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Preface

Dear Friends of Numbers:
This little book is for you. It should offer an exquisite intel-

lectual enjoyment, which only relatively few fortunate people can
experience.

May these essays stimulate your curiosity and lead you to books
and articles where these matters are discussed at a more technical
level.

I warn you, however, that the problems treated, in spite of be-
ing easy to state, are for the most part very difficult. Many are
still unsolved. You will see how mathematicians have attacked these
problems.

Brains at work! But do not blame me for sleepless nights (I have
mine already).

Several of the essays grew out of lectures given over the course of
years on my customary errances.

Other chapters could, but probably never will, become full-sized
books.

The diversity of topics shows the many guises numbers take to
tantalize∗ and to demand a mobility of spirit from you, my reader,
who is already anxious to leave this preface.

Now go to page 1 (or 127?).

Paulo Ribenboim

∗Tantalus, of Greek mythology, was punished by continual disappointment
when he tried to eat or drink what was placed within his reach.
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The Fibonacci Numbers and
the Arctic Ocean

Introduction

There is indeed not much relation between the Fibonacci numbers
and the Arctic Ocean, but I thought that this title would excite your
curiosity for my lecture. You will be disappointed if you wished to
hear about the Arctic Ocean, as my topic will be the sequence of
Fibonacci numbers and similar sequences.

Like the icebergs in the Arctic Ocean, the sequence of Fibonacci
numbers is the most visible part of a theory which goes deep: the
theory of linear recurring sequences.

The so-called Fibonacci numbers appeared in the solution of a
problem by Fibonacci (also known as Leonardo Pisano), in his
book Liber Abaci (1202), concerning reproduction patterns of rab-
bits. The first significant work on the subject is by Lucas, with his
seminal paper of 1878. Subsequently, there appeared the classical
papers of Bang (1886) and Zsigmondy (1892) concerning prime
divisions of special sequences of binomials. Carmichael (1913)
published another fundamental paper where he extended to Lucas se-
quences the results previously obtained in special cases. Since then, I
note the work of Lehmer, the applications of the theory in primality
tests giving rise to many developments.
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The subject is very rich and I shall consider here only certain
aspects of it.

If, after all, your only interest is restricted to Fibonacci and Lucas
numbers, I advise you to read the booklets by Vorob’ev (1963),
Hoggatt (1969), and Jarden (1958).

1 Basic definitions

A. Lucas sequences

Let P , Q be non-zero integers, let D = P 2 − 4Q, be called the
discriminant , and assume that D �= 0 (to exclude a degenerate case).

Consider the polynomial X2 − PX + Q, called the characteristic
polynomial , which has the roots

α =
P +

√
D

2
and β =

P −
√

D

2
.

Thus, α �= β, α + β = P , α · β = Q, and (α − β)2 = D.
For each n ≥ 0, define Un = Un(P, Q) and Vn = Vn(P, Q) as

follows:

U0=0 , U1=1 , Un=P · Un−1 − Q · Un−2 (for n ≥ 2),
V0=2 , V1=P , Vn =P · Vn−1 − Q · Vn−2 (for n ≥ 2).

The sequences U = (Un(P, Q))n≥0 and V = (Vn(P, Q))n≥0 are
called the (first and second) Lucas sequences with parameters (P, Q).
(Vn(P, Q))n≥0 is also called the companion Lucas sequence with
parameters (P, Q).

It is easy to verify the following formal power series developments,
for any (P, Q):

X

1 − PX + QX2
=

∞∑
n=0

UnXn and

2 − PX

1 − PX + QX2
=

∞∑
n=0

VnXn.

The Lucas sequences are examples of sequences of numbers
produced by an algorithm.

At the nth step, or at time n, the corresponding numbers are
Un(P, Q), respectively, Vn(P, Q). In this case, the algorithm is a linear
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recurrence with two parameters. Once the parameters and the initial
values are given, the whole sequence—that is, its future values—is
completely determined. But, also, if the parameters and two consec-
utive values are given, all the past (and future) values are completely
determined.

B. Special Lucas sequences

I shall repeatedly consider special Lucas sequences, which are im-
portant historically and for their own sake. These are the sequences
of Fibonacci numbers, of Lucas numbers, of Pell numbers, and other
sequences of numbers associated to binomials.
(a) Let P = 1, Q = −1, so D = 5. The numbers Un = Un(1,−1)
are called the Fibonacci numbers, while the numbers Vn = Vn(1,−1)
are called the Lucas numbers. Here are the initial terms of these
sequences:

Fibonacci numbers : 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .
Lucas numbers : 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 99, 322, . . .

(b) Let P = 2, Q = −1, so D = 8. The numbers Un = Un(2,−1)
and Vn = Vn(2,−1) are the Pell numbers and the companion Pell
numbers. Here are the first few terms of these sequences:

Un(2,−1): 0, 1, 2, 5, 12, 29, 70, 169, . . .
Vn(2,−1): 2, 2, 6, 14, 34, 82, 198, 478, . . .

(c) Let a, b be integers such that a > b ≥ 1. Let P = a + b, Q = ab,
so D = (a − b)2. For each n ≥ 0, let Un = an−bn

a−b and Vn = an + bn.
Then it is easy to verify that U0 = 0, U1 = 1, V0 = 2, V1 = a+b = P ,
and (Un)n≥0, (Vn)n≥0 are the first and second Lucas sequences with
parameters P , Q.

In particular, if b = 1, one obtains the sequences of numbers Un =
an−1
a−1 , Vn = an + 1; now the parameters are P = a + 1, Q = a.

Finally, if also a = 2, one gets Un = 2n − 1, Vn = 2n + 1, and now
the parameters are P = 3, Q = 2.

C. Generalizations

At this point, it is appropriate to indicate extensions of the notion
of Lucas sequences which, however, will not be discussed in this
lecture. Such generalizations are possible in four directions, namely,
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by changing the initial values, by mixing two Lucas sequences, by
not demanding that the numbers in the sequences be integers, or by
having more than two parameters.

Even though many results about Lucas sequences have been ex-
tended successfully to these more general sequences, and have found
interesting applications, for the sake of definiteness I have opted to
restrict my attention only to Lucas sequences.
(a) Let P , Q be integers, as before. Let T0, T1 be any integers such
that T0 or T1 is non-zero (to exclude the trivial case). Let

W0 = PT0 + 2T1 and W1 = 2QT0 + PT1.

Let

Tn = P · Tn−1 − Q · Tn−2 and
Wn = P · Wn−1 − Q · Wn−2 (for n ≥ 2).

The sequences (Tn(P, Q))n≥0 and Wn(P, Q))n≥0 are the (first and
the second) linear recurrence sequences with parameters (P, Q) and
associated to the pair (T0, T1). The Lucas sequences are special, nor-
malized, linear recurrence sequences with the given parameters; they
are associated to (0, 1).
(b) Lehmer (1930) considered the following sequences. Let P , Q be
non-zero integers, α, β the roots of the polynomial X2−

√
P ·X +Q,

and define

Ln(P, Q) =




αn − βn

α − β
if n is odd,

αn − βn

α2 − β2
if n is even.

L = (Ln(P, Q))n≥0 is the Lehmer sequence with parameters P , Q.
Its elements are integers. These sequences have been studied by
Lehmer and subsequently by Schinzel and Stewart in several
papers which also deal with Lucas sequences and are quoted in the
bibliography.
(c) Let R be an integral domain which need not be Z. Let P , Q ∈ R,
P , Q �= 0, such that D = P 2−4Q �= 0. The sequences (Un(P, Q))n≥0,
(Vn(P, Q))n≥0 of elements of R may be defined as for the case when
R = Z.

Noteworthy cases are when R is the ring of integers of a number
field (for example, a quadratic number field), or R = Z[x] (or other
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polynomial ring), or R is a finite field. For this latter situation, see
Selmer (1966).
(d) Let P0, P1, . . . , Pk−1 (with k ≥ 1) be given integers, usually
subjected to some restrictions to exclude trivial cases. Let S0, S1,
. . . , Sk−1 be given integers. For n ≥ k, define:

Sn = P0 · Sn−1 − P1 · Sn−2 + P2 · Sn−3 − . . . + (−1)k−1Pk−1 · Sn−k.

Then (Sn)n≥0 is called a linear recurrence sequence of order k, with
parameters P0, P1, . . . , Pk−1 and initial values S0, S1, . . . , Sk−1.
The case when k = 2 was seen above. For k = 1, one obtains the
geometric progression (S0 · Pn

0 )n≥0.
There is great interest and still much to be done in the theory of

linear recurrence sequences of order greater than 2.

2 Basic properties

The numbers in Lucas sequences satisfy many, many properties that
reflect the regularity in generating these numbers.

A. Binet’s formulas

Binet (1843) indicated the following expression in terms of the roots
α, β of the polynomial X2 − PX + Q:

(2.1) Binet’s formulas:

Un =
αn − βn

α − β
, Vn = αn + βn.

The proof is, of course, very easy. Note that by Binet’s formulas,

Un(−P, Q) = (−1)n−1Un(P, Q) and
Vn(−P, Q) = (−1)nVn(P, Q).

So, for many of the following considerations, it will be assumed that
P ≥ 1.

B. Degenerate Lucas sequences

Let (P, Q) be such that the ratio η = α/β of roots of X2 − Px + Q
is a root of unity. Then the sequences U(P, Q), V (P, Q) are said to
be degenerate.
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Now I describe all degenerate sequences. Since

η + η−1 =
α

β
+

β

α
=

P 2 − 2Q

Q

is an algebraic integer and rational, it is an integer. From |αβ + β
α | ≤ 2

it follows P 2 − 2Q = 0, ±Q, ±2Q, and this gives P 2 = Q, 2Q, 3Q,
4Q. If gcd(P, Q) = 1, then (P, Q) = (1, 1), (−1, 1), (2, 1), or (−2, 1),
and the sequences are

U(1, 1) : 0, 1, 1, 0, −1, −1, 0, 1, 1, 0, . . .
U(−1, 1) : 0, 1, −1, 0, 1, −1, 0, . . .
V (1, 1) : 2, 1, −1, −2, −1, 1, 2, 1, −1, −2, . . .
V (−1, 1) : 2, −1, −1, 2, −1, −1, 2, . . .
U(2, 1) : 0, 1, 2, 3, 4, 5, 6, 7, . . .
U(−2, 1) : 0, 1, −2, 3, −4, 5, −6, 7, . . .
V (2, 1) : 2, 2, 2, 2, 2, 2, 2, 2, . . .
V (−2, 1) : 2, −2, 2, −2, 2, −2, 2, −2, . . .

From the discussion, if the sequence is degenerate, then D = 0 or
D = −3.

C. Growth and numerical calculations

First, I note results about the growth of the sequence U(P, Q).

(2.2) If the sequences U(P, Q), V (P, Q) are non-degenerate, then
|Un|, |Vn| tend to infinity (as n tends to ∞).

This follows from a result of Mahler (1935) on the growth of
coefficients of Taylor series. Mahler also showed

(2.3) If Q ≥ 2, gcd(P, Q) = 1, D < 0, then, for every ε > 0 and n
sufficiently large,

|Un| ≥ |βn|1−ε.

The calculations of Un, Vn may be performed as follows. Let

M =
(

P −Q
1 0

)
.

Then for n ≥ 1, (
Un

Un−1

)
= Mn−1

(
1
0

)
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and (
Vn

Vn−1

)
= Mn−1

(
2
P

)
.

To compute a power Mk of the matrix M , the quickest method is to
compute successively the powers M , M2, M4, . . . , M2e

where 2e ≤
k < 2e+1; this is done by successively squaring the matrices. Next, if
the 2-adic development of k is k = k0 +k1×2+k2×22 + . . .+ke×2e,
where ki = 0 or 1, then Mk = Mk0 × (M2)k1 × . . . × (M2e

)ke .
Note that the only factors actually appearing are those where ki =

1.
Binet’s formulas allow also, in some cases, a quick calculation of Un

and Vn.
If D ≥ 5 and |β| < 1, then

∣∣∣∣Un − αn

√
D

∣∣∣∣ <
1
2

(for n ≥ 1),

and |Vn − αn| < 1
2 (for n such that n · (− log |β|) > log 2). Hence,

cUn is the closest integer to αn√
D

, and Vn is the closest integer to αn.
This applies in particular to Fibonacci and Lucas numbers for which
D = 5, α = (1 +

√
5)/2 = 1.616 . . . , (the golden number), β =

(1 −
√

5)/2 = −0.616 . . . .
It follows that the Fibonacci number Un and the Lucas number Vn

have approximately n/5 digits.

D. Algebraic relations

The numbers in Lucas sequences satisfy many properties. A look at
the issues of The Fibonacci Quarterly will leave the impression that
there is no bound to the imagination of mathematicians whose en-
deavor it is to produce newer forms of these identities and properties.
Thus, there are identities involving only the numbers Un, in others
only the numbers Vn appear, while others combine the numbers Un

and Vn. There are formulas for Um+n, Um−n, Vm+n, Vm−n (in terms
of Um, Un, Vm, Vn); these are the addition and subtraction formulas.
There are also formulas for Ukn, Vkn, and Unk , Vnk , Uk

n , cV k
n (where

k ≥ 1) and many more.
I shall select a small number of formulas that I consider most

useful. Their proofs are almost always simple exercises, either by
applying Binet’s formulas or by induction.
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It is also convenient to extend the Lucas sequences to negative
indices in such a way that the same recursion (with the given
parameters P, Q) still holds.

(2.4) Extension to negative indices:

U−n = − 1
Qn

Un, V−n =
1

Qn
Vn (for n ≥ 1).

(2.5) Un and Vn may be expressed in terms of P , Q. For example,

Un = Pn−1 −
(

n − 2
1

)
Pn−3Q +

(
n − 3

2

)
Pn−5Q2 + . . .

+ (−1)k

(
n − 1 − k

k

)
Pn−1−2kQk + · · · + (last summand)

where

(last summand) =




(−1)
n
2
−1

(
n
2

n
2 − 1

)
PQ

n
2
−1 if n is even,

(−1)
n−1

2 Q
n−1

2 if n is odd.

Thus, Un = fn(P, Q), where fn(X, Y ) ∈ Z[X, Y ]. The function fn is
isobaric of weight n − 1, where X has weight 1 and Y has weight 2.

Similarly, Vn = gn(P, Q), where gn ∈ Z[X, Y ]. The function gn is
isobaric of weight n, where X has weight 1, and Y has weight 2.

(2.6) Quadratic relations:

V 2
n − DU2

n = 4Qn

for every n ∈ Z.

This may also be put in the form:

U2
n+1 − PUn+1Un + QU2

n = Qn.

(2.7) Conversion formulas:

DUn = Vn+1 − QVn−1,

Vn = Un+1 − QUn−1,

for every n ∈ Z.
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(2.8) Addition of indices:

Um+n = UmVn − QnUm−n,

Vm+n = VmVn − QnVm−n = DUmUn + QnVm−n,

for all m, n ∈ Z.

Other formulas of the same kind are:

2Um+n = UmVn + UnVm,

2QnUm−n = UmVn − UnVm,

for all m, n ∈ Z.

(2.9) Multiplication of indices:

U2n = UnVn,

V2n = V 2
n − 2Qn,

U3n = Un(V 2
n − Qn) = Un(DU2

n + 3Qn),
V3n = Vn(V 2

n − 3Qn),

for every n ∈ Z.

More generally, if k ≥ 3 it is possible to find by induction on k
formulas for Ukn and Vkn, but I shall refrain from giving them
explicitly.

E. Divisibility properties

(2.10) Let Um �= 1. Then, Um divides Un if and only if m | n.
Let Vm �= 1. Then, Vm divides Vn if and only if m | n and n/m is
odd.

For the next properties, it will be assumed that gcd(P, Q) = 1.

(2.11) gcd(Um, Un) = Ud, where d = gcd(m, n).

(2.12)

gcd(Vm, Vn) =


 Vd if

m

d
and

n

d
are odd,

1 or 2 otherwise,

where d = gcd(m, n).
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(2.13)

gcd(Um, Vn) =


 Vd if

m

d
is even,

n

d
is odd,

1 or 2 otherwise,

where d = gcd(m, n).

(2.14) If n ≥ 1, then gcd(Un, Q) = 1 and gcd(Vn, Q) = 1.

3 Prime divisors of Lucas sequences

The classical results about prime divisors of terms of Lucas se-
quences date back to Euler, (for numbers an−bn

a−b ), to Lucas (for
Fibonacci and Lucas numbers), and to Carmichael (for other Lucas
sequences).

A. The sets P(U), P(V ), and the rank of appearance.

Let P denote the set of all prime numbers. Given the Lucas sequences
U = (Un(P, Q))n≥0, V = (Vn(P, Q))n≥0, let

P(U) = {p ∈ P | ∃n ≥ 1 such that Un �= 0 and p | Un},
P(V ) = {p ∈ P | ∃n ≥ 1 such that Vn �= 0 and p | Vn}.

If U , V are degenerate, then P(U), P(V ) are easily determined sets.
Therefore, it will be assumed henceforth that U , V are non-

degenerate and thus, Un(P, Q) �= 0, Vn(P, Q) �= 0 for all n ≥
1.

Note that if p is a prime dividing both p, q, then p | Un(P, Q),
p | Vn(P, Q), for all n ≥ 2. So, for the considerations which will
follow, there is no harm in assuming that gcd(P, Q) = 1. So, (P, Q)
belongs to the set

S = {(P, Q) | P ≥ 1, gcd(P, Q) = 1, P 2 �= Q, 2Q, 3Q, 4Q}.

For each prime p, define

ρU (p) =

{
n if n is the smallest positive index where p | Un,
∞ if p � Un for every n > 0,

ρV (p) =

{
n if n is the smallest positive index where p | Vn,
∞ if p � Vn for every n > 0.
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We call ρU (n) (respectively ρV (p))) is called the rank of appearance
of p in the Lucas sequence U (respectively V ).

First, I consider the determination of even numbers in the Lucas
sequences.

(3.1) Let n ≥ 0. Then:

Un even ⇐⇒




P even Q odd, n even,
or

P odd Q odd, 3 | n,

and

Vn even ⇐⇒




P even Q odd, n ≥ 0,

or
P odd Q odd, 3 | n.

Special Cases. For the sequences of Fibonacci and Lucas numbers
(P = 1, Q = −1), one has:
Un is even if and only if 3 | n,
Vn is even if and only if 3 | n.
For the sequences of numbers Un = an−bn

a−b , Vn = an + bn, with a >
b ≥ 1, gcd(a, b) = 1, p = a + b, q = ab, one has:
If a, b are odd, then Un is even if and only if n is even, while Vn is
even for every n.
If a, b have different parity, then Un, Vn are always odd (for n ≥ 1).

With the notations and terminology introduced above the result
(3.1) may be rephrased in the following way:

(3.2) 2 ∈ P(U) if and only if Q is odd

ρU (2) =




2 if P even, Q odd,
3 if P odd, Q odd,
∞ if P odd, Q even,

2 ∈ P(V ) if and only if Q is odd

ρV (2) =




1 if P even, Q odd,
3 if P odd, Q odd,
∞ if P odd, Q even.
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Moreover, if Q is odd, then 2 | Un (respectively 2 | Vn) if and only if
ρU (2) | n (respectively ρV (2) | n).

This last result extends to odd primes:

(3.3) Let p be an odd prime.
If p ∈ P(U), then p | Un if and only if ρU (p) | n.
If p ∈ P(V ), then p | Vn if and only if ρV (p) | n and n

ρV (p) is odd.

Now I consider odd primes p and indicate when p ∈ P(U).

(3.4) Let p be an odd prime.
If p � P and p | Q, then p � Un for every n ≥ 1.
If p | P and p � Q, then p | Un if and only if n is even.
If p � PQ and p | D, then p | Un if and only if p | n.
If p � PQD, then p divides UψD

(p) where ψD(p) = p − (D
p ) and (D

p )
denotes the Legendre symbol.

Thus,
P(U) = {p ∈ P | p � Q},

so P(U) is an infinite set.

The more interesting assertion concerns the case where p � PQD,
the other ones being very easy to establish.

The result may be expressed in terms of the rank of appearance:

(3.5) Let p be an odd prime.
If p � P , p | Q, then ρU (p) = ∞.
If p | P , p � Q, then ρU (p) = 2.
If p � PQ, p | D, then ρU (p) = p.
If p � PQD, then ρU (p) | ΨD(p).

Special Cases. For the sequences of Fibonacci numbers (P = 1,
Q = −1), D = 5 and 5 | Un if and only if 5 | n.
If p is an odd prime, p �= 5, then p | Up−( 5

p
), so ρU (p) | (p − (5

p)).

Because U3 = 2, it follows that P(U) = P.
Let a > b ≥ 1, gcd(a, b), P = a + b, Q = ab, Un = an−bn

a−b .
If p divides a or b but not both a, b, then p � Un for all n ≥ 1.
If p � ab, p | a + b, then p | Un if and only if n is even.
If p � ab(a + b) but p | a − b, then p | Un if and only if p | n.
If p � ab(a + b)(a − b), then p | Up−1. (Note that D = (a − b)2).
Thus, P(U) = {p : p � ab}.
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Taking b = 1, if p � a, then p | Up−1, hence p | ap−1 − 1 (this is
Fermat’s Little Theorem, which is therefore a special case of the last
assertion of (3.4)); it is trivial if p | (a + 1)(a − 1).

The result (3.4) is completed with the so-called law of repetition,
first discovered by Lucas for the Fibonacci numbers:

(3.6) Let pe (with e ≥ 1) be the exact power of p dividing Un. Let
f ≥ 1, p � k. Then, pe+f divides Unkpf . Moreover, if p � Q, pe �= 2,
then pe+f is the exact power of p dividing Unkpe .

It was seen above that Fermat’s Little Theorem is a special case of
the assertion that if p is a prime and p � PQD, then p divides UΨD(p).
I indicate now how to reinterpret Euler’s classical theorem.

If α, β are the roots of the characteristic polynomial X2−PX+Q,
define the symbol

(
α, β

2

)
=




1 if Q is even,
0 if Q is odd, P is even,

−1 if Q is odd, P is odd,

and for any odd prime p

(
α, β

p

)
=




(
D

p

)
if p � D,

0 if p | D.

Let Ψα,β(p) = p − (α,β
p ) for every prime p. Thus, using the previous

notation, Ψα,β(p) = ΨD(p) when p is odd and p � D.
For n =

∏
p pe, define the generalized Euler function

Ψα,β(n) = n
∏
r

Ψα,β(p)
p

,

so Ψα,β(pe) = pe−1Ψα,β(p) for each prime p and e ≥ 1. Define also
the Carmichael function λα,β(n) = lcm{Ψα,β(pe)}. Thus, λα,β(n)
divides Ψα,β(n).

In the special case where α = a, β = 1, and a is an integer,
then Ψa,1(p) = p − 1 for each prime p not dividing a. Hence, if
gcd(a, n) = 1, then Ψa,1(n) = ϕ(n), where ϕ denotes the classical
Euler function.

The generalization of Euler’s theorem by Carmichael is the
following:
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(3.7) n divides Uλα,β(n) hence, also, UΨα,β(n).

It is an interesting question to evaluate the quotient ΨD(p)
ρU (p) . It was

shown by Jarden (1958) that for the sequence of Fibonacci numbers,

sup

{
p − (5

p)

ρU (D)

}
= ∞

(as p tends to ∞). More generally, Kiss (1978) showed:

(3.8) (a) For each Lucas sequence Un(P, Q),

sup
{

ΨD(p)
ρU (p)

}
= ∞.

(b) There exists C > 0 (depending on P , Q) such that

ΨD(p)
ρU (p)

< C
p

log p
.

Now I turn my attention to the companion Lucas sequence V =
(Vn(P, Q))n≥0 and I study the set of primes P(V ). It is not known
how to describe explicitly, by means of finitely many congruences,
the set P(V ). I shall indicate partial congruence conditions that are
complemented by density results.

Because U2n = UnVn, it then follows that P(V ) ⊆ P(U). It was
already stated that 2 = P(V ) if and only if Q is odd.

(3.9) Let p be an odd prime.
If p � P , p | Q, then p � Vn for all n ≥ 1.
If p | P , p � Q, then p | Vn if and only if n is odd.
If p � PQ, p | D, then p � Vn for all n ≥ 1.
If p � PQD, then p | V 1

2
ΨD(p) if and only if (Q

P ) = −1.

If p � PQD and (Q
p ) = 1, (D

p ) = −(−1
p ), then p � Vn for all n ≥ 1.

The above result implies that P(V ) is an infinite set.∗ One may fur-
ther refine the last two assertions; however, a complete determination
of P(V ) is not known.

In terms of the rank of appearance, (3.9) can be rephrased as
follows:

∗This was extended by Ward (1954) for all binary linear recurrences
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(3.10) Let p be an odd prime.
If p | P , p � Q, then ρV (p) = 1.
If p � P , p | Q, then ρV (p) = ∞.
If p � PQ, p | D, then ρV (p) = ∞.
If p � PQD, (Q

p ) = −1, then ρV (p) divides 1
2ΨD(p).

If p � PQD, (Q
p ) = 1, (D

p ) = −(−1
p ), then ρV (p) = ∞.

The following conjecture has not yet been established in general,
but has been verified in special cases, described below:

Conjecture. For each companion Lucas sequence V , the limit

δ(V ) = lim
πV (x)
π(x)

exists and is strictly greater than 0.

Here, π(x) = #{p ∈ P | p ≤ x} and πV (x) = #{p ∈ P(V ) | p ≤ x}.
The limit δ(V ) is the density of the set of prime divisors of V among
all primes.

Special Cases. Let (P, Q) = (1,−1), so V is the sequence of Lucas
numbers. Then the above results may be somewhat completed. Ex-
plicitly:
If p ≡ 3, 7, 11, 19 (mod 20), then p ∈ P(V ).
If p ≡ 13, 17 (mod 20), then p /∈ P(V ).
If p ≡ 1, 9 (mod 20) it may happen that p ∈ P(V ) or that p /∈ P(V ).

Jarden (1958) showed that there exist infinitely many primes p ≡
1 (mod 20) in P(V ) and also infinitely many primes p ≡ 1 (mod 20)
not in P(V ). Further results were obtained by Ward (1961) who
concluded that there is no finite set of congruences to decide if an
arbitrary prime p is in P(V ).

Inspired by a method of Hasse (1966), and the analysis of Ward

(1961), Lagarias (1985) showed that, for the sequence V of Lucas
numbers, the density is δ(V ) = 2

3 .
Brauer (1960) and Hasse (1966) studied a problem of Sierpiń-

ski, namely, determine the primes p such that 2 has an even order
modulo p, equivalently, determine the primes p dividing the numbers
2n + 1 = Vn(3, 2). He proved that δ(V (3, 2)) = 17/24. Lagarias

pointed out that Hasse’s proof shows also that if a ≥ 3 is square-
free, then δ(V (a + 1, a)) = 2/3; see also a related paper of Hasse

(1965).
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Laxton (1969) considered, for each a ≥ 2, the set W(a) of all
binary linear recurrences W with W0, W1 satisfying W1 �= W0, W1 �=
aW0, and Wn = (a + 1)Wn−1 − aWn−2, for n ≥ 2. This set includes
the Lucas sequences U(a + 1, a), V (a + 1, a). For each prime p, let

ep(a) =

{
0 if p | a,

order of a mod b if p � a.

Laxton gave a heuristic argument to the effect that if the limit, as
x tends to ∞, of

1
π(x)

∑
p≤x

ep(a)
p − 1

exists, then it is the expected (or average value), for any W ∈ W(a),
of the density of primes in P(W) (that is, the set of primes dividing
some Wn).

Stephens (1976) used a method of Hooley (1967) who had
proved, under the assumption of a generalized Riemann’s hypothesis,
Artin’s conjecture that 2 is a primitive root modulo p for infinitely
many primes p. Let a ≥ 2, a not a proper power. Assume the gener-
alized Riemann hypothesis for the Dedekind ζ function of all fields
Q(a1/n, ζk), where ζk is a primitive kth root of 1. Then, for every
x ≥ 2, ∑

p≤x

ep(a)
p − 1

= c(a)
x

log x
+ O

(
x log log x

(log x)2

)
;

by the Prime Number Theorem, the limit considered above exists
and is equal to c(a). Stephens evaluated c(a). Let

C =
∏
p

(
1 − p

p3 − 1

)
,

let a = a1 · (a2)2 where a1 is square-free, let r be the number of
distinct prime factors of a1, and let f be defined as

f =




−2
5

if a1 ≡ 1 (mod 4),

− 1
64

if a1 ≡ 2 (mod 4),

− 1
20

if a1 ≡ 3 (mod 4).
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Then,

c(a) = C


1 − (−1)rf

∏
q|a1

q prime

q

q3 − q − 1


 .

Stephens also showed that even without the assumption of the
generalized Riemann hypothesis the above estimation holds on aver-
age. Precisely, given a ≥ 2 (as before), e > 1, and x ≥ 1, there exists
c1 > 0 such that if N > exp{c1(log x)

1
2 }, then

∑
x≤N

∑
p≤x

ep(a)
p − 1

= C

∫ x

1

dt

t
+ O

(
x

(log x)e

)
.

B. Primitive factors of Lucas sequences

Let p be a prime. If ρU (p) = n (respectively ρV (p) = n), then p is
called a primitive factor of Un(P, Q) (respectively Vn(P, Q)). Denote
by Prim(Un) the set of primitive factors of Un, similarly, by Prim(Vn)
the set of primitive factors of Vn. Let Un = U∗

n · U ′
n, Vn = V ∗

n · V ′
n,

where gcd(U∗
n, U ′

n) = 1, gcd(V ∗
n , V 1

n ) = 1, p | U∗
n (respectively p | V ∗

n )
if and only if p is a primitive factor of Un (respectively Vn). U∗

n,
(respectively V ∗

n ) is called the primitive part of Un (respectively Vn).
From U2n = Un · Vn it follows that U∗

2n | V ∗
n , hence, Prim(U2n) ⊆

Prim(V ∗
n ). It is not excluded that U∗

n = 1 (respectively V ∗
n = 1); I

shall discuss this question.

a Existence of primitive factors

The study of primitive factors of Lucas sequences originated with
Bang and Zsigmondy for special Lucas sequences (see below). The
first main theorem is due to Carmichael (1913):

(3.11) Let (P, Q) ∈ S and assume that D > 0.
1. If n �= 1, 2, 6, then Prim(Un) �= ∅, with the only exception

(P, Q) = (1,−1), n = 12 (which gives the Fibonacci number
U12 = 144).
Moreover, if D is a square and n �= 1, then Prim(Un) �= ∅,
with the only exception (P, Q) = (3, 2), n = 6 (which gives
the number 26 − 1 = 63).

2. If n �= 1, 3, then Prim(Vn) �= ∅, with the only exception
(P, Q) = (1,−1), n = 6 (which gives the Lucas numbers
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V6 = 18).
Moreover, if D is a square and n �= 1, then Prim(Vn) �= ∅,
with the only exception (P, Q) = (3, 2), n = 3 (which gives
the number 23 + 1 = 9).

In his paper, Carmichael also proved that if p does not divide D
and p ∈ Prim(Un), then p ≡ ±1 (mod n), while if p ∈ Prim(Vn),
then p ≡ ±1 (mod 2n).

The result of Carmichael was extended by Lekkerkerker

(1953):

Even without assuming that gcd(P, Q) = 1, if D > 0, there
exist only finitely many n such that Un(P, Q) (respectively
Vn(P, Q)) does not have a primitive factor.

Durst (1961) proved:

(3.12) Let (P, Q) ∈ S and D > 0. Then, U6(P, Q) has no primitive
factor if and only if one the following conditions holds:

1. P = 2t+1 − 3r, Q = (2t − r)(2t − 3r) where t ≥ 1, 2t+1 > 3r,
and r is odd and positive.

2. P = 3sk, Q = 32s−1k2 − 2t where s ≥ 1, t ≥ 0, k ≡
±1 (mod 6), and 32s−1k2 < 2t+2.

Thus, there exist infinitely many (P, Q) as above with U6(P, Q) hav-
ing no primitive factor. Durst dealt also with parameters (P, Q)
where gcd(P, Q) may be greater than 1.

(3.13) Let I be a finite set of integers, with 1 ∈ I. Then, there
are infinitely many pairs (P, Q), with P ≥ 1, P �= Q, 2Q, 3Q, 4Q,
P 2 − 4Q > 0, such that Prim(U(P, Q)) = I.

If D < 0, the above result does not hold without modification.
For example, for (P, Q) = (1, 2) and n = 1, 2, 3, 5, 8, 12, 13, 18,
Prim(Un) = ∅.

In 1962, Schinzel investigated the case when D < 0. In 1974, he
proved a general result of which the following is a corollary.

(3.14) There exists n0 > 0 such that for all n ≥ n0, (P, Q) ∈ S,
Un(P, Q), Vn(P, Q) have a primitive factor.
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The proof involves Baker’s lower bounds for linear forms in log-
arithms and n0 is effectively computable. It is important to stress
that n0 is independent of the parameters. Stewart (1977a) showed
that n0 ≤ e452467. Stewart also showed that if 4 < n, n �= 6, there
exist only finitely many Lucas sequences U(P, Q), V (P, Q) (of the
kind indicated), which may in principle be explicitly determined, and
such that Un(P, Q) (respectively Vn(P, Q)) does not have a primitive
factor.

Voutier (1995) used a method developed by Tzanakis (1989)
to solve Thue’s equations and determined for each n, 4 < n ≤ 30,
n �= 6, the finite set of parameters (P, Q) ∈ S such that Ur(P, Q) has
no primitive factor.

The next result of Györy (1981) concerns terms of Lucas se-
quences with prime factors in a given set. If E is a finite set of
primes, let E× denote the set of natural numbers, all of whose prime
factors belong to E.

(3.15) Let s > 1 and E = {p prime | p ≤ s}. There exist
c1 = c1(s) > 0, c2 = c2(s) > 0, effectively computable, such that
if (P, Q) ∈ S, 4 < n, and Un(P, Q) ∈ E×, then

n ≤ max{s + 1, e452 · 267},

max{P, |Q|} ≤ c1, and |Un(P, Q)| ≤ c2.

In 1982, Györy gave an explicit value for the constants. An
interesting corollary is the following:

(3.16) Let s > 1 and E = {p prime | p ≤ s}. There exists
c3 = c3(s) > 0, effectively computable, such that if a > b ≥ 1
are integers, gcd(a, b) = 1, if 3 < n, an−bn

a−b = m ∈ E×, then n < s
and max{a, m} < c3.

Special Cases. The following very useful theorem was proved by
Zsigmondy (1892); the particular case where a = 2, b = 1 had
been obtained earlier by Bang (1886). Zsigmondy’s theorem was
rediscovered many times (Birkhoff (1904), Carmichael (1913),
Kanold (1950), Artin (1955), and Lüneburg (1981) who gave a
simpler proof). For an accessible proof, see Ribenboim (1994)

Let a > b ≥ 1, gcd(a, b) = 1, and consider the sequence of
binomials

(an − bn)n≥0.
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If P = a + b, Q = ab, then an − bn = Un(P, Q) · (a− b). The prime p
is called a primitive factor of an − bn if p | an − bn but p � am − bm

for all m, 1 ≤ m < n. Let Prim(an − bn) denote the set of all
primitive factors of an − bn. Clearly, if n > 1, then Prim(an − bn) =
Prim(Un(P, Q)) \ {p | p divides a − b}.

(3.17) Let a > b ≥ 1, gcd(a, b) = 1.
1. For every n > 1, the binomial an − bn has a primitive factor,

except in the following cases:
a = 2, b = 1, n = 6 (this gives 26 − 1 = 63),
a, b are odd, a + b is a power of 2, n = 2.

Moreover, each primitive factor of an − bn is of the form
kn + 1.

2. For every n > 1, the binomial an + bn has a primitive factor,
except for a = 2, b = 1, n = 3 (this gives 23 + 1 = 9).

b The number of primitive factors

Now I consider the primitive part of terms of Lucas sequences and
discuss the number of distinct prime factors of U∗

n, V ∗
n . The fol-

lowing question remains open: Given (P, Q) ∈ S, do there exist
infinitely many n ≥ 1 such that #(Prim(Un)) = 1, respectively
#(Prim(Vn)) = 1, that is, U∗

n (respectively V ∗
n ) is a prime power?

This question is probably very difficult to answer. I shall discuss a
related problem in the next subsection (c).

Now I shall indicate conditions implying

#(Prim(Un)) ≥ 2 and #(Prim(Vn)) ≥ 2.

If c is any non-zero integer, let k(c) denote the square-free kernel
of c, that is, c divided by its largest square factor. If (P, Q) ∈ S, let
M = max{P 2 − 4Q, P 2}, let κ = κ(P, Q) = k(MQ), and define

η = η(P, Q) =

{
1 if κ ≡ 1 (mod 4),
2 if κ ≡ 2 or 3 (mod 4).

Schinzel (1963a) proved (see also Rotkiewicz (1962) for the case
when Q > 0 and D > 0):

(3.18) There exist effectively computable finite subsets M0, N0

of S and for every (P, Q) ∈ S an effectively computable integer
n0(P, Q) > 0 such that if (P, Q) ∈ S, �= 1, 2, 3, 4, 6, and n

ηκ is odd,
then #(Prim(Un(P, Q))) ≥ 2, with the following exceptions:
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1. D = P 2 − 4Q > 0:

n = η · |κ| and (P, Q) ∈ M0 ;
n = 3 · η · |κ| and (P, Q) ∈ N0 ;

(n, P, Q) = (2D, 1,−2), (2D, 3, 2)

2. D = P 2 − 4Q < 0:

(n, P, Q) with n ≤ n0(P, Q).

Thus, for each (P, Q) ∈ S there exist infinitely many n with
#(Prim(Un(P, Q))) ≥ 2. Schinzel gave explicit finite sets M, N
containing respectively the exceptional set M0, N0, which were later
completely determined by Brillhart and Selfridge, but this cal-
culation remained unpublished. Later, I shall invoke the following
corollary:

(3.19) Let (P, Q) ∈ S with Q a square and D > 0. If n > 3, then

#(Prim(Un(P, Q))) ≥ 2,

with the exception of (n, P, Q) = (5, 3, 1).

Thus, in particular, Un(P, Q) is not a prime when n > 3 and Q is a
square, except for (n, P, Q) = (5, 3, 1).

Since Prim(Un(P, Q)) ⊆ Prim(Vn(P, Q)), it is easy to deduce
from (3.16) conditions which imply that #(Prim(Vn(P, Q))) ≥ 2;
in particular, for each (P, Q) ∈ S there are infinitely many such
indices n.

These results have been strengthened in subsequent papers by
Schinzel (1963), (1968), but it would be too technical to quote
them here. It is more appropriate to consider:

Special Cases. Let a > b ≥ 1 be relatively prime integers, let P =
a+b, Q = ab, so Un(P, Q) = an−bn

a−b , Vn(P, Q) = an+bn. Even for these
special sequences it is not known if there exist infinitely many n such
that # Prim(Un(P, Q)) = 1, respectively # Prim(Vn(P, Q)) = 1.

Schinzel (1962b) showed the following result, which is a special
case of (3.16). Let κ = k(a, b),

η =

{
1 if κ ≡ 1 (mod 4),
2 if κ ≡ 2 or 3 (mod 4).
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(3.20) Under the above hypotheses:
1. If n > 20 and n

ηκ is an odd integer, then # Prim(an−bn

a−b ) ≥ 2.
2. If n > 10, κ is even, and n

κ is an odd integer, then
# Prim(an + bn) ≥ 2.

Thus, there exist infinitely many n such that # Prim(an−bn

a−b ) ≥ 2,
respectively #Prim(an + bn) ≥ 2. Schinzel also showed:

(3.21) With the above hypotheses, if κ = ch where h ≥ 2 when
k(c) is odd, and h ≥ 3 when k(c) is even, then there exist infinitely
many n such that # Prim(an−bn

a−b ) ≥ 3.

However, for arbitrary (a, b) with a > b ≥ 1, gcd(a, b) = 1, it is
not known if there exist infinitely many n with # Prim(an−bn

a−b ) ≥ 3.

c Powers dividing the primitive part

Nothing is known about powers dividing the primitive part, except
that it is a rare occurrence. To size up the difficulty of the question,
it is convenient to consider right away the very special case where
(P, Q) = (3, 2), so Un = 2n − 1, Vn = 2n + 1. Recall that if n = q
is a prime, then Uq = 2q − 1 is called a Mersenne number , usually
denoted Mq = Uq = 2q − 1. Also, if n = 2m, then V2m = 22m

+ 1 is
called a Fermat number and the notation Fm = V2m = 22m

+ 1 is
used.

The following facts are easy to show: gcd(Mq, Mp) = 1 when p �= q,
and gcd(Fm, Fn) = 1 when m �= n. It follows that Mq, Fm are equal
to their primitive parts.

A natural number which is a product of proper powers is said to
be a powerful number .

I indicate below several statements which are related, but have
never been proved to be true.

(M) There exist infinitely many primes p such that Mp is square-free.
(M′) There exist infinitely many primes such that Mp is not powerful.
(F) There exist infinitely many n such that Fn is square-free.
(F′) There exist infinitely many n such that Fn is not powerful.
(B) There exist infinitely many n such that the primitive part of

2n − 1 is square-free.
(B′) There exist infinitely many n such that the primitive part of

2n − 1 is not powerful.
(C) There exist infinitely many n such that the primitive part of

2n + 1 is square-free.
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(C′) There exist infinitely many n such that the primitive part of
2n + 1 is not powerful.

I shall discuss these and related conjectures in Chapter 9 where
it will be explained why the proof of any of the above conjectures
should be very difficult.

d The greatest prime factor of terms of Lucas sequences.

The problem of estimating the size of the greatest prime division of
terms of Lucas sequences has been the object of many interesting
papers.

If n is a natural number, let P [n] denote the greatest prime factor
of n, and let ν(n) denote the number of distinct prime factors of n. So,
the number q(n) of distinct square-free factors of n is q(n) = 2ν(n).
There have also been studies to estimate the size of Q[n], the largest
square-free factor of n, but I shall not consider this question.

For every n ≥ 1, let Φn(X, Y ) ∈ Z[X, Y ] be the nth homogenized
cyclotomic polynomial

Φn(X, Y ) =
∏

gcd(i,n)=1
1≤i≤n

(X − ζiY )

where ζ is a primitive nth root of 1; so, Φn(X, Y ) has degree ϕ(n)
(the Euler totient of n).

If P, Q are non-zero integers, D = P 2 −4Q �= 0 and α, β the roots
of X2 − PX + Q, then Φn(α, β) ∈ Z (for n ≥ 2) and αn − βn =∏

d|n Φd(α, β).
It follows easily that

P

[
αn − βn

α − β

]
≥ P [Φn(α, β)],

P [αn − βn] ≥ P [Φn(α, β)],

P [αn + βn] ≥ P [Φ2n(α, β)].

Therefore, it suffices to find lower estimates for P [Φn(α, β)].
The first result was given by Zsigmondy (1892) and again by

Birkhoff (1904): If a, b are relatively prime integers, a > b ≥ 1,
then P [an − bn] ≥ n + 1 and P [an + bn] ≥ 2n + 1 (with the exception
23 + 1 = 9). Schinzel added to this result (1962): If ab is a square
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or the double of a square, then P [an− bn] ≥ 2n+1, except for a = 2,
b = 1, and n = 4, 6, 12.

In his work on primitive factors of Lucas sequences with D > 0,
Carmichael (1913) showed that if n > 12, then P [Un] ≥ n− 1 and
P [Vn] ≥ 2n − 1. Erdös (1965) conjectured:

lim
n→∞

P [2n − 1]
n

= ∞.

This problem, as well as related questions which are still unsolved,
has been extensively studied by Stewart (see Stewart (1975,
1977b); Shorey (1981); Stewart (1982, 1985)). Several of the re-
sults which I shall describe concern the greatest prime factor when
the index n belongs to some set with asymptotic density 1.

A subset S of N has asymptotic density γ, 0 ≤ γ ≤ 1, where

lim
N→∞

#{n ∈ S | n ≤ N}
N

= γ.

For example, the set P of prime numbers has asymptotic density 0.
Combining the Prime Number Theorem with the fact that each

primitive factor of Φn(a, b) is of the form hn + 1 yields:

(3.22) There exists a set T of asymptotic density 1 such that

lim
n→∞
n∈T

P [Φ(a, b)]
n

= ∞.

In particular, limn→∞,n∈T
P [2n−1]

n = ∞ where T is a set with asymp-
totic density 1. The above result was made more precise and extended
for sequences with arbitrary discriminant D �= 0. Let 0 ≤ κ ≤ 1/ log 2
and define the set

Nκ = {n ∈ N | n has at most κ log log n distinct prime factors}.

For example, P ⊂ Nκ, for every κ as above. A classical result
(see the book of Hardy and Wright (1938)) is the following: If
0 ≤ κ ≤ 1/ log 2, then Nκ has asymptotic density equal to 1.

In other words, “most” natural numbers have “few” distinct prime
factors.

The following result is due to Stewart (1977b) for α, β real, and
to Shorey (1981) for arbitrary α, β.
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(3.23) Let κ, α, β be as above. If n ∈ Nκ, n ≥ 3, then

P [Φn(α, β)] ≥ Cϕ(n)
log n

q(n)

where C ≥ 0 is an effectively computable number depending only on
α, β, and κ.

Recall that q(n) = 2ν(n) and ν(n) ≤ κ log log n. It follows, with
appropriate constants C1 > 0 and C2 > 0, that

P [Φn(α, β)] > C1
n log n

2ν(n) log(1 + ν(n))

and

P [Φn(α, β)] > C2
n log n1−κ log 2

log log log n
.

In particular, the above estimates hold for n ∈ Nκ, n > 3, and
each Lucas sequence Un(P, Q), Vn(P, Q), and αn − βn.

Since ν(p) = 1 for each prime p, then

P [ap − bp] ≥ Cp log p,

P [ap + bp] ≥ Cp log p

(with appropriate C > 0). In particular, for the Mersenne numbers
Mp = 2p − 1,

P [2p − 1] ≥ Cp log p,

and for the Fermat number Fm = 22m
+ 1,

P [22m
+ 1] ≥ Cm × 2m,

but this estimate may also be obtained in a more direct way, as
suggested by D. Knayswick.

Stewart obtained also sharper, more technical expressions for
lower bounds of P [Φn(α, β)], and he conjectured that

P [Φ(α, β)] > C[ϕ(n)]2

for α, β real, for all n > 3, where C > 0 is an effectively computable
number (depending on α, β). This statement is true if n is square-
free.

Using a more refined form of Baker’s lower bounds for linear
forms in logarithms (as given by Waldschmidt (1980)), Stewart

(1982) proved the following result, valid for all n > C0 (an absolute
constant):
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(3.24) For every (P, Q) ∈ S there exists an effectively computable
number C1 = C1(P, Q) > 0 such that if n > C0, then P [Un], P [Vn]
are bounded below by

max

{
n − 1, C1

n log n

q(n)
4
3

}
.

The following result is non-effective, but gives sharper bounds on
sets of asymptotic density 1 (Stewart (1982)):

(3.25) Let f : N → R>0 be any function such that lim f(n) = 0. For
each (P, Q) ∈ S there exists a set T ⊆ N of asymptotic density 1,
such that if n ∈ T , then

P [Un] ≥ f(n)
n(log n)2

log log n
.

Stewart obtained further results about linear recurrence se-
quences other than Lucas sequences, and even for linear recurrence
sequences of order greater than 2, but they fall beyond my scope.
For a comprehensive survey, see Stewart (1985).

An interesting result related to these questions had already been
obtained by Mahler (1966):

(3.26) Let Q ≥ 2, D = P 2 − 4Q < 0, and let E be a finite set of
primes and denote by E×[Un] the largest factor of Un, where prime
factors all belong to E. If 0 < ε < 1

2 , there exists n0 > 1 such that if
n > n0, then

∣∣∣ Un
E×[Un]

∣∣∣ > Q(1/2−ε)n. In particular, limP [Un] = ∞.

The proof used p-adic methods.

4 Primes in Lucas sequences

Let U , V be the Lucas sequences with parameters (P, Q) ∈ S.
The main questions about primes in Lucas sequences are the

following:

1. Does there exist n > 1 such that Un(P, Q), respectively Vn(P, Q),
is a prime?

2. Do there exist infinitely many n > 1 such that Un(P, Q),
respectively Vn(P, Q), is a prime?
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I discuss the various possibilities, indicating what is known in the
most important special cases.

The following is an example of a Lucas sequence with only one
prime term, namely U2:
U(3, 1): 0 1 3 8 21 55 144 377 987 . . .

This was remarked after (3.19). Similarly, if a > b ≥ 1, with a, b
odd, if P = a + b, Q = ab, then Vn(P, Q) = an + bn is even for every
n ≥ 1, so it is not a prime.

Applying Carmichael’s theorem (3.11) on the existence of
primitive factors, it follows easily that:

(4.1) If D > 0 and Un(P, Q) is a prime, then n = 2, 4 or n is an
odd prime. If Vn(P, Q) is a prime, then n is a prime or a power of 2.

This result is not true if D < 0, as this example shows:
Let (P, Q) = (1, 2), so D = −7 and

U(1, 2): 0 1 1 −1 −3 −1 5 7 −3 −17 −11 23 45 −1 −91 −89 . . .

In this example, U6, U8, U9, U10, U15, . . . , are primes.
Similarly, in V (1, 2), for example, the terms |V9|, |V10| are primes.

Special Cases. In (1999), Dubner and Keller indicated all the
indices n < 50000 for which the Fibonacci number Un, or the Lucas
number Vn, are known to be prime: Un is known to be a prime for
n = 3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 47, 83, 131, 137, 359, 431,
433, 449, 509, 569, 571, 2971(W ), 4723(M), 5387(M), 9311(DK) [W:
discovered by H. C. Williams; M: discovered by F. Morain; DK:
discovered by H. Dubner and W. Keller].

Moreover, for n < 50000, Un is a probable prime for n = 9677,
14431, 25561, 30757, 35999, 37511 (and for no other n < 50000).
This means that these numbers were submitted to tests indicating
that they are composite.

For n ≤ 50000, Vn is known to be a prime for n = 2, 4, 5, 7, 8, 11,
13, 16, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 113, 313, 353, 503(W ),
613(W ), 617(W ), 863(W ), 1097(DK), 1361(DK), 4787(DK), 4793(DK),
5851(DK), 7741(DK), 10691(DK), 14449(DK) [W: discovered by H. C.

Williams; DK: discovered by H. Dubner and W. Keller].
Moreover, Vn is a probable prime for n = 8467, 12251, 13963,

19469, 35449, 36779, 44507 (and for no other n ≤ 50000).
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Due to the size of the probable primes, an actual prime
certification is required to be done.

The paper of Dubner and Keller contains a lot more factor-
izations; it is a continuation of previous work of numerous other
mathematicians; we call attention to Jarden (1958), the edition of
Jarden’s book by Brillhart (1973), and the paper by Brillhart

(1988) which contains complete factorizations of Un (for n ≤ 1000)
and of Vn (for n ≤ 500).

If a = 2, b = 1, the associated Lucas sequences are Un = 2n − 1
and Vn = 2n + 1.

Now, if Un is a prime, then n = q is a prime, and Mq = Uq = 2q−1
is a prime Mersenne number. If Vn is a prime, then n = 2m, and
Fm = 22m

+ 1 is a prime Fermat number.
Up to now, only 37 Mersenne primes are known, the largest one

being M302137, proved prime in 1999; it has more than 2 million
digits. On the other hand, the largest known Fermat prime number
is F4. For a detailed discussion of Mersenne numbers and Fermat
numbers, see my book The Little Book of Big Primes (1991a) or the
up-to-date Brazilian edition (1994).

It is believed that there exist infinitely many Mersenne primes.
Concerning Fermat primes, there is insufficient information to
support any conjecture.

5 Powers and powerful numbers in Lucas
sequences

In this section, I deal with the following questions. Let U , V be the
Lucas sequences with parameters (P, Q) ∈ S. Let k ≥ 1, h ≥ 2, and
consider the set

CU,k,h = {Un | Un = kxh, with |x| ≥ 2}.

Let CU,k =
⋃

h≥2 CU,k,h, so CU,k consists of all Un of the form Un =
kxh for some |x| ≥ 2 and h ≥ 2. If k = 1, one obtains the set of all
Un that are proper powers.

Similarly, let

C∗
U,k = {Un | Un = kt where t is a powerful number}.

If k = 1, one obtains the set of all Un which are powerful numbers.
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Corresponding definitions are made for the sets CV,k,h and CV,k∗
associated to the sequence V .

The basic question is to find out if, and when, the above sets are
empty, finite, or infinite, and, whenever possible, to determine the
sets explicitly.

A related problem concerns the square-classes in the sequences
U, V .

Un, Um are said to be square-equivalent if there exist integers a, b �=
0 such that Uma2 = Unb2 or, equivalently, UmUn is a square. This
is clearly an equivalence relation on the set {Un | n ≥ 1} whose
classes are called the square-classes of the sequence U . If Un, Um are
in the same square-class, and if d = gcd(Un, Um), then Um = dx2,
Un = dy2, and conversely.

The square-classes of the sequence V are defined in a similar
manner.

Concerning square-classes, the problems are the same: to deter-
mine if there are square-classes which are not trivial, that is, having
more than one element; next, to ascertain if there are only finitely
many nontrivial square-classes, if a square-class may be finite and,
if possible, to determine explicitly the square-classes.

If k ≥ 1, the notation k� indicates a number of the form kx2, with
x ≥ 2; thus, � indicates a square greater than 1.

The first results on these questions were the determinations of
those Fibonacci and Lucas numbers that are squares. This was
achieved using rather elementary, but clever, arguments. In my pre-
sentation, I prefer to depart from the order in which the subject
unfolded, and, instead, to give first the general theorems.

A. General theorems for powers

The general theorem of Shorey (1981, 1983) (valid for all non-
degenerate binary recurrence sequences) was proved using sharp
lower bounds for linear forms in logarithms by Baker (1973), plus
a p-adic version by van der Poorten (1977), assisted by another
result of Kotov (1976).

A result of Shorey (1977) may also be used, as suggested by
Pethö.

(5.1) Let (P, Q) ∈ S, k ≥ 1. There exists an effectively computable
number C = C(P, Q, k) > 0 such that if n ≥ 1, |x| ≥ 2, h ≥ 2 and
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Un = kxh, then n, |x|, h < C. A similar statement holds for the
sequence V .

In particular, in a given Lucas sequence there are only finitely many
terms which are powers.

Stewart’s paper (1980) contains also the following result, sug-
gested by Mignotte and Waldschmidt. For h ≥ 2, n ≥ 1, let [n]h

denote the h-power closest to n.

(5.2) If Q = ±1, then

lim
n→∞ |Un − [Ur]h| = ∞.

This is achieved by showing that for every d, there exists an effec-
tively computable number C = C(P, d) > 0 such that if Un = xh + d
with |x| ≥ 1, h ≥ 2, then n, |x|, h < C.

The above general results are not sufficient to determine explicitly
all the terms Un of the form kxh, because the bounds indicated are
too big.

Pethö (1982) gave the following extension of (5.1) (valid for all
non-degenerate binary recurrences):

(5.3) Let E be a finite set of primes, E× the set of integers all of
whose prime factors belong to E. Given (P, Q) ∈ S, there exists
an effectively computable number C > 0, depending only on P , Q,
and E, such that if n ≥ 1, |x| ≥ 2, h ≥ 2, k ∈ E×, and Un = kxh,
then n, |x|, h, k ≥ C. A similar result holds for the sequence V .

B. Explicit determination in special sequences

Now I shall consider special sequences, namely, those with pa-
rameters (1,−1) (the Fibonacci and Lucas numbers), those with
parameters (2,−1) (the Pell numbers), and those with parameters
(a + 1, a), where a > 1, in particular with parameters (3, 2).

The questions to be discussed concern squares, double squares,
other multiples of squares, square-classes, cubes, and higher powers.

The results will be displayed in a table (see page 35).

a Squares

The only squares in the sequence of Fibonacci numbers are U1 =
U2 = 1 and U12 = 144. This result was proved independently in 1964
by Cohn and Wyler.
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The only square in the sequence of Lucas numbers is V3 = 4,
proved by Cohn (1964a).

One proof uses only divisibility properties and algebraic identities
involving the Fibonacci and Lucas numbers. Another proof is based
on the solution of the equations X2 − 5Y 4 = ±4, X4 − 5Y 2 = ±4.

For the parameters (P, Q) = (2,−1), which give the sequences of
Pell numbers, it is easy to see that Vn is never a square. The only
Un (with n > 1) which is a square is U7 = 169. The proof follows
from a study of the equation X2 − 2Y 4 = −1, which was the object
of a long paper by Ljunggren (1942c). Robbins reported this re-
sult in (1984) and it was again discovered by Pethö (1991) using a
method of Diophantic approximation and computer calculations.

Let a ≥ 2, P = a + 1, and Q = a. Nagell (1921a) (and Ljung-

gren (1942c), who completed the work) proved: If an−1
a−1 is a square,

and n > 1, then (a, n) = (3, 5) or (7, 4).
Ko (1960, 1964) proved: If an + 1 is a square, then (a, n) = (2, 3).

This result answered a long-standing problem.
A short proof of Ko’s theorem is due to Chein (1976); another

one was given by Rotkiewicz (1983) involving the computation of
Jacobi symbols.

Detailed proofs of the above results are given in my book Catalan’s
Conjecture (1994).

The special case of parameters (3, 2) gives the numbers Un = 2n−
1, Vn = 2n + 1, and it is very easy to see that 2n − 1 = � only for
n = 1, and 2n + 1 = � only for n = 3.

b Double squares

Cohn (1964b) showed for Fibonacci numbers Un and Lucas
numbers Vn:

If Un = 2�, then n = 3 or 6, giving U3 = 2, U6 = 8.
If Vn = 2�, then n = 0 or 6, giving V0 = 2, V6 = 18.
I have not found in the literature the determination of the Pell

numbers Un(2,−1), Vn(2,−1), an−1
a−1 , an +1 which are double squares

(apart from the trivial cases).

c Square-classes

Cohn (1972) determined the square-classes of Fibonacci and Lucas
numbers (and even of more general sequences). In (1989a), I used
another method to solve this problem:
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The square-classes of Fibonacci numbers consist all of one
number, except {U1, U2, U12} and {U3, U6}.
The square-classes of Lucas numbers consist only of one
number, except {V1, V3}, {V0, V6}.

The determination of the square-classes of sequences of Pell
numbers remains to be done.

For the square-classes of the sequences Un = an−1
a−1 , Vn = an + 1

(n ≥ 1), see Ribenboim (1989b).

The square-classes of the sequence U consist all of only one
number. If a is even, the square-classes of V are also reduced to
one element. Furthermore, there is an effectively computable
number C > 0 such that if

(an + 1)(am + 1) = �

with m �= n, a odd, then a, m, n < C. So, only finitely many
square-classes are not trivial and they are all finite.

d Numbers of the form k� with k ≥ 3

Let k ≥ 3, assumed without loss of generality to be square-free.
Often, k is taken to be an odd prime.

I have mentioned some papers concerning the special Lucas se-
quences with terms of the form k�. On this matter, it is unavoidable
to be incomplete and I wish to apologize to any author whose work
I did not report.

On Fibonacci numbers, respectively Lucas numbers, of the form
p� (where p is an odd prime) there are papers by Steiner (1980),
Robbins (1983a), and Goldman (1988).

Steiner showed that if Un = 3�, then n = 4. Robbins proved
that if Un = p�, where p is a prime, p ≡ 3 (mod 4) or 3 < p < 10000,
then p = 3001. Goldman showed that if p = 3, 7, 47 or 2207, and
the Lucas number Vn = p�, then Vn = p; note that then n = 2e

(with e = 1, 2, 3, 4).
For the sequence an−1

a−1 , (n ≥ 0, a ≥ 2), there is also a partial result
by Rotkiewicz (1983): if a ≡ 0 or 3 (mod 4) and n > 1, n odd,
then an−1

a−1 �= n�. This is obtained using the calculation of Jacobi
symbols.
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e Cubes

London and Finkelstein (1969) showed that the only Fibonacci
cubes are U1 = U2 = 1 and U6 = 8, while the only Lucas number
which is a cube is V1 = 1. The proof by London and Finkelstein

requires the explicit solution of the cubic diophantine equations
x2 ± 100 = y3, subject to certain conditions. The latter result was
obtained by Lagarias (1981) as well as by Pethö (1983) with a dif-
ferent proof using Waldschmidt’s form (1980) of the lower bound
for linear forms in logarithms, followed by computer calculations.
Pethö also gave results about Fibonacci numbers of the form px3

or p2x3. For Pell numbers, Pethö (1991) showed that for n > 1,
Un(2,−1) is never a cube.

Nagell (1920, 1921b) (work completed by Ljunggren (1942a,
1943)) showed that if an−1

a−1 is a cube, with n = 3, then a = 18;
moreover, if n > 3, then n �≡ −1 (mod 6), which is just a partial
result.

The work of Nagell and Ljunggren also showed that an + 1 is
a cube only in trivial cases.

These results are of course trivial for the numbers 2n − 1, 2n + 1,
which cannot be cubes. They were given by Gérono (1870).

f Higher powers

Nobody has as yet found any power higher than a cube among
Fibonacci or Lucas numbers (except, trivially, 1).

In (1978) and (1983b), Robbins showed, if q ≥ 5, q a prime, and
if n is the smallest index such that the Fibonacci number Un is a
qth power, then n is a prime. Thus, if p is a prime dividing Un, then
n = ρU (p), but also pq | Un, a fact which seems very unlikely to
happen. The same result was also obtained in (1983) by Pethö.

Pethö (1991) showed also that a Pell number Un(2,−1) (with
n > 1) is not a power (higher than a square).

The work of Nagell and Ljunggren already quoted gives: If
an−1
a−1 = ym where m > 3, n ≥ 3, then n �= 3. Moreover, from
Nagell (1920) and Ljunggren (1943), necessarily 3 and 4 do not
divide n when m > 3 (this is a partial result only).

Inkeri communicated to me: If an−1
a−1 is a pth power (with a > 1,

n > 1 and p a prime), then the p-adic value vp(a) �= 1 (see the proof
in my book Catalan’s Conjecture (1994), page 120).
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The problem to determine if an+1 can be equal to a higher power,
or the similar problem for an − 1, amounts to the determination of
all consecutive powers of integers. Catalan (1844) conjectured that
8 and 9 are the only consecutive powers. This problem remains open,
and my book Catalan’s Conjecture (already quoted) is entirely de-
voted to this question. Let it be said here only that, with a clever use
of Baker’s lower bounds for linear forms in logarithms, Tijdeman

(1976) showed:

(5.4) There exists an effectively computable number C > 0 such
that if an + 1 = bm with a, b ≥ 1, m ≥ 2, then a, b, m, n < C.

Langevin (1976) calculated an upper bound for C:

C < eeee730

which is beyond what imagination can dare.
It would be desirable to lower his bound so that numerical

computer calculations may eventually confirm Catalan’s conjecture.
Of course, it is easy to show for the special sequence of numbers

2n − 1, 2n + 1 that they are not higher powers (different from 1).
This was done by Gérono (1870).

g Addendum on repunits

A number is called a repunit if all its digits in base 10 are equal to 1.
Such numbers are of the form

10n − 1
10 − 1

= Un(11, 10).

A repunit (different from 1) is not a square, nor a fifth power.
This follows from Inkeri’s result, already quoted. An independent
proof was given by Bond (see my book Catalan’s Conjecture (1994),
page 120).

Inkeri (1972) showed that a repunit (different from 1) is not a
cube. Another proof was given by Rotkiewicz (1981) (see Catalan’s
Conjecture, pages 119, 120).

The question of the determination of repunits which are pow-
ers has now been completely solved—only the trivial repunit 1 is a
power. This result is in a reprint of Bugeaud (1999). The proof re-
quires bounds in linear forms in two p-adic logarithms plus extensive
computations with modular techniques to solve Thue equations.
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Sequences Fibonacci Lucas Un(2,−1) Vn(2,−1) Un(3, 2) Vn(3, 2)
an − 1

a − 1

(a > 2)

an + 1

(a > 2)

�

!
Cohn
Wyler

!
Cohn

!
Ljungren

!
Ljungren

!
trivial

!
Frénicle
de
Bessy

!
Nagell
Ljun-
gren

!
Ko

2�

!
Cohn

!
Cohn

? ? !
trivial

!
trivial

? ?

Square
classes

!
Cohn
Riben-
boim

!
Cohn
Riben-
boim

? ? !
trivial

!
trivial

!
Riben-
boim

!?
Riben-
boim

Cubes
!
London
and
Finkel-
stein

!
London
and
Finkel-
stein

!
Pethö

? !
Gérono

!
Gérono

!?
Nagell
Ljun-
gren

!
Nagell
Ljun-
gren

Higher
Powers

!?
Shorey and Stewart or Pethö

!
Gérono

!
Gérono

!?
Nagell

!?
Tijde-
man

h Recapitulation

It is perhaps a good idea to assemble in a table the various results
about special Lucas sequences discussed about.

The sign (!) indicates that the problems has been solved; (?) means
the problem is completely open, or that I could not find it treated
in the literature; the sign (!?) means that only partial results are
known, cases remaining still unsettled.

C. Uniform explicit determination of multiples,
squares, and square-classes for certain families of
Lucas sequences

It is an interesting and somewhat unexpected feature in the deter-
mination of squares, double-squares, and square-classes, that certain
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infinite families of Lucas sequences can be treated at the same time,
providing uniform results.

In a series of papers, Cohn (1966, 1967, 1968, 1972) has linked
this problem to the solution of certain quartic equations where he
obtained results for all (non-degenerate) sequences with parameters
(P,±1), where P ≥ 1 is odd.

Some results are also valid for a certain infinite, but thin, set of
even parameter P , as will be soon indicated.

McDaniel and I have devised a new method, involving the com-
putation of Jacobi symbols, applicable to parameters (P, Q) with
P , Q odd, P ≥ 1, gcd(P, Q) = 1, and D > 0.

These results were announced in (1992), and detailed proofs will
soon appear.

a Squares and double squares

The next results are by McDaniel and Ribenboim .
It is assumed that P ≥ 1, P , Q are odd, gcd(P, Q) = 1, and

D = P 2 − 4Q > 0.

(5.5) 1. If Un = �, then n = 1, 2, 3, 6, or 12.
2. U2 = � if and only if P = �.
3. U3 = � if and only if P 2 − Q = �.
4. U6 = � if and only if P = 3�, P 2 − Q = 2�,

P 2 − 3Q = 6�.
5. U12 = � if and only if P = �, P 2−Q = 2�, P 2−2Q = 3�,

P 2 − 3Q = �, and (P 2 − 2Q)2 − 3Q2 = 6�.

The determination of all allowable (P, Q) for which U3(P, Q) = �

is obvious, and clearly there are infinitely many such pairs (P, Q).

(5.6) The set of allowable parameters (P, Q) for which U6(P, Q) = �

is parameterized by the set {(s, t) | gcd(s, t) = 1, s even, t odd,
st ≡ 1 (mod 3)} by putting

P =
(s2 − t2)2

3
, Q = (a2 − b2)2 − 8(a2 + b2 + ab)2

q

with

a =
2(s2 + t2 + st)

3
, b =

s2 + t2 + st

3
,

and three other similar forms for P, Q (not listed here for brevity). In
particular, there are infinitely many (P, Q) for which U6(P, Q) = �.
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(P, Q) = (1,−1) is the only known pair such that U12(P, Q) = �.
It is not known if the system of equations given in (5.5) part (5)
admits other nontrivial solution.

(5.7) 1. If Un = 2�, then n = 3 or 6.
2. U3 = 2� if and only if P 2 − Q = 2�.
3. U6 = 2� if and only if P = �, P 2 − Q = 2�, and P 2 −

3Q = �.

The set of allowable parameters (P, Q) for which U3(P, Q) = 2� is
clearly infinite and easily parameterized.

The set of allowable (P, Q) for which U6(P, Q) = 2� is not com-
pletely known. However, the subset of all (1, Q) for which U6(1, Q) =
2� may be parameterized and shown to be infinite.

Concerning the sequence V , the results are the following:

(5.8) 1. If Vn = �, then n = 1, 3, or 5.
2. V3 = � if and only if P = �.
3. V3 = � if and only if both P and P 2 − 3Q are squares, or

both P and P 2 − 3Q are 3�.
4. V5 = � if and only if P = 5� and P 4−5P 2Q+5Q2 = 5�.

(5.9) The set of all allowable (P, Q) for which V3(P, Q) = � is
infinite and parameterized as follows:

First type: P = s2, Q = s4−t2

3 where s is odd, t even, 3 does not
divide st, gcd(s, t) = 1, and s2 < 2t;

Second type: P = 3s2, Q = 3s4 − t2, where s is odd, t is even, 3
divides s, gcd(s, t) = 1, and

√
3s2 < 2t.

(5.10) The set of all allowable (P, Q) for which V5(P, Q) = � is
infinite and parameterized as follows:

First type: P = 5s2t2, Q = − s8−50s4t4+125t8

4 where s, t are odd, 5

does not divide s, gcd(s, t) = 1, and |s| >
[

25+5
√

5
2

] 1
4 t.

Second type: P = s2t2, Q = −5(s8−10s4t4+5t8)
4 where s, t are odd, 5

does not divide s, gcd(s, t) = 1, and |s| >
[

49+
√

1901
10

] 1
4 t.

(5.11) 1. If Vn = 2�, then n = 3 or 6.
2. V3 = 2� if and only if either P = �, P 2 − 3Q = 2�, or

P = 3�, P 2 − 3Q = 6�.
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3. V6 = 2� if and only if P 2 − 2Q = 3�, and (P 2 − 2Q)2 −
3Q2 = 6�.

(5.12) The set of all allowable (P, Q) for which V6(P, Q) = 2� is
infinite and parameterized as follows: P = s2, Q = 3s4 − 2t2 where
s is odd, gcd(s, t) = 1, 3 does not divide s, and

√
6s2 < 4t.

At my request, J. Top determined the pairs (P, Q) for which
V6(P, Q) = 2� (see the paper of McDaniel and Ribenboim already
quoted):

(5.13) The allowable (P, Q) for which V6(P, Q) = 2� correspond to
the rational points of a certain elliptic curve with group of rational
points isomorphic to (Z/2) × Z. These points give rise to infinitely
many pairs of allowable parameters. (P, Q) = (1,−1) corresponds
to the points of order 2; (5,−1) corresponds to the generator of the
subgroup of infinite order.

Other solutions may be calculated from the group law, that is,
with the classical chord and tangent method. Thus

(P, Q) = (29,−4801), (4009, 3593279), (58585,−529351744321), . . .

are also possible parameters.
It is much more difficult to deal with the case where P or Q is

even. The first known results are due to Cohn (1972).

(5.14) Let Q = −1 and P = Vm(A,−1), where A is odd, m ≡
3 (mod 6).

1. If Un(P,−1) = �, then n = 1 or n = 2, and P = 4 or 36.
2. If Un(P,−1) = 2�, then n = 4, P = 4.
3. If Vn(P,−1) = �, then n = 1, P = 4 or 36.
4. If Un(P,−1) = 2�, then n = 2, and P = 4 or 140.

(5.15) Let Q = 1 and P = Vm(A, 1) where A is odd and 3 divides m.
1. If Un(P, 1) = �, then n = 1.
2. If Un(P, 1) = 2�, then n = 2, and P = 18 or 19602.
3. Vn(P, 1) = � is impossible.
4. If Vn(P, 1) = 2�, then n = 1, and P = 18 or 19602.

Note that there are infinitely many even P = Vm(A,−1) with A
odd, m ≡ 3 (mod 6), but this set is thin.
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For example, for P < 6000 the only possibilities are 4, 36, 76, 140,
364, 756, 1364, 2236, 3420, 4964. A similar remark applies to the
numbers P = Vn(A, 1), where A is odd and 3 divides m.

In 1983, Rotkiewicz published the following partial, but remark-
able result:

(5.16) If P is even, Q ≡ 1 (mod 4), gcd(P, Q) = 1, and if
Un(P, Q) = �, then either n is an odd square or n is an even
integer, not a power of 2, whose largest prime factor divides the
discriminant D.

McDaniel and Ribenboim (1998b) used the result of Rotkiewicz

to show:

(5.17) Let P be positive and even, let Q ≡ 1 (mod 4) with D =
P 2 − 4Q > 0, gcd(P, Q) = 1 and let Un(P, Q) = �. Then n is a
square, or twice an odd square; all prime factors of n divide D; if
pt > 2 is a prime power dividing n, then for 1 ≤ u < t, Upu = p�

when u is even, and UpU = p� when u is odd. If n is even and
Un = �, then, in addition, p = � or p = 2�.

b Square-classes

In (1992), together with McDaniel, I proved the following result
was proved:

(5.18) Let (P, Q) ∈ S. Then for every n > 0 there exists an effec-
tively computable integer Cn > 0, depending on P , Q, n, such that if
n < m and Un(P, Q)Um(P, Q) = �, or Vn(P, Q)Vm(P, Q) = �, then
M < Cn.

In particular, all square-classes in sequences U , V are finite.
For parameters (P, 1), (P,−1), with P odd, Cohn (1972) used his

results on certain quartic equations of type X4 − DY 2 = ±4,±1 or
X2 − DY 4 = ±4,±− 1, to obtain results on square-classes:

(5.19) Let P ≥ 1 be odd.
1. If 1 ≤ n < m and Un(P,−1)Um(P,−1) = �, then

n = 1, m = 2, P = �, or
n = 1, m = 12, P = 1, or
n = 3, m = 6, P = 1, or
n = 3, m = 6, P = 3.
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2. If P ≥ 3, 1 ≤ n ≤ m, and Un(P, 1)Um(P, 1) = �, then
n = 1, m = 6, P = 3, or
n = 1, m = 2, P = �.

(5.20) Let P ≥ 1 be odd.
1. If 0 ≤ n < m and Vn(P, 1)Vm(P, 1) = �, then

n = 0, m = 6, P = 1, or
n = 1, m = 3, P = 1, or
n = 0, m = 6, P = 5.

2. If P ≥ 3, 0 ≤ n < m, and Vn(P, 1)Vm(P, 1) = �, then
n = 0, m = 3, P = 3 or 27.

A very special case, but with a more direct proof, was given later
by André-Jeannin (1992).

The following theorem was proved by McDaniel (1998a):

(5.21) Let P > 0, Q �= 0, gcd(P, Q) = 1, D = P 2 − 4Q > 0.
Assume that P , Q are odd.

1. (a) If 1 < m < n and UmUn = �, then (m, n) ∈
{(2, 3), (2, 12), (3, 6), (5, 10)} or n = 3m,
(b) If 1 < m, UmU3m = �, then m is odd, 3 � m, Q ≡
1 (mod 4),

(−Q
P

)
= +1, and P < |Q + 1|.

(c) If P , m > 1 are given, there exists an effectively com-
putable constant C > 0 such that if Q is as in the hypotheses,
and if UmU3m = �, then |Q| < C.
(d) If P , Q are given as above, there exists an effectively
computable C > 0 such that if m > 1 and UmU3m = �, then
m < C.

2. (a) If 1 < m < n and VmVn = �, then n = 3m.
(b) If 1 < m and VmV3m = �, then m is odd, 3 � m, Q ≡
3 (mod 4), 3 � P ,

(−3Q
P

)
= +1 and, P < |Qk + k|, where

k = 5
√

0.6 ≈ 0.9.
(c) If m > 1 and P are given, there exists an effectively com-
putable C > 0 such that if Q �= 0 is as above and VmV3m = �,
then |Q| < C.
(d) If P , Q are given as above, there exists an effectively
computable C > 0 such that if 1 < m and VmV3m = �, then
m < C.
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c Multiples of squares

There are only a few systematic results, mainly due to Cohn (1972).
Let k ≥ 3 be an odd square-free integer, let P ≥ 1, with P odd.

Cohn studied the equations Un(P,−1) = k�, Un(P,−1) = 2k�, but
could not obtain complete results.

Clearly, there exists a smallest index r > 0 such that k divides
Ur(P,−1). Since the square-classes have at most two numbers, as
indicated before in this case, there exist at most two indices n such
that Un(P,−1) = k�, respectively 2k�.

(5.22) With the above hypotheses and notations:
1. If r �≡ 0 (mod 3) and Un = k�, then n = r, while Un = 2k�

is impossible.
2. If r ≡ 3 (mod 6), Un(P,−1) = k� is impossible, however, no

solution was obtained for Un(P,−1) = 2k� in this case.
3. If n ≡ 0 (mod 6), and if the 2-adic value v2(r) is even,

then Un(P,−1) = 2k� is impossible; if v2(r) is odd, then
Un(P,−1) = k� is impossible except if P = 5, n = 12,
k = 455. The other cases are left open.

Cohn also stated that for P ≥ 3, the equations Un(P, 1) = k�,
respectively 2k�, can be treated similarly, with partial results.

D. Powerful numbers in Lucas sequences

Let (P, Q) ∈ S, and let U , respectively V , be the Lucas sequences
with parameters (P, Q). If Un is a powerful number, and if p is a
primitive factor of Un, then p2 divides Un. This suggests that the
set of indices n such that Un is powerful should be finite. A similar
remark applies to the sequence V .

A proof of this fact, based on Masser’s conjecture, is known for
Fibonacci numbers and Lucas numbers.

Masser’s conjecture (1985), also called the (ABC) conjecture, is
the following statement (see also Oesterlé (1988)):

Given ε > 0, there exists a positive number C(ε) such that if a, b,
c are positive integers with gcd(a, b) = 1, a + b = c, if g =

∏
p|abc p,

then c < C(ε)g1+ε. It is a great challenge for mathematicians to
prove the (ABC) conjecture. A much weaker form of the tantalizing
(ABC) conjecture was proved by Stewart (1986). Elkies (1991)
showed that the (ABC) conjecture implies the famous theorem of
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Faltings (establishing Mordell’s conjecture). It is also known that
the (ABC) conjecture implies that there exist at most finitely many
integers n ≥ 3, x, y, z �= 0, such that xn +yn = zn. This is just short
of proving Fermat’s Last Theorem.

I learned the following from G. Walsh:

(5.23) If Masser’s conjecture is true, and if k ≥ 1 is a given square-
free integer, there exist only finitely many indices n such that the
Fibonacci number Un, or the Lucas number Vn, is of the form kt,
where t is a powerful number.

The proof is short and simple.
For any integer N =

∏r
i=1 pei

i (where p1, . . . , pr are distinct primes
and e1, . . . , er ≥ 1), the powerful part of N is by definition

w(N) =
∏
ei>1

pei
i .

So, N is powerful exactly when N = w(N).
In 1999, Ribenboim and Walsh proved, assuming the (ABC) con-

jecture to be true,

(5.24) Let U , V be Lucas sequences with positive discriminant. For
every ε > 0, the sets {n | w(Un) > U ε

n} and {n | w(Vn) > V ε
n}

are finite. In particular, each of the sequences U , V has only finitely
many terms which are powerful.

Noteworthy special cases arise taking P = 1, Q = −1 (Fibonacci
and Lucas numbers), P = 2, Q = −1 (Pell numbers), P = 3, Q = 2
and more generally P = a + 1 Q = a (while a > 1). In particular,
the (ABC) conjecture implies that there exist only finitely many
Mersenne numbers Mq and Fermat numbers Fm which are powerful.
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coefficients variables. C. R. Acad. Sci. Paris, 17:559–567.

1844 E. Catalan. Note extraite d’une lettre addressée á l’éditeur.
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Astérisque, 161–162, 165–186.

1989a P. Ribenboim. Square-classes of Fibonacci numbers and
Lucas numbers. Portug. Math., 46:159–175.

1989b P. Ribenboim. Square-classes of an−1
a−1 and an+1. J. Sichuan

Univ. Nat. Sci. Ed., 26:196–199. Spec. Issue.
1989 N. Tzanakis and B. M. M. de Weger. On the practical

solution of the Thue equation. J. Nb. Th., 31:99–132.
1991 W. D. Elkies. ABC implies Mordell. Internat. Math. Res.

Notices (Duke Math. J.), 7:99–109.
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1999a P. Ribenboim. Números primos, Mistérios e Récordes.
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2

Representation of Real
Numbers by Means of
Fibonacci Numbers

Our aim is to derive a new representation of positive real numbers
as sums of series involving Fibonacci numbers. This will be an easy
application of an old result of Kakeya (1941). The paper concludes
with a result of Landau (1899), relating the sum

∑∞
n=1

1
Fn

with
values of theta series. We believe it worthwhile to unearth Landau’s
result which is now rather inaccessible.

1. Let (si)i≥1 be a sequence of positive real numbers such that s1 >
s2 > s3 > · · ·, and limi→∞ si = 0. Let S =

∑∞
i=1 si ≤ ∞.

We say that x > 0 is representable by the sequence (si)i≥1 if
x =

∑∞
j=1 sij (with i1 < i2 < i3 < · · ·). Then, necessarily, x ≤ S.

The first result is due to Kakeya; for the sake of completeness,
we give a proof:

Proposition 1. The following conditions are equivalent:

1. Every x, 0 < x ≤ S, is representable by the sequence (si)i≥1,
x =

∑∞
j=1 sij , where i1 is the smallest index such that si1 < x.

2. Every x, 0 < x ≤ S, is representable by the sequence (si)i≥1.
3. For every n ≥ 1, sn ≤ ∑∞

i=n+1 si.

Proof. (1) ⇒ (2). This is trivial.
(2) ⇒ (3). If there exists n ≥ 1 such that sn >

∑∞
i=n+1 si, let x

be such that sn > x >
∑∞

i=n+1 si. By hypothesis, x =
∑∞

j=1 sij with
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i1 < i2 < . . . . Since sn > x > si1 , then n < i1, hence x =
∑∞

j=1 sij ≤∑∞
k=n+1 sk, which is absurd.
(3) ⇒ (1). Because limi→∞ si = 0, there exists a smallest index i1

such that si1 < x. Similarly, there exists a smallest index i2 such
that i1 < i2 and si2 < x − si1 .

More generally, for every n ≥ 1 we define in to be the small-
est index such that in−1 < in and sin < x − ∑n−1

j=1 sij . Thus,
x ≥ ∑∞

j=1 sij .
Suppose that x >

∑∞
j=1 sij . We note that there exists N such that

if m ≥ N , then sim < x −∑m
j=1 sij . Otherwise, there exist infinitely

many indices n1 < n2 < n3 < · · · such that sink
≥ x −∑nk

j=1 sij . At
the limit, we have

0 = lim
k→∞

sink
≥ x −

∞∑
j=1

sij > 0,

and this is a contradiction.
We choose N minimal with the above property.
We show: for every m ≥ N , im + 1 = im+1. In fact,

sim+1 < sim < x −
m∑

j=1

sij ,

so by definition of the sequence of indices, im +1 = im+1. Therefore,

{iN , iN + 1, iN + 2, . . .} = {iN , iN+1, iN+2, . . .}.

Next, we show that iN = 1. If iN > 1 we consider the index iN −1,
and by hypothesis (3),

siN−1 ≤
∞∑

k=iN

sk =
∞∑

j=N

sij < x −
N−1∑
j=1

sij .

We have iN−1 ≤ iN − 1 < iN . If iN−1 < iN − 1 this is impossible
because iN was defined to be the smallest index such that iN−1 < iN
and siN < x − ∑N−1

j=1 sij . Thus, iN−1 = iN − 1, that is, siN−1 <

x −∑N−1
j=1 sij and this contradicts the choice of N as minimal with

the property indicated.
Thus iN = 1 and x >

∑∞
j=1 sij =

∑∞
i=1 si = S, contradicting the

hypothesis. �
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We remark now that if the above conditions are satisfied for the
sequence (si)i≥1, and if m ≥ 0, then for every x such that 0 < x <
S =

∑∞
i=m+1 si, x is representable by the sequence (si)i≥m+1, with

i1 the smallest index such that m + 1 ≤ i1 and si1 < x.
Indeed, condition (3) holds for (si)i≥1, hence also for (si)i≥m+1.

Since 0 < x < S, the remark follows from the proposition.
Proposition 1 has been generalized (see, for example, Fridy

(1966)). Now we consider the question of unique representation (this
was generalized by Brown (1971)).

Proposition 2. With the above notations, the following conditions
are equivalent:

(2′) Every x, 0 < x < S, has a unique representation x =
∑∞

j=1 sij .
(3′) For every n ≥ 1, sn =

∑∞
i=n+1 si.

(4′) For every n ≥ 1, sn = 1
2n−1 s1 (hence S = 2s1).

Proof. (2′) ⇒ (3′). Suppose there exists n ≥ 1 such that
sn �= ∑∞

i=n+1 si. Since (2′) implies (2), hence also (3), then sn <∑∞
i=n+1 si. Let x be such that sn < x <

∑∞
i=n+1 si. By the

above remark, x is representable by the sequence {si}i≥n+1, that
is, x =

∑∞
j=1,kj≥n+1 skj . On the other hand, (2′) implies (2), hence

also (1), and x has a representation x =
∑∞

j=1 sij , where i1 is the
smallest index such that si1 < x. From sn < x it follows that i1 ≤ n,
and so x would have two distinct representations, contrary to the
hypothesis.

(3′) ⇒ (4′). We have sn = sn+1 +
∑∞

i=n+2 si = 2sn+1 for every
n ≥ 1, hence sn = 1

2n−1 s1 for every n ≥ 1.
(4′) ⇒ (2′). Suppose that there exists an x such that 0 < x < S

and has two distinct representations

x =
∞∑

j=1

sij =
∞∑

j=1

skj .

Let j0 be the smallest index such that ij0 �= kj0 , say ij0 < kj0 . Then
∞∑

j=j0

sij =
∞∑

j=j0

skj ≤
∞∑

n=ij0+1

sn.

By hypothesis, after dividing by s1 we have
∞∑

n=ij0

1
2n

≥
∞∑

j=j0

21−kj =
∞∑

j=j0

21−ij = 21−ij0 +
∞∑

j=j0+1

21−ij
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=
∞∑

n=ij0

2−n +
∞∑

j=j0+1

21−ij ,

hence
∑∞

j=j0+1 21−ij ≤ 0, which is impossible. �

For practical applications, we note: If sn ≤ 2sn+1 for every n ≥ 1,
then condition (3) is satisfied.

Indeed,
∞∑

i=n+1

si ≤ 2
∞∑

i=n+1

si+1 = 2
∞∑

i=n+2

si,

hence

sn+1 ≤
∞∑

i=n+2

si

and sn ≤ 2sn+1 ≤ ∑∞
i=n+1 si.

2. Now we give various ways of representing real numbers.
First, the dyadic representation, which may of course be easily

obtained directly:

Corollary 3. Every real number x, 0 < x < 1, may be written
uniquely in the form x =

∑∞
j=1

1
2nj (with 1 ≤ n1 < n2 < n3 < · · ·).

Proof. This has been shown in Proposition 2, taking s1 = 1
2 . �

Corollary 4. Every positive real number x may be written in the
form x =

∑∞
j=1

1
nj

(with n1 < n2 < n3 < · · ·).

Proof. We consider the sequence (1/n)n≥1, which is decreasing
with limit equal to zero, and we note that

∑∞
n=1

1
n = ∞ and 1

n ≤ 2
n+1

for every n ≥ 1. Thus, by Kakeya’s theorem and the above remark,
every x > 0 is representable as indicated. �

Corollary 5. Every positive real number x may be written as x =∑∞
j=1

1
pij

(where p1 < p2 < p3 < · · · is the increasing sequence of

prime numbers).

Proof. We consider the sequence (1/pi)i≥1, which is decreasing
with limit equal to zero. As Euler proved,

∑∞
i=1

1
pi

= ∞. By Cheby-
shev’s theorem (proof of Bertrand’s “postulate”) there is a prime
in each interval (n, 2n); thus pi+1 < 2pi and 1

pi
< 2

pi+1
for every

i ≥ 1. By Kakeya’s theorem and the above remark, every x > 0 is
representable as indicated. �
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3. Now we shall represent real numbers by means of Fibonacci
numbers and we begin giving some properties of these numbers.

The Fibonacci numbers are: F1 = F2 = 1, and for every n ≥ 3, Fn

is defined by the recurrence relation Fn = Fn−1 + Fn−2.
Thus the sequence of Fibonacci numbers is

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

In the following proposition, we give a closed form expression for
the Fibonacci numbers; this is due to Binet (1843).

Let α =
√

5+1
2 (the golden number) and β = −

√
5−1
2 , so α+β = 1,

αβ = −1, and hence α, β are the roots of X2 − X − 1 = 0 and
−1 < β < 0 < 1 < α.

We have

Lemma 6. For every n ≥ 1, Fn = αn−βn√
5

and αn−1√
5

< Fn < αn+1√
5

.

Proof. We consider the sequence of numbers Gn = αn−βn√
5

for
n ≥ 1. Then G1 = G2 = 1; moreover,

Gn−1 + Gn−2 =
αn−1 − βn−1

√
5

+
αn−2 − βn−2

√
5

=
αn−2(α + 1) − βn−2(β + 1)√

5
=

αn − βn

√
5

= Gn

because α2 = α+1 and β2 = β +1. Therefore, the sequence (Gn)n≥1

coincides with the Fibonacci sequence.
Now we establish the estimates.
If n ≥ 1, then

(−β)n =
1
αn

< αn−1 = −αnβ = αn(α − 1) = αn+1 − αn,

so

Fn =
αn − βn

√
5

≤ αn + (−β)n

√
5

<
αn+1

√
5

.

Similarly, if n ≥ 2, then

(−β)n =
1
αn < αn−2 = −αn−1β = n − 1(α − 1) = αn − αn−1,
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so

Fn =
αn − βn

√
5

≥ αn − (−β)n

√
5

>
αn−1

√
5

;

this is also true when n = 1. �

For every m ≥ 1 let Im =
∑∞

n=1
1

F
1/m
n

. We have:

Lemma 7. For every m ≥ 1, Im < ∞, I1 < I2 < I3 < · · ·, and
limm→∞ Im = ∞.

Proof. We have

Im <
∞∑

n=1

( √
5

αn−1

)1/m

= (
√

5)1/m
∞∑

n=1

(
1

α1/m

)n−1

=
(
√

5)1/mα1/m

α1/m − 1
,

noting that 1
α1/m < 1.

Next, we have

Im−1 =
∞∑

n=1

1

F
1/m−1
n

<
∞∑

n=1

1

F
1/m
n

= Im.

Finally,

Im =
∞∑

n=1

1

F
1/m
n

>
∞∑

n=1

( √
5

αn+1

)1/m

=
(
√

5)1/m

α1/m
× 1

α1/m − 1
;

thus limm→∞ Im = ∞. �

Proposition 8. For every positive real number x there exists a
unique m ≥ 1 such that x =

∑∞
j=1

1

F
1/m
ij

, but x is not of the form∑∞
j=1

1

F
1/(m−1)
ij

.

Proof. First, we note that each of the sequences (1/F
1/m
n )n≥1 is

decreasing with limit equal to zero. By the above proposition, there
exists m ≥ 1 such that Im−1 < x ≤ Im (with I0 = 0).

We observe that
1
Fn

≤ 2
Fn+1

≤ 2m

Fn+1
for m ≥ 1

because Fn+1 = Fn + Fn−1 < 2Fn. By Proposition 1 and a previ-
ous remark, x is representable as indicated, while the last assertion
follows from x > Im−1 =

∑∞
i=1

1

F
1/m−1
i

. �

The number I1 =
∑∞

n=1
1

Fn
appears to be quite mysterious. As we

have seen,
√

5 < I1 <
√

5 α
α−1 .



2. Representation of Real Numbers by Means of Fibonacci Numbers 57

4. In 1899, Landau gave an expression of I1 in terms of Lam-
bert series and Jacobi theta series. The Lambert series is L(x) =∑∞

n=1
xn

1−xn ; it is convergent for 0 < x < 1, as is easily verified by the
ratio test.

Jacobi theta series, which are of crucial importance (for example,
in the theory of elliptic functions), are defined as follows, for 0 <
|q| < 1 and z ∈ C:

θ1(z, q) = i
∞∑

n=−∞
(−1)nq(n− 1

2)
2

e(2n−1)πiz

= 2q1/4 sin πz − 2q9/4 sin 3πz + 2q25/4 sin 5πz − · · ·

θ2(z, q) =
∞∑

n=−∞
q(n+ 1

2)
2

e(2n−1)πiz

= 2q1/4 cos πiz + 2q9/4 cos 3πz + 2q25/4 cos 5πz + · · ·

θ3(z, q) =
∞∑

n=−∞
qn2

e2nπiz

= 1 + 2q cos 2πz + 2q4 cos 4πz + 2q9 cos 6πz + · · ·

θ4(z, q) =
∞∑

n=−∞
(−1)nqn2

e2nπiz

= 1 − 2q cos 2πz + 2q4 cos 4πz − 2q9 cos 6πz + · · ·
In particular, we have

θ1(0, q) = 0
θ2(0, q) = 2q1/4 + 2q9/4 + 2q25/4 + · · ·
θ3(0, q) = 1 + 2q + 2q4 + 2q9 + · · ·
θ4(0, q) = 1 − 2q + 2q4 − 2q9 + · · ·

Now we prove Landau’s result:

Proposition 9. We have:
∞∑

n=1

1
F2n

=
√

5

[
L

(
3 −

√
5

2

)
− L

(
7 − 3

√
5

2

)]
. (1)

∞∑
n=0

1
F2n−1

= −
√

5(1 + 2β4 + 2β16 + 2β36 + · · ·)(β + β9 + β25 + · · ·)

= −
√

5
2

[θ3(0, β) − θ2(0, β4)]θ2(0, β4). (2)
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Proof. (1) We have

1
Fn

=
√

5
αn − βn

=
√

5
(−1)n

βn − βn
=

√
5βn

(−1)n − β2n
,

so

1√
5

∞∑
n=1

1
F2n

=
∞∑

n=1

β2n

1 − β4n
=

∞∑
n=1

∞∑
k=0

β(4k+2)n =
∞∑

k=0

∞∑
n=1

β(4k+2)n

=
∞∑

k=0

β4k+2

1 − β4k+2
=

β2

1 − β2
+

β6

1 − β6
+

β10

1 − β10
+ · · · .

Because |β| < 1, it follows that

∞∑
n=1

1
F2n

=
√

5
[
L(β2) − L(β4)

]

=
√

5

[
L

(
3 −

√
5

2

)
− L

(
7 − 3

√
5

2

)]
.

(2) Now we have

1√
5

∞∑
n=0

1
F2n−1

= −
∞∑

n=0

β2n+1

1 + β4n+2

= −
∞∑

n=0

β2n+1(1 − β4n+2 + β8n+4 + · · ·)

= (−β + β3 − β5 + β7 − β9 + · · ·)
+ (−β3 + β9 − β15 + β21 − · · ·)
+ (−β5 + β15 − β25 + β35 − · · ·)
+ (−β7 + β21 − β35 + β49 − · · ·) + · · · .

Now we need to determine the coefficient of βm (for m odd), re-
marking that since the series is absolutely convergent its terms may
be rearranged.

If m is odd and d divides m, then βm appears in the horizontal
line beginning with −βm/d with the sign


+ when d ≡ 3 (mod 4),

− when d ≡ 1 (mod 4).
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Thus the coefficient εm of βm is εm = δ3(m) − δ1(m) where

δ1(m) = #{d | 1 ≤ d ≤ m, d | m and d ≡ 1 (mod 4)},
δ3(m) = #{d | 1 ≤ d ≤ m, d | m and d ≡ 3 (mod 4)}.

A well-known result of Jacobi (see Hardy and Wright’s book,
page 241) relates the difference δ1(m) − δ3(m) with the number
r(m) = r2(m) of representations of m as sums of two squares. Pre-
cisely, let r(m) denote the number of pairs (s, t) of integers (including
the zero and negative integers) such that m = s2+t2. Jacobi showed
that

r(m) = 4[δ1(m) − δ3(m)].

It follows that the number r′(m) of pairs (s, t) of integers with
s > t ≥ 0 and m = s2 + t2 is

r′(m) =




r(m)
8

when m is not a square,

r(m) − 4
8

+ 1 = r(m) + 4
8

when m is a square;

(the first summand above corresponds to the representation of m as
a sum of two non-zero squares).

Therefore,

εm = −r(m)
4

=



−2r′(m) when m is not a square,

−(2r′(m) − 1) when m is a square.

Because m is odd, it follows that s �≡ t (mod 2), and therefore

1√
5

∞∑
n=0

1
F2n+1

=
∞∑

m=1
m odd

εmβm

= −2(1 + β4 + β16 + β36 + · · ·)(β + β9 + β25 + · · ·)
+ (β + β9 + β25 + · · ·)

= −(1 + 2β4+ 2β16+ 2β36+ · · ·)(β + β9 + β25 + · · ·).

So,

∞∑
n=0

1
F2n+1

= −
√

5(1 + 2β4 + 2β16 + 2β36 + · · ·)(β + β9 + β25 + · · ·).
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We may now express this formula in terms of Jacobi series. Namely,

1 + 2β4 + 2β16 + 2β36 + · · · = (1 + 2β + 2β4 + 2β9 + 2β16 + · · ·
−(2β + 2β9 + 2β25 + · · ·) = θ3(0, β) − θ2(0, β4),

so,
∞∑

n=0

1
F2n+1

= −
√

5
2

[
θ3(0, β) − θ2(0, β4)

]
θ2(0, β4). �

A formula of Almqvist (1983) kindly communicated to me gives
another expression of I1 only in terms of Jacobi theta series:

I1 =
√

5
4

{[
θ2

(
0,− 1

β2

)]2

+
1
π

∫ 1

0

(
d

dx
log θ4

(
x,− 1

β2

))
cot πx dx

}
.

The following question remained unanswered for a long time:
is I1 =

∑∞
n=1

1
Fn

an irrational number? Yes—this was proved by
André-Jeannin in 1989, with a method reminiscent of the one of
Apéry for the proof of the irrationality of ζ(3) =

∑∞
n=1

1
n3 .

Carlitz considered also in 1971 the following numbers:

Sk =
∞∑

n=1

1
FnFn+1 . . . Fn+k

,

so, S0 =
∑∞

n=1
1

Fn
= I1.

Clearly, all the above series are convergent. Carlitz showed that
S3, S7, S11, . . . ∈ Q(

√
5), while S4k = rk +r′kS0 for k ≥ 1 and rk, r

′
k ∈

Q.
One may ask: are the numbers S0, S1, S2 algebraically indepen-

dent?
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Prime Number Records

The theory of prime numbers can be roughly divided into four main
inquiries: How many prime numbers are there? How can one produce
them? How can one recognize them? How are the primes distributed
among the natural numbers? In answering these questions, calcula-
tions arise that can be carried out only for numbers up to a certain
size. This chapter records the biggest sizes reached so far—the prime
number records.

All the world loves records. They fascinate us and set our imag-
inations soaring. The famous Guinness Book of Records, which has
appeared in surprisingly many editions, contains many noteworthy
and interesting occurrences and facts. Did you know, for example,
that the longest uninterrupted bicycle trip was made by Carlos Vieira
of Leiria, Portugal? During the period June 8–16, 1983, he ped-
alled for 191 hours nonstop, covering a distance of 2407 km. Or
did you know that the largest stone ever removed from a human
being weighed 6.29 kg? The patient was an 80-year-old woman in
London, in 1952. And nearer our usual lines of interest: Hideaki To-
moyoki, born in Yokohama in 1932, quoted 40 000 digits of πfrom
memory, a heroic exploit that required 17 hours and 20 minutes,
with pauses totalling 4 hours. Leafing through the Guinness Book ,
one finds very few scientific records, however, and even fewer records
about numbers.
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Not long ago I wrote The Book of Prime Number Records (Riben-

boim (1996)), in which I discuss the feats of mathematicians in this
domain so neglected by Guinness. How this book originated is a story
worth telling. Approached by my university to give a colloquium
lecture for undergraduate students, I sought a topic that would be
not only understandable but interesting. I came up with the idea of
speaking about prime number records, since the theme of records is
already popular with students in connection with sports. The inter-
est of the students so exceeded my expectations that I resolved to
write a monograph based on this lecture. In the process, I learned
of so many new facts and records that the brief text I had planned
kept on expanding. Thanks to colleagues who supplied me with many
helpful references, I was at last able to complete this work.

I must confess that when preparing the lecture I did not know a lot
(indeed I knew very little!) about the theorems for primes and prime
number records. For me, all these facts, although quite interesting,
were not tied together. They seemed to be just isolated theorems
about prime numbers, and it was not clear how they could be woven
into a connected theory. But when one wishes to write a book, the
first task is to shape the subject matter into a coherent whole.

The scientific method may be considered as a two-step process:
first, observation and experiment—analysis; then formulation of the
rules, theorems, and orderly relationships of the facts—synthesis.
Stated in these terms, my task was thus to present a synthesis of
the known observations about prime numbers, with an emphasis on
the records achieved. Any originality of my work undoubtedly lies
in the systematic investigation of the interplay between theory and
calculation. This undertaking needs no justification if one keeps in
mind what role the prime numbers have in the theory of numbers.
After all, the fundamental theorem of elementary number theory says
that every natural number N > 1 can be expressed in a unique way
(except for the order of the factors) as a product of primes. Prime
numbers are thus the foundation stones on which the structure of
arithmetic is raised.

Now, how did I go about organizing the theory of prime numbers?
I began by posing four direct, unambiguous questions:

1. How many prime numbers are there?
2. How can one generate primes?
3. How can one know if a given number is prime?



64 3. Prime Number Records

4. Where are the primes located?

As I shall show, out of these four questions the theory of prime
numbers naturally unfolds.

How Many Primes Are There?

As is well known, Euclid in his Elements proved that there are
infinitely many primes, proceeding as follows: Assume that there are
only finitely many primes. Let p be the largest prime number and P
be the product of all primes less than or equal to p; then consider
the number P plus 1:

P + 1 = (
∏
q≤p

q)+1.

Two cases are possible: either (a) P + 1 is prime, or (b) P + 1 is
not prime. But if (a) is true, P + 1 would be a prime number larger
than p. And if (b) holds, none of the primes q ≤ p is a prime factor
of P + 1, so the prime factors of P + 1 are all larger than p. In
both cases the assumption that there is a largest prime p leads to a
contradiction. This shows that there must be an infinite number of
primes.

From this indirect proof one cannot deduce a method for generat-
ing prime numbers, but it prompts a question: Are there infinitely
many primes p such that the corresponding number P + 1 is also
prime? Many mathematicians have devoted calculations to this
question.

Record. p = 24029 is the largest known prime for which P + 1 is
also prime; here, P + 1 has 10387 decimal digits. This was found by
C. Caldwell in 1995.

There are many other proofs (but not quite infinitely many) of the
existence of infinitely many primes; each reveals another interesting
aspect of the set of all prime numbers. Euler showed that the sum
of the reciprocals of the prime numbers is divergent:

∑ 1
p

= ∞.

Administrator
ferret
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From this we again see that there cannot be only finitely many
primes. Euler’s proof can be found in many elementary books on
number theory or real analysis, such as Hardy and Wright (1979),
and permits an interesting deduction. For any ε > 0, no matter how
small, we know

∞∑
n=1

1
n1−ε

< ∞.

Hence the prime numbers are closer together, or are less sparsely
scattered along the number line, than are numbers of the form n1−ε.
For example, the primes lie closer together than the squares n2, for
which Euler showed ∞∑

n=1

1
n2

=
π2

6
.

Another simple and elegant proof that infinitely many primes exist
was given by Goldbach. It clearly suffices to find an infinite se-
quence F0, F1, F2, F3, . . . of pairwise relatively prime natural numbers
(i.e., no two having a common divisor greater than 1); since each Fn

has at least one prime factor, then there are infinitely many primes.
It is easy to prove that the sequence of Fermat numbers Fn = 22n

+1
has this property. Clearly, neither Fn nor Fn+k (k > 0) is divisible
by 2; and if p is an odd prime factor of Fn, then 22n ≡ −1 (mod p),
so that 22n−k

= (22n
)2

k ≡ 1 (mod p). Thus Fn+k ≡ 2 (mod p), and
since p > 2, it follows that p does not divide Fn+k. I will devote
further attention to the Fermat numbers after the next section.

Generating Prime Numbers

The problem is to find a “good” function f : N → {prime numbers}.
This function should be as easy to calculate as possible and, above
all, should be representable by previously well-known functions. One
may place additional conditions on this function, for example:
Condition (a). f(n) equals the nth prime number (in the natural
order); this amounts to a “formula” for the nth prime number.
Condition (b). For m �= n, f(m) �= f(n); this amounts to a
function that generates distinct primes, but not necessarily all the
primes.
One can also seek a function f defined on N with integer values (but
not necessarily positive values) that fulfills
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Condition (c). The set of prime numbers coincides with the set of
positive values of the function. This is a far looser requirement and
one that can be fulfilled in unexpected ways, as I shall later show.

To begin, let’s discuss formulas for prime numbers. There are
plenty of them! In fact many of us in younger days sought—often
with success—a formula for the nth prime number. Unfortunately,
all these formulas have one thing in common: They express the
nth prime number through functions of the preceding primes that
are difficult to compute. Consequently, these formulas are useless for
deriving properties of the prime numbers. Nevertheless, I will give
as an illustration one such formula found in 1971. I do so in honor
of its discoverer, J. M. Gandhi, a mathematician who also worked
on Fermat’s Last Theorem.

To simplify the statement of the formula, I will introduce the
Möbius function µ : N → Z, given by

µ(n) =




1 if n = 1,
(−1)r if n is square-free and a product of

r distinct prime factors,
0 otherwise.

Now if p1, p2, p3, . . . is the sequence of prime numbers in increasing
order, set Pn−1 = p1p2 . . . pn−1; then Gandhi’s formula is

pn =


1 − log2


−1

2
+

∑
d,Pn−1

µ(d)
2d − 1




 .

Here, log2 indicates the logarithm in base 2, and [x] denotes, as usual,
the largest integer less than or equal to the real number x. One can
see how difficult it is to calculate pn using Gandhi’s formula!

Now I sketch the construction of a function that generates prime
numbers. E. M. Wright and G. H. Hardy in their famous book
(Hardy and Wright (1979)) showed that if ω = 1.9287800 . . . , and
if

f(n) =


22..

.2
ω 
 (with n twos),

then f(n) is prime for all n ≥ 1. Thus f(1) = 3, f(2) = 13,
and f(3) = 16381, but f(4) is rather hard to calculate and has
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almost 5000 decimal places. However, as the exact value of ω de-
pends on knowledge of the prime numbers, this formula is ultimately
uninteresting.

Do any truly simple functions generate prime numbers? There
are no such polynomial functions because of the following negative
result:

For every f ∈ Z[X1, . . . , Xm] there are infinitely many m-tuples of in-
tegers (n1, . . . , nm) for which |f(n1, . . . , nm)| is a composite number.

Other similar negative results are plentiful.
Well, then, are there polynomials in just one indeterminate for

which many consecutive values are primes? More precisely: Let q be
a prime number. Find a polynomial of degree 1, in fact, a polynomial
of the form fq(X) = dX+q whose values at the numbers 0, 1, . . . , q−1
are all prime. Then fq generates a sequence of q prime numbers in
arithmetic progression with difference d and initial value q.

For small values of q finding fq is easy:

q d Values at 0, 1, . . . , q − 1
2 1 2 3
3 2 3 5 7
5 6 5 11 17 23 29
7 150 7 157 307 . . . . . . 907

However, it is not known how to prove that this is possible for every
prime number q.

Records. In 1986, G. Löh gave the smallest values of d for two
primes:

For q = 11, d = 1 536 160 080.

For q = 13, d = 9 918 821 194 590.

One can also examine the related problem: to search for the longest
sequences of primes in arithmetic progression.

Record. The longest known sequence of primes in arithmetic pro-
gression consists of 22 terms in the sequence with first term
a = 11 410 337 850 553 and difference d = 4 609 098 694 200 (work
coordinated by A. Moran, P. Pritchard, and A. Thyssen, 1993).
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Euler discovered quadratic polynomials for which many val-
ues are primes. He observed that if q is the prime 2, 3, 5, 11,
17, or 41, then the values fq(0), fq(1), . . . , fq(q − 2) of the polyno-
mial fq(X) = X2 + X + q are prime. (Evidently fq(q − 1) = q2

is not prime, so this sequence of consecutive prime values is the
best one can hope for.) For q = 41 this gives 40 prime numbers:
41, 43, 47, 53, . . . , 1447, 1523, 1601.

The next question is obvious: Can one find primes q > 41 for which
the first q−1 values of Euler’s quadratic are all prime? If infinitely
many such primes q exist, I could generate arbitrarily long sequences
of primes! However, the following theorems say this is not to be:

Theorem. Let q be a prime number. The integers fq(0), fq(1),
. . . , fq(q − 2) are all primes if and only if the imaginary quadratic
field Q(

√
1 − 4q) has class number 1 (G. Rabinovitch, 1912).

(A quadratic field K has class number 1 if every algebraic integer
in K can be expressed as a product of primes in K, and if any two
such representations differ only by a unit, i.e., an algebraic integer
that is a divisor in 1 in K.)

Theorem. Let q be a prime number. An imaginary quadratic field
Q(

√
1 − 4q) has class number 1 if and only if 4q−1 = 7, 11, 19, 43, 67,

or 163, that is, q = 2, 3, 5, 11, 17, or 41.

The imaginary quadratic fields of class number 1 were determined
in 1966 by A. Baker and H. M. Stark, independently and free of
the doubt that clung to Heegner’s earlier work in 1952.

Thus the following unbeatable record has been attained:

Record. q = 41 is the largest prime number for which the values
fq(0), fq(1), . . ., fq(q− 2) of the polynomial fq(X) = X2 +X + q are
all primes.

It is worth mentioning that in the solution of this quite harmless-
looking problem a rather sophisticated theory was required. Details
are given in Chapter 5.

I now turn to some polynomials whose positive values coincide with
the set of prime numbers. The astonishing fact that such polynomials
exist was discovered in 1971 by Yu. V. Matijasevič in connection
with the tenth Hilbert problem. Here are the records, which depend
on the number of unknowns n and the degree d of the polynomial:
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Records.

n d Year
21 21 1971 Yu. V. Matijasevič (not explicit)

26 25 1976 J. P. Jones, D. Salo, H. Wada, D. Wiens

42 5 1976 Jones et al. (not explicit): Lowest d

10 ∼ 1.6 × 1048 1978 Yu. V. Matijasevič (not explicit): Lowest n

It is not known whether the minimum values for n and d are 10
and 5, respectively.

Recognizing Prime Numbers

Given a natural number N , is it possible to determine with a fi-
nite number of calculations whether N is a prime? Yes! It suffices to
divide N by every prime number d for which d2 < N . If the remain-
der is nonzero every time, then N is prime. The trouble with this
method is that a large N requires a large number of calculations.
The problem, therefore, is to find an algorithm A where the number
of computations is bounded by a function fA of the number of digits
of N , so fA(N) does not grow too fast with N . For example, fA(N)
should be a polynomial function of the number of binary digits of N ,
which is 1+[log2(N)]. Essentially, this number is proportional to the
natural logarithm log N , since log2(N) = log N/ log 2.

This problem remains open—it is not known whether such a
polynomial algorithm exists. On the one hand, I cannot prove the
impossibility of its existence; on the other hand, no such algorithm
has yet been found. Efforts in this direction have produced several
primality-testing algorithms. According to the point of view, they
may be classified as follows:{

Algorithms for arbitrary numbers
Algorithms for numbers of special form{
Algorithms that are fully justified by theorems
Algorithms that are based on conjectures{
Deterministic algorithms
Probabilistic algorithms

To clarify these notions I offer some examples.
One algorithm applicable to arbitrary numbers is that of G. L.

Miller (1976), the complexity of which can be estimated only with
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the help of the generalized Riemann conjecture. Assuming this con-
jecture, for Miller’s algorithm the estimate fA(N) ≤ C(log N)5 is
valid, where C is a positive constant. Thus this is an algorithm whose
polynomial growth rate remains uncertain. By contrast, the algo-
rithm of L. M. Adleman, C. Pomerance, and R. S. Rumely

(1983) possesses a completely assured complexity estimate, and
the number of computation operations as a function of the num-
ber of binary digits of N is bounded by (log N)C log log log N where
C is a constant. The complexity is therefore in practice not far
from polynomial, and this algorithm can be applied to an arbitrary
integer N .

Both of these algorithms are deterministic, unlike those I shall now
describe. First, I must introduce the so-called pseudoprime numbers.
Let a > 1 be an integer. For every prime p that does not divide a, Fer-
mat’s Little Theorem says ap−1 ≡ 1 (mod p). But it is quite possible
for a number N > 1 with aN−1 ≡ 1 (mod N) to be composite—in
which case we say N is pseudoprime for the base a. For example,
341 is the smallest pseudoprime for the base 2. Every base a has
infinitely many pseudoprimes. Some among them satisfy an addi-
tional congruence condition and are called strong pseudoprimes for
the base a; they, too, are infinite in number.

An algorithm is called a probabilistic prime number test if its ap-
plication to a number N leads either to the conclusion that N is
composite or to the conclusion that with high probability N is a
prime number. Tests of this type include those of R. Baillie and
S. S. Wagstaff (1980), and M. O. Rabin (1980). In these tests
one examines certain “witnesses.” Let k > 1 (for example, k = 30)
and let a1 = 2, a2 = 3, . . . , ak be primes that will serve as witnesses.
Should a witness fail to satisfy the condition aN−1

j ≡ 1 (mod N),
then N is surely composite. If for every witness aj the preceding
congruence holds (that is, if N is pseudoprime for the base aj , for
j = 1, 2, . . . , k) then N is with high probability a prime number. Ra-
bin’s test is similar, using more restrictive congruences which lead
to better probabilities. This test leads to the conclusion that N ei-
ther is certainly composite or with probability 1 − (1/4k) is prime.
For k = 30, then, the test gives a false result only once out of every
1018 values of N . These probabilistic tests are clearly very easy to
apply.
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Now I turn to prime number tests applicable to numbers of the
form N ± 1, where many if not all of the prime factors of N are
known. The tests for N + 1 depend on a weak converse, due to
Pepin, of Fermat’s Little Theorem, while those for N − 1 use the
Lucas sequence.

In 1877, Pepin showed that the Fermat numbers Fn = 22n
+1 are

prime if and only if 3(Fn−1)/2 ≡ −1 (mod Fn). The search for primes
among the Fermat numbers Fn has produced several records.

Record. The largest Fermat number known to be prime is F4 =
65537.

Record. F11 is the largest Fermat number all of whose prime factors
have been determined (R. P. Brent and F. Morain, 1988)

Record. F303088 is the largest Fermat number known to be compos-
ite; it has the factor 3 × 2303093 + 1 (J. Young, 1998).

Record. F24 is the smallest Fermat number not yet proven prime
or composite.

For the Mersenne numbers, Mq = 2q − 1, with q a prime, one
applies the Lucas test (1878): Let S0 = 4, Sk+1 = S2

k − 2, for k ≥ 0.
Then Mq is prime if and only if Mq is a divisor of Sq−2. This test
makes it possible to discover very large primes.

Record. To date, 37 Mersenne primes are known. The largest
Mersenne prime known, which is also the largest known prime to-
day, is Mq where q = 3 021 377 (you may easily compute that it
has more than 2 million digits). It was discovered in January 1998
by R. Clarkson, G. Woltman, S. Kunowski, et. al. The next
smaller Mersenne primes are Mq, with q = 2 976 221, and 1 398 269.

The search for new primes has intensified with the creation by
G. Woltman of a club (one could almost say) or, better, a true co-
operative research program entitled “The Great Internet Mersenne
Primes Search” (GIMPS). It mobilizes thousands of computers
throughout the world, and has led to the discovery of the three
largest known Mersenne primes. The algorithm implemented is a
modification of the one due to R. E. Crandall and has been of
basic importance in this search.
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Record. The largest known composite Mersenne number is Mq for
q = 72021 × 223630 − 1 (Y. Gallot, 1998).

From 1876, when E. Lucas proved M127 prime, until 1989, the title
“largest prime number” was always held by a Mersenne prime. That
became true again in 1992, but in the three intervening years another
champion reigned: 391581 × 2216193 − 1.

Record. The largest prime known today that is not a Mersenne
prime is 302627325 × 2530101 + 1 with 159 585 digits, discovered
in 1999 by R. Burrowes, P. Jobling, and Y. Gallot.

The Distribution of the Prime Numbers

At this point we know the following:

1. There are infinitely many prime numbers.
2. There is no reasonably simple formula for the prime numbers.
3. One can determine whether a given number is prime if it is not

too large.

What can one say about the way the primes are distributed among
the natural numbers? Earlier I gave a hint in connection with Eu-

ler’s proof of the existence of infinitely many primes: The primes
are closer together than are, for example, the squares. A quite simple
way to discuss the distribution of the primes is to count the num-
ber of primes less than a given number. For every real x > 0, set
π(x) = #{prime numbers p | p ≤ x}. Thus, π is the function that
counts the prime numbers. To have a good idea of the behavior of π
we can compare it with simpler functions. This approach leads to
results of an asymptotic nature.

When only 15 years old, C. F. Gauss conjectured from his studies
of prime number tables that

π(x) ∼ x

log x
.

That is, the limit of the quotient

π(x)
x/ log x

,
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as x → ∞, exists and equals 1. An equivalent formulation is

π(x) ∼
∫ x

1

dt

log t
.

The function on the right is called the logarithmic integral and is
denoted Li . Gauss’s assertion was proved in 1896 by J. Hadamard

and C. de la Vallée Poussin ; previously, P. L. Chebyshev had
shown that the limiting value, if it exists, must be 1.

This theorem belongs among the most significant results in the
theory of prime numbers, for which reason it is customarily referred
to as the Prime Number Theorem. However, this theorem obviously
says nothing about the exact value of π(x). For that purpose we have
the famous formula that D. F. E. Meissel found in 1871 expressing
the exact value of π(x) in terms of π(y) for all y ≤ x2/3 and prime
numbers p ≤ x1/2.

Record. The largest value π(N) which has been exactly computed is
π(1020) = 2 220 819 602 560 918 840 done by M. Deleglise in 1997.
He also showed that π(4 185 296 581 467 695 669) = 1017.

The differences∣∣∣∣π(x) − x

log x

∣∣∣∣ and |π(x) − Li(x)|

do not remain bounded as x → ∞. Evaluating these error terms as
exactly as possible is enormously important in applications of the
Prime Number Theorem. On the basis of tables it was first conjec-
tured, and then proved (J. B. Rosser and L. Schoenfeld, 1962),
that for all x ≥ 17, x/ log x ≤ π(x). This is interesting because, by
contrast, the difference Li(x) − π(x) changes sign infinitely many
times, as J. E. Littlewood (1914) showed. In 1933, S. Skewes

showed that the difference Li(x)−π(x) is negative for some x0 with

x0 ≤ eeee7.7

. As a matter of fact, this change in sign occurs much
earlier:

Record. The smallest x0 for which Li(x) < π(x) must be less than
6.69 × 10370 (H. J. J. te Riele, 1987).

The most important function for studying the distribution of
primes is the Riemann zeta function: For every complex number s
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with Re(s) > 1, the series
∑∞

n=1 1/ns is absolutely convergent; it is
also uniformly convergent in every half-plane {s | Re(s) > 1 + ε} for
any ε > 0. The function ζ thus defined can be extended by analytic
continuation to a meromorphic function defined in the entire com-
plex plane, with only one pole. The pole is at the point s = 1, has
order 1, and the residue there is 1. It was the study of the properties
of this function that ultimately made the proof of the Prime Num-
ber Theorem possible. The function ζ has zeros at −2,−4,−6, . . ., as
one can easily show with the help of the functional equation satisfied
by ζ. All other zeros of ζ are complex numbers σ + it (t real) with
0 < σ < 1.

The so far unproved Riemann hypothesis says: The nontrivial zeros
of the Riemann zeta function are located on the critical line 1

2 + it
(t real). Without going into the details, I will just observe that many
theorems about the distribution of primes can be proved with the
assumption of the Riemann hypothesis. It is therefore of fundamental
importance to determine the nontrivial zeros of ζ. By symmetry
considerations, it suffices to determine the zeros with t > 0, which
can be listed in a sequence σn + itn, where tn ≤ tn+1, and in case
tn = tn+1 we require that σn < σn+1. (It must first be shown that
there are at most a finite number of zeros of ζ for each value of t.)

Record. For n ≤ 1 500 000 001 all the zeros σn + itn of the Rie-
mann zeta function are located on the critical line; that is, σn = 1

2 .
These calculations were carried out in 1986 by J. van de Lune,
H. J. J. te Riele, and D. T. Winter.

Record. In 1974, N. Levinson showed that at least one third of
the zeros of the Riemann zeta function are on the critical line, and
in 1989, J. B. Conrey improved this result, replacing 1/3 by 2/5.

The foregoing considerations are based on the asymptotic behav-
ior of the function π and on the function ζ, which is very useful
for estimating the error terms. One can say that they deal with
the estimation of π “at infinity.” Next I turn to the local behavior
of π—estimating the gaps between the prime numbers. Here the fun-
damental question is: Knowing the nth prime pn, where will one find
the following prime pn+1? Thus, one is concerned with the sequence
of differences dn = pn+1 − pn. It is easy to see that lim sup dn = ∞,
that is, arbitrarily long blocks of consecutive composite numbers
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exist. Here is one: For any N , the N consecutive numbers

(N + 1)! + 2, (N + 1)! + 3, . . . , (N + 1)! + (N + 1)

are composite. It has amused some mathematicians to find the
largest blocks of consecutive composite numbers between fairly small
primes—the widest gaps between such primes.

Record. The largest gap between consecutive prime numbers that
has been effectively computed consists of the 1131 composite numbers
which follow the prime p = 1 693 182 318 746 371. This was discovered
by B. Nyman in 1999.

The question about wide gaps between not too large primes can be
made more precise. Let us look at the sequence dn/pn of relative gaps.
As early as 1845, J. Bertrand postulated from a study of tables
that a prime always lies between pn and 2pn, for every n ≥ 1. It was
Chebyshev who first proved this result, which can be written in the
form pn+1 < 2pn or, better, dn/pn < 1. This result, while amusing, is
much weaker than what can be deduced by using the Prime Number
Theorem:

lim
n→∞

dn

pn
= 0.

The investigation of gaps between prime numbers has led to the
following conjecture: For every ε > 0 the inequality pn+1 < pn +
p
1/2+ε
n holds for all sufficiently large n.

Record. The latest entry in a long line, the current record is in the
work of S. Lou and Q. Yao in 1993: pn+1 < pn + p

6/11
n .

What about the limit inferior of the difference sequence dn? Two
prime numbers p and p′ (p < p′) are said to be twin primes if p′−p =
2. It is still not known if there are infinitely many twin primes, i.e.,
if lim inf dn = 2. The question is delicate. In 1919, V. Brun showed
that the sum over all pairs of twin primes∑(

1
p

+
1

p + 2

)
= B < ∞.

It follows that if there are infinitely many twin primes, which one
expects to be the case, then they are thinly dispersed. In 1976, Brun’s
constant was calculated by R. P. Brent: B = 1.90216054.

Record. The largest known pair of twin primes is 361700055 ×
239020 ± 1 with 11755 digits, discovered by H. Lifchitz in 1999.
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Conclusion

Lest this presentation grow to long, I have had to pass over many
fascinating questions, such as the behavior of primes in arithmetic
progression, to say nothing of the Goldbach conjecture. Fortunately,
these and many other facts have been both recorded and amply
explained in a book (Ribenboim (1991)) that is just waiting to be
read! I will close with two curiosities to work into your repertoire.

A repunit is an integer of the form Rn = 111 . . . 1, with n decimal
digits equal to 1. It is not known if there are infinitely many prime
repunits, but there is the following record.

Record. H. C. Williams and H. Dubner showed in 1986
that R1031 is a prime number.

Only four other repunits that are primes are known: R2, R19, R23,
and R317.

I offer one final noteworthy record—but if you want to know why
and how it was found, you must ask H. Dubner.

Record. The largest known prime number whose digits are also all
prime is

723 232 523 232 272 325 252 × 103120 − 1
1020 − 1

+ 1.

It has 3120 digits and was discovered by H. Dubner in 1992.

The observation and study of the prime numbers is a fruitful as
well as diverting activity. Mathematicians derive much enjoyment
from it, and that alone is worth the labor. In time, one comes
to consider the prime numbers as friends—friends who bring us
problems!
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4

Selling Primes

I am a big shot in a factory that produces primes.
And I will tell you an interesting dialogue with a buyer, coming

from an exotic country.

The Dialogue

—Buyer: I wish to buy some primes.
—I (generously): I can give to you, free of charge, many primes:

2, 3, 5, 7, 11, 13, 17, 19, . . . .
—Buyer (interrupting my generous offer): Thank you, sir; but I

want primes with 100 digits. Do you have these for sale?
—I: In this factory we can produce primes as large as you wish.

There is in fact an old method of Euclid, that you may have heard
about. If I have any number n of primes, say p1, p2, . . . , pn, we mul-
tiply them and add 1, to get the number N = p1p2 . . . pn + 1. Either
N is a prime or, if it is not a prime, we pick any prime dividing N . In
this way, it is easy to see that we get a prime, which is different from
the ones we mixed. Call it pn+1. If we now mix p1, p2, . . . , pn, pn+1

as I already said, we get still another prime pn+2. Repeating this
procedure we get as many primes as we wish and so, we are bound
to get primes as large as we wish, for sure with at least 100 digits.
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—Buyer: You are very nice to explain your procedure. Even in
my distant country, I have heard about it. It yields primes that may
be arbitrarily large. However, I want to buy primes that have exactly
100 digits, no more, no less. Do you have them?

—I: Yes. Long ago—at the beginning of last century, Bertrand

observed that between any number N > 1 and its double 2N , there
exists at least one prime number. This experimental observation was
confirmed by a rigorous proof by Chebyshev. So I can find the
primes p1, p2, p3 where

1099 < p1 < 2 × 1099

2 × 1099 < p2 < 4 × 1099

4 × 1099 < p3 < 8 × 1099.

—Buyer: This means that you have guaranteed 3 primes with
100 digits, and perhaps a few more. But I want to buy many primes
with 100 digits. How many can you produce?

—I: I have never counted how many primes of 100 digits could
eventually be produced. I have been told that my colleagues in other
factories have counted the total number of primes up to 1020. We usu-
ally write π(N) to denote the number of primes up to the number N .
Thus, the count I mentioned has given:

π(108) = 5 761 455
π(109) = 50 847 534

π(1012) = 37 607 912 018
π(1017) = 2 625 557 157 654 233
π(1018) = 24 739 954 287 740 860
π(1020) = 2 220 819 602 560 918 840.

Even though all primes up to 1020 have not yet been produced by
any factory, the count of π(1020) is exact.

—Buyer (a bit astonished): If you cannot—as I understand—
know how many primes of each large size there are in stock, how can
you operate your factory and guarantee delivery of the merchandise?

—I: Your country sells oil, does it not? You can estimate the
amount of oil at shallow depths quite accurately, but you cannot
measure exactly the entire amount underground. It is just the same
with us.
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Gauss, one of the foremost scientists, discovered that

π(N) ∼ N

log N

for large values of N . This was confirmed, just over a century ago,
with proofs given by Hadamard and de la Vallée Poussin.

—Buyer: Do you mean that π(N) is approximately equal to
N/ log N , with a small error?

—I: Yes. To be more precise, the relative error, namely the ab-
solute value of the difference |π(N) − N/ log N |, divided by π(N),
tends to 0, as N increases indefinitely.

—Buyer: Then, because of the error, you cannot be very specific
in your estimate. Unless you estimate the error.

—I: Correct (the buyer is not stupid . . .). Chebyshev showed,
even before the Prime Number Theorem was proved, that if N is
large, then

0.9
N

log N
< π(N) < 1.1

N

log N
.

To count primes with 100 digits:

0.9
1099

99 log 10
< π(1099) < 1.1

1099

990. log 10

0.9
10100

100 log 10
< π(10100) < 1.1

10100

100 log 10
.

It is easy to estimate the difference π(10100)−π(1099), which gives
the number of primes with exactly 100 digits:

3.42 × 1097 < π(10100) − π(1099) < 4.38 × 1097.

—Buyer: You are rich! I think you have more primes than we
have oil. But I wonder how your factory produces the primes with
100 digits. I have an idea but I’m not sure how efficient my method
would be.

1. Write all the numbers with 100 digits.
2. Cross out, in succession, all the multiples of 2, of 3, of 5, . . . ,

of each prime p less than 1099. For this purpose, spot the first
multiple of p, then cross out every pth number.
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What remains are the primes between 1099 and 10100, that is, the
primes with exactly 100 digits.

—I: This procedure is correct and was already discovered by
Eratosthenes (in the 3rd century B.C.). In fact, you may stop
when you have crossed out the multiples of all the primes less than
1050.

However, this method of production is too slow. This explains why
the archeologists never found a factory of primes amongst the Greek
ruins, but just temples to Apollo, statues of Aphrodite (known as
Venus, since the time of Romans) and other ugly remains that bear
witness to a high degree of decadence.

Even with computers this process is too slow to be practical. Think
of a computer that writes 106 digits per second.

• There are 10100 − 1099 = 1099 × 9 numbers with 100 digits.
• These numbers have a total of 10101 × 9 digits.
• One needs 1095×9 seconds to write these numbers, that is about

1.5× 1094 minutes, that is about 25× 1092 hours, so more than
1091 days, that is of the order of 3× 1088 years, that is 3× 1086

centuries!

And after writing the numbers (if there is still an After . . .) there is
much more to be done!

Before the buyer complained, I added:
—I: There are short cuts, but even then the method would still

be too slow. So, instead of trying to list the primes with 100 digits,
our factory uses fast algorithms to produce enough primes to cover
our orders.

—Buyer: I am amazed. I never thought how important it is to
have a fast method. Can you tell me the procedure used in your
factory? I am really curious. [Yes, this buyer was being too nosy.
Now I became convinced that he was a spy.]

—I: When you buy a Mercedes, you don’t ask how it was built.
You choose your favorite color, pink, purple, or green with orange
dots, you drive it and you are happy because everyone else is envious
of you.

Our factory will deliver the primes you ordered and we do better
than Mercedes. We support our product with a lifetime guarantee.
Goodbye, Sir.

[He may have understood: Good buy, Sir . . .]
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After the Dialogue

I hope that after the dialogue with the spy-buyer, you became curious
to know about our fast procedure to produce large primes. I shall
tell you some of our most cherished secrets. In our factory there are
two main divisions.

1) Production of primes
2) Control of quality.

Production of Primes

One of the bases of our production methods was discovered long
ago by Pocklington (1914/16). I will state and prove his theorem
in the particular situation adapted to our production requirements.
Then, I shall discuss how it may be used to obtain, in a surprisingly
short time, primes with the required number of digits.

Criterion of Pocklington. Let p be an odd prime, let k be a
natural number such that p does not divide k and 1 ≤ k < 2(p + 1);
and let N = 2kp + 1. Then the following conditions are equivalent:

1) N is a prime.
2) There exists a natural number a, 2 ≤ a < N , such that

akp ≡ −1 (mod N)

and
gcd(ak + 1, N) = 1.

Proof. (1) ⇒ (2). Assume that N is a prime. As is known, there
is some integer a, 1 < a < N , such that aN−1 ≡ 1 (mod N), but
am �≡ 1 (mod N) if 1 < m < N − 1; such a number a is called
a primitive root modulo N . Thus a2kp ≡ 1 (mod N), but akp �≡
1 (mod N); then akp ≡ −1 (mod N). Also, ak �≡ −1 (mod N),
otherwise a2k ≡ 1 (mod N), which is not true; so gcd(ak +1, N) = 1.

(2) ⇒ (1). In order to show that N is a prime, we shall prove: If
q is any prime dividing N , then

√
N < q. It follows that N cannot

have two (equal or distinct) prime factors, so N is a prime.
So, let q be any prime factor of N . Then akp ≡ −1 (mod q) and

a2kp ≡ 1 (mod q). Hence, gcd(a, q) = 1. Let e be the order of a
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modulo q, hence e divides q − 1, by Fermat’s Little Theorem. Sim-
ilarly, e divides 2kp = N − 1, because a2kp ≡ 1 (mod q). Note that
ak �≡ 1 (mod q), otherwise akp ≡ 1 (mod q); from akp ≡ −1 (mod q),
it follows that q = 2 and N would be even, which is false.

From gcd(ak + 1, N) = 1, it follows that ak �≡ −1 (mod q). Hence,
a2k �≡ 1 (mod q), thus e � 2k = (N −1)/p. But e | N −1, so (N −1)/e
is an integer, hence p � (N − 1)/e. Since N − 1 = e((N − 1)/e) and
p | N − 1, then p | e, thus p | q − 1. Also 2 | q − 1, hence 2p | q − 1,
so 2p ≤ q − 1 and 2p + 1 ≤ q. It follows that N = 2kp + 1 <
2× 2(p+1)p+1 = 4p2 +4p+1 = (2p+1)2 ≤ q2, therefore

√
N < q.

This concludes the proof. �

The criterion of Pocklington is applied as follows to obtain
primes of a required size, say with 100 digits.

First step: Choose, for example, a prime p1 with d1 = 5 digits.
Find k1 < 2(p1 + 1) such that p2 = 2k1p1 + 1 has d2 = 2d1 = 10
digits or d2 = 2d1 − 1 = 9 digits and there exists a1 < p2 satisfying
the conditions ak1p1

1 ≡ −1 (mod p2) and gcd(ak1
1 + 1, p2) = 1. By

Pocklington’s criterion, p2 is a prime.
Subsequent steps: Repeat the same procedure starting with the

prime p2 to obtain the prime p3, etc. . . . In order to produce a prime
with 100 digits, the process must be iterated five times. In the last
step, k5 should be chosen so that 2k5p5 + 1 has 100 digits.

Feasibility of the Algorithm

Given p and k, with 1 ≤ k < 2(p + 1), k not a multiple of p, if
N = 2kp+1 is a prime, then it has a primitive root. It would be much
too technical to explain in detail the following results, some known to
experts, others still unpublished. It follows from a generalized form
of the Riemann hypothesis that if x is a large positive real number
and the positive integer a is not a square, then the ratio

#{primes q ≤ x such that a is a primitive root modulo q}
#{primes q ≤ x}

converges; if a is a prime, the limit is at least equal to Artin’s constant

∏
q prime

(
1 − 1

q(q − 1)

)
≈ 0.37.
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Better, given positive integers, a, b, not squares, and a large prime q,
the probability that a or b is a primitive root modulo q is much larger.
Taking a = 2, b = 3, it is at least 58%. The corresponding probabil-
ity increases substantially when taking three positive integers a, b, c
which are not squares.

This suggests that we proceed as follows. Given the prime p,
choose k, not a multiple of p, 1 ≤ k < 2(p + 1). If N = 2kp + 1
is a prime, then very likely 2, 3 or 5 is a primitive root modulo N . If
this is not the case, it is more practical to choose another integer k′,
like k, and investigate whether N ′ = 2k′p + 1 is a prime.

The question arises: what are the chances of finding k, such that
N is a prime? I now discuss this point.

1. According to a special case of Dirichlet’s famous theorem, (see
Ribenboim (1996), Ribenboim (1991)), given p there exist in-
finitely many integers k ≥ 1 such that 2kp + 1 is a prime. This
may be proved in an elementary way.

2. How small may k be, so that 2kp + 1 is a prime? A special case
of a deep theorem of Linnik asserts:
For every sufficiently large p, in the arithmetic progression with
first term 1 and difference 2p, there exists a prime p1 = 2kp + 1
satisfying p1 ≤ (2p)L; here L is a positive constant (that is, L is
independent of p) (see Ribenboim (1996)).

3. Recently, Heath-Brown has shown that L ≤ 5.5.
4. In Pocklington’s criterion, it is required to find k < 2(p + 1)

such that p1 = 2kp+1 is a prime. This implies that p1 < (2p+1)2.
No known theorem guarantees that such small values of k lead to
a prime.

5. Recent work of Bombieri, Friedlander, and Iwaniec deals
with primes p for which there are small primes p1 = 2kp + 1.
Their results, which concern averages, point to the existence of a
sizable proportion of primes p with small prime p1 = 2kp + 1.

The problems considered above are of great difficulty. In practice,
we may ignore these considerations and find, with a few trials, the
appropriate value of k.
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Estimated time to produce primes with 100 digits

The time required to perform an algorithm depends on the speed of
the computer and on the number of bit operations (i.e., operations
with digits) that are necessary.

As a basis for this discussion, we may assume that the computer
performs 106 bit operations per second. If we estimate an upper
bound for the number of bit operations, dividing by 106 gives an
upper bound for the number of seconds required.

A closer look at the procedure shows that it consists of a succes-
sion of the following operations on natural numbers: multiplication
ab modulo n, power ab modulo n, calculation of greatest common
divisor.

It is well-known (see LeVeque (1975), Mignotte (1991)) and
not difficult to show that for each of the above operations there
exist C > 0 and an integer e ≥ 1 such that the number of bit
operations required to perform the calculation is at most Cde, where
d is the maximum of the number of digits of the numbers involved.
Combining these estimates gives an upper bound of the same form
Cde for the method (C > 0, e ≥ 1, and d is the maximum of the
number of digits of all integers involved in the calculation).

It is not my purpose to give explicit values for C and e, when
p, k, a are given. Let me just say that C, e are rather small, so
the algorithm runs very fast. I stress that in this estimate the time
required in the search of k, a is not taken into account.

The above discussion makes clear that much more remains to be
understood in the production of primes and the feasibility of the
algorithm. This task is delegated to our company’s division of re-
search and development, and I admire our colleagues in the research
subdivision who face the deep mysteries of prime numbers.

Before I rapidly tour our division of quality control, I would like
to make a few brief comments about our preceding considerations.
They concern the complexity of an algorithm.

An algorithm A, performed on natural numbers, is said to run in
polynomial time if there exist positive integers C, e (depending on the
algorithm) such that the number of bit operations (or equivalently,
the time) required to perform the algorithm on natural numbers with
at most d digits is at most Cde.

An algorithm which does not run in polynomial time is definitely
too costly to implement and is rejected by our factory. It is one
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of the main subjects of research to design algorithms that run in
polynomial time. The algorithm to produce primes of a given size,
for all practical purposes, runs in polynomial time, even though this
has not yet been supported by a proof.

Quality Control

The division of quality control in our factory watches that the primes
we sell are indeed primes. When Pocklington’s method is used we
need only worry that no silly calculation error was made, because it
leads automatically to prime numbers. If other methods are used, as
I shall soon invoke, there must be a control. The division of qual-
ity control also engages in consulting work. A large number N is
presented with the question: Is N a prime number?

Thus, our division of quality control also deals with tests of pri-
mality. Since this is a cash rewarding activity, there are now many
available tests of primality. I may briefly classify them from the
following four points of view:

1. Tests for generic numbers.
Tests for numbers of special forms, like Fn = 22n

+ 1 (Fermat
numbers), Mp = 2p − 1, (p prime, Mersenne numbers), etc. . . .

2. Tests fully justified by theorems.
Tests based on justification that depends on forms of Riemann’s
hypothesis of the zeros of the zeta function, or on heuristic
arguments.

3. Deterministic tests.
4. Probabilistic or Monte Carlo tests.

A deterministic test applied to a number N will certify that N
is a prime or that N is a composite number. A Monte Carlo test
applied to N will certify either that N is composite, or that, with
large probability, N is a prime.

Before I proceed, let me state that the main problem tempting
the researchers is the following: Will it be possible to find a fully
justified and deterministic test of primality for generic numbers, that
runs in polynomial time? Or will it be proven that there cannot
exist a deterministic, fully justified test of primality which runs in
polynomial time, when applied to any natural number?

This is a tantalizing and deep problem.
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It would be long-winded and complex even to try to describe for
you all the methods and algorithms used in primality testing. So, I
shall concentrate only on the strong pseudoprime test, which is of
Monte Carlo type.

Pseudoprimes

Let N be a prime, let a be such that 1 < a < N . By Fermat’s Little
Theorem, aN−1 ≡ 1 (mod N).

However, the converse is not true. The smallest example is N =
341 = 11 × 31, with a = 2, 2340 ≡ 1 (mod 341).

The number N is called a pseudoprime in base a, where
gcd(a, N) = 1, if N is composite and aN−1 ≡ 1 (mod N). For each
a ≥ 2, there are infinitely many pseudoprimes in base a. Now observe
that every odd prime N satisfies the following property:

For any a, 2 ≤ a < N , with gcd(a, N) = 1, writing N − 1
in the form N − 1 = 2sd (where 1 ≤ s, d is odd), either
ad ≡ 1 (mod N) or there exists r, 0 ≤ r < s, such that
a2rd ≡ −1 (mod N).

(∗)

Again, the converse is not true, as illustrated by N = 2047 = 23×89,
with a = 2.

The number N is called a strong pseudoprime in base a, where
gcd(a, N) = 1, if N is composite and the condition (∗) is satisfied.

It has been shown by Pomerance, Selfridge, and Wagstaff

that for every a ≥ 2 there exist infinitely many strong pseudoprimes
in base a.

The strong pseudoprime test

The main steps in the strong pseudoprime test for a number N are
the following:

1. Choose k > 1 numbers a, 2 ≤ a < N , such that gcd(a, N) = 1.
This is easily done by trial division and does not require the
knowledge of the prime factors of N . If gcd(a, N) > 1 for some a,
1 < a < N , then N is composite.

2. For each chosen base a, check if the condition (∗) is satisfied.

If there is a such that (∗) is not satisfied, then N is composite.
Thus, if N is a prime, then (∗) is satisfied for each base a. The events
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that condition (∗) is satisfied for different bases may be legitimately
considered as independent if the bases are randomly chosen.

Now, Rabin proved (see Ribenboim (1996)): Let N be composite.
Then the number of bases a for which N is a strong pseudoprime in
base a is less than 1

4(N −1). Thus, if N is composite, the probability
that (∗) is satisfied for k bases is at most 1/4k. Hence, certification
that N is a prime when (∗) is satisfied for k distinct bases is incorrect
in only one out of 4k numbers; for example if k = 30, the certification
is incorrect only once in every 1018 numbers.

The strong pseudoprime test runs in polynomial time and it is
applicable to any number.

If a generalized form of Riemann’s hypothesis is assumed to be
true, Miller showed (see Ribenboim (1996)): If N is composite,
there exists a base a, with gcd(a, N) = 1, such that a < (log N)2+ε,
for which (∗) is not satisfied.

A New Production Method

We may use Rabin’s test to produce numbers with 100 digits which
may be certified to be prime numbers, with only a very small
probability of error.

1. Pick a number N with 100 digits. Before doing any hard work, it
is very easy, with trial division, to find out if this number does, or
does not have, any prime factor less than, say, 1000. In the latter
case, keep this number; in the first case, discard N , pick another
number N ′, and proceed similarly.

2. Use k = 30 small numbers a, prime to N , as bases to verify
if condition (∗) is satisfied. Discard N if, for some base a, the
condition (∗) is not satisfied and repeat the process with some
other number N ′. If (∗) is satisfied for all a then, according to
Rabin’s calculation, we may certify that N is prime; in doing so,
we are incorrect only in at most one out of 1018 numbers. How
unlucky can we be and choose, in succession, numbers which are
composite? According to the inequalities of Chebyshev already
indicated, the proportion of numbers with 100 digits that are
prime is not less than 3.42

9×102 ≈ 1
260 and not more than 4.38

9×109 ≈
1

205 . Unintelligent employees who would pick even numbers, or
numbers divisible by 3, 5, . . . or small primes (say up to 1000) are
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sure to be fired. Thus the luck of picking a prime increases and it
becomes quite reasonable to use Rabin’s method of production.

We may sell the number N as if it were a prime, even with a
“money back guarantee” because the probability that we are selling
a composite number is only 1 in every 1 000 000 000 000 000 000
sales! This is a better guarantee than anyone can get in any deal.
We are sure that our company will not be bankrupt and will continue
to support generously my trips to advertise our products—all com-
plemented by lavish dinners and the finest wines, to help convince
our customers that primes are the way of life.

Appendix

Here is an example of a prime with 100 digits which was calculated
by L. Roberts, using the method of Pocklington.

p1 = 2333 k1 = 2001 a1 = 2
p2 = 9336667 k2 = 9336705 a2 = 3
p3 = 174347410924471 k3 = 174347410924479 a3 = 2
p4 = 60794039392135489148308051219

k4 = 60794039392135489148308051256 a4 = 3
p5 = 739183045122504318980574950295193587260702667372985056

2129
k5 = 500000000000000000000000000000000000000137 a5 = 2
p6 = 739183045122504318980574950295193587260905203527348622

3963006775363808830429094325308601979054023347
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5

Euler’s Famous Prime
Generating Polynomial and
the Class Number of
Imaginary Quadratic Fields∗

Introduction

Can a non-constant polynomial with integral coefficients assume only
prime values?

No! because of the following.

Theorem. If f(X) ∈ Z[X], deg(f) > 0, there exist infinitely many
natural numbers n such that f(n) is composite.

Proof. It is true if f(n) is composite for every n ≥ 1. Assume
that there exists n0 ≥ 1 such that f(n0) = p is a prime. Since
limn→∞ |f(n)| = ∞, there exists n0 ≥ 1 such that if n ≥ n1 then
|f(n)| > p. Take any h such that n0+ph ≥ n1. Then |f(n0+ph)| > p,
but f(n0 + ph) = f(n0) + (multiple of p) = multiple of p, so |f(n0 +
ph)| is composite. �

On the other hand, must a non-constant polynomial f(X) ∈ Z[X]
always assume at least one prime value?

∗This is the text of a lecture at the University of Rome, on May 8, 1986. The
original notes disappeared when my luggage was stolen in Toronto (!); however,
I had given a copy to my friend Paolo Maroscia, who did not have his luggage
stolen in Rome (!) and was very kind to let me consult his copy. It is good to
have friends.
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The question is interesting if f(X) is irreducible, primitive (that
is, the greatest common divisor of its coefficients is equal to 1), and
even more, there is no prime p dividing all values f(n) (for arbitrary
integers n).

Bouniakowsky, and later Schinzel and Sierpiński (1958),
conjectured that any polynomial f(X) ∈ Z[X] satisfying the above
conditions assumes a prime value. This has never been proved for
arbitrary polynomials. For the specific polynomials f(X) = aX + b,
with gcd(a, b) = 1, it is true—this is nothing else than the famous
theorem of Dirichlet: every arithmetic progression

{a + kb | k = 0, 1, 2, . . .} with gcd(a, b) = 1,

contains infinitely many primes.
In my book entitled The New Book of Prime Number Records

(1995), I indicated many astonishing consequences of the hypothesis
of Bouniakowsky derived by Schinzel and Sierpiński. But this
is not the subject of the present chapter.

Despite the theorem and what I have just said, for many polyno-
mials it is easy to verify that they assume prime values, and it is even
conceivable that they assume prime values at many consecutive inte-
gers. For example, Euler’s famous polynomial f(X) = X2 +X +41
has the property that f(n) is a prime for n = 0, 1, . . . , 39 (40
successive prime values):

41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251,
281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797,
853, 911, 971, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523,
1601.

However, f(40) = 402 + 40 + 41 = 40 × 41 + 41 = 412.
Note that if n > 0, then (−n)2+(−n)+41 = (n−1)2+(n−1)+41,

so X2 + X + 41 assumes also prime values for all integers

n = −40,−39, . . . ,−2,−1.

Which other polynomials are like the above?
Some of these polynomials may be easily obtained from X2+X+c

by just changing X into X − a, for some a ≥ 1. For example, (X −
a)2 + (X − a) + 41 = X2 − (2a − 1)X + (a2 − a + 41); taking a = 1
gives X2 −X + 41, which assumes primes values for every integer n,
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−39 ≤ n ≤ 40, while taking a = 40, gives X2 − 79X + 1601, which
assumes primes values for every integer n, 0 ≤ n ≤ 79, but these are
the same values assumed by X2+X+41, taken twice. In summary, it
is interesting to concentrate the attention on polynomials of the form
X2 + X + c and their values at consecutive integers n = 0, 1, . . . . If
the value at 0 is a prime q, then c = q. Since (q−1)2+(q−1)+q = q2,
then at best X2 + X + q assumes prime values for 0, 1, 2, . . . , q − 2
(such as q = 41). For example, if f(X) = X2 + X + q and q =
2, 3, 5, 11, 17, 41, then f(n) is a prime for n = 0, 1, . . . , q−2. However,
if q = 7, 13, 19, 23, 29, 31, 37 this is not true, as may be easily verified.

Can one find q > 41 such that X2 + X + q has prime value for
n = 0, 1, . . . , q − 2? Are there infinitely many, or only finitely many
such primes q? If so, what is the largest possible q?

The same problem should be asked for polynomials of first degree
f(X) = aX + b, with a, b ≥ 1. If f(0) is a prime q, then b = q. Then
f(q) = aq + q = (a + 1)q is composite. So, at best, aX + q assumes
prime values for X equal to 0, 1, . . . , q − 1.

Can one find such polynomials? Equivalently, can one find arith-
metic progressions of q prime numbers, of which the first number is
equal to q?

For small values of q this is not difficult.
If q = 3, take: 3, 5, 7, so f(X) = 2X + 3.
If q = 5, take: 5, 11, 17, 23, 29, so f(X) = 6X + 5.
If q = 7, take: 7, 157, 307, 457, 607, 757, 907, so f(X) = 150X +7.
Quite recently, Keller communicated to me that for q = 11, 13

the smallest such arithmetic progressions are given by polynomials
f(X) = d11X + 11, respectively f(X) = d13X + 13, with

d11 = 1536160080 = 2 × 3 × 5 × 7 × 7315048,
d13 = 9918821194590 = 2 × 3 × 5 × 7 × 11 × 4293861989;

this determination required a considerable amount of computation,
done by Keller and Löh.

It is not known whether for every prime q there exists an arith-
metic progression of q primes of which the first number is q. Even the
problem of finding arbitrarily large arithmetic progressions consist-
ing only of prime numbers (with no restriction on the initial term
or the difference) is still open. The largest known such arithmetic
progression consists of 22 primes and was found by Pritchard,

Moran, and Thyssen (1995).
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The determination of all polynomials f(X) = X2 + X + q such
that f(n) is a prime for n = 0, 1, . . . , q − 2 is intimately related
with the theory of imaginary quadratic fields. In order to understand
this relationship, I shall indicate now the main results which will be
required.

1 Quadratic extensions

Let d be an integer which is not a square, and let K = Q(
√

d) be the
field of all elements α = a + b

√
d, where a, b ∈ Q. There is no loss

of generality to assume that d is square-free, hence d �≡ 0 (mod 4).
The field extension K|Q is quadratic, that is, K is a vector space of
dimension 2 over Q.

Conversely, if K is a quadratic extension field of Q, then it is
necessarily of the form K = Q(

√
d), where d is a square-free integer.

If d > 0, then K is a subfield of the field R of real numbers: it is
called a real quadratic field .

If d < 0, then K is not a subfield of R, and it is called an imaginary
quadratic field .

If α = a + b
√

d ∈ K, with a, b ∈ Q, its conjugate is α′ = a − b
√

d.
Clearly, α = α′ exactly when α ∈ Q.

The norm of α is N(α) = αα′ = a2 − db2 ∈ Q. It is obvious
that N(α) �= 0 exactly when α �= 0. If α, β ∈ K, then N(αβ) =
N(α)N(β); in particular, if α ∈ Q, then N(α) = α2.

The trace of α is Tr(α) = α + α′ = 2α ∈ Q. If α, β ∈ K, then
Tr(α+β) = Tr(α)+Tr(β); in particular, if α ∈ Q, then Tr(α) = 2α.

It is clear that α, α′ are the roots of the quadratic equation X2 −
Tr(α)X + N(α) = 0.

2 Rings of integers

Let K = Q(
√

d), where d is a square-free integer.
The element α ∈ K is an algebraic integer when there exist

integers m, n ∈ Z such that α2 + mα + n = 0.
Let A be the set of all algebraic integers of K. The set A is a

subring of K, which is the field of fractions of A, and A ∩ Q = Z. If
α ∈ A, then the conjugate α′ is an element of A. Clearly, α ∈ A if
and only if both N(α) and Tr(α) are in Z.
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Here is a criterion for the element α = a + b
√

d(a, b ∈ Q) to be an
algebraic integer: α ∈ A if and only if


2a = u ∈ Z, 2b = v ∈ Z

u2 − dv2 ≡ 0 (mod 4).

Using this criterion, it may be shown:
If d ≡ 2 or 3 (mod 4), then A = {a + b

√
d | a, b ∈ Z}.

If d ≡ 1 (mod 4), then A =
{

1
2(a + b

√
d) | a, b ∈ Z, a ≡ b (mod 2)

}
.

If α1, α2 ∈ A are such that every element α ∈ A is uniquely of the
form α = m1α1 + m2α2, with m1, m2 ∈ Z, then {α1, α2} is called an
integral basis of A. In other words, A = Zα1 ⊕ Zα2.

If d ≡ 2 or 3 (mod 4), then {1,
√

d} is an integral basis of A.
If d ≡ 1 (mod 4), then

{
1, 1+

√
d

2

}
is an integral basis of A.

3 Discriminant

Let {α1, α2} be an integral basis. Then

D = Dk = det

(
Tr(α2

1) Tr(α1α2)

Tr(α1α2) Tr(α2
2)

)

is independent of the choice of the integral basis. It is called the
discriminant of K. It is a non-zero integer.

If d ≡ 2 or 3 (mod 4), then

D = det

(
Tr(2) Tr(

√
d)

Tr(
√

d) Tr(d)

)
= det

(
2 0
0 2d

)
,

so, D = 4d.
If d ≡ 1 (mod 4), then

D = det




Tr(1) Tr

(
1 +

√
d

2

)

Tr

(
1 +

√
d

2

)
Tr

(
1 +

√
d

2

)2


 = det


 2 1

0
1 + d

2


 ,

so D = d.
Every discriminant D is congruent to 0 or 1 (mod 4).
In terms of the discriminant,

A = {1
2
(a + b

√
D) | a, b ∈ Z, a2 ≡ Db2 (mod 4)}.
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4 Decomposition of primes

Let K = Q(
√

d), where d is a square-free integer, and let A be the
ring of integers of K.

The ideal P �= 0 of A is a prime ideal if the residue ring A/P has
no zero-divisor.

If P is a prime ideal there exists a unique prime number p such
that P ∩ Z = Zp, or equivalently, P ⊇ Ap.

If I, J are non-zero ideals of A, it is said that I divides J when
there exists an ideal I1 of A such that I · I1 = J .

The prime ideal P containing the prime number p divides the
ideal Ap.

If I is a non-zero ideal of A, then the residue ring A/I is finite.
The norm of I is N(I) = #(A/I).

A. Properties of the norm

lf I, J are non-zero ideals, then N(I, J) = N(I)N(J). If I divides J ,
then N(I) divides N(J).

If α ∈ A, α �= 0, then N(Aα) = |N(α)| (absolute value of the
norm of α). In particular, if a ∈ Z then N(Aa) = a2.
If the prime ideal P divides Ap then N(P ) is equal to p or to p2.

Every non-zero ideal I is, in a unique way, the product of powers
of prime ideals:

I =
n∏

i=1

P ei
i .

If I, J are non-zero ideals, and if I ⊇ J , then I divides J .
Every ideal I �= 0 may be generated by two elements, of which

one may be chosen in Z; if I ∩ Z = Zn, then I = An + Aα for some
α ∈ A. In this case, the notation I = (n, α) is used.

Consider now the special case where p is a prime number. Then
Ap is of one of the following types:




Ap = P 2, where P is a prime ideal: p is ramified in K.

Ap = P, where P is a prime ideal: p is inert in K.

Ap = P1P2, where P1, P2 are distinct prime ideals: p is

decomposed or splits in K.
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Note also that if Ap = I ·J , where I and J are any ideals (different
from A), not necessarily distinct, then I and J must in fact be prime
ideals.

I shall now indicate when a prime number p is ramified, inert, or
decomposed, and also give generators of the prime ideals of A. There
are two cases: p �= 2 and p = 2.

Denote by
(

d
p

)
the Legendre symbol, so



(
d
p

)
= 0 when p divides d,(

d
p

)
= +1 when d is a square modulo p,(

d
p

)
= −1 when d is not a square modulo p.

Let p �= 2.
1) If p divides d, then Ap = (p,

√
d)2.

2) If p does not divide d and there does not exist a ∈ Z such that
d ≡ a2 (mod p), then Ap is a prime ideal.

3) If p does not divide d and there exists a ∈ Z such that d ≡
a2 (mod p), then Ap = (p, a +

√
d)(p, a −

√
d).

Hence,
1) p is ramified if and only if

(
d
p

)
= 0.

2) p is inert if and only if
(

d
p

)
= −1.

3) p is decomposed if and only if
(

d
p

)
= +1.

Proof. The proof is divided into several parts. (a) If
(

d
p

)
= −1,

then Ap is a prime ideal.
Otherwise, Ap = P · P ′ or P 2, with P ∩ Z = Zp. Let α ∈ A

be such that P = (p, α) ⊇ Aα, so P | Aα, hence p divides N(P ),
which in turn divides N(Aα) = |N(α)|. If p | α, then α

p ∈ A and

P = Ap ·
(
1, α

p

)
= Ap, which is absurd. So p � α. Then,


d ≡ 2 or 3 (mod 4)

d ≡ 1 (mod 4)
⇒




α = a + b
√

d, with a, b ∈ Z

α = a+b
√

d
2 , with a, b ∈ Z, a ≡ b (mod 2)

⇒




N(α) = a − db2

N(α) = a2−db2

4

⇒ p divides a2 − db2,

hence a2 ≡ db2 (mod p), and so p � b (otherwise p | a, hence p | α,
which is absurd).
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Let b′ be such that bb′ ≡ 1 (mod p), so (ab′)2 ≡ d (mod p),
therefore either p | d or

(
d
p

)
= +1, which is a contradiction.

(b) If
(

d
p

)
= 0, then Ap = (p,

√
d)2.

Indeed, let P = (p,
√

d), so

P 2 = (p2, p
√

d, d) = Ap

(
p,
√

d,
d

p

)

since d
p ∈ Z. But d is square-free, so gcd

(
p, d

p

)
= 1, hence P 2 = Ap,

and this implies that P is a prime ideal.
(c) If

(
d
p

)
= −1, then Ap = (p, a +

√
d)(p, a−

√
d), where 1 ≤ a ≤

p − 1 and a2 ≡ d (mod p).
Indeed,

(p, a +
√

d)(p, a −
√

d) = (p2, pa + p
√

d, pa − p
√

d, a2 − d)

= Ap

(
p, a +

√
d, a −

√
d,

a2 − d

p

)

= Ap

(
p, a +

√
d, a −

√
d, 2a,

a2 − d

p

)

= Ap,

because gcd(p, 2a) = 1. If one of the ideals (p, a +
√

d), (p, a −
√

d)
is equal to A, so is the other, which is not possible.

So (p, a +
√

d), (p, a −
√

d) are prime ideals. They are distinct: if
(p, a +

√
d) = (p, a −

√
d), then they are equal to their sum

(p, a +
√

d, a −
√

d) = (p, a +
√

d, a −
√

d, 2a) = A,

which is absurd.
Finally, these three cases are exclusive and exhaustive, so the

converse assertions are also true. �

Note. If d ≡ 1 (mod 4) and d ≡ a2 (mod p), then

(p, a +
√

d) = (p, l(a − 1) + ω),

where ω = 1+
√

d
2 and 2l ≡ 1 (mod p). Hence, if

(
d
p

)
�= −1 there exists

b ∈ Z, 0 ≤ b ≤ p− 1, such that p divides N(b + ω) and, moreover, if
b = p − 1, then d ≡ 1 (mod p).
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Indeed, a +
√

d = a − 1 + 2ω. If 2l ≡ 1 (mod p), then

(p, a +
√

d) = (p, (a − 1) + 2ω) = (p, l(a − 1) + ω).

If
(

d
p

)
�= −1, then there exists a prime ideal P dividing Ap, where

P = (p, a +
√

d), 0 ≤ a ≤ p − 1.

So, P = (p, b + ω) with 0 ≤ b ≤ p − 1 and b ≡ l(a − 1) (mod p).
Since P ⊇ A(b + ω), it follows that p divides N(P ), which divides

N(b + w). Finally, if p divides N(p − 1 + ω) = N
(

2p−1+
√

d
2

)
=

(2p−1)2−d
4 , then p divides 1−d

4 , so d ≡ 1 (mod p).
Let p = 2.
If d ≡ 2 (mod 4), then A2 = (2,

√
d)2.

If d ≡ 3 (mod 4), then A2 = (2, 1 +
√

d)2.
If d ≡ 1 (mod 8), then A2 = (2, ω)(2, ω′).
If d ≡ 5 (mod 8), then A2 is a prime ideal.
Hence,
(1) 2 is ramified if and only if d ≡ 2 or 3 (mod 4).
(2) 2 is inert if and only if d ≡ 5 (mod 8).
(3) 2 is decomposed if and only if d ≡ 1 (mod 8).

Proof. The proof is divided into several parts.
(a) If d ≡ 5 (mod 8) then A2 is a prime ideal.
Otherwise, A2 = P ·P ′ or P 2, with P ∩Z = Z2. Then there exists

α ∈ A such that P = (2, α) ⊇ Aα, so P divides Aα and 2 divides
N(P ), which divides N(α).

If 2 | a, then P = A2
(
l, α

2

)
= A2, which is absurd. Thus

2 � α =
a + b

√
d

2
, with a ≡ b (mod 2),

so N(α) = a2−db2

4 . From 2 | N(α), then 8 divides a2−db2 ≡ a2−5b2 ≡
a2 + 3b2 (mod 8).

If a, b are odd, then a2 ≡ b2 ≡ 1 (mod 8), so a2 +3b2 = 4 (mod 8),
which is absurd. So a, b are even, a = 2a′, b = 2b′, and α = a′+b′

√
d.

2 divides N(α) = (a′)2 − d(b′)2.
Since d is odd, then a′, b′ are both even or both odd. If a′, b′

are even, then 2 divides α, which is absurd. If a′, b′ are odd, then
α = a′ + b′

√
d = (multiple of 2) + 1 +

√
d = (multiple of 2) + 2ω =

(multiple of 2), which is absurd.
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(b) If d ≡ 1 (mod 8), then A2 = (2, ω)(2, ω′).
Indeed,

(2, ω)(2, ω′) =
(

4, 2ω, 2ω′,
1 − d

4

)
= A2

(
2, ω, ω′,

1 − d

8

)
= A2,

because ω + ω′ = 1.
Also, (2, ω) �= (2, ω′), otherwise these ideals are equal to their sum

(2, ω, ω′) = A, because ω + ω′ = 1.
(c) If d ≡ 2 or 3 (mod 4), then A2 = (2,

√
d)2, respectively (2, 1 +√

d)2.
First, let d = 4e + 2; then

(2,
√

d)2 = (4, 2
√

d, d) = A2(2,
√

d, 2e + 1) = A2,

so (2,
√

d) is a prime ideal.
Now, let d = 4e + 3; then

(2, 1 +
√

d)2 = (4, 2 + 2
√

d, 1 + d + 2
√

d)
= (4, 2 + 2

√
d, 4(e + 1) + 2

√
d)

= A2(2, 1 +
√

d, 2(e + 1) +
√

d)
= A2(2, 2e + 1, 1 +

√
d, 2(e + 1) +

√
d)

= A2,

and so (2, 1 +
√

d) is a prime ideal.
Finally, these three cases are exclusive and exhaustive, so the

converse assertions also hold. �

5 Units

The element α ∈ A is a unit if there exists β ∈ A such that αβ =
1. The set U of units is a group under multiplication. Here is a
description of the group of units in the various cases. First, let d < 0.

Let d �= −1,−3; then U = {±1}.
Let d = −1; then U = {±1,±i}, with i =

√
−1.

Let d = −3; then U = {±1,±ρ,±ρ2}, with ρ3 = 1, ρ �= 1, i.e.
ρ = −1+

√−3
2 .

Let d > 0. Then the group of units is the product U = {±1} ×C,
where C is a multiplicative cyclic group. Thus C = {εn | n ∈ Z},
where ε is the smallest unit such that ε > 1. The element ε is called
the fundamental unit .
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6 The class number

The theory of quadratic number fields originated with the study of
binary quadratic forms aX2 + bXY +cY 2 (where a, b, c are integers,
and ac �= 0). The discriminant of the form is, by definition, D =
b2 − 4ac. Note that D ≡ 0 or 1 (mod 4); let d = D/4 or d = D,
respectively.

An integer m is said to be represented by the form if there exist
integers x, y such that m = ax2 + bxy + cy2.

If a form a′(X ′)2 + b′X ′Y + c′(Y ′)2 is obtained from the above
form by a linear change of variables


X = hX ′ + kY ′

Y = mX ′ + nY ′

where h, k, m, n are integers and the determinant is hn − km = 1,
then the two forms represent the same integers. In this sense, it
is reasonable to consider such forms as being equivalent. Clearly,
equivalent forms have the same discriminant.

In Disquisitiones Arithmeticae, Gauss classified the binary quad-
ratic forms with a given discriminant D. Gauss defined an operation
of composition between equivalence classes of forms of a given dis-
criminant. The classes constitute a group under this operation.
Gauss showed that, for any given discriminant D, there exist only
finitely many equivalence classes of binary quadratic forms.

The theory was later reinterpreted, associating to each form
aX2 +bXY +cY 2 of discriminant D, the ideal I of Q(

√
d) = Q(

√
D)

generated by a and −b+
√

D
2 . Define two non-zero ideals I, I ′ to be

equivalent when there exists a non-zero element α ∈ Q(
√

d) such that
I = Aα · I ′. Then, equivalent binary quadratic forms correspond to
equivalent ideals, and the composition of classes of forms corresponds
to the multiplication of equivalence classes of deals. Thus, Q(

√
d) has

finitely many classes of ideals. Denote by h = h(d) the number of
classes of ideals, or class number of the field Q(

√
d).

The class number h(d) = 1 exactly when every ideal of Q(
√

d) is
a principal ideal.

Gauss conjectured that for every h ≥ 1 there exist only finitely
many imaginary quadratic fields Q(

√
d) (with d < 0) such that

the class number is equal to h. Soon, I shall say more about this
conjecture.
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I shall now indicate how to calculate the class number of the
quadratic field Q(

√
D). Define the real number θ as follows:

θ =




1
2

√
D if D > 0,

2
π

√
−D if D < 0.

A non-zero ideal I of A is said to be normalized if N(I) ≤ [θ]
(the largest integer less than or equal to θ). The ideal I is said to be
primitiveif there does not exist any prime number p such that Ap
divides I.

Let N denote the set of normalized primitive ideals of A.
If I ∈ N , and if p is a ramified prime, then p2 � N(I), and if p is

an inert prime, then p � N(I). So,

N(I) =
∏

r ramified

r ×
∏

p decomposed

pe(p).

It may be shown that every class of ideals contains a primitive
normalized ideal. Since for every m ≥ 1 there exist at most finitely
many ideals I of A such that N(I) = m, this implies, once more,
that the number of classes of ideals is finite.

Note that if N consists only of the unit ideal A = A ·1, then h = 1.
Thus, if every prime p such that p ≤ [θ] is inert, then h = 1. Indeed,
if I ∈ N , then N(I) = 1, so I is the unit ideal, hence h = 1.

Denote by N(N ) the set of integers N(I), where I ∈ N .
In order to decide if the ideals I, J ∈ N are equivalent, it will

be necessary to decide which integers m ∈ N(N ) are of the form
m = N(Aα).

Let m ≥ 1, and let

α =




u + v
√

d when d ≡ 2 or 3 (mod 4), with u, v ∈ Z,
u+v

√
d

2 when d ≡ 1 (mod 4), with u, v ∈ Z, u ≡ v (mod 2).

It now follows that Aα is a primitive ideal with N(Aα) = m if and
only if


m = |u2 − dv2| gcd(u, v) = 1 if d ≡ 2 or 3 (mod 4),

m = |u2−dv2|
4 gcd

(
u−v

2 , v
)

= 1 if d ≡ 1 (mod 4).

(this is called the primitive representation of m).
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Proof. Let d ≡ 2 or 3 (mod 4), m = N(Aα) = |u2 − dv2|, also
gcd(u, v) = 1, because Aα is primitive.

Let d ≡ 1 (mod 4), m = N(Aα) = |u2−dv2|
4 , also if p divides u−v

2

and p divides v then p divides α = u−v
2 − v

(
1+

√
d

2

)
, contrary to the

hypothesis.
Conversely, let d ≡ 2 or 3 (mod 4), so N(Aα) = m: if p divides Aα,

since {1,
√

d} is an integral basis then p | u and p | v, which is absurd.
Let d ≡ 1 (mod 4), so N(Aα) = m; if p divides Aα, because

α =
u − v

2
+ v

(
1 +

√
d

2

)
and

{
1,

1 +
√

d

2

}

is an integral basis, then p divides u−v
2 and v, which is absurd. �

A. Calculation of the class number

Let d > 0, so θ = 1
2

√
D.

[θ] = 1.

Since 1 ≤ 1
2

√
D < 2, it follows that 4 ≤ D < 16, with D ≡ 0

or 1 (mod 4), hence D ∈ {4, 5, 8, 9, 12, 13}, and therefore d ∈
{5, 2, 3, 13}.

Now N(N ) = {1}, hence N consists only of the unit ideal, and
therefore h = 1.

[θ] = 2.

Since 2 ≤ 1
2

√
D < 3, it follows that 16 ≤ D < 36, with D ≡

0 or 1 (mod 4), hence D ∈ {16, 17, 20, 21, 24, 25, 28, 29, 32, 33} and
therefore d ∈ {17, 21, 6, 7, 29, 33}.

Now, N(N ) = {1, 2}.
Take, for example, d = 17. Since 17 ≡ 1 (mod 8), then it follows

that A2 = P · P ′, N(P ) = N(P ′) = 2, 2 = 1
4 |32 − 17 × 12|, and

gcd
(

3−17
2 , 17

)
= 1, hence

P = Aα, α =
3 +

√
17

2
,

P ′ = Aα, α′ =
3 −

√
17

2
.

Therefore, the class number is h = 1.
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Let d = 21. Since 21 ≡ 5 (mod 8), then A2 is a prime ideal, 2 is
inert, hence h = 1.

Let d = 6, then 2 divides 24 = D, so 2 is ramified, A2 = P 2, and
2 = |22 − 6 × 12|, gcd(2, 1) = 1, hence P = Aα, with α = 2 +

√
6.

Therefore h = 1.

[θ] = 3.

Since 3 ≤ 1
2

√
D < 4, then 36 ≤ D < 64, with D ≡ 0 or 1 (mod 4),

hence

D ∈ {36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57, 60, 61}

and, therefore,

d ∈ {37, 10, 41, 11, 53, 14, 57, 15, 61}.

Now, N(N ) = {1, 2, 3}.
Take, for example, d = 10. Since 2 divides 40 = D, then 2 is

ramified, A2 = R2. Since
(

10
3

)
=

(
1
3

)
= 1, then 3 is decomposed,

A3 = P · P ′. The ideals R, P , P ′ are primitive.
2 has no primitive representation: If 2 = |u2 − 10v2|, then u2 =

10v2 ± 2 ≡ ±2 (mod 10), which is impossible.
3 has no primitive representation: If 3 = |u2 − 10v2|, then u2 =

10v2 ± 3 ≡ ±3 (mod 10), which is impossible.
Thus, R, P , P ′ are not principal ideals. The ideals RP , RP ′ are

primitive. Also,

−2 × 3 = −6 = 22 − 10 × 12, gcd(2, 1) = 1,

2 × 3 = N(RP ) = N(RP ′),

hence RP , RP ′ are principal ideals. In conclusion, h′ = 2.

Let d < 0, so θ = 2
π

√
−D.

[θ] = 1.

Since 1 ≤ 2
π

√
−D < 2, then π2

4 ≤ |D| < π2, and |D| ≡ 0 or
3 (mod 4), hence |D| ∈ {3, 4, 7, 8}, therefore d ∈ {−3,−1,−7,−2}.
Now N(N ) = 1, hence N consists only of the unit ideal, so h = 1.

[θ] = 2.

Since 2 ≤ 2
π

√
−D < 3, then π2 ≤ |D| < 9

4π2, and |D| ≡ 0
or 3 (mod 4), hence |D| ∈ {11, 12, 15, 16, 19, 20}, therefore d ∈
{−11,−15,−19,−5}.
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Take, for example, d = −11. Since −11 ≡ 5 (mod 8), then 2 is
inert, and therefore h = 1.

Let d = −5. Since 2 divides D = −20, 2 is ramified, A2 = P 2.
2 has no primitive representation: If 2 = |u2 + 5v2| then u2 =

−5v2 + 2 ≡ 2 (mod 5), which is impossible. Also, −5 ≡ 3 (mod 4).
So, P is not principal and h = 2.

Let d = −15. Since −15 ≡ 1 (mod 8), then A2 = P · P ′.
2 has no primitive representation: if

2 =
|u2 + 15v2|

4
, with gcd

(
u − v

2
, v

)
= 1,

then u2 + 15v2 = 8, so u2 ≡ 3 (mod 5), which is impossible. Also
−15 ≡ 1 (mod 4). Since P , P ′ are not principal ideals, then h = 2.

Let d = −19. Since −19 ≡ 5 (mod 8), 2 is inert, hence h = 1.

[θ] = 3.

Since 3 ≤ 2
π

√
−D < 4, then 9π2

4 ≤ |D| < 4π2, and |D| ≡ 0 or
3 (mod 4), hence

|D| ∈ {23, 24, 27, 28, 31, 32, 35, 36, 39},
and, therefore,

d ∈ {−23,−6,−31,−35,−39}.
Take d = −31. Since −31 ≡ 1 (mod 8), then A2 = P · P ′. Since

−31 ≡ 1 (mod 8), then A2 = P ·P ′. Since
(
−31
3

)
=
(
−1
3

) (
1
3

)
= −1,

it follows that A3 is a prime ideal.
2 has no primitive representation: If

2 =
|u2 + 31v2|

4
, with gcd

(
u − v

u − v

2
, v

)
= 1,

then 8 = u2 + 31v2, which is impossible. Since −31 ≡ 1 (mod 4),
then P , P ′ are not principal ideals. If P , P ′ are equivalent, then
P = P ′.Aα, so P 2 = P · P ′ · Aα = A(2α), so UNREADABLE =
N(P 2) = 4N(Aα), hence N(Aα) = 1, thus Aα = A, and P = P ′,
which is absurd. In conclusion, h = 3.

These examples are enough to illustrate how to compute the class
number, at least for discriminants with small absolute value. There
are more sophisticated methods for calculating the class number
which are effecient even for large values of |d|. These algorithms are
desribed in the books of Buell (1989) and Cohen (1993) which, of
course, also deal with real quadratic fields.
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B. Determination of all quadratic fields with class
number 1

Let d > 0.
It is conjectured that there exist infinitely many d > 0 such that

Q(
√

d) has class number 1. This question is difficult to settle, but it
is expected that the conjecture is true.

For example, there exist 142 fields Q(
√

d) with 2 ≤ d < 500 having
class number 1.

Let d < 0.
It was seen that if N consists only of the unit ideal, then h = 1.

But conversely:
If d < 0 and h = 1, then N = {A}.

Proof. If |D| ≤ 7, it is true. Let |D| > 7, I ∈ N , and I �= A, so
there exists a prime ideal P dividing I. Then N(P ) = p or p2, where
p is a prime number. If N(P ) = p2, then p is inert and Ap = P
divides I, so I would not be primitive, a contradiction. If N(P ) = p,
since P divides I, then p ≤ N(I) ≤ [θ] ≤ 2

π

√
|D|. If p has a primitive

representation:
If d ≡ 2 or 3 (mod 4), then d = D

4 , so p = u2 − dv2, hence v �= 0,
therefore 2

π

√
|D| ≥ p ≥ |d| = |D|

4 , so 7 ≥ 64
π2 ≥ |D|, which is absurd.

If d ≡ 1 (mod 4), then d = D, so p = u2−dv2

4 , hence v �= 0,
therefore 2

π

√
|D| ≥ p ≥ |d|

4 = |D|
4 , and again 7 ≥ D, which is absurd.

Therefore, P is not a principal ideal, and h �= 1, which contradicts
the hypothesis. �

Gauss developed a theory of genera and proved:
If d < 0, and if t is the number of distinct prime factors of D, then

2t−1 divides the class number of Q(
√

d).
Hence, if h = 1, then D = −4, −8, or −p, where p is a prime,

p ≡ 3 (mod 4), hence d = −1, −2, or −p.
From this discussion, it follows:
If D = −3,−4,−7,−8, then h = 1.
If D �= −3,−4,−7,−8, and D = −p, p ≡ 3 (mod 4), then h =

1 if and only if N = {A}, and this is equivalent to the following
conditions:

2 is inert in Q(
√−p) and if q is any odd prime, q ≤ [θ], then(−p

q

)
= −1, i.e., q is inert in Q(

√−p).



6 The class number 107

This criterion is used in the determination of all D < 0, |D| ≤ 200,
such that h = 1.

[θ] = 1.

This gives the discriminants D = −3,−4,−7,−8.

[θ] = 2.

Now −20 ≤ D ≤ −11, with D = p, p ≡ 3 (mod 4), so D = −11 or
−19.

Since −11 ≡ 5 (mod 8), then 2 is inert, so if D = −11, then h = 1.
Similarly, since −19 ≡ 5 (mod 8), 2 is inert, so if D = −19, then

h = 1.

[θ] = 3.

Now −39 ≤ D ≤ −23, with D = −p, p ≡ 3 (mod 4), so D = −23 or
−31. But −23 �≡ 5 (mod 8), −31 �≡ 5 (mod 8), so the class numbers
of Q(

√
−23) and of Q(

√
−31) are not 1.

[θ] = 4.

Now −59 ≤ D ≤ −40, D = −p, p ≡ 3 (mod 4), so D = −43, −47,
−59. Since −43 ≡ 5 (mod 8) and

(
−43
3

)
= −1, then Q(

√
−43) has

class number 1. Since −47 �≡ 5 (mod 8) and
(
−59
3

)
= 1, then 3 is

not inert. So the class numbers of Q(
√
−47) and of Q(

√
−59) are

not equal to 1.
The same calculations yield:

[θ] = 5: D = −67, with class number 1.
[θ] = 6: no discriminant.
[θ] = 7: no discriminant.
[θ] = 8: D = −163, with class number 1.

This process may continued beyond 200, but leads to no other
discriminant for which the class number is 1. Of course, this does
not allow us to decide whether there exists any other such discrimi-
nant, nor to decide whether there are only finitely many imaginary
quadratic fields with class number 1.

In a classic paper, Heilbronn and Linfoot showed in 1934, with
analytical methods, that besides the above examples there exists at
most one other value of d < 0 for which Q(

√
d) has class num-

ber 1. Lehmer showed that if such a discriminant d exists at all,
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then |d| > 5 × 109. In 1952, Heegner proved that no other such d
could exist, but his proof contained some steps which were unclear,
perhaps even a gap. Baker reached the same conclusion in 1966
with his method involving effective lower bounds on linear forms of
three logarithms; this is also reported in his article of 1971. At about
the same time, unaware of Heegner’s result, but with similar ideas
concerning elliptic modular functions, Stark proved that no further
possible value for d exists. So were determined all the imaginary
quadratic fields with class number 1. It was somewhat of an anticli-
max when in 1968 Deuring was able to straighten out Heegner’s
proof. The technical details involved in these proofs are far beyond
the scope of the present article.

This is the place to say that Gauss’s conjecture was also solved in
the affirmative. Thanks to the work of Hecke, Deuring, Mordell,
and Heilbronn, it was established that if d < 0 and |d| tends to
infinity, then so does the class number of Q(

√
d). Hence, for every

integer h ≥ 1 there exists only finitely many fields Q(
√

d) with d < 0,
having class number h.

The determination of all imaginary quadratic fields with class
number 2 was achieved by Baker, Stark, and Weinberger.

An explicit estimate of the number of imaginary quadratic fields
with a given class number was obtained by the efforts of Siegel,
Goldfeld, and Gross and Zagier. For this matter, I suggest
reading the paper of Goldfeld (1985).

7 The main theorem

Theorem. Let q be a prime, let fq(X) = X2 +X + q. The following
conditions are equivalent:

(1) q = 2, 3, 5, 11, 17, 41.
(2) fq(n) is a prime for n = 0, 1, . . . , q − 2.
(3) Q(

√
1 − 4q) has class number 1.

Proof. The implication (1) ⇒ (2) is a simple verification.
The equivalence of the assertions (2) and (3) was first shown by

Rabinovitch in 1912. In 1936, Lehmer proved once more that
(2) ⇒ (3), while (3) ⇒ (2) was proved again by Szekeres (1974),
and by Ayoub and Chowla (1981) who gave the simplest proof.
The proof of (3) ⇒ (1) follows from the complete determination of all



7 The main theorem 109

imaginary quadratic fields with class number 1. Since this implication
requires deep results, I shall also give the proof of (3) ⇒ (2).

(2) ⇒ (3). Let d = 1 − 4q < 0, so d ≡ 1 (mod 4). If q = 2 or 3,
then d = −7 or −11 and Q(

√
d) has class number 1, as was already

seen. Assume now that q ≥ 5. It suffices to show that every prime
p ≤ 2

π

√
|d| is inert in Q(

√
d).

First, let p = 2; since q = 2t− 1, then d = 1− 4q = 1− 4(2t− 1) =
5 (mod 8), so 2 is inert in Q(

√
d).

Now let p �= 2, p ≤ 2
π

√
|d| <

√
|d| and assume that p is not inert.

Then
(

d
p

)
�= −1 and, as was noted, there exists b ∈ Z, 0 ≤ b ≤ p− 1,

such that p divides N(b + ω), where ω = 1+
√

d
2 , that is, p divides

(b + ω)(b + ω′) = b2 + b(ω + ω′) + ωω′

= b2 + b +
1 − d

4
= b2 + b + q = fq(b).

It should be also noted that b �= p − 1, otherwise as was shown, p
divides 1 − d = 4q, hence p = q <

√
|d| =

√
|1 − 4q|, so q2 < 4q − 1,

hence q = 2 or 3, against the hypothesis.
By hypothesis, fq(b) is therefore a prime number, hence

√
4q − 1 >

p = fq(b) ≥ fq(0) = q and, again, q = 2 or 3, against the hypothesis.
This shows that every prime p less than 2

π

√
|d| is inert, hence

h = 1.
(3) ⇒ (1). If Q(

√
1 − 4q) has class number 1, then d = 1 − 4q =

−7,−11,−19,−43,−67,−163, hence q = 2, 3, 5, 11, 17, 41. �

As I have already said, the proof is now complete, but it is still
interesting to indicate the proof of (3) ⇒ (2).

Proof. Assume that d = 1 − 4q and that the class number of
Q(

√
−d) is 1. Then either d = −1,−2,−3,−7, or d < −7, so d = −p

with p ≡ 3 (mod 4) and q > 2.
As noted before, 2 is inert in Q(

√−p), so p ≡ 3 (mod 8). Next, I
show that if l is any odd prime with l < q, then

(
l
p

)
= −1. Indeed,

if
(

l
p

)
= 1 then l splits in Q(

√−p). But h = 1, so there exists an

algebraic integer α = a+b
√−p
2 such that Al = Aα · Aα′. Then

l2 = N(Al) = N(Aα) · N(Aα′) = N(Aα)2 = N(α)2,
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so l = N(α) = a2+b2p
4 . Hence p + 1 = 4q > 4l = a2 + b2p, thus

1 > a2 + (b2 − 1)p and necessarily a2 = 0, b2 = 1, hence 4l = p,
which is absurd.

Now assume that there exists m, 0 ≤ m ≤ q−2, such that fq(m) =
m2 + m + q is not a prime. Then there exists a prime l such that
l2 ≤ m2 + m + q and m2 + m + q = al, with a ≥ 1. Since m2 + m + q
is odd, then l �= 2. Also,

4l2 ≤ (2m + 1)2 + p <

(
p − 1

2

)2

+ p =
(

p + 1
2

)2

,

hence l < (p + 1)/4 = q. As was shown,
(

l
p

)
= −1. However,

4al = (2m + 1)2 + 4q − 1 = (2m + 1)2 + p,

hence −p is a square modulo l, so by Gauss’ reciprocity law,

1 =
(−p

l

)
=
(−1

l

)(
p

l

)
= (−1)

l−1
2

(
l

p

)
(−1)

l−1
2

× p−1
2 =

(
l

p

)
,

and this is absurd. �
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6

Gauss and the Class Number
Problem

1 Introduction

The theory of binary quadratic forms, one of the great achievements
of Gauss in number theory.

Some conjectures formulated by Gauss are still the object of con-
siderable research. This text∗ contains also a succinct description
of the most significant recent results concerning the conjectures of
Gauss on the class number.

2 Highlights of Gauss’ life

Carl Friedrich Gauss was born in Braunschweig in 1777 and died in
Göttingen in 1855.

He was a precocious child. This is illustrated by the following
well-known anecdote.

At age 8, when the pupils in his class angered the teacher, they
were given the following task: to add all the numbers from 1 to 100:

1 + 2 + 3 + · · · + 100.

∗This is a much enlarged version of a lecture given at the First Gauss
Symposium, in Guarujá, Brazil, July 1989.
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The teacher thought he would have long moments of respite. But
he was wrong, as the young Gauss readily handed the solution:
5050. Astonished, the teacher asked how he got such a quick answer.
Explained the child:

“I imagined the numbers 1 to 100 written in a row, and then again
the same numbers written in another row, but backwards:

1 2 3 . . . 98 99 100
100 99 98 . . . 3 2 1

I noted that the two numbers in each column added to 101. There
are 100 columns; this gives a total of 10100, but I have counted each
number twice, so the sum asked is one-half of 10100, that is, 5050.”

I cannot swear that this had happened as I have just told, but as
the Italians say, “se non è vero, è ben trovato”.

The young Gauss gave many more indications of his superior intel-
ligence, being excellent in all subjects, especially classical languages
and mathematics.

At age 11, Gauss entered the Gymnasium. His talents were rec-
ognized as soon as 1792 when at age 15 he received a stipend from
the Duke of Braunschweig which would allow him to continue his
studies without financial worries.

Gauss calculated with gusto. For example, he computed tables of
prime numbers (when still very young) and also quadratic residues,
primitive roots modulo primes, inverses of prime numbers written
with many decimal digits, etc . . . .

The results of his calculations served as a basis for conjectures
and statements, which, throughout his career, he would try to prove,
often with great success.

Gauss entered the university at Göttingen, where he could benefit
from a rich library. There he studied Bernoulli’s Ars Conjectandi ,
Newton’s Principia, as well as the works of Euler, Lagrange,
and Legendre.

Gauss had very wide interests in Mathematics, and also in
Astronomy, Geodesy, and Physics.

The following brief table of some of Gauss’ earlier mathematical
discoveries is an indication of his striking achievements, which would
continue unabated all through his life.
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Age Year
18 1795 Series expansion for the arithmetic-geometric mean.

The method of least squares. Conjecture: the prime
number theorem. Non-euclidean geometry.

19 1796 Quadratic reciprocity law. Determination of regu-
lar polygons constructible with ruler and compass
(includes the 17-gon).

20 1797 The fundamental theorem of algebra.
22 1799 Relation between the arithmetic-geometric mean and

the length of the lemniscate.
23 1800 Doubly-periodic functions.
24 1801 Publication of Disquisitiones Arithmeticae

In Disquisitiones Arithmeticae (Gauss (1801)), a landmark in
number theory, widely translated and very influential, Gauss pre-
sented in an organized way his discoveries of the preceding years,
completing and clarifying the work of his predecessors Fermat,
Euler, Lagrange, and Legendre.

This book contains: the theory of congruences (with the happy
introduction of the notation a ≡ b (mod n)); indeterminate linear
equations; binary quadratic forms; indeterminate quadratic equa-
tions; cyclotomy; and the construction of regular polygons with ruler
and compass.

While still young, Gauss’ attention veered to other subjects in
mathematics, astronomy, and physics. Since this chapter concerns
binary quadratic forms, I abstain from discussing his contributions to
other topics. For a recent and enlightening critical study of Gauss,
see Kaufmann-Bühler (1981), where attention is given to other
facets of Gauss’ work. It is also instructive to consult Gauss’ diary
(see Gauss’ Werke (1870)) and the commentary by Gray (1984).

3 Brief historical background

One of the famous discoveries of Fermat concerns the representation
of prime numbers as sums of squares.

Let p be a prime number. Then p = x2 + y2 (with integers x, y) if
and only if p = 2 or p ≡ 1 (mod 4). In this event, the representation
of p is unique (with 0 < x < y when p �= 2). With the Legendre
symbol, the condition is rephrased as follows: p = 2 or (−1/p) = +1.
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Similarly, p = x2 + 2y2 (with integers x, y) if and only if p = 2 or
p ≡ 1 or 3 (mod 8); equivalently, p = 2 or (−2/p) = +1. Again, the
representation is unique (with 0 < x, y).

In the same way, p = x2 + 3y2 (with integers x, y) if and only if
p = 3 or p ≡ 1 (mod 3), or equivalently, p = 3 or (−3/p) = +1.
Again, the representation is unique (with 0 < x, y).

Nevertheless, Euler knew that the condition p = 5 or p ≡ 1, 3, 7
or 9 (mod 20), or, equivalently, p = 5 or (−5/p) = +1, expresses
that the prime p is of the form p = x2 + 5y2 or p = 2x2 + 2xy + 3y2

(with integers x, y). Actually, Euler conjectured that p = x2 + 5y2

if and only if p = 5 or p ≡ 1 or 9 (mod 20). However, the proof of
this conjecture involves the theory of genera.

Lagrange and Legendre studied the more general problem:
given the integers a, b, c, represent the integer m in the form

m = ax2 + bxy + cy2,

where x, y are integers.
In Disquisitiones Arithmeticae, Gauss presented systematically

and in depth the results of Euler, Legendre, and Lagrange,
and developed the theory well beyond his predecessors.

The historical development of the fascinating theory of binary
quadratic forms is thoroughly described in the excellent books of
Weil (1984) and Edwards (1977).

4 Binary quadratic forms

A binary quadratic form (or simply, a form) is a homogeneous
polynomial of degree 2 in two indeterminates

Q = aX2 + bXY + cY 2,

with coefficients a, b, c ∈ Z.
A simple notation is Q = 〈a, b, c〉.
In his theory, Gauss had good reasons to consider only the forms

with b even; respecting the tradition still today, this restriction is
observed in some presentations of the theory. The results for the
more general theory, which was considered by Eisenstein, can be
easily related to those obtained by Gauss for the forms 〈a, b, c〉 with
b even.
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The form Q = 〈a, b, c〉 is said to be primitive if gcd(a, b, c) = 1.
If 〈a, b, c〉 is any form and d = gcd(a, b, c), then the form 〈a

d , b
d , c

d〉 is
primitive. This us allows to pass from arbitrary forms to the primitive
ones.

The discriminant of Q = 〈a, b, c〉 is D = D(Q) = b2 − 4ac. The
discriminant is also denoted Discr(Q).

An integer D is the discriminant of some form if and only if D ≡
0 or 1 (mod 4). Indeed, a discriminant satisfies one of the above
congruences. Conversely,


if D ≡ 0 (mod 4), let P = 〈1, 0, −D

4 〉,
if D ≡ 1 (mod 4), let P = 〈1, 1, −D+1

4 〉.

Then P has discriminant D, and it is called the principal form of
discriminant D.

If D = D(Q) is a square, then

aQ =

[
aX − −b +

√
D

2
Y

] [
aX − −b −

√
D

2
Y

]
,

so it is the product of linear factors with integral coefficients. This
case is degenerate, and therefore it will be always assumed that the
discriminant is not a square. Thus, ac �= 0.

An integer m is a value of Q, or is represented by Q, if there
exist integers x, y such that m = Q(x, y) = ax2 + bxy + cy2; each
such relation is said to be a representation of m by Q. If, moreover,
gcd(x, y) = 1, then one speaks of primitive values and primitive
representations.

The set of values of Q is

{values of Q} = {mt2 | m is a primitive value of Q and t ∈ Z}.

The forms are classified as follows:

definite forms when D < 0;
indefinite forms when D > 0.

If the form Q is indefinite, then it clearly assumes positive as well
as negative values.

It is easy to see that if Q = 〈a, b, c〉 and D = b2 − 4ac < 0, then
the following conditions are equivalent:
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1. a > 0;
2. c > 0;
3. Q(x, y) > 0 for all non-zero integers x, y.

In this case, Q is said to be positive definite when a > 0, and
negative definite when a < 0.

Since positive definite forms 〈a, b, c〉 correspond to negative
definite forms 〈−a,−b,−c〉, it suffices to study positive definite
forms. Thus, unless stated to the contrary, all forms with negative
discriminant will be positive definite forms.

The following notions will be useful later.
It is convenient to say that the conjugate of the form Q = 〈a, b, c〉

is the form Q̄ = 〈a,−b, c〉. Clearly, Q, Q̄ have the same discriminant
and Q is positive definite if and only if Q̄ is also.

The roots of the form Q = 〈a, b, c〉 are

ω =
−b +

√
D

2a
(the first root) and

η =
−b −

√
D

2a
(the second root).

The following notation will be used.
If D is any discriminant, let QD be the set of all forms when D > 0

(respectively, all positive definite forms when D < 0); similarly, let
Prim(QD) be the subset of QD consisting of primitive forms.

Let

Q =
⋃

{QD | D ≡ 0 or 1 (mod 4)} and

Prim(Q) =
⋃

{Prim(QD) | D ≡ 0 or 1 (mod 4)}.

Let D ≡ 0 or 1 (mod 4). D is said to be a fundamental
discriminant when every form with discriminant D is primitive.

It is easy to see that this happens if and only if

1. whenever D ≡ 1 (mod 4), then D is square-free,
2. whenever D ≡ 0 (mod 4), then D = 4D′ with D′ square-free and

D′ ≡ 2 or 3 (mod 4).

Thus, the fundamental discriminants are of the form

D = ±q1q2 · · · qr, or D = ±4q2 · · · qr, or D = ±8q2 · · · qr,

where q1, q2, . . . , qr are distinct odd primes.
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On the other hand, not every discriminant D of one of the above
forms is fundamental, e.g., D = −4 × 3.

Every discriminant D is uniquely expressible in the form D0f
2

where D0 is a fundamental discriminant and f ≥ 1. D0 is called the
fundamental discriminant associated to the discriminant D.

The following bijection is easy to establish:

QD −→
⋃
e|f

Prim(QD/e2).

In particular, if D = D0 is a fundamental discriminant, then QD =
Prim(QD).

5 The fundamental problems

The theory of binary quadratic forms deals with the following
problems:

Problem 1. Given integers m and D, D ≡ 0 or 1 (mod 4), to
find if there exists a primitive representation of m by some form
of discriminant D.

In the affirmative, consider the next questions:

Problem 2. To enumerate all the forms Q ∈ QD such that m has
a primitive representation by Q.

Problem 3. For each Q ∈ QD such that m has a primitive
representation by Q, to determine all the representations of m by Q.

In order to solve the problems, it is necessary to study the
equivalence of forms.

6 Equivalence of forms

Let GL2(Z) denote the linear group of rank 2 over Z; it consists of
all matrices

A =

(
α β

γ δ

)

with α, β, γ, δ ∈ Z and αδ − βγ = ±1.
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Let SL2(Z) consist of those matrices A ∈ GL2(Z) such that αδ −
βγ = 1. It is a normal subgroup of GL2(Z) of index 2, called the
special linear group of rank 2 over Z.

The group GL2(Z) acts on the set Q of forms in the following way.

If A =

(
α β

γ δ

)
∈ GL2(Z), let TA : Q → Q be the map defined as

follows.
If Q = 〈a, b, c〉, Q′ = 〈a′, b′, c′〉, then

TA(〈a, b, c〉) = 〈a′, b′, c′〉

where

(∗)




a′ = aα2 + bαγ + cγ2 = Q(α, γ),

b′ = 2aαβ + b(αδ + βγ) + 2cγδ,

c′ = aβ2 + bβδ + cδ2 = Q(β, δ).

Thus,
Q′(X, Y ) = Q(αX + βY, γX + δY ).

It is easy to see that if A, A′ ∈ GL2(Z), then TAA′(Q) =
T ′

A(TA(Q)). Q is a primitive form if and only if TA(Q) is a primitive
form.

The mapping TA is the identity map if and only if A = ±I, where

I =

(
1 0
0 1

)

is the identity matrix.
The forms Q, Q′ are said to be equivalent if there exists A ∈

GL2(Z) such that Q′ = TA(Q). This fact is denoted by Q ∼ Q′, and
it is easy to see that this relation is an equivalence relation.

The forms Q, Q are properly equivalent if there exists A ∈ SL2(Z)
such that Q′ = TA(Q); the notation is Q ≈ Q′, and, again, this is
an equivalence relation. The proper equivalence class of Q = 〈a, b, c〉
shall be denoted Q = 〈a, b, c〉.

Clearly, if Q ≈ Q′, then also Q ∼ Q′.
Each equivalence class is either the union of two proper equiv-

alence classes or just a proper equivalence class. For example, for
every integer a �= 0, every form equivalent to 〈a, 0, a〉 is also properly
equivalent to 〈a, 0, a〉.
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It is easy to note that if Q ∼ Q′, then Q, Q′ have the same set
of values; thus an integer is represented by Q if and only if it is
represented by Q′. Similarly, Q and Q′ have the same set of primitive
values.

Furthermore, if Q ∼ Q′ then Discr(Q) = Discr(Q′).
If D ≡ 0, 1 (mod 4), let Cl+(QD) denote the set of proper equiva-

lence classes of forms with discriminant D, and let Cl+(PrimQD) be
the subset of proper equivalence classes of primitive forms. The sim-
ilar notations Cl(QD), Cl(PrimQD) are used for sets of equivalence
classes.

It is a fundamental fact that in general, for a given discriminant,
there exist more than one equivalence class of primitive forms.

Thus for example, the forms 〈1, 0, 5〉, 〈2, 2, 3〉 are primitive with
discriminant −20. They cannot be equivalent, since 5 is a value of
the first, but not of the second form, as easily verified by observing
that 2x2 + 2xy + 3y2 �≡ 1 (mod 4) for all integers x, y.

7 Conditional solution of the fundamental
problems

Solution of Problem 1. Given m and D, D ≡ 0 or 1 (mod 4), there
exists a primitive representation of m by some form of discriminant D
if and only if there exists n such that D ≡ n2 (mod 4m).

The proof offers no difficulty. First, observe the following:
If m has a primitive representation by Q ∈ QD, then there exists

n ∈ Z such that D ≡ n2 (mod 4m) and Q ∼ 〈m, n, l〉, with l = n2−D
4m .

Indeed, there exist integers α, γ such that gcd(α, γ) = 1 and m =
Q(α, γ). Let β, δ be integers such that αδ − βγ = 1, and let A =(

α β
γ δ

)
∈ SL2(Z); let Q′ = TA(Q), so Q′ = 〈m, n, l〉 ∈ QD (for some

n, l); thus D = n2 − 4ml, hence D ≡ n2 (mod 4m) and l = n2−D
4m .

Conversely, if there exists n such that D ≡ n2 (mod 4m), let
l = n2−D

4m , so 〈m, n, l〉 ∈ QD and m has a primitive representation
by 〈m, n, l〉.

For example, if m = 4, D = 17, then 4 has a primitive rep-
resentation by the form 〈4, 1,−1〉, which has discriminant D =
17.
Solution of Problem 2. Suppose that n1, . . . , nk are the integers
such that 1 ≤ ni ≤ 2m and D ≡ n2

i (mod 4m). Then m has a
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primitive representation by the form Q ∈ QD if and only if Q ≈
〈m, n, l〉, where n ≡ ni (mod 2m) for some i, and l = n2−D

4m .
One implication is clear. Conversely, as indicated in the solution

of Problem 1, if m has a primitive representation by Q ∈ QD then
there exists n such that D ≡ n2 (mod 4m) and Q ≈ 〈m, n, l〉 where
l = n2−D

4m . If n ≡ n′ (mod 2m), with 1 ≤ n′ ≤ 2m, then D ≡ n2 ≡
n′2 (mod 4m), so n′ = ni (for some i).

This gives a procedure to find the forms Q which provide a
primitive representation of m (once Problem 4 is solved).

For example, 4 has a primitive representation by a form Q of
discriminant 17 if and only if Q is properly equivalent to one of the
forms 〈4, 1,−1〉, 〈4, 7, 2〉.

Solution of Problem 3. Let m = Q(α, γ), with gcd(a, γ) = 1,
be a primitive representation of m by the form Q. Then there exist

integers β, δ which are unique such that A =
(

α β
γ δ

)
∈ SL2(Z)

and TA(Q) = 〈m, n, l〉 with D ≡ n2 (mod 4m), 1 ≤ n ≤ 2m ,
l = n2−D

4m . This is not hard to show by noting that if β0, δ0 are such
that αδ0 − γβ0 = 1, then all the possible pairs of integers (β, δ) such
that αδ − βγ = 1 are given by


β = β0 + kα

δ = δ0 + kγ
for any k ∈ Z.

It is possible to choose k in a unique way, such that

n = 2aαβ + b(αδ + βγ) + 2cγδ

where 1 ≤ n < 2m and D ≡ n2 (mod 4m).
The representation m = Q(α, γ) is said to belong to n, when

n is determined as above. Conversely, to every n, such that 1 ≤
n < 2m, D ≡ n2 (mod 4m), and Q ≈ 〈m, n, l〉, it corresponds, for
example, to the following representation: if TA(Q) = 〈m, n, l〉, with

A =
(

α β
γ δ

)
∈ SL2(Z), then m = TA(Q)(1, 0) = Q(α, γ). Clearly,

this representation belongs to n.
It remains to describe all primitive representations belonging to

the same value n. If m = Q(α, γ) = Q(α′, γ′) are primitive represen-
tations, if (β, δ), (β′, δ′) are the unique pairs of integers such that

A =
(

α β
γ δ

)
, A′ =

(
α′ β′

γ′ δ′

)
∈ SL2(Z), with TA(Q) = 〈m, n, l〉,
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TA′(Q) = 〈m, n′, l′〉 and 1 ≤ n, n′ < 2m, l = n2−D
4m , l′ = n′2−D

4m , then
n = n′ if and only if there exists B ∈ SL2(Z) such that A′ = BA and
TB(Q) = Q.

So, the enumeration of all possible primitive representations of m
by Q requires the solutions of the following problems:

Problem 4. If Q, Q′ are forms of a given discriminant, to decide
whether Q and Q′ are equivalent (respectively properly equivalent)
or not.

More precisely, it is required to find a finite algorithm to solve this
problem.

Problem 5. For any form Q, to determine the set

{B ∈ SL2(Z) | TB(Q) = Q}.

This set, which is clearly a subgroup of SL2(Z), is called the auto-
morph of Q. It is, in fact, the stabilizer of Q by the action of SL2(Z)
on the set of forms.

Note that if Q ≈ Q′ and if A0 ∈ SL2(Z) is such that
TA0(Q) = Q′, then {A ∈ SL2(Z) | TA(Q) = Q′} = {BA0 |
B in the automorph of Q}.

Indeed, if TB(Q) = Q, then TBA0(Q) = Q′. Conversely, if TA(Q) =
Q′, then TAA−1

0
(Q) = Q, so AA−1

0 = B is in the automorph of Q and
A = BA0.

8 Proper equivalence classes of definite forms

Let D < 0, D ≡ 0 or 1 (mod 4).
The main idea in this study of proper equivalence classes of posi-

tive definite forms, is to select, in an appropriate way, special reduced
forms, as I shall indicate now.

Lemma 1. If Q ∈ QD, then there exists 〈a, b, c〉 such that Q ≈
〈a, b, c〉 and |b| ≤ a ≤ c.

Proof. Let Q = 〈m, n, l〉, let ε = ±1 be such that εn = |n|. If

A =

(
1 −ε

0 1

)
and b =

(
1 0
−ε 1

)
,
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then

TA(Q) = 〈m, n − 2εm, m + l − |n|〉 = 〈m′, n′, l′〉,
TB(Q) = 〈m + l − |n|, n − 2εl, l〉 = 〈m′, n′, l′〉.

If |n| > m, then in TA(Q), m′ + l′ < m + l.
If |n| > l, then in TB(Q), m′ + l′ < m + l.
By repeating this process, one reaches a form 〈a, b, c〉 in the same

class, with |b| ≤ a, |b| ≤ c.

If a ≤ c, stop. If c < a, let C =
(

0 1
−1 0

)
, then TC(〈a, b, c〉) =

〈c,−b, a〉. �

It is important to observe that if Q ≈ 〈a, b, c〉 with |b| ≤ a ≤ c,
then

a = inf{Q(α, β) | α, β integers, Q(α, β) �= 0},
ac = inf{Q(α, β)Q(γ, δ) | α, β, γ, δ integers, αδ − βγ �= 0}.

Thus a, c, and hence also |b|, are uniquely defined by Q. It follows
that if 〈a, b, c〉 ≈ 〈a′, b′, c′〉 with |b| ≤ a ≤ c, and |b′| ≤ a′ ≤ c′, then
a = a′, c = c′, b = ±b′. Moreover in this situation, 〈a, b, c〉 ≈ 〈a,−b, c〉
if and only if a = |b|, or a = c, or b = 0.

Combining these facts, the main result is the following:
If Q ∈ QD, there exists a unique form 〈a, b, c〉 ∈ QD such that

Q ≈ 〈a, b, c〉 and

(Red)



|b| ≤ a ≤ c

if |b| = a or c = a, then b ≥ 0.

The forms satisfying the condition (Red) above, are called the
reduced positive definite forms with discriminant D.

It should also be noted that if Q, Q′ ∈ QD then the following
conditions are equivalent.

(1) Q ≈ Q′ or Q ≈ Q̄′ (Q̄′ denotes the conjugate of Q′)
(2) Q ∼ Q′

(3) {values of Q} = {values of Q′}.

The only non-trivial implication is (3) ⇒ (1). Let Q0 = 〈a, b, c〉,
Q′

0 = 〈a′, b′, c′〉 be reduced forms such that Q ≈ Q0, Q′ ≈ Q′
0, so Q0,
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Q′
0 have the same sets of values. By the characterization of a, c, a′,

c′ as infima of values, then it follows that a = a′, c = c′, and since
these forms have the same discriminant, then |b| = |b′|. Therefore,
Q ≈ Q′ or Q ≈ Q̄′.

It should be noted that Schinzel (1980) showed that there exist
forms Q, Q′ with different discriminants but with the same sets of
values; for example, Q = 〈1, 0, 3〉 and Q′ = 〈1, 1, 1〉.

Numerical example of reduction of a definite form

Let 〈2, 5, 4〉 ∈ Q−7. Then

〈2, 5, 4〉 ≈ 〈2, 1, 1〉 ≈ 〈1,−1, 2〉 ≈ 〈1, 1, 2〉.

It is easy to see that if 〈a, b, c〉 ∈ QD is a reduced form, then




0 ≤ |b| ≤
√

|D|
3 ,

b2 ≡ D (mod 4),

a divides b2−D
4 ,

|b| ≤ a ≤ b2−D
4a .

Thus, the number of reduced forms is finite and equal to the num-
ber of proper equivalence classes; it follows also that the number of
equivalence classes is finite.

It is useful to fix the following notations.
Let

h̃(D) = number of equivalence classes of QD,
h(D) = number of equivalence classes of Prim(QD),

h̃+(D) = number of proper equivalence classes of QD,
h+(D) = number of proper equivalence classes of Prim(QD).

The following inequalities are trivial: h(D) ≤ h̃(D), h+(D) ≤
h̃+(D) and h(D) ≤ h+(D) ≤ 2h(D), h̃(D) ≤ h̃+(D) ≤ 2h̃(D). As
examples will show, the above numbers may actually be distinct.

From the bijection given in §4, it is easy to show that if D = D0f
2,

where D0 is the fundamental discriminant associated to D, then

h̃(D) =
∑
e|f

h

(
D

e2

)
,
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h̃+(D) =
∑
e|f

h+

(
D

e2

)
;

also, if D is a fundamental discriminant,

h̃(D) = h(D) and h̃+(D) = h+(D).

In view of the preceding considerations, it is easy to write a formula
for the number h̃+(D).

Put

n(a, b) =




1 when b = 0,

1 when b = a,

1 when a =
√

b2−D
4 ,

2 otherwise.

Then h̃+(D) =
∑

b∈B
∑

a∈Ab
n(a, b), where

B = {b | 0 ≤ b <

√
|D|
3

, b ≡ D (mod 2)}

Ab = {a | a divides b2−D
4 and b ≤ a ≤

√
b2−D

4 }

This formula is easy to use when |D| is small.

Numerical example

To calculate h+(−303) and to determine all reduced forms with
discriminant D = −303:

b ∈ B exactly when b is odd and 0 < b < 10, thus B = {1, 3, 5, 7, 9}.

It is easy to see that A1 = {1, 2, 4}, A3 = {3, 6}, A5 = 0, A7 = {8},
and A9 = 0. According to the definition of n(a, b),

h̃+(−303) = n(1, 1) + n(1, 2) + n(1, 4) + n(3, 3) + n(3, 6) + n(7, 8)
= 1 + 2 + 2 + 1 + 2 + 2 = 10.

Since −303 is a fundamental discriminant, then h+(−303) =
h̃+(−303) = 10.

Here is the explicit determination of the reduced forms of
discriminant −303:
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b b2−D
4 a b

±1 76 1 2 4 19/ 38/ 76/ 76 38 19 4/ 2/ 1/
±3 78 3 6 13/ 26/ 39/ 78/ 26 13 6 3 2 1
±5 82 41/ 82/ 2/ 1/
±7 88 8 11/ 22/ 44/ 88/ 11 8/ 4/ 2/ 1/
±9 96 12/ 16/ 32/ 48/ 96/ 8/ 6/ 3/ 2/ 1/

So, the reduced forms are 〈1, 1, 76〉, 〈2, 1, 38〉, 〈4, 1, 19〉, 〈1,−1, 76〉,
〈2,−1, 38〉, 〈4,−1, 19〉, 〈3, 3, 26〉, 〈6, 3, 13〉, 〈6,−3, 13〉, 〈8, 7, 11〉, and
〈8,−7, 11〉.

From this, it follows that h̃(−303) = h(−303) = 6.

A. Another numerical example

If D = −72 = 9 × (−8), the associated fundamental discriminant is
D0 = −8.

The same method yields

h(−72) = h+(−72) = 2,
h(−8) = h+(−8) = 1.

Thus h̃(−72) = h̃+(−72) = 3, with the reduced forms 〈1, 0, 18〉,
〈2, 0, 9〉, and 〈3, 0, 6〉 (this last one not primitive).

9 Proper equivalence classes of indefinite forms

Let D > 0 (not a square).
The form Q = 〈a, b, c〉 ∈ QD is said to be a reduced indefinite form

with discriminant D if the following conditions are satisfied:

(Red)




0 < b <
√

D,
√

D − b < 2|a| <
√

D + b.

It follows (as easily seen) that

ac < 0, |a| <
√

D, |c| <
√

D and also
√

D − b < 2|c| <
√

D + b.

Also, if |a| ≤ |c| and
√

D − 2|a| < b <
√

D, then 〈a, b, c〉 is a
reduced form.

Here is the easy algorithm to enumerate all the reduced forms
in QD.
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For each integer b, 0 < b <
√

D, such that 4 divides D− b2, factor
the integer (D − b2)/4 in all possible ways.

For each factorization (D − b2)/4 = ac, with a, c > 0, check if the
conditions

(∗)



√

D − b < 2a <
√

D + b
√

D − b < 2c <
√

D + b

are satisfied. If not, reject the factorization. If (∗) is satisfied, then
the forms 〈a, b,−c〉, 〈−a, b, c〉, 〈c, b,−a〉, 〈−c, b, a〉 are reduced with
discriminant D; note that there are only two distinct forms when
a = c.

Numerical example

The reduced forms with discriminant D = 52 must have b even,
0 < b < 52, 4 dividing 52 − b2; thus b = 2, 4, or 6. If b = 2,
then −ac = 52−4

4 = 12; moreover,
√

52 − 2 < 2|a|, 2|c| <
√

52 + 2,
so (a, c) = (±3,∓4), (±4,∓3). If b = 4, then −ac = 52−16

4 = 9;
moreover,

√
82 − 4 < 2|a|, 2|c| <

√
52 + 4, so (a, c) = (±3,∓3). If

b = 6, then ac < 0, ac = 52−36
4 = 4; moreover

√
52 − 6 < 2|a|,

2|c| <
√

52 + 6, so (a, c) = (±1,∓4), (±2,∓2), (±4,∓1).
Thus the reduced forms are 〈±3, 2,∓4〉, 〈±4, 2,∓3〉, 〈±1, 6,∓4〉,

〈±2, 6,∓2〉, and 〈±4, 6,∓1).

Lemma 2. Every Q ∈ QD is equivalent to a reduced form.

Proof. Let Q = 〈m, n, l〉. It will be shown that there exists
〈a, b, c〉 ≈ Q, such that |a| ≤ |c|,

√
D−2|a| < b <

√
D; by a previous

remark, 〈a, b, c〉 is a reduced form.
Let λ = [

√
D] and consider the set of 2|l| integers {λ + 1 − 2|l|,

λ+2−2|l|,. . ., λ}. Then there exists a unique n′, λ+1−2|l| ≤ n′ ≤ λ
such that n ≡ −n′ (mod 2|l|). Let

δ = −n + n′

2|l| and A =

(
0 1
−1 δ

)
.

Then TA〈m, n, l〉 = 〈l, n′, l′〉, with l′ = m+nδ + lδ2 and
√

D− 2|l| <
n′ <

√
D.

If |l| > |l′|, repeat the argument. Since it cannot always be |l| >
|l′| > |l′′| > · · ·, one reaches a form 〈a, b, c〉 ≈ Q, with |c| ≤ |a| and√

D − 2|a| < b <
√

D, which is reduced. �
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Numerical example of reduction of an indefinite form

Let 〈76, 58, 11〉 ∈ Q20. Then

〈76, 58, 11〉 ≈ 〈11,−14, 4〉 ≈ 〈4,−2,−1〉 ≈ 〈−1, 4, 5〉.

It may be shown that there exist only finitely many forms 〈a, b, c〉 ∈
QD with ac < 0. Hence, there are only finitely many reduced forms,
and it may be concluded:

The number of proper equivalence classes of indefinite forms with
discriminant D is finite. Therefore, the number of proper equivalence
classes of Prim(QD) is finite, and so are the numbers of equivalence
classes of QD and of Prim(QD).

As in the case of positive definite forms, the following notation
will be used:

h̃+(D), h+(D) for the numbers of proper equivalence classes of
QD, Prim(QD) respectively;

h̃(D), h(D) for the numbers of equivalence classes of QD,
Prim(QD).

And again, the following inequalities are trivial:

h+(D) ≤ h̃+(D), h(D) ≤ h̃(D),

h(D) ≤ h+(D) ≤ 2h(D), h̃(D) ≤ h̃+(D) ≤ 2h̃(D).

If D = D0f
2, where D0 is a fundamental discriminant, then

h̃(D) =
∑
e|f

h

(
D

e2

)
and h̃+(D) =

∑
e|f

h+

(
D

e2

)
.

Hence, if D is a fundamental discriminant, then h̃+(D) = h+(D) and
h̃(D) = h(D). As examples show, h(D), h+(D) (respectively, h̃(D),
h̃+(D)) may actually be distinct.

It is essential to study the case when two reduced forms are
properly equivalent.

Let RD denote the set of reduced forms in QD.
If Q = 〈a, b, c〉 ∈ RD, there exists a unique properly equivalent

form Q′ = 〈c, b′, c′〉 ∈ RD such that 2c | b + b′, and there exists
a unique properly equivalent form Q′′ = 〈a′′, b′′, a〉 ∈ RD such that
2a | b+b′′. The form Q′ is said to be right-adjacent , and Q′′ is said to
be left-adjacent to Q. Necessarily 2|c| divides b + b′ and 2|a| divides
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b+b′′. Let Q′ = p(Q), Q′′ = λ(Q); then Q = λ(Q′), Q = ρ(Q′′). Note
that ρ(Q) = TA(Q) where

A =

(
0 1
−1 δ

)
,

and δ is unique. The actual determination of δ will be indicated later,
but it should already be noted that aδ > 0.

Since RD is finite, for every Q ∈ RD there exist indices i < i + k,
such that if Q1 = ρ(Q), Q2 = ρ(Q1), . . . , then Qi = Qi+k; but
Qi−1 = λ(Qi) = λ(Qi+k) = Qi+k−1, . . . , and this gives Q = Qk. Let
k ≥ 1 be the minimal possible. Then the set {Q = Q0, Q1, . . . , Qk}
is called the period of Q. Clearly, this set is also the period of each
Qi(1 ≤ i ≤ k). Thus, RD is partitioned into periods; forms in the
same period are clearly properly equivalent. The converse is one of
the main results in the theory:

If Q, Q′ ∈ RD and Q ≈ Q′, then Q, Q′ are in the same period.
Thus h̃+(D) is equal to the number of periods and, similarly, h+(D)
is the number of periods of primitive reduced forms.

It is not difficult to see that the number of forms in each period is
even.

There is a very interesting relation between periods and continued
fraction expansions.

The fact that a form 〈a, b, c〉 is reduced may be expressed in terms
of the roots ω, η of the form. Namely, 〈a, b, c〉 is reduced if and only
if |w| > 1, |η| < 1, and ωη < 0.

If {Q = Q0, Q1, . . . , Q2r−1} is the period of the reduced form Q,

let ρ(Qi) = TAi(Qi) = Qi+1, where Ai =
(

0 1
−1 δi

)
. Let ωi, ηi be the

roots of the form Qi. Then

|ωi| =
1

|δi| + |ωi+1|
for i = 0, 1, . . . , 2r − 1 and |ωr| = |ω0|.

So,
|ω| = [|δ0|, |δ1|, . . . , |δr−1|],

that is, |δ0|, |δ1|, . . . , |δr−1| are the partial quotients in the regular
continued fraction expansion of the quadratic irrational number ω;
moreover, this expansion is purely periodic.

It is also true that if Q = 〈a, b, c〉 is a form with discriminant
D > 0, and if

∣∣∣−b+
√

D
2a

∣∣∣ has regular continued fraction expansion
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which is purely periodic with period having length r, and partial
quotients |δ0|, |δ1|, . . . , |δr−1|, then Q is a reduced form, its period
has 2r elements when r is odd, r elements when r is even and it is
equal to {Q = Q0, Q1, . . . , Q2r−1}, with

Qi+1 = TAi(Qi), Ai =

(
0 1

−1 δi

)
, Ai+r =

(
0 1

−1 −δi

)
,

for 0 ≤ i ≤ r−1; if Qi = 〈ai, bi, ci〉, then aiδi > 0 (for i = 0, 1, . . . , r−
1).

Numerical example

It is easy to calculate h̃+(D), h+(D) for small values of D > 0. For
example, if D = 68 (not a fundamental discriminant), then

√
D =

2
√

17 = 8.24 . . . .
Determination of the reduced forms with discriminant 68: Since 4

divides D − b2 and 0 < b <
√

D, it follows that b = 2, 4, 6, 8. Also,√
D − b < 2|a| <

√
D + b. This gives the possibilities:

b
√

D − b
√

D + b |ac| |a| |c|
2 6.24 10.24 16 4 4
4 4.24 12.24 13

6 2.24 14.24 8
{

2 4
4 2

8 0.24 16.24 1 1 1

Thus R68 consists of the 8 forms

〈±4, 2,∓4〉, 〈±2, 6,∓4〉, 〈±4, 6,∓2〉, 〈±1, 8,∓1〉.

Calculation of the period of 〈4, 2,−4〉: its first root is ω =
√

17−1
4 ,

which has the following continued fraction expansion: ω = [1, 3, 1].

For 0 ≤ i ≤ 5, let Ai =
(

0 1
−1 −δi

)
with δ0 = 1, δ1 = −3, δ2 = 1,

δ3 = −1, δ4 = 3, δ5 = −1. Let Qi+1 = TAi(Qi) (for i = 0, 1, . . . , 5);
then the period of 〈4, 2,−4〉 consists of this form and the forms
〈−4, 6, 2〉, 〈2, 6,−4〉, 〈−4, 2, 4〉, 〈4, 6,−2〉, and 〈−2, 6, 4〉.

The other period is {〈1, 8,−1〉, 〈−1, 8, 1〉}. Thus h̃+(68) = 2, while
h+(68) = 1. Also, h̃(68) = 2, h(68) = 1.
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A. Another numerical example

Let D = 76 = 4 × 19 (it is a fundamental discriminant). The
reduced forms are 〈±3, 4,∓5〉, 〈±5, 4,∓3〉, 〈±2, 6,∓5〉, 〈±5, 6,∓2〉,
〈±1, 8,∓3〉, and 〈±3, 8,∓1〉.

To calculate the period of 〈3, 4,−5〉, its first root is ω = −2+
√

19
3 .

The regular continued fraction expansion of ω is ω = [1, 3, 1, 2, 8, 2]
and the period of 〈3, 4,−5〉 is {〈3, 4,−5〉, 〈−5, 6, 2〉, 〈2, 6,−5〉,
〈−5, 4, 3〉, 〈3, 8,−1〉, 〈−1, 8, 3〉}.

There is another period consisting of the other six reduced forms.
Thus h+(76) = 2, while h(76) = 1.

10 The automorph of a primitive form

Recall that the automorph of a form Q = 〈a, b, c〉 consists of all the
A ∈ SL2(Z) such that TA(Q) = Q.

The description of the automorph requires a preliminary study of
the behavior of the roots of Q, under the action of any A ∈ GL2(Z).

Thus, let Q = 〈a, b, c〉, with roots ω, η; let A ∈ GL2(Z) and let
Q′ = TA(Q) have roots ω′, η′.

If ζ ∈ {ω′, η′}, then

(γζ ′ + δ)2Q
(

αζ ′ + β

γζ ′ + δ
, 1
)

= Q(αζ ′ + β, γζ ′ + δ) = Q′(ζ ′, 1) = 0;

since γζ ′ + δ �= 0, then αζ′+β
γζ′+δ is a root of Q.

A simple calculation shows that if A ∈ SL2(Z), then

αω′ + β

γω′ + β
= ω and

αη′ + β

γη′ + δ
= η,

while if A /∈ SL2(Z), then ω′, η′ correspond respectively to η, ω.
If A ∈ SL2(Z) is in the automorph of the primitive form Q =

〈a, b, c〉, then from TA(Q) = Q it follows that ω = αω+β
γω+δ , hence

γω2 + (δ − α)ω − β = 0.

But also
aω2 + bω + c = 0,

and since gcd(a, b, c) = 1, there exists an integer u �= 0 such that
γ = au, δ − α = bu, −β = cu. Let t = δ + α; then t ≡ bu (mod 2),
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α = t−bu
2 , δ = t+bu

2 . From αδ−βγ = 1, it follows that t2−b2u2

4 +acu2 =
1, and finally t2 − Du2 = 4.

This calculation points out to a description of the automorph of
Q = 〈a, b, c〉:

A is in the automorph of Q if and only if there exist integers t, u
such that 



t2 − Du2 = 4

α = t−bu
2

β = −cu

γ = au

δ = t+bu
2 .

Thus, the automorph of Q is in one-to-one correspondence with
the solutions in integers of the equation

T 2 − DU2 = 4.

If D < 0, this equation has only the solutions

(t, u) =




(±2, 0) if D �= −4,−3,

(±2, 0), (±1,±1) if D = −3,

(±2, 0), (0,±1) if D = −4.

Thus, if D < 0, then the number of elements in the automorph
of Q is

w =




2 if D �= −3,−4,

6 if D = −3,

4 if D = −4.

If D > 0, Lagrange proved what Fermat already knew: there
are infinitely many pairs (t, u) of integers such that t2 − Du2 = 4.
If (t1, u1) is such that t1, u1 > 0 and t1 + u1

√
D is minimal, then all

the solutions (t, u) are given by the relations

t + u
√

D

2
=

(
t1 + u1

√
D

2

)n

for n = 0,±1,±2, . . . .

Thus, if D > 0, then the automorph of Q is infinite.
Lagrange has also indicated an algorithm, involving continued

fractions, to determine t1, u1; this is, of course, well-known.
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Numerical example

To determine all the primitive representations of m = 17 by the form
Q = 〈2, 6, 5〉 with discriminant −4.

First, note that −4 is a square modulo 68 because −1 is a square
modulo 17. The integers n = 4, 13 are the only solutions of −1 ≡
n2 (mod 17), 1 ≤ n < 17, so 8, 26 are the only integers n such that
−4 ≡ n2 (mod 68), 1 ≤ n < 34.

To know whether there is a primitive representation of 17 by Q,
belonging to 8, it must be verified that Q ≈ 〈17, 8, 1〉. But h(−4) = 1,
so necessarily Q, 〈17, 8, 1〉 are equivalent to the only reduced form
〈1, 0, 1〉 of discriminant −4. The reduction is performed as follows:

〈2, 6, 5〉 (
1 −1

0 1

)≈ �� 〈2, 2, 1〉 (
1 0

−1 1

)≈ �� 〈1, 0, 1〉,

〈17, 8, 1〉 (
1 0

−1 1

)≈ �� 〈10, 6, 1〉 (
1 0

−1 1

)≈ �� 〈5, 4, 1〉

〈5, 4, 1〉 (
1 0

−1 1

)≈ �� 〈2, 2, 1〉 (
1 0

−1 1

)≈ �� 〈1, 0, 1〉

Let

A =

(
1 −1
0 1

)(
1 0

−1 1

)(
1 0
1 1

)(
1 0
1 1

)(
1 0
1 1

)(
1 0
1 1

)

=

(
−2 −1

3 1

)

Then,
TA(〈2, 6, 5〉) = 〈17, 8, 1〉.

The automorph of Q = 〈2, 6, 5〉 consists of the matrices
(

±1 0
0 ±1

)
and

(
∓3 ∓5
±2 ±3

)
.

All the primitive representations are obtained from the matri-
ces BA, where B is in the automorph of Q:(

∓2 ∓1
±3 ±1

)
and

(
∓9 ∓2
±5 ±1

)
.
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This gives the four representations:

17 = Q(∓2,±3) = Q(∓9,±5).

A similar calculation gives the primitive representations of 17
by Q, which belong to 26:

TA′(〈2, 6, 5〉) = 〈17, 26, 10〉, where A′ =

(
7 5

−3 −2

)
.

The matrices BA′, with B in the automorph of Q, are(
±7 ±5
∓3 ∓2

)
and

(
∓6 ∓5
±5 ±4

)
;

this gives the four representations:

17 = Q(±7,∓3) = Q(∓6,±5).

The classical case, which concerns the form Q = 〈1, 0, 1〉, was
studied by Fermat and is treated in elementary books with a direct
approach. But the results of Fermat may also be obtained as a
special case of Gauss’ theory:

An integer m ≥ 1 has a primitive representation as the sum of
two squares if and only if m = m1m

2
2, where gcd(m1, m2) = 1 and

the primes dividing m1 are either 2 or primes p ≡ 1 (mod 4). In this
situation, the number of primitive representations of m as a sum of
two squares is equal to

ρ(m) = 4(d1(m) − d3(m)),

where

d1(m) = #{d > 0 | d ≡ 1 (mod 4), d | m},
d3(m) = #{d > 0 | d ≡ 3 (mod 4), d | m}.

To arrive at this conclusion, the main points to observe are the
following:

m is a sum of two squares if and only if m is representable by a
form of discriminant −4, because h+(−4) = 1. This happens if and
only if −4 ≡ n2 (mod 4m), for some n; equivalently, −1 is a square
modulo m. An easy computation with the Jacobi symbol leads to
the condition stated for m.
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Each n, 1 ≤ n < 2m, such that −4 ≡ n2 (mod 4m) corresponds
to ω = 4 primitive representations of m as the sum of two squares.
From the theory of congruences, the number of solutions n as above
is

∑
k|m

(
−1
k

)
= d1(m) − d3(m). Hence, the number of primitive

representations is indeed 4(d1(m) − d3(m)).

11 Composition of proper equivalence classes of
primitive forms

One of the very important and deepest contributions of Gauss in
the study of binary quadratic forms is the theory of composition.
The idea had been already sketched by Legendre, in a particular
case.

Let D be any discriminant. Gauss defined a binary operation in
the set Cl+(Prim(QD)) of proper equivalence classes of primitive
forms with discriminant D. As it turns out, this operation, called
composition, satisfies nice properties.

The theory is presented here in a simplified form due to
Dirichlet.

Let Q = 〈a, b, c〉, Q′ = 〈a′, b′, c′〉 be primitive forms with dis-
criminant D. The new form Q′′ = 〈a′′, b′′, c′′〉 shall be defined as
follows.

Let δ = gcd
(
a, a′, b+b′

2

)
and let u, v, w be any integers such that

au + a′v +
b + b′

2
w = δ.

Note that there are infinitely many possible choices for u, v, w.
Define 


a′′ = aa′

δ2 ,

b′′ = 1
δ

[
aub′ + a′vb + bb′+D

2 w
]
,

c′′ = (b′′)2−D
4a′′ .

Then, Q′′ = 〈a′′, b′′, c′′〉 is also a primitive form with discrimi-
nant D, which depends on the choice of u, v, w—this is stressed by
denoting Q′′ = Q′′

(u,v,w). It may be shown that if u1, v1, w1 are also

integers satisfying au1 + av1 + b+b′
2 w1 = δ, then the form Q′′

(u1,v1,w1),
although different from Q′′

(u,v,w), is nevertheless properly equivalent
to Q′′

(u,v,w).
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Thus, to the pair of primitive forms Q, Q′, it may be assigned
the proper equivalence class Q′′

(u,v,w) of Q′′
u,v,w). It is also true that

if Q ≈ Q1 and Q′ ≈ Q′
1, if Q′′, Q′′

1 are defined as indicated above
from Q, Q′, respectively, Q1, Q′

1, then Q′′ ≈ Q′′
1. This allows us to

define an operation of composition of proper equivalence classes of
primitive forms of discriminant D:

Q ∗ Q′ = Q′′,

where Q′′ was defined (with any u, v, w) as indicated above.
Gauss showed that if Q, Q′, Q′′ ∈ Prim(QD) and if Q ∗Q′ = Q′′,

then for any integers x, y, x′, y′, there exist integers x′′, y′′ which are
linear combinations with coefficients in Z of xx′, xy′, yx′, yy′, such
that Q′′(x′′, y′′) = Q(x, y)Q′(x′, y′).

The proof of this important property of the composition is rather
sophisticated, and I shall sketch it now.

First, it may be shown that given any two classes Q, Q′ of primitive
forms, it is possible to choose primitive forms Q1 ≈ Q, Q′

1 ≈ Q′ such
that

Q1 = 〈a, b, a′c〉

Q′
1 = 〈a′, b, ac〉

with a, a′ ≥ 1, gcd(a, a′) = 1.
Let u, v be such that au + a′v = 1, let w = 0 and consider the

primitive form Q′′
1, obtained from Q1, Q′

1 and (u, v, 0) as already
indicated in the definition of composition. A simple calculation gives
Q′′

1 = 〈aa′, b, c〉, and Q′′
1 = Q1 ∗ Q1 = Q ∗ Q′.

Then, it may be shown that Q1(x, y) · Q′
1(x

′, y′) = Q′′
1(x

′′, y′′),
where 


x′′ = xx′ − cyy′,

y′′ = axy′ + a′yx′ + byy′.

This suffices to prove the statement.
The composition of proper equivalence classes of primitive forms

satisfies the associative, and commutative laws. The proper equiv-
alence class P of the principal form P is such that Q ∗ P = Q for
every class Q. The class P is called the principal class. Finally, for
every class Q, there exists a class Q′, necessarily unique, such that
Q ∗ Q′ = P; the class Q′ is the inverse of Q under composition.
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Thus, Cl+(Prim(QD)) is a finite abelian group under the operation
of composition—a fact which was discovered by Gauss, although
obviously not phrased in this language.

The inverse of the class 〈a, b, c〉 is 〈a,−b, c〉; it is the class of the
associated forms.

A class equal to its inverse is called an ambiguous class. These
are exactly the elements of order 1 or 2 in the group of classes of
primitive forms, with operation of composition. It is easy to see that
if 〈a, b, c〉 is such that a divides b, then 〈a, b, c〉 ≈ 〈a,−b, c〉, hence
the class 〈a, b, c〉 is ambiguous.

Numerical example

If D = −20 and P = 〈1, 0, 5〉, Q = 〈2, 2, 3〉, then Q ∗Q = P, as it is
easy to verify.

The structure theorem for finite abelian groups tells us that the
group under composition Cl+(Prim(QD)) is the direct product, in a
unique way (up to isomorphism), of primary cyclic groups.

The structure of Cl+(Prim(QD)) will be discussed in §13.

12 The theory of genera

The theory of genera was created to try to characterize in a simple
manner those primes that may be represented by a given form with
a fundamental discriminant.

Explicitly, let D be a discriminant, let p be a prime not divid-
ing 2D, and assume that p may be represented by some primitive
form of discriminant D; in other words, D is a square modulo 4p,
so

(
D
p

)
= +1. The problem is to decide which primitive forms of

discriminant D represent p, just by computing the values at p of
certain quadratic characters associated to D.

As it will be seen, the theory of genera does not quite succeed to
attain its aim.

As was said in §3, if D = −4 and Q = X2 + Y 2, the prime p is a
sum of two squares if and only if p = 2 or p ≡ 1 (mod 4). Similarly,
if D = −12, Q = X2 + 3Y 2, then p is represented by Q if and only
if p = 3 or p ≡ 1 (mod 3).

However, as already indicated, if D = −20, the class number
h+(−20) = 2 and there are two reduced forms of discriminant −20
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which are not properly equivalent, namely

Q1 = X2 + 5Y 2 and Q2 = 2X2 + 2XY + 3Y 2.

Now:
p = 5 is represented by Q1;
if p ≡ 11, 13, 17, 19 (mod 20), that is

(
−5
p

)
= −1, then p is neither

represented by Q1, nor by Q2;
if p ≡ 1, 3, 7, 9 (mod 20), that is

(
−5
p

)
= +1, then p is represented

by Q1 or by Q2.
The question that remains is to decide, for a given prime p of the

last type, which one of Q1 or Q2 represents it.
The same problem arises also for any discriminant D such that

h+(D) > 1, and the theory of genera is a serious attempt to solve it.
Let D be any discriminant (not necessarily fundamental). Let q1,

. . . , qr, (r ≥ 0), be the distinct odd primes dividing the square-free
kernel of D. The numbering is such that q1 ≡ · · · ≡ qs ≡ 1 (mod 4)
and qs+1 ≡ · · · ≡ qr ≡ −1 (mod 4), with 0 ≤ s ≤ r.

For every m such that qi does not divide m, let χi(m) =
(

m
qi

)
(i = 1, . . . , r), so χi is a character modulo qi.

For every odd integer m, let

δ(m) = (−1)(m−1)/2 and η(m) = (−1)(m
2−1)/8.

Again, δ is a character modulo 4 and η is a character modulo 8.
To each type of discriminant, there will be assigned a set of

characters, according to the following rule:

Discriminant Assigned characters (#,#′)

D ≡ 1 (mod 4) χ1, . . . , χr (r, r)

D = 4D′, D′ ≡ 1 (mod 4) χ1, . . . , χr (r, r + 1)

D = 4D′, D′ ≡ 3 (mod 4) χ1, . . . , χr, δ (r + 1, r + 1)

D = 4D′, D′ ≡ 2 (mod 8) χ1, . . . , χr, η (r + 1, r + 1)

D = 4D′, D′ ≡ 6 (mod 8) χ1, . . . , χr, δη (r + 1, r + 1)

D = 4D′, D′ = 4E2q1 · · · qr χ1, . . . , χs, χs+1δ, . . . , χrδ (r, r + 1)

D = 4D′, D′ = 8E2q1 · · · qr χ1, . . . , χs, χs+1δ, . . . , χrδ, η (r + 1, r + 1)

(#,#′) = (number of assigned characters, number of primes dividing D)

It is convenient to denote in each case by Θ the set of all assigned
characters, and by t their number.
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By the quadratic reciprocity law, if gcd(m, 2D) = 1, then

∏
θ∈Θ

θ(m) =
(

D

m

)
.

The following facts may be proved. If gcd(m, 2D) = 1 and m is
any value of Q ∈ Prim(QD), then

(
D
m

)
= 1. If gcd(m′, 2D) = 1 and

m′ is any other value of Q, then θ(m) = θ(m′) for every assigned
character θ.

This allows us to define θ(Q) = θ(m) for every integer m repre-
sented by Q and such that gcd(m, 2D) = 1, and for every assigned
character θ.

It follows at once that if Q ≈ Q′, then θ(Q) = θ(Q′) for every
assigned character θ, and so it is possible to define for every proper
equivalence class: θ(Q) = θ(Q), for every assigned character θ.

Let {+1,−1}t be the multiplicative group of t-tuples of integers +1
or −1, and define the map

Ξ : Cl+(Prim(QD)) −→ {+1,−1}t

by
Ξ(Q) = (θ(Q))θ∈Θ.

It is easy to show that the map Ξ is a homomorphism of the group
Cl+(Prim(QD)), under composition, to {+1,−1}t.

Note that
∏

θ∈Θ θ(Q) = 1.
It may be shown that the image of Ξ is the set of all σ =

(σ1, . . . , σt) with each σi ∈ {+1,−1}, such that
∏t

i=1 σi = 1. Hence,
the image has 2t−1 elements.

For every σ in the image of Ξ, the inverse image of σ,

Ξ−1(σ) = {Q | Ξ(Q) = σ},

is called the genus of Cl+(Prim(QD)) with generic character σ.
The genus with generic character σ1 = {+1, . . . ,+1} is called the

principal genus and it is a subgroup of Cl+(Prim(QD)). Each genus
is a coset of the principal genus.

The following notation will sometimes be adopted: [Q] is the genus
of the class Q.

The number of genera is g(D) = 2t−1 and the number of classes
in each genus is f(D) = h+(D)

2t−1 ; in particular, 2t−1 divides h+(D).
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Note that if D is a fundamental discriminant, then t is equal to
the number of distinct prime divisors of D (including 2, if D is even).

Gauss proved the following important theorem, called the
squaring or duplication theorem:

The principal genus consists of the squares (under composition) of
the proper equivalence classes of primitive forms.

From the above considerations, one obtains the following criterion.
Let p be a prime, not dividing 2D, and let G be a genus of proper
equivalence classes of primitive forms of discriminant D, say

G = {Q1, . . . ,Qk}.

Then p is represented by some form Q belonging to one of the
classes Qi ∈ G(1 ≤ i ≤ k) if and only if (θ(p))θ∈Θ = Ξ(Qi).

Note that if the genus has more than one proper equivalence class,
the above criterion does not tell which form represents p, among
those whose proper equivalence class is in the genus.

Returning to the previous example of discriminant D = −20, with
the two classes Q1 = 〈1, 0, 5〉 (the principal class) and Q2 = 〈2, 2, 3〉;
note that it has g(−20) = 2 genera, so Q1, Q2 are in different genera.
If p is an odd prime p �= 5, then p is represented by Q1 if and only if(p

5

)
= 1 and (−1)(p−1)/2 = 1, so p ≡ 1 (mod 4) and p ≡ ±1 (mod 5),

or equivalently, p ≡ 1 or 9 (mod 20).
Similarly, p is represented by Q2 if and only if

(−1)(p−1)/2 = χ1(Q2) = χ1(3) = (−1)(3−1)/2 = −1,

and (
p

5

)
= χ2(p) = χ2(Q2) = χ2(2) =

(
2
5

)
= −1.

Thus p ≡ 3 (mod 4) and p ≡ ±2 (mod 5), or equivalently, p ≡
3, 7 (mod 20).

Note that the theory of genera establishes the conjecture of Euler

concerning the form X2 + 5Y 2.
The treatment with the theory of genera is not so conclusive when

there is more than one form in each genus.

Numerical example

Let D = −56 = −8 × 7.
The number of genera is 2.
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The reduced forms are P = 〈1, 0, 14〉, Q1 = 〈3, 2, 5〉, Q2 = 〈2, 0, 7〉,
Q3 = 〈3,−2, 5〉.

A simple calculation shows that Cl+(Prim(Q−56)) is a cyclic
group, with Q2

1 = Q2, Q3
1 = Q3, Q4

1 = P.
The principal genus is {P,Q2} and the non-principal genus is

{Q1,Q3}; it has generic character {−1,−1}. From this, it follows
that a prime p �= 2, 7 is represented by P or Q2 if and only if
χ1(p) = (−1)(P

2−1)/2 = 1, that is
(

2
p

)
= 1 and

(p
7

)
= 1; a simple cal-

culation gives p ≡ 1, 9, 15, 23, 25, or 39 (mod 56). But, it cannot be
obtained a condition stating that p is represented by P (respectively,
by Q2).

In the same way, if p �= 2, 7, then p is represented by Q1 or by Q3

if and only if p ≡ 3, 5, 13, 19, 27, 45 (mod 56).
As will be explained below, the work of Euler on the “nu-

meri idonei” (also called “convenient numbers”) and the work of
Gauss generated interest in fundamental discriminants D < 0 whose
principal genus consists only of the principal class.

Here is a list of the 65 known fundamental discriminants D < 0,
such that the principal genus consists only of the principal class:

h+(D) −D
1 3 4 7 8 11 19 43 67 163
2 15 20 24 35 40 51 52 88 91 115 123 148 187 232

235 267 403 427
4 84 120 132 168 195 228 280 312 340 372 408 435

483 520 532 555 595 627 708 715 760 795 1012 1435
8 420 660 840 1092 1155 1320 1380 1428 1540 1848

1995 3003 3315
16 5460

Up to now, no other such fundamental discriminant is known!
(See §18 for a further discussion on this point.)

There are also the following 36 known non-fundamental dis-
criminants with principal genus consisting only of the principal
class:

−D = 3 × 22, 3 × 32, 3 × 42, 3 × 52, 3 × 72, 3 × 82, 4 × 22, 4 × 32,

4 × 42, 4 × 52, 7 × 22, 7 × 42, 7 × 82, 8 × 22, 8 × 32, 8 × 62,

11 × 32, 15 × 22, 15 × 42, 15 × 82, 20 × 32, 24 × 22, 35 × 32,

40 × 22, 88 × 22, 120 × 22, 168 × 22, 232 × 22,

280 × 22, 312 × 22, 408 × 22, 520 × 22, 760 × 22,
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840 × 22, 1320 × 22, 1848 × 22.

From the theory of genera, for each of the above discriminants, it
is possible to decide with the method indicated if an odd prime may
or may not be represented by any one of the primitive forms of this
discriminant.

There is an interesting connection, discovered by Gauss, between
negative discriminants with one class in each genus, and Euler’s
convenient numbers, which were defined in order to find large primes.

The definition of convenient numbers involves odd integers m ≥ 1
satisfying the following properties:

(i) if x, y, x′, y′ are non-negative integers such that x2 + ny2 =
x′2 + n(y′)2, then (x′, y′) = (x, y) or (y, x);

(ii) if x, y are non-negative integers such that m = x2 + ny2, then
gcd(x, y) = 1.

The integer n ≥ 1 is a convenient number when it satisfies the
following property: every odd integer m ≥ 1 relatively prime to n
which satisfies the above conditions (i) and (ii), is a prime.

Gauss showed:
Let n ≥ 1 be an integer. Then the principal genus of the funda-

mental discriminant D = −4n consists of only one class if and only
if n is a convenient number.

Thus, the 65 known convenient numbers are: 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 37, 40, 42, 45, 48,
57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133, 165,
168, 177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385,
408, 462, 520, 760, 840, 1320, 1365, 1848.

More information about convenient numbers may be found in Frei

(1985, 1984); Steinig (1966).
There are other ways to indicate that two forms are in the

same genus. To be able to express these conditions, the notion of
equivalence is extended as follows.

Let R be any of the following rings:
(1) R = Z(n) (the ring of rational numbers, with denominators

prime to n);
(2) R = Zp (the ring of p-adic integers, with p prime);
(3) R = Z/mZ (the ring of residue classes modulo m ≥ 2).
In each case, let λ : Z → R be the natural ring homomorphism;

so in cases (1), (2), λ is the embedding, and in case (3), λ is the
residue map. If Q = 〈a, b, c〉 let λQ = 〈λ(a), λ(b), λ(c)〉 = λ(a)X2 +



13 The group of proper equivalence classes of primitive forms 143

λ(b)XY + λ(c)Y 2 be the associated binary quadratic form over the
ring R. Thus, in cases (1), (2), Q and λQ may be identified.

The forms Q = 〈a, b, c〉, Q′ = 〈a′, b′, c′〉 are said to be R-equivalent

if there exits A =
(

α β
γ δ

)
∈ GL2(R) such that λQ′ = TA(λQ). In

cases (1), (2), this means (after the canonical embedding) that the
conditions (∗) of §6 are satisfied. In case (3), those equalities become
congruences modulo m. The notation is Q ∼ Q′ (over R).

Similarly, ρ ∈ R is said to be a value of Q if there exist α, γ ∈ R
such that (λQ)(α, γ) = ρ. For example, r mod m ∈ Z/mZ is a value
of Q if there exist integers x, y such that Q(x, y) ≡ r (mod m).

Each of the following equivalent conditions characterizes when two
forms Q, Q′ ∈ QD are in the same genus:

(i) Q, Q′ have the same set of values in each ring Z/mZ, for all
m ≥ 2;

(ii) Q ∼ Q′ (over Z/mZ) for all m ≥ 2;
(iii) Q ∼ Q′ (over Zp) for all primes p;
(iv) Q ∼ Q′ (over Z(n)) for every n ≥ 2.
These results are the cornerstone of a local-global theory of

quadratic forms which shall not be developed here.

13 The structure of the group of proper
equivalence classes of primitive forms

Let D be any discriminant.
Recall that Cl+(Prim(QD)) is a finite abelian group. As such, it

is the direct product of its p-Sylow subgroups Sp, for every prime
p dividing h+(D). In turn, each non-trivial p-Sylow subgroup is the
direct product of k(p) ≥ 1 cyclic p-groups. The integer k(p), which is
uniquely defined, is called the p-rank of the group Cl+(Prim(QD)).

First, consider the prime p = 2. The 2-Sylow subgroup S2 contains
the subgroup A of ambiguous classes (the classes of order dividing 2).

Gauss showed that the order of A is equal to the number g(D) =
2t−1 of genera (t denotes the number of assigned characters of D,
which is the same as the number of primes dividing D, when D is a
fundamental discriminant). A detailed and clear presentation of this
proof can be found, for example, in the book of Flath (1989).

The only ambiguous class is the principal class if and only if D = p
or 4p, where p is an odd prime, p ≡ 1 (mod 4).
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It is easy to see that if a non-principal genus contains an ambiguous
class Q, there is a bijection between the set A ∩ [P] of ambiguous
classes in the principal genus and the set A ∩ [Q].

Concerning the principal genus [P], it may or may not be cyclic.
If it is cyclic of even order, then A∩ [P] has only two classes, and so
every genus either has no ambiguous class, or exactly two ambiguous
classes—this happens for exactly one-half of the genera. If, however,
P is the only ambiguous class in A∩ [P], then each genus has exactly
one ambiguous class.

If the principal genus is not cyclic, let e(D) be the maximum of
the orders of its classes; so e(D) < f(D) (the order of the principal
genus) and, in fact, e(D) divides f(D).

Gauss called D a regular discriminant when the principal genus
is cyclic; otherwise, D is called irregular and f(D)/e(D) is its
irregularity index .

For example, if the principal genus contains 3 or more ambiguous
classes, then D is irregular and the irregularity index is even. If the
number of ambiguous classes in the principal genus is 1 or 2, then
f(D)/e(D) is odd (but not necessarily equal to 1)

In article 306 of Disquisitiones Arithmeticae, Gauss indicated in-
finitely many negative discriminants with irregularity index multiple
of 3, namely,

D = −(216k + 27), with k ≥ 1,

D = −(1000k + 75), with k ≥ 1,

etc. . . .

He also gave the following examples:

−D = 576, 580, 820, 884, 900, with irregularity index 2,
−D = 243, 307, 339, 459, 675, 755, 891, 974, with irregularity index 3.

Gauss gave just one example of an irregular positive discriminant:
D = 3026; it has irregularity index 2.

Now, let p be an odd prime. Nothing was said by Gauss concerning
the p-rank of the group of classes. I shall return to this matter in §20.
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14 Calculations and conjectures

Gauss made many calculations concerning the forms 〈a, 2b, c〉, to
which he had restricted his attention. But his results may be easily
reinterpreted for arbitrary forms.

For −3000 < D < 0, and D a fundamental discriminant, he
obtained:

h+(D) = 1 if and only if −D = 3, 4, 7, 8, 11, 19, 43, 67, 163 (these
are 9 values);

h+(D) = 2 if and only if −D assumes 18 values, of which the
largest is 427;

h+(D) = 3 if and only if −D assumes 16 values, of which the
largest is 907; etc. . . .

Based on these calculations, Gauss conjectured (see Disquisitiones
Arithmeticae, article 303):

Conjecture 1. There exist only 9 fundamental discriminants D < 0,
such that h+(D) = 1.

Conjecture 2. For every n ≥ 2, there exist only finitely many fun-
damental discriminants D < 0, such that h+(D) = n. In particular,
for n = 2 only 18 values, for n = 3 only 16 values, etc. . . .

More specifically, the conjecture will be established if an algorithm
is devised to find all discriminants D < 0 such that h+(D) = n.

Concerning proper equivalence classes of indefinite forms with fun-
damental discriminant D > 0, the following is the ongoing belief (see
also Gauss, loc. cit., article 304):

Conjecture 3. There exist infinitely many fundamental discrimi-
nants D > 0 such that h+(D) = 1.

With respect to the number of classes in the principal genus,
Gauss has conjectured (article 303):

Conjecture 4. For each integer m ≥ 1 there exist only finitely many
discriminants D < 0 such that the number of classes in the principal
genus of D is equal to m.

This may also be expressed as follows:

lim
|D|→∞

f(D) = ∞
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(f(D) is the number of classes in the principal genus of D).
Gauss noted by numerical computation that the number of pos-

itive discriminants D for which f(D) = 1 becomes increasingly rare
as D increases. He ventures that there are infinitely many such
discriminants, and poses the problem to study the behavior of

{#{D | 1 ≤ D ≤ N, f(D) = 1}
N

as N → ∞.
It will be seen that Conjectures 1, 2, and 4 have now been

established, and only Conjecture 3 remains open.

15 The aftermath of Gauss (or the “math” after
Gauss)

The rich theory developed by Gauss, and published in Disquisitiones
Arithmeticae when he was only 24 years old, has had a lasting im-
pact. Its presentation required the whole section V of the book, over
250 pages long. Gauss’ text is full of numerical examples and algo-
rithms, clarifying and completing the results previously obtained by
Fermat, Euler, Legendre, and especially by Lagrange. Here I
have touched on only a few aspects of his study.

The period following the publication of Gauss’ theory saw the
analytical work of Dirichlet on the computation of the number of
proper equivalence classes of primitive forms of a given discriminant,
and later, the geometric theory of forms as developed by Klein.

It also saw the far-reaching interpretation of Dedekind. In or-
der to provide a transparent explanation for the composition of
proper equivalence classes of primitive forms. Dedekind estab-
lished a connection between forms and ideals in quadratic number
fields; see Dedekind’s supplements to Dirichlet’s Vorlesungen
über Zahlentheorie.

16 Forms versus ideals in quadratic fields

To explain the correspondence between forms and ideals in quadratic
number fields, I begin by briefly recalling some facts.
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Let d �= 0, 1 be a square-free integer and let K = Q(
√

d) be the
associated quadratic field consisting of the elements α = x + y

√
d,

where x, y ∈ Q.
The discriminant of K is defined to be

DK =




d if d ≡ 1 (mod 4),

4d if d ≡ 2 or 3 (mod 4).

So, DK is a fundamental discriminant.
This defines bijections between the set of square-free integers,

d �= 0, 1, the set of quadratic fields, and the set of fundamental
discriminants.

Let

ω =




1+
√

d
2 if d ≡ 1 (mod 4),

√
d if d ≡ 2 or 3 (mod 4).

Then {1, ω} is also a basis of the Q-vector space K, so every
element α of K may be written in unique way as α = x + yω, with
x, y ∈ Q.

The conjugate of α = x + y
√

d (x, y ∈ Q) is ᾱ = x− y
√

d, and the
norm of α is N(α) = αᾱ = x2 − y2d ∈ Q. In particular,

ω̄ =




1−√
d

2 if d ≡ 1 (mod 4),

−
√

d if ≡ 2 or 3 (mod 4),

and

N(ω) =




1−d
4 if d ≡ 1 (mod 4),

−d if d ≡ 2 or 3 (mod 4).

If α ∈ K is written in terms of the basis {1, ω}, then

N(x + yω) =




x2 + xy + 1−d
4 y2 if d ≡ 1 (mod 4),

x2 − y2d if d ≡ 2 or 3 (mod 4).

The element α ∈ K is said to be an algebraic integer if it is the
root of a quadratic monic polynomial X2 − aX + b ∈ Z[X]. In this
situation a = α + ᾱ, and N(α) = αᾱ = b ∈ Z.

The set of algebraic integers of K is a subring of K which will be
denoted by OK . Clearly, Z ⊂ OK , K is the field of quotients of OK ,
and OK = Z ⊕ Zω, so OK is a free Z-module of rank 2.
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The correspondence indicated above for fundamental discrimi-
nants may be extended to all possible discriminants D ≡ 0 or
1 (mod 4); they will correspond bijectively to orders in quadratic
fields, which I shall now introduce.

An order of K is a subring O of K which is a free Z-module of
rank 2. Thus Z ⊂ O, K is the field of quotients of O, and there
exist two elements α, β ∈ O such that every γ ∈ O may be written
uniquely in the form γ = xα + yβ, with x, y ∈ Z. This is written as
O = Zα ⊕ Zβ.

In particular, the ring of algebraic integers OK is an order of K.
The discriminant of any free Z-module Zα ⊕ Zβ is, by definition,

equal to

det

(
α β

ᾱ β̄

)2

.

It is independent of the choice of the basis.
The discriminant of an order O is denoted by Discr(O) and is an

integer congruent to 0 or 1 modulo 4. In particular, the discriminant
of the order OK of all algebraic integers of K is Discr(OK) = DK .

The discriminant establishes a map from the set of orders of quad-
ratic fields to the set of integers congruent to 0 or 1 modulo 4 (which
are not squares). Conversely, if D ≡ 0 or 1 (mod 4) (D not a square),
let D = f2D0, where f ≥ 1 and D0 is a fundamental discriminant.
Let K be the quadratic field with discriminant DK = D0. Then
O(D) = Z ⊕ ZD+

√
D

2 is an order of K with Discr(O(D)) = D; f is
called the conductor of the order O(D). Thus, OK = O(DK).

Note that

O(D) =

{
x + y

√
D

2
| x, y ∈ Z, x ≡ yD (mod 2)

}
.

This establishes a bijection between the set of orders of quadratic
fields and the set of integers (not a square) congruent to 0 or 1
modulo 4.

Moreover, if D = f2D0, D′ = e2D0 and e divides f with e < f ,
then O(D) ⊂ O(D′). In particular, OK is the only maximal order in
the field K with discriminant DK = D0.

For every D = f2DK , the additive quotient group OK/O(D) is
finite, having f elements.

A fractional ideal I of the order O = O(D) is an additive subgroup
of K such that
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(1) αI ⊆ I for every α ∈ O,
(2) there exists a non-zero element δ ∈ O such that δI ⊆ O.
Each non-zero fractional ideal I of O admits a basis consisting of

two numbers α, β ∈ I, that is, I = Zα ⊕ Zβ.
For every α ∈ K, the set Oα = {βα | β ∈ O} is a fractional ideal

of the order O, called the principal ideal defined by α. In particular,
O = O1 is the unit ideal , 0 = O0 is the zero ideal .

If I is a fractional ideal of O, then so is its conjugate Ī = {ᾱ |
α ∈ I}. If I, J are fractional ideals of O let I · J = {∑n

i=1 αiβi |
αi ∈ I, βi ∈ I, n ≥ 1}. Then I · J is also a fractional ideal of O. The
multiplication of fractional ideals is an associative and commutative
operation, withthe unit ideal as the unit element. Also Oα · Oβ =
Oαβ for any α, β ∈ K.

The product I · Ī is a principal fractional ideal of Z, generated by
a unique positive rational number l > 0: I · Ī = Ol; by definition,
the norm of I is N(I) = l. It is clear that N(I · J) = N(I)N(J) and
N(Oα) = |N(α)|.

If {α, β} is any basis of I, then (αβ̄ − ᾱβ)2 = N(I)2D.
A fractional ideal I of O = O(D) is said to be invertible if there

exists a fractional ideal J such that I · J = O.
The following conditions on a non-zero fractional ideal I of O are

equivalent:
(1) I is invertible.
(2) O = {α ∈ K | αI ⊆ I}.
If gcd(N(I), f) = 1, then I is invertible.
In particular, if f = 1, then all the non-zero fractional ideals of

O(DK) are invertible.
If I, J are invertible fractional ideals of O and I ⊆ J , then there

exists a fractional ideal J ′ ⊆ O such that I = JJ ′ and hence N(J)
divides N(I). In particular, for every α ∈ K, α �= 0, if α ∈ J , then
N(J) divides N(α).

Let I = I(O(D)) denote the set of all invertible fractional ide-
als of O(D); thus I is a multiplicative group which contains the
subgroups

P = P(O(D)) = {Oα | α ∈ K, α �= 0}

and

P+ = P+(O(D)) = {Oα | α ∈ K, α �= 0, N(α) > 0}.
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The equivalence of invertible ideals I, J ∈ I is defined as follows:
I ∼ J if there exists α ∈ K, α �= 0, such that I = J · Oα. The set of
equivalence classes of invertible ideals of O is denoted by Cl(O(D)),
and the equivalence class of I is denoted by cl(I). If I ∼ I ′ and
J ∼ J ′, then I · J ∼ I ′ · J ′. This allows us to define the operation
cl(I) · cl(J) = cl(I · J).

Endowed with this operation, Cl(O(D)) is an abelian group
isomorphic to the quotient group I/P.

The strict equivalence invertible ideals I, J ∈ I is defined as
follows: I ≈ J if there exists α ∈ K, with N(α) > 0, such that
I = J · Oα. The set of strict equivalence classes of invertible ideals
of O is denoted by Cl+(O(D)) and the strict equivalence class of I
is denoted by cl+(I). Again, if I ≈ I ′, J ≈ J ′, then I · J ≈ I ′ · J ′,
which allows us to define the operation cl+(I) · cl+(J) = cl+(I · J).
With this operation, Cl+(O(D)) is an abelian group, isomorphic to
T /P+.

The mapping cl+(I) �→ cl(I) from Cl+(O) to Cl(O) is a surjective
homomorphism, with a kernel consisting of one or two elements.

Whereas T (O(D)) is an infinite group, the group Cl+(O(D)) is
finite, hence also Cl(O(D)) is finite. This important result is the
counterpart, in Dedekind’s interpretation, of the finiteness of the
group Cl+(Prim(D)), as I shall soon explain.

The number of elements in Cl(O(D)) is denoted h(O(D)) and
called the class number of the order O(D). The number of elements
of Cl+(O(D)) is called the strict class number of O(D) and denoted
by h+(O(D)).

From the above homomorphism, h((O(D)) ≤ h+((O(D)) ≤
2h((O(D)). The exact relation between the class number and strict
class number of an order will be made more precise.

The following facts about orders will also be needed later.
An element α ∈ O = O(D) such that α−1 ∈ O is called a unit

of O. If α ∈ O and there exists k ≥ 1 such that αk = 1, then α
is a root of unity and also a unit. The set U = U(O(D)) of units
of O forms a multiplicative group. If α is a unit, then so is ᾱ and
N(αᾱ) = ±1.

Consider the situation in the case of the maximal order O(DK).
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If d < 0, the group of units of O(DK) is finite, so every unit is a
root of unity. Let w denote the number of units. Then

w =




4 if d = −1; the units are ±1, ±
√
−1

6 if d = −3; the units are ±1, (±1 ±
√
−3)/2

2 if d �= −1, −3; the units are ±1.

If DK > 0, there exists a unit ε > 1, unique such that

U = {±εk | k ∈ Z}.

The unit ε is called the fundamental unit of O(DK). The only roots
of unity are ±1.

Since U(O(D)) = U(O(DK))∩O(D), if DK < 0, then U(O(D)) is
finite, consisting only of roots of units. If DK > 0, then there exists a
smallest t ≥ 1 such that εt ∈ O(D) and U(O(D)) = {±εtk | k ≥ 1};
εt is the fundamental unit of O(D).

The fundamental unit may have norm equal to 1 or to −1, both
cases being possible.

If DK ≡ 1 (mod 4), then DK = d is square-free; the fundamental
unit ε = x1+y1

√
d

2 (with x1, y1 ≥ 1, x1 ≡ y1 (mod 2)) is such that
x2

1 − y2
1d = ±4; moreover, for every pair (x, y), x, y ≥ 1, such that

x2 − y2d = ±4, necessarily x1 + x + y1

√
d < x + y

√
d.

If DK ≡ 0 (mod 4), then DK = 4d, with d ≡ 2, 3 (mod 4); the
fundamental unit ε = x1 + y1

√
d (with x1, y1 ≥ 1) is such that

x2
1−y2

1d = ±1 and x1+y1

√
d < x+y

√
d whenever x,y ≥ 1, x2−y2d =

±1.
This theory was developed by Lagrange.
The relationship between the class number and the strict class

number of the order O(D) is the following:
(1) If D < 0 or D > 0 and the fundamental unit of O(D) has

norm −1, then h+(O(D)) = h(O(D)).
(2) If D > 0 and the fundamental unit has norm 1, then

h+(O(D)) = 2h(O(D)).
Now I shall indicate the important correspondence between proper

equivalence classes of primitive forms and strict equivalence classes
of invertible fractional ideals of orders.

Let D ≡ 0, 1 (mod 4) (D not a square), so D = f2D0, where D0 is
a fundamental discriminant. Let K = Q(

√
D0), so its discriminant

is DK = D0. Let O = O(D) and let I ∈ I(O), so I is a non-zero
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invertible fractional ideal of the order O. Thus I has a basis {α, β},
and therefore

det

(
α β

ᾱ β̄

)
= αβ̄ − ᾱβ �= 0.

Since αβ̄−ᾱβ√
d

is equal to its conjugate, then it is a rational number.
Therefore, either αβ̄ − ᾱβ > 0 or βᾱ − β̄α > 0. Thus, it is possible
to choose a pair (α, β) such that I = Zα ⊕ Zβ and αβ̄ − ᾱβ > 0;
(α, β) is called a positively oriented basis for I.

Since Oα ⊆ I and Oβ ⊆ I, it follows that N(I) divides N(α) and
N(β). But N(I)2 divides

(αβ̄ − ᾱβ)2 = (αβ̄ + ᾱβ)2 − 4N(α)N(β),

hence N(I) divides αβ̄ + ᾱβ.
Let

Q =

〈
N(α)
N(I)

,
αβ̄ + ᾱβ

N(I)
,
N(β)
N(I)

〉
,

so Q has discriminant equal to D.
Note that Q depends on the choice of the positively oriented basis

{α, β}; this is denoted by writing Q = Q(α,β). If {α′, β′} is another
positively oriented basis of I, it may be shown that Q(α,β) and Q(α′,β′)
are properly equivalent. Similarly, if the ideals I, I ′ ∈ I are strictly
equivalent, then the associated forms Q, Q′ (using any positively
oriented bases of I, I ′) are properly equivalent. This defines the map
cl+(I) �→ Q from Cl+(O(D)) to Cl+(Prim(QD)).

Conversely, let Q = 〈a, b, c〉 be a primitive form with discrim-
inant D = f2D0, where D0 is a fundamental discriminant. Let
K = Q(

√
D0), so DK = D0.

If a > 0, let I = Za ⊕ Z
(

b−√
D

2

)
.

If a < 0 (hence D > 0), let I = Za
√

D ⊕ Z
(

b−√
D

2

)√
D.

It is easy to see that, in both cases, I is an invertible fractional
ideal of the order O(D).

Once again, if Q ≈ Q′, then I ≈ I ′. Note also that if a > 0,
then the basis

(
a, b−√

D
2

)
, (respectively, if a < 0, then the basis(

a
√

D, b−√
D

2

√
D
)
) of I is positively oriented.

This defines a mapping Q �→ cl+(I) from Cl+(QD) to Cl+(O(D)).
The two mappings are inverse to each other, as may be verified.
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Moreover, if Q ∗ Q′ = Q′′ (composition of proper equivalence
classes), then the corresponding strict classes of ideals satisfy cl+(I) ·
cl+(I ′) = cl+(I ′′).

In other words, the group (under composition) Cl+(Prim(QD))
and the group Cl+(O(D)) are isomorphic.

In particular, it follows also that h+(D) = h+(O(D)).
Here it should be observed that there is no isomorphism in general

between Cl(Prim(QD)) and Cl(O(D)). For example, it was shown
that h(−303) = 6, h+(−303) = 10, so h(O(−303)) = h+(O(−303) =
10.

17 Dirichlet’s class number formula

Using analytical methods, in 1839 Dirichlet gave a formula for the
number of proper equivalence classes of primitive forms of a given
discriminant D.

First, I recall the definition and main properties of the Kronecker
symbol, which will be used in the sequel.

Let D ≡ 0 or 1 (mod 4), D not a square.
The Kronecker symbol is defined as follows:

(1)
(

D
2

)
=




0 if D ≡ 0 (mod 4),

1 if D ≡ 1 (mod 8),

−1 if D ≡ 5 (mod 8);

(2) if p is an odd prime, then
(

D
p

)
is the Legendre symbol; in

particular,
(

D
p

)
= 0 when p | D;

(3) if n =
∏r

i=1 pei
i (with pi prime, ei ≥ 1), then

(
D
n

)
=∏r

i=1

(
D
pi

)ei
; in particular

(
D
1

)
= 1.

The computation of the Kronecker symbol is reduced to that
of Legendre symbols, and this may be speedily done using Gauss’
reciprocity law.

It is also necessary to use the well-known fact that, given m and D
(as above), the number of integers n, such that 1 ≤ n < 2m and
D ≡ n2 (mod 4m), is equal to

∑
k|m, 1≤k

(
D

k

)
.
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Let D > 0 and denote by ε the fundamental unit of the real quad-
ratic field Q(

√
D) associated to D. Let Q = 〈a, b, c〉 ∈ Prim(QD).

The primitive representation m = Q(α, β) is said to be a primary
representation if

2aα + (b −
√

D)β > 0

and

1 ≤
∣∣∣∣∣2aα + (b +

√
D)β

2aα + (b −
√

D)β

∣∣∣∣∣ ≤ (ε′)2

where

ε′ =




ε if N(ε) = +1,

ε2 if N(ε) = −1.

If D > 0, define w = 1.
If D < 0, it is convenient to say that every primitive representation

is primary, and for D < 0, w has already been defined, as being the
number of roots of unity of the quadratic field Q(

√
D).

Then, for any Q ∈ Prim(QD), the number of primitive primary
representations of m ≥ 1 by Q and belonging to n (where 1 ≤ n <
2m, D ≡ n2 (mod 4m)) is equal to 0 or to w.

Let Q ∈ Prim(QD), m ≥ 1, and denote by ψ(m, Q) the number of
primitive primary representations of m by Q.

Let {Q1, . . . , Qh+(D)} be a set of h+(D) pairwise non-properly
equivalent primitive forms with discriminant D.

Let ψ(m) =
∑h+(D)

i=1 ψ(m, Qi).
Then ψ(m) = w

∑
k|m

(
D
k

)
; this equality reflects the fact that

every primitive representation belongs to some n, 1 ≤ n < 2m, and
D ≡ n2 (mod 4m).

For each Q ∈ Prim(QD) and real number t > 1, let

Ψ(t, Q) =
∑

1≤m≤t

gcd(m,D)=1

ψ(m, Q).

The limiting average of Ψ(t, Q) exists and may be computed:

lim
t→∞

1
t
Ψ(t, Q) =




2π√
|D| ·

φ(|D|)
|D| if D < 0,

log ε′√
D

· φ(D)
D if D > 0.

This average is independent of the choice of Q.
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The class number h+(D) appears as follows:

h+(D)∑
i=1

Ψ(t, Qi) =
∑

1≤m≤t

gcd(m,D)=1

h+(D)∑
i=1

ψ(m, Qi)

=
∑

1≤m≤t

gcd(m,D)=1

ψ(m)

= w
∑

1≤m≤t

gcd(m,D)=1

∑
k|m

(
D

k

)
.

Dividing by t and considering the limit as t tends to infinity, the
left-hand side yields

h+(D) · CD · φ(|D|)
|D| ,

where

CD =




2π√
|D| if D < 0,

log ε′√
D

if D > 0.

The calculation of the right-hand side is less obvious. For details,
the excellent books of Hua (1982) or Borevich and Shafarevich

(1966) should be consulted. At any rate,

lim
t→∞

1
t


w

∑
1≤m≤t

gcd(m,D)=1

∑
k|m

(
D

k

) = w
ψ(|D|)
|D| L(D)

where

L(D) =
∞∑

k=1

1
k

(
D

k

)
.

Note that if the mapping n �→ χ(n) = (D/n) is a modular char-
acter, then L(D) is nothing more than L(1|χ), the value at s = 1 of
the L-series of χ:

L(s|χ) =
∞∑

n=1

χ(n)
ns

(convergent for Re(s) > 1).



156 6. Gauss and the Class Number Problem

This series L(D) converges, and it follows that

h+(D) =
w

CD
L(D) =




w
√

|D|
2π L(D) if D < 0,

√
D

log ε′ L(D) if D > 0.

The computation of L(D) is delicate. For fundamental discrimi-
nants D, it yields (see Hua (1982)):

L(D) =



− π

|D|3/2

∑|D|−1
k=1

(
D
k

)
k if D < 0,

− 1√
D

∑D−1
k=1

(
D
k

)
log sin kπ

D if D > 0,

and finally, Dirichlet’s formula for the strict class number (for
fundamental discriminants) is:

h+(D) =



− w

2|D|
∑|D|−1

k=1

(
D
k

)
k if D < 0,

− 1
log ε′

∑D−1
k=1

(
D
k

)
log sin kπ

D if D > 0.

For the class number h(D), noting the relation between the funda-
mental unit and ε′, as well as between h+(D) and h(D), the formula
may be rewritten as follows:

h(D) =



− w

2|D|
∑|D|−1

k=1

(
D
k

)
k if D < 0,

− 1
2 log ε

∑D−1
k=1

(
D
k

)
log sin kπ

D if D > 0.

More generally, if D = f2D0, where D0 is a fundamental
discriminant, then

L(D) =
∏
p|f

1 −
(

D0
p

)
p

L(D0),

and this value leads at once to the formulas for h+(D) and h(D), for
arbitrary discriminants.

Another expression for h(D), when D is a fundamental discrimi-
nant, D < −4, is the following:

h(D) =
1

2 −
(

D
2

) ∑
1≤k<|D|/2
gcd(k,D)=1

(
D

k

)
.
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From this, it follows that if p is a prime number, p ≡ 3 (mod 4)
and p �= 3, then

h(−p) =




R − N if p ≡ 7 (mod 8),
1
3(R − N) if p ≡ 3 (mod 8),

where

R = #{k | 1 ≤ k <
P

2
,

(
k

p

)
− 1},

N = #{k | 1 ≤ k <
P

2
,

(
k

p

)
= −1}.

For example,

h(−43) =
1
3
(R − N) =

1
3
(12 − 9) = 1.

It is interesting to note that in article 303 of Disquisitiones Arith-
meticae, Gauss stated that for D > 0, the product h(D) log ε has a
role similar to h+(D) when D < 0. This fact recurs later in the work
of Siegel (1936) and reflects the crucial importance of the L-series
of the character χ.

18 Solution of the class number problem for
definite forms

Even though the class number formula indeed allows the computa-
tion of h(D) (see Buell’s tables of h(D) (Buell (1976) and Buell

(1987)) for |D| < 25 × 106), no inference can be made concern-
ing the growth of h(D). Thus, the formula does not suffice to decide
whether the conjectures of Gauss (see §14) are true. These questions
are much more difficult.

The two excellent articles of Goldfeld (1985) and Oesterlé

(1988) should be read, as they contain a lucid account of the
work which culminated in the solution of the problem for proper
equivalence classes of positive definite forms with fundamental
discriminant, or equivalently, for imaginary quadratic fields.

I shall borrow unashamedly from these authoritative accounts—
after my sincere kudos, what else can the authors do but forgive
me?



158 6. Gauss and the Class Number Problem

Before considering the question in its full generality, it is worth
pointing out that a special case had been settled by Landau, already
in 1903:

If D is any fundamental discriminant such that 4 divides D, then
h(−D) = 1 if and only if −D = 4 or 8.

It is not difficult to give upper estimates for L(D) = L(1|χ). If
D ≤ −5, then L(D) ≤ log |D|, hence

h(D) <

√
D log |D|

π
.

For the class number problem, what is important is the determi-
nation of lower bounds for h(D).

Consider the zeta function of the field K = Q(
√

D):

ζK(s) =
∑ 1

N(I)s
(summation over all non-zero ideals I of O),

where N(I) indicates the norm of the ideal I. This series converges
absolutely for Re(s) > 1.

If K = Q, then ζQ(s) is the Riemann zeta function

ζ(s) =
∞∑

n=1

1
ns

(for Re(s) > 1).

Classical calculations give

ζK(s) = ζ(s)L(s|χ) (for Re(s) > 1),

where χ(n) =
(

D
n

)
for every n ≥ 1.

Riemann’s hypothesis states that all non-real zeroes σ + it of ζ(s)
are such that σ = 1/2.

In the present context, the generalized Riemann’s hypothesis is
the analogous statement for the L-series L(s|χ).

Everyone knows that both the Riemann and the generalized Rie-
mann hypothesis, however plausible they may be, have yet to be
proved. It is a common practice in analytic number theory to deduce
consequences from these hypotheses—as in the last century was the
case for non-euclidean geometry.

Hecke (see Landau (1913)) proved that under a hypothesis sim-
ilar to, but weaker than, the generalized Riemann hypothesis for the
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L-series of the character χ, it follows that there is a constant c > 0
such that

h(D) ≥ 1
c
·
√
|D|

log |D| .

This implies that limD→−∞ h(D) = ∞, and also if h(D) = 1, then

c ≥
√
|D|

log |D| ,

and, therefore,
|D| ≤ (c log |D|)2.

What has been proved, without assuming the generalized Rie-
mann’s hypothesis?

Deuring (1933) showed:
Assuming that the classical Riemann hypothesis is false, there

exist only finitely many discriminants D < 0 such that h(D) = 1.
Soon after, Mordell showed, assuming the classical Riemann

hypothesis to be false, that limD→−∞ h(D) = ∞.
In the same year of 1934, assuming that the generalized Rie-

mann hypothesis is false, Heilbronn (1934a) concluded also that
limD→−∞ h(D) = ∞.

As Goldfeld says: “Here was the first known instance of a proof
which first assumed that the generalized Riemann hypothesis was
true and then that it was false, giving the right answer in both cases!”

Siegel (1936) showed, in a different way, that

log h(D) ∼ log
√
|D| (asymptotically, as D → −∞);

in particular, limD→−∞ h(D) = ∞.
The above proofs did not provide any effective bound for the

discriminants D < 0 such that h(D) is less than any given value.
A refined proof by Heilbronn and Linfoot (1934b), led to the

conclusion that, apart from at most one extra tenth discriminant, all
values of D < 0 such that h(D) = 1 are those already mentioned:
|D| = 3, 4, 7, 8, 11, 19, 43, 67, 163.

It took a rather long time to rule out this extra discriminant; the
story is quite interesting.

Heegner (1952)—who incidentally, as a high school teacher, was
an outsider—published a paper showing that the extra tenth dis-
criminant does not in fact exist. Heegner’s proof, using the theory
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of modular forms, was discounted as being incorrect; in fact, there
were errors in it, as well as obscure passages.

Baker (1966) put to good use his effective minoration of linear
forms of three logarithms, and showed that the extra discriminant
does not exist.

Stark (1967) gave another proof, similar to Heegner’s. Still
another proof was due to Siegel (1968).

A reexamination of Heegner’s proof by Deuring (1968) sufficed
to put it back on solid ground. And Stark (1969) compounded the
embarrassment by showing how the theorem could have been proved
by the effective minoration of a linear form in two logarithms—and
this was already fully possible using the transcendence results of
Gel’fond and Linnik, known in 1949.

The road was paved to deal with the imaginary quadratic fields
of class number 2. Using effective minorations of logarithms, Baker

(1971) and Stark (1971), independently, showed that h(D) = 2
exactly when

|D| = 5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267,

403, 427.

Still a long way was ahead before Gauss’ conjectures for the class
number of imaginary quadratic fields could be settled. It was essen-
tial to obtain effective minorations for the class number. The way to
this achievement was convoluted, and involved the theory of modular
forms and elliptic functions.

The culmination of the work of Goldfeld (1977) and Gross and
Zagier (1986) gave (in 1983) the following effective minoration for
h(D):

For every δ > 0, there exists an effectively computable number
C = C(ε) > 0 such that

h(D) > C(log |D|)1−ε.

This is sufficient to imply that for every given number n there is an
effective bound B(n), depending on n, such that if h(D) = n, then
|D| ≤ B(n). So, Gauss’ class number conjectures for definite forms
is true.

Explicit computations by Oesterlé (1983) led to the minoration:

h(D) >
1
55

(log |D|)
∏

p|D, p
=2

(
1 − [2

√
p]

p + 1

)
.



19 The class number problem for indefinite forms 161

This minoration holds for discriminants prime to 5077.
This, and similar estimates, have allowed the determination of all

fields with class number 3 (there are 16 such fields, and for these,
D ≤ 907), with class number 4 (there are 54 such fields, and for
these, D < 1555), and more is still to come along these lines.

The same method of Heilbronn allowed Chowla to give a (non-
effective) lower bound for the number of classes in the principal genus
of any discriminant D < 0. Recall that this number is h(D)/g(D),
where g(D) is the number of genera.

Chowla (1934) showed that

lim
|D|→∞

h(D)
g(D)

= ∞.

In particular, for every n ≥ 1 there exist only finitely many dis-
criminants D < 0 such that the number of classes in the principal
genus is n. This gives a solution, albeit non-effective, of the fourth
conjecture of Gauss (see §14).

Further work by Chowla and Briggs (1954) and Weinberger

(1973a) led to the following interesting conclusion:
Apart from the known discriminants with only one class in the

principal genus, listed in §12, there exists at most one other D, and
|D| > 1060. Whether or not such a discriminant actually exists is still
unknown. However, the existence is denied, as soon as an appropriate
weak hypothesis is made about the zeroes of the associated L-series;
see Chowla and Briggs (1954) and Grosswald (1963).

19 The class number problem for indefinite forms

Recall that Gauss had conjectured, on the basis of numerical
calculations, that there should exist infinitely many fundamental dis-
criminants D > 0 such that h(D) = 1, or equivalently, there exist
infinitely many real quadratic fields with class number one.

The problem is very much tied to the size of the fundamental unit
εD. Indeed, Siegel showed in 1936:

log(h(D) log εD) ∼ log
√

D (asymptotically, as D → ∞).

Extensive computations of the class number by Wada (1981),
Mollin and Williams (1992), and, more recently, by Jacobson
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(1998) give weight to this conjecture. Yet, its proof is elusive and of
great difficulty.

I wish to indicate some recent approaches to the problem and
related studies.

First, there are very interesting heuristic considerations by Cohen

and Lenstra (1984) (or Cohen (1993)) that involve the automor-
phism group of the class group and lead to the conclusion that the
proportion of real quadratic fields with class number one ought to be
75.466%. This is indeed very close to the proportion observed in the
tables. I shall return in the next section to these conjectures, which
have a much wider scope.

An interesting notion, studied by Lachaud (1986, 1987), is the
caliber of a fundamental discriminant D, or of the corresponding
field K = Q(

√
D). By definition, the caliber c(D) is the number of

reduced primitive forms, under proper equivalence. Note that if D <
0, then c(D) = h(D), but if D > 0, then in general c(D) > h(D),
and how much greater depends on the periods of the roots associated
to the reduced forms.

For each class Q of reduced forms, let m(Q) denote the number
of forms in its period. Then

m(Q) log α ≤ log ε′D < m(Q) log
√

D

where

ε′D =




εD if N(εD) = +1,

ε2D if N(εD) = −1,

εD is the fundamental unit, and α = (1+
√

5)/2 is the golden number.
Then

c(D) log α ≤ h+(D) log ε′D < c(D) log
√

D,

and this may be rewritten as

c(D) log α ≤ h(D) log εD < c(D) log
√

D.

From Siegel’s result,

log(h(D) log εD) ∼ log
√

D,

and it follows that
log c(D) ∼ log

√
D.
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Hence, for every n ≥ 1, there exist only finitely many real
quadratic fields K = Q(

√
D) such that c(D) ≤ n.

This is the analog to the result indicated for the class number of
imaginary quadratic fields, but just the contrary of what is expected
for the class number of real quadratic fields.

As a consequence, for every n ≥ 1 and m ≥ 1, the set {D > 0 | D
is a fundamental discriminant, h(D) ≤ n, and the maximum m(D)
of the lengths of the periods of reduced forms of discrinimant D is at
most m} is finite—because for each such D, c(D) ≤ mn. See Sasaki

(1986).
In particular, for every m ≥ 1, there exist only finitely many fun-

damental discriminants D > 0 such that h(D) = 1, and the periods
of the reduced forms are of length at most equal to m. However, the
preceding assertions are not effective results.

As usual, with a weaker form of the generalized Riemann hypothe-
sis about the L-series of the character χ of D, it is possible to obtain
an effective result, namely,

h(D) log εD < 4.23c(D).

Then, with the same assumption, Lachaud showed that the only
real quadratic fields Q(

√
D) with caliber one are the seven fields

Q(
√

D) with D = 2, 5, 13, 29, 53, 173, 293. Moreover, Sasaki showed
that if also m(D) = 1, then D = 2.

Other types of results have the following flavor: if D > 0 is a
fundamental discriminant of a given “shape”, there are only finitely
many real quadratic fields Q(

√
D) with class number one.

Thus, Chowla and Friedlander (1976) had conjectured that
if p is a prime, p = m2 + 1, and Q(

√
p) has class number one, then

p = 2, 5, 17, 37, 101, 197, 677. Analogously, if p is a prime, p = m2 +4
and Q(

√
p) has class number one, then p = 5, 13, 29, 173, 293.

This was proved, under the generalized Riemann hypothesis, in-
dependently by Lachaud (1987) and by Mollin and Williams

(1988).
I want also to highlight another theorem of the same family, proved

by Mollin and Williams (1989):
A square-free positive integer d = n2 + r, where r divides 4n, is

said to be of extended Richaud-Degert type.
There are 43 (and possibly 44) integers d of extended Richaud-

Degert type whose corresponding field Q(
√

d) has class number one;
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a complete list is:

d = 2, 3, 5, 6, 7, 11, 13, 14, 17, 21, 23, 29, 33, 37, 38, 47, 53, 62, 69, 77,

83, 93, 101, 141, 167, 173, 197, 213, 227, 237, 293, 398, 413, 437,

453, 573, 677, 717, 1077, 1133, 1253, 1293,

1757 and possibly another value.

Now, let d > 0, d �= 1 be a square-free integer and, as previously,
let

ω =



√

d if d ≡ 2 or 3 (mod 4),
1+

√
d

2 if d ≡ 1 (mod 4).

Denote by k the length of the period of the continued fraction
expansion of ω.

Mollin and Williams (1989) have also determined explicitly
(with possibly one exception) all the finitely many real quadratic
fields K = Q(

√
d) having class number one or two and such that the

length of the period of ω is k ≤ 24. This time not all integers d are
of extended Richaud-Degert type.

For a unified presentation of the results thus far obtained by
Mollin and Williams, the reader may wish to consult their paper
Mollin and Williams (1990) and the book Quadratics by Mollin

(1996).
There are, there were, and there will be, more partial results about

this problem before a real insight will allow us to find the right way
to approach it.

20 More questions and conjectures

The study of the conjectures of §14 has led to more embracing and
deeper problems, all interrelated and, most likely, very difficult. Even
though, at the present, and to my knowledge, there is no method
to attack these questions with any significant success, I think it is
nevertheless worthwhile to explicitly state the problems.

Problem 1. Is every natural number equal to the class number of
some quadratic field with negative discriminant, respectively positive
discriminant, D?



20 More questions and conjectures 165

The following question is intimately related and even more
difficult:

Problem 2. Is every finite abelian group G isomorphic to the class
group of a quadratic field with discriminant D < 0, respectively
D > 0? If so, are there infinitely many number fields Q(

√
D), with

D > 0, such that the class group of Q(
√

D) is isomorphic to G?

Boyd and Kisilevsky (1972) showed that there are only finitely
many imaginary quadratic fields with class group isomorphic to a
product of cyclic groups of order 3; they showed, under the general-
ized Riemann hypothesis, the corresponding result for class groups
products of cyclic groups of order n > 3.

The next problem concerns the p-rank rp(D) (for p prime) of the
class group of the quadratic field with discriminant D.

Problem 3. Let p ≥ 3. Is every natural number equal to the p-rank
rp(D) for some negative discriminant, respectively positive discrimi-
nant, D? In the affirmative, are there infinitely many discriminants D
such that r3(D) is greater or equal to a given natural number n?

Craig (1977) showed that there exist infinitely many negative
discriminants D, such that r3(D) ≥ 4.

Can one at least decide:

Problem 4. Is sup{rp(D) : |D| ≥ 1} = ∞? (for D < 0, respectively
D > 0).

In this respect, it is important to learn how to determine
discriminants for which the p-rank is likely to be large.

It would also be very relevant to obtain estimates for the p-rank.
Perhaps this could be feasible for negative discriminants.

Concerning this question, I wish to report that now there are
known discriminants D < 0 for which the 3-rank is n, for every
n ≤ 6, and also discriminants D < 0 for which the 5-rank is n, for
every n ≤ 4.

Quer (1987) showed

r3(−408368221541174183) = 6

and Schoof (1983) computed

r5(−258559351511807) = 4;
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see also Llorente and Quer (1988).
It is not necessary to discuss the 2-rank because it follows from

the theory of genera that if D is a fundamental discriminant with r
distinct prime factors, then the 2-rank is r2(D) = r − 1 because the
number of ambiguous classes is 2r−1.

This is the place to mention some results of divisibility of the class
number, which are, however, not strong enough to settle any of the
above problems.

Nagell (1929) showed that for every n > 1 there exist infinitely
many imaginary quadratic fields Q(

√
D), D < 0, with class number

divisible by n.
This is a theorem which was rediscovered by Humbert (1939)

and by Ankeny and Chowla (1955). In 1986, Mollin extended
the result with a simpler proof (see Mollin (1986)).

Similarly, for real quadratic fields, first Honda (1968) showed that
there exist infinitely many real quadratic fields with class number
divisible by 3. In 1970, it was shown by Yamamoto (1970) and also
by Weinberger (1973b): for every n > 1 there exist infinitely many
real quadratic fields with class number divisible by n.

Now I return to the heuristic arguments of Cohen and Lenstra

(1984); see also the book of Cohen (1993). From inspection of the
tables of class groups (see Buell (1976, 1987), Saito and Wada

(1988a,b)) for negative discriminants, it is apparent that the 3-Sylow
subgroup is eight times more often isomorphic to C9 than to C3×C3

(here Cn denotes the multiplicative cyclic group of order n). This is
exactly the ratio

# Aut(C9)
# Aut(C3 × C3)

.

This, and similar facts, suggest that probabilities of occurrence
of a type of p-Sylow subgroup should be computed by weighing the
groups G with weights 1/# Aut(G). With this simple idea, Cohen

and Lenstra arrived at probabilities which are amazingly close to
observed values.

First, let D < 0.
The probability that the odd part of the class group is a cyclic

group is equal to

ζ(2)ζ(3)
ζ(6)C∞

∏∞
i=1(1 − 1

2i )
= 97.757%
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where

C∞ =
∞∏

n=2

ζ(n) = 2.2948 . . . .

If p is an odd prime, the probability that the class number is
divisible by p is equal to

l(p) = 1 −
∞∏
i=1

(
1 − 1

pi

)
=

1
p

+
1
p2

− 1
p5

− 1
p7

+
1

p12
+

1
p15

+ · · · .

Explicitly,

l(3) � 44%,
l(5) � 24%,
l(7) � 16%, etc . . . .

If p is an odd prime, the probability that the p-rank of the class
group is equal to n ≥ 1 is equal to

tp(n) =

∏∞
i=1

(
1 − 1

pi

)
pn2 ∏n

j=1

(
1 − 1

pj

)2 .

The probability that the p-Sylow subgroup (p > 2) of the class
group be equal to a given group is:

S3 = C9 : 9.33%
S3 = C3 × C3 : 1.17%
S3 = C3 × C3 × C3 : 0.005%
S3 = C3 × C3 × C3 × C3 : 2.3 × 10−8%
S5 = C25 : 3.80%
S5 = C5 × C5 : 0.16%, etc. . . .

Now, let D > 0.
The probability that the order of the odd part of the class group

be equal to n is u(n), where

u(1) = 75.5%
u(3) = 12.6%
u(5) = 3.8%
u(7) = 1.8%
u(9) = 1.6%, etc . . . .

u(n) is also the probability that the class number of Q(
√

p) (with p
prime) is equal to n.
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The probability that the odd prime p divides the class number is

1 −
∞∏

k=2

(
1 − 1

pk

)
.

The probability that the p-rank of the class group be equal to
n ≥ 1 is

t′p(n) =

∏∞
i=1

(
1 − 1

pi

)
pn(n+1)

∏n
j=1

(
1 − 1

pj

)∏n+1
j=1

(
1 − 1

pj

) ,

etc. . . .
The above heuristic results suggest, of course, what should be the

answers to the problems stated in the beginning of this section.
The reader may wish to consult the recent paper of Jacobson

(1998). This paper contains tables requiring extensive calculations
for D < 109. The numerical results confirm the amazing conjectures
of Cohen and Lenstra and provide lists of discriminants for which
the class group contains non-cyclic p-Sylow subgroups (for all p ≤
23), etc.

21 Many topics have not been discussed

This extended version of my lecture is already much longer than
intended. Yet, many topics of no lesser importance could not and
will not be discussed. Among these topics, the geometric theory
of quadratic forms, as developed by Klein, leading to an intimate
connection with modular forms; see the expository paper of Serre

(1985).
The problem of representation of integers by quadratic forms,

which cannot be completely solved by the methods presented here
when there is more than one class in the principal genus, can how-
ever be dealt with using class field theory, more specifically with the
Hilbert symbol. This development is very well presented in the book
of Cox (1989).

Shanks made good use of the class group and even of its infras-
tructure, to invent clever algorithms for factorization and primality;
see Shanks (1969, 1976, 1989).
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7

Consecutive Powers

1 Introduction

(a) If we write the sequence of squares and cubes of integers in
increasing order

4 8 9 16 25 27 36 49 64 81 100 . . . ,

say,
z1 < z2 < z3 < z4 < · · · < zn < zn+1 < · · ·

we may ask many questions. For example:

(I) Are there consecutive integers in this sequence? Of course, yes:
8 and 9. Are there others? How many? Only finitely many?

If we examine a list of squares and cubes up to 1 000 000, we find
no other example. Is this always true? Or will there be, perhaps by
accident, other consecutive squares and cubes?

If a search with a computer is pushed further, we may observe that
the differences appear to become larger (but not monotonically), that
is, squares and cubes appear more sparsely. Yet we should not from
this experimental observation conclude that no consecutive cube and
square, other than 8 and 9, exist.
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Consider the following situation where numbers more and more
sparsely distributed are still sufficient for a certain representation.
Namely, among the numbers up to 10 000 there are only 100 squares,
so 1

100 ; up to 1 000 000 there are only 1 000 squares, so 1
1,000 ; up

to 100 000 000 there are only 10 000 squares, so 1
10,000 ; etc. So, the

squares are less and less common. Yet, Lagrange proved that every
natural number is the sum of (at most) four squares.

Thus, even though the squares are less and less present they occupy
“strategic positions,” so four squares are always enough to reproduce
by addition any natural number.

This was mentioned just to prevent anyone to jump to false
conclusions.

A second question is the following:

(II) Given k (now k ≥ 2), for how many indices n is it true that
zn+1 − zn ≤ k? Only finitely many?

We may also consider other sequences involving powers:
(b) The sequence z1 < z2 < z3 < · · · of all proper powers of

integers: squares, cubes, 5th powers, 7th powers, etc.
(c) If a, b ≥ 2, a �= b, we may consider the sequence z1 < z2 <

z3 < · · · of all powers of a or b.
For example, if a = 2, b = 3:

4 5 9 16 27 32 64 81 128 243 256 . . . .

(d) If E = {p1, . . . , pr} where r ≥ 2 and each pi is a prime number,
let S be the set of all natural numbers all of whose prime factors are
in E:

S: z1 < z2 < z3 < · · · .
The sequence (c) is, of course, a subsequence of one of type (d).

For each of the sequences (b), (c), (d) we may ask the same ques-
tions (I) and (II). Also, for the sequence (b) of all powers, we may
ask the question (which is of no interest for the sequences (a), (c),
(d)):

(III) Are there three or more consecutive powers? How many?
None? Finitely many?

Before we proceed, let us discuss whether these questions are just
a curiosity. We may paraphrase Gauss’ point of view: “Any fool
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can ask questions about numbers, which even a thousand wise men
cannot solve.”

Are these questions of this kind? No! As they involve powers
(therefore, multiplication in a rather special way) and differences,
they combine the additive and multiplicative structure of the inte-
gers. Somewhat like a famous unsolved problem of Fermat: is the
sum of two nth powers again a nth power, when n > 2?

As it turns out, the study of these questions contributes substan-
tially to the knowledge of the integers. And this amply justifies these
investigations.

2 History

Our treatment of the problem will follow somewhat the historical
development. So, we shall be very brief here, underlining only a few
points.

(1) We may read in Dickson’s useful History of the Theory of
Numbers, Volume II , that the first mention of this problem is in a
question asked by Philippe de Vitry: Can 3m±1 be a power of 2?
This was solved by Levi ben Gerson (alias Leo Hebracus), who
lived in Spain from 1288 to 1344. He showed that if 3m ± 1 = 2n,
then m = 2, n = 3, so these numbers are 9 and 8.

(2) In 1657, in his “Deuxieme Deli aux Mathematiciens” (letter
to Frénicle de Bessy), Fermat proposed to show: if p is an odd
prime and n ≥ 2, then pn +1 is not a square; similarly, if n ≥ 4, then
2n + 1 is not a square.

A proof, published by Frénicle, was discovered in 1943 by
Hofmann.

(3) Using the method of infinite descent, which had been invented
by Fermat, Euler showed in 1738 that if the difference between a
square and a cube is ±1, then these numbers are 9 and 8.

(4) In 1844, in a letter to Crelle (appearing in Volume I of
Crelle’s journal), Catalan asked for a proof that the only con-
secutive powers are 8 and 9. This assertion is now called “Catalan’s
conjecture”. In other words, he proposed to prove that the equation
XU − Y V = 1 in four unknown quantities, two of which are in the
exponent, has only the solution x = 3, u = 2, y = 2, v = 3 in nat-
ural numbers bigger than 1. The only results of Catalan on this
equation are simple observations, which are in his Mélanges Math-
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ematiques, XV , published much later in 1885. Among the various
statements, Catalan asserted, without proof, that if xy − yx = 1,
then x = 2, y = 3—but this is rather a simple exercise to prove. For
a biography of Catalan, see Jongmans (1996).

(5) In the next phase, various special cases, with powers having
small exponents, were considered by Lebesgue (1850) and, in this
century, by Nagell, Obláth, S. Selberg, Chao Ko, et al.

(6) Then came a series of results imposing divisibility constraints
on any natural numbers x, y such that xm − yn = 1. The most
important results of this kind refer to exponents m, n which are odd
primes. They are due to Cassels, Inkeri, and Hyyrö.

(7) Finally, there were the results concerning estimates on the
number and size of possible consecutive powers. Here the most
important contributions are first due to Hyyrö and above all to
Tijdeman who used high-powered methods from the theories of dio-
phantine approximation and Baker’s estimates on linear forms of
logarithms.

We shall discuss all these points in more detail.

3 Special cases

Unless stated to the contrary, the numbers appearing in the
equations are natural numbers.

As is fitting, we begin with Levi ben Gerson’s result; the proof
given here was provided by M. Langevin, while another proof was
published by Franklin (1923).

(3.1) If m, n ≥ 2 and 3m − 2n = ±1, then m = 2, n = 3. Thus, in
the sequence of powers of 2 or 3, the only consecutive integers are 8
and 9.

Proof. If 2n − 3m = 1 then 2n ≡ 1 (mod 3), so n is even, n = 2n′.
Then 3m = 22n′−1 = (2n′−1)(2n′

+1), hence 2n′−1 = 3m′
, 2n′

+1 =
3m−m′

with 0 ≤ m′ < m − m′. Subtracting, 2 = 3m′
(3m−2m′ − 1),

hence m′ = 0, n′ = 1, n = 2, m = 1, against the hypothesis.
If 3m − 2n = 1, if n = 2 this is impossible, so n ≥ 3, hence

3m ≡ 1 (mod 8). Therefore, m is even, m = 2m′. Then 2n = 32m′ −
1 = (3m′ − 1)(3m′

+ 1), hence 3m′ − 1 = 2n′
, 3m′

+ 1 = 2n−n′
with

0 ≤ n′ < n − n′. Subtracting, 2 = 2n′
(2n−2n′ − 1), hence n′ = 1,

n = 2n′ + 1 = 3, and m = 2. �
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The following observation is quite obvious: if m, n ≥ 2, if there
exist solutions in natural numbers of the equation Xm−Y n = 1, and
if p, q are primes such that p | m, q | n, then there exist solutions
in natural numbers of the equation Xp − Y q = 1. So, we are led to
study the equation Xp − Y q = 1 with p, q distinct primes.

Euler proved in 1738 the following basic lemma:

Lemma 1. Let p, q be primes, and let x, y ≥ 2 be such that xp−yq =
1. If p is odd, then

x − 1 = aq with y = aa′, p � aa′,
xp − 1
x − 1

= (a′)q gcd(a, a′) = 1,

or
x − 1 = pq−1aq with y = paa′, p � a′,
xp−1

x − 1
= p(a′)q gcd(a, a′) = 1.

Similarly, if q is odd then

y + 1 = bp with x = bb′, q � bb′,
yq + 1
y + 1

= (b′)p gcd(b, b′) = 1,

or
y + 1 = qp−1bp with x = qbb′, q � b′,

yq + 1
y + 1

= q(b′)p gcd(b, b′) = 1.

Proof. This proof is quite simple and so we shall indicate it. We
have

yq = xp − 1 = (x − 1)
xp − 1
x − 1

.

But gcd
(
x − 1, xp−1

x−1

)
= 1 or p, because

xp − 1
x − 1

=
[(x − 1) + 1]p − 1

x − 1

= (x − 1)p−1 +
(

p

1

)
(x − 1)p−2 + . . . +

(
p

p − 2

)
(x − 1) + p.

Moreover, the greatest common divisor in question is equal to p
exactly when p | y.
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Next, we note that p2 � xp−1
x−1 . Indeed, if p | xp−1

x−1 , then p | x−1; but

p2 divides each summand (x−1)p−1, . . . ,
(

p
p−2

)
(x−1), so p2 cannot

divide xp−1
x−1 . Therefore we have shown the first assertion, concerning

x − 1 and xp−1
x−1 . The proof of the second assertion is similar. �

With the same method, Euler proved:

Lemma 2. If q is an odd prime, x, y ≥ 2, and x2 − yq = 1, then

x − 1 = 2aq

x + 1 = 2q−1(a′)q

or 


x + 1 = 2aq

x − 1 = 2q−1(a′)q

where a, a′ ≥ 1, a is odd, gcd(a, a′) = 1.

Using the method of infinite descent, Euler proved:

(3.2) If x, y ≥ 1 and x2 − y3 = ±1, then x = 3, y = 2. So, in
the sequence of squares and cubes, 8 and 9 are the only consecutive
integers.

Euler had actually shown that the only solutions in positive ra-
tional numbers of X2−Y 3 = ±1 are x = 3, y = 2; his proof is rather
tricky.

We also note here that Euler used the method of infinite de-
scent to show that Fermat’s equation X3 + Y 3 = Z3 has only trivial
solutions in integers.

In 1921, Nagell proposed another proof, reducing it to an earlier
result of Legendre (1830, Volume II, page 9): the equation X3 +
Y 3 = 2Z3 has only the solutions x = y = z or x = −y, z = 0 in
integers. Legendre’s proof was also by infinite descent. Bachmann

gave in 1919 an incorrect proof of Legendre’s result without using
the method of descent.

Another way of proving Euler’s result, without the method of
descent, uses the numbers in the cubic field K = Q( 3

√
2). From

∓1 = u3 − 2v3 = (u − 3
√

2v)(u2 + 3
√

2uv + 3
√

4v2)
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it follows that u − 3
√

2v is a unit of the field K. As is known (see
LeVeque’s book, Volume II, pages 108–109), u− 3

√
2v is, up to sign,

a power of the fundamental unit −1 + 3
√

2:

u − 3
√

2v = ±(−1 + 3
√

2)n.

Then, it is shown that n cannot be negative, and n �= 2. Finally it is
shown that n cannot be greater than 2, by comparing coefficients in
the two sides, and considering congruences modulo 3.

So, u − 3
√

2v = ±(−1 + 3
√

2), leading to x = 3, y = 2.
After X2 − Y 3 = ±1 was treated by Euler, next came the

equations X2 − Y m = ±1 (with n ≥ 5).
As it happens, and it is certainly surprising, one of these equations

was rather easy to treat, while the other required 120 years to be
solved!

Which is the easy one? Here is the answer. Lebesgue used
Gaussian integers to show, in 1850:

(3.3) The equation Xm−Y 2 = 1 has only trivial solutions in natural
numbers.

Proof. Once more, we give a sketch of the proof, leaving the de-
tails to the reader. If x, y ≥ 2 and xm = y2 + 1 = (y + i)(y − i), then
x is odd, y must be even, and there exist integers u, v such that

y + i = (u + iv)mis (with 0 ≤ s ≤ 3);
hence

y − i = (u − iv)m(−i)s.

So, x = u2+v2 and since x is odd, then u or v is even. By subtracting,
we have 2i = [(u + iv)m − (u − iv)m(−1)s]is and this leads to

1 −
(

m

2

)
w2 +

(
m

4

)
w4 − . . . ± mwm−1 = ±1, where w = u,

v = ±1 (when s is even), or w = v, u = ±1 (when s is odd); so w is
even. The sign − would imply that w2 divides 2, which is impossible.
The sign + is also impossible, and this is seen by considering the
2-adic values of the summands in the above relation. �

We shall postpone the study of the more difficult equation X2 −
Y m = 1.

So, the next equations in line are X3 − Y m = ±1, which were
studied by Nagell in 1921. First, he showed:
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(3.4) (a) If m ≥ 2 is not a power of 3, the only non-zero solutions
of X2 + X + 1 = Y m are (−1, 1) when m is odd, and (−1,±1) when
m is even.

(b) If m > 2, the only non-zero solutions of X2 + X + 1 = 3Y m

are x = 1 and x = −2.
Moreover, if m = 2, there are also the solutions

±
√

3
4

[(2 +
√

3)2n+1 − (2 −
√

3)2n+1] − 1
2

for n = 0, 1, . . . .

The proof is much longer, so we just say that for (a) Nagell

worked in Q(ω) = Q(
√
−3), where ω = −1+

√−3
2 is a cube root of 1.

He was led to the equations X ± ω = (Z − ω)q where q is a prime,
q > 3, the only solutions being x = ±1, 0. For (b), if m = 2, Nagell

worked in the field Q(
√

3) which has the fundamental unit 2+
√

3. If
4 | m, he was led to the equation U4 + V 4 = W 2, which as Fermat

showed, has only trivial solutions. If m is a power of 3, Nagell was
led to the equation X3 + Y 3 = Z3. Finally, for all other values of m,
he worked in the field Q(ω).

Now, it was easy for Nagell to show:

(3.5) The equations X3 ± 1 = Y m (with m not a power of 2) have
only trivial solutions in integers.

Proof. We may assume that m = q is a prime, q > 3. If x, y are
such that yq = x3 ± 1 = (x2 ∓ x + 1)(x ± 1), then x2 ∓ x + 1 = aq

or 3aq, where a is an integer. Replacing x by −x (in the case of the
minus sign), we have x2 + x + 1 = aq or 3aq, and this leads to the
result. �

Ljunggren (1942, 1943) studied the equation xn−1
x−1 = ym and

completed Nagell’s result (3.4)(a) above, showing that it holds
also when m is a power of 3.

We return to the equation X2 − Y n = 1 (with n > 3), which re-
sisted many attempts until it was finally completely solved. As we
shall see, the solution was elementary, but certainly not straight-
forward. We shall present here several of the partial results. Even
though they are now completely superseded, it is illuminating to see
the ways mathematicians have tried to solve the equation, and the
connection with other interesting problems.
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As already indicated, the first mention of this equation was in Fer-

mat’s “second définux mathématiciens” of 1657. We give Frénicle’s
result:

(3.6) If p is an odd prime, n ≥ 2, then pn + 1 is not a square. If
n ≥ 4, then 2n + 1 is not a square.

Proof. If pn = x2 − 1 = (x + 1)(x − 1), with p �= 2, then gcd(x +
1, x − 1) = 1, so

x + 1 = pa

x − 1 = pb

Thus x−1 = 1, x+1 = pn, hence pn = 3, n ≥ 2, which is impossible.
The proof of the other assertion is similar. �

The weaker statement that for every integer y, the number yn + 1
is not a 4th power was proved by S. Selberg in 1932. His proof
appealed to an older result of Størmer (1899), which is linked with
the speedy calculation of the decimal development of π.

Let us explain this unexpected connection, beginning with a quick
history of the calculation of π.

Using the method of inscribed and circumscribed polygons,
Archimedes gave, circa 250 B.C., the estimate

3.1408 =
223
71

< π <
22
7

= 3.1428.

In the XIIth century, Fibonacci (Leonardo di Pisa) calculated π
to be about 864

275 = 3.1418. Adrianus Metius (1571–1635) estimated

3.14150 =
333
106

< π <
355
113

= 3.14159.

In the XVIth century, F. Viète (1540–1603) expressed π with an
infinite product:

π =
2√

1
2

√
1
2 + 1

2

√
1
2

√
1
2 + 1

2

√
1
2 + 1

2

√
1
2 . . .

and this gave

3.1415926535 < π < 3.1415926537.
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A. van Rooman calculated π to 15 decimal places in 1593. Lu-

dolph van Ceulen devoted his life to the calculation of π; first, in
1596 he computed 20 decimals, using a polygon with 60 × 229 sides!
And, after his death, his wife published in 1615 Ludolph’s calcu-
lated value of π which had 32 correct decimals. His contemporaries
were so impressed with this painstaking work that until recently
German authors referred to π as the Ludolph number.

In the XVIIth century, there appeared infinite series, infinite prod-
ucts, and continued fractions: the series for the arcsine given by I.

Newton (1642–1727) in 1676; the continued fraction expression for
π/4 by Lord W. Brouncker (1620–1684), found in 1658:

π

4
=

1
1+

12

2+
32

2+
52

2+
· · · ;

the infinite product for π/2 by J. Wallis (1616–1703), in 1655:

π

2
=

2
1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
· 8
7
· 8
9
· · · · ;

the power series for the arctangent function given by J. Gregory

(1638–1675) in 1671 and, independently, the alternating series for
π/4 by G. W. Leibniz (1646–1716) in 1674:

π

4
= arctan 1 = 1 − 1

3
+

1
5
− 1

7
+ · · · .

In 1699, A. Sharp (1651–1742) used the series for the arctangent,
with λ = 1√

3
, and computed π to 72 decimals—a far cry from the

lifelong efforts required with the polygon method.
In 1737 (published in 1744), Euler calculated π to 127 decimals.

But, more interesting are the expressions which he discovered in
1755, for even powers of π in terms of the sums of series of inverses
of even powers of natural numbers (values of the ζ-function):

π2

6
= ζ(2) =

∞∑
n=1

1
n2

π4

90
= ζ(4) =

∞∑
n=1

1
n4

π6

945
= ζ(6) =

∞∑
n=1

1
n6

.
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The interest of the above formulas is more theoretical than com-
putational, but we shall not enter into this matter here. Euler

(published in 1783) obtained also the following generalization of
Viète’s infinite product for π, namely, if 0 < θ < 180◦, then

θ =
sin θ

cos
(

θ
2

)
cos

(
θ
22

)
cos

(
θ
23

)
· · ·

;

this gives Viète’s formula when θ = 90◦.
The series for π/4 converges too slowly. However, it is possible to

speed up the convergence by using the addition formula. Namely,
from tan(x + y) = tan x+tan y

1−tan x tan y , taking x = arctan u, y = arctan v,
then arctan u + arctan v = arctan u+v

1−uv .
Choosing u, v such that u+v

1−uv = 1, then π/4 = arctanu+arctan v.
For example, let u = 1

2 , so v = 1
3 , hence (∗) π/4 = arctan 1

2 +
arctan 1

3 (formula by Hutton, 1776); that is,

π

4
=

[
1
2
− 1

3

(
1
2

)3

+
1
5

(
1
2

)5

− · · ·
]
+

[
1
3
− 1

3

(
1
3

)3

+
1
5

(
1
3

)5

− · · ·
]

.

This series still converges too slowly. To improve the convergence,
we determine v such that

1
2

=
1
3 + v

1 − v
3

,

so v = 1
7 , and similarly v such that

1
3

=
1
5 + v

1 − v
5

,

so v = 1
8 . Hence,

arctan
1
2

= arctan
1
3

+ arctan
1
7
,

arctan
1
3

= arctan
1
5

+ arctan
1
8
.

It follows that

π

4
= 2 arctan

1
2
− arctan

1
7

(∗)
and
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π

4
= 2 arctan

1
3

+ arctan
1
7

(∗)

= 2 arctan
1
5

+ arctan
1
7

+ 2 arctan
1
8
.

The first equality in this formula was given by Hutton, in 1776,
and Euler, in 1779, while the second form is attributed to G. von

Vega (1756–1802) in 1794.
Beginning with u = 120

119 , so v = − 1
239 , hence

π/4 = arctan
120
119

− arctan
1

119
= 4 arctan

1
5
− arctan

1
239

(∗)

which is J. Machin’s (1680–1752) formula.
The series in the above formulas converge much more rapidly, and

allowed the computation of π to many decimals: J. Machin (1706)
with 100 decimals, F. de Lagny (1719) with 127 decimals, and G.

von Vega (1789) with 136 decimals.
The same method was used by the prodigy calculator Z. Dahse,

author of an extended table of primes. In 1844, in two months,
Dahse computed π to 200 decimals. The astronomer T. Clausen

went to 248 decimals in 1847. Later efforts in the last century were,
among others, by W. Rutherford, in 1853, up to 400 decimals,
Richter, in 1855, up to 500 decimals, and W. Shanks, in 1873, up
to 707 decimals (but “only” 527 decimals were correct, as found out
later).

With the advent of computers, π was calculated in 1962 by
D. Shanks and J. W. Wrench up to 100 000 decimals using the
formula

π

4
= 6 arctan

1
8

+ 2 arctan
1
57

+ arctan
1

239
.

The calculations were extended by J. Guilloud and M. Bouyer

who computed π to one million decimals in 1974, using Gauss’
formula

π

64
=

3
4

arctan
1
18

+
1
2

arctan
1
57

− 5
16

arctan
1

239
.

For the history of calculation of π up to 1960, see the paper of
Wrench (1960) and, more particularly, to the special issue on π of
the magazine Petit Archiméde (1980) which is quite well documented
and interesting to read.
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An explosive progress in the calculation of decimals of π came
about with the implementation of the old arithmetic-geometric mean
of Gauss as proposed by the brothers Borwein. These matters are
discussed in their very stimulating book Pi and the AGM (1987);
see also the article of Bailey, Borwein, Borwein, and Plouffe

(1997) . At present, 50 billion decimals of π have been calculated.
This record was attained by Y. Kahada and D. Takahashi in July
1997.
3.
14159 26535 89793 23846 26433 83279 50288 41971 69399 37510
58209 74944 59230 78164 06286 20899 86280 34825 34211 70679
82148 08651 32823 06647 09384 46095 50582 23172 53594 08128
48111 74502 84102 70193 85211 05559 64462 29489 54930 38196
44288 10975 66593 34461 28475 64823 37867 83165 27120 19091

45648 56692 34603 48610 45432 66482 13393 60726 02491 41273
72458 70066 06315 58817 48815 20920 96282 92540 91715 36436
78925 90360 01133 05305 48820 46652 13841 46951 94151 16094
33057 27036 57595 91953 09218 61173 81932 61179 31051 18548
07446 23799 62749 56735 18857 52724 89122 79381 83011 94912

98336 73362 44065 66430 86021 39494 63952 24737 19070 21798
60943 70277 05392 17176 29317 67523 84674 81846 76694 05132
00056 81271 45263 56082 77857 71342 75778 96091 73637 17872
14684 40901 22495 34301 46549 58537 10507 92279 68925 89235
42019 95611 21290 21960 86403 44181 59813 62977 47713 09960

51870 72113 49999 99837 29780 49951 05973 17328 16096 31859
50244 59455 34690 83026 42522 30825 33446 85035 26193 11881
71010 00313 78387 52886 58753 32083 81420 61717 76691 47303
59825 34904 28755 46873 11595 62863 88235 37875 93751 95778
18577 80532 17122 68066 13001 92787 66111 95909 21642 . . .

Pour en savoir plus. . . tournez cette carte

One wonders what, if any, information of interest can be obtained
from such extensive calculations? A place in The Guiness Book of
Records? Is there anything to do with atomic energy that would be
revealed by special patterns of the decimal digits of π? As a matter
or fact, in June 1949, J. von Neumann suggested using ENIAC to
determine many decimals for π and e and study the distribution of
decimal digits statistically. It has been observed that any digit, or for
that matter, any short sequence of digits like 40533, occurs among
the decimals of π. For example the sequence 0123456789 occurs be-
ginning at the 17 387 594 880th digit after the decimal point. Of
course, this is an experimental observation and does not constitute
or lead to a proof of the “normality” of π.

As seen above, the computations of π have used formulas like
the ones marked with (∗). In this respect, D. Gravé from Saint-
Petersburg asked which of the formulas

m arctan
1
x

+ n arctan
1
y

= k
π

4

are true, where m, n, k, x, y are nonzero integers, and k, x, y ≥ 1.
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This problem, related to the speedy calculation of π, provided a
link with the equation X4 − 1 = Y n, studied by S. Selberg.

In 1897, Størmer solved Gravé’s problem; he gave a simpler
proof in 1899. Writing (a1 + ib1) · · · (an + ibn) = reiφ (aj , bj , φ real
and r real positive), then φ = arctan b1

a1
+ · · · + arctan bn

an
. Thus,

arctan b1
a1

+ · · ·+arctan bn
an

= sπ (where s is an integer) if and only if
(a1 + ib1) · · · (an + ibn) is a real number. In particular, m arctan 1

x +
n arctan 1

y = k π
4 if and only if (1 − i)k(x + i)m(y + i)n is real. This

leads to the solution in integers of the equations 1 + X2 = Y n or
1 + X2 = 2Y n (where n ≥ 3, n odd). As we have seen in (3.3), the
first of these equations has only trivial solutions. As for the second,
Størmer showed:

(3.7) If n is not a power of 2 and n > 1, then the only solutions of
1 + X2 = 2Y n are x = ±1.

We note, incidentally, that the equation 1 + X2 = 2Y 4 had been
solved by Lagrange (1777) by the method of descent, the only
solutions in natural numbers being x = 239, y = 13 (and the trivial
solutions x = 1, y = 1).

Using (3.7), Størmer showed that the only solutions for Gravé’s
problem were the expressions already indicated with (∗). So, some-
how, just by trial, the significant formulas involving two arctangents
had already been found!

After this aside, we return to Selberg’s result.

(3.8) If n ≥ 2, the equation X4 − Y n = 1 has only trivial solutions.

Proof. This is easy to see when n is even, so we assume n to be
odd. If y is odd, then yn = x4 − 1 = (x2 + 1)(x2 − 1), hence there
exist natural numbers a, b such that

x2 + 1 = an

x2 − 1 = bn.

By subtracting, we easily reach a contradiction. If y is even, then

x2 + 1 = 2an

x2 − 1 = 2n−1bn

(with a, b integers). By Størmer’s result, x2 = 1, y = 0, which is a
trivial solution. �
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The next developments in the study of the equation X2 − Y n = 1
were fruitless attempts, false routes, and wanderings. It is, how-
ever, interesting to report on these partial results, since some of the
methods were used again for other exponents.

In 1934, Nagell showed that if X2−Y q = 1 (with q prime, q > 3)
has a non-trivial solution, then q ≡ 1 (mod 8). Moreover, there are
at most finitely many solutions, as follows from a general theorem
of Thue, which will be discussed in the last section of this paper.
In 1940/1941, Obláth, inspired by theorems of Wieferich and
Mirimanoff on Fermat’s equation Xp + Y p = Zp, showed that if
X2 − Y q = 1 has a non-trivial solution, then

2q−1 ≡ 1 (mod q2) and 3q−1 ≡ 1 (mod q2).

As is known (and as we shall discuss later in this chapter), the
above congruences are very rarely satisfied.

Inkeri and Hyyrö (1961) showed that if x2−yq = 1, then q2 | x,
q3 | y + 1; moreover, they improved on estimates of Obláth (1941,
1954), showing that

x > 2q(q−2) > 103×109
and y > 4q−2 > 106×105

.

Finally, as was becoming believable, it was shown by Chao Ko in
two papers of 1960 and 1964 that X2 − Y n = 1 has only trivial
solutions.

The proof was subsequently very much simplified by Chein (1976).
It is based on elementary, though non-trivial, results. The first one
concerns the equation X2 − DY 2 = 1, with D > 0, D not a square.

In 1657, Fermat stated in a letter to Frénicle that this equa-
tion has infinitely many solutions in integers but, as usual, he gave
no proof. For a history of this important equation, consult Dick-

son’s, History of the Theory of Numbers, Vol. II (1920) and Heath’s
Diophantus of Alexandria (1885).

Euler contributed to the theory of this equation but he is also
responsible for ascribing it to Pell, when it should rightfully be
called Fermat’s equation—another Fermat’s equation!

Lagrange used the theory of continued fractions to prove that
the equation has indeed infinitely many solutions in integers. He
also applied his methods to prove his famous theorem that the real
roots of quadratic equations have periodic regular continued fraction
developments, and conversely.
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Here is a brief summary of some of the more relevant properties
of the solutions of X2 − DY 2 = 1 (D > 0, D not a square):

(a) Besides the trivial solutions x = ±1, y = 0, it has an infinity
of solutions; moreover, there exists a solution (x1, y1) with y1 > 0,
y1 minimum possible.

(b) For every integer n �= 0 let xn, yn be positive integers defined
by xn + yn

√
D = (x1 + y1

√
D)n; then x2

n − Dy2
n = 1.

(c) Conversely, if x, y are positive integers such that x2−Dy2 = 1,
then there exists an integer n �= 0 such that x = xn, y = yn.

(d) If D is square-free, then the solutions correspond to the units
x + y

√
D of Q(

√
D) having norm equal to 1. (If D ≡ 1 (mod 4), the

units x+y
√

D
2 with x ≡ y ≡ 1 (mod 2) having norm 1 correspond to

the solutions of the equation X2 − DY 2 = 4).
The unit x1 + y1

√
D is called the fundamental unit of Q(

√
D).

Størmer showed in 1897 (and more simply in 1908) the following
interesting lemma:

If (xn, yn) is a solution of X2 − DY 2 = 1, with n > 1, then there
exists some prime dividing yn but not dividing D.

Størmer also proved a similar result for the equation X2−DY 2 =
−1; this was a bit easier.

Based on Størmer’s result, Nagell showed in 1921, and again
in 1924, the following divisibility criterion:

If x2 − yq = 1 (q prime, q > 3), then 2 | y and q | x. (As we shall
see, this was later generalized by Cassels).

Chao Ko’s proof of the following result appeared in two install-
ments (1960, 1964) and has now been replaced by the elegant proof
by Chein (1976):

(3.9) The equation X2−Y q = 1 has no solution in non-zero integers.

Chein’s two-page proof appeared in the American Mathematical
Monthly .

4 Divisibility properties

The guiding idea for the propositions in this section is to assume
that there exist non-zero integers x, y such that xp − yq = 1 and to
derive divisibility conditions which must be satisfied by x, y, p, q.
These conditions should be so restrictive that they would preclude
the existence of solutions. For example, Gerono showed in 1870/71:
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(4.1) If q is a prime number, if qm − yn = 1 with m, n ≥ 2, then
q = 3, y = 2. Similarly, if p is a prime number, and if xm − pn = 1
with m, n ≥ 2, then p = 2, x = 3.

This fact was proved again and again, for example by Cata-

lan (1885), Carmichael (1909), Cassels (1953), and Rotkiewicz

(1960).
Obláth indicated in 1941 a slight extension concerning the types

of prime factors of x, y, assuming that xm − yn = 1 (with m, n ≥ 2).
See also Hampel (1960).

By far the most important result on divisibility conditions of hy-
pothetical solutions is due to Cassels (1960). It is very easy to
state, and at first sight it is hard to anticipate that it plays such an
important role in the study of Catalan’s equation.

(4.2) If p, q are odd primes, x, y ≥ 2, and xp − yq = 1, then p | y,
q | x.

The proof uses Euler’s Lemmas 1 and 2 and delicate estimates,
but it remains strictly elementary and no appeal is made to high-
powered theorems. In a short space we cannot give any intelligible
sketch of the proof.

An immediate corollary is the solution by Ma̧kowski (1962) of
problem (III) of the Introduction; this was also done independently
by Hyyrö (1963).

(4.3) Three consecutive integers cannot be proper powers.

Proof. Assuming the contrary, we have xl − yp = 1, yp − zq = 1,
where x, y, z are natural numbers and the exponents l, p, q may
be assumed primes without loss of generality. By Cassels’ theorem,
p | x, p | z, so p | xl−zq = 2. Thus xl−y2 = 1, which, by Lebesgue’s
result (3.3), is impossible. �

We now make an aside to apply Cassels’ theorem to divisi-
bility properties of the numbers of Fermat and Ferentinou-

Nicolacopoulou.
The nth Fermat number is Fn = 22n

+ 1 (n ≥ 0), thus F0 = 3,
F1 = 5, F2 = 17, F3 = 257, F4 = 65537, while F5 has about 10
digits, etc.

Fermat expressed the belief, and proposed as a problem (letter of
October 18, 1640) to prove that all Fermat numbers are primes, this
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being true for Fn when n ≤ 4: for F5 and larger Fermat numbers,
Fermat was unable to perform explicit calculations, due to a lack
of extended tables of primes.

However, Euler showed:
If p is a prime, and p | Fn, then p = 2n+2k+1 (for some integer k).
Thus, with this criterion, for n = 5 it was enough to test the

primes congruent to 1 modulo 128. In this way, Euler deduced in
1732 that

F5 = 641 × 6700417.

Thus, we see that Fermat was wrong! But this was not only an
accident. Indeed, up to now, all other Fermat numbers investigated
are composite—in fact, they are square-free.

There is an interesting connection discovered by Rotkiewicz

(1965) and Warren and Bray (1967) with the so-called Fermat
quotient with base 2:

qp(2) =
2p−1 − 1

p
.

Namely: if p | Fn, then p2 | Fn if and only if (2p−1−1)/p ≡ 0 (mod p),
that is, 2p−1 ≡ 1 (mod p2).

The latter congruence is very rare, as we have already mentioned.
For p < 4× 1012, we have 2p−1 �≡ 1 (mod p2) except when p = 1093,
3511.

Schinzel and Sierpiński conjectured in 1958 that there exist in-
finitely many square-free Fermat numbers. This is much weaker than
the conjecture of Eisenstein (1844) that there exist infinitely many
prime Fermat numbers. If Schinzel’s conjecture is true, since distinct
Fermat numbers are relatively prime, the existence of infinitely many
primes p such that 2p−1 �≡ 1 (mod p2) follows. And, in turn, by a
famous theorem of Wieferich (see my book, 1979), there would
exist infinitely many primes p such that the first case of Fermat’s
Last Theorem holds for the exponent p, that is:

“there do not exist integers x, y, z, not multiples of p, such
that xp + yp = zp”.

Even though Fermat’s Last Theorem has been proved by Wiles in
1994, the above connection with a special case of Fermat’s theorem
is still intriguing.
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Deep waters!
Now we introduce the numbers of Ferentinou-Nicolacopoulou

(1963). If a ≥ 2, n ≥ 0, let

Fa,n = aan
+ 1.

The following result is an easy corollary of Cassels’ theorem
(Ribenboim (1979b)):

(4.4) Fa,n is not a proper power.

Proof. If Fa,n is a proper power, we may write aan
+ 1 = mp

for some prime p. If q is a prime dividing a, let an = qa′, hence
mp − (aa′

)q = 1, and so q | m, which is impossible. �

In particular, Fn cannot be a proper power; this special case needs
only Lebesgue’s theorem.

Another consequence (Ribenboim (1979b)) is the following fact
which is a slight improvement over (4.1):

(4.5) If xp − yq = 1 with p, q > 3, then x, y have at least two odd
prime factors. We now focus on the sharpening of Cassels’ theorem
by Hyyrö and Inkeri

If p, q are primes and xp − yq = 1, from the previous results we
must have p, q > 3 and p | y, q | x. Then Euler’s Lemma 1 becomes:

x − 1 = pq−1aq

xp − 1
x − 1

= pup with p � u, y = pau,

y + 1 = qp−1bp

yq + 1
y + 1

= qvp with q � v, x = qbv.

Hyyrö showed in 1964:

(4.6) With the above notations:

a = qa0 − 1, b = pb0 + 1 (with a0 ≥ 1, b0 ≥ 1)
x ≡ 1 − pq−1 (mod q2), y ≡ −1 + qp−1 (mod p2);

thus q2 | x if and only if pq−1 ≡ (mod q2), and p2 | y if and only if
qp−1 ≡ 1 (mod p2).



194 7. Consecutive Powers

Thus, in particular, a ≥ q−1, b ≥ p+1. In view of later estimates
of x, y, Hyyrö showed also:

(4.7) If m > 3 is composite and xm − yq = 1 (where q is a prime,
q > 3), and if p is any prime dividing m, then pq−1 ≡ 1 (mod q2)
and also q2 | x.

The next result of Inkeri is quite interesting in that it establishes
a connection with the class number of imaginary quadratic fields. It
also uses an old result of Gauss on the cyclotomic polynomial.

In Disquisitiones Arithmeticae, article 357 (1801), Gauss showed:
If p is an odd prime, there exist polynomials F, G ∈ Z[X] such

that
4
Xp − 1
X − 1

= F (X)2 − (−1)
p−1
2 pG(X)2.

Incidentally, this proposition was used by Gauss in the determina-
tion of the sign of the Gauss sum:

τ =
p−1∑
j=1

(
j

p

)
ζj =



√

p when p ≡ 1 (mod 4),

i
√

p when p ≡ 3 (mod 4).

It took four years for Gauss to find the solution of this problem.
It was not until 1805 when suddenly, “like lightning the solution ap-
peared to him” (as he stated in a letter to his friend, the astronomer
Olbers).

If p is an odd prime, let H(−p) denote the class number of the
imaginary quadratic field Q(

√−p).
Gut showed in 1963 that H(−p) < p

4 and this inequality was used
by Inkeri. It basically reflects the fact that H(−p) does not grow
fast, as was shown before by Siegel (1936):

log H(−p) ∼ log
√

p.

Here is Inkeri’s result (1964):

(4.8) With the same notations, if xp − yq = 1, then:
(a) If p ≡ 3 (mod 4) and q � H(−p), then q2 | x, y ≡

−1 (mod q2p−1), pq−1 ≡ 1 (mod q2).
(b) If p ≡ q ≡ 3 (mod 4), p > q > 3 and q � H(−p), then q2 | x,

p2 | y, x ≡ 1 (mod p2q−1), y ≡ −1 (mod q2p−1), pq−1 ≡ 1 (mod q2),
and qp−1 ≡ 1 (mod p2).
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Inkeri used these divisibility conditions and congruences, to-
gether with Riesel’s tables (1964) for the residues of pq−1 modulo
q2, qp−1 modulo p2, to show, for example: among the 946 pairs of
primes (p, q) with p �= q, 5 ≤ p, q ≤ 199, there are 718 pairs for
which the equation Xp − Y q = 1 has only the trivial solution.

This work was continued in two papers of Inkeri in 1990 and 1991
(one co-authored by Aaltonen). Among the many criteria in these
papers, we single out the following:

(4.9) Let p, q be distinct odd primes and assume that there exist
natural numbers x, y such that xp − yq = 1. Then

(i) If q does not divide hp (the class number of the cyclotomic field
of pth roots of 1), then q2 | x and pq−1 ≡ 1 (mod q2).

(ii) If p does not divide hq (the class number of the cyclotomic
field of qth roots of 1), then p2 | y and qp−1 ≡ 1 (mod p2).

This criterion is appropriate for computation and has been used to
show that for many pairs of distinct odd primes (p, q) the equation
xp − yq = 1 has no solution in positive integers. For example, in this
way Inkeri was able to show that x5 − y7 = ±1 has no solution in
positive integers.

Another type of result, concerning solutions (x, y) of xm − yn = 1
for which |x − y| = 1, was obtained by Hampel in 1956. More gen-
erally, and with a very easy and elegant proof, Rotkiewicz showed
in the same year:

(4.10) If a ≥ 1 is an integer, if gcd(x, y) = 1, |x − y| = a and
xm − yn = an, then x = 3, y = 2, m = 2, n = 3, a = 1.

The proof is based on a theorem of Bang (1886) and Zsigmondy

(1892), see Birkhoff and Vandiver (1904):
If a > b ≥ 1, gcd(a, b) = 1, for every n > 1 there exists a prime p

such that p | an − bn, but p � am − bm for all m, 1 ≤ m < n (except
when a = 2, b = 1, n = 6, or n = 2, a − b = 2 and a + b is a prime
of 2).

5 Estimates

In this section, we shall indicate estimates for the size and number of
solutions of Catalan’s equation, assuming that non-trivial solutions
exist.
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First, given distinct integers a, b ≥ 2 we look for solutions in
natural numbers u, v of the equation aU − bV = 1.

Second, we consider fixed exponents m, n ≥ 2 and examine the
possible solutions of the equation Xm − Y n = 1.

Finally, we shall consider the solutions in natural numbers of the
exponential diophantine equation XU − Y V = 1.

A. The equation aU − bV = 1

LeVeque showed in 1952 the following result, which may also be
obtained as an easy consequence of Hampel’s result (see (4.9)):

(5.1) If a, b ≥ 2, then aU−bV = 1 has at most one solution in natural
numbers u, v, unless a = 3, b = 2 when there are two solutions
u = v = 1 and u = 2, v = 3.

A somewhat interesting corollary concerns the sums of successive
powers of integers:

S1(n) =
n∑

j=1

j =
n(n + 1)

2

S2(n) =
n∑

j=1

j2 =
n(n + 1)(2n + l)

6

S3(n) =
n∑

j=1

j3 =
n2(n + 1)2

4
, etc. . . .

More generally, Sk(n) =
∑n

j=1 jk is given by a polynomial expres-
sion of degree k + 1, with coefficients having denominator dividing
k + 1 and expressible in terms of the Bernoulli numbers—which, in-
cidentally, is irrelevant to the present purpose. As we saw above,
S3(n) = [S1(n)]2 for every n ≥ 1.

The corollary to LeVeque’s result is the following:

(5.2) If t ≥ 1 and u, v ≥ 2 are such that for every n ≥ 1: Sv(n) =
[S1(n)]u, then v = 3, t = 1, u = 2.

This holds just because the only solution in natural numbers of
2V + 1 = (2T − 1)U is t = 1, u = 2, v = 3.

Let us note here that as early as 1908, Thue had obtained the
following result:
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If E = {p1, . . . , pr}, where r ≥ 2 and each pi is a prime number,
and if S is the set of natural numbers all of whose prime factors are
in E, then for every k ≥ 2 there exist at most finitely many integers
z, z′ ∈ S such that z − z′ = k. In particular, if a, b ≥ 2, k ≥ 1 the
equation aU − bV = k has at most finitely many solutions in integers
u, v. This was obtained again by Pólya in 1918. In 1931, Pillai

indicated a quantitative form of this theorem, giving an upper bound
for the number of solutions in natural numbers of the inequalities 0 <
au − bv ≤ k (where log b

log a is irrational). Later, in 1936, Herschfeld

showed that 2U−3V = 1 has at most one solution for each sufficiently
large k; Pillai extended this result in 1936 for any bases a, b ≥ 2.

Cassels indicated in 1953 an algorithm to compute the solution
of aU − bV = 1, if one exists, giving in this way a new proof of
LeVeque’s result.

(5.3) Let a, b ≥ 2, and let A (respectively B) be the product of the
distinct odd primes dividing a (respectively b). If u, v ≥ 2 are such
that au − bv = 1, then:

(a) either a = 3, b = 2, u = 2, v = 3, or
(b) u, v are the smallest natural numbers such that au ≡

1 (mod B) and bv ≡ −1 (mod A).

Thus, we need only test these values u, v as possible solutions.

B. The equation Xm − Y n = 1

Our aim is to make statements about the number and size of solu-
tions of this equation. The proof that this equation has only finitely
many solutions may be achieved in the following ways:

(a) by showing that the existence of infinitely many solutions leads
to a contradiction;

(b) by determining explicitly an integer N ≥ 1 such that the
number of solutions is at most equal to N ;

(c) by determining explicitly some integer C ≥ 1 such that every
solution (x, y) must satisfy x ≤ C, y ≤ C. By trying all possible
natural numbers up to C, it is possible to identify all the solutions.

In case (a) there is no indication of how many, or how large the
solutions are.

In case (b), there is no indication of how large the solutions are;
thus, even if N − 1 solutions are already known, nothing may be
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inferred about whether any other solution exists, or how large it
may be.

Finally, case (c) is the most satisfactory. Yet, if the constant C
provided by the method of proof is much too large—as is often the
case—it is impossible to identify all the solutions.

Our first result is an easy consequence of a powerful and classical
theorem that goes back to Siegel (1929) and is based on ideas of
Thue about diophantine approximation.

It is convenient to use the following more explicit form of Siegel’s
theorem, indicated by Inkeri and Hyyrö (1964b) (see also a
relevant paper by LeVeque (1964)):

Let m, n ≥ 2 with max{m, n} ≥ 3. Let f(X) ∈ Z[X] have degree n
and assume that all its zeroes are simple. If a is a non-zero integer,
then the equation f(X) = aY m has at most finitely many solutions.

In particular:

(5.4) For every natural number k, the equation Xm − Y n = k has
at most finitely many solutions.

This result may also be proved as a consequence of the following
interesting theorem of Mahler (1953):

If a, b are non-zero integers, x, y ≥ 1, gcd(x, y) = 1, m ≥ 2, n ≥ 3,
then the greatest prime factor of the number axm − byn tends to
infinity, as max{x, y} tends to infinity.

In particular, if x, y are sufficiently large, then xm − yn cannot be
equal to k.

A more elementary proof of a special case of (5.3), due to Hyyrö

(1964), results from an application of a theorem of Davenport and
Roth (1955) on diophantine approximation. Without giving any
more indication of the method used, we state Hyyrö’s result.

(5.5) The number of solutions of Xm − Y n = 1 is at most
exp{631m2n2}.

This upper bound is quite large, especially in light of the conjecture
that there are no solutions!

Moreover, Hyyrö showed:

(5.6) If p, q are primes, x, y ≥ 2, and xp − yq = 1, then x, y > 1011.

So, the solutions cannot be too small. Moreover, if one of the
exponents is composite, then:
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(5.7) If xm − yn = 1 and m is composite, then x > 1084, while if n
is composite, then y > 1084.

And it is even worse (or better?) when m, n are both composite:

(5.8) If xm − yn = 1 and m, n are composite, then xm, yn > 10109
.

Hyyrö has also indicated an algorithm to find the solutions (if
any) of Xp − Y q = 1, where p, q are primes. It involves regular
continued fraction developments. If α is a positive real number, we
define successively the integers c0, c1, c2, . . ., and the positive real
numbers α1, α2, . . . by the relations

α = c0 +
1
α1

where c0 = [α], so α1 > 1,

α1 = c1 +
1
α2

where c1 = [α1], so α2 > 1,

α2 = c2 +
1
α3

where c2 = [α2], so α3 > 1,

etc. Thus

α = c0 +
1

c1 +
1

c2 +
1

c3 + · · ·
+ 1

cn
+···

and we write
α = [c0, c1, c2, . . . , cn, . . .].

The above fraction is called the regular continued fraction of α. We
define also

A0 = c0 A1 = c0c1 + 1
B0 = 1 B1 = c1,

and for 2 ≤ i ≤ n,

Ai = ciAi−1 + Ai−2,

Bi = ciBi−1 + Bi−2.
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In particular, B0 ≤ B1 < B2 < B3 < · · ·.
The fractions Ai/Bi are called the convergents of α, and Ai/Bi =

[c0, c1, . . . , ci] for every i ≥ 0
We recall some basic properties:
(a) for every i ≥ 0 we have gcd(Ai, Bi) = 1,
(b) Ai/Bi ≤ α if and only if i is even.
Lagrange showed in 1798:
(c) For every i ≥ 0,

1
Bi(Bi + Bi+1)

<

∣∣∣∣α − Ai

Bi

∣∣∣∣ <
1

B2
i

.

(d) If a, b are non-zero integers, b ≥ 1, gcd(a, b) = 1, and
∣∣α − a

b

∣∣ <
1

2b2
, then there exists i ≥ 0 such that a = Ai, b = Bi.
Hyyrö’s result is the following:

(5.9) Let p, q be distinct odd primes. If there exist integers x, y ≥ 2
such that xp−yq = 1, they may be found by the following algorithm.
Let

α =
q

p−1
p

p
q−1

q

;

consider its regular continued fraction development:

α = [c0, c1, c2, . . .].

Let Ai/Bi be the convergents. Then any solution is of the form

x = pq−1Aq
i + (−1)i, y = qp−1Bp

i − (−1)i,

where i ≥ 0 is any index such that:
(i) Ai > 1, Bi > 1,
(ii) Ai ≡ (−1)i+1 (mod q), Bi ≡ (−1)i (mod p),
(iii) Ai ≡ (−1)i qp−1−1

p (mod p), Bi ≡ (−1)i+1 pq−1−1
q (mod q),

(iv) ci+1 ≥ (−1)i+1Ar−2
i , ci+1 ≥ (−1)iBr−2

i , where r = min{p, q}.

This algorithm will not determine if one non-trivial solution exists.
But, if one exists, it will eventually find it.

In his paper, Hyyrö also obtained other results on Catalan’s equa-
tion as a consequence of his study of the exponential-diophantine
equation Xn − dUY n = ±1, where n ≥ 5, d ≥ 2 are given integers.

Having shown that this equation has at most one solution in
integers u, x, y, with 0 ≤ u < n, x ≥ 2, y ≥ 1, he could prove:
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(5.10) If p, q are odd primes, where m > 2, e ≥ q and pe divides m,
then Xm − Y q = ±1 have no solutions in integers x ≥ 2, y ≥ 1.

(5.11) If n ≥ 5, a ≥ 2 are integers, then the exponential-diophantine
equations aU − Y n = ±1 have at most finitely many solutions in
integers.

(5.12) If a ≥ 2, then the exponential-diophantine equations aU −
Y V = ±1 have at most (a + 1)ν solutions in integers, where ν is the
number of distinct prime factors of a.

C. The equation XU − Y V = 1

All the preceding is still not sufficient to conclude that the
exponential-diophantine equation with four unknowns XU −Y V = 1
has at most finitely many solutions. In fact, this is true and was
first shown by Tijdeman in 1976 using Baker’s estimate for linear
forms in logarithms.

Baker applied his estimates to give effective bounds for solu-
tions of various types of diophantine equations (see, for example, his
book, 1975): these results represented a definite improvement over
the previous qualitative statements obtained by Thue, Siegel, and
Roth.

(5.13) If m, n ≥ 3, x, y ≥ 1, and xm − yn = 1, then

max{x, y} < exp exp{(5n)10m10m}
and

max{x, y} < exp exp{(5m)10n10n}.

Tijdeman showed:

(5.14) There exists a number C > 0 which may be effectively com-
puted, such that if x, y, m, n are natural numbers, m, n ≥ 2, and
xm − yn = 1, then max{x, y, m, n} < C.

Tijdeman’s result may be viewed as “settling” the problem. In-
deed, with this theorem the problem is shown to be decidable. It is
now “only” a question of trying all the 4-tuples of natural numbers
less than C. Here “only” still means too much because, as we shall
indicate, the smallest value of C thus far obtained with the present
method is much too large.
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In 1996, Langevin computed explicitly that

C < exp exp exp exp 730.

In recent years there has been considerable computational activ-
ity to enlarge the set of pairs of prime exponents (p, q) for which
xp − yq = 1 is shown to be impossible when |x|, |y| > 1. These
computations appeal to refined criteria.

A leader in these efforts is Mignotte who has been publishing
an extensive series of papers. We may single out his latest (still un-
published) paper which gives the state of the art. First we describe
some of the newer criteria which are of two kinds.

On the one hand, there are more specific bounds for linear forms in
logarithms. These are difficult to obtain and are technically involved.
The reader may consult the papers by Bennett, Blass, Glass,

Meronk, and Steiner (1997) and by Laurent, Mignotte, and
Nesterenko (1995). These results are useful in finding upper
bounds for the exponents.

After Tijdeman’s Theorem, Langevin (1976) showed that if
xm − yn = 1 with m, n, x, y > 1, then max{m, n} < 10110.

Today it is known (O’Neil (1995)):

(5.15) If xp − yq = 1, with p, q primes, x, y > 1, then max{p, q} <
3.18 × 1017 and p or q is at most 2.60 × 1012.

On the other hand, lower bounds for the possible exponents have
been derived using criteria which are improvements of the ground-
breaking results of Inkeri already described in (4.8) and (4.9);
as stated in these references, if p ≡ 1 (mod 4) the latter criterion
required to ascertain whether q divides the class number hp of the
cyclotomic field Q(ζp). It should be noted that up to now, hp has
been computed only for p < 71. The class number is the product
of the factors hp = h−

p h+
p where h+

p is the class number of the real
subfield Q(ζp + ζ−1

p )—and this factor is the one that is so difficult
to compute.

Some of the computational work was alleviated with the following
criterion of Mignotte and Roy (1993).

(5.16) Let p − 1 = 2ds where s is an odd integer. Let K ′ be the
subfield of Q(ζp) having degree 2d, and let h′ be its class number. If
xp − yq = 1 with p, q prime, |x|, |y| > 1, and if p ≡ 1 (mod 4), then
q divides h′ or pq−1 ≡ 1 (mod q2).
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In 1994, Schwarz gave a criterion involving only the easier-to-
compute factor h−

p thereby implying a substantial extension of the
computations:

(5.17) With the preceding notations, either pq−1 ≡ 1 (mod q2) or q
divides the first factor h−

p of the class number of K ′.

In 1999, Bugeaud and Hanrot derived further necessary
requirements for the largest exponent:

(5.18) If p < q, with the above notations q divides the class
number hp of Q(ζp).

The most remarkable improvement has just been made by ailescu

(1999):

(5.19) With the previous notations, both pq−1 ≡ 1 (mod q2) and
qp−1 ≡ 1 (mod p2).

The amount of calculations has been drastically reduced. It should
be pointed out that the smallest pairs of primes satisfying the above
two congruences are (p, q) = (83, 4871) and (911, 318017). These
pairs have been excluded by other considerations.

WIth these criteria, Mignotte and Roy (1999) have shown:

(5.20) If xp − yq = 1 with p, q primes, x, y > 1, then p and q are
greater than 107.

Another interesting fact has just been shown by Mignotte

(2000):

(5.21) If xm − yn = ±1, with 2 ≤ m < n, x, y > 1, then m is a
prime number and n admits at most two non-trivial factors.

All this having been siad, it is still true that the amount of calcu-
lation needed remains . . . (Is there a word to dwarf “astronomical”?
Invent one). . . . “Catalanic!”

In conclusion, up to now it is still not known whether 8 and 9 are
the only consecutive powers.
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6 Final comments and applications

A simple corollary of the preceding result (5.3) is the following: Let
m, n ≥ 2 be distinct integers, let z1 < z2 < z3 < · · · be the sequence
of natural numbers which are either an mth power or an nth power
of a natural number. Then limi→∞(zi+1 − zi) = ∞.

For n = 2 the above result is due to Landau and Ostrowski

(1920) and for arbitrary m, n it was explicitly stated by Inkeri and
Hyyrö in 1964.

The main conjecture referring to powers, which may be attributed
to Pillai (1936) or Landau, is the following:

If k ≥ 2, there exist at most finitely many quadruples of natural
numbers x, y, m, n, with m ≥ 2, n ≥ 2, such that xm − yn = k.

This conjecture may be equivalently stated as follows:
If z1 < z2 < z3 < · · · is the sequence of powers of natural numbers,

then limi→∞(zi+1 − zi) = ∞.
Now we consider the sequence of powers of given distinct numbers

a, b ≥ 2 or, more generally, the sequence S of natural numbers all of
whose prime factors are in E = {p1, . . . , pr}, r ≥ 2, each pi a prime
number. We write

S : z1 < z2 < z3 < · · · ,

so S is the sequence (d) of the Introduction.
In 1897, Størmer showed that

lim inf
i→∞

(zi+1 − zi) ≥ 2,

in other words, the equation X − Y = 1 has only finitely many
solutions for x, y ∈ S.

Størmer has indicated a constructive method to find all the
solutions; see also the paper by Lehmer (1964). Thue’s result of
1918, indicated after (5.1), which is however not constructive, is the
following:

lim
i→∞

(zi+1 − zi) = ∞.

In 1965, Erdös proved that for every ε > 0 there exists an i0 such
that if i ≥ i0, then

zi+1 − zi

zi
>

1
zε
i

.

In 1973 and 1974, Tijdeman showed that this result is, in a sense,
the best possible. Indeed, there exist constants C, C ′, which may be
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effectively computed and depend only on the sequence S, and there
exists an i0 such that if i ≥ i0, then

1
(log zi)C′ ≥

zi+1 − zi

zi
≥ 1

(log zi)C
.

Other results along the same lines, representing the present state of
knowledge, are the following:

Let E be the set of primes less than N , and S the sequence of
numbers all or whose prime factors are less than N .

Let τ > 0. Then there exists an effectively computable constant C,
depending only on N and τ , such that if m ≥ 2, n ≥ 2, x ≥ 2, y ≥ 2,
if gcd(axm, k) ≤ τ , if |a|, |b|, |k| ∈ S, and if

axm − byn = k,

then max{|a|, |b|, |k|, m, n, x, y} < C.
Similarly:
Let τ > 0, m ≥ 2. Then there exists an effectively computable

constant C, depending only on N , τ and m, such that if n ≥ 2,
x ≥ 2, y ≥ 2, mn ≥ 5, if gcd(axm, k) ≤ τ , if |a|, |b|, |k| ∈ S and
axm − byn = k, then max{|a|, |b|, |k|, n, x, y} < C.

For more results along this line, see the important monograph of
Shorey and Tijdeman (1986).
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Ann. Polon. Math., 3:7–8.
1958 A. Schinzel and W. Sierpiński. Sur certaines hypothèses
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1093

1093! If you are wondering what this paper is all about, I hasten
to say that it is not about the quality of wines from the year 1093.
Indeed, no records exist for such a remote time. It was not until 1855
that a select group of Bordeaux wine authorities ranked the finest
vineyards in their region, distinguishing among others the outstand-
ing Châteaux Lafitte, Margaux, Latour, and Haut-Brion as Premiers
Crus in Médoc, and Chateau Yquem in Sauternes as Premier Grand
Crus. Not to mention all the marvelous wines of Bourgogne . . . (see
Fadiman (1981)). This paper is not about wines, however.

In fact, the idea for this lecture came to me after a discussion with
F. Le Lionnais, in Paris. He is a science writer, now in his eighties,
with an acute curiosity. Just after the War, in 1946, he edited a book
Les Grands Courants de la Pensée Mathématique, containing contri-
butions by eminent mathematicians like André Weil and several
other members of the Bourbaki group. The article “L’Avenir des
Mathématiques” by Weil is worth reading, given the perspective
of the more than fifty years that have elapsed. This book has been
translated into English and it is readily available. I became aware
of it shortly after its appearance and was always eager to meet Le

Lionnais.
So, it was with great pleasure that in 1976 I was introduced to him,

at a seminar on the history of mathematics. During the conversation
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I learned that he was preparing a book on distinguished or important
numbers like 2, 7, π, e, etc. . . . He asked me if I knew of any numbers
with interesting properties that could be included in his book.∗ After
searching, I decided on “1093” about which he had as yet heard
nothing.

My intention is to tell you why I consider 1093 an interesting
number. (Later I was glad to see that Le Lionnais included 1093 in
his book on remarkable numbers.) Of course, one could say that every
natural number is remarkable. If not, there is a smallest number N
which is not remarkable—and having this property N is certainly
remarkable . . . .

Well . . . 1093 is the smallest prime p satisfying the congruence

2p−1 ≡ 1 (mod p2). (1)

Thus,
21092 ≡ 1 (mod 10932).

This was discovered by Meissner (1913) by actually doing the
calculation. According to Fermat’s Little Theorem,

2p−1 ≡ 1 (mod p), (2)

but in general there is no reason to expect the stronger congru-
ence (1).

In Volume III of Landau (1927), you find gives the following proof
of (1) for p = 1093:

37 = 2187 = 2p + 1,

so squaring
314 ≡ 4p + 1 (mod p2). (3)

On the other hand,

214 = 16384 = 15p − 11, so
228 = −330p + 121 (mod p2),

hence
32 × 228 ≡ −1876p − 4 (mod p2)

∗In the meantime, this book has been published: F. Le Lionnais Les Nombres
Remarquables, Hermann Editeurs, Paris, 1983.
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and dividing by 4,

32 × 226 ≡ −469p − 1 (mod p2).

Raising now to the 7th power:

314 × 2182 ≡ −4p − 1 (mod p2)

and taking (3) into account,

2182 ≡ −1 (mod p2).

Finally, raising to the 6th power,

21092 ≡ 1 (mod p2).

Of course, since the congruence (1) does not hold in general, any
proof which is valid for p = 1093 has to be ad-hoc.

Beeger (1922) found that 3511 satisfies the congruence (1). Imag-
ine, he did his calculation in 1921, before the age of computers.
What tenacity! Even more so, since it was not known if any other
example p > 1093 would exist.

The search was continued up to 6 × 109 by D. H. Lehmer, then
by W. Keller, D. Clark, and lately by R. E. Crandall, K.

Dilcher, and C. Pomerance up to 4 × 1012 (see Crandall,

Dilcher, and Pomerance (1997)). No other prime satisfying the
congruence (1) was found.

All this is fine, but why is anyone interested in the congruence (1)?
It was Abel, apparently, who asked in the third volume of Crelle’s

Journal (1828) whether it is possible to have

ap−1 ≡ 1 (mod pm) (4)

with m ≥ 2 and p a prime not dividing a.
Jacobi, who was extremely proficient in numerical computations,

gave various examples of (4):

310 ≡ 1 (mod 112),
74 ≡ 1 (mod 52),

316 ≡ 1 (mod 72),
and, with m = 3,

196 ≡ 1 (mod 73).
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But the problem is not to find examples, but to answer the
question:

Are there infinitely many primes p such that 2p−1 ≡ 1 (mod p2)?
To study this question I rephrase it in terms of the Fermat

quotient. If a ≥ 2, and p is a prime not dividing a, then

qp(a) =
ap−1 − 1

p
(5)

is an integer (by Fermat’s Little Theorem) called the Fermat quo-
tient , with base a and exponent p. Thus, qp(a) ≡ 0 (mod p) if and
only if ap−1 ≡ 1 (mod p2).

So, this leads to the residue modulo p of qp(a) and one is imme-
diately struck by the many interesting results linking the Fermat
quotient to various interesting arithmetical quantities. I want to
illustrate this with some examples.

The residue modulo p of qp(a) behaves like a logarithm. This fact
was noted by Eisenstein in 1850:

qp(ab) ≡ qp(a) + qp(b) (mod p). (6)

A. Determination of the residue of qp(a)

The first recorded result is due to Sylvester (1861a), who proved
the nice congruence:

qp(2) ≡ 1
2

(
1 +

1
2

+
1
3

+ · · · + 1
p−1
2

)

≡ 1 +
1
3

+ · · · + 1
p − 1

(mod p). (7)

And more generally, for any base a:

qp(a) =
p−1∑
j=1

aj

j
(mod p) (8)

where 0 ≤ aj ≤ p − 1 and paj + j ≡ 0 (mod a).
In 1910, Mirimanoff showed: If p = 2r ± 1 is a prime, then

qp(2) ≡ ∓1/r �≡ 0 (mod p).
More recently, Johnson (1977) obtained a practical means for

determining the Fermat quotient. If r is the smallest integer such
that ar ≡ ±1 (mod p), letting ar ≡ ±1 + tp it follows that

qp(a) ≡ ∓ t

r
(mod p). (9)
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B. Identities and congruences for the Fermat
quotient

The first paper of substance on Fermat quotients is Lerch (1905),
and today it is almost forgotten. I am pleased to be able to bring his
nice results to your attention.

First he showed

p−1∑
j=1

qp(j) ≡ W (p) (mod p) (10)

where W (p) denotes the Wilson quotient. It is defined in a manner
similar to the one used for the Fermat quotient. Namely, Wilson’s
theorem says that

(p − 1)! ≡ −1 (mod p), (11)

hence the quotient

W (p) =
(p − 1)! + 1

p
(12)

is an integer, called the Wilson quotient of p. Before I return to the
Fermat quotients, let me just say that the problem of determining the
residue of W (p) modulo p is just as interesting as the corresponding
problem for the Fermat quotient. In particular, if W (p) ≡ 0 (mod p),
then p is called a Wilson prime. For example, p = 5, 13 are easily seen
to be Wilson primes. The search for new Wilson primes uncovered
only one more (Goldberg): p = 563, up to 4 × 1012 (Crandall,

Dilcher, and Pomerance (1997) ). The question whether there
are infinitely many Wilson primes appears to be very difficult. For
example, Vandiver said in 1955:

This question seems to be of such a character that if I should
come to life any time after my death and some mathematician
were to tell me it had been definitely settled, I think I would
immediately drop dead again.

Let me return to the determination of the residue of Wilson’s
quotient.

Lerch showed that

W (p) = B2(p−1) − Bp−1 (mod p). (13)
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Here Bn denotes the nth Bernoulli number, these being generated
by the function

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
. (14)

Thus, B0 = 1, B1 = −1/2, and Bn = 0 for every odd n > 1. The
Bernoulli numbers satisfy the recurrence relation:
(

n+1
1

)
Bn +

(
n+1

2

)
Bn−1 +

(
n+1

3

)
Bn−2 + · · ·+

(
n+1

n

)
B1 +1 = 0. (15)

This may be written symbolically as

(B + 1)n+1 − Bn+1 = 0. (16)

(Treat B as an indeterminate and, after computing the polynomial
in the left-hand side, replace Bk by Bk.)

An important property of the Bernoulli numbers was discovered by
Euler and connects these numbers to the Riemann zeta function ζ:

B2n = (−1)n−1 2(2n)!
(2π)2n

ζ(2n) (for n ≥ 1) (17)

where

ζ(s) =
∞∑

j=1

1
js

, s complex, Re(s) > 1. (18)

Using the functional equation of Riemann zeta functions, it follows
that

ζ(1 − n) = −Bn

n
(for n ≥ 2) (19)

and also ζ(0) = −1
2 .

Returning to Lerch’s formula (10), the point is the following: Since
the Fermat quotient is somehow hard to compute, it is more natural
to relate their sum, over all the residue classes, to quantities defined
by p.

This has also been done for weighted sums. In a letter of 1909 to
Hensel, Friedmann and Tamarkine proved: If 1 ≤ n ≤ p − 1,
then

p−1∑
j=1

jnqp(j) ≡ (−1)[n/2] Bn

n
(mod p). (20)
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From (19), it follows that if 2 ≤ n ≤ p − 1, then

p−1∑
j=1

jnqp(j) ≡ (−1)[(n−2)/2]ζ(1 − n) (mod p) (21)

and also
p−1∑
j=1

jqp(j) ≡ −1
2

= ζ(0) (mod p).

Lerch also connected the Fermat quotient with the Legendre
quotient

λp(j) =
j

p−1
2 −

(
j
p

)
p

. (22)

Recall that if p � j and
(

j
p

)
is the Legendre symbol, then

(
j

p

)
≡ j

p−1
2 (mod p), (23)

so λp(j) is an integer.
Lerch proved

qp(j) ≡ 2
(

j

p

)
λp(j) (mod p). (24)

Another nice relation involves the distribution of quadratic
residues, and the class number of quadratic fields.

Let H(a) denote the class number of the quadratic field Q(
√

a)
(where a is a square-free integral). Dirichlet proved the famous
formula, when p ≡ 3 (mod 4), p �= 3:

H(−p) = −1
p

p−1∑
j=1

(
j

p

)
j =

ρ − ρ′

2 −
(

2
p

) (25)

where

ρ = number of quadratic residues between 0 and p/2,
ρ′ = number of non-quadratic residues between 0 and p/2.

It is known that ρ > ρ′ when p ≡ 3 (mod 4). This is a difficult
theorem. The only proofs now known require analysis, in spite of its
purely arithmetical nature.
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Friedmann and Tamarkine noted that

ρ − ρ′ ≡
[
2 −

(
2
p

)]
2B p+1

2
(mod p) (26)

which amounts to

H(−p) ≡ 2B p+1
2

(mod p). (27)

Lerch showed

∑(
j

p

)
jqp(j) ≡




0 when p ≡ 1 (mod 4),

H(−p) when p ≡ 3 (mod 4).
(28)

Let me now turn to a theorem which has sparked interest in Fermat
quotients and opened up new areas of research.

The following results have historical importance. They have not
completely lost their interest with the proof of Fermat’s Last
Theorem by Wiles, since the methods are applicable to similar
diophantine equations, for example, to Catalan’s equation

Xm − Y n = 1. (29)

In 1909, Wieferich proved: Suppose that there exist integers x,
y, z, not multiples of the odd prime p such that xp + yp + zp = 0
(that is, the first case of Fermat’s Last Theorem fails for p). Then

2p−1 ≡ 1 (mod p2).

Hence, by what I said in the beginning of this chapter, the first
case of Fermat’s Last Theorem (= FLT ) is true for every prime
exponent p < 4 × 1012, except, possibly, for p = 1093, and 3511.

The proof of Wieferich was very difficult and technical. It was
based on the following deep result of Kummer: If the first case of
FLT fails for the exponent p, with xp + yp + zp = 0, and p not
dividing xyz, then[

d2s log(x + evy)
dv2s

]
× B2s ≡ 0 (mod p) (30)

for 2s = 2, 4, . . . , p − 3 (and similar congruences for the pairs (y, x),
(y, z), (z, y), (x, z), (z, x)).
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Moreover, Wieferich used complicated congruences that are sat-
isfied by the Bernoulli numbers. In 1912, Furtwängler found
another proof of Wieferich’s theorem, using class field theory—a
further confirmation of the power of class field theory. The theo-
rem of Wieferich was the first of a series of criteria involving Fermat
quotients.

Mirimanoff showed in 1910:
If the first case of FLT fails for the exponent p, then qp(3) ≡

0 (mod p).
Since p = 1093, 3511 do not satisfy the above congruence, then this

establishes the first case for the range of primes less than 4 × 1012.
This work was continued by Frobenius, Vandiver, Pollaczek,

Rosser, and, more recently, by Granville and Monagan. With
this method, it was proved that if the first case fails for p, then

qp(�) ≡ 0 (mod p) for � prime, � ≤ 89. (31)

A corollary worth mentioning is the following one, due to Spunar:
Let p be an odd prime satisfying the following property (P89):

There exists k not a multiple of p such that kp = a ± b where
all prime factors of a, b are at most equal to 89.

Then the first case of FLT holds for the exponent p.
The proof is actually so simple that I will give it now.
If the first case fails for the exponent p, then for every prime �,

� ≤ 89, it follows that �p−1 ≡ 1 (mod p2), by formula (31). So ap−1 ≡
1 (mod p2) and bp−1 ≡ 1 (mod p2). Hence, ap ≡ a (mod p2) and
bp ≡ b (mod p2). But a = ∓b + kp, so ap ≡ ∓bp (mod p2). From
kp = a ± b ≡ ap ± bp ≡ 0 (mod p2) it follows that p divides k,
contrary to the hypothesis.

In this connection, there is the following open problem:
Are there infinitely many primes p with property (P89)?
Puccioni showed in 1968: If the above set is finite, then for every

prime �, � ≤ 89, � �≡ 1 (mod 8), the set M� −{p | �p−1 ≡ 1 (mod p2)}
is infinite.

Unfortunately, this theorem may mean nothing since both sets in
question, sparse as they seem to be, may turn out to be infinite.

A corollary of Spunar’s result, already given by Mirimanoff, is
the following one:

The first case of FLT holds for the prime exponents p of the form
p = 2m ± 1.
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It is an easy exercise to show:
If 2m + 1 is a prime number, then m = 2n (n ≥ 0). The numbers

Fn = 22n
+ 1

were first considered by Fermat, and are now called Fermat
numbers.

Similarly, if 2m −1 is a prime number, then m = p is a prime. The
numbers

Mp = 2p − 1 (p prime)

are called the Mersenne numbers.
Fermat believed that all Fermat numbers are primes. Indeed,

F1 = 5, F2 = 17, F2 = 257, F4 = 65537.

F5 is much larger, with about 10 digits.
Euler proved in 1747 the following criterion: If p divides Fn (n ≥

2), then p = 2n+1k + 1 (with k ≥ 1).
He applied this criterion to F5 and found that 641 divides F5, so

therefore F5 is not a prime number.
This can also be seen in the following way:

641 = 24 + 54 = 5 × 27 + 1,

232 = 24 × 228 = (641 − 54) × 228

= 641 × 228 − (5 × 27)4

= 641 × 228 − (641 − 1)4 ≡ −1 (mod 641).

So, 641 divides 232 − 1 = F5.
The study of the Fermat numbers and Mersenne numbers led to

the discovery of the first primality tests for large numbers.
The first criterion was devised by Lucas in the form of a converse

of Fermat’s Little Theorem:
Let n ≥ 3 be odd and assume that there exists a, 1 < a < n, such

that
ap−1 ≡ 1 (mod n),

and if q is any prime dividing n − 1, then

a
n−1

q �≡ −1 (mod n).

Then n is a prime.
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Based on such criterion Pepin showed:
The Fermat number Fn is a prime if and only if

3
Fn−1

2 ≡ −1 (mod Fn).

There has been an extensive search for Fermat primes. Accord-
ing to my information, which may already be outdated, the largest
Fermat number tested is F303088 (composite). It usually takes long
calculations to decide if a Fermat number is composite.

Contrary to Fermat’s belief, the only known Fermat primes are
the ones he already knew!

The following conjectures are weaker than Fermat’s original
assertion:

(a) Eisenstein (1844): there are infinitely many Fermat primes;
(b) Schinzel (1963): there exist infinitely many Fermat numbers

which are square-free (i.e., products of distinct primes).
For the Mersenne numbers, Euler gave the first test for factors:

If p is a prime, p > 3, p ≡ 3 (mod 4), then 2p + 1 divides Mp if and
only if 2p + 1 is a prime.

In this way, Euler concluded that 23 divides M11; . . .; 503 divides
M251, etc. . . .

The problem becomes the determination of primes p such that
2p+1 is again a prime. Such primes are justly called Sophie Germain
primes. They were first considered around 1820 when she proved the
following beautiful theorem, which was of a totally new nature:

If p and 2p + 1 are primes, then the first case of FLT is true for
the exponent p.

An open question is: Are there infinitely many Sophie Germain
primes?

Compare this question with the following one (the twin prime
problem):

Are there infinitely many primes p such that p+2 is also a prime?
In both cases there are linear polynomials 2X + 1, X + 2 respec-

tively, and the question is whether they infinitely often assume prime
values at primes.

Let me now describe a very effective primality test for Fermat and
Mersenne numbers, devised by Lucas in 1878. It uses second order
linear recurrences, more specifically, Fibonacci and Lucas numbers.

In the thirteenth century, Fibonacci considered the sequence of
numbers F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8,
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. . . , and, more generally,

Fn = Fn−1 + Fn−2.

(I hope no confusion with the Fermat numbers will arise.)
The Fibonacci numbers have a wealth of arithmetic properties.

Books have been written about them, and a quarterly journal has
these numbers as its main topic.

A companion sequence is the one of Lucas numbers: L0 = 2, L1 =
1, L2 = 3, L3 = 4, L4 = 7, L5 = 11, . . . , and Ln = Ln−1 + Ln−2, for
n ≥ 2.

More generally, given the numbers U0, U1, and α, β ∈ Q, let

Un = αUn−1 − βUn−2. (32)

The equation X2 − αX + β = 0 has roots

a =
α +

√
α2 − 4β

2
, b =

α −
√

α2 − 4β

2
,

so
α = a + b, β = ab

and
Un = (a + b)Un−1 − abUn−2. (33)

For Fibonacci and Lucas numbers, α = 1, β = −1, so

a =
1 +

√
5

2
(the “Golden ratio”), b =

1 −
√

5
2

.

Binet’s formula gives

Un =
an − bn

a − b
. (34)

The sequence companion is

Vn = an + bn. (35)

Putting

Wn =
V2n−1

Q2n−2 (for n ≥ 2), (36)

so,

W1 =
α2 − 2β

β
, Wn+1 = W 2

n − 2. (37)
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With appropriate choices of α, β, Lucas obtained the useful
“testing sequence”:

If p ≡ 1 (mod 4), let W2 = −4, Wn+1 = W 2
n − 2, so the sequence

is −4, 14, 194, . . . .
His criterion is:
Mp = 2p − 1 is a prime if and only if Mp divides Wp.
If p ≡ 3 (mod 4), p > 3, let W2 = −3, Wn+1 = W 2

n − 2, so the
sequence is −3, 7, 47, . . . .

His criterion in this case is again: Mp = 2p − 1 is a prime if and
only if Mp divides Wp.

This is the method which is at present used in testing the primality
of Mersenne numbers.

In 1944, Mersenne knew that for p = 2, 3, 5, 7, 13, 17, 19, 31, Mp

is a Mersenne prime.
In 1878, Lucas showed that if p = 61, 89, 107, 127, then Mp is also

a Mersenne prime.
With the advent of computers, we now know 37 Mersenne primes,

the largest ones being M3021377 with 909526 digits, and M2976221

which has 895932 digits.
Schinzel conjectured the following:
There exist infinitely many square-free Mersenne numbers. To

date, no Fermat or Mersenne number with a square factor has ever
been found.

In 1965, Rotkiewicz took up the above conjecture and showed:
If Schinzel’s conjecture on Mersenne numbers is true, there exist

infinitely many primes p such that

2p−1 �≡ 1 (mod p2).

By the way, Rotkiewicz made use of the following interesting,
(and many times rediscovered) theorem of Zsigmondy (1892):

If n �= 6, n ≥ 3, a ≥ 2, then there exists a prime p such that the
order of a modulo p is equal to n. Equivalently, there exists a prime p
such that p divides an − 1, but p does not divide am − 1 for m < n.

This theorem was discovered by Zsigmondy (earlier by Bang

for a = 2), Birkhoff and Vandiver, Dickson, Carmichael,
Kanold, Artin, Hering, Lüneburg, Pomerance, and . . . who
else? I would like to know.

From the Rotkiewicz theorem it follows that there is rather surpris-
ing, and I dare say, deep, connection between such dissimilar topics
as Fermat’s Last Theorem, the congruence 2p−1 ≡ 1 (mod p2), and
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the factorization of Mersenne numbers. But, I have been digressing
from the main question.

There is a heuristic reason to believe that there exist infinitely
many primes p such that 2p−1 ≡ 1 (mod p2). The argument is as
follows. Since nothing to the contrary is known, it may be assumed
(heuristically) that for each prime p the probability that 2p−1−1

p ≡
0 (mod p) is just 1

p since there are p residue classes modulo p. If x
is any large positive real number, then the number of primes p ≤ x
with 2p−1 ≡ 1 (mod p2) should be

∑
p≤x

1
p

= log log x + error term.

So there would exist infinitely many p satisfying the above congru-
ence. However, this argument cannot be made rigorous. From the
calculations, apart from two exceptions, 2p−1 �≡ 1 (mod p2), so it
should be expected that there are infinitely many primes p satisfy-
ing 2p−1 �≡ 1 (mod p2). This has not yet been proved, but it follows
from the important and interesting (ABC) conjecture of Masser

and Oesterlé:
For each ε > 0 there exists a real number K(ε) > 0 such that

for any positive integers A, B, and C with gcd(A, B, C) = 1, and
A + B = C, then

C ≤ K(ε)r1+ε

where r (the radical of ABC) is the product of the distinct prime
factors of ABC.

For example, if ε = 1
2 , and if A = 2m, B = 3n (with m and n

large), and C = Am +Bn, then from C < K(1
2)r3/2 and r = 6

∏
p|C p

it follows that C must have large radical.
Silverman (1988) proved:
If the (ABC) conjecture is assumed true, then there exists infinitely

many primes p such that 2p−1 �≡ 1 (mod p2).
It would be of the greatest importance to prove this conjecture.
The number 1093 is indeed interesting after all . . . .
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theilbar sein?”. J. reine u. angew. Math., 3:301–303.

1844 F. G. Eisenstein. Aufgaben. J. reine u. angew. Math.,
27:87. (Reprinted in Mathematische Werke, Vol. 1. No. 3,
Chelsea, New York. 1975).

1850 F. G. Eisenstein. Eine neue Gattung zahlentheoretischer
Funktionen, welche von zwei Elementen abhangen und
durch gewisse lineare Funktionalgleichungen definiert wer-
den. ber. über verhandl. der königl. Preuß. Akad. d. Wiss.
zu Berlin, 36–42. Reprinted in Mathematische Werke, Vol.
2. 705–712, Chelsea, New York, 1975.

1861a J. J. Sylvester. Note relative aux communications faites
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de diviseurs carrés et sur les nombres naturels n tels que
n2 | 2n − 2. Matematicky Vesnik, Beograd, (2), 17:78–80.

1968 S. Puccioni. Un teorema per una resoluzione parziale del
famoso teorema di Fermat. Archimede, 20:219–220.

1969 R. K. Guy. The primes 1093 and 3511. Math. Student, 35:
204–206 (1969).

1977 W. Johnson. On the non-vanishing of Fermat quotients
(mod p). J. reine u. angew. Math., 292:196–200.

1981 C. Fadiman and S. Aaron. The Joys of Wine. Galahad
Books, New York.

1988 J. H. Silverman. Wieferich’s criterion and the abc-conjec-
ture. J. Nb. Th., 30:226–237.

1996 P. Ribenboim. The New Book of Prime Number Records.
Springer-Verlag, New York.

1997 R. E. Crandall, K. Dilcher, and C. Pomerance. A search for
Wieferich and Wilson primes. Math. of Comp., 66:433–449.



9

Powerless Facing Powers

I gave this lecture many times in many countries. Can you guess who
came to listen to it?

Political scientists! Third-world countries facing the big powers?
And powerless Paulo would tell how to resist or to become one of
them . . . .

No, I am just a mathematician not knowing how to solve many
problems involving powers of integers or the so-called powerful
numbers.

My intention is to present several problems of this kind, in a few
cases, to advance conjectures of what should be true.

The following notations will be used. If S is a finite set, #S denotes
the number of elements of S. If S is a set of positive integers, and
x ≥ 1, let S(x) = {s ∈ S | s ≤ x}.

The integers of the form an, where |a| > 1, n > 1, are said to be
powers. Thus, 1 is not a power.

1 Powerful numbers

The first paper about powerful numbers was by Erdös (1935); how-
ever, the name “powerful number” was coined later by Golomb

(1970).
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Let k ≥ 2. The natural number n ≥ 1 is said to be a k-
powerful number when the following property is satisfied: if a prime p
divides n, then pk also divides n.

In other words, the k-powerful numbers are exactly the inte-
gers which may be written in the form ak

0a
k+1
1 · · · a2k−1

k−1 (where a0,
. . . , ak−1 are positive integers that may not be coprime). A 2-
powerful number is simply called a powerful number. In particular,
powerful numbers are those of the form a2

0a
3
1, with a0, a1 ≥ 1. We

note that 1 is a powerful number. I shall denote by Wk the set of
k-powerful numbers.

The main problems about powerful numbers are of the following
kinds:

1. Distribution of powerful numbers.
2. Additive problems.
3. Difference problems.

A. Distribution of powerful numbers

The aim is to estimate the number of elements in the set

Wk(x) = {n ∈ Wk | 1 ≤ n ≤ x}, (1)

where x ≥ 1, k ≥ 2.
Already in 1935, Erdös and Szekeres gave the first result

about W2(x):

#W2(x) =
ζ(3

2)
ζ(3)

x1/2 + O(x1/3) as x → ∞, (2)

where ζ(s) is the Riemann zeta function; see also Bateman (1954)
and Golomb (1970).

To describe the more recent results, I introduce the zeta function
associated to the sequence of k-powerful numbers. Let

jk(n) =




1 if n is k-powerful,

0 otherwise.

The series
∑∞

n=1
jk(n)

ns is convergent for Re(s) > 1
k and defines a

function Fk(s). This function admits the following Euler product
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representation

Fk(s) =
∏
p


1 +

1
pks

1 − 1
ps


 =

∏
p

(
1 +

1
p(k−1)s(ps − 1)

)
, (3)

which is valid for Re(s) > 1
k .

With well-known methods, Ivić and Shiu showed in 1982:

(1.1) #Wk(x) = γ0,kx
1
k + γ1,kx

1
k+1 + · · · + γk−1,kx

1
2k−1 + ∆k(x),

where γi,k is the residue at 1
k+i of Fk(s)

s .
Explicitly,

γi,k = Ck+i,k

Φk( 1
k+i)

ζ(2k+2
k+i )

, (4)

where

Ck+i,k =
2k−1∏
j=k

j �=k+i

ζ

(
j

k + i

)
, (5)

Φ2(s) = 1, and if k > 2, then Φk(s) has a Dirichlet series with
abscissa of absolute convergence 1

2k+3 , and ∆k(x) is the error term.

Erdös and Szekeres had already considered this error term and
showed that

∆k(x) = O(x
1

k+1 ) as x → ∞. (6)

Better estimates of the error have since been obtained. Let

ρk = inf{ρ > 0 | ∆k(x) = O(xρ)}.

Bateman and Grosswald showed in 1958 that ρ2 ≤ 1
6 and ρ3 ≤ 7

46 .
Sharper results are due to Ivić and Shiu:

ρ2 ≤ 0.128 <
1
6
, ρ3 ≤ 0.128 <

7
46

, ρ4 ≤ 0.1189,

ρ5 ≤ 1
10

, ρ6 ≤ 1
12

, ρ7 ≤ 1
14

, etc.

I refer also to the work of Krätzel (1972) on this matter.
It is conjectured that, for every k ≥ 3,

∆k(x) = O(x
1
2k ) for x → ∞. (7)
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More specifically, taking k = 2:

#W2(x) =
ζ(3

2)
ζ(3)

x
1
2 +

ζ(2
3)

ζ(2)
x

1
3 + ∆2(x), (8)

with ∆2(x) = O(x
1
6 ), as x → ∞.

B. Additive problems

If h ≥ 2, k ≥ 2, I shall use the following notation:

∑
hWk = {

h∑
i=1

ni | each ni ∈ Wk ∪ {0}},
∑

hWk(x) = {n ∈
∑

hWk | n ≤ x} (for x ≥ 1).

The additive problems concern the comparison of the sets
∑

hWk

with the set of natural numbers, the distribution of the sets
∑

hWk,
and similar questions.

The distribution of
∑

2W2 was treated by Erdös in 1975:

(1.2)

#
∑

2W2(x) = o

(
x

(log x)α

)
(as x → ∞), where 0 < α < 1

2 .

In particular, #
∑

2W2(x) = o(x), so there exist infinitely many
natural numbers which are not the sum of two powerful numbers.

Odoni showed in 1981 that there is no constant C > 0 such that

#
∑

2W2(x) ∼ Cx

(log x)1/2
(as x → ∞).

The following result was conjectured by Erdös and Ivić in
the 1970’s and proved by Heath-Brown (1988):

(1.3) There is an effectively computable number n0, such that every
n ≥ n0 is the sum of at most three powerful numbers.

The only known exceptions up to 32000 are 7, 15, 23, 87, 111,
and 119. Mollin and Walsh conjectured in 1986 that there are no
other exceptions.

The following problem concerning 3-powerful numbers remains
open:

Do there exist infinitely many natural numbers which are not sums
of three 3-powerful numbers? Probably, yes.
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C. Difference problems

The problems of this kind are the following.
Problem D1. Given k ≥ 2, determine which numbers N are of the
form N = n1 − n2, where n1, n2 ∈ Wk. Such an expression of N
is called a representation as a difference of k-powerful numbers, or
simply a k-powerful representation. When k = 2, I simply say a
powerful representation. If gcd(n1, n2) = 1, the representation is
called primitive; if n1 or n2 is a power, or 1, the representation is
called degenerate.

Problem D2. Given k ≥ 2, N ≥ 1, determine the set, or just the
number of representations (primitive or not, degenerate or not) of N
as a difference of k-powerful numbers.

In the same vein is the following problem:
Problem D3. Given integers N1, N2 ≥ 1, determine if there exist
k-powerful numbers n1, n2, n3 such that

n2 − n1 = N1 and n3 − n2 = N2.

In such a case, study the possible triples of such numbers.
One may also think of similar problems with several differences N1,

N2, . . ., Nr ≥ 1 given in advance, but as I shall indicate, problem D3
in its simplest formulation is unsolved and certainly very difficult.

I begin by discussing problems D1 and D2. The first remark, due
to Mahler, also shows that these questions are in close relationship
to the equations X2 − DY 2 = C.

Thus, Mahler said: since the equation X2−8Y 2 = 1 has infinitely
many solutions in integers (x, y), and since the number 8y2 is pow-
erful, then 1 admits infinitely many degenerate (primitive) powerful
representations.

In 1976, Walker showed that 1 also has an infinite number of
non-degenerate powerful (primitive) representations.

In 1981, Sentance showed that 2 has infinitely many primitive
degenerate powerful representations, the smallest ones being:

2 = 27 − 25 = 70227 − 70225 = 189750627 − 189750625.

More recently, putting together the results in various papers,
published independently and almost simultaneously by McDaniel,
Mollin and Walsh, and Vanden Eynden, it has been established
that:
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(1.4) Every natural number has infinitely many primitive degen-
erate powerful representations and also infinitely many primitive
non-degenerate powerful representations.

Moreover, there is an algorithm to determine such representations.
For a survey of the above results, see also Mollin (1987).

It has been asked by Erdös whether consecutive powerful num-
bers may be obtained other than as solutions of appropriate
equations EX2 − DY 2 = 1.

Concerning the distribution of pairs of consecutive powerful
numbers, there are several conjectures by Erdös (1976).
First* Erdös conjecture:
#{n | n and n + 1 are powerful, n ≤ x} < (log x)c, where c > 0 is a
constant.

It is not even yet proved that c′x
1
3 is an upper bound (with a

constant c′ > 0).
Second Erdös conjecture:
There do not exist two consecutive 3-powerful numbers.

It is interesting to note that the only known examples of consecu-
tive integers, such that one is 2-powerful and the other is 3-powerful,
are (8, 9) and (12167, 12168).

A related conjecture is the following:
Third Erdös conjecture:
Let a1 < a2 < a3 < · · · be the sequence of 3-powerful numbers. There
exist constants c > 0, c′ > 0, such that for every sufficiently large m,

am+1 − am > cmc′ .

In particular,
lim

m→∞(am+1 − am) = ∞.

Fourth Erdös conjecture:
There are infinitely many 3-powerful numbers which are sums of two
3-powerful numbers.

Now I consider problem D3 in its simplest form, which concerns
three consecutive powerful numbers.

*No one can state which was Erdös’ first-conjecture—I would not be
surprised if it was his first meaningful sentence, as a child. . . .
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With his awesome insight, Erdös conjectured:

Fifth Erdös conjecture:
There do not exist three consecutive powerful numbers.

This goes beyond the fact, proved by Makowski (1962) and
independently by Hyyrö (1963), that there do not exist three
consecutive powers.

Of these, only the fourth conjecture has been established. In 1995,
Nitaj proved that there are infinitely many 3-powerful numbers
which are sums x + y, where x is a cube and y is a 3-powerful num-
ber. In 1998, Cohn proved, more specifically, that there are infinitely
many 3-powerful numbers which are sums x + y, where x and y are
both 3-powerful numbers which are not cubes.

Later in this chapter I shall say more about the second, third, and
fifth conjectures. These are difficult problems and calculations could
only be of use to find three consecutive powerful numbers—if they
exist. But when should the calculations be stopped, since no bounds
are available?

It is very unexpected and intriguing that the existence of three con-
secutive powerful numbers has a relation to Fermat’s Last Theorem.
I shall discuss this later in this chapter.

2 Powers

I shall discuss whether a sum of two or more powers may be a
power; if so, how often. A more demanding problem requires that
the exponents in these powers be the same.

A. Pythagorean triples and Fermat’s problem

It is well-known that there are infinitely many primitive Pythagorean
triples of integers (x, y, z) with 0 < x, y, z, gcd(x, y) = 1, y even, and
x2 + y2 = z2. All these triples are parameterized as follows:

x = a2 − b2

y = 2ab

z = a2 + b2

where 1 ≤ b < a, with gcd(a, b) = 1.
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In this respect, the following problem remains open: are there in-
finitely many Pythagorean triples (x, y, z) such that x and y are
primes? This question has been treated assuming the truth of the
conjecture of Bouniakowski (1857), which is very strong.

An irreducible polynomial f ∈ Z[X] is said to be strongly primitive
when there is no prime p such that p divides f(k) for every integer k.
In particular, the greatest common divisor of the coefficients of f is
equal to 1.

The conjecture of Bouniakowsky is the following:

If f ∈ Z[X] is any irreducible strongly primitive polynomial, then
there exist infinitely many integers n such that |f(n)| is a prime.

Note that if f(X) has degree 1, then f(X) = aX + b with
gcd(a, b) = 1, and the above conjecture is true—it is the theorem
of Dirichlet on primes in arithmetical progressions.

In 1958, Schinzel and Sierpiński reformulated this and other
conjectures and derived many consequences of the above conjecture.
In particular, they showed:

(2.1) Assume that the conjecture of Bouniakowsky is true. Let
a, b, c, and d be integers with a > 0, d > 0, b2 − 4ac �= 0. Assume
that there exist integers x0, y0 such that ax2

0 + bx0 + c = dy0. Then
there exist infinitely many pairs (p, q) of prime numbers such that
ap2 + bp + c = dq.

Now it is easy to show:

(2.2) Every positive rational number a/b �= 1 (a > 0, b > 0,
gcd(a, b) = 1) may be written in infinitely many ways in the form
a
b = p2−1

q−1 , where p and q are prime numbers.

Proof. Indeed, the equation bX2 − (b − a) = aY has the solution
(x0, y0) = (1, 1). Note that if b > 0, a > 0, then 4b(b − a) �= 0.
By (2.1), there exist infinitely many pairs (p, q) of prime numbers
such that bp2 − (b − a) = aq, hence

a

b
=

p2 − 1
q − 1

. �

Applying (2.2) with the rational number 2 gives:
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(2.3) If the conjecture of Bouniakowsky is true, there exist in-
finitely many Pythagorean triples (a, b, c) where a and c are prime
numbers.

Proof. By (2.2), there exist infinitely many pairs (p, q) with p, q

primes, such that 2 = p2−1
q−1 . Then p2 = 2q−1. Hence, p2 +(q−1)2 =

q2, so (p, q − 1, q) is a Pythagorean triple. �

Of course, what is difficult is to prove the conjecture of Bou-

niakowsky. For the consequences of this conjecture see also my
book Ribenboim (1996).

Now I turn my attention to Fermat’s Last Theorem. If n > 2,
Wiles proved in 1995 that if an + bn = cn, then abc = 0. This was
the long sought solution of Fermat’s problem. Among the numer-
ous partial results that were obtained before the complete proof by
Wiles, I want to mention just two, which are connected with the
present discussion.

It has been traditional to say that the first case of Fermat’s Last
Theorem is true for the prime exponent p when there do not exist
integers a, b, and c not multiples of p, such that ap + bp = cp.

In 1909, Wieferich proved

(2.4) If p is an odd prime such that

2p−1 �≡ 1 (mod p2), (1)

then the first case of Fermat’s Last Theorem is true for p.

As I mentioned in my book 13 Lectures on Fermat’s Last The-
orem (1979, second edition 1995), the first case of Fermat’s Last
Theorem is true for p if there exists a prime l ≤ 89 such that

lp−1 �≡ 1 (mod p2) (2)

(see, in particular, Granville (1988)).
In 1985, Adleman, Heath-Brown, and Fouvry proved:

(2.5) There exist infinitely many prime exponents p for which the
first case of Fermat’s Last Theorem is true.

However, the method of proof did not allow the determination of any
of these prime exponents p explicitly.
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B. Variants of Fermat’s problem

It is easy to formulate variants of Fermat’s problem.

a The twisted Fermat’s problem

Let A, B, C > 0, gcd(A, B, C) = 1 be given integers; let n ≥ 3. The
problem is to determine all solutions in integers of the equation

AXn + BY n = CZn. (3)

For n > 3 the curve with the above equation has genus greater
than 1, so by the powerful theorem of Faltings (1983) (proof of
Mordell’s conjecture), there exist only finitely many solutions, i.e.,
triples (x, y, z) of pairwise relatively prime integers, which satisfy
the given equations. Often, such equations may have easily-detected
trivial solutions which are finite in number.

For each N > 1, let S(N) denote the set of all exponents n ≤ N
for which the equation (3) have only the trivial solutions.

It has been shown (see Granville (1985b), Heath-Brown

(1985)) that:

(2.6) With the above notations,

lim
N→∞

#S(N)
N

= 1.

In words, for “almost all” exponents n, the twisted Fermat equations
(for each triple (A, B, C)) has only trivial solutions.

Nevertheless, there is presently no criterion to tell if for arbitrary
A, B, C, and n, the twisted Fermat equation has only trivial solu-
tions. Also, there is no theorem giving an upper bound for the size
of the integers x, y, z that might be solutions of the twisted Fermat
equation.

b Homework

In a recent paper (1999) that I titled Homework (and that aimed at
making my colleagues work hard, now that I am retired), I stated
the following conjecture:

(2.7) Let d ≥ 1. Then there exists a natural number n0(d) such that
if K is any number field of degree at most d and if n ≥ n0(d), then
the equation Xn + Y n = Zn has only trivial solutions in K.
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Here a trivial solution in K is any triple (x, y, z) with x, y, z ∈ K
and xyz = 0, and, if K contains a primitive sixth root of 1, any
triple (a, aζ2, aζ) or their permutations, where a is any non-zero
element of K. (In the case when such a triple is a solution, then
n ≡ ±1 (mod 6).)

For d = 1, taking n0(1) = 3, the conjecture is no more than
Fermat’s Last Theorem, which was proved recently. It is also conjec-
tured that n0(2) = 5. In this respect I note: There are infinitely many
quadratic fields Q(

√
D) (D not a square) such that X3 + Y 3 = Z3

has nontrivial solutions in Q(
√

D).
The quartic equation X4 + Y 4 = Z4 has nontrivial solutions in

Q(
√

D) if and only if D = −7; for more on these results, consult
Ribenboim (1979). For p = 5, 7, 11, the equation Xp + Y p = Zp

has only trivial solutions in any quadratic field (see Gross and
Röhrlich (1978)). No more is known when p > 11.

Here is a different, but related, problem:
Let n ≥ 3. How large can d be so that there exist only finitely

many fields K of degree at most d such that Xn + Y n = Zn has a
nontrivial solution in K?

C. The conjecture of Euler

Euler proved that a (non-zero) cube is not the sum of two cubes
(different from zero).

In 1769, Euler conjectured, for each k > 3: A non-zero kth power
is not equal to the sum of k − 1 non-zero kth powers.

However, a counterexample was given by Lander and Parkin

in 1966, for k = 5:

1445 = 275 + 845 + 1105 + 1335.

This was found by computer search, and, as far as I know, is the
only example for 5th powers.

In 1988, Elkies gave a parametrized infinite family of triples of
coprime 4th powers whose sum is a 4th power. The smallest example
was

206156734 = 26824404 + 153656394 + 187967604.

These examples were obtained using the arithmetic theory of elliptic
curves.

It is conceivable that for every k > 5 there are also counterexam-
ples to the conjecture of Euler.
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I wish to formulate a problem. Let k ≥ 3 and define v(k) to be the
minimum of the integers m > 1 such that there exists a kth power
which is the sum of m natural numbers which are kth powers or 1. By
Fermat’s Last Theorem, v(k) > 2. The problem is the determination
of v(k). Since 33 + 43 + 53 = 63, then v(3) = 3.

From Elkies’ example, v(4) = 3. From Lander and Parkin’s
example, v(5) ≤ 4. It is not known if there exists a 5th power which
is the sum of three 5th powers.

Clearly, v(k) ≤ 2k since 2k is the sum of 2k integers all equal to 1.
There is no experimental supporting evidence to suggest any conjec-
ture about v(k). Equivalently, nothing is known about the existence
of rational points in hypersurfaces

∑n
i=1 xk

i = 1. This is another
instance supporting the title chosen for this lecture.

D. The equation AX l + BY m = CZn

Let A, B, C be non-zero coprime integers, and let l, m, n ≥ 2.
According to the exponents, the equation

AX l + BY m = CZn (4)

exhibits a very different behavior. There are three possibilities:

1
l

+
1
m

+
1
n




< 1 hyperbolic case,

= 1 Euclidean case,

> 1 spherical case.

a The hyperbolic case

This case was studied by Darmon and Granville in 1995. Using
Faltings Theorem, they showed

(2.8) If 1
l + 1

m + 1
n < 1, the equation (4) has only finitely many

solutions in non-zero coprime integers (x, y, z).

The case when A = B = C = 1 was the object of more scrutiny.
Only ten solutions are known (in the hyperbolic case):

1l + 23 = 32,

25 + 72 = 34,

73 + 132 = 29,
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27 + 173 = 712,

35 + 114 = 1222,

177 + 762713 = 210639282,

14143 + 22134592 = 657,

92623 + 153122832 = 1137,

438 + 962223 = 300429072,

338 + 15490342 = 156133.

These relations appear in the paper of Beukers (1988). It may be
observed that in each case, one of the exponents is equal to 2. Must
it be so?

The theorem (2.8) does not indicate when the equation has only
trivial solutions. In this direction, I shall give a density theorem.

Let k ≥ 1 and let S be a set of k-tuples of natural numbers. For
each N ≥ 1 let

S(N) = {(a1, . . . , ak) ∈ S | 1 ≤ a1, . . . , ak ≤ N}.

Thus, S(N) has at most Nk elements.
The number

δ(S) = lim inf
#S(N)

Nk
(5)

is the lower asymptotic density of S; the number

δ̄(S) = lim sup
#S(N)

Nk
(6)

is the upper asymptotic density of S. If the upper and lower asymp-
totic densities coincide, they are simply denoted by δ(S) and this
number is called the asymptotic density of S.

Let S = {(l, m, n) | 2 ≤ l, m, n and the equation (4) has only
trivial solutions}. Together with Powell, I proved in 1985:

δ(S) = lim inf
#S(N)

N3
> 1 − 8

7
× 27

26
× 1

ζ(3)
> 0

where ζ(3) =
∑∞

n=1
1
n3 (value at 3 of the zeta function).

This is, of course, a weak result even though its proof uses in an
essential way the strong theorem of Faltings.

In 1993, I proved other density results. For definiteness, I shall
consider specifically the equation

X l + Y m = Zn (7)
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with l, m, n ≥ 2.
For each n ≥ 2 let Dn = {(l, m) | equation (7) has only trivial

solutions}. Then (see Ribenboim (1993)):

(2.9) (a) The set {n | Dn �= ∅} has density 1. (b) The set {n |
δ(Dn) = 0} has density 0.

In words, for almost all n, there is an nth power which is a sum of two
powers, and for almost all n there is a positive proportion of (l, m)
such that an lth power plus an mth power is not an nth power. These
statements give an indication of the little that is known.

Recent work with the method developed by Wiles has led to the
following results (Ribet 19?? and Darmon and Merel (1997)) for
very special equations.

(2.10) (a) If n ≥ 3, then Xn + Y n = 2Zn has only trivial solutions
(in integers with absolute value at most 1).

(b) If n is odd and n ≥ 3, then Xn + Y n = Z2 has only trivial
solutions.

(c) If n ≥ 3, the equation Xn +Y n = Z3 has only trivial solutions.

These statements were proved using the important, and now
celebrated, Theorem of Wiles (1995, see also Taylor (1995)):

The conjecture of Shimura and Taniyama is true for semi-stable
elliptic curves defined over Q, that is, every such curve is a modular
elliptic curve.

I shall say no more about it, but the reader may wish to consult
the expository article by Kraus (1999).

b The Euclidean case

If
1
l

+
1
m

+
1
n

= 1,

there are only the following possibilities (up to permutation):

(l, m, n) ∈ {(2, 3, 6), (2, 4, 4), (3, 3, 3)}.

In this case, equation (4) may be dealt with by the theory of elliptic
curves. This will not be discussed here.
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c The spherical case

If
1
l

+
1
m

+
1
n

> 1,

then up to permutation,

(l, m, n) ∈ {(2, 2, n) | n ≥ 2} ∪ {(2, 3, 3), (2, 3, 4), (2, 3, 5)}.

In 1998, Beukers published a theorem about equation (4) in the
spherical case. To fix the terminology, the homogeneous polynomials
f , g, h ∈ Z[X, Y ] furnish a parametric family of solutions of (4) when

Af l + Bgm = Chn.

Thus, for all pairs of integers (s, t),

Af(s, t)l + Bg(s, t)m = Ch(s, t)n,

so (f(s, t), g(s, t), h(s, t)) are solutions, for all choices of s, t.
Beukers proved:

(2.11) The set of solutions of (4) in the spherical case consists of
finitely many families of parametrized solutions. If the equation has
one nontrivial solution, then it has infinitely many solutions.

The result for the Pythagorean equation was already described and
has been known for a very long time.

Zagier determined the solutions for the equations X3 + Y 3 =
Z2, X4 + Y 3 = Z2, and X4 + Y 2 = Z3, and these are included in
Beukers’ paper.

The equation X3 + Y 3 = Z2 has the following three families of
parametrized solutions:




x = s4 + 6s2t2 − 3t4,

y = −s4 + 6s2t2 + 3t4,

z = 6st(s4 + 3t4);


x = (1/4)(s4 + 6s2t2 − 3t4),

y = (1/4)(−s4 + 6s2t2 + 3t4),

z = (3/4)st(s4 + 3t4);
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


x = s4 + 8st3,

y = −4s3t + 4t4,

z = s6 − 20s3t3 − 8t6.

The equation X4 + Y 3 = Z2 has the following six families of
parametrized solutions:




x = (s2 − 3t2)(s4 + 18s2t2 + 9t4),

y = −(s4 + 2s2t2 + 9t4)(s4 − 30s2t2 + 9t4),

z = 4st(s2 + 3t2)(s4 − 6s2t2 + 81t4)(3s4 − 2s2t2 + 3t4);


x = 6st(s4 + 12t4),

y = s8 − 168s4t4 + 144t8,

z = (s4 − 12t4)(s8 + 408s4t4 + 144t8);


x = 6st(3s4 + 4t4),

y = 9s8 − 168s4t4 + 16t8,

z = (3s4 − 4t4)(9s8 + 408s4t4 + 16t8);


x = s6 + 40s3t3 − 32t6,

y = −8st(s3 − 16t3)(s3 + 2t3),

z = s12 − 176s9t3 − 5632s3t9 − 1024t12;


x = −5s6 + 6s5t + 15s4t2 − 60s3t3 + 45s2t4 − 18st5 + 9t6,

y = 6s8 − 56ts7 + 112t2s6 − 168t3s5 + 252t4s4 − 168t5s3 + 72t7s − 18t8,

z = −29s12 + 156ts11 − 726t2s10 + 2420t3s9 − 4059t4s8 + 3960t5s7

−2772t6s6 + 2376t7s5 − 3267t8s4 + 3564t9s3 − 1782t10s2

+324t11s + 27t12;


x = s6 + 6s5t − 15s4t2 + 20s3t3 + 15s2t4 + 30st5 − 17t6,

y = 2s8 − 8ts7 − 56t3s5 − 28t4s4 + 168t5s3 − 112t6s2 + 88t7s + 42t8,

z = −3s12 + 12ts11 − 66t2s10 − 44t3s9 + 99t4s8 + 792t5s7

−924t6s6 + 2376t7s5 − 1485t8s4 − 1188t9s3 + 2046t10s2 − 156t11s

+397t12;
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The equation X4 + Y 2 = Z3 has the following four families of
parametrized solutions:




x = (s2 + 3t2)(s4 − 18s2t2 + 9t4),

y = 4st(s2 − 3t2)(s4 + 6s2t2 + 81t4)(3s4 + 2s2t2 + 3t4),

z = (s4 − 2s2t2 + 9t4)(s4 + 30s2t2 + 9t4);


x = 6st(s4 − 12t4),

y = (s4 + 12t4)(s8 − 408s4t4 + 144t8),

z = s8 + 168s4t4 + 144t8;


x = 6st(3s4 − 4t4),

y = (3s4 + 4t4)(9s8 − 408s4t4 + 16t8),

z = 9s8 + 168s4t4 + 16t8;


x = (3/2)st(s4 − 3t4),

y = (1/8)(s4 + 3t4)(s8 − 102s4t4 + 9t8),

z = (1/4)(s8 + 42s4t4 + 9t8).

E. Powers as values of polynomials

The question treated now is the following: How often does a poly-
nomial f ∈ Z[X] have values which are powers? Of course, the
question is only interesting when f itself is not the power of another
polynomial.

The following important and useful theorem was proved by
Schinzel and Tijdeman in 1976 and holds for polynomials with
rational coefficients:

(2.12) Let f ∈ Q[X] and assume that f has at least 3 simple roots
(respectively, 2 simple roots). Then there exists an effectively com-
putable constant C > 0 (depending on f) such that if x, y, h are
integers with y ≥ 2, h ≥ 2 (respectively, h ≥ 3) and f(x) = yh, then
|x|, y, h ≤ C.

So, f may assume only finitely many values which are powers. The
proof of this result required the theory of linear forms of logarithms,
as had been developed by Baker.
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3 Exponential congruences

A. The Wieferich congruence

Motivated by a criterion for the first case of Fermat’s Last Theorem,
I consider the following Wieferich congruence:

ap−1 ≡ 1 (mod p2) (1)

where p is an odd prime, and 2 ≤ a, p � a.
Due to Fermat’s Little Theorem, qp(a) = ap−1−1

p is an integer
called the Fermat quotient of p in base a. Thus (1) holds exactly
when

qp(a) ≡ 0 (mod p). (2)

The Fermat quotient satisfies the following property, which was
first observed by Eisenstein:

qp(ab) ≡ qp(a) + qp(b) (mod p). (3)

As noted by actual computation, only rarely is qp(a) ≡ 0 (mod p).
Thus, for a = 2, and p < 4×1012, if qp(2) ≡ 0 (mod p), then p = 1093
or 3511.

More generally, I consider also the congruences

ap−1 ≡ 1 (mod pk), (4)

where k ≥ 1, p is an odd prime, a ≥ 2, and p � a.
Let l ≥ 2, l prime, k ≥ 1, and let

W
(k)
l = {p odd prime | lp−1 ≡ 1 (mod pk)},

W
(k)
l

′
= {p odd prime | lp−1 �≡ 1 (mod pk)}.

Thus, W
(1)
l is the set of all primes p �= l. Clearly,

W
(1)
l ⊇ W

(2)
l ⊇ · · · ⊇ W

(k)
l ⊇ · · · .

Heuristically, W
(2)
l is an infinite set, while W

(k)
l is finite, for all k ≥ 3.

This is seen in the following way: not knowing what should be qp(l)-
modulo p, and supposing that the Fermat quotient may assume with
the same probability each value, then if x is any positive real number,

#{p ≤ x | p ∈ W
(2)
l } =

∑
p≤x

1
p

= log log x + O(1);



3 Exponential congruences 247

thus, W
(2)
l should be infinite. For k ≥ 3,

#{p ≤ x | p ∈ W
(k)
l } =

∑
p≤x, p�a

1
pk−1

< ζ(k − 1) < ∞.

Even though the above arguments are heuristically acceptable, they
are not fully justified. For k ≥ 2 it is not known whether W

(k)
l

of W
(k)
l

′
is finite or infinite.

I note the following interesting result by Powell (1982):

(3.1) Let l be any prime. Then the set

S =
⋃

k odd

(
W

(k)
l \ W

(k+1)
l

)

is infinite.

Proof. The prime q belongs to S if and only if the q-adic
value vq(lq−1−1) is odd. Assume that {q1, . . . , qn} (with n ≥ 0) is the
set of odd primes in S. Let s = 1 when n = 0, or s =

∏n
i=1(qi − 1)2

when n ≥ 1.
Since qi−1 divides 4s, then qi divides l4s−1 (for each i = 1, . . . , n).

It will be shown that l4s + 1 is a square or a double square.
Let p be any odd prime dividing l4s+1, so p | l8s−1 and p � l4s−1.

Hence, p �= qi for each i = 1, . . . , n. Let r be the order of l modulo p.
So, p−1 = rk (implying p � r, p � k), and also 8s = rhpf with f ≥ 0,
p � h. Since s is a square, f is even.

Note that

lp−1 − 1
lr − 1

= lr(k−1) + lr(k−2) + · · · + lr + 1

≡ k (mod p),

and similarly
lrh − 1
lr − 1

≡ h (mod p).

So, vp(lp−1 − 1) = vp(lr − 1) = vp(lrh − 1). Since p �= q1, . . . qn, then
d = vp(lp−1 −1) is even. Now, vp(l8s −1) = d+f is also even, noting
that 8s = rhf . Since p is an arbitrary odd prime divisor of l4s + 1,
then l4s + 1 = c2 or 2c2 (for some c ≥ 1). But, as is well-known,
Fermat had shown that the equations X4 +Y 4 = Z2 or X4 +Y 4 =
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2Z2 have only trivial solutions (x, y, z) with |x|, |y|, |z| ≤ 1. So this
is a contradiction, proving that the set S is indeed infinite. �

In 1985, Granville showed:

(3.2) Let l ≥ 2 be a prime. If W
(3)
l is finite, then there exist infinitely

many primes p such that p ≡ 1 (mod 4) and lp−1 �≡ 1 (mod p2). In

particular, if W
(3)
l is finite, then W

(2)
l

′
is infinite.

From Powell’s result, W
(2)
l

′
is infinite; here is also asserted that

W
(2)
l

′
contains infinitely many primes p ≡ 1 (mod 4).

It is also interesting to consider the following question. Given an
odd prime p, estimate the number of elements in the set

B(p) = {a | 2 ≤ a < p such that ap−1 ≡ 1 (mod p2)}

or of the subset

B′(p) = {q prime | 2 ≤ q < p, such that qp−1 ≡ 1 (mod p2)}.

In 1966, Kruyswijk showed:

(3.3) There is a constant C > 0 such that for every p

#B(p) < p
1
2
+ C

log log p .

The result is better for B′(p). Granville showed in 1987:

(3.4) Let u ≥ 1 be an integer and let p be a prime such that p > u2u.
Then

#{q prime | 2 ≤ q < p
1
u and qp−1 ≡ 1 (mod p2)} < up1/2u.

In particular, for every prime p,

#{q prime | 2 ≤ q < p1/2 and qp−1 ≡ 1 (mod p2)} < p1/2.

B. Primitive factors

The following theorem was proved by Bang in 1886 (for a = 2) and
extended by Zsigmondy in 1892:
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(3.5) Let a ≥ 2. For every n ≥ 2 (with the exceptions indicated
below) there exists a prime p which is a primitive factor of an ∓ 1,
that is, p divides an ∓ 1, but p does not divide am ∓ 1 for all m < n.
The only exceptions to the above are:

(i) 26 − 1, 23 + 1
(ii) (2k − 1)2 − 1

A detailed proof may be found, for example, in my book Fermat’s
Last Theorem for Amateurs (1999).

Let an ∓ 1 = AB with gcd(A, B) = 1 and p | A if and only if p is
a primitive factor. Then A is called the primitive part of an ∓ 1, and
I shall use the notation A = (an ∓ 1)∗.

The above theorem may be applied to the Mersenne numbers
Mq = 2q − 1 (q prime) as well as to the Fermat numbers Fn =
22n

+ 1. So it makes sense to consider their primitive parts M∗
q ,

respectively F ∗
n .

For each prime L ≥ 2 let NL = {p prime | there exists c ≥ 1, p � c,
such that pc = a± b, where each prime factor of ab is at most equal
to L}. It is not known if the sets NL are finite or infinite.

To further analyze the situation, I introduce other sets of primes.
If k ≥ 1 and l is any prime, let

N (k)
l = {p prime | there exists s ≥ 1 such that pk divides ls + l,

but pk+1 does not divide ls + l}.

For example, if l ≤ L, then N (1)
l ⊆ NL. So, in order to show that NL

is infinite, it suffices to find a prime l ≤ L such that N (1)
l is infinite. In

other words, consider the sequence of integers {l+1, l2+1, l3+1, . . .}.
By (3.5), there are infinitely many primes p dividing some number
of the sequence because (with the only exception l = 2, s = 3) each
number ls + 1 has a primitive prime factor. Are there still infinitely
many such primes belonging to N (1)

l ?
This is true if there would exist infinitely many primitive prime

factors whose squares are not factors. A hard question to settle, but
once again full of important consequences.

A result of 1968 by Puccioni has been improved as follows (see
my own paper (1998)):

(3.6) For every k ≥ 1 and prime l ≥ 2:



250 9. Powerless Facing Powers

1. N (k)
l ∩W(k+1)

l =




∅ if l �≡ 1 (mod 2k+1),

{2} if l ≡ 1 (mod 2k+1),

2. N (k)
l ∪W(k+2)

l is an infinite set.

Proof. (1) First, it will be shown by induction on k that N (k)
l ∩

W(k+1)
l ⊆ {2}.
If k = 1 and p is an odd prime such that p ∈ N (1)

l ∩ W(2)
l , then

lp−1 ≡ 1 (mod p2) and there exist s ≥ 1, c ≥ 1, such that p � c,
ls + 1 = pc; since lp ≡ 1 (mod p2), then ls ≡ lps = (pc − 1)p ≡
−1 (mod p2), so p2 | ls + 1, which is absurd.

Assume the statement true for k ≥ 1. First note that N (k)
l ∩

W(k+2)
l ⊆ N (k)

l ∩ W(k+1)
l ⊆ {2}. It suffices to show that (N (k+1)

l \
N (k)

l ) ∩ W(k+1)
l = ∅. Let p be a prime in this set, so lp−1 ≡

1 (mod pk+2) and there exists s ≥ 1, c ≥ 1, such that p � c,
ls + 1 = pk+1c; since lp ≡ l (mod pk+2), then ls ≡ lps ≡ (pk+1c −
1)p (mod pk+2). If p �= 2, then ls ≡ −1 (mod pk+2), which is absurd.
If p = 2, then ls ≡ 1 (mod 2k+2) and 2k+1c ≡ ls +1 ≡ 2 (mod 2k+2),
hence k + 1 = 1 and k = 0, which is absurd.

This shows that N (k)
l ∩W(k+1)

l ⊆ {2}.
Finally, if 2 ∈ N (k)

l ∩W(k+1)
l , then l ≡ 1 (mod 2k+1).

Conversely, if l ≡ 1 (mod 2k+1), then 2 ∈ W(k+1)
l and l + 1 ≡

2 (mod 2k+1), so s ∈ N (1)
l ⊆ N (k)

l .
(2) In this proof, (2.12) will be used. For the polynomial f(X) =

2Xk+1 − 1, let C be the corresponding effectively computable
constant.

If N (k)
l ∪W(k+2)

l is assumed to be finite, let m be a prime number
such that m > C and m > max{p | p ∈ N (k)

l ∪ W(k+2)
l }. Let P =∏

l 
=q≤m q (each factor q being a prime number). Hence, ϕ(P ) =∏
l 
=q≤m(q − 1), and so ϕ(P ) is even and greater than C.
It is clear that lϕ(P ) ≡ 1 (mod P ). Also, if q �= 2 and q divides

lϕ(P ) + 1, then q > m—otherwise, l �= q ≤ m, so q divides P , hence
lϕ(P ) − 1 and q = 2.

It is well-known, and easy to show, that if n ≥ 2 and l is a prime,
then lh + 1 is not a power. For a proof, see my book Catalan’s
Conjecture (1994), page 201.
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First case. There exists a prime q such that qk+2 divides lϕ(P ) +1.
If q = 2, then l is odd and lϕ(P ) ≡ −1 (mod 8). But l2 ≡ 1 (mod 8)
and lϕ(P ) ≡ 1 (mod 8), which is absurd.

So, q �= 2, hence q > m, and therefore q � ϕ(P ).
Let g be the order of l modulo q, hence g divides q − 1. But

q | l2ϕ(P ) − 1, so g | 2ϕ(P ), and therefore 2ϕ(P ) = gh, with q not
dividing h.

Since qk+2 divides lgh−1 = (lg −1)(lg(h−1) + lg(h−2) + · · ·+ lg +1),
and lg ≡ 1 (mod q), then the second factor above is congruent to h �≡
0 (mod q). Therefore, qk+2 divides lg − 1. So, lq−1 ≡ 1 (mod qk+2),
that is, q ∈ W(k+2)

l and hence q < m, which is a contradiction.
Second case. If q divides lϕ(P )+1, then qk+2 does not divide lϕ(P )+

1.
Since lϕ(P ) +1 is not a (k+1)th power, there exists a prime q such

that q | lϕ(P ) + 1, but qk+1 � lϕ(P ) + 1. Hence, q ∈ N (k)
l and q ≤ m.

This implies that q = 2, and so lϕ(P ) + 1 = 2etk+1, where 1 ≤ e ≤ k
and t is odd. But l is odd and ϕ(P ) is even, so lϕ(P ) ≡ 1 (mod 4).
Hence e = 1, that is, lϕ(P ) + 1 = 2tk+1.

Thus, the integers t, l �= 0, ϕ(P ) ≥ 1 are solutions of the equation
2Xk+1 − 1 = Y Z . Hence, ϕ(P ) ≤ C, which is an absurdity. �

In particular, N (1)
l ∪W(3)

l is an infinite set. It suffices to show that
W(3)

l is a finite set (for some prime l) to conclude that N (1)
l is infinite.

For example, if l = 2, no integer in W(3)
l is known.

4 Dream mathematics

One day, mathematicians will become smarter and will be able to
prove many statements that are today only conjectured to be true.
For the moment, it is only possible to dream. But such dreams may
be organized.

A. The statements

To demonstrate my ignorance beyond any doubt, let me discuss bi-
nomials, Mersenne numbers, Fermat numbers, powerful numbers,
square-free numbers, numbers with a square factor, prime numbers,
and Wieferich congruences. Isn’t that enough?

Nobody knows if the the statements listed below are true.
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Notations

P = prime

C = composite

SF = square-free

S = with a square factor (different than 1)

W = powerful

¬W = not powerful

A star refers to the primitive part.
Let α ∈ {P, C, SF, S, W,¬W} and let ε ∈ {finite,∞}. Let

Mq = 2q − 1 (for q prime): Mersenne number,

Fn = 22n
+ 1 (for n ≥ 0): Fermat number.

B. Statements

I begin by considering Mersenne numbers.

(Mα,ε) := #{q | Mq satisfies α} = ε,

(M∗
α,ε) := #{q | M∗

q satisfies α} = ε.

There are many obvious implications among these statements:

1 ��

��

����
��

��
��

2

��

����
��

��
��

3

��

�� 4

��

5 ��

����
��

��
��

6

����
��

��
��

7

��

�� 8

��
9

��

�� 10

��
11 �� 12
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(1) = (MC, finite) (2) = (MP,∞)
(3) = (M∗

C, finite) (4) = (M∗
P,∞)

(5) = (MS, finite) (6) = (MSF,∞)
(7) = (M∗

S, finite) (8) = (M∗
SF,∞)

(9) = (M∗
W, finite) (10) = (M∗

¬W,∞)
(11) = (MW, finite) (12) = (M¬W,∞)

One may also consider the negations of these properties and for
these the reverse implications are satisfied.

It is believed that (MP,∞) and (MC,∞) are both true. It is also a
very deep problem to decide whether (7), (9), or even (11), is true.

Now I consider the analogous statements for Fermat numbers.

(Fα,ε) := #{n | Fn has property α} = ε,

(F ∗
α,ε) := #{n | F ∗

n has property α} = ε.

The same diagram of obvious implications hold for Fermat
numbers by just replacing M by F .

There is no opinion as to whether (FP,∞) or even (F¬W,∞) is true.
The next statements concern binomials an ± 1 (where a ≥ 2, n ≥

1).
It is easy to show that if an − 1 is a prime, then a = 2, and n is a

prime. Also, if an + 1 is a prime, then a = 2 and n is a power of 2.
Consider the statements

(B(a,±)α,ε) := #{n | an ± 1 has property α} = ε,

(B(a,±)∗α,ε) := #{n | (an ± 1)∗ has property α} = ε.

For a = 2, (B(2,−)P,ε) = (MP,ε) and (B(2,−)C,∞) is true. Also,
(B(2, +)P,ε) = (FP,ε) and (B(2, +)C,∞) is true. The same obvious
implications of the diagram (and reverse-implications) are satisfied
by the properties (respectively, their negations) of the sequences of
numbers an ± 1.

Now I introduce statements concerning Wieferich congruences. Let
a ≥ 2 and

(W (a)ε) := #{p prime | ap−1 ≡ 1 (mod p2)} = ε,

(¬W (a)ε) := #{p prime | ap−1 �≡ 1 (mod p2)} = ε.

Clearly, (W (a)finite) → (¬W (a)∞) and (¬W (a)finite) → (W (a)∞).
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In Section 1 I indicated Erdös’ conjecture about powerful
numbers:

(E) There do not exist three consecutive powerful numbers.

In the same order of ideas, consider the statement

(E finite) There exist at most finitely many n such that n − 1,
n, n + 1 are powerful.

Clearly, (E) implies (E finite).

C. Binomials and Wieferich congruences

I begin with the following useful result which was proposed in 1977
by Powell as a problem (solution published by De Leon in 1978):

(4.1) Let p be an odd prime, and a ≥ 2, m ≥ 1. If am ≡ 1 (mod p),
and am−1 ≡ 1 (mod p2), then am ≡ 1 (mod p2).

Proof. Let h = ord(amodp), so h | m, say m = hk. Also, h | p−1,
so p − 1 = hl. Writing ah = 1 + cp, then ap−1 = (1 + cp)l ≡ 1 +
lcp (mod p2). Thus, p | lc, so p | c, and hence am = ahk = (1+cp)k ≡
1 (mod p2). �

The following properties will be required:

(PB(a,−)α,ε) := #{p prime | ap − 1 satisfies property α} = ε,

(PB(a,−)∗α,ε) := #{p prime | (ap − 1)∗ satisfies property α} = ε.

(4.2) For each a ≥ 2 the following implications hold:

(W (a)finite) �� (PB∗(a,−)SF,∞) ��

��

(B∗(a,−)SF,∞)

��
(PB∗(a,−)¬W,∞) ��

��

(B∗(a,−)¬W,∞) ��

��

(¬W (a)∞)

(PB(a,−)¬W,∞) �� (B(a,−)¬W,∞)

Proof. All implications but two are trivial.
(W (a)finite) → (PB∗(a,−)SF,∞). Let

{p prime | ap−1 ≡ 1 (mod p2)} = {p1, . . . , pm}
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and
h0 = max{ord(a mod pi) | i = 1, . . . , m},

and let p > h0. Let q = q(p) be any primitive prime factor of ap − 1,
so ord(a mod q) = p. In particular, if p �= p′, then q(p) �= q(p′).

Moreover, since p > h0, it follows that q �= p1, . . . , pm, and hence
aq−1 ≡ 1 (mod q2). By (4.1), q2 � ap − 1. This shows that (ap − 1)∗

is square-free.
(B∗(a,−)¬W,∞) → (¬W (a)∞). Let n be such that (an − 1) is

not powerful, so there exists a prime pn such that pn | (an − 1)∗

but p2
n � (an − 1)∗. Hence pn | an − 1, but p2

n � an − 1. By (4.1),
p2

n � (apn−1 − 1). Note that n = ord(a mod pn). So, if n �= m, then
pn �= pm. This shows (¬W (a)∞). �

In particular, taking a = 2, it follows that

(W (2)finite) → (M∗
SF,∞) → (M∗

¬W,∞) → (¬W (2)∞).

The following implication holds for special values of a:

(4.3) If a is even and
√

a − 1 is powerful, then (B(a,−)W, finite) →
(B∗(a,−)¬W,∞).

Proof. If (B∗(a,−)¬W,∞) is false, there exists m0 such that for
every m > m0 and for every primitive prime factor pm of am − 1,
p2

m | am − 1.
Choose a prime q > m0; if s ≥ 1 and l is a prime dividing aqs − 1,

then there exists h, 0 ≤ h ≤ s, such that l is a primitive prime
divisor of aqh − 1. If h = 0, then l2 | a − 1, by hypothesis. If h ≥ 1,
again l2 | aqh − 1, because q > m0. Hence l2 | aqs − 1. This shows
that aqs − 1 is a powerful number for every s ≥ 1, contradicting the
hypothesis. �

I note also the following implication which will be useful very
shortly:

(4.4) (B(a2,−)W, finite) → (¬W (a)∞).

Proof. Assume that (¬W (a)∞) is not true, so there exists p0 such
that if p is a prime, p > p0, then ap−1 ≡ 1 (mod p2). Let t =

∏
p≤p0

p,
hence ϕ(t) =

∏
p≤p0

(p − 1). For every h ≥ 1 let ah = ahtϕ(t). Then
ah − 1 is a powerful number, as I proceed to show.
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Note that 2 � ah−1, since a is even. If p is a prime such that 2 < p ≤
p0, then p(p−1) divides tϕ(t); from ap−1 ≡ 1 (mod p), it follows that
ap(p−1) ≡ 1 (mod p2), therefore, p2 | ahtϕ(t) − 1 = ah − 1. Finally,
if p > p0 and p | ah − 1, then by hypothesis ap−1 ≡ 1 (mod p2);
hence by (4.1), p2 | ah − 1. Since h is arbitrary, this contradicts the
hypothesis. �

For the next result, the following notation will be used:

(QB(a,+)α,ε) := #{2n | a2n
+ 1 satisfies property α} = ε,

(QB∗(a,+)α,ε) := #{2n | (a2n
+ 1)∗ satisfies property α} = ε.

The next proposition is the analog of (4.2):

(4.5) For each a ≥ 2 the following implications hold:

(W (a)finite) �� (QB∗(a,+)SF,∞) ��

��

(B∗(a,+)SF,∞)

��
(QB∗(a,+)¬W,∞) ��

��

(B∗(a,+)¬W,∞) ��

��

(¬W (a)∞)

(QB(a,+)¬W,∞) �� (B(a,+)¬W,∞)

Proof. Only two implications need a proof.
(W (a)finite) → (QB∗(a,+)SF,∞). Let {p | ap−1 ≡ 1 (mod p2)} =

{p1, . . . , pm}. Let h0 = max{ord(a mod pi) | i = 1, . . . , m}. Let n
be such that 2n > h0 and let q be a prime dividing (a2n

+ 1)∗. So,
q | a2n

+ 1, thus q | a2n+1 − 1 and ord(a mod q) = 2n+1 > h0; thus
q �= pi (for all i) and therefore aq−1 �≡ 1 (mod q2). Since 2n+1 | q − 1
then a2n+1 �≡ 1 (mod q2) and again a2n �≡ 1 (mod q2), showing that
(a2n

+ 1)∗ is square-free.
(B∗(a,+)¬W,∞) → (¬W (a)∞). Let n > 1 be such that (an +

1)∗ is not powerful, so there exists a prime p = p(a) such that p
divides (an + 1)∗, but p2 � (an + 1)∗. It follows that p | a2n − 1, but
p2 � an + 1 since (an + 1)∗ and an+1

(an+1)∗ are coprime. If p2 | a2n − 1,
then p | an − 1, so p = 2. But this implies that a is odd, so p | a + 1
and from the assumption that n > 1 it would follow that p would
not be a divisor of (an + 1)∗. By (4.1), then, ap−1 �≡ 1 (mod p2).

To conclude, note that 2n = ord(a mod pn), so if n �= n′, then
pn �= pn′ . This implies that (¬W (a)∞) is satisfied. �
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Taking a = 2, one obtains the implications involving Fermat
numbers:

(W (2)finite) �� (F ∗
SF,∞) �� (Fα

¬W,∞) �� (¬W (2)).

There are, of course, many statements along these lines which
may be proved in exercises by the reader. For example, consider
the following ones due to Rotkiewicz (1965) and to Warren and
Bray (1967):

1. Let p be a prime such that p2 divides some Mersenne number.
Then 2p−1 ≡ 1 (mod p2); conversely, if p divides Mq and 2p−1 ≡
1 (mod p2), then p2 divides Mq (this converse is just (4.1)).

2. The analogous statement holds for Fermat numbers.

D. Erdös conjecture and Wieferich congruence

I begin with an easy illustration of the connection between the
Wieferich congruence and the Erdös conjecture.

(4.6) (Efinite) → (B(a2,−)W, finite) (for any even a)

Proof. Indeed, if a is even and a2k − 1 = (ak − 1)(ak + 1) is
powerful, the fact that gcd(ak − 1, ak + 1) = 1 implies that ak − 1,
ak, ak + 1 are three consecutive powerful numbers. Thus (Efinite)
implies (B(a2,−)W, finite). �

From (4.4) and (4.6), it follows that (Efinite) → (¬W (a)∞) for
all a even. This remarkable implication was proved by Granville

in 1986. In particular, (¬W (2)∞). In view of the theorem of
Wieferich, (Efinite) implies the theorem of Adleman, Heath-

Brown, and Fouvry (the first case of Fermat’s Last Theorem is
true for infinitely many prime exponents) already quoted in (2.5).
Notwithstanding the fact that Wiles proved Fermat’s Last Theo-
rem in all cases, the above connection with powerful numbers is very
intriguing.

E. The dream in the dream

In your dreams, you have a marvelous dream and you wish it to be
real. “It” is spelled ABC and it is the most tantalizing conjecture
one may imagine (or dream). Yet, so simple to state!
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Mason (1983, 1984) proved a theorem about polynomials that
inspired Masser in 1985 to formulate a conjecture, rephrased by
Oesterlé in 1988 as follows:

(ABC) For every ε > 0 there exists K(ε) > 0 such that if A, B, C
are positive integers with gcd(A, B, C) = 1 and A + B = C, then

C < K(ε)R1+ε (1)

where
R =

∏
p|ABC

p.

In this respect, the following terminology is convenient. If n �= 0,
then r =

∏
p|n, p prime p is called the radical of n. So, R is the radical

of ABC.
There is no attempt in the statement of the conjecture to give any

indication of an effective lower bound for K(ε).
What is the gist of the conjecture? Taking, for example, ε = 1

2 ,
A = 2m (m large), B = 3n (n large), if (1) holds, then C <
K(1

2)63/2 ∏
p|C p3/2. Since C is large, than C must have a large prime

factor or many prime factors. At any rate, (ABC) expresses a deep
connection between addition and multiplication.

A conjecture is interesting if it keeps being a conjecture for a long
time, so it resists attempts to prove or to disprove it. Since K(ε) is
not explicit, it is hard to see how to disprove the (ABC) conjecture.
On the other hand, the (ABC) conjecture implies many other difficult
conjectures. So it is both important and difficult to establish (ABC).

If you, a respected mathematician, would tell that you are study-
ing (ABC), what will be the reaction? Perhaps derogatory. So, say
instead that you are studying the (XYZ) conjecture. It is more
mysterious.

Leaving fun aside, I will indicate what (ABC) implies, not ev-
erything however. Here is one striking implication (see Oesterlé

(1988)).

(4.7) (ABC) → Fermat’s Last Theorem is true for all sufficiently
large exponents.

Proof. Assume that n ≥ 5, a, b, c are positive integers with
gcd(a, b, c) = 1, a < b < c, and an + bn = cn. Let ε = 1

2 , and
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let K = K(1
2) as per the (ABC) conjecture. So,

cn < K(abc)3/2 < Kc9/2,

and hence cn− 9
2 < K, and thus n is bounded, proving Fermat’s Last

Theorem is true for all sufficiently large exponents n. �

Practically the same proof was used by Granville in 1997 to
deal with the equation

AXn + BY n = CZn, (2)

where A, B, C are non-zero coprime integers.

(4.8) (ABC) → For all sufficiently large n, the equation (2) has only
trivial solutions (x, y, z), with |x|, |y|, |z| ≤ 1.

I considered in Section D. the equation

AX l + BY m = CZn, (3)

where l, m, n ≥ 2 and A, B, C are non-zero coprime integers. It was
indicated in (2.8) that if 1

l + 1
m + 1

n < 1, then (3) has only finitely
many solutions (x, y, z) with x, y, z coprime integers.

I have shown (in 1999):

(4.9) (ABC) → There are only finitely many tuples (l, m, n) satis-
fying (3) for which the equation (2) has a nontrivial solution (x, y, z)
in coprime integers, i.e., |x|, |y|, or |z| > 1.

The proof of (4.9) requires the simpler (4.10) below. Let A, B, C be
non-zero coprime integers, and let U be the set of 4-tuples (l, m, x, y)
such that (1) |x|, |y| > 1, (2) l, m ≥ 2, 1

l + 1
m < 1, and (3) Axl +

Bym = C.

(4.10) (ABC) → U is a finite set.

Among the applications, one may consider differences of powers
(A = 1, B = −1). This includes Catalan’s problem on consecutive
powers (see Chapter 7 of this book). Tijdeman’s celebrated theorem
asserts that there exists an effectively computable bound C > 0
such that if x, y, m, n are integers with x, y �= 0, m, n ≥ 2, and
xm − yn = 1, then |x|, |y|, m, n < C.
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Let z1 < z2 < z3 < · · · be the sequence of all integers which
are powers, with arbitrary exponents (greater than 1). Tijdeman’s
theorem means that lim sup(zi+1 − zi) > 1.

Landau conjectures that lim sup(zi+1 − zi) = ∞. This has never
been proved, however,

(4.11) (ABC) → Landau’s conjecture is true.

Elkies proved in 1991:

(4.12) (ABC) → Faltings theorem (i.e., Mordell’s conjecture is
true).

The proof is subtle.
Combining results (4.7) and (4.10), it follows from (ABC) that

there exists at most finitely many 4-tuples (x, y, z, n) with n ≥ 3, x,
y, z > 0, gcd(x, y, z) = 1, and xn + yn = zn. Of course, no effective
bound is provided. This is less than stating that (ABC) would imply
Wiles’ theorem (i.e., Fermat’s Last Theorem is true).

The following result was proved by Silverman in 1998; the sim-
pler proof given here was kindly communicated to me by Ram

Murty.

(4.13) (ABC) → (¬W (a)∞) for every a ≥ 2.

Proof. For every n ≥ 1, let an−1 = unvn where un is square-free,
gcd(un, vn) = 1; so, vn is powerful. Note that limn→∞(unvn) = ∞.
Let U = {p prime | there exists n such that p | un}. Since each un

is square-free, then U is finite if and only if the set {un | n ≥ 1} is
bounded.

Given ε = 1
2 , let K = K(1

2) as mandated in the (ABC) conjecture.
So,

unvn < an < K(aunv1/2
n )3/2

because vn is powerful. So, v
1/4
n < Ka3/2u

1/2
n . If the set {un | n ≥ 1}

is bounded, then so is the set {vn | n ≥ 1}, hence lim unvn → ∞, a
contradiction.

If {un | n ≥ 1} is unbounded, then U is infinite. If p ∈ U , then
p2 � (an − 1), so by (4.1), ap−1 �≡ 1 (mod p2), and hence (¬W (a)∞)
is true. �

Now I give another implication. With a similar argument, it is
easy to show
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(4.14) (ABC) → Let a > b ≥ 1 with gcd(a, b) = 1. Then the set
{n ≥ 1 | ab ± bn is powerful} is finite.

Proof. For each n, let an ± bn = unvn where un is square-free,
vn is powerful, and gcd(un, vn) = 1. Let ε = 1

2 , K = K(1
2), so by the

(ABC) conjecture

unvn < K(abunv1/2
n )3/2.

Note that an ± bn is powerful exactly when un = 1. In this case,
v

1/4
n < K(ab)3/2. Therefore, vn is bounded and so is n. �

As particular cases, with a = 2, b = 1, note

(4.15) (ABC) → (MW, finite) and (FW, finite), in words, there exist
only finitely many powerful Mersenne and Fermat numbers.

The result (4.14) has been generalized by Ribenboim and Walsh

(1999c). Let R > 0 be a square-free integer, let h, k ≥ 2, and let A,
B, E be non-zero integers, such that gcd(A, ER) = gcd(B, ER) = 1.
For each C �= 0 such that the radical of C divides R, consider the
equation

AXh + BY k = EC. (4)

Let SC = {(x, y) | x ≥ 1, y ≥ 1, gcd(x, y) = 1 and Axh+Byk = EC}.
Let S =

⋃{SC | radical of C divides R}. For each integer n > 0
denote by w(n) the powerful part of n. So, n = w(n)n′ where n′ is
square-free and gcd(w(n), n′) = 1. With the above notations,

(4.16) (ABC) → For every ε > 0 there exists only finitely many
(x, y) ∈ S such that w(x) > xε or w(y) > yε. In particular, there
exists only finitely many (x, y) ∈ S such that x or y is powerful.

It is useful to observe that if R = 1 and max{h, k} ≥ 3, that is,
1
h + 1

k < 1, then by the well-known theorem of Siegel, there are
only finitely many pairs (x, y) with x, y ≥ 1, gcd(x, y) = 1, such
that Axh + Byk = E. If h = k = 2, this is the situation of the Pell
equations and, as is well-known, the solutions of these equations are
terms in certain binary linear recurring sequences.

In the same paper, Ribenboim and Walsh applied the above
result to deal with powerful terms in binary linear recurring se-
quences. Let P , Q be non-zero coprime integers such that P > 0,
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D = P 2 −4Q �= 0. The following two Lucas sequences are associated
to the parameters (P, Q):

U0 = 0, U1 = 1, Un = PUn−1 − QUn−2 (for n ≥ 2),
and

V0 = 2, V1 = P, Vn = PVn−1 − QVn−2 (for n ≥ 2).

The additive relation

V 2
n − DU2

n = 4Qn (5)

holds (for all n ≥ 0). If Q = ±1 (for example, for the sequences of
Fibonacci and Lucas numbers which have parameters (1,−1)) one
has:

V 2
n − DU2

n = 4(−1)n. (6)

The following result is well-known (see Mollin (1996)):

(4.17) (ABC) → There are only finitely many Fibonacci or Lucas
numbers which are powerful.

An extension for all Lucas sequences with discriminant D > 0
requires the relation (5) which is dealt with in (4.16):

(4.18) (ABC) → If D > 0, for every ε > 0 the sets {n ≥ 1 | w(Un) >
U ε

n} and {n ≥ 1 | w(Vn) ≥ V ε
n} are finite. In particular, there are

only finitely many n ≥ 1 such that Un or Vn is powerful.

Other types of binary linear recurring sequences were also
considered in the same paper, with similar results.

A question which has been investigated is the differences be-
tween powers. For consecutive powers, see Chapter 7 of this book.
Mordell, Hall, and many others studied the differences between
squares and cubes, that is, the equation

y3 = x2 + d

(where x, y ≥ 1, d is any integer, not necessarily positive).
Hall conjectured:

(H) For every ε > 0, there exists K > 0 (depending on ε) such that
if y3 = x2 + d with x, y ≥ 1, d �= 0, then y < K|d|2+ε.
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It is reasonable to consider similar conjectures (Hm,n) for each
pair (m, n) of positive integers such that 1

m + 1
n < 1:

(Hm,n) For every ε > 0 such that 0 < ε < 1
6 , there exists K > 0

(depending on ε, m, n) such that if x, y > 0, d �= 0 and ym = xn +d,
then y < K|d|t+ε where t = n/(mn − m − n).

In Ribenboim (2000) it is proven

(4.19) (ABC) → (Hm,n) holds for all pairs (m, n) as indicated
above.

The conjectures (Hm,n) have interesting consequences indicated in
the paper.

There are also strong conjectures about primes dividing values
of polynomials and about powerful numbers which are values of
polynomials.

First I state the conjecture of Langevin (1993) :

(L) Let f ∈ Z[X] with degree d ≥ 2 and having no multiple roots.
For every ε > 0 there exists K = K(f, ε) > 0 such that if n is
sufficiently large, then R(f(n)) > Knd−1−ε (where R(f(n)) is the
radical of f(n)).

The conjecture of Schinzel (1976) is the following:

(ST) Let f ∈ Q[X] with at least three simple zeros. Then #{n ≥ 1 |
f(n) is powerful} < ∞.

This conjecture shoud be compared with the theorem quoted
in (2.12).

It is very easy to show:

(4.20) (ST) → (Efinite).

Proof. Let f(X) = X(X2 − 1); so all the roots of f are simple. If
n−1, n, n+1 are three powerful numbers, then f(n) = (n−1)n(n+1)
is powerful. Since #{n : |f(n)| is powerful} < ∞ by hypothesis, then
(Efinite) holds. �

Walsh proved in 1997 (to appear in 1999):

(4.21) (L) → (ST).
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Proof. (1) First, let f ∈ Z[X], with positive leading coefficient,
deg(f) = d ≥ 3, and all the roots of f simple. Then there exists C > 0
such that for all n sufficiently large, |f(n)| < C|n|d.

Let ε be such that 0 < ε < 1
2 and let K > 0 be the constant

indicated by the hypothesis (L) such that

R(f(n)) > K|n|d−1−ε

for all n sufficiently large.
If, moreover, |f(n)| is powerful, then R(f(n)) ≤ |f(n)|1/2. Hence,

C|n|d > K2|n|2(d−1−ε), and therefore C > K|n|d−2−2ε. Since d− 2−
2ε > 0, it follows that |n| remains bounded when |f(n)| is powerful.

(2) Let f ∈ Z[X], with positive leading coefficient, deg(f) = d ≥ 3
and assume that f has at least three simple roots. The polynomial f
may be written as a product of irreducible polynomials, which, by
Gauss’ Lemma, may be taken to be from Z[X]. Moreover, since f
has at least three simple roots, the above decomposition yields an
expression f = gh, with g, h ∈ Z[X], deg(g) ≥ 3, the roots of g
being the simple roots of f ; moreover, g and h have positive leading
coefficients and gcd(g, h) = 1.

Hence, there exist polynomials g1, h1 ∈ Z[X] such that

g1g + h1h = 1.

If |n| is sufficiently large, then g(n), g1(n), h(n), h1(n) are not equal
to 0; as g1(n)g(n) + h1(n)h(n) = 1, it follows that gcd(g(n), h(n)) =
1.

Now, if |f(n)| = |g(n)||h(n)| is powerful, then also |g(n)| is
powerful, hence, by (1), |n| is bounded.

(3) Let f ∈ Q[X] such that there exists a2 ∈ Z and a2f ∈ Z[X].
If f has positive leading coefficients and at least three simple roots,
so does a2f . By (2), there are only finitely many n ∈ Z such that
a2f(n) is powerful, a fortiori the same holds for f .

(4) Assume that the leading coefficient a of f is negative. If
the degree of f is even, let f−(X) = −f(X). If d is odd, let
f−(X) = f(−X). So in both cases the leading coefficient of f−

is positive. By (3), {n ∈ Z : |f−(n)| is powerful} is finite. Therefore,
{n : |f(n)| is powerful} is also finite. �

Langerin proved (1993):

(4.22) (ABC) → (L).
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From the above results, it may be said, for example, that there
are only finitely many integers n such that n3 + n + 1 is powerful.

I illustrate the strength of the (ABC) conjecture with further
results taken from my paper (1999). The first result concerns dif-
ferences between 3-powerful numbers and powerful numbers. I will
state it in a particular form, for simplicity.

Let R ≥ 1 be a square-free integer, and let VR be the set of all
3-powerful integers k such that there exists c, 1 ≤ c < k, with
gcd(k, c) = 1 and radical of c dividing R, such that k + c or k − c is
powerful. Then,

(4.23) (ABC) → For every R as above, the set VR is finite.

In particular, taking R = 1 there are only finitely many 3-powerful
numbers k such that k + 1 or k − 1 is powerful. As was mentioned
in subsection C., the only known examples are 23 + 1 = 32 and
233 + 1 = 23 × 32 × 132.

The next result concerns triples of powerful numbers which I state,
for simplicity, in a particular case.

Let R ≥ 1 be a square-free integer, let TR be the set of all
pairs (k, c) such that 1 ≤ c < k, gcd(k, c) = 1, the radical of c
divides R, and k− c, k, k + c are powerful numbers. I proved (1999):

(4.24) (ABC) → TR is a finite set for each square-free integer R ≥ 1.

In particular, if R = 1, this shows yet again that (ABC) → (Efinite);
see Granville (1990).

It has now been amply illustrated how the (ABC) conjecture
is interesting. An accessible paper on this conjecture is by Nitaj

(1996).
And if it happens that you really reply that you are studying

the (ABC) (and not the (XYZ)) conjecture, you know now what to
explain.
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tribut́ıon des nombres premiers et á la décomposition desl
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What Kind of Number Is√
2
√

2?∗

0 Introduction

Is
√

2
√

2
a rational number?

A number is rational exactly when its decimal expansion is finite
or periodic.

Since a pocket (or even a giant) calculator provides only finitely

many decimal digits, it is not useful for deciding whether
√

2
√

2
is

rational or not.
Then what kind of number is

√
2
√

2
, and how to decide?

1 Kinds of numbers

First I recall the various kinds of numbers. There are the integers,
which, as Kronecker said, are “God given” and should serve as
basis to build all of Mathematics.

Next, there are the rational numbers, obtained from the integers
by divisions.

∗I am grateful to P. Bundschuh and M. Waldschmidt for advice during the
preparation of this text
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Pythagoras noted that if the sides of the right-angle of a triangle
have measures equal to 1, then the hypotenuse, measured by

√
2, is

not a rational number: if
√

2 = m
n , then 2 = m2

n2 , so 2n2 = m2, the
power of 2 in the left-hand side has odd exponent, while in the right-
hand side it has even exponent, which is contrary to the uniqueness
of factorization of integers into prime factors. This discovery was
very perplexing at the time and would demand an important change
in the concept of number.

More generally, if p is a prime number, n ≥ 2, then n
√

p is not a
rational number.

So, the extraction of roots may lead to new kinds of numbers. This
may be rephrased by stating that the roots of equations Xn − a = 0
(a ≥ 1) need not be rational numbers.

More generally, I examine the roots of polynomial equations with
rational coefficients.

Solutions of linear equations are again rational numbers. Solutions
of quadratic equations are expressible with square roots. Cardano

showed that solutions of cubic equations, as well as of biquadratic
equations, are also expressible with square and cubic roots.

These discoveries led to the following question:
Are solutions of any polynomial equation (with rational coeffi-

cients and arbitrary degree) always expressible with radicals?
This problem dominated algebra from about 1750 to 1830 and

was the object of important work by Lagrange, Gauss, Abel,
Ruffini, and Galois. This is competently described in Nový’s
book.

At this stage, all numbers under consideration were real numbers—
namely, numbers which correspond to measures of segments. Each
such number has a decimal expansion and, as we said above, the ra-
tional numbers are those with finite or periodic decimal expansions.
Real numbers that are not rational are called irrational numbers.

The equation X2+1 = 0 cannot have a root which is a real number,
since a sum of non-zero squares of real numbers is positive, so not
equal to zero.

Thus, it was necessary to invent a new kind of number.
The complex numbers were introduced to insure that all polyno-

mial equations with rational coefficients have solutions.
The complex numbers are those of the form α = a + bi where

a, b are real numbers and i =
√
−1 (so i2 + 1 = 0). The complex
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conjugate of α is ᾱ = a − bi, so α, ᾱ are solutions of the quadratic
equation X2 − 2aX + a2 + b2 = 0 which has real coefficients.

D’Alembert and Gauss proved the fundamental theorem of al-
gebra that says that if f(X) = 0 is any polynomial equation with
real coefficients (or even with complex coefficients), then it has a
root which is a complex number. More precisely, if the polynomial
has degree d ≥ 1, then the equation has d roots which are complex
numbers (but need not be all distinct).

For convenience, we recall the usual notations:

Z = set of all integers
Q = set of all rational numbers
R = set of all real numbers
C = set of all complex numbers

The sets Q, R, and C are fields, which implies, in particular, that
they are closed with respect to division (i.e., solving linear equa-
tions), while the fundamental theorem of algebra says that C is closed
with respect to solving polynomial equations. Thus, C is called an
algebraically closed field .

The consideration of equations with coefficients in Z (or in Q) led
to the set Qalg of all complex numbers which are roots of polynomial
equations with coefficients in Q. The set Qalg is a field which is
algebraically closed and the smallest one containing Q.

Every element of Qalg is called an algebraic number . Moreover,
every algebraic number which is a root of a monic polynomial with
coefficients in Z is called an algebraic integer .

If α ∈ Qalg is a root of a polynomial f(X) of degree d ≥ 1, with
coefficients in Q, but of none of smaller degree, then d is called the
degree of α. The polynomial f(X) is called the minimal polynomial
of α and it is irreducible over Q. Also, the roots of every irreducible
polynomial of degree d are algebraic numbers of degree d.

Thus, α is a rational number exactly when it is an algebraic num-
ber of degree 1. Moreover, for every d ≥ 1 there exist algebraic
numbers, and even algebraic integers α of degree d. Equivalently, for
every d ≥ 1 there exist irreducible monic polynomials f(X) ∈ Z[X]
of degree d. For example, if p is any prime number, then Xd − p is
irreducible.

In this respect, it should be observed that if f(X) ∈ Z[X] and
f(X) = g(X)h(X) with g(X), h(X) ∈ Q[X], then there exist also
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g1(X), h1(X) ∈ Z[X] of the same degree as g(X), h(X) respec-
tively, such that f(X) = g1(X)h1(X). This is a lemma due to
Gauss. Hence, f(X) ∈ Z[X] is irreducible over Q if and only if
it is irreducible over Z.

The proof of the irreducibility of Xd − p is essentially the same
as the proof of the more general irreducibility criterion due to
Eisenstein.

If f(X) = Xd + a1X
d−1 + · · · + ad−1X + ad ∈ Z[X], and if there

exists a prime p such that p divides each coefficient ai, but p2 does
not divide ad, then f(X) is irreducible.

Every complex number which is not an algebraic number is called
a transcendental number . Explicitly, α is a transcendental number
if there does not exist any polynomial f(X) with coefficients in Q,
different from the zero polynomial, such that f(α) = 0.

More generally, the numbers α1, . . . , αn are said to be al-
gebraically independent (over Q) if there does not exist any
polynomial f(X1, . . . , Xn) with coefficients in Q, different from the
zero polynomial, such that f(α1, . . . , αn) = 0.

I summarize the above discussion of the various kinds of numbers
in Figure 10.1.

It is the moment to evoke some important classical discoveries.
A real number is expressible with quadratic radicals if and only if

it is the measure of a segment which is constructible with ruler and
compass (beginning with a segment of measure 1). Gauss showed
that the side of the regular polygon with n sides is constructible with
ruler and compass (that is, the roots of Xn − 1 = 0 are expressible
with quadratic radicals) if and only if n is a product of powers of 2

Numbers
expressible
with
quadratic
radicals

Numbers
expressible
with
radicals

Algebraic
numbers

Complex
numbers

Rational
numbers

Real numbers
expressible
with
quadratic
radicals

Real numbers
expressible
with
radicals

Real
algebraic
numbers

Real
numbers

⊂ ⊂ ⊂

⊂⊂⊂⊂

∪ ∪ ∪ ∪

FIGURE 10.1.
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and distinct prime Fermat numbers:

p = Fm = 22m
+ 1 (with m ≥ 0).

So, n = 3, 5, 17, 257, 65537, . . . , or their products with powers of 2.
As a curiosity, I mention that Richelot gave in 1832 the explicit

formula, with quadratic radicals, for the side of the regular polygon
with 257 sides—it filled 83 pages of an article in Crelle’s Journal,
volume 9, 1832.

Abel, Ruffini, and Galois showed that if d ≥ 5 there exist
algebraic numbers of degree d which are not expressible by radicals.

More precisely, Galois’ theorem stated: if α ∈ C is the root of
an irreducible polynomial f(X) ∈ Z[X], then α is expressible by
radicals if and only if the Galois group of the polynomial f(X) (that
is, the group of automorphisms of the field generated by the roots
of f(X)) is a solvable group.

Abel and Ruffini established that the symmetric group and also
the alternating group on d ≥ 5 letters are not solvable groups. So,
any root of an irreducible polynomial of degree d ≥ 5 with symmetric
or alternating group, for example, is not expressible by radicals.

Incidentally, in 1933, van der Waerden showed that “almost all”
irreducible polynomials have Galois group equal to the symmetric
group. Namely, if f(X) ∈ Z[X], let �f denote the maximum of the
absolute values of its coefficients. If d ≥ 2, for every N ≥ 1 let

IN = {f(X) ∈ Z[X] | deg(f) = d, f(X) is irreducible, � f ≤ N},
SN = {f(X) ∈ IN | the Galois group if f(X) is the symmetric

group on d letters}.

Then

lim
N→∞

#(SN )
#(IN )

= 1.

Any set which may be put into one-to-one correspondence with
the set of natural numbers is said to be countable. So, Z and Q are
countable.

Since each polynomial has only finitely many roots, it follows that
Qalg is also countable. A famous result of Cantor is thatR (and
therefore C) is uncountable.

So, the sets of irrational numbers and transcendental numbers are
uncountable.
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2 How numbers are given

The methods to decide whether a given number is transcendental
depend on “how well” the number may be approached by rational
numbers or algebraic numbers. This, in turn, may become apparent
from the form in which the number is given. So it appears useful, as
a preliminary step, to discuss how numbers may be presented.

Basically, numbers are defined from known numbers by means of
“procedures”.

For example, rational numbers are obtained from integers by di-
visions, algebraic numbers are obtained from rational numbers by
solving polynomial equations.

But there are also infinitary procedures, like the following ones:

• writing infinite decimal representations according to some rule,
or “randomly”

• limits of sequences
• sums of series
• infinite products
• values of definite integrals
• continued fractions
• values of functions at special points
• mathematical constants
• etc. . . .

Now I proceed to discuss several examples.

Examples

(1) The function x �→ log x =
∫ x
1

dt
t , defined for 0 < x < ∞, is one-

to-one and onto R. The number e is the only real number such that
log e = 1.

But e is also given by

e = lim
n→∞

(
1 +

1
n

)n

,

or by

e =
∞∑

n=0

1
n!

.

Moreover, Euler gave a simple continued fraction expression for e:

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, . . .]



2 How numbers are given 277

that is,

e = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

1 +
1

1 + 1
6

+ · · ·

(Continued fractions will be discussed in §4.)
More generally, Euler showed that if a = 1, 2, 3, . . . , then

e2/α + 1
e2/α − 1

= [a, 3a, 5a, 7a, . . .].

In particular,

e2 + 1
e2 − 1

= [1, 3, 5, 7, . . .] and
e + 1
e − 1

= [2, 6, 10, 14, . . .].

(2) The number π, defined as the ratio

π =
length of circle

diameter of circle
(for any circle)

is a natural constant. But π is also given in several different ways.
Gregory’s series:

π

4
= 1 − 1

3
+

1
5
− 1

7
+ · · · .

Viète’s infinite product:

π =
2√

1
2

√
1
2 + 1

2

√
1
2

√
1
2 + 1

2

√
1
2 + 1

2

√
1
2 · · ·

.

Wallis’ infinite product (1685):

π

2
=

∞∏
n=1

2n

2n − 1
× 2n

2n + 1
.
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Brouncker’s continued fraction (published by Wallis in 1655):

4
π

= 1 +
12

2 + 32

2 + 52

2 + 72

2 + 92

2 + · · ·

This is not a simple continued fraction, i.e., the numerators are not
all equal to 1.

Using the decimal expansion of π with 35 digits, Wallis calculated
in 1685 the first 34 partial quotients of the simple continued fraction
expansion of π:

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1,

2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, 2, 6, 6, 1, . . .].

The first 26 partial quotients were calculated again by Lambert

in 1770.
This simple continued fraction for π does not reveal any regular

pattern. Up to now, no one has found any regular simple continued
fraction for any numbers easily related to π.

In a paper of 1878, Glaisher assembled a collection of series and
infinite products for π and its powers. The proofs constitute amusing
exercises and, who knows, these formulas may even be useful. Let us
quote, for example:

2π
√

3
27

+
1
3

=
∞∑

j=1

1(
2j
j

) ,

π
√

3
9

=
∞∑

j=1

1

j
(

2j
j

) .

The ubiquity of π is convincingly displayed by Castellanos (1988).

(3) The number
√

2
√

2
(with which I began the discussion), and,

more generally, complex numbers αβ = eβ log α with α, β ∈ C, α �= 0,
are values of an exponential function. The more interesting examples
are when α, β are algebraic numbers and β is not rational. I shall
return later to this topic.
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(4) If s > 1, the Riemann zeta function is defined by

ζ(s) =
∞∑

n=1

1
ns

.

It is interesting to consider the values of ζ(s) when s = 2, 3, 4, . . . .
The famous Euler’s formula gives

ζ(2k) = (−1)k−1 (2π)2k

2(2k)!
B2k

where the numbers Bn (n ≥ 0) are the Bernoulli numbers, defined
by the formal power series

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
.

Thus B0 = 1, B1 = −1
2 , B2 = 1

6 , B4 = − 1
30 , each Bn is a rational

number, and B2n+1 = 0 (for n ≥ 1). So, for example, ζ(2) = π2

6 ,
ζ(4) = π4

90 .
It follows that ζ(2k)/π2k is a rational number (for k ≥ 1).
In contrast, much less is known about the values ζ(2k + 1).

Ramanujan gave without proof the following formula (see his Note-
books, Vol. I , page 259, number 15 and Vol. II, page 177, number 21,
published in 1957).

Ramanujan’s discoveries, incredible formulas mostly left without
proofs, have tantalized mathematicians. The work of Ramanujan

has been the subject of authoritative books by Berndt containing
proofs and insights about likely methods behind the proofs and in-
tuitions governing Ramanujan’s mind. For these questions, see the
books and articles of Berndt (1974, 1977, 1985, 1989), Ramanu-
jan’s Notebooks, Part II, page 276 (1989). They contain the relevant
references.

Let α, β > 0, αβ = π2, k �= 0, then

1
αk

{
1
2
ζ(2k + 1) +

∞∑
j=1

j−(2k+1)

e2αj − 1

}
− (−1)k

βk

{
1
2
ζ(2k + 1) +

∞∑
j=1

j−(2k+1)

e2βj − 1

}

= 22k
k+1∑
j=0

(−1)j+1 B2j

(2j)!
× B2k+2−2j

(2k + 2 − 2j)!
αk+1−jβj .

If k is even and α = β = π, the left-hand side is 0, so this formula
does not involve the values of Riemann’s zeta function.
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If k is odd and α = β = π, then

ζ(2k+1) = (2π)2kπ
k+1∑
j=0

(−1)j+1 B2j

(2j)!
× B2k+2−2j

(2k + 2 − 2j)!
= 2

∞∑
j=1

j−(2k+1)

e2πj − 1

(the last summation is actually a double infinite series involving
Bernoulli numbers).

The above special case had been proved by Lerch in 1901.
The general Ramanujan formula was first proved by Malurkar

(1925). Many other mathematicians rediscovered and/or proved
these formulas, such as Grosswald (1970, 1972) and Smart

Katayama, Riesel, Rao, Zhang, Berndt, and Sitaramachan-

dara. This is discussed in Berndt’s book and also by Smart and
Katayama in 1973.

A special case is:

ζ(3) =
7π3

180
− 1

π

∞∑
j=1

1
j4

× 2πj

e2πj − 1
.

In 1954, Margrethe Munthe Hjornaes formed the following
series expansions for ζ(2), ζ(3):

ζ(2) = 3
∞∑

j=1

1

j2
(

2j
j

) ,

ζ(3) =
5
2

∞∑
j=1

(−1)j−1

j3
(

2j
j

) .

Melzak gave (see page 85 of volume I of his book of 1973) the
above formula for ζ(2) and also the following one for ζ(3), obtained
with telescoping cancellation:

ζ(3) =
∞∑

j=1

(−1)j+1 [(j − 1)!]2

(3j − 2)!

[
1

(2j − 1)2
+

5
12j(3j − 1)

]
.

The series for ζ(2) was also given by Comtet (1974), page 89.
These formulas were obtained again (independently) by Apéry

(1979). He used this expansion of ζ(3) to prove that this number
is irrational. This discovery caused a great sensation. In the words
of van der Poorten (1978/9), “a proof that Euler missed. . . .” But
one should not miss reading van der Poorten’s paper, written
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while visiting Queen’s University. Another formula of the same kind
is:

ζ(4) =
π4

90
=

36
17

∞∑
j=1

1

j4
(

2j
j

) .

(5) The number

γ = lim
n→∞[(1 +

1
2

+ · · · + 1
n

) − log n]

is a mathematical constant, called Mascheroni’s constant or Euler’s
constant :

γ = 0.577215665 . . .

It is not known if γ is an irrational number. Hardy stated that he
would resign his chair in Cambridge if anyone would prove that γ
is irrational—another way of saying that this was a very difficult
problem (and he felt comfortably seated in Cambridge).

There are many expressions involving γ that may be derived using
the gamma-function.

In a letter to Goldbach in 1979, Euler defined the gamma-
function Γ(z) by

Γ(z) =
1
z

∞∏
n=1

[(
1 +

1
n

)z (
1 +

z

n

)−1
]

(valid for every complex number z, except 0, −1, −2, . . . ). The
gamma-function is analytic everywhere except at the above points,
where it has simple poles. The function Γ(x) is also given by the
integral

Γ(x) =
∫ ∞

0
e−ttx−1dt,

for x real and positive, indicated by Euler. Euler’s constant γ is
equal to γ = −Γ′(1).

Dirichlet gave in 1836 the following integral expression:

γ =
∫ ∞

0

( −1
1 + t

− 1
et

)
1
t

dt.

Euler’s constant is also related to Riemann’s zeta function:

γ = lim
s→1

ζ(s) − 1
s − 1

.
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On the other hand, Mertens (1874) related it to the distribution
of primes, showing that

γ = lim
x→∞


∑

p≤x

1
log(1 − 1

p)
− log log x




(where the above sum is for all primes p ≤ x). This may be more
advantageously written as

e−γ

log x
∼

∏
p≤x

(
1 − 1

p

)
(asymptotically, as x → ∞).

For an accessible proof of this formula, see the book of Hardy

and Wright (1938). It is perhaps also worthwhile to mention, in
connection with the gamma-function, that

π =
[
Γ
(

1
2

)]2

,

which is nothing but a special case of the functional equation
discovered by Euler:

Γ(x)Γ(1 − x) =
π

sinπx
.

(6) Glaisher indicated curious instances of numbers given in
different ways:√

1.01000100000100000001 . . .

1.2002000020000002 . . .
=

(1.01)(1.0001)(1.000001) . . .

(1.1)(1.001)(1.00001) . . .
,

1
11

+
1

111
+

1
1111

+
1

11111
+ · · ·

=
1
10

+
1

1100
+

1
110000

+
1

111000000
+

1
111000000000

+· · · ,

and

log 2 = 1 − 1
2

∞∑
j=2

(−1)j−1

j
Sj

with

Sj =
1
3j

+
1
2

(
1
5j

+
1
7j

)
+

1
4

(
1
9j

+
1

11j
+

1
13j

+
1

15j

)

+
1
8

(
1

17j
+ · · · + 1

31j

)
+ · · · .
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(7) In 1974, Shanks considered the two numbers

α =
√

5 +
√

22 + 2
√

5

β =
√

11 + 2
√

29 +

√
16 − 2

√
29 + 2

√
55 − 10

√
29.

To 25 decimal places, these numbers are equal to

7.381175940895657970987266.

But are they actually equal? Even though it may seem incredible,
α = β. Namely, α = β = 4x − 1, where x is the largest root of the
polynomial

f(X) = X4 − X3 − 3X2 + X + 1.

Shanks advanced the following explanation. The Galois group of
f(X) is the octic group of symmetries of the square, which is gener-
ated by two elements σ, τ , with relations σ2 = 1, τ4 = 1, στσ = τ3

(here, 1 indicates the identity automorphism).
The resolvent of f(X) is the polynomial

g(X) = X3 − 8X − 7 = (X + 1)(X2 − X − 7).

The polynomials f(X), g(X) have the same discriminant, equal
to 52 · 29.

The field Q(x) contains Q(
√

5), however it does not contain
Q(

√
29).

Q(x)

Q(
√

5) Q(
√

29)

�����������

Q

The number x is expressible with any root z of the resolvent g(X).
If z = −1, then x = α+1

4 . If z = 1+
√

29
2
√

2
, then x = β+1

4 , so α = β.
In a letter (dated August 23, 1984) Agoh proposed a simpler

method to obtain such identities.
Let a, b be integers, a ≥ 0, b ≥ 0, such that a2 ≥ 4b. Let y =

a − 2
√

b ≥ 0 and k = 2ay − y2. Then,

k = 2ay − y2 = y(2a − y) = (a − 2
√

b)(a + 2
√

b) = a2 − 4b ≥ 0.
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Hence,

2a + 2
√

k = 2a − y + y + 2
√

2ay − y2 = (
√

2a − y +
√

y)2.

This gives √
2a + 2

√
k =

√
2a − y +

√
y

(the minus sign may be disregarded).
Therefore,

√
k+

√
2a + 2

√
k =

√
2a − y+

√
k+

√
y =

√
2a − y+

√
k + y + 2

√
ky.

The result now follows from

ky = (a2 − 4b)a − 2(a2 − 4b)
√

b
√

a2 − 4b +
√

2a + 2
√

a2 − 4b

=
√

a + 2
√

b

+

√
a2 − 4b + a − 2

√
b + 2

√
(a2 − 4b)a − 2(a2 − 4b)

√
b.

For example, taking a = 11, b = 29, one obtains Shanks’ identity.
Taking a = 5, b = 3, one gets similarly

√
13 +

√
10 + 2

√
13 =

√
5 + 2

√
3 +

√
18 − 2

√
3 + 2

√
65 − 26

√
3.

Nested radicals—the ones that are a nightmare to typesetters—are
the subject of an article of Landau (1994).

3 Brief historical survey

An excellent description of the historical development of the theory
of transcendental numbers may be found in Waldschmidt’s lecture
at the Séminaire d’Historie des Mathématiques, in Paris, 1983.

This brief account reproduces some of the contents of that lecture,
in a more succinct presentation.

First Phase. The origin of these studies may be traced to the prob-
lem of “squaring the circle”. Namely, to construct with ruler and
compass the side a of the square with the same area as the circle
with radius 1: a2 = π, so a =

√
π.
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A nice and informative report on this problem and properties of π
may be found in the special issue of the periodical “Petit Archimède”,
which is dedicated to the number π (1980).

Another motivation was the discovery by Pythagoras that
√

2
is not a rational number.

Leibniz seems to be the first mathematician who employed the
expression “transcendental number” (1704).

In 1737, using continued fractions, Euler proved that e2, hence
also e, is irrational.

If α, β are non-zero algebraic numbers which are multiplicatively
independent (that is, if αrβs = 1 with r, s integers, then r = s = 0),
then log α

log β is clearly an irrational number; in 1748, Euler stated

without proof that log α
log β is a transcendental number. This was again

considered, much later, by Hilbert.
In 1755, Euler conjectured that π is transcendental.
Lambert showed in 1761 that π is irrational. He actually proved

also that if r is a non-zero rational number, then tan r and er are
irrational.

Next, Legendre proved that π2 is irrational (1794), and Fourier

gave in 1815 an easy proof that e is irrational, using the series ex-
pansion of e (see Stainville). In 1840, Liouville extended this
method to show that e and e2 are irrational and not algebraic of
degree 2.
Second Phase. This phase comprises the first papers using
diophantine approximation.

In 1842, Dirichlet used the pigeon-hole principle to give results
on the approximation of irrational numbers by rationals.

In his famous papers of 1844 and 1851, Liouville constructed
a class of transcendental numbers, now called Liouville numbers,
including, for instance, the numbers

∞∑
n=0

kn

an!
,

where an ≥ 2, 0 ≤ kn ≤ a − 1 for every n ≥ 0, and kn �= 0 for
infinitely many indices n. In particular,

∞∑
n=0

1
10n!

is a transcendental number.
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These results were based on Liouville’s inequality, concerning the
approximation of algebraic numbers by rationals.

Included also in this phase are the set-theoretical results of Can-

tor. He showed in 1874 that R and C are not countable sets, while
the set of all algebraic numbers is countable. Hence, the set of all
transcendental numbers is not countable.

Third Phase. The methods of diophantine approximation were
refined to allow the proofs of important results.

In 1873, Hermite showed that e is transcendental. This was the
first number (not constructed ad-hoc) shown to be transcendental.

In 1882, Lindemann proved that π is transcendental. This im-
plied, of course, that π is not expressible by radicals, and therefore
π and

√
π are not constructible by ruler and compass. So, the

long-standing problem of squaring the circle had a negative solution.
In his paper, Lindemann stated other results, without proof. They

were soon after established by Hermite and Weierstrass. Linde-
mann and Hermite’s theorem is the following: If α is a non-zero
algebraic number, then eα is transcendental.

An equivalent statement is the following: If α is an algebraic
number, α �= 0, 1, then log α is transcendental.

The more general Lindemann and Weierstrass’s theorem states: If
α1, . . . , αn are algebraic numbers linearly independent over Q, then
eα1 , . . . , eαn are algebraically independent.

These theorems were only stated by Lindemann, who did not
prove them. Instead, he turned his attention to Fermat’s Last The-
orem and published a book with a general proof of the theorem.
Unfortunately, his proof was wrong.

In 1886, Weierstrass considered the question whether a tran-
scendental function (like the exponential or circular functions) takes
transcendental values at algebraic points (excluding a few excep-
tional points). He showed that this is true for special functions, but
not true for arbitrary entire transcendental functions.

Fourth Phase. In 1900, in his 7th problem, Hilbert asked whether
the following is true: if α is any algebraic number (α �= 0, 1), and if
β is any irrational algebraic number, then αβ is transcendental.

This was considered by Hilbert to be a very difficult problem.
Indeed, in a seminar in Göttingen around 1920, Hilbert went so
far as to say that no one present would live long enough to see this
question settled.
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Yet, in 1934, Gel’fond and Schneider independently, and with
different methods, solved Hilbert’s 7th problem in the affirmative.

In particular, eπ = (−1)−i and the number
√

2
√

2
are transcenden-

tal numbers.
At the same time, important progress was made in the theory

of diophantine approximation, by Thue (1909), Siegel (1921),
and Roth (1955), with applications to diophantine equations and
transcendental numbers.

Quite recently, beginning in 1968, Baker published a series of
fundamental papers on algebraic independence of logarithms, which
have, as corollaries, most of the classical results (see his book, 1975).

The classification of transcendental numbers was initiated by
Mahler in 1932, but much has still to be done.

For the convenience of the reader, I summarize some of the results
concerning the numbers considered above.

Number Irrational Transcendental
e Yes, proved by Euler (1737) Yes, proved by Hermite (1873)

π Yes, proved by Lambert

(1761)

Yes, proved by Lindemann

(1882)

γ ? ?
√

2
√

2
Yes Yes, special case of Gel’fond

and Schneider’s theorem
(1934)

ζ(3) Yes, proved by Apéry (1979) ?

4 Continued fractions

Continued fractions were been first introduced by Bombelli in 1572,
in connection with the approximate calculation of square roots of
numbers which are not perfect squares. They play a rather funda-
mental role in the approximation of numbers by rational numbers, so
it is useful to summarize the relevant definitions and properties. The
proofs of all statements are easily found in textbooks such as Per-

ron (1910, 1913), Khintchine (1935), Niven (1957), and Olds

(1963).
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A. Generalities

Let α be a positive real number. I shall define the simple continued
fraction of α. Let a0 ≥ 0 be the unique integer such that a0 ≤ α <
a0 + 1, that is, a0 = [α] is the integral part of α. If α is not an
integer, then 0 < α−a0 < 1. Let α1 = 1

α−a0
. The process is repeated

with α1, leading successively to numbers α1, α2, . . . . It terminates
in a finite number of steps if and only if α is a rational number. The
notation α = [a0, a1, a2, . . .] means that

α = a0 +
1

a1 +
1

a2 + · · ·

.

This is the simple continued fraction expansion of α. [It is called
“simple” because the “numerators” are all equal to 1; I shall not
considered continued fractions which are not simple, except for some
examples given in §2.]

Conversely, if a0 ≥ 0, a1, a2, . . . , are positive integers, let rn =
hn
kn

= [a0, a1, . . . , an] where 1 ≤ hn, kn, gcd(hn, kn) = 1. Then

r0 < r2 < r4 < · · · · · · < r5 < r3 < r1,

and the following limits exist and are equal to some irrational number
α = lim r2n = lim r2n−1. The simple continued fraction expansion
of α turns out to be

α = [a0, a1, a2, . . .].

The convergents rn = hn
kn

of α have important properties of a good
approximation to α. More precisely:

(4.1) For every n ≥ 1: |α − hn
kn

| < 1
knkn+1

< 1
k2

n

.

(4.2) For every n ≥ 1: |αkn − hn| < |αkn−1 − hn−1|, hence∣∣∣∣α − hn

kn

∣∣∣∣ <

∣∣∣∣α − hn−1

kn−1

∣∣∣∣ .
(4.3) For every n ≥ 1, the convergent hn

kn
is the “best approxima-

tion” with denominator at most kn, that is, if |bα− a| < |knα− hn|,
then b > kn and so if |α − a

b | < |α − hn
kn

|, then b > kn.

Conversely,

(4.4) If a
b is a best approximation of α, then a

b is equal to a
convergent hn

kn
, with n ≥ 0.
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B. Periodic continued fractions

An infinite simple continued fraction

α = [a0, a1, a2, . . .]

is periodic if there exists n0 ≥ 0, t > 0 such that an+t = an for every
n ≥ n0. Choosing the smallest such t and n0, the following notation
is used:

α = [a0, . . . , an0−1, an0 , an0+1, . . . , an0+t−1].

(a0, . . . , an0−1) is the pre-period , n0 is the length of the pre-period,
(an0 , an0+1, . . . , an0+t−1) is the period , and t is the length of the
period. If n0 = 0, then the continued fraction is purely periodic. By
the minimal choice of n0, an0−1 �= an0+t−1.

Now I study the continued fraction expansion of real quadratic
irrational numbers α. Each such number may be written in the form
α = p±√

D
q , where p, q �= 0, D > 1 are integers, and D is not a

square. From p−√
D

q = −p+
√

D
−q , it may be always assumed that α is

in the form p+
√

D
q .

Moreover, if D−p2

q is not an integer, say D−p2

q = c
d , then α =

dp+
√

Dd2

dq and now Dd2−d2p2

dq = dD−p2

q = c is an integer.

So, there is no loss of generality to assume that α = p+
√

D
q and q

divides D − p2.
Euler proved (1737):

(4.5) If α has an infinite periodic simple continued fraction
expansion, then α is a real quadratic irrational number.

The most important result about periodic continued fractions is
the converse. It was proved by Lagrange in 1770:

(4.6) The continued fraction expansion of every real quadratic
irrational number α is periodic.

For example, the golden number
√

5+1
2 and

√
2 have the following

continued fraction expansions:
√

5 + 1
2

= [1, 1, 1, . . .],
√

2 = [1, 2, 2, 2, . . .].
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It is important to note that the simple continued fraction expan-
sions of any real algebraic number of degree higher than two seem
to have random quotients which do not remain bounded. For exten-
sive numerical calculations and statistical analysis, see the paper of
Brent, van der Poorten, and te Riele (1996) .

The next result is about purely periodic continued fractions.
The conjugate of α = p+

√
D

q is denoted by α′ = p−√
D

q = −p+
√

D
−q .

(4.7) The simple continued fraction expansion of the real quadratic
irrational number α is purely periodic if and only if 1 < α and
−1 < α′ < 0. Moreover, if 1 < α and α′ < −1, then the pre-period
has only one element.

In 1828, Galois proved:

(4.8) Let α = p+
√

D
q with p, q �= 0, D > 0 integers, D not a square,

and q dividing D2 − p. Let α′ = −p+
√

D
−q = p−√

D
q be its conjugate. If

α = [a0, a1, . . . , at−1], then 1
α′ = [at−1, at−2, . . . , a1, a0].

In 1828, Legendre gave the following result for the simple con-
tinued fraction expansion of

√
D, where D is a positive integer that

is not a square:

(4.9)
√

D = [a0, a1, a2, . . . , a2, a1, 2a0 ], that is, the pre-period has
length 1, the period consists of a symmetric part followed by the
double of the term in the pre-period (note that the number of terms
in the period may be even or odd).

The following result is interesting:

(4.10) If the continued fraction expansion of
√

D has period with
an odd number of terms, then D is the sum of two squares.

Fermat considered the equation X2 − DY 2 = 1 (where D > 0
is a square-free integer) and he stated that it has infinitely many
solutions in natural numbers. This was first proved by Lagrange

in 1770 using the theory of continued fractions.

(4.11) Let D > 0 be a square-free integer. Let hn
kn

be the convergents
of the continued fraction of

√
D, and t the length of the period.
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(1) The solutions in natural numbers of X2 − DY 2 = 1 are (1, 0)
and (hnt−1, knt−1) when t is even, and (h2nt−1, k2nt−1) when t is odd,
for all n ≥ 1. Thus, the equation has infinitely many solutions.

(2) If t is even, the equation X2 − DY 2 = −1 has no solution
in natural numbers, while if t is odd then its solutions in natural
numbers are (hnt−1, knt−1) for all odd n ≥ 1.

(3) For all n ≥ 1: hnt−1 + knt−1

√
D = (ht−1 + +kt−1

√
D)n.

C. Simple continued fractions of π and e

Now I turn my attention to the numbers π and e.
As already indicated in §2, the simple continued fraction expansion

of π is
π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, . . .].

The convergents are

3
1
,

22
7

,
133
106

,
355
113

,
103993
33102

,
104348
33215

,
208341
66317

,
3123689
99532

, . . . .

By (4.3), the convergents are the best approximating for π. For some
convergents the actual approximation is much better than expected.
Thus ∣∣∣∣π − 22

7

∣∣∣∣ ≈ 1
103

,

∣∣∣∣π − 333
106

∣∣∣∣ ≈ 8
105

,

∣∣∣∣π − 355
113

∣∣∣∣ ≈ 26
108

.

The value 22
7 was already known by Archimedes, while Adri-

anus Metius (1571–1635) knew the values 133
106 , 355

113 . Already in 1685
Wallis had computed the 34th convergent. It should also be noted
that the convergents

h12

k12
=

5419351
1725033

,
h27

k27
=

428224593349304
136308121570117

were given by R. Arima, Lord of Kurume in Japan, by 1769, and
these provide an approximation to π with an error of about 10−29.
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As already stated in §2, Euler gave simple infinite continued
fractions for

e2/a + 1
e2/a − 1

(for a ≥ 1)

and also for e. I shall give the proof which is pretty.

(4.12) If a ≥ 1 is any integer, then

e2/a + 1
e2/a − 1

= [a, 3a, 5a, 7a, . . .].

In particular,

e2 + 1
e2 − 1

= [1, 3, 5, 7, . . .],

e + 1
e − 1

= [2, 6, 10, 14, . . .].

Proof. To establish this expansion I consider, for every m ≥ 0,
the series

Sm =
∞∑
i=0

2m(m + i)!
i!(2m + 2i)!

(
1
a

)2i+m

.

It converges, as seen by comparing it with the series

∞∑
i=0

2m

i!

(
1
a

)2i+m

=
(

2
a

)m

e1/a2
.

Note that

S0 =
∞∑
i=0

1
(2i)!

(
1
a

)2i

=
e1/a + e−1/a

2
,

S1 =
∞∑
i=0

1
(2i + 1)!

(
1
a

)2i+1

=
e1/a − e−1/a

2
.

By a simple calculation, one sees that

Sm − (2m + 1)aSm+1 = Sm+2

for every m ≥ 0.
Let Rm = Sm

Sm+1
, so

R0 =
e1/a + e−1/a

e1/a − e−1/a
=

e2/a + 1
e2/a − 1

.
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Also, Rm = (2m + 1)a + 1
Rm+1

, thus, in particular,

R0 = a +
1

R1
, R1 = 3a +

1
R2

, R2 = 5a +
1

R3
, . . . .

This shows, as required, that

e2/a + 1
e2/a − 1

= [a, 3a, 5a, 7a, . . .]. �

If α is any positive real number, and if a0, a2, . . . are positive
integers, one defines [α] = α, and by induction,

[a0, a1, . . . , an, α] = [a0, . . . , an−1, an +
1
α

].

Euler first discovered by explicit calculation, and then gave a
proof of, the continued fraction expansion of the number e; the simple
proof below is due to Hurwitz (1891b):

(4.13) e = [2, 1, 2, 1, 1, 4, 1, 1, 6, . . .]

Proof. From e+1
e−1 = [2, 6, 10, 14, . . .] it follows that

2
e − 1

=
e + 1
e − 1

− 1 = [1, 6, 10, 14, . . .],

hence e−1
2 = [0, 1, 6, 10, 14, . . .]. One now needs to express 2 ×

[0, 1, 6, 10, 14, . . .] as a continued fraction.
If α is any real number, then 2 × [0, 2a + 1, α] = [0, a, 1, 1, α−1

2 ].
Indeed,

2 × 1
(2a + 1) + 1

α

=
1

a + (1
2 + 1

2α)
=

1

a +
1
2α

α+1

=
1

a + 1
1+ α−1

α+1

=
1

a + 1
1+ 1

1+ 1
α−1

2

= [0, a, 1, 1,
α − 1

2
].

I shall repeatedly use this formula.
Let α = [6, 10, 14, . . .], then

2 × [0, 1, α] = [0, 0, 1, 1,
α − 1

2
] = [1, 1,

α − 1
2

].
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But

α − 1
2

=
1
2
× [5, 10, 14, . . .] =

1
2
× [0, 0, 5, 10, 14, . . .]

= [0, 2 × [0, 5, 10, 14, . . .]].

Now let β = [10, 14, 18, . . .] and compute

2 × [0, 5, β] = [0, 2, 1, 1,
β − 1

2
].

Again,

β − 1
2

=
1
2
[9, 14, 18, . . .] = [0, 2 × [0, 9, 14, 18, . . .]].

So one has already e = 1+[1, 1, 0, 0, 2, 1, 1, β−1
2 ] = [2, 1, 2, 1, 1, β−1

2 ].
More generally, if γ = [4m + 2, 4(m + 1) + 2, . . .], then

2 × [0, 4(m − 1) + 1, γ] = [1, 1,
γ − 1

2
]

and by induction,

e = [2, 1, 2, 1, 1, 4, 1, 1, . . . , 2m, 1, 1, . . .],

concluding the proof. �

With the same method, Hurwitz also proved that

e2 = [7, 2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, 1, 1, 9, 42, . . .],

and the pattern of quotients is easily recognized as being a5(m−1)+1 =
3m − 1, a5(m−1)+2 = 1, a5(m−1)+3 = 1, a5(m−1)+4 = 3m, a5m =
12m + 6, for m = 1, 2, 3, . . . .

With self-explanatory notation I write

e = [2, 1, 2m, 1]m>1 and e2 = [7, 3m − 1, 1, 1, 3m, 12m + 6]m≥1.

From (4.7) it follows at once that e and e2 are not roots of
quadratic equations with integer coefficients.
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5 Approximation by rational numbers

The kind of an irrational number, whether it is algebraic or transcen-
dental, depends on how well it may be approximated by rational
numbers. Thus, the concepts of approximation are central in the
study of irrational numbers.

The leading idea in this section goes back to Liouville and
Dirichlet. In 1909, Thue considered the order of approximation
of real algebraic numbers by rational numbers, while studying the
solution of certain types of diophantine equations. I shall describe
later this relationship.

A. The order of approximation

In the next considerations, the rational numbers are written a
b where

b ≥ 1 and gcd(a, b) = 1.
Let α ∈ R, ν ∈ R, ν ≥ 1. The number α is said to be approximable

by rational numbers to the order ν ≥ 1 when there exists C > 0
(depending on α, ν) and infinitely many rational numbers a

b such
that ∣∣∣∣α − a

b

∣∣∣∣ <
C

bν
.

Clearly, if α is approximable by rational numbers to the order ν
and ν ≥ ν ′ ≥ 1, then α is also approximable to the other ν ′.

Let ν(α) = sup{ν ∈ R | α is approximable by rational numbers to
the order ν}. Thus, 1 ≤ ν(α) ≤ ∞.

One deduces at once:

(5.1) Let α ∈ R.
(1) For every ε > 0 there exists an integer b0 ≥ 1 such that if a

b is
a rational number with denomonator b ≥ b0, then |α − a

b | > 1
bν(α)+ε .

(2) For every ε > 0 there exists C(α, ε) = C > 0 such that 0 <
C < 1 and |α − a

b | > C
bν(α)+ε , for all a

b �= α.

A first easy remark is the following:

(5.2) Every rational number is approximable by rational numbers
to the order 1 (using any constant C > 1), but not to any order 1+ε
(ε > 0); thus, ν(α) = 1 for every α ∈ Q.

I shall indicate later the theorem of Liouville on the ap-
proximation of irrational algebraic numbers by rational numbers
(see (5.9)).
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The pigeon-hole principle is a very simple idea: if there are more
pigeons than holes, then some hole will have at least two pigeons.
Dirichlet put pigeons to good use in (1842). His result actually
follows from (4.2):

(5.3) If α is a real irrational number, then α is approximable by
rational numbers to the order 2 (using C = C(α, 2) = 1); explicitly,
there exist infinitely many rational numbers a

b such that |α− a
b | < 1

b2
.

Thus, with the present notation, if α ∈ R \ Q, then ν(α) ≥ 2.
In this respect, Hurwitz determined in 1891 that 1√

5
is the best

constant in Dirichlet’s theorem. A simple proof is in Niven’s book,
1963.

(5.4) (1) For every real irrational number α, there exists infinitely
many rational numbers a

b such that

|α − a

b
| <

1√
5b2

.

(2) However, if 0 < C < 1√
5

and α = 1+
√

5
2 (the golden number),

then there are only finitely many rational numbers a
b satisfying |α−

a
b | < C

b2
.

B. The Markoff numbers

For each irrational number α, Perron introduced in 1921 an invari-
ant M(α). A closely related concept had been studied by Markoff

already in 1879.
Let Sα be the set of all positive numbers λ such that there exist

infinitely many rational numbers a
b satisfying the inequality |α− a

b | <
1

λb2
.

Clearly, if λ ∈ Sα and 0 < λ′ < λ, then λ′ ∈ Sα.
Let M(α) = sup{λ | λ ∈ Sα}. By (5.4),

√
5 ∈ Sα; thus

√
5 ≤

M(α) for every irrational number α. Also, for the golden number,

M

(√
5 + 1
2

)
=

√
5.

The following result is easy to show:

(5.5) Let α = [a1, a1, a2, . . .]. Then M(α) < ∞ if and only if the
sequence (an)n≥0 is bounded.
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The above result says that irrational numbers having continued
fraction expansions with unbounded quotients admit arbitrarily close
approximation by convergents.

Now I turn my attention to the possible values of M(α), for all
irrational numbers α.

The real numbers α and α′ are said to be equivalent (α ∼ α′)
when there exist integers a, b, c, and d such that ad − bc = ±1
and α′ = aα+b

cα+d . It follows that α = −dα′+b
cα′−a , so this is indeed an

equivalence relation. Moreover, each equivalence class is either finite
or countably infinite.

Hurwitz established in 1891 the following proposition:

(5.6) If α ∼ α′, then M(α) = M(α′).

In general, the converse of (5.6) is not true. Yet, it is true for the
golden number:

(5.7) If α is an irrational number which is not equivalent to the
golden number, then M(α) ≥

√
8.

A full description of the values assumed by M(α) is still incom-
plete. The study of the values M(α) < 3 depends on Markoff’s
equation

X2 + Y 2 + Z2 = 3XYZ.

Markoff showed in 1879 that there exist infinitely many natural
numbers x with the property that there exist natural numbers y, z
such that (x, y, z) is a solution of the above equation.

These numbers are

x = 1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, . . .

(the Markoff numbers).
Perron showed:
The values M(α) which are less than 3 are precisely the numbers√
9x2−4

x for all Markoff numbers x = 1, 2, 5, . . . . Thus they are

√
5 <

√
8 <

√
221
5

<

√
1521
13

<

√
7569
29

< · · ·

and

lim
x→∞

√
9x2 − 4

x
= 3.
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Furthermore, M(α) = 1
x

√
9x2 − 4 exactly if α is equivalent to

1
2x(

√
9x2 − 4 + x + 2y

z ) where (x, y, z) is a solution of Markoff’s
equation. It follows that if M(α) < 3, then α ∼ α′ if and only if
M(α) = M(α′). Also, if α is not a quadratic irrational number, then
M(α) ≥ 3.

The numbers with M(α) = 3 are those equivalent to

[2, 2, 1, 1, . . . , 1, 2, 2, 1, 1, . . . , 1, 2, 2, 1, 1, . . . , 1, . . .]

with blocks of quotients containing m1, m2, m3, . . . quotients equal
to 1, and m1 < m2 < m3 < · · ·. Since this set is uncountable, there
exists uncountably many pairwise non-equivalent transcendental
numbers α with M(α) = 3.

The study of the values M(α) > 3 is much more elaborate. For
example, M(α) cannot be in the open interval between

√
12 and

√
13.

But there are uncountably many α such that M(α) =
√

12; on the
other hand, M(α) =

√
13 exactly if α ∼ 3+

√
13

2 . Next, M(α) cannot
be in the open interval between

√
13 and 9

√
13+65
22 = 3.6631 . . .; the

set of all α such that M(α) = 3.6631 . . . is uncountable.
These classical results are explained well in the book of Koksma

(1936) who refers in particular to the work of Shibata (1929).
More recently (1982), Zagier studied the distribution of Markoff

numbers. Let z > 0 and Z(z) = {x | x ≤ z, x is a Markoff number}.
Zagier proved that #Z(z) = C log2 3x + O(log x log log2 x) with
C = 0.1807. . . . Numerical calculations indicate that the error should
be even smaller.

C. Measures of irrationality

Let α be an irrational number; the number ν ≥ 1 is a measure of
irrationality of α when for every ε > 0 there exist only finitely many
rational numbers a

b such that |α − a
b | < 1

bν+ε .
So ν(α) ≤ ν for every measure of irrationality ν of α. In order to

determine or estimate ν(α) one aims to find as small a measure of
irrationality of α as possible.

Sometimes it may be simpler to determine values of ν which are
not orders of approximation for α than values which are orders of
approximation.

Here is a criterion to show that a number ν is an irrationality
measure for α:
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(5.8) Let α be an irrational number. Suppose that pn

qn
is a sequence

of rational numbers such that for every n ≥ 1, qn+1 = q1+sn
n where

sn > 0 and limn→∞ sn = 0. If there exist λ, 0 < λ < 1, and C > 0
such that |α − pn

qn
| < C

q1+λ
n

for every n ≥ 1, then ν = 1 + 1
λ is a

measure of irrationality for α.

The proof of this criterion is simple; see for example Alladi

(1979), who gives another similar criterion.
In the next section I shall indicate measures of irrationality for

some special numbers.

D. Order of approximation of irrational algebraic
numbers

Let α be an algebraic number of degree d ≥ 1, and let

f(X) = a0X
d + a1X

d−1 + · · · + ad ∈ Z[X]

be the minimal polynomial of α over Q, with gcd(a0, a1, . . . , ad) = 1,
a0 �= 0.

Let the height of α be defined as H(α) = max0≤i≤d{|ai|}, so
H(α) = �f as in Chapter 1.

Let

C(α) =




1
d(d+1)H(α)(|α|+1)d−1 if α ∈ R,

|γ|
2 if α = β + γi with β, γ ∈ R, γ �= 0.

Liouville proved in 1844:

(5.9) If α is an algebraic number of degree d ≥ 1, then |α− a
b | > C(α)

bd

for every a
b ∈ Q, a

b �= α.
Hence α is not approximable by rationals to any order d+ε (ε > 0).

So, ν(α) ≤ d.

It will be seen in §7 that this result has been sharpened by Roth

to the best possible result.

Proof. If α = β + γi with β, γ ∈ R, γ �= 0, then

|α − a

b
| = |(β − a

b
) + γi| ≥ |γ| >

|γ|/2
bd
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for every a
b ∈ Q.

Now assume that α is real of degree d ≥ 1 and has minimal
polynomial f(X) =

∑d
i=0 aiX

d−i.
If a

b ∈ Q and a
b �= α, then f(a

b ) �= 0 because if d ≥ 2, then f(X)
is irreducible, so it has no rational roots. Then bdf(a

b ) is an integer
different from 0 and therefore |bdf(a

b )| ≥ 1, so |f(a
b )| ≥ a

bd .
From f(α) = 0 it follows that

1
bd

≤
∣∣∣∣f

(
a

b

)∣∣∣∣ = |f
(

a

b

)
− f(α)| = |α − a

b
||f ′(ξ)|

for some real number ξ such that |ξ − α| < |α − a
b |.

First case: |α − a
b | ≥ 1 ≥ 1

bd > C(α)
bd , because C(α) < 1.

Second case: |α − a
b | < 1, so |ξ − α| < 1 and |ξ| < |α| + 1. Then

1
bd

≤ |α − a

b
|

∑
|ξ−α|<1

|f ′(ξ)|.

But f ′(ξ) =
∑d−1

i=0 (d − i)aiξ
d−i−1, so

|f ′(ξ)| ≤
d−1∑
i=0

(d − i)|ai||ξ|d−i−1.

If |ξ| ≥ 1, then

|f ′(ξ)| ≤ [
d−1∑
i=0

(d − i)]H(α)|ξ|d−1

<
d(d + 1)

2
H(α)(|α| + 1)d−1 <

1
C(α)

.

If |ξ| < 1, then

|f ′(ξ)| ≤ [
d−1∑
i=0

(d − i)]H(α)

=
d(d + 1)

2
H(α) = d(d + 1)H(α)(|α| + 1)d−1 =

1
C(α)

.

Thus, |α − a
b | > C(α)

bd , concluding the proof. �

As was mentioned in the historical survey, Liouville’s theorem was
one of the keystones in the building of the theory of approximation
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by rational numbers. Even though the inequality provided by the
theorem is rather loose, it may still be used to prove various results
about the irrationality of specific numbers. This will be illustrated
in the next section.

6 Irrationality of special numbers

In this section I prove that several interesting numbers are irrational,
beginning with the number e.

(6.1) e and e2 are irrational numbers, which, moreover, are
not algebraic of degree 2. (And, in fact, these numbers are
transcendental.)

Proof. As was shown in subsection C., Euler gave the continued
fraction expansions

α =
e + 1
e − 1

= [2, 6, 10, 14, . . .],

β =
e2 + 1
e2 − 1

= [1, 3, 5, 7, . . .].

So, α and β are irrational numbers, hence e and e2 are irra-
tional numbers which are not algebraic of degree 2, as follows from
Lagrange’s proposition (4.7). �

Another proof of the irrationality of e, independent of the con-
tinued fraction expansion, was given by Fourier, and appeared in
Stainville’s book in 1815. It is based on a simple criterion:

(6.2) Let α be a real number, let (f(n))n≥0 be a sequence of positive
real numbers such that lim infn→∞ f(n) = 0, and assume that there
exists n0 such that for every n ≥ n0 there exist integers an and bn

such that 0 < |bnα − an| ≤ f(n). Then α is irrational.

This was Fourier’s proof:

Proof. It is equivalent to show that α = e − 2 =
∑∞

n=2
1
n! is

irrational. For every n ≥ 2, n!α = kn + sn with kn = n!(
∑n

i=2
1
i!) is
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an integer, and

0 < sn =
1

n + 1
+

1
(n + 1)(n + 2)

+ · · ·

<
1

(n + 1)
+

1
(n + 1)2

+
1

(n + 1)3
+ · · · =

1
n

.

By (6.2), α is irrational. �

The criterion (6.2) also implies that if p1 < p2 < p3 < · · · is a
sequence of prime numbers, then

α =
∞∑
i=1

1
p1p2 · · · pi

is an irrational number.
Other irrationality criteria may be obtained using representations

of positive real numbers which generalize the decimal representa-
tion. There are several noteworthy representations, as explained for
example, in Perron’s book Irrationalzahlen.

In 1869, Cantor proved:

(6.3) Let a1, a1, a3, . . . ≥ 2 be integers. Then every real number α
has a unique representation.

α = c0 +
∞∑
i=1

ci

a1a2 · · · ai

where each ci is an integer, and for i ≥ 1, 0 ≤ ci ≤ ai − 1 and
ci < ai − 1 for infinitely many indices i ≥ 1.

Conversely, every series of the above kind is convergent. Taking
ai = 10 for each i, one obtains the ordinary decimal representation.

This gives the following irrationality criterion:

(6.4) If each prime p divides infinitely many ai, then α is irrational
if and only if ci ≥ 1 for infinitely many indices i.

Note the following special cases:
(a) If each ai = i + 1 and each ci = 1, then e = 2 +

∑∞
n=2

1
n! is

irrational.
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(b) If F1, F2, . . . , Fi, . . . is the sequence of Fibonacci numbers,
then

α =
∞∑
i=1

1
F1F2 · · ·Fi

= 2 +
∞∑
i=3

1
F3 · · ·Fi

is an irrational number.
In the same spirit, I describe now the representations given by

Sylvester, Lüroth, and Engel.
In 1880, Sylvester showed:

(6.5) Every real number α has a unique representation

α = c +
∞∑
i=1

1
ai

where c is an integer and a1, a2, a3, . . . ≥ 2 are integers, such that
ai+1 > (ai − 1)ai.

Conversely, every series of this kind is convergent and its sum α
is irrational if and only if ai+1 > (ai − 1)ai + 1 for infinitely many
indices i.

For example, α =
∑∞

i=0
1

22i is an irrational number.
In 1883, Lüroth proved:

(6.6) Every real number α has a unique representation

α = c +
1
a1

+
∞∑
i=1

1
(a1 − 1)a1(a2 − 1)a2 · · · (ai − 1)ai

× 1
ai+1

where c is an integer and a1, a2, a3, . . . ≥ 2 are integers.
Conversely, every such series is convergent and its sum α is

irrational if and only if the sequence a1, a2, a3, . . . is not periodic.

In 1913, Engel established the following result:

(6.7) Every real number α has a unique representation

α = c +
∞∑
i=1

1
a1a2 · · · ai

where c is an integer and 2 ≤ a1 ≤ a2 ≤ a3 ≤ · · · is a sequence of
integers.

Conversely, every such sequence is convergent and its sum is
irrational if and only if limi→∞ ai = ∞.
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I note the following special cases:
(a) If p1 < p2 < p3 < · · · is the sequence of prime numbers, then

α =
∑∞

i=1
1

p1p2···pi
is an irrational number (this example was already

mentioned).
(b) Let E2, E4, E6, . . . be the sequence of Euler numbers, which

are also called the secant coefficients because they are defined by

sec x = 1 − E2

2!
x2 +

E4

4!
x4 − E6

6!
x6 + · · · (for |x| < π

2 ).

These numbers are integers satisfying the recurrence relation

E2n +
(

2n

2n − 2

)
E2n−2 +

(
2n

2n − 4

)
E2n−4 + · · ·+

(
2
2

)
E2n + 1 = 0.

Moreover, (−1)nE2n > 0.
Thus, it follows that

α =
∞∑

n=1

1
|E2E4 · · ·E2n|

is an irrational number.
I shall now consider examples of other numbers defined as sums

of series.
Let (f(n))n≥0 be a strictly increasing sequence of positive integers,

let d ≥ 2 be an integer, and let

α =
∞∑

n=0

1
df(n)

.

I now investigate what kind of number α is.
(1) If f(n) = n, then

α =
∞∑

n=0

1
dn

= 1 +
1
d

+
1
d2

+
1
d3

+ · · · =
1

1 − 1
d

=
d

d − 1
,

so α is rational.
(2) Let s ≥ 2 be an integer and f(n) = ns (for n ≥ 0).
Then α =

∑∞
n=0

1
dns is an irrational number. This follows

from (6.7).
By (5.3), α is therefore approximable by rational numbers at least

to the order 2.
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(3) Let s ≥ 2 be an integer and f(n) = sn (for n ≥ 0). Then
α is approximable by rational numbers to the order s. Thus, α is
irrational.

Note that the irrationality of α follows from (6.7).
(4) Let lim supn→∞

f(n+1)
f(n) = µ > 2 and α =

∑∞
n=0

1
df(n) . Then for

every 0 < ε < µ−2, the number α is approximable by rational num-
bers to the order µ− ε, so α is irrational. Note that the irrationality
of α follows once again from (6.7).

Now I turn my attention to the number π.

(6.8) π2, hence also π, is an irrational number.

Proof. The first proof that π is irrational was given by Lambert,
while Legendre proved that π2 is irrational, as already stated in the
historical survey. The proof given below may be found in Niven’s
book. It is a modification of his own proof that π is irrational.

I need the following lemma:

Lemma. Let g ∈ Z[X] and h(X) = Xng(X)
n! where n ≥ 1. Then

h(j)(0) ∈ Z for every j ≥ 0.

Proof. Indeed, let Xng(X) =
∑

j≥0 cjX
j , so cj = 0 for j < n.

From h(j)(0) = cj
j!
n! it follows that h(j)(0) ∈ Z for every j ≥ 0. �

Now I show that π2 is irrational.
Let h(X) = Xn(1−X)n

n! (where n is a positive integer, to be chosen
later); then if 0 < x < 1, then 0 < h(x) < 1

n! .
Noting that h(j)(0) is an integer for j ≥ 0, from h(1−X) = h(X),

it follows that h(j)(1) is also an integer for j ≥ 0.
If π2 = a

b with a, b > 0 relatively prime integers, let

f(X) = bn[π2nh(X) − π2n−2h(2)(X)

+ π2n−4h(4)(X) − · · · + (−1)nh(2n)(X)],

so f(0), f(1) are integers. Moreover,

d

dx
[f ′(x) sinπx − πf(x) cos πx] = [f ′′(x) + π2f(x)] sin πx

= bnπ2n+2h(x) sin πx

= π2anh(x) sinπx,



306 10. What Kind of Number Is
√

2
√

2
?

hence

πan
∫ 1

0
h(x) sinπx dx =

[
f ′(x) sinπx

π
− f(x) cos πx

]1

0

= f(1) + f(0) ∈ Z.

So,

0 < πan
∫ 1

0
h(x) sinπx dx <

πan

n!
< 1

when n is sufficiently large. This is a contradiction. �

The same method was successfully used by Niven to prove older
results about the values of trigonometric functions and hyperbolic
functions.

(6.9) If r is a non-zero rational number, then cos r is irrational.

As a corollary, π is irrational because cos π = −1 is rational.
It follows from 1 − 2 sin2 r = cos 2r and cos 2r = 1−tan2 r

1+tan2 r
that if

r is rational, r �= 0, then sin r, tan r are irrational, hence also sec r,
csc r, and cot r are all irrational.

Similarly, if r is rational, then arccos r (when r �= 1), and arcsin r,
arctan r (when r �= 0), are irrational numbers.

(6.10) If r is a non-zero rational number, then cosh r is irrational.

Since cosh 2r = 2 sinh2 r+1 = 1+tanh2 r
1−tanh2 r

, then sinh r and tanh r are
irrational. It follows also that the values of the inverse hyperbolic
functions calculated at rational numbers are either 0 or irrational
numbers.

In this way, one obtains immediately a new proof of Lambert’s
result:

(6.11) (1) If r is a non-zero rational number, then er is irrational.
(2) If r is a positive rational number, r �= 1, then log r is irrational.

Proof. (1) If er is rational so is e−r, hence also cosh r = er+e−r

2 ,
contrary to (6.10).

(2) If r �= 1 and log r is rational, it is not zero, so by (1), r = elog r

would be irrational. �

The following remark is obvious: If r is a positive rational number
and a > 1 is an integer, then loga r = log r

log a is an irrational number if
and only if r �= as (with s rational).
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Thus, for example, log 3
log 2 is irrational. Also log10 r is irrational,

unless rm = 10n for some integers m and n.
On the other hand, it is easy to show:

(6.12) If r is a rational number, then the values of the trigonometric
functions at rπ are algebraic numbers.

Now I shall consider the question of irrationality of the values
ζ(k) =

∑∞
j=1

1
jk , the Riemann zeta function (for every integer k ≥ 2).

Since ζ(2) = π2

6 , and π2 is irrational, then so is ζ(2). Euler’s for-
mula for ζ(2k), indicated in §2, states that ζ(2k) = π2kr2k, where
r2k is a rational number. It will be indicated in §2 that π, hence also
π2k, is transcendental, therefore ζ(2k) is not only irrational but also
transcendental.

The situation is very different for ζ(2k+1). It was an open problem
for a long time to decide whether ζ(3) was irrational. This problem
was solved in the affirmative by Apéry as mentioned in the historical
survey. His ingenious method was applicable also for ζ(2).

(6.13) ζ(2) and ζ(3) are irrational numbers.

A very different proof that ζ(2) and ζ(3) are irrational numbers
was given by Beukers in 1979.

Other numbers which have been considered are sums of series
built in terms of binary recurrences. Thus André-Jeannin proved
in 1991:

(6.14) If (Fn)n≥0 denotes the sequence of Fibonacci numbers, then∑∞
n=1

1
Fn

is an irrational number.

Another classical result concerning Fibonacci numbers was ob-
tained by Good (1974) and Hoggatt (1976):

(6.15) The sum
∞∑

n=0

1
F2n

=
7 −

√
5

2
.

A corollary of the results of Becker and Töpfer (1994) is ap-
plicable, for example, to Lucas numbers L0 = 2, L1 = 1, Ln =
Ln−1 + Ln−2 (for n ≥ 2).
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(6.16) The number
∞∑

n=0

1
L2n

is irrational.

The following is indeed trivial. Let n ≥ 3. The following statements
are equivalent:

(1) For every rational number x > 0, the number (1 + xn)1/n is
irrational.

(2) Fermat’s Last Theorem is true for the exponent n.
Now, everyone knows (even laymen!) that Wiles proved Fermat’s

Last Theorem. Therefore, (1) holds for every n ≥ 3. But suppose
that someone—very intelligent—would find a direct proof of (1) with
methods of diophantine approximations. This would constitute a new
proof of Fermat’s Last Theorem. I have no ideas in this direction.

The irrationality measures of many irrational numbers have been
estimated and, in some cases, explicitly computed.

Thus ν(e) = ν(e2) = 2. Alladi showed in 1979 that ν(er) = 2 for
every non-zero rational r.

Apéry made calculations in 1979 that gave the following bounds
for the measure of irrationality of ζ(2) and ζ(3):

ν(ζ(2)) < 11.85,

ν(ζ(3)) < 13.42.

It is very important to give effective lower bounds for the dis-
tance between a given irrational number and rational numbers. Some
examples to illustrate are the following:

(a) Alladi (1979), improving a previous method of Baker,
∣∣∣∣log 2 − a

b

∣∣∣∣ >
1

1010b5.8

for every rational number a
b .

(b) Baker (1964b):
∣∣∣∣ 3
√

2 − a

b

∣∣∣∣ >
C

b296
,

where C is an explicit constant, for every rational number a
b .
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(c) Mahler (1953) proved the striking results∣∣∣∣π − a

b

∣∣∣∣ >
1

b42
,

for every rational number a
b , and∣∣∣∣π − a

b

∣∣∣∣ >
1

b30
,

for every rational number a
b with sufficiently large denominator.

Mignotte (1974) showed that∣∣∣∣π − a

b

∣∣∣∣ >
1

b20.6

for every rational number a
b , and, if b > q > 96, then∣∣∣∣π − a

b

∣∣∣∣ >
1

b20
.

So, ν(π) ≤ 20. Also, ν(π2) ≤ 17.8.
This means that ν = 30 is a measure of irrationality of π. Many

authors worked on this question and obtained improved irrationality
measures for π. I just note (without giving any hint of the method):
Mignotte, ν = 20 (in 1974), followed by the work of G. V. Chud-

novsky and D. Chudnovsky, F. Beukers, C. Viola, G. Rhin,
R. Dvornicich, E. A. Bukhadze, and M. Hata, who has the best
result up to 1993: ∣∣∣∣π − a

b

∣∣∣∣ >
1

b8.0161

for all sufficiently large b.
The calculations involved are lengthy and sharp; the verification

requires time that only specialists can spare.

7 Transcendental numbers

Cantor proved that the set R of real numbers is uncountable. This
was, at the time, a very striking discovery. It is easier to show that
the set of all algebraic numbers is countable. Therefore, the set of
transcendental numbers is also uncountable, yet it is not so easy to
produce infinite families of transcendental numbers, nor it is easy in
general to show that numbers of a given type are transcendental.

Once again, it will be important to consider how well the number
may be approximated by rational numbers.
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A. Liouville numbers

Liouville considered the following numbers: α ∈ R \ Q is called a
Liouville number if for every integer n ≥ 2 there exist an

bn
∈ Q, with

bn ≥ 2, such that |α − an
bn
| < 1

bn
n
.

(7.1) The real number α is a Liouville number if and only if α is
approximable by rational numbers to any order ν ≥ 1.

In particular, α is transcendental (by Liouville’s own theo-
rem (5.9)). Thus α is a Liouville number if and only if ν(α) = ∞.
Let L denote the set of Liouville numbers.

Here are some examples of Liouville numbers: Let d ≥ 2, 0 ≤ kn ≤
d − 1 and kn �= 0, for infinitely many indices n. Then α =

∑∞
n=0

kn

dn!

is a Liouville number. It suffices to show that α is approximable by
rational numbers to every order n ≥ 1. Let n ≥ 1, m ≥ n and

bm = dm!am =

(
m∑

i=0

ki

di!
dm!

)
.

Thus,

0 < α − am

bm
=

∞∑
i=m+1

ki

di!
≤ (d − 1)

∞∑
i=m+1

1
di!

<
d − 1

d(m+1)! − 1
<

1
(dm!)m

=
1
bm
m

≤ 1
bn
m

,

because if c = dm!, then

1
d(m+1)!

+
1

d(m+2)!
+

1
d(m+3)!

+ · · · <
1

cm+1
+

1
c(m+1)2

+
1

c(m+1)3
+ · · ·

<
1

cm+1
+

1
c2(m+1)

+
1

c3(m+1)
+ · · ·

=
1

cm+1
· 1
1 − 1

cm+1

=
1

cm+1 − 1

=
1

d(m+1)! − 1
,

and dm!m+1 + 1 < d(m+1)! + dm!m, so

d − 1
d(m+1)! − 1

<
1

(dm!)m
.
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Since there exist infinitely many n such that kn �= 0, then there exist
infinitely many distinct rationals am

bm
satisfying 0 < α − am

bm
< 1

bn
m

;
thus α ∈ L.

In particular,
∑∞

n=0
1

10n! ∈ L.
These were the first known examples of transcendental numbers.
Liouville numbers have been studied by Maillet (see his book,

1906) and have also been the subject of a chapter in Schneider’s
book (1959).

Some properties:

(7.2) The set of Liouville numbers is uncountable.

(7.3) The set of Liouville numbers is dense in R.

(7.4) The set of Liouville numbers has measure 0.

Thus “almost all” transcendental numbers are not Liouville
numbers.

Since the set of Liouville numbers is uncountable, there are
uncountably many Liouville numbers which are algebraically inde-
pendent over Q.

Perron (1932) and later Schmidt (1962) gave the following
countable set of algebraically independent Liouville numbers:

(7.5) For every i ≥ 1, let αi =
∑∞

n=1
1

2(in)! . Then α1, α2, α3, . . .
are algebraically independent over Q (that is, for every m ≥ 1 the
numbers α1, α2, . . . , αm are algebraically independent over Q).

It is known that e, π, and log 2 are not Liouville numbers (see §6),
however, it is unknown whether eπ is a Liouville number.

Even though it may at first sight seem paradoxical (because the
set of Liouville numbers has measure 0), Erdös proved in 1962 that
every non-zero real number is the sum, and also the product, of two
Liouville numbers.

B. Approximation by rational numbers: sharper
theorems

The theorem of Liouville (5.9) about the approximation of algebraic
numbers by rational numbers gives a loose order of approximation
which depends on the degree of the algebraic number; on the other
hand, the constant in the inequality is explicit.
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The modern theory of diophantine approximation was initiated
by Thue (1909) who established a new relationship between the
solutions of certain diophantine equations and the approximation of
algebraic numbers by rational numbers.

I shall describe these ideas very succinctly.
Let d ≥ 3; let F (X, Y ) = a0X

d + a1X
d−1Y + a2X

d−2Y 2 + · · · +
ad−1XY d−1 + adY

d be a homogeneous polynomial of degree d with
integer coefficients, and assume that a0 �= 0. For convenience, as-
sume also that f(X) = a0X

d + a1X
d−1 + · · · + ad is an irreducible

polynomial.
If a is any integer, we consider the equation F (X, Y ) = a. The

aim is to show that this equation has only finitely many solutions in
integers.

Let α1, . . . , αd ∈ C be the roots of f(X) = 0. Since f(X) is irre-
ducible, it follows that α1, . . . , αd are distinct algebraic numbers of
degree d.

If x and y are integers such that F (x, y) = a, then a0
∏d

k=1(x −
αky) = a.

There are two cases. If a = 0, there exists j with 1 ≤ j ≤ d such
that x − αjy = 0; but αj /∈ Q, so y = 0 and necessarily x = 0.
Therefore, if a = 0, then the only solution is (0, 0).

On the other hand, if a �= 0, then

d∏
k=1

(x − αky) =
|a|
|a0|

.

Let C1 = ( |a|
|a0|)

1/d, so there exists an index, therefore a smallest
index, j such that |x − αjy| ≤ C1.

Let C2 = minh
=k |αh−αk|; so C2 > 0. Note that for each integer y0

there exists at most d integers x such that (x, y0) is a solution of the
equation.

In order to show that F (X, Y ) = a has only finitely many solutions
in integers, it suffices to show that the set S = {solutions (x, y) : |y| >
2C1
C2

} is finite.
If (x, y) ∈ S, then for every k �= j with j as above,

0 <
C2|y|

2
< C2|y| − C1 ≤ |αk − αj | · |y| − |x − αjy|

≤ |(αk − αj)y − (x − αjy)| = |x − αky|.
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So,

|x − αky| =
|a|

|a0|
∏

k 
=j |x − αky|
<

2d−1|a|
|a0|Cd−1

2 |y|d−1
=

C3

|y|d−1

where C3 = 2d−1|a|
|a0|Cd−1

2

(note that C3, like C1 and C2, depends only on

the given equation and not on the solution (x, y) being considered).
Writing sgn(y) = |y|

y , then

αj −
x sgn(y)

|y| =
∣∣∣∣αj −

x

y

∣∣∣∣ <
C3

|y|n .

For every k = 1, . . . , d, let

Tk =
{

m

n
∈ Q | gcd(m, n) = 1 and

∣∣∣∣αk − m

n

∣∣∣∣ <
C3

nd

}
.

It was seen that if (x, y) ∈ S, then the rational number x sgn(y)
|y| be-

longs to
⋃d

k=1 Tk. This defines a mapping Φ from S into the preceding
set. Moreover, Φ is one-to-one. Indeed, if (x, y) and (x′, y′) are in S,
and x sgn(y)

|y| = x′ sgn(y′)
|y′| , then |y′| = r|y| and x′ sgn(y′) = rx sgn(y)

(for some non-zero rational number r), hence a = F (x′, y′) =
±rdF (x, y) = ±rda, which implies that r = ±1, so r = 1.

Thus to show that S is finite it suffices to show that each set
Φ(S) ∩ Tk is finite.

Let x sgn(y)
|y| ∈ Tk, where (x, y) ∈ S. If αk /∈ R, let αk = β + iγ, with

β, γ ∈ R, and γ �= 0. Then

|γ| ≤
∣∣∣∣(β − x

y
) + iγ

∣∣∣∣ =
∣∣∣∣αk − x sgn(y)

|y|

∣∣∣∣ <
C3

|y|d ,

hence
|y|d <

C3

|γ| .

So |y| may have only finitely many values, and by a previous
remark, the same is true for x, so Φ(S) ∩ Tk is finite.

If αk ∈ R, one is led to study whether the set Tk is finite.
This established the link between the approximation of algebraic

numbers by rational numbers and the finiteness of the number
of solutions of the equation considered above. For a survey on
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some fundamental methods on the theory of diophantine equations,
see Ribenboim (1986).

Sharper and effective inequalities will therefore have important
indications on the the number and size of solutions. Thus, important
mathematicians considered this problem.

For this purpose, Liouville’s theorem was improved successively
by Thue (1909), Siegel (1921), Dyson (1947), and Schneider

(1949); finally, Roth proved in 1955 the best possible result:

(7.6) If α is any algebraic number, for every ε > 0 there exists
C = C(α, ε) > 0 such that for every rational number a

b �= α one has
|α − a

b | > C
b2+ε .

So, α is not approximable by rational numbers to the order 2 + ε
for every ε > 0. Therefore, ν(α) ≤ 2. Thus, if α /∈ Q, then ν(α) = 2
(as follows from Dirichlet’s theorem).

A corollary is the following transcendence criterion:

(7.7) If α is a real number which is approximable by rational
numbers to an order ν > 2, then α is transcendental.

If α has degree at least 3, the number C(α, ε) in (7.6) is not
effectively computable; the proposition only asserts its existence.

Consider the following statement, which is sharper than Roth’s
theorem: If α is any algebraic number, there exists C(α) > 0 such
that for every rational number a

b �= α one has |α− a
b | > C(α)

b2
. It may

be shown that the above statement is equivalent to the following
assertion, which is as yet unproven:

If α is any real algebraic number and α = [a0, a1, a2, . . .] is its
simple continued fraction expansion, then there exists a number M =
M(α) > 0 such that |a0|, a1, a2, . . . < M .

However, it is generally believed that the above statement is false.
Rather, on the contrary, it is quite possible that if α is a real algebraic
number of degree d ≥ 3 then, using the above notation, it follows
that sup{ai | i ≥ 1} = ∞.

Now I consider some examples.

Example 1. Up to now it is not known whether α =
∑∞

n=0
1

dns is
a transcendental number (where d ≥ 2, s ≥ 2). For s = 2 this may
require a deeper study of theta functions.

The function f(z) =
∑∞

n=0
zn

2n(n−1) satisfies the functional equation
f(z) = 1 + zf( z

4); this is used to show that f(1
2) =

∑∞
n=0

1

2n2 is not
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a Liouville number. More generally, Bundschuh showed (1970): if
d ≥ 2 then

∑∞
n=0

1

dn2 is not a Liouville number.

Example 2. Let s ≥ 3 be an integer, d ≥ 2, and α =
∑∞

n=0
1

dsn .
Then α is transcendental.

Indeed, it was seen in §6 that α is approximable by rational
numbers to the order s. Since s > 2, by (7.7), α is transcendental.

More generally:

Example 3. Let (f(n))n≥1 be a sequence of positive integers such
that limn→∞

f(n+1)
f(n) = µ > 2. Then for every integer d ≥ 2, the

number α =
∑∞

n=0
1

df(n) is transcendental.
Indeed, as was seen in §6, if 0 < ε < µ − 2, α is approx-

imable by rational numbers to the order µ − ε > 2. By (7.7), α
is transcendental.

The following was first proved by Mahler (1929) and may also
be proved with a variant of Roth’s theorem:

Example 4. α =
∑∞

n=0
1

d2n (with d ≥ 2) is transcendental.

More generally:

Example 5. Let r ∈ Q, r �= 0, C ≥ 1, d ≥ 2, s ≥ 2 be integers.
For every n let cn be an integer such that |cn| ≤ Cn and cn �= 0 for
infinitely many n ≥ 1. Then

∑∞
n=0

cnrn

dsn is transcendental.

Mahler extended this construction in 1976. Let f be any func-
tion defined on the integers. Let α be the number between 0 and 1
whose decimal expression is the following: f(1) times the digit 1,
followed by f(1) times the digit 2, . . . , followed by f(1) times the
digit 9, followed by f(2) times the 2-digit number 10, . . . , followed
by f(2) times the 2-digit number 99, followed by f(3) times each
of the numbers 100, 101, . . . , 999 in succession, etc. The resulting
numbers α are transcendental numbers but not Liouville numbers.

For every µ > 2 let Rµ = {α ∈ R | ν(α) ≥ µ}. Thus every α ∈ Rµ

is transcendental. Moreover, L =
⋂

µ>2 Rµ.
Since L is uncountable and dense in R, then each Rµ is uncountable

and dense, too.
Mahler (1937) gave a class of transcendental numbers which are

not Liouville numbers:
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(7.8) Let f(X) ∈ Z[X] be a polynomial of degree at least 1, such
that f(k) ≥ 1 for every k ≥ 1. Let a = 0.a1a2a3a4 . . . with ak = f(k)
(the notation becomes clear in the example which follows). Then α
is transcendental, but not a Liouville number.

For example, if f(X) = X this gives: 0.12345678910111213 . . . is
transcendental but not a Liouville number.

In 1924, Khintchine proved a general theorem on approximation
by rational numbers (see also his book (1935)). A special case is the
following:

(7.9) For every µ > 2, the set Rµ has measure 0.

Example 6. (Knuth (1964)) Let a ≥ 2 be an integer and let ξa be
the irrational number with simple continued fraction expansion

ξa = [aF0 , aF1 , aF2 , . . .]

where (Fn)n≥0 is the sequence of Fibonacci numbers. Then ξa is
approximable by rational numbers to the order α+1, where α = 1+

√
5

2
is the golden number. Hence, ξa ∈ Rα+1 and is transcendental.

C. Hermite, Lindemann, and Weierstrass

Now I give the important and classical results of Hermite and
Lindemann.

In 1873, Hermite showed

(7.10) e is a transcendental number.

A rather simple proof of this theorem, given by Hurwitz in 1893,
is reproduced in Niven’s book.

In 1882, Lindemann proved the following equivalent results (this
improves (6.11)):

(7.11) (1) If log is any determination of the complex logarithmic
function, and if r is a rational number, r �= 0, then log r is 0 or
transcendental.

(2) If α is an algebraic number, α �= 0, then eα is irrational.

The equivalence of these assertions is obvious. In particular,
Lindemann obtained:
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(7.12) π is transcendental.

If π is algebraic, so is iπ �= 0, hence eiπ = −1 would be irrational,
a contradiction.

This important result gave a negative solution to the problem of
squaring the circle.

For other proofs that e and π are transcendental, see for example,
Popken (1929a,b), Veblen (1904), and Schenkman (1970).

Hermite gave a proof of the following theorem which extends
(7.11) and was stated by Lindemann:

(7.13) (1) If log is any determination of the complex logarithmic
function, and if α is a non-zero algebraic number, then log α is
either 0 or transcendental.

(2) If α is an algebraic number, α �= 0, then eα is transcendental.

The following results which improve previous statements follow as
consequences:

(7.14) If α is an algebraic number, α �= 0, then cos α, sin α, tan α,
cosh α, sinh α, tanhα are transcendental numbers.

Weierstrass gave a proof of the following theorem stated by
Lindemann:

(7.15) If α1, . . . , αn are distinct algebraic numbers, then eα1 ,
. . . , eαn are linearly independent over the field of all algebraic
numbers.

For example, taking n = 2, α2 = 0, one obtains the theorem of
Lindemann and Hermite.

This theorem admits the following equivalent formulation, which
is a result of algebraic independence.

(7.16) If α1, . . . , αn are algebraic numbers which are linearly in-
dependent over Q, then eα1 , . . . , eαn are algebraically independent
over Q.

A very useful tool in the modern proof of the theorems of Lin-

demann and Weierstrass is the following result of linear algebra,
known as Siegel’s lemma.
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Let K be a number field, with degree n = [K : Q], and let σ1,
. . . , σn be the isomorphisms from K into C. For each α ∈ K, let
‖α‖ = max1<i<n{|σi(α)|}.

Given the real number A > 0, the integer d > 0 and the integer r,
1 ≤ r < n, let GK(d, A, r) be the set of systems of linear equations

n∑
j=1

αijX
j = 0 (i = 1, . . . , r)

with the following properties:
(1) each αij ∈ K;
(2) for every i = 1, . . . , r there exists an integer di, 0 < di ≤ d

such that diαij is an algebraic integer (for every j = 1, . . . , n);
(3) maxi,j{‖αij‖} ≤ A.
Siegel’s lemma is the following:

(7.17) Let K, d, A, r be as above. Then there exists a real num-
ber cK > 0 such that every system of linear equations in the set
SK(d, A, r) has a non-trivial solution (ζ1, . . . , ζn) where each ζj is an
algebraic integer and

max
1≤j≤n

‖ζj‖ ≤ cK + cK(cKndA)
r

n−r .

D. A result of Siegel on exponentials

The following interesting result, which is a special case of a theorem
of Siegel, is evoked in a paper of Halberstam. It was proposed in
the 1972 Putnam Competition and not one of the 2000 candidates
could solve it. I give its proof below, following Halberstam’s article.

(7.18) If α is a real positive number and 2α, 3α, 5α, . . . , pα, . . . are
integers (for every prime p), then α is an integer.

Proof. From the hypothesis, it follows that nα is an integer for
every integer n.

If α is not an integer, let k = [α], so 0 ≤ k < α < k + 1. The
method of proof involves finite differences.

If f(x) is an indefinitely differentiable function of the real
variable x, let

∆f(x) = f(x + 1) − f(x).
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So there exists θ1, 0 < θ1 < 1, such that

∆f(x) = f ′(x + θ1).

(Note that θ1 depends on x.)
Similarly, let

∆2f(x) = ∆(∆f(x))=∆f(x+1)−∆f(x) = f(x+2)−2f(x+1)+f(x).

It is also equal to

∆2f(x) = f ′(x + 1 + θ1) − f ′(x + θ1) = f ′′(x + θ2),

where 0 < θ1 < θ2 < 2 (θ2 depends on x, θ1).
More generally, if r ≥ 1, let ∆rf(x) = ∆(∆r−1f(x)), so

∆rf(x) =
r∑

i=0

(−1)r−i
(

r

i

)
f(x + i) = f (r)(x + θr),

with 0 < θr < r.
Now take f(x) = xα, so

∆rxα =
r∑

i=0

(
r

i

)
(−1)r−i(x + i)α,

hence ∆rxα is an integer for every integer x > 0. But it is also equal
to

∆rxα = α(α − 1) · · · (α − r + 1)(x + θ)α−r,

where 0 < θ < r. Taking r = k + 1, x = n, and writing (∆rxα)(n) =
∆rnα, one has

∆k+1nα = α(α − 1) · · · (α − k + 1)(α − k)(n + θ)α−k−1,

with 0 < θ < k + 1. Thus,

0 < ∆k+1nα =
α(α − 1) · · · (α − k)

(n + θ)k+1−α
<

αk+1

nk+1−α
< 1

provided n > α
k+1

k+1−α . This is a contradiction because ∆k+1nα is an
integer. �

Actually, Siegel proved the following theorem:

(7.19) If α is a real positive number and if there exist three distinct
prime numbers p1, p2, p3 such that pα

1 , pα
2 , pα

3 are algebraic numbers,
then α ∈ Q.

Or, equivalently, if α > 0, and if α is not rational, then there are
at most two primes p1, p2 such that pα

1 , pα
2 , are algebraic numbers.
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E. Hilbert’s 7th problem

As already mentioned in the historical survey, Hilbert’s 7th problem
was solved independently and simultaneously by Gel’fond and by
Schneider in 1934.

First, I note the following equivalent formulations:

(7.20) The following statements are equivalent:
(1) If α, β are algebraic numbers, α �= 0, and log α �= 0, and β is

irrational, then αβ = exp(β log α) is transcendental.
(2) If α, β ∈ Qalg, α, β �= 0, and if log α, log β are lin-

early independent over Q, then log α, log β are linearly independent
over Qalg.

(3) If β, λ ∈ C, λ �= 0, β /∈ Q, then one of the numbers eλ, β, eβλ

is transcendental.

Proof. (1) ⇒ (2). Let α, β ∈ Qalg, with α, β �= 0, 1, and assume
that log α, log β are are linearly independent over Q. If there exists
γ, δ ∈ Qalg, with δ �= 0 (for example) such that γ log α + δ log β = 0,
then γ �= 0 and log α

log β = −γ
δ = µ ∈ Qalg with µ /∈ Q. By (1), αµ

is transcendental. However, αµ = eµ log α = elog β = β, which is a
contradiction.

(2) ⇒ (3). Let β, λ ∈ C, with λ �= 0, β /∈ Q, and assume that eλ, β,
eβλ are algebraic numbers. Note that λ, βλ are linearly independent
over Q. By (2), λ, βλ are also linearly independent over Qalg, hence
β = βλ

β is transcendental, which is a contradiction.
(3) ⇒ (1). Let α ∈ Qalg, with α �= 0, 1, and let β ∈ Qalg \ Q.

Let λ = log α �= 0. Since α = eλ and β are algebraic numbers, then
by (3), eβλ = eβ log α = αβ is transcendental. �

The theorem of Gel’fond and Schneider is the following:

(7.21) If α ∈ Qalg, α �= 0, log α �= 0, and if β ∈ Qalg \Q, then αβ is
a transcendental number.

With this theorem one deduces that
√

2
√

2
is a transcendental

number, thus the question which motivated this chapter is solved.
But one sees also that if a, b are integers such that am �= bn (for all
non-zero integers m, n), then log a

log b is transcendental (this had been
conjectured already by Euler).

Similarly,
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(7.22) eπ is a transcendental number.

Proof. Since i, eiπ = −1 are algebraic numbers, by (3) above, eπ

is transcendental. �

Already in 1932, Koksma and Popken had shown that eπ is
transcendental. The methods of Gel’fond and of Schneider have
been used to prove that other numbers are transcendental.

F. The work of Baker

Baker began in 1968 to publish a series of penetrating papers on
effective lower bounds of linear forms in logarithms. Here I shall
be content to quote, among his results, those which are most di-
rectly relevant to the theory of transcendental numbers. Baker’s
own book (1975) is highly recommended for more results and proofs.

(7.23) Let α1, . . . , αn be non-zero algebraic numbers. If log α1,
. . . , log αn are linearly independent over Q, then 1, log α1, . . . , log αn

are linearly independent over Qalg.

This result contains many important corollaries, which are quite
easy to derive.

(7.24) If α1, . . . , αn, β1, . . . , βn are algebraic numbers, α1, . . . , αn

non-zero, and if θ =
∑n

i=1 βi log αi �= 0, then θ is transcendental.

Proof. If θ were an algebraic number, then it follows that (−θ)×
1+

∑n
i=1 βi log αi = 0, so log α1, . . . , log αn would be linearly depen-

dent over Qalg, hence also over Q. So, there exist r1, . . . , rn ∈ Q, not
all equal to 0, such that

∑n
i=1 ri log αi = 0. Suppose, for example,

rn �= 0; then

0 = rn(−θ +
n∑

i=1

βi log αi)

= rn(−θ) + (rnβ1 − r1βn) log α1 + (rnβ2 − r2βn) log α2

+ · · · + (rnβn−1 − rn−1βn) log αn−1.

Proceeding by induction on n, it follows that rnθ is transcendental
and θ could not be algebraic. �

(7.25) If n ≥ 0 and α1, . . . , αn, β1, . . . , βn are non-zero algebraic
numbers, then eβ0αβ1

1 · · ·αβn
n is transcendental.
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Proof. If θ = eβ0αβ1
1 · · ·αβn

n is algebraic, then β1 log α1 + · · · +
βn log αn − log θ = −β0 �= 0 is algebraic, which contradicts the
preceding proposition. �

The following lemma will be required in the next proposition:

Lemma. If γ1, . . . , γm, δ1, . . . , δm, for n ≥ 1, are algebraic numbers
such that each γi �= 0, 1, and δ1, . . . , δm are linearly independent
over Q, then

∑m
i=1 δi log γi �= 0.

Proof. If m = 1 it is true. Proceeding by induction on m, if∑m
i=1 δi log γi = 0, then log γ1, . . . , log γm are linearly dependent

over Qalg, hence by (7.22) they are linearly dependent over Q.
So there exist r1, . . . , rm ∈ Q, not all equal to 0, such that∑m

i=1 ri log γi = 0. For example, rm �= 0, hence

m−1∑
i=1

rmδi log γi = −rmδm log γm = δm(
m−1∑
i=1

ri log γi),

thus
m−1∑
i=1

(rmδi − δmri) log γi = 0.

But rmδ1 − δmr1, . . . , rmδm−1 − δmrm−1 are linearly independent
over Q, as easily seen.

By induction, this is a contradiction. �

(7.26) If α1, . . . , αn, β1, . . . , βn are algebraic numbers, such that
each αi �= 0, 1, and 1, β1, . . . , βn are linearly independent over Q,
then αβ1

1 · · ·αβn
n is transcendental.

Proof. If θ = αβ1
1 · · ·αβn

n is algebraic, then θ �= 0 and also θ �= 1,
otherwise

∑n
i=1 βi log αi = 0, which is contrary to the lemma. So,∑n

i=1 βi log αi − log θ = 0.
But 1, β1, . . . , βn are linearly independent over Q, which

contradicts the lemma. �

(7.27) If α is any non-zero algebraic number, then π + log α is
transcendental.

Proof. From eiπ = −1 it follows that π = −i log(−1). If π +
log α = β ∈ Qalg, then −i log(−1) + log α − β. So, log(−1), log α,
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1 are linearly dependent over Qalg, hence log(−1), log α are linearly
dependent over Q, by (7.22). So, there exist integers m, n, not
both 0, such that m log(−1) + n log α = 0. If n = 0, then m �=
0, and so log(−1) = 0, hence π = 0, a contradiction. So n �= 0,
and (−1)mαn = 1 implies α2n = 1, thus 2n log α = 2kiπ (for some
integer k), hence β = π + πik, so π would be an algebraic number.
Thus iπ is algebraic, hence by (7.21) it follows that −1 = eiπ would
be transcendental, which is absurd. �

I remark that (7.24) contains the theorem of Lindemann and
Hermite, (7.25) contains the theorem of Gel’fond and Schnei-

der, while (7.26) contains as a special case the transcendence of π.
All this shows the strength of Baker’s theorem.

Another important fact of Baker’s theorem concerns the effective
determination of lower bounds for the linear forms in logarithms and
the applications to effective determination of solutions of wide classes
of diophantine equations.

Regretably, I will not treat this connection here.

G. The conjecture of Schanuel

The proof that specific transcendental numbers are algebraically in-
dependent over Q is rarely a simple task. So, it is advantageous to
imagine what should be true.

In his book of 1966, Lang ennunciated an interesting conjecture
of Schanuel. First, I recall some terminology.

Let L be a field extension of the field K (I shall be mostly
concerned with the case where K = Q (or Qalg).

Suppose that there exist n elements α1, . . . , αn ∈ L with the
following properties:

(1) α1, . . . , αn are algebraically independent over K; that is, if f ∈
K[X1, . . . , Xn] and f(α1, . . . , αn) = 0, then f is the zero polynomial;

(2) if β ∈ L, then β is algebraic over the field K(α1, . . . , αn),
generated by α1, . . . , αn.

In this case, {α1, . . . , αn} is a transcendence basis of L|K. It may
be shown that any other transcendence basis has the same number n
of elements. This number n is called the transcendence degree of L|K
and denoted by tr deg(L|K).

If L = K(α1, . . . , αn), then tr deg(L|K) ≤ n, and there exists
a subset of {α1, . . . , αn} which is a transcendence basis of L|K.
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Moreover, if tr deg(L|K) = n, then {α1, . . . , αn} is a transcendence
basis.

I note also that

tr deg(Q(α1, . . . , αn)|Q) = tr deg(Qalg(α1, . . . , αn)|Qalg)

(where α1, . . . , αn are any complex numbers).
Schanuel’s conjecture is the following:

Conjecture (S). If α1, . . . , αn ∈ C are linearly independent
over Q, then tr deg(Q(α1, . . . , αn, eα1 , . . . , eαn)|Q) ≥ n.

This conjecture is true, for example, when α1, . . . , αn ∈ Qalg. In-
deed, under this additional hypothesis, (S) becomes the theorem of
Lindemann and Weierstrass.

There are many interesting conjectures about transcendental num-
bers which follow more or less readily from the all-embracing
Schanuel’s conjecture.

Gel’fond proposed:

Conjecture (S1). If α1, . . . , αn, β1, . . . , βn ∈ Qalg, with each βi �=
0, if α1, . . . , αn are linearly independent over Q and log β1,
. . . , log βn are also linearly independent over Q, then eα1, . . . , eαn,
log β1, . . . , log βn are algebraically independent over Qalg.

Indeed, (S) implies (S1) because

tr deg(Qalg(eα1 , . . . , eαn , log β1, . . . , log βn)|Qalg)
= tr deg(Qalg(α1, . . . , αn, eα1 , . . . , eαn , log β1, . . . , log βn,

β1, . . . , βn)|Qalg)
= 2n,

hence eα1 , . . . , eαn , log β1, . . . , log βn are algebraically independent
over Qalg.

A special case of conjecture (S1) is the following:

Conjecture (S2). If β1, . . . , βn ∈ Qalg with each βi �= 0, and
if log β1, . . . , log βn are linearly independent over Q, then log β1,
. . . , log βn are algebraically independent over Qalg.

I recall that Baker proved Proposition (7.21) which is weaker
than conjecture (S2).

The following conjecture is also a consequence of (S):
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Conjecture (S3). If α, β1, . . . , βn ∈ Qalg, α �= 0, 1, and 1, β1,
. . . , βn are linearly independent over Q, then log α, αβ1, . . . , αβn

are algebraically independent over Qalg.

Indeed, log α, β1 log α, . . . , βn log α are linearly independent
over Q, hence,

tr deg(Qalg(log α, β1 log α, . . . , βn log α, α, αβ1 , . . . , αβn)|Qalg)≥n+1.

Since α, β1, . . . , βn ∈ Qalg, then necessarily log α, αβ1 , . . . , αβn are
algebraically independent over Q.

The special case of (S3) when n = 1 is the conjecture:

Conjecture (S4). If α, β ∈ Qalg, α �= 0, 1, and β /∈ Q, then
log α, αβ are algebraically independent over Qalg.

The following special case of (S3) is a conjecture of Gel’fond:

Conjecture (S5). If α, β ∈ Qalg, and if β has degree d ≥ 2, then
tr deg(Q(αβ , . . . , αβd−1

)|Q) = d − 1.

Now, 1, β, β2, . . . , βd−1 are linearly independent over Q; by (S3),
log α, αβ , . . . , αβd−1

are algebraically independent over Q, hence
tr deg(Q(αβ , . . . , αβd−1

)|Q) = d − 1.
The following conjecture, which follows also from (S), was stated

in special cases by Lang and Ramachandra:

Conjecture (S6). If α1, . . . , αn are linearly independent over Q,
and β is a transcendental number, then

tr deg(Q(eα1 , . . . , eαn , eα1β , . . . , eαnβ)|Q) ≥ n − 1.

I show that (S6) follows from (S): order the numbers α1, . . . , αn

in such a way that a basis of the Q-vector space generated by
{α1, . . . , αn, βα1, . . . , βαn} is {α1, . . . , αn, βα1, . . . , βαm} where 0 ≤
m ≤ n. Then tr deg(Q(α1, . . . , αn, β)|Q) ≤ m + 1. Indeed, since β is
transcendental, there is a transcendence basis of Q(α1, . . . , αn, β)|Q
which is {αi1 , . . . , αis , β} (with 1 ≤ i1 < i2 < · · · < is ≤ n);
then α1, . . . , αn, βαi1 , . . . , βαis are linearly independent over Q, so
s + n ≤ m + n, hence s ≤ m, as required.

On the other hand, from (S) one deduces that

tr deg(Q(α1, . . . , αn, βα1, . . . , βαm, eα1 , . . . , eαn , eβα1 , . . . , eβαm)|Q)
≥ n + m,
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hence also

tr deg(Q(α1, . . . , αn, βα1, . . . , βαn, eα1 , . . . , eαn , eβα1 , . . . , eβαn)|Q)
≥ n + m.

Comparing with the transcendence degree of Q(α1, . . . , αn, β)|Q,
it follows that at least n − 1 of the numbers eαi , eαiβ (i = 1, . . . , n)
are algebraically independent.

Here is another interesting consequence of (S) (log denotes the
principle value of the logarithm).

Conjecture (S7). The numbers e, eπ, ee, ei, π, ππ, πe, πi, 2π,
2e, 2i, log π, log 2, log 3, log log 2, (log 2)log 3, 2

√
2 are algebraically

independent over Q (and, in particular, they are transcendental).

Proof. I begin by noting that iπ, log 2 are linearly independent
over Q. By (S), tr deg(Q(iπ, log 2,−1, 2|Q)) = 2, so iπ, log 2 are
algebraically independent over Q; hence so are π and log 2. Therefore,
2, 3, π, log 2 are multiplicatively independent: if 2a3bπc(log 2)d = 1
(with a, b, c, d ∈ Z), then a = b = c = d = 0. Thus, log π, log 2,
log 3, log log 2 are linearly independent over Q. Hence, also iπ, log π,
log 2, log 3, log log 2 are linearly independent over Q. By (S),

tr deg(Q(iπ, log π, log 2, log 3, log log 2,−1, π, 2, 3, log 2)|Q) = 5,

thus π, log π, log 2, log 3, log log 2 are algebraically independent
over Q. Hence 1, iπ, log π, log 2, log 3, log log 2 are linearly
independent over Q. By (S),

tr deg(Q(1, iπ, log π, log 2, log 3, log log 2, e,−1, π, 2, 3, log 2)|Q) = 6,

hence e, π, log π, log 2, log 3, log log 2, are algebraically indepen-
dent. So 1, iπ, π, log π, e, e log π, π log π, log 2, π log 2, e log 2,
i log 2, i, i log π, log 3, log log 2, (log 3)(log log 2),

√
2 log 2 are linearly

independent over Q. By (S),

tr deg(Q(iπ, π, log π, e, e log π, π log π, log 2, π log 2, e log 2, i log 2,
i, i log π, log 3, log log 2, (log 3)(log log 2),

√
2 log 2,−1, eπ, π,

ee, πe, ππ, 2, 2π, 2e, 2i, ei, πi, 3, log 2, (log 2)log 3, 2
√

2)|Q)=17.

Hence, π, log π, e, log 2, log 3, log log 2, eπ, ee, πe, ππ, 2π, 2e, 2i, ei,
πi, (log 2)log 3, 2

√
2 are algebraically independent over Q. �
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Lang considered the following conjecture. Let K1 be the field of
all numbers which are algebraic over the field Qalg(eα). Let K2 be the
field of all numbers which are algebraic over the field K1(eα)α∈K1 . In
the same way, define the fields K3, K4, . . . , and let K =

⋃
n≥1 Kn.

Conjecture (S8). π /∈ K.

Lang sketched a proof of how this conjecture is a consequence
of (S).

There have been the classical results of algebraic independence,
by Hermite, Weierstrass and the more recent results of Baker,
all involving the experimental and the logarithmic function. For a
long time it was desirable to obtain an algebraic independence result
involving the gamma function Γ(x).

In a tour de force, culminating deep research on algebraic inde-
pendence, Nesterenko established the result below 1997 (see also
Gramain (1998)):

(7.28) The numbers π, eπ, Γ(1
4) are algebraically independent

over Q.

This theorem was hailed by experts in the field and by broadly
informed mathematicians. In other circles of mathematicians—and
good ones at that—one wondered why time and energy should be
spent on questions of no practical importance, such as this one. And

for that matter, about transcendental numbers like
√

2
√

2
. . . .

Mathematics has the unique character of being a scientific disci-
pline with applications to all kinds of other sciences and to practical
life. But mathematics is also an art, the beauty lying in the symme-
tries, patterns, and intricately deep relationships which enchant the
beholder. Discoveries that require the invention of new methods and
great ingenuity are indeed to be hailed as important—at least from
one point of view. Will these be of any practical use some day? Is
it a legitimate question? Indeed, numerous are the examples when
theories seemed for centuries to be gratuitous speculations, like the
study of prime numbers, but today a mainstay of crucial applications
in communications. It is the intrinsic quality of a new result which
confers its importance.
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H. Transcendence measure and the classification of
Mahler

To classify the complex numbers, Mahler considered the values of
polynomial expressions and measured how close to zero they may
become.

Let n ≥ 1, H ≥ 1 be integers, let Zn,H [X] be the set of all poly-
nomials f(X) ∈ Z[X] of degree at most n and height at most H;
i.e., f(X) =

∑n
i=0 aiX

i, with ai ∈ Z and max{|ai|} ≤ H. The set
Zn,H [X] is clearly finite.

If α ∈ C, let

wn,H(α) = min{|f(α)| : f ∈ Zn,H [X] and f(α) �= 0}.

Taking f(X) = 1, one has 0 < wn,H(α) ≤ 1. Also, if n ≤ n′,
H ≤ H ′, then wn,H(α) ≥ wn′,H′(α).

Let wn(α) = lim supH→∞
− log wn,H(α)

log H for all n ≥ 1, and let w(α) =

lim supn→∞
wn(α)

n .
Thus 0 ≤ wn(α) ≤ ∞ and wn(α) ≤ wn+1(α) for n ≥ 1. Hence

0 ≤ w(α) ≤ ∞.
Let µ(α) = inf{n | wn(α) = ∞}, so 1 ≤ µ(α) ≤ ∞, and if µ(α) <

∞, then w(α) = ∞.
This leads to the following partition of complex numbers into four

disjoint classes, proposed by Mahler (1930, 1932b):
(1) α is an A-number when w(α) = 0, µ(α) = ∞;
(2) α is an S-number when 0 < w(α) < ∞, µ(α) = ∞;
(3) α is a T -number when w(α) = ∞, µ(α) = ∞;
(4) α is a U -number when w(α) = ∞, µ(α) < ∞.
Mahler proved:

(7.29) α is an A-number if and only if it is an algebraic number.

Moreover:

(7.30) If α, β are numbers in different classes, then α, β are
algebraically independent.

The S-numbers may be classified according to their type, which
I define now. From w(α) < ∞ it follows that the sequence wn(α)

n is
bounded above, so there exists t > 0 such that

lim sup
H→∞

− log wn,H(α)
log H

= wn(α) < tn
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for every n ≥ 1. Hence, for every ε > 0 there exists H0 ≥ 1
(depending on n, t, ε) such that − log wn,H(α)

log H < n(t + ε) for all
H > H0. Hence, wn,H(α) > H−n(t+ε) for H > H0. Choosing
cn = min1≤H≤H0{1, 1

2wn,H(α)Hn(t+ε)}, then wn+1(α) > cn

Hn(t+ε) for
all H ≥ 1. Thus, there exists θ > 0 such that for every n ≥ 1 there
exists cn > 0 satisfying wn,H(α) > cn

Hn−θ for all H ≥ 1.
The type α is defined to be the infimum of all θ with the above

property. It may be shown that θ(α) = supn≥1{
wn(α)

n }.
Now I investigate the cardinality and measure of the sets of S-

numbers, T -numbers and U -numbers.
In 1932, Mahler showed that the sets of real, respectively com-

plex, S-numbers have measure 1 (in the sense of linear, respectively
plane Lebesgue measure). The following more precise statement was
conjectured by Mahler in the same paper.

Using a classification given by Koksma, in analogy to Mahler’s
classification, Sprindžuk proved Mahler’s conjecture in 1965:

(7.31) (1) All real numbers (with the exception of a subset with
measure 0 in R) are S-numbers of type 1.

(2) All complex numbers (with the exception of a subset with
measure 0 in C) are S-numbers of type 1

2 .
So, the set of S-numbers is uncountable.

Yet, it is not generally straightforward to give examples of S-
numbers and a fortiori to compute their type.

Mahler showed that α = 0.123456789101112 . . . (already consid-
ered in subsection B., Example 5) is an S-number.

For many years it was not known whether the set of T -numbers
was empty or not. Schmidt showed in 1968 (without exhibiting an
explicit example) that the set of T -numbers is not empty. He gave a
simpler proof in 1969.

As for the U -numbers, an easy characterization implies readily:

(7.32) Every Liouville number is a U -number.

Moreover, LeVeque showed (1953):

(7.33) For every integer µ ≥ 1, there exists a U -number α such that
µ(α) = µ.

It follows that the set of U -numbers is uncountable, even though
it has measure zero (by (7.30)).
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In 1971, 1972, Mahler modified his classification of transcen-
dental numbers; various problems arising from the new set-up were
solved by Durand in 1974.

Now I introduce the concept of transcendence measure of a
transcendental number.

The function T (n, H) (with real positive values), defined for inte-
gers n ≥ 1, H ≥ 1, is a transcendence measure for the transcendental
number α if |f(α)| ≥ T (n, H) for every f ∈ Zn,H [X].

The best transcendence measure is, of course, wn,H(α) as defined
above by Mahler. However, it is usually very difficult to calculate.

I indicate some results about transcendence measures for numbers
like e, π, log r (r rational, r �= 1, r > 0).

Borel (1899) and Popken (1929a) gave transcendence measures
for e.

In particular, Popken’s result implied that e is not a Liouville
number. It should be noted that this may be also proved from the
continued fraction expansion of e, which implies that∣∣∣∣e − a

b

∣∣∣∣ ≥ log log(4b)
18 log(4b)b2

for all rational numbers a
b , b > 0 (see also Bundschuh (1971)).

Mahler proved in 1932:

(7.34) For every n ≥ 1 there exists H0(n) ≥ 1 such that if H >
H0(n), then

|f(e)| >
1

H
n+Cn2 log(n+1)

log log H

for every f(X) ∈ Zn,H [X], where C > 0 is a constant, independent
of n and H.

It follows that

(7.35) e is an S-number of type θ(e) = 1; hence e is not a Liouville
number.

Next, Mahler showed (1932):

(7.36) Let α = π or α = log r where r is a positive rational num-
ber, r �= 1. Then, for every n ≥ 1 and H ≥ 1, |f(α)| > C(n)

Hsn for
every f(X) ∈ Zn,H [X], where C(n) > 0 and s > 0 is a constant,
independent of n, H.
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It follows that

(7.37) π and log r (r rational, r > 0, r �= 1) are not U -numbers,
hence they are not Liouville numbers.

For more information on transcendence measures, the reader may
consult the paper of Waldschmidt (1978).

8 Final comments

It is preferable now to interrupt this survey lest it become too tiring
for the reader (but never for me). Apart from the fact that many
topics evoked in the survey were no more than evoked, there are
many aspects which were completely ignored: metric problems con-
cerning continued fractions, normal numbers, uniform distribution
modulo 1, questions of irrationality and transcendence of values of
entire function, of certain meromorphic functions, or of functions
which are solutions of certain types of differential equations. Nor did
I touch on questions of simultaneous approximations, nor did I . . . .

Fortunately, there are many books and surveys on various as-
pects of the theory (some of these have already been cited):
Maillet (1906) (the first book devoted to transcendental num-
bers), Minkowski (1907), Perron (1910, 1913), Khintchine

(1935), Koksma (1936), Siegel (1949), Gel’fond (1952), Niven

(1956), Cassels (1957), Schneider (1957), Mahler (1961, 1976a),
Niven (1963), Lang (1966), Lipman (1966), Fel’dman (1967), Ra-

machandra (1969), Schmidt (1972), Waldschmidt (1974, 1979),
Baker (1975), and Mignotte (1976).

I hope that the reader derived some enjoyment and that the
present survey has stimulated the desire for further studies of
numbers.
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Miscellanea Taurinensia, 1769–79, 4. Reprinted in Oeuvres,
Vol. I, 671–731. Gauthier-Villars, Paris, 1867.

1769b J. L. Lagrange. Sur la solution des problèmes indéterminés
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1949 T. Schneider. Über eine Dysonsche Verschärfung des Siegel-
Thuesche Satzes. Arch. Math., 1:288–295.

1949 C. L. Siegel. Transcendental Numbers. Annals of Math.
Studies, 16, Princeton, N.J.

1952 A. O. Gel’fond. Transcendental and Algebraic Numbers
(in Russian). G.I.T.T.L., Moscow. English translation at
Dover, New York, 1960.

1953a W. J. LeVeque. Note on S-numbers. Proc. Amer. Math.
Soc., 4:189–190.

1953b W. J. LeVeque. On Mahler’s U -numbers. J. London Math.
Soc., 28:220–229.

1953 K. Mahler. On the approximation of π. Indag. Math., 15:
30–42.

1954 M. M. Hjortnaes. Overføng av rekken
∑∞

k=1
1
k3 til et

bestemt integral. In Proc. 12th Congr. Scand. Math., Lund,
1953. Lund Univ.

1955 K. F. Roth. Rational approximations to algebraic numbers.
Mathematika, 2:1–20. Corrigendum, p. 168.

1956 I. Niven. Irrational Numbers. Math. Assoc. of America,
Washington.

1957 J. W. S. Cassels. An Introduction to Diophantine Approxi-
mation. Cambridge Univ. Press, Cambridge.

1957 S. Ramanujan. Notebooks of Srinivasan Ramanujan (2
volumes). Tata Institute of Fund. Res., Bombay.
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11

Galimatias Arithmeticae∗

You may read in the Oxford English Dictionary that galimatias
means confused language, meaningless talk. This is what you must
expect in this talk. As a token of admiration to Gauss, I dare to
append the word Arithmeticae to my title. I mean no offense to the
Prince, who, at age 24, published Disquisitiones Arithmeticae, that
imperishable masterwork.

As I retire (or am hit by retirement), it is time to look back at
events in my career. Unlike what most people do, I would rather
talk about mathematical properties and problems of some numbers
connected with highlights of my life. I leave for the end the most
striking conjunction.

I will begin with the hopeful number 11 and end with the ominous
number 65.

∗This chapter is a modified version of a talk at the University of Munich,
given in November 1994 at a festive colloquium in honor of Professor Sibylla
Priess-Crampe.



11. Galimatias Arithmeticae 345

11

• At age 11 I learned how to use x to represent an unknown quan-
tity in order to solve problems like this one: “Three brothers,
born two years apart, had sums of ages equal to 33. What are
their ages?” The power of the method was immediately clear to
me and determined that I would be interested in numbers, even
after my age would surpass the double of the sum of the ages of
the three brothers.

But 11 is interesting for many better reasons.

• 11 is the smallest prime repunit. A number with n digits all equal
to 1 is called a repunit and denoted by Rn. So, 11 = R2. The
following repunits are known to be prime: Rn with n = 2, 19,
23, 317, and 1031. It is not known whether there are infinitely
many prime repunits.

• If n > 11, there exists a prime p > 11 such that

p divides n(n + 1)(n + 2)(n + 3).

A curiosity? Not quite. A good theorem (by Mahler states that
if f(x) is a polynomial with integral coefficients of degree two
or more (for two, the theorem is Pólya’s), and if H is a finite
set of primes (such as {2, 3, 5, 7, 11}), then there exists n0 such
that if all primes factors of f(n) are in H, then n ≤ n0.

Another way of saying this is as follows: limn→∞ P [f(n)] = ∞,
where P [f(n)] denotes the largest prime factor of f(n). With
the theory of Baker on linear forms in logarithms, Coates

gave an effective bound for n0. For the particular polynomial
f(x) = x(x + 1)(x + 2)(x + 3), the proof is elementary.

• 11 is the largest positive integer d that is square-free and such
that Q(

√
−d) has a euclidean ring of integers. The other such

fields are those with d = 1, 2, 3, and 7. This means that if α,
β ∈ Z[

√
−d], there exist γ, δ ∈ Z[

√
−d] such that α = βγ + δ

where δ = 0 or N(δ) < N(β). (Here, for α = a+ b
√
−d, N(α) =

a2 + db2. The situation is just like that for euclidean division in
the ring Z of ordinary integers.)

• It is not known whether there exists a cuboid with sides a, b,
and c measured in integers, as well as all diagonals measured in
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integers. In other words, it is not known whether the following
system has a solution in non-zero integers:



a2 + b2 = d2

b2 + c2 = e2

c2 + a2 = f2

a2 + b2 + c2 = g2

If such integers exist, then 11 divides abc.

• 11 is the smallest integer that is not a numerus idoneus.

You do not know what a numerus idoneus is? I too needed to
reach 65 before realizing how this age and idoneus numbers are
connected with each other. So be patient.

• According to the theory of supersymmetry, the world has 11
dimensions: 3 for space position, 1 for time, and 7 to describe
the various possible superstrings and their different vibrating
patterns, so explaining subatomic particles’ behavior.

Is this a joke or a new theory to explain the world?

• The Mersenne numbers are the integers Mq = 2q − 1 where q is
a prime. Big deal: some are prime, some are composite. Bigger
deal: how many of each kind? Total mystery!

M11 = 211 − 1 = 2047 = 23 · 28. It is the smallest compos-
ite Mersenne number. The largest known composite Mersenne
number is Mq with q = 72021 × 223630 − 1.

19

• One of my favorite numbers has always been 19. At this age
Napoleon was winning battles—this we should forget. At the
same age, Gauss discovered the law of quadratic reciprocity—
this you cannot forget, once you have known it.

• First a curiosity concerning the number 19. It is the largest
integer n such that

n! − (n − 1)! + (n − 2)! − · · · ± 1!

is a prime number. The other integers n with this property are

n = 3, 4, 5, 6, 7, 8, 9, 10, and 15.
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• Both the repunit R19 and the Mersenne number M19 are prime
numbers.

• Let U0 = 0, U1 = 1, and Un = Un−1 + Un−2 for n ≥ 2; these
are the Fibonacci numbers. If Un is prime, then n must also be
prime, but not conversely. 19 is the smallest prime index that
provides a counterexample: U19 = 4181 = 37 · 113.

• The fields Q(
√
−19), Q(

√
19) have class number 1. (The class

number is a natural number which one associates to every num-
ber field. It is 1 for the field of rationals; it is also 1 for the
field of Gaussian numbers, and for any field whose arithmetical
properties resemble those of the rational numbers. The larger
the class number of a number field, the more its arithmetical
properties “deviate” from those of the rationals. For more on
these concepts, see Ribenboim (2000).) The ring of integers of
Q(

√
19) is euclidean, while the ring of integers Q(

√
−19) is not

euclidean.

• Let n > 2, n �≡ 2 (mod 4), and let ζn = e2πi/n denote a primitive
nth root of 1. 19 is the largest prime p such that Q(ζp) has class
number 1. This was important in connection with Kummer’s
research on Fermat’s Last Theorem.

Masley and Montgomery determined in 1976 all integers n,
n �≡ 2 (mod 4), such that Q(ζn) has class number 1, namely:

n = 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25,

27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, and 84.

• Balasubramanian, Dress, and Deshouillers showed in
1986 that every natural number is the sum of at most 19 fourth
powers. Davenport had shown in 1939 that every sufficiently
large natural number is the sum of at most 16 fourth powers.
This provided a complete solution of the two forms of Waring’s
problem for fourth powers.

29

• Twin primes, such as 29 and 31, are not like the ages of twins—
their difference is 2. Why? There are many twin persons and
many twin primes, but in both cases, it is not known whether
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there are infinitely many . . . .
Euler showed that ∑

p prime

1
p

= ∞.

On the other hand, Brun showed that∑
p, p + 2 primes

1
p

< ∞

Brun’s result says that either there are only finitely many
twin primes, or, if there are infinitely many twin primes, their
size must increase so rapidly that the sum above remains
bounded. All of this is amply discussed in my book on prime
numbers Ribenboim (1996).

• A curiosity observed by Euler: If 29 divides the sum a4+b4+c4,
then 29 divides gcd(a, b, c).

• Let p be a prime. The primorial of p is

p� =
∏

q ≤ p, q {prime}
q;

29 = 5� − 1. The expressions p� + 1 and p� − 1 have been con-
sidered in connection with variants of the Euclid’s proof that
there exist infinitely many primes. The following primes p are
the only ones less than or equal to 35000 such that p� − 1 is
prime:

p = 3, 5, 11, 13, 41, 89, 317, 991, 1873, 2053, 2371, 4093, 4297,
4583, 6569, 13033, 15877.

For this and similar sequences, see Ribenboim (1996).

• 2 ·292−1 = � (a square), similarly 2 ·12−1 = �, 2 ·52−1 = �.
In fact, there are infinitely many natural numbers x such that
2x2 − 1 = �. Here is how to obtain all pairs of natural numbers
(t, x) such that t2 − 2x2 = −1. From (t +

√
2x)(t −

√
2x) =

−1, it follows that t +
√

2x is a unit in the field Q(
√

2). The
fundamental unit is 1+

√
2 with the norm (1+

√
2)(1−

√
2) = −1,

so t +
√

2x = (1 +
√

2)n with n odd. Thus we have

(1 +
√

2)2 = 3 + 2
√

2,

(1 +
√

2)3 = 7 + 5
√

2,

(1 +
√

2)5 = 41 + 29
√

2.
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The next solution is obtained from

(1 +
√

2)7 = 239 + 169
√

2,

namely 2 · 1692 − 1 = 2392.

• The ring of integers of Q(
√

29) is euclidean. There are 16 real
quadratic fields Q(

√
d) with a euclidean ring of integers, namely

d = 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

• 2X2 + 29 is an optimal prime-producing polynomial. Such poly-
nomials were first considered by Euler—they are polynomials
f ∈ Z[X] that assume as many initial prime values as they
possibly can. More precisely, let f ∈ Z[X], with positive lead-
ing coefficient and f(0) = q, a prime. There exists the smallest
r > 0 such that f(r) > q and q | f(r). The polynomial is optimal
prime-producing if f(k) is prime for k = 0, 1, . . . , r − 1.

Euler observed that X2 + X + 41 is optimal prime-producing,
since it assumes prime values at k = 0, 1, . . . , 39, while 402 +
40 + 41 = 412.

In 1912, Rabinovitch showed that the polynomial f(X) =
X2 + X + q (with q prime) is optimal prime-producing if and
only if the field Q(

√
1 − 4q) has class number 1.

Heegner, Stark, and Baker determined all the imaginary
quadratic fields Q(

√
d) (with d < 0 and d square-free) with

class number 1:

d = −1, −2, −5, −7, −11, −19, −43, −67, −163.

These correspond to the only optimal prime-producing polyno-
mials of the form X2 + X + q, namely q = 2, 3, 5, 11, 17, 41.
X2 + X + 41 is the record prime-producing polynomial of the
form X2 + X + q.

Frobenius (1912) and Hendy (1974) studied optimal prime-
producing polynomials in relation to imaginary quadratic fields
having class number 2. There are three types of such fields:

(i) Q(
√
−2p), where p is an odd prime;

(ii) Q(
√−p), where p is a prime, and p ≡ 1 (mod 4);
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(iii) Q(
√−pq) where p, q are odd primes with p < q and pq ≡

3 (mod 4).

For the types of fields above, the following theorem holds:

(i) Q(
√
−2p) has class number 2 if and only if 2X2+p assumes

prime values at k = 0, 1, . . . , p − 1.

(ii) Q(
√−p) has class number 2 if and only if 2X2 +2X + p+1

2

assumes prime values at k = 0, 1, . . . , p−3
2 .

(iii) Q(
√−pq) has class number 2 if and only if pX2+pX+ p+q

4
assumes prime values at k = 0, 1, . . . , p+q

4 − 2.

Stark and Baker determined the imaginary quadratic fields
Q(

√
d) (with d < 0 and d square-free) that have class number 2.

According to their types, they are:

(i) d = −6, −10, −22, −58.

(ii) d = −5, −13, −37.

(iii) d = −15, −35, −51, −91, −115, −123, −187, −235, −267,
−403, −427.

With these values of d one obtains optimal prime-producing
polynomials.

In particular, 2X2 + 29 is an optimal prime-producing polyno-
mial, with prime values at k = 0, 1, . . . , 28; it corresponds to the
field Q(

√
−58), which has class number 2.

• 29 is the number of distinct topologies on a set with 3 elements.
Let τn denote the number of topologies on a set with n elements;
thus τ1 = 1 and τ2 = 2. One knows the values of τn for n ≤ 9
(Radoux (1975)).

Approaching the thirties, the age of confidence, life was smil-
ing. 29 was the first twin prime age I reached since I became a
mathematician by profession, so I select the number

30

• At this age I was in Bahia Blanca, Argentina, preparing a book
which has, I believe, the distinction of being the southern-most
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published mathematical book. (At least this is true for books on
ordered groups—but mine is not the northern-most published
book on the subject.)

• There is only one primitive pythagorean triangle with area equal
to its perimeter, namely (5, 12, 13), with perimeter 30.

• 30 is the largest integer d such that if 1 < a < d and gcd(a, d) =
1, then a is a prime. Other numbers with this property are: 3, 4,
6, 8, 12, 18, and 24. This was first proved by Schatunowsky in
1893 and, independently, by Wolfskehl in 1901. (Wolfskehl

is the rich mathematician who donated 100,000 golden marks
to be given to the author of the first proof of Fermat’s Last
Theorem to be published in a recognized mathematical journal.)

This result has an interpretation as follows. Given d > 1 and
a, 1 ≤ a < d, gcd(a, d) = 1, by Dirichlet’s theorem, there exist
infinitely many primes of the form a + kd (k ≥ 0). Let p(a, d)
be the smallest such prime, and let

p(d) = max{p(a, d) | 1 ≤ a < d, gcd(a, d) = 1}.

If d > 30, then p(d) > d + 1. In particular,

lim inf
p(d)
d + 1

> 1.

Pomerance has shown:

lim inf
p(d)

ϕ(d) log d
≥ eγ

where ϕ(d) is Euler’s totient of d and γ is the Euler-Mascheroni
constant.

On the other hand, as shown by Linnik, for d sufficiently large,
p(d) ≤ dL, where L is a constant. Heath-Brown showed that
L ≤ 5.5.

32

• 32 is the smallest integer n such that the number γn of groups
of order n (up to isomorphism) is greater than n: γ32 = 51.

I hate the number 32. At 32 degrees Fahrenheit, water becomes
ice and snow begins to fall. Let us change the subject!
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Older people remember best the events of their youth and those
of the more recent past. I haven’t forgotten anything I did not want
to forget, so I could let you know about all the years 33, 34, . . . . But
I would rather concentrate on the 60’s.

60

• 60 was the base of numeration in the counting system of the
Sumerians (ca. 3500 B.C.). Today we still use the sexagesimal
system in astronomy and in the subdivisions of the hour.

• 60 is a highly composite number. Such numbers were introduced
and studied by Ramanujan (1915): The natural number n is
highly composite if d(n) > d(m) for every m, 1 ≤ m < n, where
d(n) = number of divisors of n. Thus d(60) = d(22 · 3 · 5) =
3 · 2 · 2 = 12. The smallest highly composite numbers are

2, 4, 6, 12, 24, 32, 48, 60, 120, 180, 240, 360, 720, 840, . . . .

• 60 is a unitarily perfect number, which I now define. A number d
is a unitary divisor of n if d | n and gcd(d, n/d) = 1; n is unitarily
perfect if

n =
∑

{d | 1 ≤ d < n, d unitary divisor of n}.

Unitary divisors of 60 are 1, 3, 4, 5, 12, 15, 20 and their sum is
indeed 60.

Conjecture: There exist only finitely many unitarily perfect
numbers.

The only known unitarily perfect numbers are

6, 60, 90, 87360 and 218 ·3 ·7 ·11 ·13 ·19 ·37 ·79 ·109 ·157 ·313.

• 60 is the number of straight lines that are intersections of the
pairs of planes of the faces of a dodecahedron.

• 60 is the order of the group of isometries of the icosahedron. This
is the alternating group on 5 letters. It is the non-abelian simple
group with the smallest order. The simple groups have been
classified—a great achievement! There are 18 infinite families:
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– cyclic groups of prime order;

– alternating groups An, with n ≥ 5;

– six families associated to the classical groups;

– ten families associated to Lie algebras (discovered by
Dickson, Chevalley, Suzuki, Ree, and Steinberg.

There are also 26 “sporadic” groups, which do not belong to
the above families. The sporadic groups with the largest order
is Fischer’s monster, which has

246 ·320 ·59 ·76 ·112 ·133 ·17 ·19 ·23 ·29 ·31 ·41 ·47 ·59 ·71 ≥ 8 ·1053

elements.

61

• A curiosity: Let k ≥ 0, and let a1, . . . , ak, x, y be digits. If the
number (in decimal notation)

a1a2 . . . akxyxyxyxyxy

is a square, then xy = 21, 61, or 84. Examples:

1739288516161616161 = 13188208812;

258932382121212121 = 5088539892.

• The Mersenne number M61 = 261 − 1 is a prime. Today there
are 37 known prime Mersenne numbers Mp = 2p − 1, namely,
those with

p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203,

2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209,

44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787,

1398269, 2976221, and 3021227.

23021227 − 1 is also the largest prime known today.
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62

This number is remarkable for being so uninteresting. As a matter of
fact, suppose that, for some reason or another, there is some number
that is not remarkable. Then there is the smallest non-remarkable
number, which is therefore remarkable for being the smallest non-
remarkable number.

But this is just another example of Russell’s paradox . . . .

63

• This number appears in a cycle associated with Kaprekar’s al-
gorithm for numbers with 2 digits. This algorithm, for numbers
with k digits, goes as follows: Given k digits a1 . . . ak, not all
equal, with a1 ≥ a2 ≥ . . . ≥ ak ≥ 0, consider two numbers
formed using these digits: a1a2 . . . ak, and akak−1 . . . a1. Com-
pute their difference, and repeat the process with the k digits
so obtained.

Kaprekar’s algorithm for 2, 3, 4, and 5 digits leads to the
following fixed points or cycles.

2 digits → cycle 63 - 27 - 45 - 09 - 81
3 digits → 495
4 digits → 6174
5 digits → one of the 3 cycles: 99954 - 95553

98532 - 97443 - 96642 - 97731
98622 - 97533 - 96543 - 97641

Example: {3, 5}: 53 − 35 = 18, 81 − 18 = 63, 63 − 36 = 27,
72 − 27 = 45, 54 − 45 = 09, 90 − 09 = 81.

• 63 is the unique integer n > 1 such that 2n − 1 does not have
a primitive prime factor. Explanation: If 1 ≤ b < a, with
gcd(a, b) = 1, consider the sequence of binomials an − bn for
n ≥ 1. The prime p is a primitive prime factor of an − bn if
p | an − bn, but p � am − bm if 1 ≤ m < n.

Zsigmondy proved, under the above assumptions, that every
binomial an − bn has a primitive prime factor, except in the
following cases:
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(i) n = 1, a − b = 1;

(ii) n = 2, a and b odd, and (a + b) a power of 2;

(iii) n = 6, a = 2, b = 1.

This theorem has many applications in the study of exponential
diophantine equations; see Ribenboim (1994). Explicitly, when
a = 2 and b = 1, the sequence is:

1, 3, 7, 15 = 3 ·5, 31, 63 = 32 ·7, 127, 257, 511, 1023 = 3 ·11 ·31, . . .

64

64 is almost 65, a number I hated to reach, but which nevertheless
has many interesting features.

65

• 65 is the smallest number that is the sum of 2 squares of natural
numbers in 2 different ways (except for the order of summands):

65 = 82 + 12 = 72 + 42.

Recall Fermat’s result: n is a sum of 2 squares if and only if for
every prime p ≡ 3 (mod 4), vp(n) is even. (Here vp(n) denotes
the p-adic value of n, that is, pvp(n) | n but pvp(n)+1 does not
divide n.) The following formula gives the number

r(n) = #{(a, b) | 0 ≤ b ≤ a and n = a2 + b2}.

For each d ≥ 1, let

χ(d) =

{
(−1)

d−1
2 if d is odd,

0 if d is even.

Let R(n) =
∑

d|n χ(d). Then

r(n) =




R(n)
2

if R(n) is even,

1 + R(n)
2

if R(n) is odd.
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Example: 65 = 5 · 13 has divisors 1, 5, 13, 65, and R(65) =∑
d|65 χ(d) = 4, so r(65) = 2.

• 65 is the smallest hypotenuse common to two pythagorean
triangles. This follows from the parameterization of the sides
of pythagorean triangles: If 0 < x, y, z, with y even and
x2 + y2 = z2, then there exist a and b, 1 ≤ b < a, such that

x = a2 − b2; y = 2ab; z = a2 + b2.

Moreover, the triangle is primitive (i.e. gcd(x, y, z) = 1) if and
only if gcd(a, b) = 1. From 65 = 82 + 12 = 72 + 42 one gets the
pythagorean triangles (63, 16, 65) and (33, 56, 65).

• A curiosity: 65 is the only number with 2 digits d, e, 0 ≤ e < d ≤
9, such that (de)2−(ed)2 = �, a square. Indeed, 652−562 = 332,
and the uniqueness follows from the parameterization indicated
above.

• 65 is also a remarkable number of the second kind, that is, it
counts the number of remarkable numbers satisfying some given
property. In the present case, 65 is perhaps the number of Eu-

ler’s numeri idonei. I say “perhaps” because there is still an
open problem, and instead of 65 there may eventually exist 66
such numbers.

Numeri idonei

What are these numeri idonei of Euler? Also called convenient
numbers, they were used conveniently by Euler to produce prime
numbers.

Now I will explain what the numeri idonei are. Let n ≥ 1. If q is an
odd prime and there exist integers x, y ≥ 0 such that q = x2 + ny2,
then:

(i) gcd(x, ny) = 1;

(ii) if q = x2
1 +ny2

1 with integers x1, y1 ≥ 0, then x = x1 and y = y1.

We may ask the following question. Assume that q is an odd in-
teger, and that q = x2 + ny2, with integers x, y ≥ 0, such that
conditions (i) and (ii) above are satisfied. Is q a prime number?
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The answer depends on n. If n = 1, the answer is “yes”, as Fer-
mat knew. For n = 11, the answer is “no”: 15 = 22 + 11 · 12 and
conditions (i) and (ii) hold, but 15 is composite. Euler called n a
numerus idoneus if the answer to the above question is “yes”.

Euler gave a criterion to verify in a finite number of steps whether
a given number is convenient, but his proof was flawed. Later, in
1874, Grube found the following criterion, using in his proof results
of Gauss, which I will mention soon. Thus, n is a convenient number
if and only if for every x ≥ 0 such that q = n + x2 ≤ 4n

3 , if q = rs
and 2x ≤ r ≤ s, then r = s or r = 2x.

For example, 60 is a convenient number, because

60 + 12 = 61 (�),
60 + 22 = 64 = 4 · 16 = 8 · 8,

60 + 32 = 69 (�),
60 + 42 = 76 (�)

and the numbers marked with a (�) do not have a factorization of
the form indicated.

Euler showed, for example, that 1848 is a convenient number,
and that

q = 18518809 = 1972 + 1848 · 1002

is a prime number. At Euler’s time, this was quite a feat.
Gauss understood convenient numbers in terms of his theory of

binary quadratic forms. The number n is convenient if and only if
each genus of the form x2 + ny2 has only one class.

Here is a list of the 65 convenient numbers found by Euler:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25,
28, 30, 33, 37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93,
102, 105, 112, 120, 130, 133, 165, 168, 177, 190, 210, 232, 240,
253, 273, 280, 312, 330, 345, 357, 385, 408, 462, 520, 760, 840,
1320, 1365, 1848.

Are there other convenient numbers? Chowla showed that there
are only finitely many convenient numbers; later, finer analytical
work (for example, by Briggs, Grosswald, and Weinberger)
implied that there are at most 66 convenient numbers.

The problem is difficult. The exclusion of an additional numerus
idoneus is of a kind similar to the exclusion of a hypothetical tenth
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imaginary quadratic field (by Heegner, Stark, and Baker), which
I have already mentioned.

An extraordinary conjunction

If your curiosity has not yet subsided, I was struck in 1989, in Athens,
at the occasion of my “Greek Lectures on Fermat’s Last Theorem”
by an extraordinary conjunction of numbers. Once in a lifetime, and
not to be repeated before. . . .

At that year, my wife’s age and my age were 59 and 61—twin
primes (but we are not twins); at that same year, we had been mar-
ried 37 years—the smallest irregular prime. If you are still interested,
Kummer had proved that Fermat’s Last Theorem is true for all odd
prime exponents p that are regular primes. These are the primes p
that do not divide the class number of the cyclotomic field generated
by the pth root of 1. Kummer also discovered that 37 is the smallest
irregular prime. Pity that 1989 (the year of my Athens lecture) is
not a prime.

So you are challenged to find the next occurrence of numbers like
37, 59, 61, but in a prime numbered year.
Notes. This paper on remarkable numbers would not have been pos-
sible were it not for the very original book by F. Le Lionnais, Les
Nombres Remarquables, published in 1983 by Hermann, in Paris.

François Le Lionnais was not a mathematician by profession,
but rather a scientific writer, and as such, very well informed. His
book Les Grands Courants de la Pensée Mathématique is very en-
grossing to read even today. Just after the war he gathered in this
book the ideas of several young French mathematicians—still little
known at that time—who would soon rise to the pinnacle. An English
translation and the original are available in good libraries. I have an
autographed copy of the book on remarkable numbers, where Le Li-
onnais thanked me for calling his attention to the number 1093. You
may read about this number in Chapter 8 of this book.

Another book of the same kind, which served me well, is:
D. Wells, The Penguin Dictionary of Curious and Interesting
Numbers, Penguin, London, UK, 1986.

For results on algebraic numbers, nothing is easier for me than to
quote my own book Ribenboim (2000), to appear in a new edition
at Springer-Verlag. For numeri idonei, see Frei (1984). Concern-
ing primitive factors of binomials, see Ribenboim (1994). On prime
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numbers, Fibonacci numbers and similar topics, see Ribenboim

(1996). For further reference, see Guy (1994).
The following list of references is, it goes without saying,

incomplete.
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Ivić, A., 231, 232
Iwaniec, H., 84



364 Index of Names

Jacobi, C. G. J., 59, 215
Jarden, D., 2, 14, 15, 28
Jobling, P., 72
Johnson, W., 216
Jones, J. P., 69
Jongmans, F., 178

Kahada, Y., 187
Kakeya, S., 51, 54
Kanold, H.-J., 19, 225
Katayama, K., 280
Kaufmann-Bühler, W., 114
Keller, W., 27, 28, 93, 215
Khintchine, A. J., 287, 316, 331
Kisilevsky, H., 165
Kiss, P., 14
Klein, 146, 168
Knayswick, D., 25
Knuth, D., 316
Ko, C., 31, 178, 189, 190
Koksma, J. F., 298, 321, 329, 331
Kotov, S. V., 29
Krätzel, E., 231
Kraus, A., 242
Kronecker, L., 271
Kruyswijk, D., 248
Kummer, E. E., 220, 347, 358
Kunowski, S., 71
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