676 Sulfur Ch. 15 Mixed complexes in which a metal is coordinated by a dithiolene and by other ligands such as $(\eta^5-C_5H_5)$, CO, NO, R₃P, etc., are also known. ## 15.2 Compounds of Sulfur # 15.2.1 Sulfides of the metallic elements (98,99) Many of the most important naturally occurring minerals and ores of the metallic elements are sulfides (p. 648), and the recovery of metals from these ores is of major importance. Other metal sulfides, though they do not occur in nature, can be synthesized by a variety of preparative methods, and many have important physical or chemical properties which have led to their industrial production. Again, the solubility relations of metal sulfides in aqueous solution form the basis of the most widely used scheme of elementary qualitative analysis. These various more general considerations will be briefly discussed before the systematic structural chemistry of metal sulfides is summarized. #### General considerations When sulfide ores are roasted in air two possible reactions may occur: - (a) conversion of the material to the oxide (as a preliminary to metal extraction, e.g. lead sulfide roasting); - (b) formation of water-soluble sulfates which can then be used in hydrometallurgical processes. The operating conditions (temperature, oxygen pressure, etc.) required to achieve each of these results depend on the thermodynamics of the system and the duration of the roast is determined by the kinetics of the gas-solid reactions. (100) According to the Gibbs' phase rule: $$F + P = C + 2$$ where F is the number of degrees of freedom (pressure, temperature, etc.), P is the number of phases in equilibrium and C is the number of components (independently variable chemical entities) in the system. It follows that, for a 3-component system (metal-sulfur-oxygen) at a given temperature and total pressure of the gas phase, a maximum of three condensed phases can coexist in equilibrium. The ranges of stability of the various solid phases at a fixed temperature can be shown on a stability diagram which plots the equilibrium pressure of SO₂ against the pressure of oxygen on a log-log graph. An idealized stability diagram for a divalent metal M is shown in Fig. 15.17a, and actual stability diagrams for copper at 950 K and lead at 1175 K are in Fig. 15.17b, and c. Note that, ideally, all boundaries are straight lines: those between M/MO and MS/MSO₄ are vertical whereas the others have slopes of 1.0 (M/MS), 1.5 (MS/MO), and -0.5 (MO/MSO₄). † The application of these generalizations to the extractive metallurgy of individual metals is illustrated at appropriate points in the text dealing with the chemistry of the various elements. MO/MSO₄ boundary: $$MSO_4 = MO + SO_2(g) + \frac{1}{2}O_2(g)$$: $$K = p(SO_2), p^{\frac{1}{2}}(O_2).$$ Hence $\log p(SO_2) = \log K - \frac{1}{2} \log p(O_2)$, i.e. slope $= -0.5$. ⁹⁸ F. JELLINEK, Sulfides, Chap. 19 in G. NICKLESS (ed.), *Inorganic Sulfur Chemistry*, pp. 669–747, Elsevier, Amsterdam, 1968. A comprehensive review with 631 references. ⁹⁹ D. J. VAUGHAN and J. R. CRAIG, Mineral Chemistry of Metal Sulfides, Cambridge University Press, Cambridge, 1978, 493 pp. A comprehensive account of the structure bonding and properties of mineral sulfides. ¹⁰⁰ C. B. ALCOCK, *Principles of Pyrometallurgy*, Chap. 2, pp. 15 ff., Academic Press, London, 1967. [†] These simple relations can readily be deduced from the equilibria being represented. Thus at constant temperature: M/MO boundary: MO = M + $\frac{1}{2}$ O₂(g); $K = p^{\frac{1}{2}}$ (O₂). Hence log p(O₂) = 2 log K = constant [i.e. independent of p(SO₂)]. MS/MSO_4 boundary: $MSO_4 = MS + 2O_2(g)$; $K = p^2(O_2)$. Hence $\log p(O_2) = \frac{1}{2} \log K = \text{constant.}$ M/MS boundary: $MS + O_2(g) = M + SO_2(g)$; $K = p(SO_2)/p(O_2)$. Hence $\log p(SO_2) = \log K + \log p(O_2)$, i.e. slope = 1.0. MS/MO boundary: MS + $\frac{3}{2}$ O₂(g) = MO + SO₂(g); $K = p(SO_2)/p^{3/2}(O_2)$. Hence $\log p(SO_2) = \log K + \frac{3}{2} \log p(O_2)$, i.e. slope = 1.5. Figure 15.17 Stability diagrams for the systems (a) metal (M)-sulfur-oxygen (idealized), (b) Cu-S-O and (c) Pb-S-O. As noted above, the roasting of most metal sulfides yields either the oxide or sulfate. However, a few metals can be obtained directly by oxidation of their sulfides, and these all have the characteristic property that their oxides are much less stable than SO₂. Examples are Cu, Ag, Hg and the platinum metals. In addition, metallic Pb can be extracted by partial oxidation of galena to form a sulfate (the "Scotch hearth" or Newnham process, p. 370). The oversimplified reaction is: $$PbS + PbSO_4 \longrightarrow 2Pb + 2SO_2$$ However, as indicated in Fig. 15.17c, the system is complicated by the presence of several stable "basic sulfates" PbSO₄.nPbO (n = 1, 2, 4), and these can react with gaseous PbS at lower metalmaking temperatures, e.g.: $$PbSO_4.2PbO(s) + 2PbS(g) \longrightarrow 5Pb(l) + 3SO_2(g)$$ Metal sulfides can be prepared in the laboratory or on an industrial scale by a number of reactions; pure products are rarely obtained without considerable refinement and nonstoichiometric phases abound (p. 679). The more important preparative routes include: - (a) direct combination of the elements (e.g. Fe + S \longrightarrow FeS); - (b) reduction of a sulfate with carbon (e.g. $Na_2SO_4 + 4C \longrightarrow Na_2S + 4CO$); - (c) precipitation from aqueous solution by treatment with either acidified H₂S (e.g. the platinum metals; Cu, Ag, Au; Cd, Hg; Ge, Sn, Pb; As, Sb, Bi; Se, Te) or alkaline (NH₄)₂S (e.g. Mn, Fe, Co, Ni, Zn; In, Tl); (d) saturation of an alkali hydroxide solution with H_2S to give MHS followed by reaction with a further equivalent of alkali (e.g. $KOH(aq) + H_2S \longrightarrow KHS + H_2O$; $KHS + KOH \longrightarrow K_2S + H_2O$). This last method is particularly suitable for water-soluble sulfides, though frequently it is the hydrate that crystallizes, e.g. $Na_2S.9H_2O$, $K_2S.5H_2O$. The hydrogensulfides MHS can also be made by passing H_2S into solutions of metals in liquid NH_3 . The colourless hygroscopic mixed metal sulfide RbKS was recently made by annealing a mixture of K_2S and $Rb_2S.^{(100a)}$ Industrial applications of metal sulfides span the full time-scale from the earliest rise of the emerging chemical industry in the eighteenth century to the most recent developments of Li/S and Na/S power battery systems (see Panel). Reduction of Na₂SO₄ by C was the first step in the now defunct Leblanc process (1791) for making Na₂CO₃ (p. 71). Na₂S (or NaHS) is still used extensively in the leather industry for removal of hair from hides prior to tanning, for making organo-sulfur dyes, as a reducing agent for organic nitro compounds in the production of amines, and as a flotation agent for copper ores. It is readily oxidized by atmospheric O₂ to give ^{100a} H. Sabrowsky and P. Vogt, Z. anorg. allg. Chem., 616, 183-5 (1992). #### **Sodium-Sulfur Batteries** Alternatives to coal and hydrocarbon fuels as a source of power have been sought with increasing determination over the past three decades. One possibility is the Hydrogen Economy (p. 40). Another possibility, particularly for secondary, mobile sources of power, is the use of storage batteries. Indeed, electric vehicles were developed simultaneously with the first internal-combustion-engined vehicles, the first being made in 1888. In those days, over a century ago, electric vehicles were popular and sold well compared with the then noisy, inconvenient and rather unreliable petrol-engined vehicles. In 1899 an electric car held the world land-speed record at 105 km per hour. In the early years of this century, taxis in New York, Boston and Berlin were mainly electric; there were over 20 000 electric vehicles in the USA and some 10 000 cars and commercial vehicles in London. Even today (silent) battery-powered milk delivery vehicles are still operated in the UK. These use the traditional lead-sulfuric acid battery (p. 371), but this is extremely heavy and rather expensive. The Na/S system has the potential to store 5-times as much energy (for the same weight) as the conventional lead battery and, in addition, shares with it the advantages of being silent, cheap to run, and essentially pollution-free; in general it is also reliable, has a long life and has extremely low maintenance costs. However, until recently it lacked the mileage range between successive chargings when compared with the highly developed petrol- or diesel-powered vehicles and it has a rather low performance (top speed and acceleration). A further disadvantage is the very long time taken to recharge the batteries (15–20 h) compared with the average time required to refill a petrol tank (1–2 min). Mixed power sources (petrol/electric battery) are a possible mode for development. Conventional batteries consist of a liquid electrolyte separating two solid electrodes. In the Na/S battery this is inverted: a solid electrolyte separates two liquid electrodes: a ceramic tube made from the solid electrolyte sodium β -alumina (p. 249) separates an inner pool of molten sodium (mp 98°) from an outer bath of molten sulfur (mp 119°) and allows Na⁺ ions to pass through. The whole system is sealed and is encased in a stainless steel canister which also serves as the sulfur-electrode current collector. Within the battery, the current is passed by Na⁺ ions which pass through the solid electrolyte and react with the sulfur. The cell reaction can be written formally as $$2\text{Na}(1) + \frac{n}{8}\text{S}_8(1) \longrightarrow \text{Na}_2\text{S}_n(1)$$ In the central compartment molten Na gives up electrons which pass through the external circuit and reduce the molten S_8 to polysulfide ions S_n^{2-} (p. 681). The open circuit voltage is 2.08 V at 350°C. Since sulfur is an insulator the outer compartment is packed with porous carbon to provide efficient electrical conduction: the electrode volume
is partially filled with sulfur when fully charged and is completely filled with sodium sulfide when fully discharged. To recharge, the polarity of the electrodes is changed and the passage of current forces the Na⁺ ions back into the central compartment where they are discharged as Na atoms. Typical dimensions for the β -alumina electrolyte tube are 380 mm long, with an outer diameter of 28 mm, and a wall thickness of 1.5 mm. A typical battery for automotive power might contain 980 of such cells (20 modules each of 49 cells) and have an open-circuit voltage of 100 V. Capacity exceeds 50 kWh. The cells operate at an optimum temperature of 300–350°C (to ensure that the sodium polysulfides remain molten and that the β -alumina solid electrolyte has an adequate Na⁺ ion conductivity). This means that the cells must be thermally insulated to reduce wasteful loss of heat and to maintain the electrodes molten even when not in operation. Such a system is about one-fifth of the weight of an equivalent lead-acid traction battery and has a similar life (~1000 cycles). thiosulfate: $$2Na_2S + 2O_2 + H_2O \longrightarrow Na_2S_2O_3 + 2NaOH$$ World production of Na_2S exceeds 150 000 tonnes pa and that of NaHS approaches 100 000 tpa. Barium sulfide (from $BaSO_4 + C$) is the largest volume Ba compound manufactured but little of it is sold; almost all commercial Ba compounds are made by first making BaS and then converting it to the required compound. Metal sulfides vary enormously in their solubility in water. As expected, the (predominantly ionic) alkali metal sulfides and alkaline earth metal sulfides are quite soluble though there is appreciable hydrolysis which results in strongly alkaline solutions ($M_2S + H_2O \longrightarrow MSH + MOH$). Accordingly, solubilities depend sensitively not only on temperature but also on pH and partial pressure of H_2S . Thus, by varying the acidity, As can be separated from Pb, Pb from Zn, Zn from Ni, and Mn from Mg. In pure water the solubility of Na_2S is said to be $18.06\,g$ per $100\,g\,H_2O$ and for Ba_2S it is $7.28\,g$. In the case of some less-basic elements (e.g. Al_2S_3 , Cr_2S_3) hydrolysis is complete and action of H_2S on solutions of the metal cation results in the precipitation of the hydroxide; likewise these sulfides (and SiS_2 , etc.) react rapidly with water with evolution of H_2S . By contrast with the water-soluble sulfides of Groups 1 and 2, the corresponding heavy metal sulfides of Groups 11 and 12 are amongst the least-soluble compounds known. Literature values are often wildly discordant, and care should be taken in interpreting the data. Thus, for black HgS the most acceptable value of the solubility product [Hg²⁺][S²⁻] is $10^{-51.8}$ mol² 1⁻², i.e. $$HgS(s) \Longrightarrow Hg^{2+}(aq) + S^{2-}(aq); \ pK = 51.8 \pm 0.5$$ However, this should not be taken to imply a concentration of only $10^{-25.9}$ mol l⁻¹ for mercury in solution (i.e. less than 10^{-2} of 1 atom of Hg per litre!) since complex formation can simultaneously occur to give species such as $[Hg(SH)_2]$ in weakly acid solutions and $[HgS_2]^{2-}$ in alkaline solutions: $$HgS(s) + H_2S(1 \text{ atm}) \rightleftharpoons [Hg(SH)_2](aq); pK = 6.2$$ $HgS(s) + S^{2-}(aq) \rightleftharpoons [HgS_2]^{2-}(aq); pK = 1.5$ Hydrolysis also sometimes obtrudes. ## Structural chemistry of metal sulfides The predominantly ionic alkali metal sulfides M₂S (Li, Na, K, Rb, Cs) adopt the antifluorite structure (p. 118) in which each S atom is surrounded by a cube of 8 M and each M by a tetrahedron of S. The alkaline earth sulfides MS (Mg, Ca, Sr, Ba) adopt the NaCl-type 6:6 structure (p. 242) as do many other monosulfides of rather less basic metals (M = Pb, Mn, La, Ce,Pr. Nd. Sm. Eu, Tb. Ho, Th. U, Pu). However, many metals in the later transition element groups show substantial trends to increasing covalency leading either to lower coordination numbers or to layer-lattice structures. (101) Thus MS (Be, Zn, Cd, Hg) adopt the 4:4 zinc blende structure (p. 1210) and ZnS, CdS and MnS also crystallize in the 4:4 wurtzite modification (p. 1210). In both of these structures both M and S are tetrahedrally coordinated, whereas PtS, which also has 4:4 coordination, features a square-planar array of 4 S atoms about each Pt, thus emphasizing its covalent rather than ionic bonding. Group 13 sulfides M_2S_3 (p. 252) have defect ZnS structures with various patterns of vacant lattice sites. The final major structure type found amongst monosulfides is the NiAs (nickel arsenide) structure (Fig. 15.18a). Each S atom is surrounded by a trigonal prism of 6 M atoms whilst each M has eightfold coordination, being surrounded octahedrally by 6 S atoms and by 2 additional M atoms which are coplanar with 4 of the S atoms. A significant feature of the structure is the close approach of the M atoms in chains along the (vertical) c-axis (e.g. 260 pm in FeS) and the structure can be regarded as transitional between the 6:6 NaCl structure and the more highly coordinated structures typical of metals. The NiAs structure is adopted by most first row transition-metal monosulfides MS (M = Ti, V, Cr, Fe, Co, Ni) as well as by many selenides and tellurides of these elements. The NiAs structure is closely related to the hexagonal layer-lattice CdI2 structure shown in Fig. 15.18b, this stoichiometry being achieved simply by leaving alternate M layers of the NiAs structure vacant. Disulfides MS₂ adopting this structure include those of Ti, Zr, Hf, Ta, Pt and Sn; conversely, Tl₂S has the anti-CdI₂ structure. Progressive partial filling of the alternate metal layers leads to phases of intermediate composition as exemplified by the Cr/S system (Table 15.10). For some elements these intermediate phases have quite extensive ranges of composition, the limits depending on the temperature of the system. For example, at 1000°C there is a succession of non-stoichiometric titanium sulfides $TiS_{0.97}-TiS_{1.06}$, $TiS_{1.204}-TiS_{1.333}$, $TiS_{1.377} - TiS_{1.594}$, $TiS_{1.810} - TiS_{1.919}$. (101) Many diselenides and ditellurides also adopt the CdI₂ structure and in some there is an almost continuous nonstoichiometric variation in composition, e.g. CoTe ---- CoTe₂. A related 6:3 layer structure is the CdCl₂-type adopted by TaS₂, and the layer structures of MoS₂ and WS₂ are mentioned on p. 1018. ¹⁰¹ N. N. GREENWOOD, *Ionic Crystals, Lattice Defects, and Nonstoichiometry*, Chap. 3, pp. 37–61; also pp. 153–5, Butterworths, London, 1968. **Figure 15.18** Comparison of the nickel arsenide structure (a) adopted by many monosulfides MS with the cadmium iodide structure (b) adopted by some disulfides MS₂. The structures are related simply by removing alternate layers of M from MS to give MS₂. **Table 15.10** Some sulfides of chromium (see text) | | Rat | io Cr/S | Proportion of sites | Random or | |--------------------------------|------------|--------------|------------------------------|-----------------------| | Nominal formula | calculated | observed | occupied in alternate layers | ordered vacancies (a) | | CrS ^(b) | 1.000 | ≈ 0.97 | 1:1 | None | | Cr_7S_8 | 0.875 | 0.88 - 0.87 | $1:\frac{3}{4}$ | Random | | Cr ₅ S ₆ | 0.833 | 0.85 | $1:\frac{2}{3}$ | Ordered | | Cr_3S_4 | 0.750 | 0.79 - 0.76 | $1:\frac{1}{2}$ | Ordered | | Cr_2S_3 | 0.667 | 0.69 - 0.67 | $1:\frac{1}{3}$ | Ordered | | (CrS_2) | 0.500 | Not observed | 1:0 | _ | ⁽a) Refers to the vacancies in the alternate metal layers. Finally, many disulfides have a quite different structure motif, being composed of infinite three-dimensional networks of M and discrete S_2 units. The predominate structural types are pyrites, FeS_2 (also for M=Mn, Co, Ni, Ru, Os), and marcasite (known only for FeS_2 among the disulfides). Pyrites can be described as a distorted NaCl-type structure in which the rod-shaped S_2 units (S-S 217 pm) are centred on the Cl positions but are oriented so that they are inclined away from the cubic axes. The marcasite structure is a variant of the rutile structure (TiO₂, p. 961) in which the columns of edge-shared octahedra are rotated to give close approaches between pairs of S atoms in adjacent columns (S-S 221 pm). Many metal sulfides have important physical properties. (98,102) They range from insulators, through semiconductors to metallic conductors of electricity, and some are even superconductors, ⁽b)CrS has a unique monoclinic structure intermediate between NiAs and PtS types. ¹⁰² F. HULLIGER, *Struct. Bonding* (Berlin) **4**, 83–229 (1968). A comprehensive review with 532 references, 65 structural diagrams, and a 34-page appendix tabulating the known phases and their physical properties. **Figure 15.19** Structures of polysulfide anions S_n^{2-} in $M_2^1S_n$ and BaS_n . e.g. NbS_2 (<6.2 K), TaS_2 (<2.1 K), $Rh_{17}S_{15}$ (<5.8 K), CuS (<1.62 K) and CuS_2 (<1.56 K). Likewise they can be diamagnetic, paramagnetic, temperature-independent paramagnetic, ferromagnetic, antiferromagnetic or ferrimagnetic. The structures of more complex ternary metal sulfides such as $BaZrS_3$ (perovskite-type, p. 963), $ZnAl_2S_4$ (spinel type, p. 247), and $NaCrS_2$ (NaCl superstructure) introduce no new principles. Likewise, thiosalts, which may feature finite anions (e.g. $Tl_3[VS_4]$), vertex-shared chains (e.g. Ba_2MnS_3), edge-shared chains (e.g. $KFeS_2$), double chains (e.g. Ba_2ZnS_3), double layers (e.g. KCu_4S_3) or three-dimensional frameworks (e.g. $NH_4Cu_7S_4$). (103) Finite clusters also abound. (104) ## Anionic polysulfides The pyrites and marcasite structures can be thought of as containing S_2^{2-} units though the variability of the interatomic distance and other properties suggest substantial deviation from a purely ionic description. Numerous higher polysulfides S_n^{2-} have been characterized, particularly for the more electropositive elements Na, K, Ba, etc. They are yellow at room
temperature, turn dark red on being heated, and may be thought of as salts of the polysulfanes (p. 683). Typical examples are M_2S_n (n = 2-5 for Na, 2-6 for K, 6 for Cs), BaS₂, BaS₃, BaS₄, etc. The polysulfides, unlike the monosulfides, are low melting solids: published values for mps vary somewhat but representative values (°C) are: | Na ₂ S
1180° | Na ₂ S ₂
484° | | Na ₂ S ₄
294° | Na ₂ S ₅
255° | | |----------------------------|--|-------------------------------|--|--|--| | $\overline{K_2S_3}$ | K_2S_4 | K ₂ S ₅ | K_2S_6 | BaS ₃ | | | 292° | ~1 <u>45°</u> | 211° | 196° | 554° | | Structures are in Fig. 15.19. The S_3^{2-} ion is bent (C_{2v}) and is isoelectronic with SCl_2 (p. 689). The S_4^{2-} ion has twofold symmetry, essentially tetrahedral bond angles, and a dihedral angle of 97.8° (see p. 654). The S_5^{2-} ion also has approximately twofold symmetry (about the central S atom); it is a contorted but unbranched chain with bond angles close to tetrahedral and a small but significant difference between the terminal and internal S-S distances. The S_6^{2-} ion has alternating S-S distances, and bond angles in the range $106.4-110.0^{\circ}$ (mean 108.8°). Several of the references in Fig. 15.19 give preparative details: these can involve direct reaction of ¹⁰³ A. F. Wells, Structural Inorganic Chemistry, 5th edn., Chap. 17 pp. 748-87, Oxford University Press, 1984. ¹⁰⁴ I. DANCE and K. FISHER, *Prog. Inorg. Chem.* 41, 637–803 (1994). A comprehensive review with 503 references, 100 structural diagrams and 40 pages of tabulated material. ¹⁰⁵ H. FOPPL, E. BUSMANN, and F.-K. FRORATH, Z. anorg. allg. Chem. 314, 12-30 (1962). ¹⁰⁶ H. G. VON SCHNERING and N.-K. GOH, Naturwissenschaften **61**, 272 (1974). ¹⁰⁷ R. TEGMAN, Acta Cryst. **B29**, 1463-9 (1973). ¹⁰⁸ B. KELLY and P. WOODWARD, J. Chem. Soc., Dalton Trans., 1314-6 (1976). ¹⁰⁹ S. C. ABRAHAMS and E. GRISON, *Acta Cryst.* 6, 206–13 (1953). | Distance (S-H)/pm | 133.6(g) | $\Delta H_{ m f}^{\circ}/{ m kJ}{ m mol}^{-1}$ | 20.1(g) | | | |-------------------|----------|--|----------------|--|--| | Angle H-S-H | 92.1°(g) | Density (s)/g cm ⁻³ | 1.12 (-85.6°) | | | | MP/°C | -85.6 | Density (1)/g cm ⁻³ | 0.993 (-85.6°) | | | | BP/°C | -60.3 | Viscosity/centipoise | 0.547 (-82°) | | | Electrical conductivity/ohm⁻¹ cm⁻¹ Dielectric constant ε Table 15.11 Some molecular and physical properties of H₂S stoichiometric amounts of the elements in sealed tubes or reaction of MSH with S in ethanol. (110) It is interesting that, despite the unequivocal presence of the S₃²⁻ ion in K₂S₃, BaS₃, etc., a Raman spectroscopic study of molten "Na₂S₃" showed that the ion had disproportionated into S_2^{2-} and S_4^{2-} .(111) 100.4 84 Critical temperature/°C Critical pressure/atm ## 15.2.2 Hydrides of sulfur (sulfanes) Hydrogen sulfide is the only thermodynamically stable sulfane; it occurs widely in nature as a result of volcanic or bacterial action and is, indeed, a prime source of elemental S (p. 647). It has been known since earliest times and its classical chemistry has been extensively studied since the seventeenth century. (112) H₂S is a foul smelling, very poisonous gas familiar to all students of chemistry. Its smell is noticeable at 0.02 ppm but the gas tends to anaesthetize the olefactory senses and the intensity of the smell is therefore a dangerously unreliable guide to its concentration. H₂S causes irritation at 5 ppm, headaches and nausea at 10 ppm and immediate paralysis and death at 100 ppm; it is therefore as toxic and as dangerous as HCN. H₂S is readily prepared in the laboratory by treating FeS with dilute HCl in a Kipp apparatus. Purer samples can be made by hydrolysing CaS, BaS or Al₂S₃, and the purest gas is prepared by direct reaction of the elements at 600°C. Some physical properties are in Table 15.11:(113) comparison with the properties of water (p. 623) shows the absence of any appreciable H bonding in H₂S.⁽¹¹⁴⁾ Comparisons with H₂Se, H₂Te and H_2 Po are on p. 767. $8.99 (-78^{\circ})$ $3.7 \times 10^{-11} (-78^{\circ})$ H₂S is readily soluble in both acidic and alkaline aqueous solutions. Pure water dissolves 4.65 volumes of the gas at 0° and 2.61 volumes at 20°; in other units a saturated solution is 0.1 M at atmospheric pressure and 25°, i.e. $$H_2S(g) \rightleftharpoons H_2S(aq); K = 0.1023 \text{ mol } l^{-1} \text{ atm}^{-1};$$ $pK = 0.99$ In aqueous solution H₂S is a weak acid (p. 49). At 20° (115) $$H_2S(aq) \Longrightarrow H^+(aq) + SH^-(aq);$$ $pK_{a_1} = 6.88 \pm 0.02$ $SH^-(aq) \Longrightarrow H^+(aq) + S^{2-}(aq);$ $pK_{a_2} = 14.15 \pm 0.05$ The chemistry of such solutions has been alluded to on p. 678. At low temperatures a hydrate $H_2S.5\frac{3}{4}H_2O$ crystallizes. In acid solution H_2S is also a mild reducing agent; e.g. even on standing in air solutions slowly precipitate sulfur. The gas burns with a bluish flame in air to give H₂O and SO₂ (or H₂O and S if the air supply is restricted). For adducts, see p. 673. In very strongly acidic nonaqueous solutions (such as HF/SbF₅) H₂S acts as a base (proton acceptor) and the white crystalline ¹¹⁰ G. WEDDIDEN. H. KLEINSCHMAGER and S. HOPPE. J. Chem. Res. (S), 1978, 96; (M), 1978, 1101-12. ¹¹¹ G. J. Janz et al., Inorg. Chem. 15, 1751-4, 1755-9, 1759-63 (1976). ¹¹² J. W. Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol. 10, pp. 114-61, Longmans, London, 1930. ¹¹³ F. Fehér, Liquid hydrogen sulfide, Chap. 4 in J. J. LAGOWSKI (ed.), The Chemistry of Nonaqueous Solvents, Vol. 3, pp. 219-40, Academic Press, New York, 1970. ¹¹⁴ A. N. FITCH and J. K. COCKROFT, J. Chem. Soc., Chem. Commun., 515-6 (1990). ¹¹⁵ M. WIDMER and G. SCHWARZENBACH, Helv. Chim. Acta 47, 266-71 (1964). solid $[SH_3]^+[SbF_6]^-$ has been isolated from such solutions. The compound, which is the first known example of a stable salt of SH_3^+ , can be stored at room temperature in Teflon or Kel-F containers but attacks quartz. Vibrational spectroscopy confirms the pyramidal C_{3v} structure expected for a species isoelectronic with PH₃ (p. 492). In the presence of an excess of H_2S at $-80^{\circ}C$, the trimercaptosulfonium salts $[S(SH)_3]^+AsF_6^-$ and $[S(SH)_3]^+SbCl_6^-$ can be prepared; (117) the cation is isoelectronic with $P(PH_2)_3$ (p. 495) and is expected to have C_{3v} symmetry. Polysulfanes, H_2S_n , with n=2-8 have been prepared and isolated pure, and many higher homologues have been obtained as mixtures with variable n. Our modern knowledge of these numerous compounds stems mainly from the elegant work of F. Fehér and his group in the 1950s. All polysulfanes have unbranched chains of n sulfur atoms thus reflecting the wellestablished propensity of this element towards catenation (p. 652). The polysulfanes are reactive liquids whose density d, viscosity η , and bp increase with increasing chain length. H_2S_2 , the analogue of H_2O_2 , is colourless but the others are yellow, the colour deepening with increasing chain length. The polysulfanes were at one time made by fusing crude $Na_2S.9H_2O$ with various amounts of sulfur and pouring the resulting polysulfide solution into an excess of dilute hydrochloric acid at $-10^{\circ}C$. The resulting crude yellow oil is a mixture mainly of H_2S_n (n=4-7). Polysulfanes can now also be readily prepared by a variety of other reactions, e.g.: $$\begin{aligned} \text{Na}_2 \text{S}_n(\text{aq}) + 2\text{HCl}(\text{aq}) &\longrightarrow 2\text{NaCl}(\text{aq}) \\ &\quad + \text{H}_2 \text{S}_n \ (n = 4\text{-}6) \\ \text{S}_n \text{Cl}_2(\text{l}) + 2\text{H}_2 \text{S}(\text{l}) &\longrightarrow 2\text{HCl}(\text{g}) + \text{H}_2 \text{S}_{n+2}(\text{l}) \\ \text{S}_n \text{Cl}_2(\text{l}) + 2\text{H}_2 \text{S}_m(\text{l}) &\longrightarrow 2\text{HCl}(\text{g}) \\ &\quad + \text{H}_2 \text{S}_{n+2m} (\text{H}_2 \text{S}_6 - \text{H}_2 \text{S}_{18}) \end{aligned}$$ Purification is by low-pressure distillation. Some physical properties are in Table 15.12. Polysulfanes are readily oxidized and all are thermodynamically unstable with respect to disproportionation: $$H_2S_n(1) \longrightarrow H_2S(g) + \frac{n-1}{8}S_8(s)$$ **Table 15.12** Some physical properties of polysulfanes⁽¹¹⁸⁾ | Compound | $d_{20}/g \text{cm}^{-3}$ | P ₂₀ /mmHg | BP/°C (extrap) | |----------|----------------------------|-----------------------
--| | H_2S_2 | 1.334 | 87.7 | 70 | | H_2S_3 | 1.491 | 1.4 | 170 | | H_2S_4 | 1.582 | 0.035 | 240 | | H_2S_5 | 1.644 | 0.0012 | 285 | | H_2S_6 | 1.688 | | | | H_2S_7 | 1.721 | | area construction of the c | | H_2S_8 | 1.747 | | | This disproportionation is catalysed by alkali, and even traces dissolved from the surface of glass containers is sufficient to effect deposition of sulfur. They are also degraded by sulfite and by cyanide ions: $$H_2S_n + (n-1)SO_3^{2-} \longrightarrow H_2S + (n-1)S_2O_3^{2-}$$ $H_2S_n + (n-1)CN^- \longrightarrow H_2S + (n-1)SCN^-$ The former reaction, in particular, affords a convenient means of quantitative analysis by determination of the H_2S (precipitated as CdS) and iodometric determination of the thiosulfate produced. ## 15.2.3 Halides of sulfur ### Sulfur fluorides The seven known sulfur fluorides are quite different from the other halides of sulfur in their stability, reactivity and to some extent even in their stoichiometries; it is therefore convenient to ¹¹⁶ K. O. CHRISTE, *Inorg. Chem.* 14, 2230-3 (1975). ¹¹⁷ R. MINKWITZ, R. KRAUSE, H. HÄRTNER and W. SAWODNY, Z. anorg. allg. Chem. **593**, 137–46 (1991). ¹¹⁸ M. SCHMIDT and W. SIEBERT in *Comprehensive Inorganic Chemistry*, Vol. 2, Chap. 23, pp. 826–42, Pergamon Press, Oxford, 1973. Figure 15.20 Molecular structures of the sulfur fluorides. consider them separately. Moreover, they have proved a rich field for both structural and theoretical studies since they form an unusually extensive and graded series of covalent molecular compounds in which S has the oxidation states 1, 2, 3, 4, 5 and 6, and in which it also exhibits all coordination numbers from 1 to 6 (if SF₅⁻ is also included). The compounds feature a rare example of structural isomerism amongst simple molecular inorganic compounds (FSSF and SSF₂) and also a monomer–dimer pair (SF₂ and F₃SSF). The structures and physical properties will be described first, before discussing the preparative routes and chemical reactions. Structures and physical properties. The molecular structure, point group symmetries, and dimensions of the sulfur fluorides are summarized in Fig. 15.20⁽¹¹⁹⁾ S_2F_2 resembles H_2O_2 , H_2S_2 , O_2F_2 and S_2X_2 , and detailed comparisons of bond distances, bond angles and dihedral angles are instructive. The isomer SSF_2 (thiothionylfluoride) features 3-coordinate S^{IV} and 1-coordinate S^{II} and it is notable that the formally double-bonded S-S distance is very close to that in the singly bonded isomer. The fugitive species SF_2 has the expected bent configuration in the gas phase but is unique in readily undergoing dimerization by insertion of a second SF_2 into an S-F bond. The structure of the resulting molecule F_3SSF is, in a sense, intermediate between those of S_2F_2 and SF_4 , being based on a trigonal bipyramid with the equatorial F atom replaced by an SF group. The fact that the ^{19}F nmr spectrum at -100° shows four distinct F resonances indicates that the 2 axial F atoms are non-equivalent, implying restricted rotation about the S-S bond. The structure of SF_4 is particularly significant. It is based on a trigonal bipyramid with one equatorial position occupied by the lone-pair; this distorts the structure by reducing the equatorial F-S-F bond angle bond angle from 120° to 101.6° and by repelling the axial F_{ax} atoms towards F_{eq} . There is also a significant difference between the (long) $S-F_{ax}$ and (short) $S-F_{eq}$ distances. Again, the low-temperature ^{19}F nmr spectrum is precisely diagnostic of the C_{2v} structure, since the observed doublet of 1:2:1 triplets is consistent only with the two sets of 2 equivalent F atoms in this point group symmetry ¹¹⁹ F. SEEL, Adv. Inorg. Chem. Radiochem. **16**, 297–333 (1974). | 3 1 1 | | | | | | | |--|----------|-------------------|----------------------|---------------------|-------------|--| | | FSSF | S=SF ₂ | SF ₄ | SF ₆ | S_2F_{10} | | | MP/°C | -133 | -164.6 | -121 | -50.54 | -52.7 | | | BP/°C | +15 | -10.6 | -38 | -63.8 (subl) | +30 | | | Density $(T^{\circ}C)/g \text{ cm}^{-3}$ | WOODENAM | _ | $1.919(-73^{\circ})$ | $1.88(-50^{\circ})$ | 2.08(0°) | | **Table 15.13** Physical properties of some sulfur fluorides (19 F, like 1 H, has nuclear spin $\frac{1}{2}$).(120) Thus, an axial lone-pair (C_{3v}) would lead to a doublet and a quartet of integrated relative intensity 3:1, whereas all other conceivable symmetries (T_d , C_{4v} , D_{4h} , D_{2d} , D_{2h}) would give a sharp singlet from the 4 equivalent F atoms. Above -98° the 30 MHz 19 F nmr spectrum of SF₄ gradually broadens and it coalesces at -47° into a single broad resonance which gradually sharpens again to a narrow singlet at higher temperatures; this is due to molecular fluxionality which permits intramolecular interchange of the axial and equatorial F atoms. The structure of SF_4 can be rationalized on most of the simple bonding theories; the environment of S has 10 valency electrons and this leads to the observed structure in both valence-bond and electron-pair repulsion models. However, the rather high energy of the 3d orbitals on S make their full participation in bonding via $sp^3d_{z^2}$ unlikely and, indeed, calculations⁽¹²¹⁾ show that there may be as little as 12% d-orbital participation rather than the 50% implied by the scheme $sp_xp_y + p_zd_{z^2}$. Thus charge-transfer configurations or bonding via $sp_xp_y + p_z$ seem to be better descriptions, the p_z orbital on S being involved in a 3-centre 4-electron bond with the 2 axial F atoms (cf. XeF₂, p. 897). The regular octahedral structure of SF_6 and the related structure of S_2F_{10} (Fig. 15.20) call for little comment except to note the staggered (D_{4d}) arrangement of the two sets of F_{eq} in S_2F_{10} and the unusually long S-S distance, both features presumably reflecting interatomic repulsion between the F atoms. SF_6 is also of interest in establishing conclusively that S can be hexavalent. Its great stability (see below) contrasts with the non-existence of SH₄ and SH₆ despite the general similarity in S-F and S-H bond strengths; its existence probably reflects (a) the high electronegativity of F (p. 26), which facilitates the formation of either polar or 3-centre 4-electron bonds as discussed above for SF₄, and (b) the lower bond energy of F_2 compared to H_2 , which for SH₄ and SH₆ favours dissociation into $H_2S + nH_2$. (122) For descriptions of the bonding which involve the use of 3d orbitals on sulfur, a net positive charge on the central atom would contract the d orbitals thereby making them energetically and spatially more favourable for overlap with the fluorine orbitals. Some physical properties of the more stable sulfur fluorides are in Table 15.13. All are colourless gases or volatile liquids at room temperature. SF_6 sublimes at -63.8° (1 atm) and can only be melted under pressure (-50.8°). It is notable both for its extreme thermal and chemical stability (see below), and also for having a higher gas density than any other substance that boils below room temperature (5.107 times as dense as air). Synthesis and chemical reactions. Disulfur difluoride, S_2F_2 , can be prepared by the mild fluorination of sulfur with AgF in a rigorously dried apparatus at 125°. It is best handled in the gas phase at low pressures and readily isomerizes to thiothionylfluoride, SSF_2 , in the presence of alkali metal fluorides. SSF_2 can be made either by isomerizing S_2F_2 or directly by the fluorination of S_2Cl_2 using KF in SO_2 : $$2KSO_2F + S_2Cl_2 \longrightarrow SSF_2 + 2KCl + 2SO_2$$ ¹²⁰ F. A. COTTON, J. W. GEORGE and J. S. WAUGH, J. Chem. Phys. 28, 994-5 (1958); E. MUETTERTIES and W. D. PHILLIPS, J. Am. Chem. Soc. 81, 1084-8
(1959). ¹²¹ P. J. HAY, J. Am. Chem. Soc. **99**, 1003–12 (1977). ¹²² G. M. SCHWENZER and H. F. SCHAEFFER, J. Am. Chem. Soc. 97, 1393-7 (1975). Figure 15.21 Comparison of the structures of three species in which S has 12 valence electrons: (a) the SF_5^- ion in RbSF₅, as deduced from X-ray analysis, (123) (b) OSF₄ as deduced from gas-phase electron diffraction (124) (note the wider angle $F_{eq}SF_{eq}$ when compared with SF₄ (Fig. 15.20) and the shorter distance $S-F_{ax}$; the angle $F_{ax}SF_{ax}$ is 164.6°), and (c) H_2CSF_4 (X-ray crystal structure at -160°). (125) The angle $F_{eq}SF_{eq}$ is significantly smaller than in SF_4 as is the angle $F_{ax}SF_{ax}$ (170.4°); the methylene group is coplanar with the axial SF_2 group as expected for $p_{\pi}-d_{\pi}$ C=S overlap and, unlike SF_4 , the molecule is non-fluxional. SSF₂ can be heated to 250° but is, in fact, thermodynamically unstable with respect to disproportionation, being immediately transformed to SF₄ in the presence of acid catalysts such as BF₃ or HF: $$2SSF_2 \longrightarrow \frac{3}{8}S_8 + SF_4$$ Both S_2F_2 and SSF_2 are rapidly hydrolysed by pure water to give S_8 , HF and a mixture of polythionic acids $H_2S_nO_6$ (n 4-6), e.g.: $$5S_2F_2 + 6H_2O \longrightarrow \frac{3}{4}S_8 + 10HF + H_2S_4O_6$$ Alkaline hydrolysis yields predominantly thiosulfate. SSF_2 burns with a pale-blue flame when ignited, to yield SO_2 , SOF_2 and SO_2F_2 . Sulfur difluoride, SF₂, is a surprisingly fugitive species in view of its stoichiometric similarity to the stable compounds H₂S and SCl₂ (p. 689). It is best made by fluorinating gaseous SCl₂ with activated KF (from KSO₂F) or with HgF₂ at 150°, followed by a tedious fractionation from the other sulfur fluorides (FSSF, SSF₂ and SF₄) which form the predominant products. The chlorofluorides CISSF and CISSF₃ are also formed. The compound can only be handled as a dilute gas under rigorously anhydrous conditions or at very low temperatures in a matrix of solid argon, and it rapidly dimerizes to give F₃SSF. Sulfur tetrafluoride, SF_4 , though extremely reactive (and valuable) as a selective fluorinating agent, is much more stable than the lower fluorides. It is formed, together with SF_6 , when a cooled film of sulfur is reacted with F_2 , but is best prepared by fluorinating SCl_2 with NaF in warm acetonitrile solution: $$3SCl_2 + 4NaF \xrightarrow{MeCN} S_2Cl_2 + SF_4 + 4NaCl$$ SF_4 is unusual in apparently acting both as an electron-pair acceptor and an electron-pair donor (amphoteric Lewis acid-base). Thus pyridine forms a stable 1:1 adduct $C_5H_5NSF_4$ which presumably has a pseudooctahedral (square-pyramidal) geometry. Likewise CsF (at 125°) and Me_4NF (at -20°) form $CsSF_5$ and $[NMe_4]^+[SF_5]^-$ (Fig. 15.21a). By contrast, SF_4 behaves as a donor to form 1:1 adducts with many Lewis acids; the stability decreases in the sequence $SbF_5 > AsF_5 > IrF_5 > BF_3 > PF_5 > AsF_3$. In view of the discussion on ¹²³ J. BITINER, J. FUCHS and K. SEPPELT, Z. anorg. allg. Chem. **551**, 182-90 (1988). ¹²⁴ L. Hedberg and K. Hedberg, J. Phys. Chem. 86, 598-602 (1982). ¹²⁵ H. BOCK, J. E. BOGGS, G. KLEEMANN, D. LENTZ, H. OBERHAMMER, E. M. PETERS, K. SEPELT, A. SIMON and B. SOLOUKI, Angew. Chem. Int. Edn. Engl. 18, 944-5 (1979). p. 198 it seems likely that SF₄ is acting here not as an S lone-pair donor but as a fluoride ion lone-pair donor and there is, indeed, infrared evidence to suggest that SF₄.BF₃ is predominantly [SF₃]⁺[BF₄]⁻. SF₄ rapidly decomposes in the presence of moisture, being instantly hydrolysed to HF and SO₂. Despite this it has been increasingly used as a powerful and highly selective fluorinating agent for both inorganic and organic compounds. In particular it is useful for converting ketonic and aldehyde >C=O groups to >CF₂, and carboxylic acid groups -COOH to -CF₃. Similarly, \equiv P=O groups are smoothly converted to $\equiv PF_2$, and >P(O)OH groups to >PF₃. It also undergoes numerous oxidative addition reactions to give derivatives of SVI. The simplest of these are direct oxidation of SF_4 with F_2 or CIF (at 380°) to give SF_6 and SClF₅ respectively. Analogous reactions with $N_2F_4(h\nu)$ and F_5SOOSF_5 yield SF_5NF_2 and cis-SF₄(OSF₅)₂ respectively; likewise F₅SOF (p. 688) yields F₅SOSF₅. Direct oxidation of SF₄ with O2, however, proceeds only slowly unless catalysed by NO₂: the product is OSF₄, which has a trigonal bipyramidal structure like SF₄ itself, but with the equatorial lone-pair replaced by the oxygen atom (Fig. 15.21b). A similar structure is adopted by the more recently prepared methylene compound $H_2C=SF_4$ (Fig. 15.21c); (125) this is made by treating SF₅-CH₂Br with LiBuⁿ at -110° and is more stable than the isoelectronic P or S ylides or metal carbene complexes, being stable in the gas phase up to 650° at low pressures. Some other reactions of SF₄ are: $$Cl_{2} + CsF + SF_{4} \xrightarrow{110^{\circ}} SClF_{5} + CsCl$$ $$I_{2}O_{5} + 5SF_{4} \longrightarrow 2IF_{5} + 5OSF_{2}$$ $$4BCl_{3} + 3SF_{4} \longrightarrow 4BF_{3} + 3SCl_{2} + 3Cl_{2}$$ $$RCN + SF_{4} \longrightarrow RCF_{2}N = SF_{2}$$ $$NaOCN + SF_{4} \longrightarrow CF_{3}N = SF_{2} + \cdots$$ $$CF_{3}CF = CF_{2} + SF_{4} \xrightarrow{CsF/150^{\circ}} (CF_{3})_{2}CFSF_{3}$$ $$(bp 46^{\circ})$$ $$2CF_3CF = CF_2 + SF_4 \xrightarrow{CsF/150^{\circ}} \{(CF_3)_2CF\}_2SF_2$$ $$(bp \sim 111^{\circ})$$ Disulfur decafluoride, S_2F_{10} , is obtained as a byproduct of the direct fluorination of sulfur to SF₆ but is somewhat tedious to separate and is more conveniently made by the photolytic reduction of SClF₅ (prepared as above): $$2SC1F_5 + H_2 \xrightarrow{h\nu} S_2F_{10} + 2HC1$$ It is intermediate in reactivity between SF₄ and the very inert SF₆. Unlike SF₄ it is not hydrolysed by water or even by dilute acids or alkalis and, unlike SF₆, it is extremely toxic. It disproportionates readily at 150° probably by a free radical mechanism involving SF₅* (note the long, weak S-S bond; Fig. 15.20): $$S_2F_{10} \xrightarrow{150^\circ} SF_4 + SF_6$$ Similarly it reacts readily with Cl₂ and Br₂ to give SClF₅ and SBrF₅. It oxidizes KI (and I₃⁻) in acetone solution to give iodine (note SF₄ converts acetone to Me₂CF₂). S₂F₁₀ reacts with SO₂ to give F_5SSO_2F and with NH₃ to give N \equiv SF₃. Sulfur hexafluoride is unique in its stability and chemical inertness: it is a colourless, odourless, tasteless, unreactive, non-flammable, non-toxic, insoluble gas prepared by burning sulfur in an atmosphere of fluorine. Because of its extraordinary stability and excellent dielectric properties it is extensively used as an insulating gas for high-voltage generators and switch gear: at a pressure of 2-3 bars it withstands 1.0-1.4 MV across electrodes 50 mm apart without breakdown, and at 10 bars it is used for high-power underground electrical transmission systems at 400 V and above. However, there is now some environmental concern at its use as an electrical transformer fluid and as an inert blanketing gas in magnesium metal casting, since even minute amounts may contribute to an atmospheric greenhouse effect (it is 6800 times as potent as CO_2). SF₆ can be heated to 500° without decomposition, and is unattacked by most metals, P, As, etc., even when heated. It is also unreactive towards high-pressure steam presumably as a result of kinetic factors since the gas-phase reaction SF₆ + $3H_2O \longrightarrow SO_3 + 6HF$ should release some $460 \,\mathrm{kJ} \,\mathrm{mol}^{-1} \,(\Delta G^{\circ} \sim 200 \,\mathrm{kJ} \,\mathrm{mol}^{-1})$. By contrast, reaction with H₂S yields sulfur and HF. Hot HCl and molten KOH at 500° are without effect. Boiling Na attacks SF₆ to yield Na₂S and NaF; indeed, this reaction can be induced to go rapidly even at room temperature or below in the presence of biphenyl dissolved in glyme (1,2-dimethoxyethane). It is also reduced by Na/liq NH₃ and, more slowly, by LiAlH₄/Et₂O. Al₂Cl₆ at 200° yields AlF₃, Cl₂, and sulfur chlorides. Recent experiments(126) indicate that SF₆ becomes much more reactive at higher temperatures and pressures; for example PF3 is quantitatively oxidized to PF₅ at 500° and 300 bars, and to a mixture of PF₅ and SPF₃ at \sim 380° and 1800-3600 bars. Derivatives of SF_6 are rather more reactive: S_2F_{10} and $SClF_5$ have already been mentioned. Further synthetically useful reactions of this latter compound are: $SCIF_5 + O_2 \xrightarrow{h\nu} F_5SOSF_5 + F_5SOOSF_5$ SCIF₅ is readily attacked by other nucleophiles, e.g. OH⁻ but is inert to acids. SF₅OH and SF₅OOH are known. The very reactive yellow SF₅OF, which is one of the few known hypofluorites, can be made by the catalytic reaction: $$SOF_2 + 2F_2 \xrightarrow{CsF/25^{\circ}} SF_5OF$$ In the absence of CsF the product is SOF₄ (p. 687) and this can then be isomerized in the presence of CsF to give a second hypofluorite, SF₃OF. Derivatives of -SF₅ are usually reactive volatile liquids or gases, e.g.: | Compound | F ₅ SCl | F ₅ SBr | (F ₅ S) ₂ O | (F ₅ SO) ₂ | |----------------|--|--------------------|-----------------------------------|----------------------------------| | MP/°C
BP/°C | -64
-21 | -79
+3.1 | -118
+31 | -95.4
+49.4 | | Compound | F ₅ SNF ₂ ⁽ | (F ₅ | S) ₂ | F ₅ SOF | | MP/°C
BP/°C | _
_18 | -52
+30 | | -86
-35.1 | (a) See ref. 127 for F₅SNCIF, F₅SNHF and F₄S=NF, and ref. 128 for F₅SN=SCIF Of these, $(F_5SO-)_2$ is an amusing example of a compound accidentally prepared as a byproduct of SF_6 and S_2F_{10} due to the fortuitous presence of traces of molecular oxygen in the gaseous fluorine used to fluorinate sulfur. A small amount of material boiling somewhat above S_2F_{10} and having a molecular weight some 32 units higher was isolated. [How would you show that it was not S_3F_{10} , and that its structure was F_5SOOSF_5 rather than one of
the 8 possible isomers of $F_4S(OF)-SF_4(OF)$ or $F_4S(OF)-OSF_5?]^{(129)}$ Numerous other highly reactive oxofluorosulfur compounds have been prepared but their chemistry, though sometimes hazardous because of a tendency to explosion, introduces no new principles. Some examples are: Thionyl fluorides: OSF₂, OSFCl, OSFBr, OSF(OM). Sulfuryl fluorides: O_2SF_2 , FSO_2-O-SO_2F , $FSO_2-O-SO_2-O-SO_2F$, $FSO_2-OO-SO_2F$, $FSO_2-OO-SF_5$. ¹²⁶ A. P. Hagen and D. L. Terrell, *Inorg. Chem.* **20**, 1325-6 (1981). ¹²⁷ D. D. DESMARTEAU, H. H. EYSEL, H. OBERHAMMER and H. GÜNTHER, *Inorg. Chem.* 21, 1607–16 (1982). ¹²⁸ J. S. Thrasher, N. S. Hosmane, D. E. Maurer and A. F. Clifford, *Inorg. Chem.* **21**, 2506–8 (1982). ¹²⁹ R. B. HARVEY and S. H. BAUER, *J. Am. Chem. Soc.* **76**, 859-64 (1954). Other peroxo compounds: $^{(130)}$ SF₅OOC(O)F, SF₅OSF₄OOSF₅, SF₅OSF₄OOSF₄OSF₅, CF₃OSF₄OOSF₅, CF₃OSF₄OOSF₄OCF₃, (CF₃SO₂)₂O₂, HOSO₂OOCF₃, CF₃OOSO₂OCF₃. Fluorosulfuric acid: (131) FSO₂(OH), FSO₃⁻. Of these the most extensively studied is fluorosulfuric acid, made by direct reaction of SO_3 and HF. Its importance derives from its use as a solvent system and from the fact that its mixtures with SbF_5 and SO_3 are amongst the strongest known acids (superacids, p. 570). Anhydrous HSO_3F is a colourless, dense, mobile liquid which fumes in moist air: $mp-89.0^\circ$, bp 162.7° ; d_{25} 1.726 g cm⁻³, η_{25} 1.56 centipoise, κ_{25} 1.085×10^{-4} ohm⁻¹ cm⁻¹. Attention should also be directed to the growing number of perfluorocarbon-sulfur species which feature single, double or even triple C-S bonds, e.g.: Single: $(F_5S)_2CF_2$, $^{(132)}$ $F_4SCF_2SF_4CF_2$, $^{(132)}$ $[(F_5S)C(CF_3)_2]^-$, $^{(133)}$ $[(F_5S)_2C(CF_3)]^-$, $^{(133)}$ see also footnote on p. 690; Double: $(F_5S)(F_3C)C = SF_2,^{(135)}(F_3C)_2C = SF_2;^{(135)}$ Triple: $(F_3C)C = SF_3,^{(136-138)}(F_5S)C = SF_3.^{(139)}$ Also notable are sulfur cyanide fluorides such as SF_3CN , $^{(140)}$ $SF_2(CN)_2$ $^{(140)}$ and SF_5CN $^{(141,142)}$ and the sulfinyl cyanide fluoride FS(O)CN. $^{(140)}$ ## Chlorides, bromides and iodides of sulfur Sulfur is readily chlorinated by direct reaction with Cl₂ but the simplicity of the products obtained belies the complexity of the mechanisms involved. The reaction was first investigated by C. W. Scheele in 1774 and has been extensively studied since because of its economic importance (see below) and its intrinsic physicochemical interest. Direct chlorination of molten S followed by fractional distillation yields disulfur dichloride (S₂Cl₂) a toxic, golden-yellow liquid of revolting smell: mp -76° , bp 138° , $d(20^{\circ})$ $1.677 \,\mathrm{g \, cm^{-3}}$. The molecule has the expected C_2 structure (like S_2F_2 , H_2O_2 , etc.) with S-S 195 pm, S-Cl 206 pm, angle Cl-S-S 107.7°, and a dihedral angle of 85.2°. (143) Further chlorination of S₂Cl₂, preferably in the presence of a trace of catalyst such as FeCl3, yields the morevolatile, cherry-red liquid sulfur dichloride, SCl₂: mp -122° , bp 59° , $d(20^{\circ})$ 1.621 g cm⁻³. SCl₂ resembles S₂Cl₂ in being foul-smelling and toxic, but is rather unstable when pure due to the decomposition equilibrium 2SCl₂ \Longrightarrow S₂Cl₂ + Cl₂. However, it can be stabilized by the presence of as little as 0.01% PCl₅ and can be purified by distillation at atmospheric pressure in the presence of 0.1% PCl₅. (144) The sulfur dichloride molecule is nonlinear (C_{2v}) as expected, with S-Cl 201 pm and angle Cl-S-Cl 103°. S_2Cl_2 and SCl_2 both react readily with H_2O to give a variety of products such as ¹³⁰ R. A. De Marco and J. M. Shreeve, Adv. Inorg. Chem. Radiochem. 16, 109-76 (1974). ¹³¹ A. W. JACHE, Adv. Inorg. Chem. Radiochem. 16, 177-200 (1974). ¹³² K. D. GUPTA, R. MEWS, A. WATERFELD, J. M. SHREEVE and H. OBERHAMMER, *Inorg. Chem.* 25, 275-8 (1986). ¹³³ J. BITTNER, R. GERHARDT, K. MOOCK and K. SEPPELT, Z. anorg. allg. Chem. **602**, 89-96 (1991). ¹³⁴ D. Viets, W. Heilemann, A. Waterfeld, R. Mews, S. Besser, R. Herbst-Irmer, G. M. Sheldrick and W.-D. Stohrer, *J. Chem. Soc., Chem. Commun.*, 1017–9 (1992). ¹³⁵ R. DAMERIUS, K. SEPPELT and J. S. THRASHER, *Angew. Chem. Int. Edn. Engl.* 28, 769-70 (1989). ¹³⁶ W. SAAK, G. HENKEL and S. POHL, *Angew. Chem. Int. Edn. Engl.* **23**, 150 (1984). ¹³⁷ B. PÖTTER, K. SEPPELT, A. SIMON, E.-M. PETERS and B. HETTICH, J. Am. Chem. Soc. 107, 980-5 (1985). ¹³⁸ D. A. DIXON and B. E. SMART, *J. Am. Chem. Soc.* **108**, 2688–91 (1986). ¹³⁹ R. GERHARDT, T. GRELBIG, J. BUSCHMANN, P. LUGER and K. SEPPELT, Angew. Chem. Int. Edn. Engl. 27, 1534-6 (1988). ¹⁴⁰ J. JACOBS and H. WILLNER, Z. anorg. allg. Chem. 619, 1221-6 (1993). ¹⁴¹ O. LÖSKING and H. WILLNER, Angew. Chem. Int. Edn. Engl. 28, 1255-6 (1989). ¹⁴² J. S. THRASHER and K. V. MADAPPAT Angew. Chem. Int. Edn. Engl. 28, 1256-8 (1989). ¹⁴³ C. J. MARSDEN, R. D. BROWN, and P. D. GODFREY, J. Chem. Soc., Chem. Commun., 399-401 (1979). ¹⁴⁴ R. J. ROSSEN and F. R. WHITT, *J. Appl. Chem.* **10**, 229–37 (1960); see also the following paper (pp. 237–46) for large-scale distillation unit. H_2S , SO_2 , H_2SO_3 , H_2SO_4 and the polythionic acids $H_2S_xO_6$. Oxidation of SCl_2 yields thionyl chloride (OSCl₂) and sulfuryl chloride (O₂SCl₂) (see Section 15.2.4). Reaction with F_2 produces SF_4 and SF_6 (p. 686), whereas fluorination with NaF is accompanied by some disproportionation: $$3SCl_2 + 4NaF \longrightarrow SF_4 + S_2Cl_2 + 4NaCl$$ As indicated on p. 686, fluorination of S_2Cl_2 with KF/SO₂ occurs with concurrent isomerization to SSF₂. Both S₂Cl₂ and SCl₂ react with atomic N (p. 413) to give NSCl as the first step, and this can then react further with S₂Cl₂ to give the ionic heterocyclic compound $S_3N_2Cl^+Cl^-$ (p. 739). By contrast, reaction of S_2Cl_2 with NH₄Cl at 160° (or with NH₃ + Cl₂ in boiling CCl₄) yields the cluster compound S₄N₄ (p. 722). Treatment of S₂Cl₂ with Hg(SCN)₂ yields colourless crystals of $S_4(CN)_4$, mp -2° , which are composed of unbranched chain molecules NCSSSSCN with essentially linear NCS groups (177.5°, 178.4°) and the angles CSS 98.6° and SSS 106.5°; interatomic distances are within the expected ranges, viz. N≡C 113.4, C-S 169.6, outer S-S 206.8 and inner S-S 201.7 pm. (145) SCl₂ acts as a ligand to Pd and Pt in the yellow 4-coordinate complex trans-[PdCl₂(SCl₂)₂] and the red 6-coordinate complex trans-[PtCl₄(SCl₂)₂]. These are formed when either Pd or Pt metal is heated in a quartz ampoule with elemental S and Cl₂ at 200°C for 4 days, and they decompose into SCl₂ and PdCl₂ or PtCl₄, respectively, on being heated. S₂Cl₂ and SCl₂ are important industrial chemicals. The main use for S₂Cl₂ is in the vapour-phase vulcanization of certain rubbers, but other uses include its chlorinating action in the preparation of mono- and di-chlorohydrins, and the opening of some minerals in extractive metallurgy. Some idea of the scale of production can be gauged from the fact that S₂Cl₂ is shipped in 50-tonne tank cars; smaller quantities are transported in drums containing 300 or 60 kg of the liquid. Its less-stable homologue SCl₂ is notable for its ready addition across olefinic double bonds: e.g., thiochlorination of ethene yields the notorious vesicant, mustard gas: $$SCl_2 + 2CH_2 = CH_2 \longrightarrow S(CH_2CH_2Cl)_2$$ The compounds SCl₂ and S₂Cl₂ can be thought of as the first two members of an extended series of dichlorosulfanes S_nCl₂. The lower electronegativity of Cl (compared with F) and the lower S-Cl bond energy (compared with S-F) enable the natural catenating propensity of S to have full reign and a series of dichlorosulfanes can be prepared in which S-S bonds in sulfur chains (and rings) can be broken and the resulting $-S_n$ oligomers stabilized by the formation of chain-terminating S-Cl bonds. The first eight members with n = 1 - 8 have been isolated as pure compounds, and mixtures up to perhaps S₁₀₀Cl₂ are known. † Specific compounds have been made by F. Fehér's group using the polysulfanes as starting materials (p. 683):⁽¹⁴⁷⁾ $$H_2S_x + 2S_2Cl_2 \longrightarrow 2HCl + S_{4+x}Cl_2$$ $H_2S_x + 2SCl_2 \xrightarrow{-80^{\circ}} 2HCl + S_{2+x}Cl_2$ The dichlorosulfanes are yellow to orange-yellow viscous liquids with an irritating odour. They are thermally and hydrolytically unstable. S_3Cl_2 boils at 31° (10^{-4} mmHg) and has a density of $1.744 \, \mathrm{g \, cm^{-3}}$ at 20° . Higher homologues have ¹⁴⁵ R. STEUDEL, K. BERGEMANN and M. KUSTOS, Z. anorg. allg. Chem. **620**, 117-20 (1994). ¹⁴⁶ M. PAULUS and G. THIELE, Z. anorg. allg. Chem. **588**, 69-76 (1990). [†] Several related series of compounds are also known in which Cl is replaced by a pseudohalogen such as $-CF_3$ or $-C_2F_5$, e.g. $S_n(CF_3)_2$ (n=1-4), $CF_3S_nC_2F_5$ (n=2-4), and $S_n(C_2F_5)_2$ (n=2-4). These can be prepared by the reaction of CF_3I and S vapour in a glow discharge followed by fractionation and glc separation; other routes include reaction of CS_2 with IF_5 at $60-200^\circ$, reaction of CF_3I with sulfur at 310° , and fluorination of $SCCl_2$ or related compounds with NaF or KF at $150-250^\circ$. (See, for example, T. Yasumura and R. J. Lagow, *Inorg. Chem.* 17, 3108−10 (1978).) ¹⁴⁷ F. FEHÉR, pp. 370-9 in G. BRAUER (ed.), *Handbook of Preparative Inorganic Chemistry*, 2nd edn., Vol. 1, Academic Press, New York, 1963. even higher densities: | $ \frac{n \text{ in } S_n Cl_2}{\text{Density}(20^\circ)/\text{g cm}^{-3}} $ | 1 | 2 | 3 | 4 | |--|-------|-------|-------|-------| | | 1.621 | 1.677 | 1.744 | 1.777 | | $n \text{ in } S_n \text{Cl}_2$ | 5 | 6 | 7 | 8 | | Density(20°)/g cm ⁻³ | 1.802 | 1.822 | 1.84 | 1.85 | The higher chlorides of S (unlike the higher fluorides) are very unstable and poorly characterized. There is no evidence for molecular chloro analogues
of SF₄, S₂F₁₀ and SF₆, though SClF₅ is known (p. 687). Chlorination of SCl₂ by liquid Cl₂ at -78° yields a powdery offwhite solid which begins to decompose when warmed above -30°. It analyses as SCl₄ and is generally formulated as SCl₃+Cl⁻, but little reliable structural work has been done on it. Consistent with this ionic formulation, reaction of SCl₄ with Lewis acids results in the formation of stable adducts; e.g. AlCl₃ yields the white solid SCl₄.AlCl₃ which has been shown by vibrational spectroscopy on both the solid and the melt (125°) to be $[SCl_3]^+[AlCl_4]^{-}$. The compound $[SCl_3]^+[ICl_4^-]$ is also known (p. 693). (149) As expected from a species that is isoelectronic with PCl₃ the cation is pyramidal; dimensions are: S-Cl (average) 198.5 pm, angle Cl-S-Cl 101.3° (cf. PCl₃: P-Cl 204.3 pm, angle Cl-P-Cl 100.1°). Other compounds containing [SCl₃]⁺ which have been characterized spectroscopically and by X-ray crystallography include those with $[SbCl_6]^-$, $[UCl_6]^-$ and $[AsF_6]^-$. (150) Sulfur bromides are but poorly characterized and there are few reliable data on them. SBr₂ probably does not exist at room temperature but has been claimed as a matrix-isolated product when a mixture of S₂Cl₂/SCl₂:Br₂:Ar in the ratio 1:1:150 is passed through an 80-W microwave discharge and the product condensed on a CsI window at 9 K. (151) The dibromosulfanes S., Br₂ (n = 2-8) are formed by the action of anhydrous HBr on the corresponding chlorides. (147) The best characterized compound (which can also be made directly from the elements at 100°C) is the garnetred oily liquid S₂Br₂ isostructural with S₂Cl₂ (S-S 198 pm, S-Br 224 pm, angle Br-S-S 105° , dihedral angle $84 \pm 11^{\circ}$). It has mp -46° , bp(0.18 mmHg) 54°, and $d(20^{\circ})$ 2.629 g cm⁻³, but even at room temperature S₂Br₂ tends to dissociate into its elements. Interestingly, the higher homologues have progressively lower densities (cf. S_nCl₂). The unusual ionic compound [BrSSSBr₂]⁺[AsF₆]⁻ can be formed by reacting stoichiometric amounts of S, Br₂ and AsF₅ in liquid SO₂. | $n \text{ in } S_nBr_2$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |-------------------------------------|-------|------|------|------|------|------|------| | Density(20°)/
g cm ⁻³ | 2.629 | 2.52 | 2.47 | 2.41 | 2.36 | 2.33 | 2.30 | Sulfur iodides are a topic of considerable current interest, although compounds containing S-I bonds were, in fact, unknown until fairly recently. The failure to prepare sulfur iodides by direct reaction of the elements probably reflects the comparative weakness of the S-I bond: an experimental value is not available but extrapolation from representative values for the bond energies of other S-X bonds leads to a value of ~170 kJ mol⁻¹: | Bond | S-F | S-Cl | S-Br | S-I | S-S | I-I | |---------------------------------|-----|------|------|--------|-----|-----| | Energy/
kJ mol ⁻¹ | 327 | 271 | 218 | (~170) | 225 | 150 | The data indicate that formation of SI_2 from $\frac{1}{8}S_8 + I_2$ and the formation of S_2I_2 from $\frac{1}{4}S_8 + I_2$ are both endothermic to the extent of $\sim 35 \text{ kJ mol}^{-1}$, implying that successful synthesis of these compounds must employ kinetically controlled routes to obviate decomposition back to the free elements. Pure S_2I_2 was first isolated (as a dark reddishbrown solid) following the reaction of S_2Cl_2 with ¹⁴⁸ G. MAMANTOV, R. MARASSI, F. W. POULSON, S. E. SPRINGER, J. P. WIAUX, R. HUGLEN and N. R. SMYNL, J. Inorg. Nuclear Chem. **41**, 260-1 (1979). ¹⁴⁹ A. J. EDWARDS, J. Chem. Soc., Dalton Trans., 1723-5 (1978). ¹⁵⁰ B. H. CHRISTIAN, M. J. COLLINS, R. J. GILLESPIE and J. F. SAWYER, *Inorg. Chem.* **25**, 777-88 (1986), and references cited therein. ¹⁵¹ M. FEUERHAN and G. VAHL, *Inorg. Nuclear Chem. Lett.* 16, 5-8 (1980). Figure 15.22 (a) Structure of the iodocycloheptasulfur cation in $[S_7I]^+[SbF_6]^-$. The S-S-S angles in the S_7 ring are in the range $102.5-108.4^\circ$ (mean 105.6°). (154) (b) Structure of the centrosymmetric cation $[(S_7I)_2I]^{3+}$ showing similar dimensions to those in $[S_7I]^+$. (156) HI/N₂ in a freon solvent of -78° in the presence of catalytic amounts of added I_2 .⁽¹⁵²⁾ The darker brown solid OSI₂ was formed similarly from OSCl₂. S₂I₂ and OSI₂ are both thermally unstable and decompose rapidly above about -30° into S, I₂ (and also SO₂ in the case of OSI₂).⁽¹⁵²⁾ S₂I₂ was assigned C_2 symmetry (like S₂F₂, p. 684) on the basis of its vibrational spectrum.⁽¹⁵³⁾ The first X-ray crystal structure of a species containing an S-I bond was of the curious and unexpected cation [S₇I]⁺ which was found in the dark-orange compound [S₇I]⁺[SbF₆]⁻ formed when iodine and sulfur react in SbF₅ solution. (154) The structure of the cation is shown in Fig. 15.22a and features an S₇ ring with alternating S-S distances and a pendant iodine atom; the conformation of the ring is the same as in S₇, S₈, and S₈O (p. 696). The same cation was found in $[S_7I]_4^+[S_4]^{2+}[AsF_6]_6^{-(155)}$ and a similar motif forms part of the iodo-bridged species $[(S_7I)_2I]^{3+}$ (Fig. 15.22b); (156) this latter cation was formed during the reaction of S₈ and I₂ with SbF₅ in the presence of AsF₃ according to the reaction stoichiometry: The very long $S-I_{\mu}$ bonds in the linear S-I-S bridge (267.5 pm) are notable and have been interpreted in terms of an S-I bond order of $\frac{1}{2}$. Even weaker $S\cdots I$ interactions occur in the cation $[S_2I_4]^{2+}$ which could, indeed, alternatively be regarded as an S_2^{2+} cation coordinated sideon by two I_2 molecules (Fig. 15.23).⁽¹⁵⁷⁾ This $^{3\}frac{1}{2}S_8 + 3I_2 + 10SbF_5 \xrightarrow{2AsF_3} 2[S_{14}I_3]^{3+}[SbF_6]_3^{-}.2AsF_3 + (SbF_3)_3SbF_5$ The very long S-I_{\mu} bonds in the linear S-I-S bridge (267.5 pm) are notable and have been ¹⁵² D. K. PADMA, Indian Journal of Chemistry 12, 417-8 (1974). ¹⁵³ V. G. VAHL and R. MINKWITZ, *Inorg. Nuclear Chem. Lett.* 13, 213-5 (1977). ¹⁵⁴ J. PASSMORE, P. TAYLOR, T. K. WHIDDEN and P. S. WHITE, *J. Chem. Soc., Chem. Commun.*, 689 (1976). J. PASSMORE, G. SUTHERLAND, P. TAYLOR, T. K. WHIDDEN and P. S. WHITE, *Inorg. Chem.* 20, 3839–45 (1981). The cation is also one of the products formed when an excess of S reacts with $[I_3]^+[AsF_6]^-$ or $[I_3]^+[As_2F_{11}]^-$ or AsF_5/I_2 , or when $[S_{16}]^{2+}[SbF_6]^-$ is iodinated with an excess of iodine. ¹⁵⁵ J. PASSMORE, G. SUTHERLAND and P. S. WHITE, *J. Chem. Soc., Chem. Commun.*, 330-1 (1980). (See also *Inorg. Chem.* 21, 2717-23 (1982).) ¹⁵⁶ J. PASSMORE, G. SUTHERLAND and P. S. WHITE, *J. Chem. Soc.*, Chem. Commun., 901–2 (1979). (See also Inorg. Chem. 21, 2717–23 (1982).) ¹⁵⁷ J. Passmore, G. Sutherland, T. Whidden and P. S. White, J. Chem. Soc., Chem. Commun., 289-90 (1980). M. P. Murchie, J. P. Johnson, J. Passmore, G. W. Sutherland, M. Tajik, T. K. Whidden, P. S. White and F. Grein, Inorg. Chem. 31, 273-83 (1992). See also T. Klapötke and J. Passmore, Accounts Chem. Research 22, 234-240 (1989). Figure 15.23 Structure of the $[S_2I_4]^{2+}$ cation of C_2 symmetry, showing the very short S-S distance and the rather short I-I distances; note also the S-I distances which are even longer than in the weak charge transfer complex $[(H_2N_2CS)_2I]^+$ (262.9 pm). The nonbonding $I\cdots I$ distance is 426.7 pm. curious right triangular prismatic conformation (notably at variance with that in the isoelectronic P_2I_4 molecule) is associated with a very short S-S bond (bond order $2\frac{1}{3})$ and rather short I-I distances (bond order $1\frac{1}{3}).$ The cation is formed in AsF_5/SO_2 solution according to the equation: $$\frac{1}{4}S_8 + 2I_2 + 3AsF_5 \xrightarrow{SO_2} [S_2I_4]^{2+} [AsF_5]_2^- + AsF_3$$ Other species containing S–I bonds that have been characterized include the pseudopolyhalide anions $[I(SCN)_2]^-$ and $[I_2(SCN)]^-,^{(158)}$ and the dimethyliodosulfonium(IV) salts of $[Me_2SI]^+$ with $[AsF_6]^-$ and $[SbCl_6]^-$ (which latter are thermally unstable above about -20°). (159) We conclude this section with an amusing cautionary tale which illustrates the type of blunder that can still appear in the pages of a refereed journal (1975) when scientists (in this case physicists) attempt to deduce the structure of a compound by spectroscopic techniques alone, without ever analysing the substance being investigated. The work⁽¹⁶⁰⁾ purported to establish the presence of a new molecule Cl₃SI in solid solution with an ionic complex $[SCl_3]^+[ICl_2]^-$, thus leading to an overall formula for the crystals of S₂Cl₈I₂. The mixed compound had apparently been made originally by M. Jaillard in 1860: he obtained it as beautiful transparent velloworange prismatic crystals by treating a mixture of sulfur and iodine with a stream of dry Cl₂. R. Weber obtained the same material in 1866 by passing Cl₂ into a solution of I₂ in CS₂ but he reported a composition of S₂Cl₇I rather than Jaillard's SCl₄I (S₂Cl₈I₂). The implausibility of forming a stable compound containing an S-I bond in this way, coupled with the perceptive recognition that the published Raman spectrum had bands that could be assigned to [ICl₄] rather than [ICl₂]⁻, led P. N. Gates and A. Finch to reinvestigate the compound. (161) It transpired that the nineteenth-century workers had used S=16 as the atomic weight of sulfur so the true chemical composition of the crystals was, in fact, SCl₇I. The previous spectroscopic interpretation⁽¹⁶⁰⁾ was therefore totally incorrect and the compound was shown to be [SCl₃]⁺[ICl₄]⁻. This was later confirmed by a single-crystal X-ray diffraction study (p. 691). (149) In short, far from containing the new iodo-derivative Cl₃SI, the compound did #### 15.2.4 Oxohalides of sulfur not even contain an S-I bond. Sulfur forms two main series of oxohalides, the thionyl dihalides $OS^{IV}X_2$ and the sulfuryl dihalides $O_2S^{VI}X_2$. In addition, various other oxofluorides and peroxofluorides are known
(p. 688). Thionyl fluorides and chlorides are colourless volatile liquids (Table 15.14); $OSBr_2$ is rather less volatile and is orange-coloured. ¹⁵⁸ G. A. BOWMAKER and D. A. ROGERS, *J. Chem. Soc.*, *Dalton Trans.*, 1146–51 (1981). ¹⁵⁹ R. MINKWITZ and H. PRENZEL, Z. anorg. allg. Chem. 548, 91-102 (1987). $^{^{160}}$ Y. Tavares-Forneris and R. Forneris, J. Mol. Structure 24, 205–13 (1975). ¹⁶¹ A. FINCH, P. N. GATES and T. H. PAGE, *Inorg. Chim. Acta* 25, L49-L50 (1977). Table 15.14 Some properties of thionyl dihalides, | Property | OSF ₂ | OSFCI | OSCl ₂ | OSBr ₂ | |-------------|------------------|-------|-------------------|-------------------| | MP/°C | -110 | -120 | -101 | -50 | | BP/°C | -44 | 12 | 76 | 140 | | d(O-S)/pm | 141.2 | | 145 | 145 (assumed) | | d(S-X)/pm | 158.5 | | 207 | 227 | | angle O-S-X | 106.8° | | 106° | 108° | | angle X-S-X | 92.8° | | 114°(?) | 96° | All have pyramidal molecules (C_s point group for OSX₂), and OSFCl is chiral though stereochemically labile. Dimensions are in Table 15.14: the short O-S distance is notable. The unstable compound OSI₂ was mentioned on p. 692. The most important thionyl compound is OSCl₂ — it is readily prepared by chlorination of SO₂ with PCl₅ or, on an industrial scale, by oxygen-atom transfer from SO₃ to SCl₂: $$SO_2 + PCl_5 \longrightarrow OSCl_2 + OPCl_3$$ $SO_3 + SCl_2 \longrightarrow OSCl_2 + SO_2$ OSCl₂ reacts vigorously with water and is particularly valuable for drying or dehydrating readily hydrolysable inorganic halides: $$MX_n.mH_2O + mOSCl_2 \longrightarrow MX_n + mSO_2$$ +2mHCl Examples are MgCl₂.6H₂O, AlCl₃.6H₂O, FeCl₃.-6H₂O, etc. Thionyl chloride begins to decompose above its bp (76°) into S₂Cl₂, SO₂, and Cl₂; it is therefore much used as an oxidizing and chlorinating agent in organic chemistry. Fluorination with SbF₃/SbF₅ gives OSF₂; use of NaF/MeCN gives OSFCl or OSF₂ according conditions. Thionyl chloride also finds some use as a nonaqueous ionizing solvent does SO_2 (p. 700) and the formally related dimethylsulfoxide (dmso), Me₂SO (mp 18.6° , bp 189° , viscosity η_{25} 1.996 centipoise, dielectric constant ε_{25} 46.7). OSF₂ is a useful low-temperature fluorinating agent in organic chemistry: it converts active C-H and P-H groups into C-F and P-F, and replaces N-H with N-S(O)F. (162) Sulfuryl halides, like their thionyl analogues, are also reactive, colourless, volatile liquids or gases (Table 15.15). The most important compound is O₂SCl₂, which is made on an industrial scale by direct chlorination of SO₂ in the presence of a catalyst such as activated charcoal (p. 274) or FeCl₃. It is stable to 300° but begins to dissociate into SO₂ and Cl₂ above this: it is a useful reagent for introducing Cl or O₂SCl into organic compounds. O₂SCl₂ can be regarded as the acid chloride of H₂SO₄ and, accordingly, slow hydrolysis (or ammonolysis) yields $O_2S(OH)_2$ or $O_2S(NH_2)_2$. Fluorination yields O_2SF_2 (also prepared by $SO_2 + F_2$) and comproportionation of this with O₂SCl₂ and O₂SBr₂ yield the corresponding O₂SFX species. **Table 15.15** Some properties of sulfuryl dihalides, | Property | O ₂ SF ₂ | O ₂ SFC1 | O ₂ SCl ₂ | O ₂ SFBr | |-------------|--------------------------------|---------------------|---------------------------------|---------------------| | MP/°C | -120 | -125 | -54 | -86 | | BP/°C | -55 | 7 | 69 | 41 | | d(O-S)/pm | 140.5 | _ | 143 | | | d(S-X)/pm | 153.0 | | 199 | | | angle O-S-O | 124° | | 120° | | | angle X-S-X | 96° | | 111° | | ¹⁶² T. MAHMOOD and J. M. SHREEVE, *Inorg. Chem.* 24, 1395–8 (1985). All these compounds have (distorted) tetrahedral molecules, those of formula O_2SX_2 having C_{2v} symmetry and the others C_s . Dimensions are in Table 15.15: the remarkably short O-S and S-F distances in O_2SF_2 should be noted (cf. above). Indeed, the implied strength of bonding in this molecule is reflected by the fact that it can be made by reacting the normally extremely inert compound SF_6 (p. 687) with the fluoro-acceptor SO_3 : $$SF_6 + 2SO_3 \longrightarrow 3O_2SF_2; \ \Delta G_{298}^{\circ} = -202 \text{ kJ mol}^{-1}$$ A 20% conversion can be effected by heating the two compounds at 250° for 24 h. ## 15.2.5 Oxides of sulfur At least thirteen proven oxides of sulfur are known to exist(163) though this profusion should not obscure the fact that SO₂ and SO₃ remain by far the most stable and unquestionably the most important economically. The six homocyclic polysulfur monoxides $S_n O(5 < n <$ 10) are made by oxidizing the appropriate cyclo- S_n (p. 656) with trifluoroperoxoacetic acid, $CF_3C(O)OOH$, at -30° . The dioxides S_7O_2 and S₆O₂ are also known. In addition there are the thermally unstable acyclic oxides S₂O, S₂O₂, SO and the fugitive species SOO and SO₄. Several other compounds were described in the older literature (pre-1950s) but these reports are now known to be in error. For example, the blue substance of composition "S2O3" prepared from liquid SO₃ and sulfur now appears to be a mixture of salts of the cations S_4^{2+} and S_8^{2+} (p. 664) with polysulfate anions. Likewise a "sulfur monoxide" prepared by P. W. Schenk in 1933 was shown by D. J. Meschi and R. J. Meyers in 1956 to be a mixture of S₂O and SO₂. The well-established lower oxides of S will be briefly reviewed before SO₂ and SO₃ are discussed in more detail. Lower oxides (163) Elegant work by R. Steudel and his group in Berlin has shown that, when cyclo- S_{10} , - S_9 , and -S₈ are dissolved in CS₂ and oxidized by freshly prepared CF₃C(O)O₂H at temperatures below -10° , modest yields (10-20%) of the corresponding crystalline monoxides S_nO are obtained. Similar oxidation of cyclo- S_7 , and α and β -S₆ in CH₂Cl₂ solution yields crystalline S_7O , S_7O_2 , and α - and β - S_6O . Crystals of S_6O_2 and S_5O (d > -50°) have not yet been isolated but the compounds have been made in solution by the same technique. S₈O had previously been made (1972) by the reaction of OSCl₂ and H_2S_7 in CS_2 at -40° : it is one of the most stable compounds in the series and melts (with decomposition) at 78°. All the compounds are orange or dark yellow and decompose with liberation of SO₂ and sulfur when warmed to room temperature or slightly above. Structures are in Fig. 15.24. It will be noted that S₇O is isoelectronic and isostructural with [S₇I]⁺ (p. 692). This invites the question as to whether S₇S can be prepared as a new structural isomer of cyclo-S₈. S₈O reacts with SbCl₅ in CS₂ over a period of 9 days at -50° to give a 71% yield of the unstable orange adduct S₈O.SbCl₅:(164) its structure and dimensions are in Fig. 15.25a. It will be noted that the S₈O unit differs from molecular S₈O in having an equatorially bonded O atom and significantly different S-O and S-S interatomic distances. The X-ray crystal structure was determined at -100°C as the adduct decomposes within 5 min at 25° to give OSCl₂, SbCl₃ and S₈. When a similar reaction was attempted with β -S₆O, the novel dimer S₁₂O₂.2SbCl₅.3CS₂ was obtained as orange crystals in 10% yield after 1 week at $-50^{\circ(165)}$ (Fig. 15.25b). Formation of the centrosymmetric S₁₂O₂ molecule, which is still unknown in the uncoordinated state, can be ¹⁶³ Gmelin Handbuch der Anorganischen Chemie, 8th edn., Schwefel Oxide, Ergänzungsband 3, 1980, 344 pp. ¹⁶⁴ R. STEUDEL, T. SANDOW and J. STEIDEL, J. Chem. Soc., Chem. Commun., 180-1 (1980). ¹⁶⁵ R. STEUDEL, J. STEIDEL and J. PICKARDT, Angew. Chem. Int. Edn. Engl. 19, 325-6 (1980).