8.3 Graphite Intercalation Compounds⁽⁷⁶⁾

The large interlayer distance between the parallel planes of C atoms in graphite implies that the interlayer bonding is relatively weak. This accounts for the ready cleavage along the basal plane and the remarkable softness of the crystals. It also enables a wide range of substances to intercalate between the planes under mild conditions to give lamellar compounds of variable composition. These reactions are often reversible (unlike those with O and F discussed above) and the graphitic nature of the host lattice is retained. The compounds have quite different structures and properties from those previously encountered in this book and so will be described in some detail. They may be compared with the materials formed by intercalation into certain sheet silicates (p. 349).

The first alkali-metal graphite compound was reported in 1926: bronze-coloured C₈K was formed by direct reaction of graphite with K vapour at 300°C. Rubidium and Cs behave similarly. When heated at ~360° under reduced pressure the metal is removed in stages to give a series of intercalation compounds C₈M (bronze-red), C₂₄M (steel-blue), C₃₆M (dark blue), C₄₈M (black) and C₆₀M (black). The compounds can also be prepared by electrolysis of fused melts with graphite electrodes, by reaction of graphite with solutions of M in liquid ammonia or amines, and by exchange reactions using M/aromatic radical anions. Intercalation is more difficult to achieve with Li and Na though direct reaction with highly purified graphite at 500° yields C₆Li (brass coloured), C₁₂Li (copper), and C₁₈Li (steel), and reaction with Li/naphthalene in thf yields C₁₆Li and C₄₀Li. Corresponding reaction of graphite and molten Na at 450° gives C₆₄Na (deep violet) whereas Na/naphthalene gives C_{32} Na and C_{120} Na.

The crystal structure of C₈K is shown in Fig. 8.15(a); the graphite layers remain intact but are stacked vertically above each other instead of in the sequence ... ABAB... found in α -graphite itself. Each graphite layer is interleaved by a layer of K atoms having a commensurate lattice in which the spacing between each K is twice the spacing between the centres of the graphite hexagons (Fig. 8.15(b)). The stoichiometries of the other stages can then be achieved by varying the frequency of occurrence of the intercalated M layers in the host lattice. An idealized representation of this model is shown in Fig. 8.16. Difficulties are encountered in devising a plausible mechanistic route to the formation of these compounds since the direct preparation of one stage from an adjacent stage apparently requires both the complete emptying and the complete filling of inserted layers. It may be that the situation is more complex, with distributions of stages rather than a single uniform arrangement for each stoichiometry. Very recently a new metal-rich phase has been prepared by reacting graphite with molten potassium; the composition is very close to C₄K and the structure comprises double planes of K atoms intercalated between each graphite sheet, with a consequent increase in the interplanar spacing to 850 pm. (77)

The electrical resistance of graphite intercalation compounds is even lower than for graphite itself, resistance along the a-axis dropping by a factor of ~ 10 and that along the c-axis by ~ 100 ; moreover, in contrast to graphite, which is diamagnetic, the compounds have a temperature-independent (Pauli) paramagnetism and also behave as true metals in having a resistivity that increases with increase in temperature. This is illustrated by the comparative data shown in Table 8.2.

These data, and the other properties of C_nM , suggest that bonding occurs by transfer of electrons from the alkali metal atoms to the conduction band of the host graphite. Consistent with

⁷⁶ L. B. EBERT, A. Rev. Materials Sci. 6, 181–211 (1976).
A. HÉROLD, in F. LEVY (ed.), Intercalated Layered Materials, pp. 323–421, Reidel, 1979. H. SELIG and L. B. EBERT, Adv. Inorg. Chem. Radiochem. 23, 281–327 (1980); a review with ~350 references.

⁷⁷ M. EL GADI, C. HÉROLD and P. LAGRANGE, *Compt. Rend. Acad. Sci. Paris* 316, 763-9 (1993).

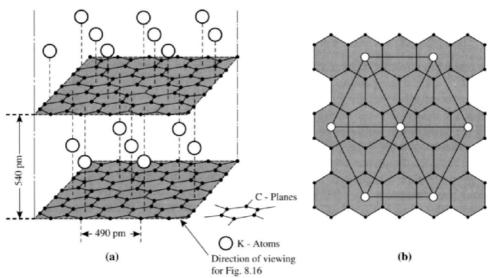


Figure 8.15 (a) Crystal lattice of C₈K showing the vertical packing of graphitic layers. The C-C distance within layers almost identical to that in graphite itself but the interplanar spacing (540 pm) is much larger than for graphite (335 pm) due to the presence of K atoms. The spacing increases still further to 561 pm for C₈Rb and to 595 pm for C₈Cs. (b) Triangular location of K atoms in C₈K showing the relation to the host graphite layers. In the other alkali-metal graphite compounds C_{12n}M the central M atom is missing, leading to a stoichiometry of C₁₂M if every alternate layer is M, C₂₄M if each third layer is M, etc.

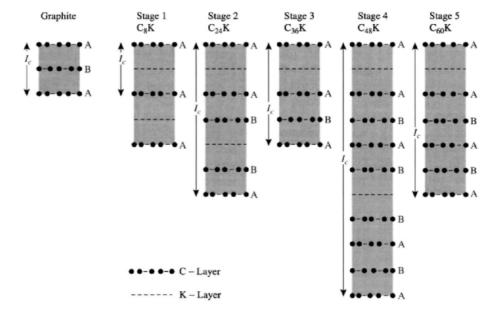


Figure 8.16 Layer-plane sequence along the c-axis for graphite in various stage 1-5 of alkali-metal graphite intercalation compounds. Comparison with Fig. 8.15 shows that the horizontal planes are being viewed diagonally across the figure. I_c is the interlayer repeat distance along the c-axis.

Table 8.2 Resistivity of graphite and its intercalates

Material	ρ (90 K)/ohm cm	ρ (285 K)/ohm cm	ρ_{90}/ρ_{285}
α-graphite	37.7	28.4	1.33
C ₈ K	0.768	1.02	0.75
$C_{12}K$	0.932	1.15	0.81

this, direct metal intercalation has only been observed with the most electropositive elements (Group 1) though Ba, with a first-stage ionization energy intermediate between those of Li and Na, was recently (1974) found to give C₆Ba.

Alkali-metal graphites are extremely reactive in air and may explode with water. In general, reactivity decreases with ease of ionization of M in the sequence Li > Na > K > Rb > Cs. Under controlled conditions H_2O or ROH produce only H_2 , MOH and graphite, unlike the alkali-metal carbides M_2C_2 (p. 297) which produce hydrocarbons such as acetylene. In an important new reaction C_8K has been found to react smoothly with transition metal salts in tetrahydrofuran at room temperature to give the corresponding transition metal lamellar compounds: $^{(78)}$

$$nC_8K + MX_n \xrightarrow{\text{thf}} C_{8n}M + nKX$$

Examples include reaction of $Ti(OPr^i)_4$, $MnCl_2-4H_2O$, $FeCl_3$, $CoCl_2.6H_2O$, $CuCl_2.2H_2O$, and $ZnCl_2$ to give $C_{32}Ti$, $C_{16}Mn$, $C_{24}Fe$, $C_{16}Co$, $C_{16}Cu$ and $C_{16}Zn$, respectively.

A quite different sort of graphite intercalation compound is formed by the halides of many elements, particularly those halides which themselves have layer structures or weak intermolecular binding. The first such compound (1932) was with FeCl₃; chlorides, in general, have been the most studied, but fluoride and bromide intercalates are also known. Halides which have been reported to intercalate include the following:

MF₅ (M = As, Sb, Nb, Ta); UF₆
MCl₂: M = Be; Mn, Co, Ni, Cu; Zn, Cd, Hg
MCl₃: M = B, Al, Ga, In, Tl; Y; Sm, Eu,
Gd, Tb, Dy; Cr, Fe, Co; Ru, Rh, Au; I
MCl₄: M = Zr, Hf; Re, Ir; Pd, Pt
MCl₅: M = Sb; Mo; U

 $\begin{aligned} &MCl_6{:}\ M=W,\ U;\ also\ CrO_2Cl_2,\ UO_2Cl_2\\ &Mixtures\ of\ AlCl_3\ plus\ Br_2,\ I_2,\ ICl_3, \end{aligned}$

FeCl₃, WCl₆

Bromides: CuBr₂; AlBr₃, GaBr₃; AuBr₃

The intercalates are usually prepared by heating a mixture of the reactants though sometimes the presence of free Cl₂ is also necessary, particularly for "non-oxidizing" chlorides such as MnCl₂, NiCl₂, ZnCl₂, AlCl₃, etc. Many of the compounds appear to show various stages of intercalation, the first stage usually exhibiting a typical blue colour. A common feature of many of the intercalated halides is their ability to act as electron-pair acceptors (Lewis acids). Low heat of sublimation is a further characteristic of most of the intercalating compounds. It may be that an important feature is an ability of the guest molecule to form a layer lattice commensurate with the host graphite. For example, in C_{6.69}FeCl₃ the intercalated FeCl₃ has a layer structure similar to that in FeCl₃ itself with Cl in approximately close-packed arrangement though with some distortion, and with extensive stacking disorder. The "firststage" compound varies in composition in the range C_{~6-7}FeCl₃; in addition a "second-stage" compound corresponding to $C_{\sim 12}$ FeCl₃ is known. and also a "third-stage" with composition in the range C₂₄₋₃₀FeCl₃. Another well-characterized phase occurs with MoCl₅: layers of close-packed Mo₂Cl₁₀ molecules alternate with sets of 4 graphite layers along the c-axis.

There appears to be a small but definite transfer of electron charge from the graphite to the guest species and this has led to formulations such as $C_{70}^+Cl^-$.FeCl₂.5FeCl₃. Similarly, the intercalate of AlCl₃ (which is formed in the presence of free Cl₂) has been formulated as $C_{27}^+Cl^-$.3AlCl₃ or $C_{27}^+AlCl_4^-$.2AlCl₃. This would explain the enhanced conductivity of the graphite-metal

⁷⁸ D. Braga, A. RIPAMONTI, D. SAVOIA, C. TROMBINI and A. UMANI-RONCHI, J. Chem. Soc., Dalton Trans., 2026–8 (1979).

halide compounds, due to the formation of positive holes near the top of the valence band. However, despite extensive work using a variety of techniques, many structural problems remain unresolved and there is still no consensus on the detailed description of the bonding. Recent work includes studies on intercalation and staging in main-group element fluoride systems, e.g. (using ionic formulations)

The halogens themselves show a curious alternation of behaviour towards graphite. F2 gives the compounds CF, C₂F and C₄F (p. 289) whereas liquid Cl₂ reacts slowly to give C₈Cl, and I₂ appears not to intercalate at all. By contrast, Br₂ readily intercalates in several stages to give compounds of formula C₈Br, C₁₂Br, C₁₆Br and C₂₀Br; the compounds C₁₄Br and C₂₈Br have also been well-characterized crystallographically but may be metastable phases. A notable feature of the Br₂ intercalation reaction is that it is completely prevented by prior coating of the basal plane of the sample of graphite with a layer impervious to Br₂. The lamellar character of blue C₈Br has been confirmed by X-ray diffraction and the intercalation of bromine, is accompanied by a marked decrease in the resistivity of the graphite — more than tenfold along the a-axis and twofold along the c-axis. C₈ICl and C₃₆ICl have also been prepared.

Numerous oxides, sulfides and oxoacids have been found to intercalate into graphite. For example, lamellar compounds with SO₃, N₂O₅ and Cl₂O₇ are known (but not with SO₂, NO or NO₂). CrO₃ and MoO₃ readily intercalate as do several sulfides such as V₂S₃, Cr₂S₃(+S), WS₂, PdS(+S) and Sb₂S₅. Metal nitrates and oxonitrates can also form intercalates, e.g. Cu(NO₃)₂, Zn(NO₃)₂, Zr(NO₃)₄, CrO₂(NO₃)₂, NbO(NO₃)₃ and TaO(NO₃)₃. A recent example is [C₂₈MoO₂(NO₃)₂.0.3N₂O₅]⁽⁸²⁾

The reversible intercalation of various oxoacids under oxidizing conditions leads to lamellar graphite "salts" some of which have been known for over a century and are now particularly well characterized structurally. For example, the formation of the blue, "first-stage" compound with conc $\rm H_2SO_4$ can be expressed by the idealized equation

$$24C + 3H_2SO_4 + \frac{1}{4}O_2 \longrightarrow C_{24} + HSO_4 - .2H_2SO_4 + \frac{1}{2}H_2O$$

The overall stoichiometry is thus close to C₈H₂SO₄ and the structure is very similar to that of C₈K (p. 293) except for the detail of vertical alignment of the carbon atoms in the c direction which is \cdots ABAB \cdots . Several later stages (2, 3, 4, 5, 11) have been established and their properties studied. Intercalation is accompanied by a marked decrease in electrical resistance. A series of graphite nitrates can be prepared similarly, e.g. $C_{24}^{+}NO_{3}^{-}.2HNO_{3}$ (blue), C₄₈+NO₃-.3HNO₃ (black), etc. Other oxoacids which intercalate (particularly under electrolytic conditions) include HClO₄, HSO₃F, HSO₃Cl, H₂SeO₄, H₃PO₄, H₄P₂O₇, H₃AsO₄, CF₃CO₂H, CCl₃CO₂H, etc. The extent of intercalation depends both on the strength of the acid and its concentration, and the reactions are of considerable technological importance because they can lead to the swelling and eventual destruction of the graphite electrodes used in many electrochemical processes.

⁷⁹ E. M. McCarron and N. Bartlett, J. Chem. Soc., Chem. Commun., 404-6 (1980).

⁸⁰ E. M. McCarron, J. Grannec and N. Bartlett, J. Chem. Soc., Chem. Commun., 890-1 (1980).

⁸¹ G. L. ROSENTHAL, T. E. MALLOUK and N. BARTLETT, Synthetic Metals 9, 433–40 (1984).

 $^{^{82}}$ E. Stumpp and H. Griebel, Z. anorg. allg. Chem. **579**, 205–10 (1989).

8.4 Carbides

Carbon forms binary compounds with most elements: those with metals are considered in this section whilst those with H, the halogens, O, and the chalcogens are discussed in subsequent sections. Alkali metal fullerides and encapsulated (endohedral) metallafullerenes have already been considered (pp. 285, 288 respectively) and metallacarbohedrenes (metcars) will be dealt with later in this section (p. 300). Silicon carbide is discussed on p. 334. General methods of preparation of metal carbides are: (83)

- Direct combination of the elements above ~2000°C.
- (2) Reaction of the metal oxide with carbon at high temperature.
- (3) Reaction of the heated metal with gaseous hydrocarbon.
- (4) Reaction of acetylene with electropositive metals in liquid ammonia.

Attempts to classify carbides according to structure or bond type meet the same difficulties as were encountered with hydrides (p. 64) and borides (p. 145) and for the same reasons. The general trends in properties of the three groups of compounds are, however, broadly similar, being most polar (ionic) for the electropositive metals, most covalent (molecular) for the electronegative non-metals and somewhat complex (interstitial) for the elements in the centre of the d block. There are also several elements with poorly characterized, unstable, or non-existent carbides, namely the later transition elements (Groups 11 and 12), the platinum metals, and the post transition-metal elements in Group 13.

Salt-like carbides containing individual C "anions" are sometimes called "methanides" since they yield predominantly CH₄ on hydrolysis. Be₂C and Al₄C₃ are the best-characterized examples, indicating the importance of small

compact cations. Be₂C is prepared from BeO and C at 1900-2000°C; it is brick-red, has the antifluorite structure (p. 118), and decomposes to graphite when heated above 2100°. Ab initio calculations suggest that the structure is predominantly ionic with charges close to the nominal Be²⁺₂C⁴⁻. (84) Al₄C₃, prepared by direct union of the elements in an electric furnace, forms paleyellow crystals, mp 2200°C. It has a complex structure in which {AlC₄} tetrahedra of two types are linked to form a layer lattice: this defines two types of C atom, one surrounded by a deformed octahedron of 6 Al at 217 pm and the other surrounded by 4 Al at 190-194 pm and a fifth Al at 221 pm. The closest C···C approach is at the nonbonding distance of 316 pm. Although it is formally possible to describe the structure as ionic, $(Al^{3+})_4(C^{4-})_3$, such a gross separation of charges is unlikely to occur over the observed interatomic distances.

Carbides containing a C₂ unit are well known; they are exemplified by the acetylides (ethynides) of the alkali metals, M₂C₂, alkaline earth metals, M^{II}C₂, and the lanthanoids LnC₂ and Ln₂C₃ i.e. $Ln_4(C_2)_3$. The corresponding compounds of Group 11 (Cu, Ag, Au) are explosive and those of Group 12 (Zn, Cd, Hg) are poorly characterized. M₂¹C₂ are best prepared by the action of C₂H₂ on a solution of alkali metal in liquid NH₃; they are colourless crystalline compounds which react violently with water and oxidize to the carbonate on being heated in air. M^{II}C₂ can be prepared by heating the alkaline earth metal with ethyne above 500°C. By far the most important compound in this group is CaC₂ — it is manufactured on a huge scale, 6.4 million tonnes worldwide in 1982 and is used as a major source of ethyne for the chemical industry and for oxyacetylene welding. US production peaked at 1.03 Mt in 1964 but then declined substantially as ethyne became available from petrochemical feedstocks, from the thermal cracking of hydrocarbons and as a byproduct of C₂H₄ manufacture. US production of CaC₂

⁸³ Reference 2, pp. 841-911: Carbides (p. 841); Cemented carbides (p. 848); Industrial hard carbides (p. 861); Calcium carbide (p. 878); Silicon carbide (p. 891).

⁸⁴ P. W. FOWLER and P. TOLE, J. Chem. Soc., Chem. Commun., 1652-4 (1989).

has been below 250 000 tonnes per annum for the past 20 years and was 236 000 tonnes in 1990 (price \$515/t). Europe (3.25 Mtpa) and Asia/Australia (2.42 Mtpa) are currently the major producers.

Industrially, CaC₂ is produced by the endothermic reaction of lime and coke:

CaO + 3C
$$\xrightarrow{2200-2250^{\circ}\text{C}}$$
 CaC₂ + CO;
 $\Delta H = 465.7 \text{ kJ mol}^{-1}$

Subsequent hydrolysis is highly exothermic and must be carefully controlled:

$$CaC_2 + 2H_2O \longrightarrow C_2H_2 + Ca(OH)_2;$$

 $\Delta H = -120 \text{ kJ mol}^{-1}$

Another industrially important reaction of CaC₂ is its ability to fix N₂ from the air by formation of calcium cyanamide:

$$CaC_2 + N_2 \xrightarrow{1000^{\circ} - 1200^{\circ}} CaCN_2 + C;$$

$$\Delta H = -296 \text{ kJ mol}^{-1}$$

 $CaCN_2$ is widely used as a fertilizer because of its ready hydrolysis to cyanamide, H_2NCN (p. 323).

Pure CaC_2 is a colourless solid, mp 2300°C. It can be prepared on the laboratory scale by passing ethyne into a solution of Ca in liquid NH₃, followed by decomposition of the complex so formed, under reduced pressure at \sim 325°:

$$\begin{aligned} \text{Ca(liq NH}_3) + 2\text{C}_2\text{H}_2 &\xrightarrow{-80^{\circ}} \text{H}_2 + \text{CaC}_2.\text{C}_2\text{H}_2 \\ &\xrightarrow{325^{\circ}} \text{CaC}_2 + \text{C}_2\text{H}_2 \end{aligned}$$

It exists in at least four crystalline forms, the one stable at room temperature being a tetragonally distorted NaCl-type structure (Fig. 8.17) in which the C_2 units are aligned along the c-axis. The ethynides of Mg, Sr and Ba have the same structure and also hydrolyse to give ethyne. In addition, BaC₂ absorbs N₂ from the atmosphere to give Ba(CN)₂ (cf. CaC₂ above).

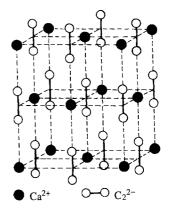


Figure 8.17 Crystal structure of tetragonal CaC₂ showing the resemblance to NaCl (p. 242). Above 450°C the parallel alignment of the C₂ units breaks down and the structure becomes cubic.

Carbides containing the essentially linear C_3^{4-} unit are known, e.g. Li_4C_3 , Mg_2C_3 , and the recently characterized $Ca_3C_3Cl_2$ and Sc_3C_4 . Thus $Ca_3C_3Cl_2$ forms as transparent red crystals when $CaCl_2$ is heated with graphite in sealed Ta capsules at $900^{\circ}C$ for 1 day $(C-C 134.6 \, \text{pm})$, angle 169.0°). By contrast Sc_3C_4 is a grey-black metallic substance with Pauli paramagnetism: it contains C^{4-} and C_2^{2-} ions, and supernumerary electrons ein addition to C_3^{4-} (C-C 134.2 pm, angle 175.8°). It can best be represented as $10Sc_3C_4 \equiv [(Sc^{3+})_{30}(C^{4-})_{12}(C_2^{2-})_2(C_3^{4-})_8(e^{-})_6]$. (85)

The carbides of the lanthanoids and actinoids can be prepared by heating M_2O_3 with C in an electric furnace or by arc-melting compressed pellets of the elements in an inert atmosphere. They contain the C_2 unit and have a stoichiometry MC_2 or $M_4(C_2)_3$. MC_2 have the CaC_2 structure or a related one of lower symmetry in which the C_2 units lie at right-angles to the c-axis of an orthogonal NaCl-type cell. (86) They are more reactive than the alkaline-earth metal

⁸⁵ R. HOFFMANN and H.-J. MEYER, Z. anorg. allg. Chem. 607, 57-71 (1992).

⁸⁶ A. F. WELLS, Structural Inorganic Chemistry, 5th edn., Oxford University Press, Oxford, 1984, 1382 pp.

carbides, combining readily with atmospheric oxygen and hydrolysing to a complex mixture of hydrocarbons. This derives from their more complicated electronic structure and, indeed, LnC_2 are metallic conductors (not insulators like CaC_2); they are best regarded as ethynides of Ln^{III} with the supernumerary electron partly delocalized in a conduction band of the crystal. This would explain the evolution of H_2 as well as C_2H_2 on hydrolysis, and the simultaneous production of the reduced species C_2H_4 and C_2H_6 together with various other hydrocarbons up to C_6H_{10} :

$$LnC_2 + 3H_2O \longrightarrow Ln(OH)_3 + C_2H_2 + [H]$$

An interesting feature of the ethynides MC_2 and $M_4(C_2)_3$ is the variation in the C-C distance as measured by neutron diffraction. Typical values (in pm) are:

CaC ₂	YC ₂	CeC ₂	LaC ₂	UC ₂
119.2	127.5	128.3	130.3	135.0
La ₄ (C ₂) ₃ 123.6	Ce ₄ (C ₂) ₃ 127.6	$U_4(C_2)_3$ 129.5		

The C-C distance in CaC_2 is close to that in ethyne (120.5 pm) and it has been suggested that the observed increase in the lanthanoid and actinoid carbides results from a partial localization of the supernumerary electron in the antibonding orbital of the ethynide ion $[C \equiv C]^{2-}$ (see p. 932). The effect is noticeably less in the sesquicarbides than in the dicarbides. The compounds EuC_2 and YbC_2 differ in their lattice parameters and hydrolysis behaviour from the other LnC_2 and this may be related to the relative stability of Eu^{II} and Yb^{II} (p. 1237).

The lanthanoids also form metal-rich carbides of stoichiometry M_3C in which individual C atoms occupy at random one-third of the octahedral Cl sites in a NaCl-like structure. Several of the actinoids (e.g. Th, U, Pu) form monocarbides, MC, in which all the octahedral Cl sites in the NaCl structure are occupied and this stoichiometry is also observed for several other carbides of the early transition elements, e.g. M = Ti, Zr, Hf; V, Nb, Ta; Mo, W. These

are best considered as interstitial carbides and in this sense the lanthanoids and actinoids occupy an intermediate position in the classification of the carbides, as they did with the hydrides (p. 66).

Interstitial carbides are infusible, extremely hard, refractory materials that retain many of the characteristic properties of metals (lustre, metallic conductivity). (87) Reported mps are frequently in the range 3000-4000°C. Interstitial carbides derive their name from the fact that the C atoms occupy octahedral interstices in a close-packed lattice of metal atoms, though the arrangement of metal atoms is not always the same as in the metal itself. The size of the metal atoms must be large enough to generate a site of sufficient size to accommodate C, and the critical radius of M seems to be \sim 135 pm: thus the transition metals mentioned in the preceding paragraph all have 12-coordinate radii > 135 pm, whereas metals with smaller radii (e.g. Cr, Mn, Fe, Co, Ni) do not form MC and their interstitial carbides have a more complex structure (see below). If the close-packed arrangement of M atoms is hexagonal (h) rather than cubic (c) then the 2 octahedral interstices on either side of a close-packed M layer are located directly above one another and only one of these is ever occupied. This gives a stoichiometry M₂C as in V₂C, Nb₂C, Ta₂C and W₂C. Intermediate stoichiometries are encountered when the M atom stacking sequence alternates, e.g. Mo₃C₂ (hcc) and V₄C₃ (hhcc). Ordered defect NaCl-type structures are also known, e.g. V₈C₇ and V₆C₅, thus illustrating the wide range of stoichiometries which occur among interstitial carbides. Unlike the "ionic" carbides, interstitial carbides do not react with water and are generally very inert, though some do react with air when heated above 1000° and most are degraded by conc HNO₃ or HF. The extreme hardness and inertness of WC and TaC have led to their extensive use as highspeed cutting tools.

 ⁸⁷ H. H. JOHANSEN, Survey of Progress in Chemistry 8,
 57-81 (1977). See also A. COTTRELL, Chemical Bonding in Transition Metal Carbides, Inst. of Materials, London, 1995,
 99 pp.

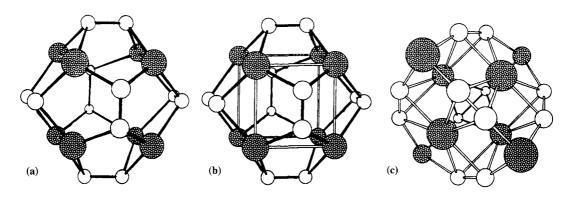


Figure 8.18 (a) Proposed pentagonal dodecahedral structure of Ti_8C_{12} . (b) The same structure viewed as a Ti_8 cube with each face capped by a C_2 group. (c) An alternative T_h structure (see text).

Table 8.3 Stoichiometries of some transition element carbides

V_2C , V_4C_3	Cr ₂₃ C ₆	Mn ₂₃ C ₆ , Mn ₁₅ C ₄	Fe ₃ C, Fe ₇ C ₃	Co ₃ C	Ni ₃ C
V_6C_5 , V_8C_7	Cr_7C_3	Mn_3C , Mn_5C_2	Fe_2C	Co_2C	
VC	Cr_3C_2	Mn_7C_3			

The carbides of Cr, Mn, Fe, Co and Ni are profuse in number, complicated in structure, and of great importance industrially. Cementite, Fe₃C, is an important constituent of steel (p. 1075). Typical stoichiometries are listed in Table 8.3 though it should be noted that several of the phases can exist over a range of composition.

The structures, particularly of the most metalrich phases, are frequently related to those of the corresponding metal-rich borides (and silicides, germanides, phosphides, arsenides, sulfides and selenides), in which the non-metal is surrounded by a trigonal prism of M atoms with 0, 1, 2, or 3 additional neighbours beyond the quadrilateral prism faces (p. 148). e.g. Fe₃C (cementite), Mn₃C and Co₃B; Mn₅C₂ and Pd₅B₂; Cr₇C₃ and Re₇B₃. Numerous ternary carbides, carbonitrides, and oxocarbides are also known.

The carbides of Cr, Mn, Fe, Co and Ni are much more reactive than the interstitial carbides of the earlier transition metals. They are rapidly hydrolysed by dilute acid and sometimes even by water to give H_2 and a mixture of hydrocarbons. For example, M_3C give H_2 (75%), CH_4 (15%)

and C_2H_6 (8%) together with small amounts of higher hydrocarbons.

Metallocarbohedrenes (met-cars)

An entirely novel group of binary metal carbides, reminiscent of the fullerenes (p. 279), were discovered by accident in 1992. When Ti metal is vaporized in a laser plasma reactor in the presence of He gas containing a hydrocarbon such as methane, ethene, ethyne or benzene, the mass spectrum of the emerging beam contains a single dominant peak at 528 corresponding to Ti_8C_{12} [isotope ⁴⁸Ti 73.8% abundant: (8 × 48) + (12 × 12) = 528]. Detailed isotope distribution studies confirmed the molecular formula. The proposed structure, shown in Fig. 8.18a, is a pentagonal dodecahedron of T_h symmetry comprising 12 mutually fused Ti_2C_3 pentagons.

⁸⁸ B. C. Guo, K. P. Kerns and A. W. Castleman, *Science* **255**, 1411-3 (1992). B. C. Guo, S. Wei, J. Purnell, S. Buzza and A. W. Castleman, *Science* **256**, 515-6 and 818-20 (1992), *J. Chem. Phys.* **96**, 4166-8 (1992).

Property	CH ₄	CF ₄	CCl ₄	CBr ₄	CI ₄
MP/°C	-182.5	-183.5	-22.9	90.1	171 (d)
BP/°C	-161.5	-128.5	76.7	189.5	\sim 130 (subl)
Density/g cm ⁻³	0.424	1.96	1.594	2.961	4.32
(at $T^{\circ}C$)	(-164°)	(-184°)	(20°)	(100°)	$(20^{\circ}) (s)$
$-\Delta H_f^{\circ}/\text{kJ mol}^{-1}$	74.87	679.9	106.7 (g) 139.3 (l)	160 (1)	_
$D(X_3C-X)/kJ \text{ mol}^{-1}$	435	515	295	235	_

Table 8.4 Some properties of methane and CX₄

Each Ti bonds to 3C via σ bonds and each C bonds to 2Ti and one C. The all-carbon analogue, C₂₀, is not expected to be stable because of severe internal strain; (it would be the smallest possible fullerene, p. 280). Note, however, that dodecahedrane, C₂₀H₂₀, is known. (89) An alternative description of the structure (Fig. 8.18b) would be as a weakly bonded cube, Ti₈, each face of which is capped by a C₂ unit. The calculated distances (90) are Ti · · · Ti 302 pm, Ti - C 199 pm and C - C 140 pm (implying some multiple bonding: cf. 140 pm in benzene). An alternative T_h structure for Ti_8C_{12} , which is calculated to have a lower energy, has also been proposed. (90) In this, the Ti₈ array is a tetracapped tetrahedron containing six Ti₄ faces in butterfly conformation; each of these Ti₄ faces can then accommodate a C2 unit as shown in Fig. 8.18c.

Other met-cars that have been detected mass spectrometrically are M_8C_{12} (M=V,Zr,Hf) and there is some evidence for higher members such as $Zr_{13}C_{22}$, $Zr_{14}C_{23}$, $Zr_{18}C_{29}$ and $Zr_{23}C_{32}$ which may feature fused clusters of clusters. The possibility of a super-pentagonal cluster, $M_{30}C_{45}$, of D_{5h} symmetry has also been mooted. (91)

As with the fullerenes, further detailed studies will depend on the discovery of viable bulk preparations of the met-cars. Macroscopic amounts of Ti_8C_{12} and V_8C_{12} have indeed been made by DC arc discharge techniques using electrodes of compacted metal and graphite powders and He as the quenching carrier gas. (92) The resulting soot contains about 1% of airstable M_8C_{12} plus some C_{60} (unstable in air). Solution studies have not yet been reported but there is mass spectrometric evidence for $Ti_8C_{12}L_8$ ($L=NH_3$, ND_3 , H_2O) as well as for $Ti_8C_{12}(MeOH)_4$.

8.5 Hydrides, Halides and Oxohalides

The ability of C to catenate (i.e. to form bonds to itself in compounds) is nowhere better illustrated than in the compounds it forms with H. Hydrocarbons occur in great variety in petroleum deposits and elsewhere, and form various homologous series in which the C atoms are linked into chains, branched chains and rings. The study of these compounds and their derivatives forms the subject of organic chemistry and is fully discussed in the many textbooks and treatises on that subject. The matter is further considered on p. 374 in relation to the much smaller ability of other Group 14 elements to form such catenated compounds. Methane, CH₄, is the archetype of tetrahedral coordination in molecular compounds; some of its properties are listed in Table 8.4 where they are compared with those of the

 ⁸⁹ R. J. TERNANSKY, D. W. BALOGH and L. A. PAQUETTE,
 J. Am. Chem. Soc. 104, 4503-4 (1982).
 J. C. GALLUCCI,
 C. W. DOECKE and L. A. PAQUETTE J. Am. Chem. Soc. 108, 1343-4 (1986).

⁹⁰ I. G. DANCE, *J. Chem. Soc.*, *Chem. Commun.*, 1779-80 (1992).

⁹¹ I. G. DANCE, Aust. J. Chem. 46, 727-30 (1993).

⁹² S. F. CARTIER, Z. Y. CHEN, G. J. WALDER and A. W. CASTLEMAN, *Science* **260**, 195-6 (1993).

corresponding halides. Unsaturated hydrocarbons such as ethene (C_2H_4) , ethyne (C_2H_2) , benzene (C_6H_6) , cyclooctatetraene (C_8H_8) and homocyclic radicals such as cyclopentadienyl (C_5H_5) and cycloheptatrienyl (C_7H_7) are effective ligands to metals and form many organometallic complexes (pp. 930–43).

Methane is unique among hydrocarbons in being thermodynamically stable with respect to its elements. It follows that pyrolytic reactions to convert it to other hydrocarbons are energetically unfavourable and will be strongly equilibrium-limited. This is in marked contrast to the boranes where mild thermolysis of B_2H_6 or B_4H_{10} , for example, readily yields mixtures of the higher boranes (p. 164). Vast natural reserves of CH_4 gas exist but much is wasted

by flaring (direct burning off at the petroleum production site) because of the uneconomical cost of transport. However, in convenient locations such as the North Sea, natural gas is piped ashore for use as domestic or industrial fuel or as chemical feedstock. After CO_2 , methane is the most important "greenhouse gas" (p. 273) accounting for an estimated 15–20% of the atmospheric global warming ($CO_2 > 50\%$). The major sources of atmospheric CH_4 are natural wetlands (25%), rice cultivation (22%), animals (mainly domestic ruminants) (17%) and the mining of fossil fuels (16%), the total "production" being some 460 million tonnes per annum.

Notable recent advances in the chemistry of hydrocarbons include the synthesis and

$$H^{5}$$
 H^{6}
 H^{2}
 H^{7}
 H^{7}
 H^{8}
 H^{8}
 H^{8}
 H^{7}
 H^{8}
 H^{8}
 H^{7}
 H^{8}
 H^{8}
 H^{7}
 H^{8}
 H^{8

molecular structure determination of the tetrahedrane derivative, $C_4Bu_4^t$ (1), (93) the carbon-rich molecules tetraethynylmethane, C(C≡CH)₄ i.e. $C_9H_4^{(94)}$ and tetraethynylethene, $C_2(C \equiv CH)_4$ i.e. C₁₀H₄ (2),⁽⁹⁵⁾ the highly strained [1.1.1]propellane (3)⁽⁹⁶⁾ and the preparation of the largest discrete hydrocarbon molecules yet synthesized, the polyphenylethyne dendrimers C₁₁₃₄H₁₁₄₆ and $C_{1398}H_{1278}$ (mol wts 14777.6 and 18079.6). (97) There is also increasing interest in hydrocarbon salts R₁+R₂-. The first example was the stable, greenish-black crystalline compound $C_{48}H_{51}^{+}C_{61}H_{39}^{-}$ (mp 230°C decomp.) obtained by mixing thf solutions of Agranat's carbocation (4) and Kuhn's carbanion (5). (98) Of special interest is the covalent molecular hydrocarbon R_3 - R_2 (6) which exists in chloroform solution but which crystallizes on evaporation or cooling to give the ionic salt R_3 + R_2 -(7). $^{(99)}$ This reversible ionic-covalent equilibrium is reminiscent of similar behaviour in certain halides such as AlCl₃ (p. 234), PCl₅ (p. 499) and TeCl₄ (p. 772), etc.

Fullerene derivatives such as $C_{60}H_n$ (p. 283), $C_{60}H_2$ (p. 287), and $C_{61}H_2$ (p. 287), and hypercoordinated non-classical carbonium ions (p. 290) have already been briefly mentioned.

Turning next to the simple halides of carbon: tetrafluoromethane (CF₄) is an exceptionally stable gas with mp close to that of CH₄ (see Table 8.4). It can be prepared on a laboratory scale by reacting SiC with F₂ or by fluorinating CO₂, CO or COCl₂ with SF₄. Industrially it is prepared by the aggressive reaction of F₂ on CF₂Cl₂ or CF₃Cl, or by electrolysis of MF or MF₂ using a C anode. CF₄ was first obtained pure in 1926; C₂F₆ was isolated in 1930 and C₂F₄ in 1933; but it was not until 1937 that the various homologous series of fluorocarbons were isolated and identified. Replacement of H by F greatly increases both thermal stability and chemical inertness because of the great strength of the C-F

⁹³ H. Irngartinger, A. Goldmann, R. Jahn, M. Nixdorf, H. Rodewald, G. Maier, K.-D. Malsch and R. Emrich, Angew. Chem. Int. Edn. Engl. 23, 993–4 (1984).

⁹⁴ K. S. FELDMAN and C. M. KRAEBEL, J. Am. Chem. Soc. 115, 3846-7 (1993).

⁹⁵ Y. Rubin, C. B. Knobler and F. Diederich, *Angew. Chem. Int. Edn. Engl.* **30**, 698-700 (1991).

⁹⁶ J. E. JACKSON and L. C. ALLEN, J. Am. Chem. Soc. **106**, 591–9 (1984).

⁹⁷ Z. Xu and J. S. MOORE, Angew. Chem. Int. Edn. Engl. 32, 246-8 (1993), and Abstracts, ACS Denver Meeting, April 1993.

⁹⁸ K. OKAMOTO, T. KITAGAWA, K. TAKEUCHI, K. KOMATSU and K. TAKAHASHI, J. Chem. Soc., Chem. Commun., 173–4 (1985).

⁹⁹ K. OKAMOTO, T. KITAGAWA, K. TAKEUCHI, K. KOMATSU and A. MIYABO, J. Chem. Soc., Chem. Commun., 923-4 (1988).

bond (Table 8.4). Accordingly, fluorocarbons are resistant to attack by acids, alkalis, oxidizing agents, reducing agents and most chemicals up to 600°. They are immiscible with both water and hydrocarbon solvents, and when combined with other groups they confer water-repellance and stain-resistance to paper, textiles and fabrics. (100) Tetrafluoroethene (C₂F₄) can be polymerized to a chemically inert, thermosetting plastic PTFE (polytetrafluoroethene); this has an extremely low coefficient of friction and is finding increasing use as a protective coating in non-stick kitchen utensils, razor blades and bearings. PTFE is made by partial fluorination of chloroform using HF in the presence of SbFCl₄ as catalyst, followed by thermolysis to C₂F₄ and subsequent polymerization:

$$CCl_3H \longrightarrow CF_2ClH \xrightarrow{\Delta} C_2F_4 \longrightarrow (C_2F_4)_n$$

As a ligand towards metals, C_2F_4 and other unsaturated fluorocarbons differ markedly from alkenes (p. 931).

 CCl_4 is a common laboratory and industrial solvent with a distinctive smell, usually prepared by reaction of CS_2 or CH_4 with Cl_2 . Its use as a solvent has declined somewhat because of its toxicity, but CCl_4 is still extensively used as an intermediate in preparing "Freons" such as $CFCl_3$, CF_2Cl_2 and CF_3Cl : (100)

$$\begin{array}{c} CCl_4 + HF \xrightarrow{SbFCl_4} CFCl_3 + HCl \\ \\ CFCl_3 + HF \xrightarrow{SbFCl_4} CF_2Cl_2 + HCl \end{array}$$

The catalyst is formed by reaction of HF on SbCl₅. The Freons have a unique combination of properties which make them ideally suited for use as refrigerants and aerosol propellants. They have low bp, low viscosity, low surface tension and high density, and are non-toxic, non-flammable, odourless, chemically inert and thermally stable. The most commonly used is CF_2Cl_2 , bp, -29.8° . The market for Freons

and other fluorocarbons expanded rapidly in the sixties: production in the USA alone exceeded 200 000 tonnes in 1964 (417 000 tonnes in 1990) and global production was about three times this amount. Already in 1977 there was an annual production of 2.4×10^9 spray-cans. However, there has been growing concern that chlorofluorocarbons from spray-cans gradually work their way into the upper atmosphere where they may, through a complex chemical reaction, deplete the earth's ozone layer (p. 608). For this reason there was an enforced progressive elimination of this particular application in the USA starting 15 October 1978 and production of CFCs will effectively be completely phased out following the Montreal Protocol of September 1981.

CBr₄ is a pale-yellow solid which is markedly less stable than the lighter tetrahalides. Preparation involves bromination of CH₄ with HBr or Br₂ or, more conveniently, reaction of CCl₄ with Al₂Br₆ at 100°. The trend to diminishing thermal stability continues to CI₄ which is a bright-red crystalline solid with a smell reminiscent of I₂. It is prepared by the AlCl₃-catalysed halogen exchange reaction between CCl₄ and EtI.

Carbon oxohalides are reactive gases or volatile liquids which feature planar molecules of C_{2v} symmetry; they are isoelectronic with BX_3 (p. 196) and the bonding is best described in terms of molecular orbitals spanning all 4 atoms rather than in terms of localized orbitals as

implied by the formulation
$$X \subset C = O$$
. Some

physical properties and molecular dimensions are in Table 8.5. The values call for little comment except to note that the XCX angle is significantly less (as expected) than the value of 120° found for the more symmetrical isoelectronic species BX₃ and CO₃²⁻. The C-Br distance is unusually long; it comes from a very early diffraction measurement and could profitably be checked.

Mixed oxohalides are also known and their volatilities are intermediate between those of the

¹⁰⁰ Kirk-Othmer Encyclopedia of Chemical Technology, 4th edn., Vol 11, 1994, pp. 467-729.