — ¢ with Y(8)(y) = v', such that
o' = a. The functor 7 : #/k — Y is the evident projection, sending (a : £ — k,y)
to (£,y). Consider the functors : = i and j = j; in the diagram

;—»w/k ,
W(y) = (k,y)
\ / j(y) = (d : k — k,y)

{where the space Y} is viewed as a topological category with identity arrows only).
For the associated topos morphisms

Sh(Y}) ! B(r/k)
Sh(Y),

7 induces an isomorphism
H*(B(n/k),B) — H"(Y:,j"B) (7)

for any 7/k-sheaf B. One way to see this uses the continuous functor p : 7/k — Y;
defined on objects by p(a,y) = Y(a)(y) : for the induced topos map p : B(w/k) —
Sh(Y%), one has j* = p,. Thus j* preserves injectives and commutes with the global
sections functors. This gives the claimed isomorphism (7). For the special case where
B = m;{A), it specializes to the desired isomorphism (6). This proves the corollary.



50 CLASSIFYING TOPOI

(The spectral sequence of Corollary 6.7 is analogous to the Bousfield-Kan spec-
tral sequence for the diagram Y (Bousfield-Kan(1972)). In fact, for a locally constant
sheaf A, the two correspond to each other via the isomorphism is cohomology between
Sh(Y) and the classifying space of Yk, provided by Theorem IV.2.1.)

For the special case where K =A"?, Remark 6.3 allows us to write the spectral
sequence of 6.7 in a simpler form, involving for each ¢ > 0 the cohomology of the
simplicial group H9(Y,, A'):

6.8. Corollary. For any simplicial space Y and any abelian sheaf A on Y,
there is a natural spectral sequence

ERT = HPHO(Y, A') = HP*9(Sh(Y), A).

For later use, we also mention the following consequence of 6.7.

6.9. Corollary. Let Y be a diagram of spaces on a small category K, as be-
fore. If, for each k € K| the space Yy is contractible, then 1 : SK(Y) — BK is a weak

equivelence of topor.

Proof. This follows from the toposophic Whitehead theorem (see Chapter I).
Indeed, it is obvious that the functor #* induces an equivalence between covering
spaces of BK and of Sh(Y'). Moreover, if A is any abelian group in BK, the spectral
sequence of Corollary 6.7 collapses to an isomorphism H (BK, A)>H (Sh(Y),=*A).

§7 Some homotopy equivalences between classi-
fying topoi

In this section we will compare several topoi related to the classifying topos BC of
an s-étale category C. First, for such a C, we prove that there is a weak equivalence
DC — BC, comparing the Deligne classifying topos to BC (Theorem 7.6 below). The
other two comparisons (Propositions 7.7 and 7.8) are of a more technical nature, and
will be used for our later comparison between classifying topoi and classifying spaces.

These homotopy equivalences involve a comparison of the fundamental groups,
and we begin with a few remarks about this. Recall from Section 4 of Chapter I that
the construction of the fundamental group and of the higher homotopy groups of a
topos requires the topos to be locally connected. For a topos of the form BC, we have:

7.1. Lemma. For any topological category C for which the spaces Co and C,
of objects and arrows are both locally connected, the topos BC is also locally connected.
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Proof. We need to show that under the assumptions of the lemma, the “constant
functor” A : (sets) — BC, which to a set S associates the constant C-sheaf S x Co —
Co with the trivial action, has a left adjoint. This required left adjoint 7 : BC — (sets)
is constructed as follows. For a C-sheaf £ = (E,p: E — Co, E X¢, C; — E), both
its structure map p and the pullback £ x¢, €; — C; of it along t : Cy — Cp are
étale. So F and E x¢, C, are locally connected spaces since Cy and C, are assumed
to be. Let mo(£) and mo{ E x¢, C1) be their sets of connected components, and define
7(E) to be the coequalizer of the two maps no(E x¢, C1) =3 mo(E) induced by the
projection and action maps E x¢, C; =3 E. This construction, of the set n(E) from
the C-sheaf E, defines the required left adjoint = : BC — (sets) for A.

We will call a topological category C locally connected if it satisfies the assumption
in the statement of Lemma 7.1.

For any topological category C and its classifying topos BC, call a C-sheaf E
invertible if the action by arrows of C is invertible; this means that the map

Ex¢,Ci—=Cixg, E, (e,a) — (a,e-a)

is a homeomorphism. Let ZC be the full subcategory of BC consisting of such invert-
ible C-sheaves. This category ZC is again a topos, and the inclusion ZC — BC is
the inverse image functor of a connected morphism of topoi

6: BC — IC.

When C is a locally connected category, ZC is a locally connected topos: the proof of

lemma 7.1 carries over verbatim to this case.

7.2. Lemma. For any locally connected topological category C, the morphism
8 : BC — IC induces an isomorphism of fundamental groups.

Proof. It obviously suffices to prove that the inclusion functor §* : IC — BC
restricts to an equivalence of categories on locally constant objects (cf. Chapter I,
Section 4). For this, we need to show that every locally constant object of BC in fact
belongs to the smaller category ZC. Consider the Sierpinski-space L, with open point
1 and closed point 0. Let Sh(X x C;) be the topos of sheaves on the product space
Y. x Cy. A sheaf I on ¥ x C; is the same thing as a pair of sheaves Fy and F; on Cy,
together with a map u : Fy — Fy. Thus there is a canonical morphism of topoi

p:ShE xCy) — BC,

defined from the source and target maps s,t : C;, =3 Cg, by p*(E)e = t*(F) and
p*(E); = s*(F), and map u : p*(E)o — p*(E); given by the action of Con E. If E
is locally constant, then so is the sheaf ¢*(E) on ¥ x Cy, i.e. ¢*(F) is a covering space
of ¥ x C;. By contractibility of X, it follows that u : p*(F)e — p"(E); must be an
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isomorphism. This says precisely that E belongs to ZC. Thus every locally constant
object of BC belongs to ZC, as required.

We now turn to the comparison between DC and BC. Recall that the topos
DC of sheaves on the simplicial space Nerve(C) is the classifying topos of the s-étale

category

C = Nerve(C)or
(cf. Section 5). Explicitly, the objects of C are strings @ = (29 & z; « - < z,,) of
composable arrows in C; for two such strings @ and 5 = (Yo ul Yyp e - i Ym), an

arrow @ — f in C is a morphism 7 : [m] — [r] in the simplicial category & so that

~v*(&) = B. There is an evident “last vertex” functor
A (E—»C, Mzo &+ — ) = Z,.

This functor A takes an arrow v : @ — 5 as above to the composition o (m)410- - -0y :
Ty — Ym = Ty(m). Lhe functor A induces a morphism of topoi

A:DC — BC.

It is not difficult to see that its inverse image functor A* : BC — DC is full and
faithful, so that (cf. Section 1.4) A : DC — BC is a connected morphism of topoi.

7.3. Lemma. For any locally connected s-étale category C, the map A : DC — BC

induces an isomorphism of fundamental groups.

Proof. By Lemma 7.2, it clearly suffices to show that the restriction of A* :
BC — BC = DC to invertible sheaves is an equivalence of categories

»IC 5 IC.

To define an inverse for this functor A* on invertible sheaves, let 7' be a simplicial
sheaf on Nerve(C), invertible when viewed as a C-sheaf. Then its restriction T°
to Nerveg(C) = Cy carries a natural action T° x¢, C; — T° by C, defined as the
composite
T° xe, C* = dy(1°) ") 7t "L gr 70y 2, 70,

where p is the projection. This gives T the structure of an invertible C-sheaf, which
we denote by A\y(T). It remains to observe that for any § in ZC and T in ZC, there
are natural isomorphisms AA*(S) = S and A*A(T) = T. For example, for T, one
has MA(T)* = (dp—1 -+ do)*(T°), where d,,_; - - - dp : Nerve,(C) — Nerveg(C), and
the isomorphism AMA(T)* — T is T(dp-y - - do) : (dpy -+ - do)*(T°) — T™.

7.4. Lemma. For any abelian C-sheaf A, the map X : DC — BC induces
an isomorphism

A" HM(BC, A) > H"(DC,\*A)  (n > 0).
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Proof. This is immediate from the comparisons of the two spectral sequences in
Proposition 6.4 and in Corollary 6.8, since the sheaf A defined for Proposition 6.4 is
precisely A*(A).

From Lemmas 7.3 and 7.4 we deduce:

7.5. Theorem. For any locally connected s-étale topological category C, the
map A : DC — BC is a weak homotopy equivalence of topot.

Proof. This follows by the toposophic Whitehead theorem (Chapter I, Section
4), because A induces an isomorphism in g since A is connected, in 7y by Lemma 7.3
and in cohomology by Lemma 7.4.

The next two comparisons, in Propositions 7.6 and 7.7 below, are of an auxil-
iary nature. They will only be used in the proof of the comparison theorem 2.1 in
Chapter IV.

To state the first, consider the category of simplices A(C) of a topological cate-
gory C. The objects of A(C) are strings (29 « -+ e z,), and the arrows (zo —

- — x,) — (yo « -+ « y,) are simplicial arrows v : [n] — [m] so that
Y(yo — -+ — ym) = (zo & -+ «— a,). Thus A(C) is the dual of the category
C considered just above. For any topological category C, the target map of the as-
sociated category A(C) is étale. Now let A, (C) € A(C) be the topological category
with the same space of objects as A(C), but with only those arrows given by injective
v : [n] — [m]. This is of course again a t-étale category. There is a “first vertex”
functor

0: AR(C) = C, olzg — - — z,) = o,

similar to the last vertex functor A : € — C. It induces a morphism of topoi

¢ : B(ALC) — BC.

7.6. Proposition. For any locally connected s-étale topological category C, the
map ¢ : B(A,,C) — BC is a weak homotopy equivalence of topoi.

Proof. Exactly as for the map A : DC — BC in Lemma 7.3, it is easy to see
that  is a connected morphism, inducing an equivalence Z(A,,C) — ZC of invertible
sheaves and hence an isomorphism of fundamental groups. Thus, by the toposophic
Whitehead theorem, it suffices to show that ¢ induces isomorphisms in cohomology
with locally constant coefficients. To this end, consider the functor ¢ : A,,C — C
together with the identity functor ¢ : C — C, and for any open set U C C; the
associated categories ¢/U and ¢/U, as in (4) of Section 6. Also write U for the trivial
topological category, with U as space of objects and with identity arrows only. There
are continuous functors ¢t : ¢/U & U : 5, where t is given by the target and n(z) is the
identity at = (in the category C). Then t o 5 is the identity functor on U, and nt is

related to the identity functor on «/U via a continuous natural transformation. Thus,
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as explained in Section 3, the continuous functor ¢ : (/U — U induces a weak homo-
topy equivalence of topoi B(¢«/U) — BU = Sh(U). (In fact Sh(U) is a deformation
retract of B(./U).) Similarly, there are continuous functors

C«,)/UiZU

defined as follows: an object of p/U is a pair (&, 3) where « is a string & = (zo <+

Ty e &2 z,) and 3 is an arrow zo — z, into some point x € . The functor 7
sends this pair to the augmented string (z L zg & ... &% ,) together with the

identity arrow z — z. The functor € sends this pair (&, 3) simply to the point z. This
definition of 7 and ¢ on objects is extended in the evident way to arrows. Finally, the
functor v sends an object z to the pair (z,u(z)), consisting of the string z of length 0
and the identity arrow at z. Thus € o v is the identity functor, and there are natural
transformations

Zd(w/U) — T ¢+- VOE.

It follows that € induces a (weak) homotopy equivalence B(¢/U) — Sh(U) (cf. Section
I.4). By combining these homotopy equivalences, we find that for a locally constant
abelian group A in BC, Proposition 6.6 gives an isomorphism

Rip.(¢"A) = RUW(A) (¢>0).

But ¢ is the identity functor, so R%., = 0 for ¢ > 0. Thus ¢ : B(A,,C) — BC induces
the required isomorphism in cohomology, and the proposition is proved.

Finally, for an s-étale category C, we consider the following enlargement of the
classifying topos BC, to be used for the comparison theorems in Chapter IV. Define
a quasi-C-sheaf S to be a C-sheal, except that the action (s,a) — s-a of C on S
need not satisfy the identity law s - u(ps) = s (here p : § — Cy is the structure map
of S, and u(ps) is the identity arrow at ps in C). With the evident notion of action-
preserving map between such quasi-C-sheaves, these form a category denoted BC.
This category is a topos; in fact, BC = BC’ where C' is obtained from C by adding
“new” identity arrows: C} = C; + Cq. The evident full inclusion functor BC — BC
is the inverse image of a topos morphism

¥ : BC — BC.

Yor any quasi-C-sheaf S, with sheaf projection p : S — C,, one can construct a
C-sheaf S C S by
S={seS|s ulps) = s}.
Since the “quasi-action” of C on S does satisfy the composition law (“(s - a) -3 =
s (af)”), the identity
s+ u(ps) = (s - u(ps)) - u(ps)
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holds for any point s € S. Thus there is a retraction map

r=rg : S—85, r(s)=s-u(ps).

The functor %, : BC — BC which sends S to S is right adjoint to the inclusion
functor 9* : BC — BC. (The unit of the adjunction is the identity map T = T for
any C-sheaf T, and the counit is the inclusion § — § for any quasi-C-sheaf S.) But,
using the natural retraction 7, it is clear that 1. is exact. In particular, ¢ induces iso-
morphisms in cohomology ¥* : H'(BC, A)=H (BC,*A) for any abelian C-sheaf A.
The morphism ¢ : BC — BC also induces isomorphisms in homotopy (when defined,
i.e. when BC and BC are locally connected).

In fact, the topos BC is a natural deformation retract of BC: the functor 1, is
also left adjoint to the embedding BC — BC. (This time the counit .¢*T — T of
the adjunction is the identity, while the unit § — ¢*¥,S is the retraction map r.)
Thus 4. is the inverse image of a morphism of topoi 7 : BC — BC, with ¢pr = id
and 73 a natural retract of the identity functor. For later reference:

7.7. Proposition. The classifying topos BC of any topological category C is
a natural deformation retract of the larger topos BC of quasi-C-sheaves.






Chapter III

Geometric Realization

§1 Geometric realization of simplicial spaces

The main purpose in this chapter will be to define a new geometric realization in
the context of topoi, and show how the various classifying topoi, considered before,
can be constructed in this way. As a motivation, and for later comparison, we begin
by reviewing the well-known standard geometric realization for simplicial sets and for
simplicial spaces.

Recall from Chapter 11, Section 5, the simplicial model category A of finite ordered
sets. A simplicial set is a presheaf on 4, i.e. a contravariant set-valued functor on A.
For such a simplicial set X, one writes X, for X([n]) and o™ : X,, — X,,, for X(a), for
any arrow a : [m] — [n] in A. As usual, d; denotes the map 9 : X,, — X,_1, where
0; : [n — 1] — [n] is the injective map which omits ¢ from its range. Furthermore, A™
denotes the standard topological n-simplex (about which we shall have to be more
explicit shortly). Each arrow a : [n] — [m] gives an affine map A™ — A™, so as to
make {A" : n > 0} into a cosimplicial space (a functor from A into spaces). For a
simplicial set X, its geometric realization |X| is the topological space obtained from
the disjoint sum ¥, o X, X A™ (where X, is given the discrete topology) by factoring
out the equivalence—rela.tion generated by the identifications

(a"(z),1) ~ (z,a(t)),
for any arrow « : [n] — [m] in 4, any ¢ € X, and any t € A”. In other words,
[X| =X ® A’ is the tensor product of two functors from the category 4 into spaces,
a covariant one A" and a contravariant one X  (the latter taking values in discrete
spaces). For basic properties of this geometric realization one may consult many
standard sources, e.g. Milnor(1957), Gabriel-Zisman(1967), May(1967), or Fritsch-
Piccinini(1990).

The same geometric realization can also be constructed by iterated adjunction
spaces (pushouts): Let X,E"d) C Xi be the set of non-degenerate k-simplices in X
(those not in the image of a* for a surjection « : [k] — [m] where m < k). Then
construct a sequence of spaces

X1 c x| cx|® g
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by induction, together with maps 7 : X; x A* — |X|®). By definition, [ X | is the
set Xo of vertices of X equipped with the discrete topology, and 7o : X x A® — | X|©
is the evident homeomorphism. Next, | X |(*) is constructed from | X|*~1) and 7;_; as
the pushout of topological spaces

X0 x oak XM Ak

N

|X|(k—l) 5 le(“).

Here JAF is the boundary of A¥, and X; is given the discrete topology. From the
map mr_; : Xgo1 X AF1 o | X|*=1) one defines the map X(nd) x OAF — X(=1) op
the left of (1): the restriction of the latter map to the i-th face A¥~! < AAF* is the
composition X x AF1 %X X, |« Ak-1 Teod =2 | X|* 1. The map 7 : Xe x A* — | X|*)
is defined by extending the map 7 on the right of (1) to degenerate simplices in the
standard way. Now the geometric realization is defined as the union of the |X|*)
with the weak topology:
X= U x|,
k>0

We remark that, rather than restricting to the set X,g"d) of non-degenerate k-
simplices, one may also use the full set X, in the construction of the iterated pushouts
(1). The resulting bigger realization is well-known to be homotopy equivalent to the
standard one |X|. For the realization of simplicial spaces below, we will only use this
thicker realization.

For later purposes, it is necessary to be more explicit about a model for the
standard n-simplex A”. Let ] = [0,1] C R be the unit interval, and define

An:{(zl,...’zn){xiel’ xlgsxn}

The embedding of the i-th face & : A"! — A" for i =0,---,n, is defined by

) (Oamly"'vmn—‘l) =0
81($1,"’,.’Bn_1)= (mlv"'vmiamﬁ"'vzn—l) 0<i<n
(Il,"',$n_1,1) 1= n.

Then the boundary of A" is defined as

n
=J &A™ = {(z1, -, %) € A"z; =0o0r z, = 1 or Ji(z; = Tiy1)}-
=0
1.1. Remark. It is important to note that we have only used the order relation
< on I and its endpoints 0,1. Thus any topological space J with an order < and
endpoints 0,1 (an “Interval”) gives rise to a cosimplicial space Ay (a functor k —
A(J) from & into spaces), and hence a realization for any simplicial set X:

Xl = X. @ Ay,
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This tensor product can again be constructed by iterated pushouts, now of the form

nd nd
X0 x ank, > X" x Ak

| |

k-1 k
X5 ——— X185,
so that

k
Xl = U 1XI$5) -

k>0
Note that this construction is functorial: If ¢ : J — J' is a continuous map of
“intervals” (¢ preserves the order-relation as well as the endpoints) then ¢ induces a
natural continuous map

ex Xy = X,

for any simplicial set X.

1.2. Example. Let ¥ = {0,1} be the Sierpinski space, with a closed point
0 and an open point 1, and order 0 < 1. Then

AE:E) = pt,
Am = I
dAlgy = {0,1} with discrete topology,
aA(22) = A(22) = {(010)’(071)7(171)}1
and so on: JATg = Al for n > 2. Thus, when one constructs the geometric

realization of a simplicial set X with respect to the interval X, the series of pushouts
(2) (for J = I) stops after one step:

Xo=1XIQ < IXIif = | X|s-

In other words, the realization {X|(z) is the space X; x I factored out by the equiv-
alence relation which identifies (x,0) and (z,1) if z is degenerate or if doz = d;z.
Surely this is not a very interesting realization.

Next, we should make some remarks concerning the geometric realization of sim-
plicial spaces. For a simplicial space X, the notation |X| will always denote the
“thickened” geometric realization, as described in Segal(1974). Thus, |X| is obtained
from Yn>0 Xn X A" by making the identifications

(a(z), 1) ~ (z,a(t)) 3)

as for a simplicial set, but now only all injective order-preserving functions « : [n] —
[m], with associated maps a* : X,, — X,, and e : A* > A™, and for all z € X,, and
t € A", This geometric realization has various well-known basic properties, described
in the Appendix of Segal(1974). In particular, we mention the property that for a
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map [ : X — Y between simplicial spaces, its realization {f]| : [X| — [Y] is a weak
homotopy equivalence whenever f, : X,, — Y, is (for each n > 0). Recall also that if
all the degeneracies s; : X,_; — X, of a simplicial space X are closed cofibrations,
then the thickened realization |X| is homotopy equivalent to the realization which is
defined by the identifications (3) for all a, not just injective ones.

As before, one can build up this thickened realization by iterated pushouts, defining

5X|(0) - ;Xl(l) - le(Z) C.-.
inductively, by | X|© = Xq, and by the pushout diagram

X, x 0A™ —— X, x A"

.

| X | X0,

where the left-hand vertical map v, is defined just as in the discrete case: on the ith
face X, x A" ! — X, x @A™ 1 it is the composite of d; x1 : X, x A™1 — X, _; x A™!
and the map u,—1 : Xny X A"! — | X|®~1 (The “thickening” is reflected by the
fact that, in (4), one does not just consider non-degenerate simplices in X,,, as in (1)
above.) The thickened realization is now constructed as

1xl=U X", (5)

n>0

again with the weak topology.

§2 Classifying spaces

This section contains some remarks on the sheaf cohomology of classifying spaces.
In accordance with the remarks in the preface, we will treat the case of discrete (small)
categories first.

For a small category C, its classifying space BC is the (ordinary) geometric re-
alization of the simplicial set Nerve(C). We will give a “cellular” description of the
cohomology groups H(BC, A) of this classifying space BC with coefficients in any
abelian sheaf A on BC. To this end, first recall from Chapter I, Section 7 the cat-
egory of simplices AC associated to an arbitrary small category C: The objects of
AC are pairs (n,a) where n > 0 and « = (g &= 2, — --- < z,) is an n-simplex
in the nerve of C. An arrow u : (n,a) — (m,8) in AC is by definition an arrow
u : [n] — [m] in A with the property o = u*(8). The “first vertex” functor

p:AC—>C
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sends an object (n, a) to zg, and an arrow u : (n,a) — (m, ) to f1 o -0 Byp) : To =
Yu(o) — Yo (where B = (yo «— --- — y;,)). This functor ¢ : AC — C is well-known to
induce a homotopy equivalence of classifying spaces

By : BAC — BC.

Indeed, this follows immediately from Quillen’s “Theorem A”, since for any fixed
object « € C the category /z is contractible: in the notation of Quillen (1973), the
natural transformations

o i ot id
(o~ =TT T) 2 (T =T+ —Tp, 2> z) — (T, 2> 7)) (1)

connect the identity functor to the constant functor on ¢/z with value (z,z i z) (or
more explicitly, with value ((0, ), z %5 z)).

We now associate to each abelian sheaf A on the classifying space BC a contravari-
ant functor y(A) from AC into abelian groups:

Y(A): (AC)” — Ab .

For each object (n,a) of AC as above, there is an associated map from a copy Al of
the standard n-simplex A™ into the classifying space, denoted

ot AL = BC.

Furthermore, if u : (n,a) — (m, B) is an arrow in AC then u : {r] — [m] induces an
affine map (again denoted) u : A7 — AF between standard simplices, for which

TEOu = Ty .
Now define the functor y(A) on objects by

1(A)(m,0) = DAL, 73(4)) .
An arrow u : (n,a) — (m, 8) induces a homomorphism

(A7, 73(A)) - T(AL

al

w'rhA) & T(AT, niA),

and this defines v{A) on arrows.

This construction is of course functorial in A. In other words, denoting (as in
Chapter I, Section 4) the category of abelian sheaves on BC by AW Sh(BC)), and the
category of abelian presheaves on AC by Ab(B(AC)), we have a functor

v 1 Ab(Sh(BC)) — AWB(AC)). (2)

This functor is evidently left-exact. Its right-derived functors RIy are described by
the following lemma.
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2.1. Lemma. For any q > 0 and any abelian sheaf A on BC there is a canonical
isomorphism

RIy(A)(n, a) & H(AZ, w3(A)).

o o

Proof. Define for each abelian sheaf A on BC a functor H(A) : (AC)°? — Ab, by
H:(A)(n,a) = HI (AL, 75(A)). Then clearly a short exact sequence 0 — A’ — A —
A" — 0 of abelian sheaves induces a long exact sequence - -- — H"(A') — H"(A) —
H* (A"} — H™(A’) — --- . Furthermore, if A is an injective sheaf on BC, its re-
striction to the closed subset 7,(A%) C BC is soft, so H(w,(AZ), A) = 0 for ¢ > 0.
Now 7, (A7) is a possibly degenerate n-simplex, and 7, : A" — 7,(A?) is a proper
map with contractible fibers, so (by “proper base-change”, Godement (1958), p. 202)
Hi(AL,7%(A)) = HY(mo(AT),A) = 0. This shows that H(A) = 0 whenever A
is injective and ¢ > 0. By uniqueness of derived functors, there is an isomorphism
HI(A) = R?y(A), natural in A. This proves the lemma.

Thus, for suitable sheaves A, the cohomology groups HY(BC, A) of the classi-
fying space BC can be computed in terms of the cohomology of the category AC (cf.
Chapter II, Section 6):

2.2. Corollary. If A is a sheaf on the classifying space BC with the prop-
erty that HY (A%, 7%(A)) = 0 for each n-simplex A" — BC, then there is a natural
isomorphism

H(BC,A) = HY(AC,~A).

The corollary applies in particular when the sheaf A on BC is locally constant. It
also applies to a slightly larger class of “pseudo-constant” sheaves, defined as follows.
Let A™ be a standard n-simplex, and let 8, : A"™! < A™ be the inclusion of the last
face. By recursion on n, we first define a sheaf A on A™ to be pseudo-constant if A
is constant on A™ — d,(A™"1), and if the restriction of A to this last face A*~1 C A"
is a pseudo-constant sheaf on A™~1. Then a sheaf A on BC is defined to be pseudo-
constant if for any n-simplex a = (zo < --- & z,.) of Nerve(C), with corresponding
map 7, : A} — BC, the sheaf A restricts to a pseudo-constant sheaf 7%(A) on A™.

2.3. Lemma. If A a pseudo-constani sheaf on A™ then HY(A™, A) = 0 for
each ¢ > 0.

Proof. By induction on n. The case n = 0 is clear. Suppose the lemma holds for
n — 1. Let {U;}2, be a fundamental system of open neighbourhoods of the last face
0, (A™1) C A™ Let V = A" — O,(A™1). For a suitable choice of the U;, the sets
V and V N U; are contractible, while the sheaf A is constant over V and VN U;. So
HY{(V,A) =0= HY(V NU,A) for ¢ > 0. Thus the Mayer-Vietoris sequence for the
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cover A™ = V U U; takes the form

0 — H°(A™ A) —» H°(U;, A) e H°(V,A) - HY(U;NV,A) —
— HY (A" A) — HYU;,,A) -0
. — HY(A" A)—> HY(U;,A)—>0.. .

Thus HY(A™, A) — H?(U;, A) is an isomorphism, for each ¢ > 0 and each 7. But, by
compactness of 9,(A"""), one has lim H*(U;, A) = H1(8,(A™ 1), A), and the latter
group vanishes for ¢ > 0, by the induction hypothesis for A™~!. Thus H¢(A", A) =
lim H*(U;, A) = 0 for ¢ > 0, as required.

2.4. Corollary. For any pseudo-constant sheaf A on BC, there is a natural
isomorphism HY(BC, A)SHY(AC,~vA), for all ¢ > 0.

Analogous descriptions apply to topological categories. For a topological category
C, one can form the simplicial space Nerve(C), where a point of the space Nerve,(C)
of n-simplices is denoted

a:(zo<a—1m1+—~--<"—"zn),

as before. The classifying space BC is defined by the (thickened) realization, as
BC = |Nerve(C)|.

For such a topological category C, recall from Chapter II, Section 7 the topologi-
cal category A,,(C) of simplices, and the associated continuous “first vertex” functor

v :AL(C)— C.

Lemma 2.5. For any topological category C, the continuous functor ¢ : A, (C) —
C induces a weak homotopy equivalence of the classifying spaces BA,,(C) = BC.

The proof of this lemmais based on a suitable topological version of Quillen’s Theo-
rem A (Quillen(1973)). To state this version, let 1y : D — C be any continuous functor
between topological categories. For an arbitrary map of spaces f : X — Cg, thereis a
new topological category /X . Its objects are the triples (z,u,y) wherey € Do,z € X
and u : ¥(y) — f(z) is an arrow in C. Its arrows o : (z,u,y) — (z/,u',y’) only exist
if £ = z', and are arrows a : y — y' in D for which v’ o (@) = u. This category
1/ X is equipped with the evident topology: the space of objects (v/X )o is the fibered
product X x¢, C; X¢, Do, and the space of arrows (10/ X ); can similarly be represented
as a fibered product.

Now consider the special case where X is the space Nerve,(C) of n-simplices in a
given topological category C, and where f : X — Cg is the “last vertex” map

A : Nerve,(C) — Co,

sending an n-simplex (zo «— -+ < z,) to z,. Using the general properties of the
thickened geometric realization mentioned in the previous section, Quillen’s proof
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(op. cit.) now carries over verbatim, to show that if the given continuous functor
9 : D — C has the property that, for each n > 0, the evident projection

€n : B(¢/Nerve,(C)) — Nerve,(C)

is a weak homotopy equivalence, then so is By : BD — BC.

Proof of lemma. Apply these considerations to the particular functor ¢ :
Am(C) — C in the statement of the lemma. For each n > 0, we may view Nerve,(C)
as a topological category with identity arrows only, and there are explicit continuous
functors

;-cp/Nerven(C) (;"—_’ Nerve,(C),

such that €, o v, = id, and such that there are explicit continuous natural transfor-
mations ¢td — T, «— v, 0 €,, exactly as in the proof of Proposition I1.7.6. By the
homotopies produced by these natural transformations, the map B(p/Nerve,(C)) —
Nerve,(C), induced by &,, is a homotopy equivalence. Since this holds for each
n > 0, the topological version of Quillen’s Theorem A, just described, yields that
By : BA,(C) — BC is a weak homotopy equivalence. This proves Lemma 2.5.

Recall from Chapter II, Section 3 the construction of the classifying topos BC of
C-sheaves for a topological category C, and its associated category Ab(BC) of abelian
C-sheaves. This applies in particular to the topological category A, (C), to give an
abelian category Ab(BA,,(C)). For the category Ab Sh(BC) of abelian sheaves on

the classifying space, there is again a functor
7 : Ab Sh(BC) — Ab(BA,.(C)), (3)

similar to the one for a discrete category C in (2). Indeed, consider for each n > 0
the evident continuous maps

Nerve,(C) x A" > BC

""l (4)
Nerve,(C).

Here p, is simply the projection, while 7, is the map X,, x A™ — | X|™ < | X| which
exists for any simplicial space X. Then for each n > 0, one obtains a sheaf

A" = (pa). m7(A)
on the space Nerve,(C). These sheaves together define a sheaf

’Y(A) =def Z A(”)

n>0
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on the space 3,50 Nerve,(C) of objects of A, (C). Furthermore, this sheaf v(A)
carries a natural continuous action (from the right) by the arrows of A,,(C). At the
level of the stalks, this action is explicitly described as follows: Consider an arrow

u: (n,@) = (m,B) in An(C), where a = (zo <~ -+ <> z,) and 8 = (yo S

e Ym); 80 u : [n] — [m] is a strictly monotone function with the property that
u*(B) = a. Let A% C Nerve,(C) x A™ be the copy of A™ corresponding to «, and
similarly for A} C Nerve, (C) x A™. Then u induces an embedding u : A} — AR
for which 7, o u = 7,. Hence u yields a homomorphism

u*: T(AF, 7, (A)) = T(A}, 7.(A)). (5)

n

Since pn, in (4) is a proper map, the group T'(A7, 7, A) is precisely the stalk of y(A)
at (m,); and similarly for (A7, #>A). So (5) may alternatively be written as a

arn

homomorphism
u Y (A)ms) = (A ne)-
This defines the action by the arrow « on the sheaf v(A). It is readily verified that
this action is continuous.
This construction, of the abelian A,,(C)-sheaf v(A) from the abelian sheaf A on
the space BC, defines the functor v announced in (3). It is clearly a left-exact functor.
Its right-derived functors can be described in a way analogous to Lemma 2.1.

2.6. Lemma. Let C be any topological category. For the stalks of the right-
derived functors of the functor v : Ab Sh(BC) — AWBA,(C)), there is for each

abelian sheaf A on BC a natural isomorphism
Rq'Y(A)(n,a) = Hq(AZ’ A)7

for any point (n,a) in A, (C). (On the right, A is identified with its restriction to
Ar C BC.)

Proof. Define for each ¢ > 0 and each abelian sheaf A on BC an abelian A, (C)-
sheaf H9(A), as follows. For each n > 0, let H(A)™ be the sheaf on Nerve,(C)
defined as

HH(A)™) = Rip,. (7, A), | (6)

where p, and m, are the maps described in (4). Since p, is proper, the stalk of
H?(A)™ at a point (n, a) of Nerve,(C) is given by

(n,o

HUA)D, = HY(AL A). (7)

Much as for the construction of the A,,(C)-sheaf A, one can now define an explicit ac-
tion by A,,(C), on the sheaf HI(A) := ¥, H?(A)™ over the space 3,50 Nerve,(C)
of objects of A,,(C). This defines a functor H? : Ab Sh(BC) — Ab(BA,(C)), for each
g > 0. Exactly as in Lemma 2.1, these functors H? have the exactness and effacing
properties which uniquely determine the right derived functors Réy. Therefore there
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is an isomorphism H?(A) = Riy(A), natural in A. The isomorphism in the statement
of the lemma now follows by (7).

Analogous to 2.4, one obtains the following immediate consequence.

2.7. Corollary. For any topological category C and any pseudo-constant abelian
sheaf A on the classifying space BC, there is a natural isomorphism

HY(BC,A) = HY(BAL(C),v(A)),

for each ¢ > 0.

§3 Geometric realization by cosimplicial topoi

In this section we will consider analogous geometric realization functors, which take
values in topoi rather than in spaces. This realization uses cosimplicial topoi. For
example, if Y is a cosimplicial space (i.e., a covariant functor from 4 into spaces),
then n — SA(Y™) is a cosimplicial topos.
If D is a cosimplicial topos and X is a simplicial set, one can form a “tensor
product”
IXloy =X D

which can again be constructed by iterated pushouts, as
, . - \(k
| X|p) =lim_|XI(3) , (1)
where |X[§;3)) is defined from |X|:’{,_)1) by the pushout of topoi (cf. Chapter I, Section

3)
ZIGX,(C"“) oD* S Zzexind) Dk

| |

k— k
X ({5, 1X[(3).

Here the boundary D* is constructed by forming suitable pushouts of faces in the
category of topoi. For example, D' = D° 4+ D°, and 8D? is a pushout of three copies
of D!, constructed by the two pushouts squares

2!

° D!

D' —5Dlyp — 9D?

P

DY+ D —— D1,
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This defines |X|§;)) from lX|EkD;1) for k > 0. The construction starts off by IXI?;J)) =
EIGXO DO

We will not use this construction for a general cosimplicial topos D, but only
in the case where J is a topological interval as above with associated cosimplicial
space A(;) of standard simplices, and D' is the associated cosimplicial topos Sh(A(;))
of sheaves. For a simplicial set X, one thus obtains a topos-theoretic realization with
respect to the interval J, denoted || X||:

1Xlls = X ® Sh(A{y))- (3)

(So the notations (1) and (3) are related by | X|[; = IXls"(AU))
[[X1{ls is thus explicitly constructed using colimits and pushouts of topoi, as

.} This realization

I1X11s = lim JIX1I5 (4)

where ||X||(JO) = Yeex, SH(Afy), and ||X[[(Jk) is constructed from ||X||(Jk_1) as the
pushout

Zrexl(‘nd) aSh(AfJ)) —_— Erexind) Sh(Afj))
1 1 (5)
Il x| % l1x 1%

Note that || X||; depends functorially on J, just as the topological realization X/
does (cf. Remark 1.1).

As an example, we consider this topos theoretic realization ||X ||z of a simplicial
set X with respect to the Sierpinski interval ¥ (cf. Example 1.2). Recall that

0o __ 1 2 2
A(E) - pt’ A(E) =X ) aA(E) = A():) g s
Taking sheaves gives a cosimplicial topos
S = Sh(Ay)), Sh(Afg), Sh(AD),...

The realization using this cosimplicial topos doesn’t collapse as quickly as its topolog-
ical counterpart in Example 1.2, because the boundary operator @ does not commute
with the operation of taking sheaves. Indeed, Sh(A%E)) is the category of triples
(Eo, Ex, 1 Eg — Ey), where Eg and E; are sets and «a is a function. Next, 0Sh(Afg,)

is the category whose objects are of the form (Ey, E1, Ey, o, 1, 2) where o; are

E,
7N z

E27

functions as in

Eo

ay

but this triangle need not commute. On the other hand, Sh(A?E)) is the category
whose objects are commuting triangles of the form (6). For n > 3, one again has
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OSh(Aly)) = Sh(0AT;)) = Sh(Afg)). Note that this example also shows that
OSh(Ay)) — Sh(Al;) need not be an embedding of topoi.

Now let X be a simplicial set. In Example 1.2 we described the topological realiza-
tion [ X|(xy with respect to the Sierpinski interval. The topos theoretic realization is
not the category of sheaves on this topological realization. To see this, let us compute
| X||z by iterated pushouts. First, || X||& is the category of Xo-indexed sets, with
typical object denoted E = {E.}.ex,. Next, ||X]|§:1) fits into a pushout

Ez_exgnd) 6Sh(A%E)) e EI€X§nd) Sh(A%E))

| |

() 1
IxE X1,
The topos on the upper right of this diagram is the category of Xl(nd)—indexed families
of sheaves on %, i.e. families of functions F = {a, : Fyo — val}xex(nd). The
1

topos on the upper left is the category Xl("d)—indexed families of pairs of sets F' =
{(Fr0, Fz1)} cxno- Thus a typical object of the topos 1X]1$ is a triple (E, F,9),
1

where E = {E,}sex, is an indexed family of sets (an object of || X[}, and F = {a :
Foo— nyl}xex(nd) is a family of arrows, while § provides isomorphisms
1

01,0 : Fz,() = Edlz‘ 3 01,1 : Fr,l = Edor )

for each =z € Xl(nd). In other words, ||X||g) is equivalent to the category with as
typical object a pair (E, &), where E is a family of sets { E, }.cx, and a gives for each
non-degenerate z € X; a function

oy Egp — Egyr .

(As a notational convention, we may, for z € X; degenerate, define a, to be the
identity: Ey,, = Ey,; .) In the next stage, ||X|[g) is constructed as the pushout

T OSh(Aly)) —> T Sh(0AY,)

l |

X X9

An explicit computation, based on the description of pushouts in Chapter I, Section
3, and similar to the computation of || X|| just given, shows that the pushout-topos
]]X”g) is equivalent to the category of pairs (£, «), where £ = {E,},¢x, is an indexed
family of sets, o is an indexed family of functions o, : Eq, — E4, (all z € X)),
where o, = identity if z is degenerate, and moreover such that for any y € Xé"d) the

E!Il
Ey,

Cdyy

triangle

]
E!/27
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commutes. (Here yo denotes the zeroth vertex yo = dydyy = didyy of y, and similarly
y1 = dodyy = dydyy and y; = dodoy = dodry.) Since BSh(AfE)) = Sh(AfE)) for
k > 3, the sequence of iterated pushouts in the construction of || X||z stops here, and
1 X]|ls = ||X||g) is the category of such triples (£, a).

For the special case where the simplicial set X is the nerve of a small category C,
with typical n-simplex of the form

fl fn
Co— C &+ & Cpn
the realization || Nerve(C)||x is precisely the category of contravariant functors from C
into sets, as is clear from the explicit calculation of [|X||s just described. We record
this in the following theorem.

3.1. Theorem. For any small category C, there is a natural equivalence of
topoi
|INerve(C)||z = BC.

Just as for the ordinary geometric realization considered in the previous two sec-
tions, there is an analogous “thickened” topos theoretic realization |X|p- for any
simplicial space X and cosimplicial topos D', constructed as the tensor product of
topoi Sh(X,)®D". (It is thickened, in the sense that the tensor product is now taken
over the subcategory 4,, C A consisting of injective functions only.) For the special
case where D" = Sh(A;)) for a topological interval .J, we will again denote this topos
by |[X|[s. More concretely, and parallel to the case of simplicial sets, this topos || X||s
is constructed as a colimit of topoi || X||; = 1i_1p||X||‘f% where ||X||(JO) = Sh(Xy), and

where || X || is constructed from || X||¥" as a pushout of topoi

Sh(X:) x OSh(AL,)) — = Sh(Xi) x Sh(Ak))
(J} (1}

| | o

x> 1x1%,

This is completely analogous to (3)-(5) for simplicial sets, except that, first, the topol-
ogy of the spaces X; is taken into account, and, secondly, we do not restrict to the
subspaces X,End) C X} of non-degenerate k-simplices. These modifications are exactly
the same as for the topological thickened geometric realization in Section 1.

As an example, consider again the case where J is the Sierpinski space £. For
a simplicial space X, the calculation of the topos || X||s proceeds exactly as for the
case of a simplicial set. In particular, for a topological category C one can apply this
calculation to Nerve(C), to obtain the following result for the topos BC of quasi-C-
sheaves, described in Chapter 11, Section 7.

3.2. Theorem. For any topological category C, there is a natural equivalence
of topoi
|INerve(C)|lz = BC.
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Observe that, since ||Nerve(C)||s is defined as a “thickened” topos theoretic real-
ization, the identity arrows in C are treated as ordinary arrows. This explains the
occurrence in Theorem 3.2 of the “thickened” classifying topos BC instead of the
standard one BC. Recall from Chapter II, Proposition 7.7 that BC is a natural de-
formation retract of BC.

§4 Sheaves and geometric realization

For a simplicial space X, one can construct the topos Sh(|X|) of sheaves on the
geometric realization of X, but one can also first take sheaves for each space X, and
then take the topos theoretic realization (with respect to the standard unit interval
1), as discussed in the previous section. The purpose of this section is to relate these
two constructions. The topos theoretic realization [[X||; will simply be denoted by
X1

Let us consider the topos || X|| more closely. An object E of ||X]|| is a system
{E. : n > 0} of sheaves, where each F, is a sheaf on the product X, x A", and
these sheaves are required to be compatible, in the sense that for each n and each
t € {0,---,n}, there is an isomorphism (d; x 1)*(E,-1) = (1 x &)"(E,); in other
words, in the diagram below both squares are pullbacks.

En—l - C En

]

1x3;
Xpoy x Am1_EX1x A1 0 X AT

Now let S be any sheaf on the realization | X|, i.e. an étale map f : S — |X].
Consider for each n > 0 the canonical maps u, : X, x A™ - || X}|™ C || X|| (cf. (4) of
Section 1). Then S pulls back to a sheaf «(S) on X, x A™*, and (by commutativity
of Section 1, (4), and the definition of v, there) these sheaves have the required
compatibility property. In this way, we obtain a functor

Sh(IXD = IX N, S {ui(S)}nzo -

This functor evidently commutes with colimits and finite limits, since each u, does.
Therefore, it is the inverse image, part of a topos morphism

@ I X| = Sh(X]). (2)

Thus, by definition,
@ (Sh = (S) (n<0). (3)

Observe that the sheaf S can be reconstructed from these sheaves v (S) on X, x A™.
Explicitly, since f : § — |X]| is an étale map and |X| has the weak topology with
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respect to the filtration |X|® C |X|® C |X|® C .-, it follows first that S has the
weak topology with respect to its closed subspaces S© C S C §®) C ... where
S = f=1(]X|(™). Next, in the diagram

~ u3(5)
S(n—1) S
|
X, x 0A™! X, x A" ?
/ /
=) X[

the bottom square is a pushout by construction of | X|(™, while all vertical faces are
pullback squares. It follows that the top face (4) is also a pushout square. Indeed,
since X, x A" — | X|(™ is a quotient map, so is its pullback ux(S) — S™ along the
étale map S™ — |X|®™. Thus it suffices to prove that the top face is a pushout of
sets, which is easy.

It follows that for two sheaves S and 7 on |X|, a compatible family of sheaf
maps u5(S) — ui(T) induces a unique continuous map S — T of sheaves on |X|.
Thus, the functor ¢* in (3) is fully faithful; or, in other words, the topos morphism
@ ) X|| = Sh({]X]) is connected.

In the rest of this section, we will be concerned with the reverse construction,
of a sheaf on | X| from an object E of the topos || X]|, i.e. from a compatible family of
sheaves E,, on X, x A™. The construction is by pushouts similar to diagram (4). More
precisely, from the sheaves F, we construct a sequence of mappings E® |X|(”),
with the property that the two squares in the diagram

f(n—l)l J l (5)

1 X[(1) «—— X, x BA® > X, x A™.

are pullbacks, as follows. For n = 0, define E(® = E, with evident map to | X|©® = Xj.
Given E®1, define E™ to be the pushout of the two top horizontal maps in (5).
This defines a sequence of spaces and closed embeddings,

EOCEOCE® ... (6)

Define E to be the colimit of this sequence (i.e., the union, equipped with the weak
topology). Then the f(n) together define a map f: E — |X]|.

The problem now is that this map f : K — |X| need not be étale, i.e. E need
not be a sheaf. We will prove that E is a sheaf in two special cases: the first is when
each X, is a paracompact Hausdorfl space, or briefly, when the simplicial space X 1s
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paracompact Hausdorff. The second special case is where the sheaves E, on X, x A"
have a particularly simple form. The arguments for these two special cases are similar.

The first, paracompact Hausdorff, case is based on the following two lemmas. For
the first lemma, fix a paracompact Hausdorff space Y, and an increasing sequence of

closed subspaces
henc, Y=Y
n>0
Let p : F — Y be a continuous map, and write F = U, F, where F, = p~*(Y,).
Assume that Y and F carry the weak topology with respect to these filtrations {¥;}
and {F,}.

4.1. Lemma. For a map p: F — Y and filtrations Y =UY, and F=UF, as
above, if each restriction p, = p|F, : F,, = Y, is étale, then so isp: F =Y.

Proof. Clearly p : F — Y is an open map. For if U C F is open, then
p(U)NY, =p(Unp Y (Y,)) = p.(UNF,) is open in Y, because each p, : F, — Y, is
assumed open. Thus p(U) is open in Y.

Next, to show that p has “enough sections”, pick a point £ € F' and write y = p(¢).
Fix the smallest n with y € Y;,. By induction we will construct for each & > n a neigh-
bourhood Uy of y in Yi and a section s; : Uy — F of px with si(y) = € so that,

(i) Uka NYy = Ui,
(i1) sg41|Uk = s : Uy — F.

Starting with k£ = n, let » : V — F, be any section of p, defined on an open
neighbourhood V of y, with r(y) = £. (Such a section exists since p, is assumed to be
étale.) Let U, be a neighbourhood of y with y € U, C U, C V, and let s, = r|U,. By
paracompactness of Y1, the section s : Uy — Fp C Fi4q can be extended to a section
o : W — Fiy defined on an open neighbourhood W of U in Yipr (see Godement
(1958), p. 150). Let W; be an open set in Yy, with Uy C W, C W, C W, and define
Uy = Uy U (W1 — Yy). This set is open in Yi4q. Indeed, if O C Yiy, is any open
set with O N Y, = Uy, then Uy = (O N W) N Yy, s0 Uk = (O N Wy)U (W, —Y4).
Furthermore, since Upy1 € W we can define Skt1 ! Ueyr — Fryq to be the restriction
of o to Uyy1. This completes the definition of the open sets U, C Y, and the sections
si : Uy — F for all k > n. Now let

UZU Uk, S:USk:UHF.
k>n

k>n

Then s is a continuous section of p, since U NYy = Uy and s|(U N Yi) = s¢ is con-
tinuous for each k > n. Furthermore, s(U) C F is open, because for each k > n the
set sS(U) N Fr = s(U) N p'(Y%) =s(U N s'p7(Yi)) = s(Us) is open in Fj.
Then p : s(U) —» U and s : U — s(U) are mutually inverse maps, so p must be a
homeomorphism from the open neighbourhood s(U) of ¢ in F onto U. This shows
that p is étale, and proves the lemma.
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For the second lemma, consider, for a closed subspace A C Y of a given space
Y and a map f : A — B, the adjunction space Z = Y U4 B. In other words, the
square

A—L ~p

|

Y—Y U B=27

is a pushout. Then B is a closed subspace of Z, and the square is also a pullback
(fibered product). A typical open set in Z is constructed by starting with an open
U C B, and then choosing any open V C Y with VNA = f~Y(U). Then V+U CY+B
is saturated for the equivalence relation a ~ f(a) (for all @ € A) which defines Z as a
quotient of Y + B. Hence the image VU4 U of V + U in Z is an open set. We will
assume that Y and B are paracompact Hausdorff spaces. It then follows that Z is a
paracompact Hausdorff space as well. (Hausdorflness of Z is easy; for paracompact-
ness, see Michael (1957).)

4.2. Lemma. For ACY and f: A — B as above and for any diagram

F<—Dp2>G

l lp ]

Y*—-——’A—f"B

in which both squares are pullbacks, if p,q,r are all étale maps, then so is the induced
map
T=rUq :FUpG—->YUuuxB

of adjunction spaces.

Proof. In the square
F+G—FUpd(G

rta 1 l

Y+B—XUs B

both horizontal maps are quotient maps; so 7 is a continuous open map since r and
g are. To show that « is in fact a local homeomorphism, first note that B is a closed
subspace of YU, B and (Y Us B)~ B =Y — A. And similarly D is a closed subspace
of FUpG and FUp G — E = F — D. Thus 7 is a local homeomorphism over the open
subset (Y Uy B) — B. It remains to be shown that each point £ € 7~!(B) has an open
neighbourhood V; in Y such that 7|V} is a homeomorphism V5w (V;). To this end,
choose such a point £, write b = 7(£) € B, and use étaleness of the map ¢ to find an
open neighbourhood U of b in B and a section s : U — E through £. This section
pulls back to a section f#(s) : f~}(U) — D of the map p. Since f~*(U) is closed in
Y, we can now use paracompactness of Y to extend f#(s) to a section t : N — E of
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r on an open neighbourhood N of f~Y(U). Now let W = f~Y(U) U (N — A). Then
W is an open subset of Y, and W N A = f~}(U). So, as noted before the statement
of the lemma, W gives an open subset

Vi=Wu,UCYu,B.

Furthermore,
tUs : WU, U—- FUpG

is a well-defined section of 7 defined on V. Its image t U s(V') is open in ¥ Up G, since
tUs(V) = ¢(W)Up s(U) and (W), s(U) are open in F and G respectively, while
(WYND =t(W)nr (A = t(Wnt lrY(A) = t(WN A) = FA$)(FIU)) =
g ' (s(U)). Thus (¢ U s)(V) is the desired neighbourhood V¢ of £ on which 7 restricts
to a homeomorphism, with inverse t U s.

4.3. Remark. Keeping the notation and the assumptions of the preceding lemma,
both squares in the diagram

F—FUpG-——-@

Lk

Y —YUsB~——B

are again pullback squares. Indeed, one readily verifies that these squares are set-

theoretic pullbacks. But any commutative square of continuous maps

S—T

|

K—1L

which is a set-theoretic pullback and in which vertical maps are étale is also a topo-
logical pullback, since the map S — K x; T into topological pullback is a continuous
bijection between étale spaces over K, hence a homeomorphism.

Using these two lemmas, one concludes that the construction of the map £ — | X|
from an object E of the topos || X||, described around (5) and (6) above, in fact results
in an étale map, i.e. an object of SA(|X]). This shows that every object of || X|| is in
the image of the functor ¢* : Sh(]X|) — || X|| in (3) , and hence proves the following
theorem. Recall that ||.X|| stands for the topos theoretic realization || X ||; with respect
to the standard unit interval I.

4.4. Theorem. For any paracompact Hausdor[f simplicial space X, the mor-
phism o : | X|| — Sh{|X]) is an equivalence of topo:.

This theorem applies in particular to any simplicial set X, viewed as a simpli-
cial space with the discrete topology. For the nerve of a small (discrete) category C,
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we state this explicitly as follows.

4.5. Corollary. For any small (discrete) category C, there is a canonical equiv-

alence of topoi ||Nerve(C)|| = Sh(BC).

For application in the next chapter, we need to describe one more case where,
for an object E of the topos || X||, the construction of E — |X| actually yields an
étale map. Recall that such an F is a compatible system of sheaves E, on X, x A"
(for n > 0). For each point z € X, this sheaf thus restricts to a sheaf E,|({z} x A™)
on the standard n-simplex. If, for each n > 0 and each point z € X,, this restricted
sheaf is a pseudo-constant sheaf on A™ (cf. Section 111.2) then we call E itself pseudo-
constant. (Note, however, that these sheaves E, on X, x A" are allowed to vary
arbitrarily in the X,-coordinate.)

4.6. Proposition. For any simplicial space X, each pseudo-constant object E of
the topos || X|| is contained in the image of the functor ©* : SA(|X|) — || X||.

Proof. In the proof, we will, for any étale map g : Z — Y, call an open set
U C Z small if g restricts to a homeomorphism on U. Exactly as in the proof of
Theorem 4.4, we will show that the map f : £ — |X| is a local homeomorphism; but
now we use that E is pseudo-constant, rather than paracompactness of X. Recall
that £ is constructed as a colimit of spaces E© C E® C ... equipped with maps
f(n) : E® — |X|™). Suppose, for the moment, that it has been shown that each of
these maps E™ — |X|™ is étale; and that, moreover, for each each “small” neigh-
bourhood U,_; in E™=1 there exists a small neighbourhood U, in E®™ such that
U, N E®=1 = E™_ Then it will follow that E — |X]| is étale, with small neighbour-
hoods of the form (JU, for such a sequence {U,}, exactly as in the proof of Lemma
4.1. Tt thus suffices to prove for each inclusion E(*=1 C E(M that if £~ — | X|-1)
is étale, then E(™ — |X|(™ is also étale and moreover has this extension property for
small neighbourhoods.

For this, let U = U,_; € E® 1 be a small open set. Since both squares in (5)
are pullbacks, U,_, pulls back along X,, x dA™ — | X|(*™V) to a small neighbourhood
U' of E,|(X, x OA™). In other words, U’ corresponds to a section s of E, defined
on an open subset V of X, x 3A". Let b be the barycenter of A", and define the
(open) cone C(V) C X, x A™ to be the set of points (z,t) € X,, x A™ for which there
are a € [0,1) and t' € DA™ so that (z,#) € V' and t = ¢ t' + (1 — a)b. Since E, is
assumed pseudo-constant, there is a unique extension of the section s to a section 3§
on C(V). The image of 5 defines an open set W C E,. Consider now the pushout
square defining E(™ from E(=1 (cf. below (5)):

E.|(X, x 0A™) > E,

j lb

fn-1) s )
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Then the open set W just defined has the property that :™'(W) = a~*(U), and
hence defines (by the description of the pushout-topology just before the statement of
Lemma 4.2) a unique open set U, of E(™ so that j='(U,) = U = U, and b~1(U,) =
W. Furthermore, exactly as in the proof of lemma 4.2, the map E™ — | X|(® restricts
to a homeomorphism on U,. Thus, as for Lemma 4.2, this proves that E®™ — |X|
is étale, and shows at the same time that the small open set U,_; € E®V can be
extended to a small open set U, C E(, as required above.
This proves the proposition.



Chapter IV

Comparison Theorems

§1 Discrete categories

In this chapter, we will derive several theorems providing a homotopy theoretic
comparison between classifying topoi and classifying spaces. We will begin with the
relatively easy case of comparing the classifying space of a small category to the topos
of presheaves on that category.

Let C be a small (discrete) category, with topos of presheaves BC as described in
Section 2 of Chapter I, and with classifying space BC as described in Section 2 of
Chapter II1. The general approach to geometric realization provides a map comparing
these two constructions. Indeed, for the simplicial set Nerve(C) one can construct its
topos-theoretic realization, both with respect to the standard unit interval I = [0,1]
and with respect to the Sierpinski interval ¥. For the first realization, Corollary 4.5
of the previous chapter states that

[INerve(C)|l; = Sh(BC),
while for the second realization, Theorem 3.1 of that chapter states that
|[Nerve(C)||z = BC.

The evident continuous map of intervals p: I — I, defined by

PRI

, t>0,

thus induces a morphism of topoi, (again) denoted p : ||Nerve(C)||; — ||Nerve(C)ljs,
or equivalently

p: BC — BC.
(Here we follow the convention in Section 1.2 of identifying a space with its topos of

sheaves.)

1.1. Theorem. For any smell category C this map p : BC — BC, from the

classifying space to the classifying topos, is a weak homotopy equivalence of topot.
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Before proving the theorem, we should give a more explicit description of the
inverse image functor p* : BC — Sh(BC) of the morphism p occurring in the state-
ment of the theorem. For an object S of BC, i.e. a functor S : C? — (sets), one
may picture the sheaf p*(S) on BC as built up in stages, following the filtration of
BC by its skeleta BC(™, The space BC(® is the set of objects of C, equipped with
the discrete topology. Then p*(S)® is the sheaf on BC(® which has the set S(c) as
stalk over an object ¢ € C. Next, for each non-identity arrow o : ¢; — ¢ there is a
1-simplex A}, C BC, with endpoints ¢y and ¢;. The restriction of p*(S) to this copy
Al is constant over Al — {co}, with stalk S(c;), while the stalk S(co) over ¢ is glued
to this constant sheaf over Al — {co} via the map S(a) : S(co) — S(e1):

z z € S(e1);,2 € S(co),
S(e)(y) = r = S(a)(z).

oo —— oy
AL

Next, for a pair of (non-identity) arrows @ = (co €& ¢; € ¢;) there is a 2-simplex
A? C BC, with vertices cg, ¢;, ¢c; and faces corresponding to a;, oy and oy 0 az. The
restriction of the sheaf p*(S) to this 2-simplex A? is constant over the complement in
AZ of the face 9;(A2) (this is the face corresponding to o, opposite ¢;), with stalk
S(ez). Over the face 95(A2) = A} the sheaf p*(S) has already been described. These
two parts are glued together to produce a sheaf on AZ, by using the restriction maps
S(eg) — S(c2) and S(c1) — S(c;) given by a; 0 a; and by ;. More generally, given
the sheaf p*(S)"™Y on BC("~V, this sheaf is extended to a sheaf p*(S)*) on BC™
as follows: BC(™1V) is a closed subspace of BC!™, with inclusion map i, : BC(*~1) —
BC| say. Write Y, for the open complement BC™ — BC(~1  with inclusion
map j, : Y, — BC™. The space Y, is a disjoint sum of interiors of n-simplices
A?, one for each non-degenerate n-simplex a = (cp ¢ ¢; « --- € ¢,). Define a
locally constant sheaf L, on Y, = U, Int(A?), which is constant over Int(A%) with
stalk S{c,) (where c, depends on ). Now glue this locally constant sheaf L, on
Y, to the sheaf p*(S)("~1 already constructed, by “Artin glueing”, using the map
p*(S)" ™ - i,.52(L,) defined in the evident way from the operators S(a;o---oay):

S(c;) — S(cn), for each a = (¢g & - -+ &2 ¢,) as above.
There are two properties of the sheaf p*(S) on BC that we will use. First, p*(5)
is a pseudo-constant sheaf on BC. Secondly, for any n-simplex o = (¢ «— -+ « ¢,)

with associated map 7, : AT — BC as in Section I11.2, there is a natural isomorphism
I'(AZ,72(5) = S(co)- (1)

These two properties are obvious from the description of p*(.S) just given.
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Proof of Theorem 1.1. If the category C splits into connected components
as C = Y C;, then BC is the sum of the connected spaces BC;, while BC is the
sum of the connected topoi BC;. From this it is clear that p induces an isomorphism
mo(BC) = mo(BC).

To prove that p induces an isomorphism of fundamental groups, it suffices to show
that the functor p* : BC — Sh(BC) restricts to an equivalence of categories on
the full subcategories of BC and Sh(BC) consisting of locally constant objects. An
object S of BC is locally constant precisely when for each arrow o : ¢ — d in C
the operator S(a) : S(d) — S(c) is an isomorphism, i.e. S is morphism-inverting.
And a sheaf E on BC is locally constant precisely when E is a covering projection.
But there is a standard equivalence of categories p : {covering spaces of BC} —
{morphism—inverting functors C°? — (sets)}, considered in Gabriel-Zisman(1967)
and Quillen(1973). For a covering space E — BC, the functor p(F) : C? — (sets)
sends an object ¢ to the fiber of E over ¢ (viewed as a 0-simplex of BC); the action
of an arrow a : ¢ = d in C on p(FE) is defined using path-lifting in E. One readily
verifies that p* and p are mutually inverse functors, up to natural isomorphism, thus
providing the required equivalence between categories of locally constant objects.

Next, we note that p induces isomorphisms in cohomology with locally constant
coefficients. Let A : C” — Ab be a morphism-inverting functor into the cate-
gory of abelian groups. We claim that p induces an isomorphism H*(BC, A) —
H*(BC,p*A). (Recall from Proposition 11.6.1 that H*(BC, A) is the same as the
cohomology H*(C, A) of the category C.) Consider the diagram of functors

AB(BC) —2> Ab Sh(BC)

e,

AL(B(AC)).

Here v is the functor defined in (2) of Section III.2, and ¢* is induced by the “first
vertex” functor ¢ : AC — C described there. By (1) above the diagram commutes,
up to natural isomorphism. But p*(A) is a pseudo-constant abelian sheaf on BC, so
7 induces an isomorphism H"(BC,p~A) — H"(B(AC),vp*A) as in Corollary 111.2.4.
If A is moreover locally constant (morphism-inverting), then ¢* also induces an iso-
morphism H*(BC, A) — H*(B(AC),»*A); indeed, the Leray spectral sequence of
Chapter II, Remark 6.3, collapses since each comma category /c is contractible (cf.
(1) of Section II1.2). By the isomorphism ¢p*A = ~p*A, we conclude that p induces
an isomorphism H*(BC, A) > H*(BC,p*A), as claimed.

The theorem now follows from the toposophic Whitehead theorem stated in Sec-
tion 1.4.

Recall from Chapter II that for a small category C and a space X, the collec-
tion of concordance classes of principal C-bundles is denoted k¢ (X).

1.2. Corollary. For any small category C and any CW-complex X, there is
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a natural isomorphism

1R

ke(X) = [X, BC).

Of course, for a group G (viewed as a one-object category) this result specializes
to the classical result that BG classifies principal G-bundles. For a monoid with can-
cellation, one recovers Segal’s theorem (cf. Chapter II, Example 2.1(b)).

Proof. The corollary is a direct consequence of the existence of the weak homo-
topy equivalence of Theorem 1.1. Indeed, since p : BC — BC induces isomorphisms
of homotopy groups =,(BC,z) — =n¢/(BC,px) for any point z in BC, a standard
argument (using induction on the cells of X') shows that for any CW-complex X the

map p induces an isomorphism
[X,BC] & [X, BC].

The corollary now follows by composing this isomorphism with that of Chapter II,
Corollary 2.4.

§2 s-Etale categories

Recall that a topological category C is said to be s-étale if its source map s : C, — Cq
is étale, i.e. a local homeomorphism. In this section, we will extend the comparison
between the classifying space and the classifying topos (Theorem 1.1) to such s-étale
categories.

For an s-étale category C, the construction of a map BC — BC, from the classi-
fying space to the classifying topos, is somewhat more involved then the construction
for a discrete category in the previous section. Exactly as there, the functoriality of
geometric realization provides a natural topos morphism

P ||[Nerve(C)||; — |[Nerve(C)|lx, (1)

relating the realizations for the unit interval and for the Sierpinski interval. Fur-
thermore, by Theorem 3.2 of Chapter II, the Sierpinski realization is the topos of
quasi-C-sheaves,

|INerve(Clls = BC, (2)

of which the classifying topos BC is a natural deformation retract by Proposition 7.7
in Chapter II,

_ K4
BC ==BC. (3)
Next, by Theorem 4.4 of Chapter II the natural map

@ : [|[Nerve(C)||; — Sh(BC) (4)
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is an equivalence if C is paracompact Hausdorff. Thus, for such a paracompact Haus-
dorff s-étale category C, the above maps compose to give a canonical map p making
the diagram

wT ¥ (5)
[Nerve(C)||; —; BC

commute up to natural isomorphism. But even without the assumption that C is
paracompact Hausdorff, there is a topos morphism p : Sh{BC) — BC, unique up to
isomorphism, such that ¥p = py as in (5). Indeed, from the explicit construction of
the morphism p, it is not hard to see that every object in the image of the functor p*
is pseudo-constant (cf. the discussion following Theorem 1.1). Thus, by Proposition
4.6 of Chapter III, there is for every object S of BC a sheaf E on BC - unique up
to isomorphism — with the property that p*S = *F. Since the morphism ¢ is
connected (i.e. ¢* is full and faithful), a choice of such a sheaf E for every object S
will give a functor ¢* : BC — Sh(BC) such that "¢ = p*. Since ¢~ is faithful
and ¢*¢* commutes with colimits and finite limits, so does ¢*. Thus ¢* is the inverse
image of a topos morphism ¢ : Sh(BC) — BC with the property that go = p. Now
the morphism , defined as p = ¢q, completes the diagram (5) as required.

We can now state and prove the analogue of Theorem 1.1. We assume that the
topological category C is locally connected, so that, by Lemma 7.1 of Chapter II, the
classifying topos BC is also locally connected, as required for the construction of the
étale homotopy groups {cf. Section I.1).

2.1. Theorem. For any locally connected s-étale topological category C, the
natural morphism

p: BC - BC

s a weak homotopy equivalence.

Proof. The proof follows roughly the same pattern as for the discrete case, cf.
Theorem 1.1. Thus it will be shown that j5 induces isomorphisms in 7o, in cohomology
with locally constant coefficients, and in the fundamental group. The theorem then
follows by the toposophic Whitehead Theorem.

First, that p induces an isomorphism xo( BC) = 7y Sh(BC)Smo(BC) is clear. Next,
to see that p induces isomorphism in cohomology, note first that any abelian C-sheaf
A induces a pseudo-constant sheaf p *(A), as in the construction of the morphism p
above. With the notation of the previous section, it follows by Lemma 2.3 of Chapter
[II that H?(A7Z,5*A) = 0 for each ¢ > 0, and for each point a € Nerve,(C). Thus, by
Corollary 2.4 of Chapter 111, there is an isomorphism

HI(BC,p"A) =2 HY(B(A,C),vp"A)

for any ¢ > 0. If furthermore A is locally constant, then Proposition 7.6 of Chapter
II gives an isomorphism HY(BC, A) = HY(B(A,,C),p"A). Since ¢* = ~yop * as
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in the proof of Theorem 1.1, it follows that for such a locally constant A the topos
morphism p induces an isomorphism HY(BC, A) = HY(BC,p"A).

Finally, we show that p induces an isomorphism m1(Sh(BC)) — = (BC), for any
chosen (but not explicitly written) base-point in BC. For this, it suffices to show
that p * : BC — Sh(BC) restricts to an equivalence of categories between locally
constant objects in BC and covering spaces of BC. To this end we give an explicit
description of the locally constant objects in BC, viz. as the invertible C-sheaves S
for which the sheaf projection p : § — C, is a covering projection. Indeed, in the
proof of Lemma 7.2 of Chapter II it was observed that if S is locally constant then S
must be “invertible”, since S restricts to a covering space p*(S) on ¥ x C,. The same
argument shows that p : S — Cg is a covering projection, since p is the pullback of
#*(S)o along the map u : Co — C; which associates to each x € Co its identity arrow
u(z). Conversely, suppose that S is an invertible C-sheaf for which p is a covering
projection, say with fiber the set F'. Then there is an étale surjection o : U — Cq for
which there exists an isomorphism 8 : F' x /58 x¢, U over U. To show that S is
locally constant as a C-sheaf, we need to produce a similar C-equivariant isomorphism.
To this end, consider the sheaf U® whose points are pairs (y,«), where y € U and
a: z — o(y) is some arrow in C. In other words, U€® is the fibered product U x¢,C;.
This space U® is a C-sheaf, when equipped with the sheaf projection sty : U — Cg
sending a point (y, ) to the source s(ar), and with action by C given by composition.
(Note that the map s is indeed étale since s : C; — Cp and o : U — C, are.) Now
since .S is invertible, the action induces an isomorphism

w: S Xg, C1 — Cixe, S, w(s,a)=(a,s-a).
The inverse of w may suggestively be written as
1

(,8) — (s-a ' a).

(although there is no such thing as an arrow o). One can now define the desired
isomorphism of C-sheaves

pAF)xU® - §xU®

(where the product is that of C-sheaves), where A(F) is the constant C-sheaf F' xCy —
C, with trivial C-action, as follows: a point in A(F) x U® is a quadruple (e, z,y, @)
where e € F, 2 € Cp, y € U and a :  — o(y); define

[)(6, T, Y, a) = (7{'19(6, U) " Q (y» a))
This map p is C-equivariant, since for any arrow §: &’ — z in C we have

ple,a',y, a0 B)
(m10(e,y) - aB, (y,af))
(1,0

p((e,m,y,a) ) ﬂ)

1 (67?/) ' a1(yva)) ’ ﬁ
[(67.7:,:‘/,&)'/[;.

I
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Furthermore, p is an isomorphism, with inverse defined, for s € S, y € U and o :
p(s) =y, by

P (s, (y,0)) = (07 (s - a7, y), pls), 4, ).
With this explicit description of locally constant C-sheaves, the equivalence between
the category of such and the category of covering spaces of BC is clear: In one
direction, the functor p * : BC — Sh(BC) sends locally constant C-sheaves to cov-
ering projections of BC, since any inverse image functor preserves locally constant
objects. In the converse direction, any such covering space £ — BC pulls back along
Co — BC to a covering space of Cg, equipped with an invertible C-action via the map
[0,1] x C; — BC. This defines a functor pr from covering spaces of BC into invertible
C-sheaves, i.e. into locally constant objects of the topos BC. These two functors p,
and p * together provide the required equivalence of categories.

This completes the proof of the theorem.

2.2. Remark. For the case where C is an étale topological groupoid, as in
I1.4.4, Theorem 2.1 can be proved more easily, by a direct comparison of hypercovers;
see Moerdijk(1991).

Call an s-étale category C locally coniractible if its space Cy of objects (or equiv-
alently, its space C, of arrows) has a basis of contractible sets. Then the classifying
space BC also has such a basis, and hence the homotopy groups of the space BC
coincide with the étale homotopy groups of the topos Sh(BC) (cf. Section 1.4).
In this case, Theorem 2.1 above and Corollary 4.3 of Chapter II together imply the
following result, by exactly the same proof as for Corollary 1.2 in the previous section.

2.3. Corollary. For any locally contractible s-étale category C and any CW-
complex X, there is a natural bijection

(X,BC] = ke(X).

Thus, BC “classifies” concordance classes of principal C-bundles.

§3 Segal’s theorem on 'Y

As an illustration of the use of the Comparison Theorem 2.1, we will present in this
section a proof of Segal’s theorem; cf. Segal(1978). (This proof is also described in
Moerdijk(1991).) To state this theorem, let M be the monoid of smooth embeddings
of R? into itself. Thus M is a discrete category with just one object. Also, let I'? be
the étale groupoid (cf. Chapter II, 4.4) with R? as space of objects, while the arrows
z — y in T'? are all germs of diffeomorphism ¢ : U — V where U and V are neigh-
bourhoods of  and y respectively, and ¢(z) = y. This set of arrows is equipped with
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the sheaf topology, so that the source and target maps of the groupoid I'? are étale.
This groupoid plays an important role in the theory of foliations, since it “classifies”
(in some sense) the smooth foliations of codimension ¢ (cf. Haefliger(1984)).

3.1. Theorem. (Segal) The classifying spaces BI'? and BM are weakly homotopy
equivalent.

To prove Segal’s theorem, we use Theorem 2.1, and prove instead the equivalent
statement that the classifying topoi BI'? and BM are weakly homotopy equivalent.
This turns out to be remarkably easy and explicit. We need the following auxil-
iary categories. Let D? be the discrete category with open disks in R? as objects
and smooth embeddings as arrows. The monoid M is a subcategory of D!, and the
inclusion

it M D"
is an equivalence of categories, since every open disk is diffeomorphic to R?. The
category D7 is a subcategory of the category of topological spaces, and the inclusion

Y : D? < (spaces)
is a diagram of spaces on D, in the sense of Chapter II, Section 5. Write
D'=Y;

for the associated s-étale topological category (as in Proposition I1.5.1, with D? for
K). Thus, the space of objects of D7 is the disjoint sum of all open disks W C R9,
and we denote an object of D? as a pair (W, ), where  is a point in the disk W. An
arrow « : (W,z) — (V,y) in D7 is a smooth embedding o : W — V with a(z) = y.
There is an obvious projection functor 7 : D! — D¢ (as in Section II.5), as well as
an obvious functor r : D9 — I'Y, defined on objects by r(W, z) = z and on arrows by
taking germs.

All these functors induce morphisms between classifying topoi, as in the diagram

" Lopr &P LM
Br* & BD* & BDY =~ BM.

Here i : BD? = BM is an equivalence of topoi, since i : M — D7 is an equivalence
of categories (see Section 1.2). Furthermore, since each open disk is contractible,
7 : BD? — BD? is a weak homotopy equivalence by Chapter II, Corollary 6.9. Thus,
the following proposition completes the proof of Theorem 3.1.

3.2. Proposition. The topos morphism r : BD? — BT is a natural defor-
mation retraction.

More explicitly, this proposition asserts that there is a topos morphism j : BI'Y —
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~

BD? such that roj 2 id while j or is “Sierpinski homotopic” to the identity (i.e.
there is a natural transformation between the inverse image functors, cf. Chapter I,
Section 4).

Proof of 3.2. By Theorem 4.1 of Chapter II, topos morphisms BI? — BD?
correspond to I'-equivariant principal D?-bundles over R? (cf. Remark I1.4.6). These
are étale maps E — R? with a left D% action which is principal, and a right I'?-action
which respects the left D?-action. Define such a bundle E, in terms of the target map
t of the groupoid I'?, by

E = {(W,a)| W an open disk in R?, @ an arrow in 'Y, t(a) € W}.

This space E is topologized as the disjoint sum of the subspaces t~1(W) C I'?. The
étale projection

s: E—> R, (Wa)— s(a)
makes E into a sheaf on R?. This sheaf is ['"-equivariant, by the obvious right I'Y-
action given by composition,

(W,O) Y= (Wv 017)-
The space E has the structure of a D?-bundle, by the map
m:E->Df, x(W ea) = (Wita),

and the left action of D? by composition: for an arrow 8 : (W,y) — (V, z) in D? with
y =t(a),

B-(W,a) = (V,Ba). (1)
To see that this bundle E defines a map

j: BT — BD?

(by j*(S) = S ®p« E), it suffices to check that the D?-action is principal. This is
trivial. For example, condition (i1) for principality means that for any point y € R?
and any two points (W, a) and (V, 8) in E with s(a) = y = s(f), there is a third point
(U,7) in E with s(y) = y, and arrows § : (u,1y) — (W,ta) and € : (U, ty) — (V,18)
in D7, such that, for the action (1), § - (U,y) = (W, a) and ¢ - (U,7) = (V, 8). To see
that this condition holds, choose an open disk U around y so that the germs « and
are represented by embeddings o : U < W and §: U — V, and let v be the identity
germ at y, and let § = o, ¢ = 6.

To see that j is a map as required for the proposition, represent the map r : BD? —
BT by a D?-equivariant principal ['"-bundle. This is the bundle R defined by

R = {(W,B) | W an open disk, 8 an arrow in I'?, and s(8) € W}.
R is a D?-sheaf, with sheaf projection

s:R—-Df , (W,B)e— (W,s(B))
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and right action given by composition in the category D?. And R has a principal
I'-action, defined by the map

t:R—- R HW,B)=t(B),

and left I"-action given by composition in the groupoid I'?. To see that this bundle
indeed defines the map r : BD? — BI'Y, observe that for any I'%-sheaf S and any
object (W, z) in D9,

(S®re R)wzy = S ®re Rwz)
= S®re«s(z)
= S = Sywe) = 7 (S)we)

Now the composition r o j : BT'Y — BT? corresponds to the tensor product R ®ps E,
and there is an obvious isomorphism ¢ : R ®ps £ — I'? given by composition in the
groupoid ',

(W, 8) ® (W, a)) = fa.

Thus r o j is isomorphic to the identity on BI'?. Furthermore, for the composition
jor : BD?Y — BD?, there is a natural transformation id — (jr)* = r*j*, corresponding

to the map of D?-equivariant principal D?-bundles
g: D7 — E®rq R,

which sends an arrow « : (W,z) — (V,y) in D? to its germ, or more precisely, to
(W,a) ® (V,a).
This completes the proof of Proposition 3.2, and hence also that of Theorem 3.1.

§4 Comparison for topological categories

In this section we will prove a comparison theorem for arbitrary topological cate-
gories. Following Section 5 of Chapter II, if a topological category C is not s-étale,
we replace its “small” classifying topos BC by the bigger Deligne classifying topos
DC, which is the topos of sheaves on the simplicial space Nerve(C). More generally,
for any simplicial space Y the following result compares the geometric realization |Y|
with the topos Sh(Y') of sheaves on Y, introduced in Section II.5.

4.1. Theorem. For any simplicial space Y, its geometric realization |Y| has
the same weak homotopy type as the topos Sh(Y').

In the proof of Theorem 4.1, we will use the auxiliary topological category Simp(Y)
of simplices of Y. Its objects are pairs ([r],y) where n > 0 and y € Y,; its arrows
a: ([n],y) — ([m], z) are arrows o : [n] — [m] in the simplicial category A such that
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a*(z) = y. This category Simp(Y) is topologized in the obvious way, similar to the
topology of the categories Y introduced in Chapter II, Section 5. Note in this context
that Simp(Y') is the dual of the category Yyer.

The following lemma is well-known (see Segal(1974), Waldhausen(1983)), but for

the convenience of the reader we have included a proof of it.

4.2. Lemma. For any simplicial space Y, the geometric realization |Y| has
the same weak homotopy type as the classifying space BSimp(Y').

Proof. We will use the basic property of realization of simplicial spaces, stated
in Chapter 1I, Section 1, viz. that the realization of a map which is a weak homotopy
equivalence in each degree is again a weak homotopy equivalence. The classifying
space BSimp(Y') is the realization of the simplicial space Nerve(Simp(Y')), whose
p-simplices can be written in the form

([nO]‘tx_l"'&[nP]vy) v Y E V. (1)

Let T be the bisimplicial space whose p, g-simplices are of the form

o o 8
([”0]‘—1"1‘["171*—['1],?/)’ yeynq- (2)
The simplicial operators of T act in the p-direction as those of Nerve(Simp(Y)), and
in the g-direction as those of the representable simplicial set A[n,]. There are obvious
mappings
Y, = T,, - Nerve,(Simp(Y));

the map ) sends a p, ¢g-simplex as in (2) to (a;0---0a,08)*(y), and p is simply defined
by deleting 3. It now suffices, by the basic property mentioned above, to show that A
induces a weak homotopy equivalence |T',| — Y, for each ¢, and that p induces one
|T,,| — Nerve,(Simp(Y')) for each p. For a fixed ¢, the simplicial space T, can be
viewed as the nerve of the topological “comma” category Y,/Simp(Y'). This category
18 related to the space Y, (viewed as a topological category with identity arrows only)
by obvious functors and natural transformations

2z (lah2) £ (l4),2)
e (([ny) < (la),2))-

This gives an explicit homotopy equivalence |T ;| = B(Y,/Simp(Y)) ~ Y,. For

Y, 2 Y,/Simp(Y),

a fixed p, the space |T}, | is the disjoint sum T, )—..(n,) Yo X A% and the map
|T5,| — Nerve,(Simp(Y') = Y(ngj.efn,] Yoo induced by p is the projection, which is
clearly a homotopy equivalence. This proves the lemma.

Proof of Theorem 4.1. Recall from Chapter II that Y can be viewed as a
covariant diagram on the category 4°7, and that Sh(Y) = B(Y,er) as in Proposi-
tion IL.5.1. The topological category Y,or is s-étale, so Theorem 2.1 provides a weak
homotopy equivalence

B(Yaer) — Sh(Y).
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But B(Y,er) is homeomorphic to the classifying space of the dual category (Yaer)?,
which is exactly the category Simp(Y’) of simplices of ¥. By the preceding lemma, it
thus follows that B(Yer) has the same weak homotopy type as the realization |Y].

Let us call a simplicial space Y locally contractible if each Y, has a basis of
contractible sets. Recall that for a space X, the collection of concordance classes of
linearly ordered sheaves on X with an augmentation into Y is denoted by Lin (X, Y).

4.3 Corollary. For any locally contractible simplicial space Y and any CW-

complex X, there is a natural bijection
(X,]Y]] & Lin(X,Y).

Proof. This follows from Theorem 4.1 and Corollary I1.5.6, exactly as for Corol-
lary 2.3.

For the special case where Y is the nerve of a topological category C, we state
these results explicitly as follows.

4.4. Corollary. For any topological category C, the classifying space BC has
the same weak homotopy type as the Deligne topos DC.

Thus we can transfer Corollary 11.5.8 to topological spaces, to obtain the fol-
lowing result:

4.5. Corollary. Let C be a locally contractible topological cateqory. Then BC
classifies (concordance classes of ) C-augmented linear orders, in the sense that there

is a natural bijection

[X,BC] = Lin.(X,C),
for any CW-complezx X.
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