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Preface

Photonic crystal fibers, also known as microstructured or holey fibers, have
recently generated great interest in the scientific community thanks to the
new ways provided to control and guide light, not obtainable with conven-
tional optical fibers. Proposed for the first time in early 90’s, photonic crystal
fibers have driven an exciting and irrepressible research activity all over the
world, starting in the telecommunication field and then touching metrology,
spectroscopy, microscopy, astronomy, micromachining, biology and sensing.

A variety of very interesting publications and high level books have been
already presented, describing the different kinds of these new fibers, the physics
of their behavior, as well as a huge range of design tools. These aspects will
not be considered again in this work.

This book, instead, is intended to provide an expert guidance through the
properties of photonic crystal fibers, with a specific focus on the telecommu-
nication aspects. Although standard fibers for telecommunication can rely on
a well-established technology and standard fiber based devices and systems
represent a consolidated reality, hardly replaceable, the authors believe that
photonic crystal fibers can revolutionize the field of guided optics and its ap-
plications, even if much easier and close opportunities can be foreseen in many
other fields. This belief gets firmer when considering signal processing and spe-
cific functions rather than the usage of photonic crystal fibers in long distance
transmission.

The long expertise of the authors in fiber based device analysis is reflected
in a deep analysis aimed to practically understand how the physical and geo-
metrical characteristics of these new fibers can be tailored to achieve the goal
of ad hoc performances. The study, mainly performed with the help of the
finite element method, a powerful numerical approach the authors are very
expert in, has enabled to understand how best to optimize the fiber design,
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always keeping in mind actual possibilities and limits of photonic crystal fiber
fabrication technology.

This book will thus benefit researchers approaching this very dynamic and
evolving subject with the interest to explore this field of telecommunication,
looking at current as well as emerging applications.
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Introduction

Until recently, an optical fiber was a solid thread surrounded by another
material with a lower refractive index. Today, photonic crystal fibers (PCFs)
are established as an alternative fiber technology. PCFs, which have been
first demonstrated in 1995, are optical fibers with a periodic arrangement
of low-index material in a background with higher refractive index. The
background material in PCFs is usually undoped silica and the low-index
region is typically provided by air-holes running along their entire length.

Two main categories of PCFs exist: high-index guiding fibers and photonic
bandgap ones.

PCFs belonging to the first category are more similar to conventional
optical fibers, because light is confined in a solid core by exploiting the mod-
ified total internal reflection mechanism. In fact, there is a positive refractive
index difference between the core region and the photonic crystal cladding,
where the air-hole presence causes a lower average refractive index. The guid-
ing mechanism is defined as “modified” because the cladding refractive index is
not a constant value, as in standard optical fibers, but it changes significantly
with the wavelength.

This characteristic, as well as the high refractive index contrast between
silica and air, provides a range of new interesting features. Moreover, a high
design flexibility is one of the distinctive properties of PCFs. In particular, by
changing the geometric characteristics of the air-holes in the fiber cross-section,
that is, their dimension or position, it is possible to obtain PCFs with diametri-
cally opposite properties. For example, PCFs with a small silica core and large
air-holes, that is, with a high air-filling fraction in the transverse section, have
better nonlinear properties compared with conventional optical fibers, and so
they can be successfully used in many applications, like supercontinuum gen-
eration. On the contrary, fibers can be designed with small air-holes and large
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2 Introduction

hole-to-hole distances, in order to obtain a large modal area, useful for high-
power delivery. Differently from standard fibers, PCFs with proper geometric
characteristics can be endlessly single mode, that is, only the fundamental
mode is guided, regardless of the wavelength. In addition, a significant asym-
metry can be introduced in a simple way in the PCF core, thus creating fibers
with very high level of birefringence. Moreover, the PCF dispersion proper-
ties can be tailored with high flexibility, that is, it is possible to move the
zero-dispersion wavelength to the visible range, as well as to obtain dispersion
curves ultraflattened or with a strong negative slope.

When the PCF core region has a lower refractive index than the surround-
ing photonic crystal cladding, light is guided by a mechanism different from
total internal reflection, that is, by exploiting the presence of the photonic
bandgap (PBG). In fact, the air-hole microstructure which constitutes the
PCF cladding is a two-dimensional photonic crystal, that is a material with
periodic dielectric properties characterized by a photonic bandgap, where light
in certain wavelength ranges cannot propagate. The PBG effect can be also
found in nature, since it is responsible, for example, of the beautiful and bright
colors seen in butterfly wings. PCFs with a low index core are created by
introducing a defect in the photonic crystal structure, for example, an extra
air-hole or an enlarged one, and light is confined because the PBG makes
propagation in the microstructured cladding region impossible. This guiding
mechanism cannot be obtained in conventional optical fibers and it opens a
whole new set of interesting possibilities.

In particular, light can be guided in air in PCFs with a hollow core, thus
providing numerous promising applications, such as low-loss guidance and
high-power delivery, without the risk of fiber damage. Moreover, air-guiding
PCFs are almost insensitive to bending, even for small bending diameter val-
ues, and they present extreme dispersion properties, highly dominated by the
waveguide component. Finally, when filled with proper gases or liquids, hollow-
core PCFs can be successfully employed in sensor applications or for nonlinear
optics.

Since their first demonstration, PCFs have been the object of an intense
research activity by the most important groups all around the world. In fact, it
is particularly intriguing to study the new light-guiding mechanisms offered by
PCFs and the innovative properties related to the presence of the PBG. More-
over, the possibility of modifying the air-hole geometry in the fiber cross-section
is limited only by the technological feasibility of the designed PCFs. It is also
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very interesting to investigate how the PCF properties can be influenced by
the changes of the geometric characteristics and “how far” it is possible to go
from the well-known and established properties of standard optical fibers.

The research activity described in this book is set in this context, which
is in continuous evolution and characterized by a great scientific excitement.
The aim of the research carried out and here reported has been to accurately
study, and thus to deeply understand, the light-guiding mechanisms exploited
in this new kind of optical fibers. PCFs with unusual guiding, dispersion,
and amplification properties have been designed by exploring different air-hole
arrangements in the fiber cross-section. This has been done with a constant
attention to the possible applications of the proposed PCFs, in the field of
the optical communications. Moreover, the performances of the traditional
optical fibers have been always considered as a useful comparison parameter, in
order to evaluate the effective advantages offered by these new fibers. Finally,
the results of these studies have been presented in a critical way, that is,
by underlining the possible drawbacks, which are usually related to the PCF
attenuation, which is still higher than that of the conventional optical fibers.

The book is organized in six chapters. Chapter 1 is a general presenta-
tion of the PCF innovative characteristics. Starting from the description of
the properties of photonic crystals, materials with a refractive index periodic
distribution, the passage from conventional optical fibers to photonic crystal
ones is explained. After describing the two light-guiding mechanisms exploited
in PCFs, the advantages offered by this new fiber type with respect to the
conventional ones are discussed. Then, some meaningful examples of PCFs
with unusual guiding, dispersion, and nonlinear properties, proposed in the
literature and successfully used in many applications, are reported. Moreover,
the different loss mechanisms are presented for both solid- and hollow-core
PCFs, since attenuation is still the main drawback which affects this new kind
of optical fibers. Once a significant loss reduction is obtained, which can be
reached by improving the fabrication process described in the final part of
Chapter 1, these new fibers will enter in the market in a significant way.

In Chapters 2–6 the main results of the research activity carried out by the
authors in the past years are presented. In each chapter, results concerning
the same topic, that is, guiding, dispersion, or amplification properties, are
collected. It is important to underline that all the analyses reported in this
book have been developed by mainly using the finite element method (FEM),
in particular, a full-vector modal solver, as described in Appendix A. This
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numerical method is particularly suitable to study PCFs, since fibers with any
refractive index profile, as well as any air-hole arrangement in the transverse
section, including the nonperiodic ones, can be analyzed.

Chapter 2 summarizes the results concerning the PCF guiding properties,
which directly come from the complex propagation constant of the guided
modes. First of all, the study of the influence of the geometric parameters on
the fundamental guided-mode characteristics in a new kind of PCF, with a
square lattice of air-holes, is reported. Moreover, the modal cutoff analysis of
these PCFs is presented. The same method has been successfully applied to
study the single-mode regime of a new kind of triangular PCFs, which have a
wide silica core and a large modal area. In fact, it is important to investigate
the trade-off between the effective area and the cutoff of the fundamental
guided mode, in order to successfully exploit these large-mode area fibers in
practical applications. In the final part of the chapter the study of the guiding,
leakage, and birefringence properties of hollow-core PCFs with a modified
honeycomb lattice, which guide light by exploiting the PBG effect, is reported.
Air-guiding has been demonstrated in fibers with a larger bandgap with respect
to that obtained with triangular lattices.

The design of PCFs with innovative dispersion properties is described
in Chapter 3. In fact, it is possible to significantly change the waveguide
contribution to the dispersion parameter by properly changing the geometric
characteristics of the air-holes in the cross-section. Triangular PCFs charac-
terized by a high air-filling fraction, that is, with large air-holes and small
hole-to-hole spacing, have been designed to compensate the anomalous dis-
persion and the dispersion slope of single-mode fibers around 1550 nm, as it
is reported at the beginning of the chapter. Then, the dispersion properties of
fibers with a square lattice of air-holes, obtained with different values of the
geometric parameters, are discussed and compared with those of triangular
PCFs. In the second part of the chapter the design of triangular PCFs with
completely different dispersion characteristics, that is with flattened dispersion
curve and zero-dispersion wavelength around 1550 nm, which can be exploited
for nonlinear applications, is described. The cross-section geometry around the
core of the triangular PCFs has been modified in two different ways, in order
to obtain the desired dispersion properties and a small effective area, that is
a high nonlinear coefficient.

Chapter 4 deals with the PCF nonlinear properties. Firstly, supercontin-
uum generation is described, since it is one of the most interesting applications
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of highly nonlinear fibers. The most important results, both experimental and
theoretical, presented so far in the literature have been collected to explain
the characteristics of this complex combination of nonlinear phenomena. Then,
the possibility to exploit PCFs for optical parametric amplification, which is
based on the highly efficient nonlinear effect of four-wave mixing, has been
investigated. A high fiber nonlinearity as well as a low dispersion slope are
fundamental aspects for a successful design of an optical parametric amplifier,
that is with a high and broadband gain. PCFs are suitable for this kind of
amplification, since they offer the possibility to engineer the dispersion curve
and to obtain enhanced nonlinear properties. In the final part of the chapter
a different kind of PCF, that is the one with hollow core, has been considered,
even if these fibers present negligible nonlinear characteristics. The nonlinear
coefficient of hollow-core fibers with modified honeycomb lattice has been eval-
uated, showing that also the nonlinear contribution of air should be taken into
account.

An important part of the developed research activity concerns the
possibility of using PCFs for Raman amplification, which has become more and
more relevant in the past years for optical communication systems. Chapter 5
is completely devoted to this topic. In particular, two meaningful parameters,
that is the Raman effective area and the Raman gain coefficient, have been
introduced to describe the PCF Raman performances. All-silica PCFs as well
as germania-doped ones have been considered, in order to design nonlinear
fibers with enhanced performances for Raman amplification. Moreover, the
Raman properties of tellurite-based triangular fibers and of honeycomb PCFs
with a germania-doped solid core which guide light by means of the PBG
have been considered and discussed. A complete model of PCF-based Raman
amplifiers, proposed to study the Raman amplification process in a PCF is
fully described in the second part of the chapter. The gain and noise perfor-
mances of different triangular PCF Raman amplifiers have been analyzed, in
order to underline the influence of the geometric parameters which character-
ize the fiber cross-section. Moreover, the performances of Raman amplifiers
based on triangular PCFs have been investigated, by evaluating the potential
improvements obtainable with a reduction of the background losses. A further
study, described in the last part of the chapter, has been performed on Raman
amplifiers based on low-loss triangular PCFs when multiple pumps are used.
Different pump wavelengths and power distributions have been considered,
with the aim to reduce as much as possible the gain spectrum ripple.
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In Chapter 6 the amplification in erbium-doped PCFs is discussed. In fact,
active fibers with superior characteristics with respect to standard ones can
be obtained by a proper PCF design. The amplification properties have been
studied with a numerical model which combines the full-vector modal solver
with a population and propagation rate equation solver. In particular, in the
analysis presented here the model has been applied to design erbium-doped
triangular PCFs which exhibit high gain values and low losses when spliced
with a standard single-mode fiber.

The study presented here does not pretend to be exhaustive of all the
possible telecommunications and PCF applications which, for sure, will further
increase and improve in the future. The intent, instead, is to collect and provide
examples, based on the authors’ experience of the potentialities and the limits
of PCF exploitation, which can hopefully lead to actual and practical designs
of new optical devices.



Chapter 1

Basics of photonic crystal
fibers

In this chapter, starting from the description of the characteristics of photonic
crystals, materials with a refractive index periodic distribution, the passage
from conventional optical fibers to photonic crystal ones, introduced for the
first time in 1995, is explained.

Then, the two light-guiding mechanisms are presented. In solid-core
photonic crystal fibers, where light is confined in a higher refractive index
region, modified total internal reflection is exploited, which is quite similar to
the guiding mechanism of standard optical fibers. Instead, when the light is
confined in a region with a refractive index lower than that of the surrounding
area, as in hollow-core fibers, it is necessary the presence of the photonic
bandgap (PBG).

One of the most important advantages offered by photonic crystal fibers
(PCFs) is the high design flexibility. In fact, by changing the geometric
characteristics of the fiber cross-section, such as the air-hole dimension or
disposition, it is possible to obtain fibers with diametrically opposed optical
properties. PCFs with unusual guiding, dispersion, and nonlinear properties
can be designed and successfully used in various applications, as reported in
this chapter.

The main drawback which affects this new kind of fibers is related to
the attenuation, which is higher than that of conventional optical fibers. The
different loss mechanisms are thus analyzed for both solid- and hollow-core
photonic crystal fibers.

7



8 Chapter 1. Basics of photonic crystal fibers

In general, a loss reduction for PCFs can be obtained by improving the
fabrication process, reported in the last part of the chapter. The stack-and-
draw process is described with other fabrication techniques, like extrusion,
usually employed to realize fibers with materials different from silica, such as
soft-glasses or polymers. Once reached the technological maturity, the advan-
tages offered by PCFs with respect to conventional fibers will be completely
exploited for different applications, as described in the final part of the chapter,
and the new fibers will enter concretely in the market.

1.1 From conventional optical fibers to PCFs

Optical fibers, which transmit information in the form of short optical
pulses over long distances at exceptionally high speeds, are one of the major
technological successes of the 20th century. This technology has developed
at an incredible rate, from the first low-loss single-mode waveguides in 1970
to being key components of the sophisticated global telecommunication net-
work. Optical fibers have also non-telecom applications, for example, in beam
delivery for medicine, machining and diagnostics, sensing, and a lot of other
fields. Modern optical fibers represent a careful trade-off between optical losses,
optical nonlinearity, group velocity dispersion, and polarization effects. After
30 years of intensive research, incremental steps have refined the capabilities
of the system and the fabrication technology nearly as far as they can go.

The interest of researchers and engineers in several laboratories, since the
1980s, has been attracted by the ability to structure materials on the scale of
the optical wavelength, a fraction of micrometers or less, in order to develop
new optical medium, known as photonic crystals. Photonic crystals rely on a
regular morphological microstructure, incorporated into the material, which
radically alters its optical properties [1.1]. They represent the extension of the
results obtained for semiconductors into optics. In fact, the band structure
of semiconductors is the outcome of the interactions between electrons and
the periodic variations in potential created by the crystal lattice. By solving
the Schrödinger’s wave equation for a periodic potential, electron energy states
separated by forbidden bands are obtained. PBGs can be obtained in photonic
crystals, where periodic variations in dielectric constant, that is in refractive
index, substitute variations in electric potential, as well as the classical wave
equation for the magnetic field replaces the Schrödinger’s equation [1.2].
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PBG, originally predicted in 1987 by Sajeev John, from University of
Toronto, and Eli Yablonovitch, from Bell Communications Research, has
become the really hot topic in optics in the early 1990s. The idea was to
build the right structures, in order to selectively block the transmission of
photons with energy levels, that is wavelengths, corresponding to the PBGs,
while allowing other wavelengths to pass freely. Moreover, slight variations in
the refractive index periodicity would introduce new energy levels within the
PBG, as it happens with the creation of energy levels within the bandgap of
conventional semiconductors.

Unfortunately, building the right structures has proved extremely difficult.
ThefirstPBGmaterialwas created in 1991byYablonovitch andhis colleagues by
drillingholeswithadiameter of 1mminablockofmaterialwitha refractive index
of 3.6. Since the bandgap wavelength is of the order of the spacing between the
air-holes in the photonic crystal, this structure had a bandgap in the microwave
region.

In 1991, Philip Russell, who was interested in Yablonovitch’s research,
got his big “crazy” idea for “something different,” during CLEO/QELS
conference [1.2]. Russell’s idea was that light could be trapped inside a fiber
hollow core by creating a two-dimensional photonic crystal in the cladding,
that is a periodic wavelength-scale lattice of microscopic air-holes in the glass.
The basic principle is the same which is the origin of the color in butterfly
wings and peacock feathers, that is all wavelength-scale periodic structures
exhibit ranges of angle and color, stop bands, where incident light is strongly
reflected. When properly designed, the photonic crystal cladding running
along the entire fiber length can prevent the escape of light from the hol-
low core. These new fibers are called PCFs, since they rely on the unusual
properties of photonic crystals.

The first fiber with a photonic crystal structure was reported by Russell
and his colleagues in 1995 [1.3]. Even if it was a very interesting research
development, the first PCF did not have a hollow core, as shown in Fig. 1.1,
and, consequently, it did not rely on a photonic bandgap for optical confine-
ment. In fact, in 1995 Russell’s group could produce fiber with the necessary
air-hole triangular lattice, but the air-holes were too small to achieve a large
air-filling fraction, which is fundamental to realize a PBG. Measurements have
shown that this solid-core fiber formed a single-mode waveguide, that is only
the fundamental mode was transmitted, over a wide wavelength range. More-
over, the first PCF had very low intrinsic losses, due to the absence of doping
elements in the core, and a silica core with an area about ten times larger
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Figure 1.1: Schematic of the cross-section of the first solid-core photonic crys-
tal fiber, with air-hole diameter of 300 nm and hole-to-hole spacing of 2.3 µm,
proposed in [1.3].

Figure 1.2: Schematic of the cross-section of the first hollow-core PCF, with
hole-to-hole spacing of 4.9 µm and core diameter of 14.8 µm, proposed in [1.4].

than that of a conventional single-mode fiber (SMF), thus permitting a corre-
sponding increase in optical power levels.

After moving his research group to the University of Bath in 1996, where
PCF fabrication techniques were steadily refined, Russell and his co-workers
were able to report, in 1999, the first single-mode hollow-core fiber, in which
confinement was due by a full two-dimensional PBG, as reported in Fig. 1.2.
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They realized that the photonic bandgap guiding mechanism is very robust,
since light remains well confined in the hollow core, even if tight bends are
formed in the fiber. However, it is highly sensitive to small fluctuations in the
fiber geometry, for example, to variations in the air-hole size.

Initial production techniques were directed simply at the task of mak-
ing relatively short lengths of fiber in order to do the basic science, but
many research teams are now working hard to optimize their PCF production
techniques, in order to increase the lengths and to reduce the losses.

1.2 Guiding mechanism

In order to form a guided mode in an optical fiber, it is necessary to introduce
light into the core with a value of β, that is the component of the propagation
constant along the fiber axis, which cannot propagate in the cladding. The
highest β value that can exist in an infinite homogeneous medium with
refractive index n is β = nk0, being k0 the free-space propagation constant.
All the smaller values of β are allowed. A two-dimensional photonic crystal,
like any other material, is characterized by a maximum value of β which can
propagate. At a particular wavelength, this corresponds to the fundamental
mode of an infinite slab of the material, and this β value defines the effective
refractive index of the material.

1.2.1 Modified total internal reflection

It is possible to use a two-dimensional photonic crystal as a fiber cladding,
by choosing a core material with a higher refractive index than the cladding
effective index. An example of this kind of structures is the PCF with a silica
solid core surrounded by a photonic crystal cladding with a triangular lat-
tice of air-holes, shown in Fig. 1.3. These fibers, also known as index-guiding
PCFs, guide light through a form of total internal reflection (TIR), called
modified TIR. However, they have many different properties with respect to
conventional optical fibers.

Endlessly single-mode property

As already stated, the first solid-core PCF, shown in Fig. 1.1, which consisted
of a triangular lattice of air-holes with a diameter d of about 300 nm and a
hole-to-hole spacing Λ of 2.3 µm, did not ever seem to become multi-mode in
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(a) (b)

Figure 1.3: (a) Schematic of a solid-core PCF with a triangular lattice of
air-holes, which guides light for modified total internal reflection. (b) Micro-
scope picture of a fabricated solid-core triangular PCF, kindly provided by
Crystal Fiber A/S.

the experiments, even for short wavelengths. In fact, the guided mode always
had a single strong central lobe filling the core [1.5].

Russell has explained that this particular endlessly single-mode behavior
can be understood by viewing the air-hole lattice as a modal filter or “sieve”
[1.5]. Since light is evanescent in air, the air-holes act like strong barriers, so
they are the “wire mesh” of the sieve. The field of the fundamental mode, which
fits into the silica core with a single lobe of diameter between zeros slightly
equal to 2Λ, is the “grain of rice” which cannot escape through the wire mesh,
being the silica gaps between the air-holes belonging to the first ring around
the core too narrow. On the contrary, the lobe dimensions for the higher-order
modes are smaller, so they can slip between the gaps. When the ratio d/Λ, that
is the air-filling fraction of the photonic crystal cladding, increases, successive
higher-order modes become trapped [1.5]. A proper geometry design of the
fiber cross-section thus guarantees that only the fundamental mode is guided.
More detailed studies of the properties of triangular PCFs have shown that
this occurs for d/Λ < 0.4 [1.6, 1.7].

By exploiting this property, it it possible to design very large-mode area
fibers, which can be successfully employed for high-power delivery, ampli-
fiers, and lasers. Moreover, by doping the core in order to slightly reduce
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its refractive index, light guiding can be turned off completely at wavelengths
shorter than a certain threshold value.

1.2.2 Photonic bandgap guidance

Optical fiber designs completely different form the traditional ones result from
the fact that the photonic crystal cladding have gaps in the ranges of the sup-
ported modal index β/k0 where there are no propagating modes. These are the
PBGs of the crystal, which are similar to the two-dimensional bandgaps which
characterize planar lightwave circuits, but in this case they have propagation
with a non-zero value of β. It is important to underline that gaps can appear
for values of modal index both greater and smaller than unity, enabling the for-
mation of hollow-core fibers with bandgap material as a cladding, as reported
in Fig. 1.4. These fibers, which cannot be made using conventional optics, are
related to Bragg fibers, since they do not rely on TIR to guide light. In fact,
in order to guide light by TIR, it is necessary a lower-index cladding mater-
ial surrounding the core, but there are no suitable low-loss materials with a
refractive index lower than air at optical frequencies [1.1]. The first PCF which
exploited the PBG effect to guide light was reported in 1998 [1.5, 1.8], and it

(a) (b)

Figure 1.4: (a) Schematic of a hollow-core PCF with a triangular lattice of
air-holes, which guides light through the photonic bandgap effect. (b) Micro-
scope picture of a fabricated hollow-core triangular PCF, kindly provided by
Crystal Fiber A/S.
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Figure 1.5: Schematic of the cross-section of the first photonic bandgap PCF
with a honeycomb air-hole lattice, proposed in [1.8].

is shown in Fig. 1.5. Notice that its core is formed by an additional air-hole in
a honeycomb lattice. This PCF could only guide light in silica, that is in the
higher-index material.

Hollow-core guidance had to wait until 1999, when the PCF fabrication
technology had advanced to the point where larger air-filling fractions, required
to achieve a PBG for air-guiding, became possible [1.5]. Notice that an air-
guided mode must have β/k0 < 1, since this condition guarantees that light is
free to propagate and form a mode within the hollow core, while being unable
to escape into the cladding. The first hollow-core PCF, reported in Fig. 1.2, had
a simple triangular lattice of air-holes, and the core was formed by removing
seven capillaries in the center of the fiber cross-section. By producing a rela-
tively large core, the chances of finding a guided mode were improved. When
white light is launched into the fiber core, colored modes are transmitted, thus
indicating that light guiding exists only in restricted wavelength ranges, which
coincide with the photonic bandgaps [1.5].

1.3 Properties and applications

Due to the huge variety of air-holes arrangements, PCFs offer a wide possibility
to control the refractive index contrast between the core and the photonic
crystal cladding and, as a consequence, novel and unique optical properties.

Since PCFs provide new or improved features, beyond what conventional
optical fibers offer, they are finding an increasing number of applications in
ever-widening areas of science and technology.
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1.3.1 Solid-core fibers

Index-guiding PCFs, with a solid glass region within a lattice of air-holes, offer
a lot of new opportunities, not only for applications related to fundamental
fiber optics. These opportunities are related to some special properties of the
photonic crystal cladding, which are due to the large refractive index con-
trast and the two-dimensional nature of the microstructure, thus affecting the
birefringence, the dispersion, the smallest attainable core size, the number of
guided modes and the numerical aperture and the birefringence.

Highly birefringent fibers

Birefringent fibers, where the two orthogonally polarized modes carried
in a single-mode fiber propagate at different rates, are used to maintain
polarization states in optical devices and subsystems. The guided modes
become birefringent if the core microstructure is deliberately made twofold
symmetric, for example, by introducing capillaries with different wall thick-
nesses above and below the core. By slightly changing the air-hole geometry,
it is possible to produce levels of birefringence that exceed the performance
of conventional birefringent fiber by an order of magnitude. It is important to
underline that, unlike traditional polarization maintaining fibers, such as bow
tie, elliptical-core or Panda, which contain at least two different glasses, each
one with a different thermal expansion coefficient, the birefringence obtainable
with PCFs is highly insensitive to temperature, which is an important feature
in many applications. An example of the cross-section of a highly birefringent
PCF is reported in Fig. 1.6.

Dispersion tailoring

The tendency for different light wavelengths to travel at different speeds is
a crucial factor in the telecommunication system design. A sequence of short
light pulses carries the digitized information. Each of these is formed from a
spread of wavelengths and, as a result of chromatic dispersion, it broadens as
it travels, thus obscuring the signal. The magnitude of the dispersion changes
with the wavelength, passing through zero at 1.3 µm in conventional optical
fibers.

In PCFs, the dispersion can be controlled and tailored with unprecedented
freedom. In fact, due to the high refractive index difference between silica
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(a) (b)

Figure 1.6: Microsope picture of (a) the cross-section and (b) the core region
of a highly birefringent triangular PCF, kindly provided by Crystal Fiber A/S.

(a) (b)

Figure 1.7: Microscope picture of (a) the cross-section and (b) the core region
of a highly nonlinear PCF, characterized by a small-silica core and large
air-holes, with zero-dispersion wavelength shifted to the visible. The pictures
are kindly provided by Crystal Fiber A/S.

and air, and to the flexibility of changing air-hole sizes and patterns, a much
broader range of dispersion behaviors can be obtained with PCFs than with
standard fibers.

For example, as the air-holes get larger, the PCF core becomes more and
more isolated, until it resembles an isolated strand of silica glass suspended
by six thin webs of glass, as it is shown in Fig. 1.7. If the whole structure is
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made very small, the zero-dispersion wavelength can be shifted to the visible,
since the group velocity dispersion is radically affected by pure waveguide
dispersion.

On the contrary, very flat dispersion curves can be obtained in certain
wavelength ranges in PCFs with small air-holes, that is with low air-filling
fraction. As an example, a dispersion-flattened triangular PCF with seven air-
hole rings, characterized by Λ � 2.5µm and d � 0.5µm, has been presented
in [1.9].

Ultrahigh nonlinearities

An attractive property of solid-core PCFs is that effective index contrasts
much higher than in conventional optical fibers can be obtained by making
large air-holes, or by reducing the core dimension, so that the light is forced
into the silica core. In this way a strong confinement of the guided-mode can
be reached, thus leading to enhanced nonlinear effects, due to the high field
intensity in the core. Moreover, a lot of nonlinear experiments require specific
dispersion properties of the fibers. As a consequence, PCFs can be successfully
exploited to realize nonlinear fiber devices, with a proper dispersion, and this
is presently one of their most important applications.

An important example is the so-called supercontinuumgeneration, that is the
formation of broad continuous spectra by the propagation of high power pulses
through nonlinear media, as it will be widely described in Section 4.1. The term
supercontinuum does not indicate a specific phenomenon, but rather a plethora
of nonlinear effects, which, in combination, lead to extreme spectral broadening.
The determining factors for supercontinuum generation are the dispersion of the
nonlinear medium relative to the pumping wavelength, the pulse length and the
peak power. Since the nonlinear effects involved in the spectral broadening are
highly dependent on the medium dispersion, a proper design of the dispersion
properties can significantly reduce the power requirements. The widest spectra,
in fact, can be obtained when the pump pulses are launched close to the zero-
dispersion wavelength of the nonlinear media.

Large-mode area fibers

By changing the geometric characteristics of the fiber cross-section, it is
possible to design PCFs with completely different properties, that is with
large effective area. The typical cross-section of this kind of fibers, called large
mode area (LMA) PCFs, consists of a triangular lattice of air-holes where
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the core is defined by a missing air-hole. An example of a triangular PCF is
reported in Fig. 1.3. The PCF core diameter can be defined as dcore = 2Λ− d,
which corresponds to the distance between opposite air-hole edges in the core
region. When d/Λ < 0.4, the triangular PCF is endlessly single mode, that is,
single mode at any wavelength [1.6,1.7]. In this condition it is the core size or
the pitch that determines the zero-dispersion wavelength λ0, the mode field
diameter (MFD) and the numerical aperture (NA) of the fiber. LMA PCFs are
usually exploited for high-power applications, since fiber damage and nonlin-
ear limitations are drastically reduced. In particular, LMA fibers are currently
used for applications at short wavelengths, that is in ultraviolet (UV) and
visible bands, like the generation and delivery of high-power optical beams for
laser welding and machining, optical lasers, and amplifiers, providing signifi-
cant advantages with respect to traditional optical fibers [1.10].

Conventional active fibers for lasers and amplifiers are basically standard
transmission fibers whose core region has been doped with rare earth elements.
These fibers, also known as “core-pumped,” are usually pumped with single-
mode pump lasers. Due to its power limitations, this kind of fiber is unsuitable
for high-power applications, on the order of 1 W, and upwards. High-power
fibers are usually designed with a double-cladding structure, where a second
low-index region acts as a cladding for a large pump core. In the center of the
pump core is located a much smaller doped signal core, as reported in Fig. 1.8a.

(a) (b)

Figure 1.8: Schematic of the cross-sections of (a) a standard step-index double-
clad fiber and of (b) an air-clad PCF, where the single-mode active core is
embedded in a silica-air LMA structure.
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With respect to the more traditional core-pumped design, double-cladding
fibers present a large pump area and high numerical aperture, thus enabling
pumping with relatively low-cost multimode diodes and diode bars/stacks.
However, it is important to underline that, when considering high powers, it
is necessary to optimize fiber characteristics, such as NA, core dimension, and
length, in order to obtain efficient coupling of the pump light, reduction of
nonlinear effects, high conversion of pump light and good thermal properties
[1.10].

Since PCF structures can provide single-mode waveguides with MFD
values above 40 µm, LMA PCFs can be successfully used as active fibers
for high-power applications. The PCF double-clad equivalent is shown in
Fig. 1.8b. It consists of a LMA structure with a doped-core inside an air-clad
pump guide. Very high NA values, determined by the silica bridge width,
shown in the three fiber cross-sections reported in Fig. 1.9, are provided by
the air-clad, since the refractive index contrast is greatly enhanced. As a con-
sequence, the NA is only limited by the practical handling of the fibers, being
the cleaving increasingly challenging at NA values above 0.6. Moreover, the
thermal conductivity is greatly improved compared to conventional polymer-
clad fibers, because the PCF is made only of glass and air, and there is no
material degradation. The power density limit is set only by the silica damage
threshold. Finally, the combination of very large MFD and high NA offered by
PCFs makes it possible to fabricate lasers and amplifiers with very short fiber
lengths, drastically reducing the nonlinear effects [1.10]. As an example, an
air-clad Y b3+-doped fiber characterized by a hexagonal inner cladding with

Figure 1.9: Microscope pictures of the cross-section of three different air-clad
PCFs, kindly provided by Crystal Fibre A/S.
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a diameter of 117 µm and a NA of about 0.6 has been fabricated by Crystal
Fibre A/S [1.10].

For industrial material processing applications, kW average power levels
are desirable. These power levels can be now obtained with fiber lasers. By
exploiting the advantages offered by air-clad active PCFs, that is large Y b3+-
doped core mode-field areas and high NA all-silica pump core, reliable kW
lasers can be realized with short fiber lengths [1.10].

Once reached the power limit of the fibers previously described, multi-
core PCF designs can be exploited in order to obtain a further scaling of the
power level. An example is given by the an air-clad Y b-doped fiber with seven
cores, each with a mode-field diameter of 15 µm fabricated by Crystal Fibre
A/S [1.10]. This fiber has been applied in a laser configuration and provided
lasing in a supermode with high beam quality. The next planned generation
of multicore fibers will have 18 cores [1.10].

1.3.2 Hollow-core fibers

Hollow-core PCFs have great potential, since they exhibit low nonlinearity
[1.11] and high damage threshold [1.12–1.14], thanks to the air-guiding in the
hollow core and the resulting small overlap between silica and the propagating
mode. As a consequence, they are good candidates for future telecommunica-
tion transmission systems.

Another application, perhaps closer to fruition, which can successfully
exploit these advantages offered by air-guiding PCFs, is the delivery of
high-power continuous wave (CW), nanosecond and sub-picosecond laser
beams, which are useful for marking, machining and welding, laser-Doppler
velocimetry, laser surgery, and THz generation [1.15]. In fact, optical fibers
would be the most suitable delivery means for many applications, but at
present they are unusable, due to the fiber damage and the negative non-
linear effects caused by the high optical powers and energies, as well as to
the fiber group-velocity dispersion, which disperses the short pulses [1.15].
These limitations can be substantially relieved by considering hollow-core
fibers [1.15].

Moreover, air-guiding PCFs are suitable for nonlinear optical processes in
gases, which require high intensities at low power, long interaction lengths
and good-quality transverse beam profiles. For example, it has been demon-
strated that the threshold for stimulated Raman scattering in hollow-core
fibers filled with hydrogen is orders of magnitude below that obtained in
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previous experiments [1.16]. In a similar way, PCFs with a hollow core can
be used for trace gas detection or monitoring, or as gain cells for gas lasers.

Finally, the delivery of solid particles down a fiber by using optical
radiation pressure has been demonstrated [1.5]. In particular, only 80 mW
of a 514 nm argon laser light was enough to levitate and guide 5µm poly-
styrene spheres along a 15 cm length of PCF with a hollow-core diameter of
20 µm [1.17].

1.4 Loss mechanisms

The most important factor for any optical fiber technology is loss. Losses in
conventional optical fibers have been reduced over the last 30 years, and a
further improvement is unlikely to be reached. The minimum loss in fused
silica, which is around 1550 nm, is slightly less than 0.2 dB/km. This limit
is important, since it sets the amplifier spacing in long-haul communications
systems, and thus is a major cost of a long-haul transmission system [1.1].

Loss mechanisms in PCFs are here described in details, in order to
understand how far the technology can go to reduce their values.

1.4.1 Intrinsic loss

Solid-core fibers

The optical loss αdB, measured in dB/km, of PCFs with a sufficiently reduced
confinement loss, which will be described in Section 1.4.2, can be expressed as

αdB = A/λ4 + B + αOH + αIR , (1.1)

being A, B, αOH, and αIR the Rayleigh scattering coefficient, the imperfection
loss, and OH and infrared absorption losses, respectively. At the present time
the losses in PCFs are dominated by OH-absorption loss and imperfection
loss [1.18].

In a typical PCF the OH-absorption loss is more than 10 dB/km at 1380
nm and this causes an additional optical loss of 0.1 dB/km in the wave-
length range around 1550 nm. Since this contribution is very similar to the
intrinsic optical loss of 0.14 dB/km for pure silica glass at this wavelength, the
OH-absorption loss reduction becomes an important and challenging problem.
Most of the OH impurities seem to penetrate the PCF core region during
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the fabrication process. As a consequence, a dehydration process is useful in
reducing the OH-absorption loss [1.18].

Imperfection loss, caused mainly by air-hole surface roughness, is another
serious problem. In fact, during the fabrication process, the air-hole surfaces
can be affected by small scratches and contamination. If this surface roughness
is comparable with the considered wavelength, it can significantly increase the
scattering loss.Thus, it is necessary to improve the polishing and etching process,
in order to reduce the optical loss causedby this roughness.Moreover, fluctuation
in the fiber diameter during the fiber drawing process can cause an additional
imperfection loss, if the air-hole size and pitch change along the fiber [1.18].

It is important to underline that the Rayleigh scattering coefficient of PCFs
is the same as that of a conventional SMF. However, this is higher than that
of a pure silica-core fiber, although the PCF is made of pure silica glass.
It is necessary to reduce the roughness further, in order to obtain a lower
imperfection loss and a lower Rayleigh scattering coefficient [1.18].

It is fundamental to fabricate long PCFs with low loss, if they are to be
used as transmission media. In Fig. 1.10, the decrease of the loss for fabri-
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cated index-guiding PCFs is shown until 2006. Early in their development,
solid-core PCFs had optical losses of the order of 0.24 dB/m [1.19] and the
available length was limited to several meters. The optical losses of PCFs were
rapidly reduced to 1 dB/km by improving the fabrication process [1.20–1.22].
The lowest loss yet achieved is 0.28 dB/km [1.23]. Recently, a low loss, that
is 0.3 dB/km, and long length, that is 100 km, PCF was reported [1.24]. The
optical losses of these kind of PCFs are still high compared with those of a
conventional SMF. However, a solid-core PCF is not expected to have signifi-
cantly lower losses than standard fibers.

Hollow-core fibers

Losses in hollow-core fibers are limited by the same mechanisms as in
conventional fibers and in index-guiding PCFs, that is absorption, Rayleigh
scattering, confinement loss, bend loss, and variations in the fiber structure
along the length. However, there is the possibility to reduce them below the
levels found in conventional optical fibers, since the majority of the light travels
in the hollow core, in which scattering and absorption could be very low.

As shown in Fig. 1.10, the attenuation values reported in literature for
hollow-core PCFs are higher than those for both solid-core PCFs and standard
fibers. Looking at the attenuation profiles for a range of hollow-core fibers made
by Crystal Fibre A/S, reported in [1.10], it is possible to notice two important
facts. The guiding bandwidth is usually around 15% of the central wavelength
and the loss scales inversely with the wavelength. As indicated by theoretical
considerations, the attenuation related to mode coupling and scattering at the
internal air–silica interfaces should scale with the wavelength λ as λ−3 [1.25].
This consideration has been confirmed by experimental observations [1.26] and
applies to the seven-cell design, that is to fibers whose hollow core has been
obtained by removing seven capillaries in the center of the fiber cross-section.
It is important to underline that, in order to reach lower losses, 19-cell designs
can be used, as it is demonstrated by the loss values reported in Fig. 1.11 [1.26].
The minimum loss of 1.7 dB/km has been obtained with the hollow-core PCF
shown in Fig. 1.12 [1.26], since the larger core reduces the overlap of the guided
modes with silica. Recently, a record attenuation as low as 1.2 dB/km at 1620
nm has been reported with the same kind of fiber [1.25]. However, notice that
a larger hollow core gives increased perimeters, leading to a greater density of
surface modes, which will be described in the following, leading to decreased
bandwidth and also to increased higher-order dispersion [1.27].



24 Chapter 1. Basics of photonic crystal fibers

140012001000800600400 1600 1800 2000

10000

1000

100

10

1

A
tte

nu
at

io
n 

(d
B

/k
m

)

λ (nm)

~ λ −2.98

7 cell fiber

19 cell fiber
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Figure 1.12: Microscope picture of a 19-cell hollow-core fiber, kindly provided
by Crystal Fiber A/S.
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Reducing the hollow-core PCF loss to levels below those of conventional
silica fibers remains a challenge. As it will be discussed later, confinement losses
can be eliminated by forming a photonic crystal cladding with a sufficient
number of air-hole rings, while bending losses, which are determined by the
fiber design, can be reduced to a low level, at least in some structures. For what
concerns Rayleigh scattering, as well as absorption, they should be reduced
to below the level in bulk fibers, even if the increased scattering at the many
surfaces represents potentially a problem. However, the biggest unknown is the
level of variation in the fiber structure along its length. In fact, the bandgap
presents a high sensitivity to structural fluctuations that occur over long fiber
lengths, that is wavelengths that are guided in one section may leak away in
another.

It is possible to reduce the fiber nonuniformity with a more careful
fabrication process, but not to eliminate the surface roughness due to
surface capillary waves (SCWs) frozen into the fiber when it is made. In
fact, SCWs, which exist on liquid surfaces, such as molten glass, where sur-
face tension provides a restoring force, freeze as the glass solidifies, leaving
a surface roughness given by the SCW amplitudes when the temperature
equals the glass transition one [1.25]. This roughness scatters light from the
fundamental mode to the not guided ones, thus causing the fiber loss. It
has been demonstrated [1.25, 1.28] that this surface roughness ultimately
limits the hollow-core PCF attenuation. In fact, due to its thermodynamic
origin, this roughness is not reduced with a better fiber drawing process.
Other technological improvements in homogeneity are likely to reduce the
attenuation of hollow-core PCFs by no more than a factor of two [1.25, 1.28].
Moreover, the negative effect of the roughness can be decreased by a proper
hollow-core fiber design, that is by reducing the overlap of the fundamen-
tal mode with the glass–air surfaces. By acting in these two directions, the
hollow-core PCF attenuation can plausibly be reduced from the actual record
of 1.2 dB/km at 1620 nm to 0.2 dB/km at the same wavelength [1.25, 1.28].
Some further improvements can derive from the choice of a longer operating
wavelength, since the scattering loss decreases. On the contrary, the infrared
absorption loss increases because some light propagates in the glass. By con-
sidering the λ−3 behavior of the attenuation previously described, and by
estimating the guided-mode absorption in the glass lower than 1%, it has
been shown [1.25, 1.28] that the plausible loss of a hollow-core PCF could
fall to about 0.13 dB/km if optimized for 1900 nm, as reported in Fig. 1.13.
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Figure 1.13: Minimum attenuation extrapolation of the real hollow-core PCF
with 1.2 dB/km at 1620 nm, and of a plausible perfected one with loss of 0.2
dB/km at 1620 nm, as described in [1.25, 1.28].

In order to further reduce the attenuation, new fiber designs, new materials
or a method for increasing surface tension are required [1.25, 1.28].

Finally, there is an excess loss in hollow-core PCFs which occurs at
wavelengths where there is coupling from the air-guided fundamental mode to
the confined surface modes, which have much greater overlap with the glass
and, as a consequence, experience far higher loss.

The presence of surface modes strongly affects the guiding properties of the
air-guiding PCFs by reducing the width of their transmission window [1.29].
For example, it has been demonstrated [1.30] that the attenuation spectrum
of the hollow-core fiber characterized by a hole-to-hole spacing of 4.7 µm, an
air-filling fraction of 0.94 and a core diameter of about 12.7 µm presents a
high-loss region in the wavelength range between 1550 and 1650 nm, which is
due to the surface mode presence. This loss, which affects the modes confined
in the hollow core, is caused by the surface modes through the coupling to the
core modes, as well as to the lossy extended ones.

In particular, air-guiding fibers, like conventional ones, are characterized
by a finite number of guided modes, all comprised in the hollow core, and by an
infinite number of leaky cladding and radiation modes. Ideally, being the core
modes completely confined in air, the small perurbations in the silica structure
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cause only a slight coupling with the cladding ones, which have the largest
spatial overlap in the perturbed region [1.30]. However, in some hollow-core
PCFs another kind of core modes, called surface modes, has been found, which
are not unexpected in periodic structures [1.30]. In fact, surface modes occur
when an infinite photonic crystal is abruptly terminated, since these modes
satisfy the new set of boundary conditions introduced by the terminations,
where they are localized [1.31]. Moreover, the surface mode presence in the
periodic structure strongly depends on the termination location. For example,
they are induced in photonic crystals made by dielectric rods in air only if the
termination cross the rods [1.31]. In a similar way, in air-guiding PCFs the
core defect introduces a pertubation in the lattice periodicity. Differently from
the well-known case of a planar interface of a semi-infinite periodic structure,
in hollow-core fibers there is a finite circular interface between the free space
and the periodic structure, that is the surface defined by the core radius. The
surface modes, which decay exponentially in both the periodic structure and
the free space, are supported in this region. It is important to underline that
the surface modes are localized near the core, being their wavelength within
the PBG, but they differ from the truely guided modes since most of their
intensity is confined in the silica which surrounds the hollow core. As shown
in Fig. 1.14, the surface mode presence significantly affects the behavior of
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Figure 1.14: Example of a hollow-core PCF dispersion curve with an avoided
crossing between the fundamental mode and a surface mode.



28 Chapter 1. Basics of photonic crystal fibers

the fundamental mode dispersion curve, with anticrossing points between the
guided mode, confined in the core, and the surface one. A reduction of the
silica quantity around the hollow core causes an energy increase of the surface
modes, which consequently move into the PBG, while, on the contrary, the
guided-mode energy is unaffected by this change. However, for some hollow-
core dimensions there is a certain interaction between these two different kinds
of modes, due to the significant field overlap in the silica regions. Thus, the
axial perturbations all along the fiber can provide the light coupling between
the core and the surface modes. The loss mechanism related to surface modes
is complete by considering that they are highly overlapped and coupled with
the continuum of the extended modes in the cladding [1.30].

1.4.2 Confinement loss

In both solid-core and hollow-core PCFs it is necessary to consider another
contribution to the losses, that is the leakage or confinement losses. These are
due to the finite number of air-holes which can be made in the fiber cross-
section. As a consequence, all the PCF guided modes are leaky.

For example, in solid-core PCFs light is confined within a core region by
the air-holes. Light will move away from the core if the confinement provided
by the air-holes is inadequate. This means that it is important to design such
aspects of the PCF structure as air-hole diameter and hole-to-hole spacing, or
pitch, in order to realize low-loss PCFs. In particular, the ratio between the
air-hole diameter and the pitch must be designed to be large enough to confine
light into the core. On the other hand, a large value of the ratio makes the PCF
multi-mode. However, by properly designing the structure, the confinement
loss of single-mode PCFs can be reduced to a negligible level.

Recently, several analyses have been performed in order to find the
guidelines to design both index-guiding PCFs and PBG-based fibers with
negligible leakage losses [1.32–1.37]. It has been demonstrated a strong depen-
dence of the confinement losses on the number of air-hole rings, especially
for fibers with high air-filling fraction. In particular, leakage losses can be
significantly reduced by increasing the ring number [1.36]. Finally, simulation
results have shown that in PBG fibers the leakage loss dependence on the
number of air-hole rings is much weaker than in index-guiding PCFs, whereas
the confinement losses exhibit a strong dependence on the position of the
localized state inside the PBG [1.33].
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Figure 1.15: Leakage loss at 1550 nm (a) as a function of the air-hole diameter
d normalized to the pitch Λ = 2.3 µm for different ring numbers and (b) as a
function of the pitch Λ for different air-filling fraction d/Λ [1.32].

In order to better explain the leakage loss behavior in PCFs, a solid-core
fiber and a hollow-core one with a triangular lattice of air-holes are here con-
sidered. The silica-core one, represented in Fig. 1.3, has Λ = 2.3 µm [1.32].
As shown in Fig. 1.15a, its leakage loss, calculated according to Eq. (A.9) as
explained in Appendix A, quickly decreases when the air-hole ring number or
the air-hole diameter increases. The reduction rate of the confinement loss in-
creases in the same way with these geometric parameters. As expected, the loss
decreases with larger Λ values for a fixed d/Λ. In this case, Λ and d are scaled
in the same way, so a larger pitch corresponds to a larger silica core size and,
as a consequence, to a higher field confinement. The wavelength dependence
of the confinement loss is shown in Fig. 1.16 for two different pitch values,
that is 2.3 and 4.6 µm. Since the field becomes less confined, the leakage loss
increases with λ. Moreover, the ring number affects the wavelength depen-
dence, which is weaker for few air-hole rings [1.32]. The triangular hollow-core
fiber taken as the second PCF example, shown in Fig. 1.4, is characterized by
d = 1.8 µm and Λ = 2 µm. Fig. 1.17 reports the wavelength dependence of
the confinement loss when four and seven air-hole rings are considered in the
fiber cladding. In both cases, the leakage loss sprectrum presents a U-shape
with a minimum value around the normalized wavelength λ/Λ = 0.68, which
corresponds to the central position of the guided mode inside the PBG. When
the defect state moves close to the PBG edges, the loss increases more quickly
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Figure 1.16: Leakage loss as a function of the wavelength λ for different ring
numbers, d/Λ = 0.5 and (a) Λ = 2.3 µm and (b) Λ = 4.6 µm [1.32].
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Figure 1.17: Confinement loss versus the wavelength in a triangular hollow-
core PCF with four and seven air-hole rings [1.33].

when the air-hole ring number is higher. Despite the high air-filling fraction,
that is d/Λ = 0.9, the dependence on the ring number is very weak, if com-
pared with the case of solid-core PCFs. Finally, it is important to underline
that there is a strong wavelength dependence of the loss. For example, the
loss of the seven air-hole ring PCF increases of a decade with respect to the
minimum value in a wavelength range of less than 100 nm [1.33].
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1.4.3 Bending loss

As already stated, an alternative route to fabricate LMA fibers is offered by
PCFs, which can be designed to be endlessly single-mode, unlike conventional
fibers that exhibit a cutoff wavelength below which higher-order modes are
supported. As for standard optical fibers, the practical achievable mode area
in PCFs is limited by the macrobending loss [1.38–1.40].

Conventional fibers suffer additional loss if bent more tightly than a
certain critical radius. For wavelengths longer than a certain value, that is
the “long-wavelength bend loss edge,” all guidance is effectively lost. The same
behavior is observed also in PCFs, which show even a “short-wavelength bend
loss edge” [1.41], caused by bend-induced coupling from the fundamental to the
higher-order modes, which leak out of the core. In fact, at short wavelengths the
guided mode is mainly confined into the silica [1.41] and when λ << Λ the field
can escape through the interstitial space between the neighboring air-holes. As
a consequence, the fiber becomes more sensitive to bending.

By considering triangular PCFs, shown in Fig. 1.3, a large air-filling
fraction, that is a high d/Λ value, results in a better resistance to the bending
loss, whereas the hole-to-hole spacing Λ roughly determines the position of
the minimum of the bending loss curve, which roughly occurs at Λ/2 [1.39].
Since LMA PCFs are generally designed with Λ > 7 − 8 µm, the standard
telecommunication window falls in the short-wavelength edge. In spite of that,
it has been demonstrated that LMA PCFs exhibit bending losses comparable
with those of similarly sized conventional fibers at 1550 nm [1.38, 1.42–1.45].
Moreover, it has been experimentally shown that PCFs optimized for visible
applications are more robust towards bending at any of the wavelengths from
400 to 1000 nm compared to a conventional fiber which is single-mode at the
visible wavelengths [1.46].

PCFs with larger relative air-hole diameters, that is with higher d/Λ, are
less sensitive to bending loss. However, the demand for single-mode opera-
tion and the need for large-mode size limits the increase of d/Λ, and other
solutions must be adopted. It has been demonstrated that the bending losses
of triangular PCFs can be improved by changing the air-hole configuration
from the traditional single-rod core design [1.47,1.48]. In particular, an alter-
native structure with the core region formed by three silica rods has been
proposed, with the aim to improve the guided-mode area and the resistance
to the bending loss, particularly at the short wavelengths [1.47]. An accurate
evaluation of the advantages regarding the bending loss that can be obtained
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by comparing suitably matched three-rod and single-rod PCFs designs has
been recently performed [1.48]. Numerical results have shown that, when the
silica core is formed with three adjacent rods, the critical bending radius,
defined as the radius at which the loss equals 3 dB/loop, can be reduced by
approximately 20% with respect to the traditional single-rod PCF designs at
1064 nm, in excellent agreement with the experimental measurements.

Many different approaches have been proposed in literature to evalu-
ate the bending loss in conventional optical fibers, which usually assume a
circular symmetric refractive index profile. Unfortunately, these approaches
are not straightforward in PCFs, due to the complex nature of their refrac-
tive index profile. As a consequence, an accurate modeling of bending loss
becomes even more challenging. A theoretical model that successfully predicts
the bending loss in LMA PCFs is described in [1.44], where the physical origin
of the phenomenon is investigated, accounting for two different mechanisms
that contribute to the overall loss, that is transition loss and pure bend
loss [1.43, 1.44]. The transition loss occurs where the curvature of the fiber
changes suddenly, that is at the beginning or the end of the bend. This loss can
be modeled as a sort of coupling loss, because the mode fields in the straight
and curved sections are not aligned. The pure bend loss is the continuous loss
that occurs along any curved section of fiber, due to the inability of the tails
of the field to keep in phase with the faster-travelling central portion of the
field. In this model, the full refractive index profile of the PCF is retained
and hence the six fold field shape as well. In fact, the bent fiber is modeled
as a straight fiber with an equivalent index profile, given by a transformation
that superimposes a gradient onto the refractive index of the straight fiber in
the direction of the bend. Other theoretical approaches have been developed,
which provide a correct parametric dependence of the bending loss with the
PCF geometric parameters [1.39,1.40,1.49]. An analogy with the conventional
step-index optical fibers has been applied, by introducing an effective normal-
ized frequency for the PCFs, with an equivalent core radius and an effective
refractive index for the microstructured cladding [1.39]. Then, in order to
describe the PCF bending loss, an expression for the power loss coefficient
of the standard optical fibers due to the macrobending is considered [1.39].
As reported in [1.50], this semianalytical effective-index model correctly pre-
dict the short-wavelength loss behavior measured in a triangular PCF with
d = 2.4 µm and Λ = 7.8 µm, that is with d/Λ � 0.31. On the contrary,
the difference between the bending loss values measured and numerically
evaluated is significant for triangular PCFs with a higher air-filling fraction.
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For example, there is no agreement between simulation and measurement
results for the triangular fiber with d = 5.5 µm and Λ = 10 µm, even if a full
vectorial effective index calculation is performed, since triangular PCFs with
these geometric characteristics are not strictly single-mode [1.50]. Recently,
an easy-to-evaluate expression for the bending loss prediction in triangular
LMA PCFs has been proposed [1.49]. The validity of the expression, which
is based on a recent formulation of the V-parameter for PCFs [1.7], has been
experimentally verified for different fiber geometric parameters and bending
diameters. As reported in [1.49], it has been demonstrated that the difference
between the bend-loss edge measured and numerically predicted is within the
uncertainty of the measurements.

Hollow-core PCFs have different bending properties with respect to silica-
core ones. For applications like high-power delivery for medical use or material
processing, which are suitable for air-guiding fibers, a low bending sensitivity is
required, since it allows a very flexible use and an easy integration in support-
ing mechanical systems [1.51]. After an early demonstration in a theoretical
work of the low influence of bending on the hollow-core PCF guiding prop-
erties [1.52], the bending loss of air-guiding fibers have been experimentally
measured [1.51,1.53]. In particular, a single-mode fiber and a multi-mode one
have been considered for the experimental measurements, which have indicated
that no significant effect can be observed even by applying 10 turns with a
small bending diameter of 4 cm [1.51,1.53]. The most important effect obtained
with bending is a shift of the short-wavelength bandgap edge towards longer
wavelengths, thus causing a PBG narrowing for the hollow-core PCFs. On the
contrary, a similar shift has not been measured at the long-wavelength bandgap
edge. In order to understand the fact that air-guiding PCFs are bending insen-
sitive over most of the PBG, it is useful to consider the difference between the
refractive index of the core, that is 1, and of the PBG edge, which corresponds
to the cladding one. Being this difference very high, that is about 2 · 10−2, a
very tight confinement of the guided-mode in the hollow-core can be obtained,
which results in the robust guiding even through tightly bent PCFs [1.53].

1.5 Fabrication process

One of the most important aspect in designing and developing new fibers is
their fabrication process. In a lot of papers presented in literature so far, PCFs
have been realized by “introducing” air-holes in a solid glass material. This has
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several advantages, since air is mechanically and thermally compatible with
most materials, it is transparent over a broad spectral range, and it has a very
low refractive index at optical frequencies. Fibers fabricated using silica and
air have been accurately analyzed, partly because most conventional optical
fibers are produced from fused silica. This is also an excellent material to
work with, because viscosity does not change much with temperature and it
is relatively cheap. Moreover, filling the holes of a silica–air structure opens
up a wide range of interesting possibilities, such as the bandgap guidance in a
low-index core made of silica when the holes are filled with a high-index liquid.

Traditional optical fibers are usually manufactured by fabricating a fiber
preform and drawing it with a high-temperature furnace in a tower setup [1.54].
The different vapor deposition techniques, for example, the modified chemical
vapor deposition (MCVD), the vapor axial deposition (VAD), and the out-
side vapour deposition (OVD), are all tailored for the fabrication of circular-
symmetric fiber preforms. Thus, the deposition can be controlled in a very
accurate way only in the radial direction without significant modifications
of the methods. Moreover, producing conventional single-mode optical fibers
requires core and cladding materials with similar refractive index values, which
typically differ by around 1%, and are usually obtained by vapor deposition
techniques. On the contrary, designing PCFs requires a far higher refractive
index contrast, differing by perhaps 50–100% [1.1]. As a consequence, all the
techniques previously described are not directly applicable to the fabrication
of preforms for microstructured optical fibers, whose structure is not charac-
terized by a circular symmetry.

Differently from the drawing process of conventional optical fibers, where
viscosity is the only really important material parameter, several forces are
important in the case of PCFs, such as viscosity, gravity, and surface tension.
This is due to the much larger surface area in a microstructured geometry,
and to the fact that many of the surfaces are close to the fiber core, thus
making surface tension relatively much more important. As a consequence,
the choice of the base material strongly influences the technological issues and
applications in the PCF fabrication process.

1.5.1 Stack-and-draw technique

In order to fabricate a PCF, it is necessary, first, to create a preform, which
contains the structure of interest, but on a macroscopic scale. One possibility
to exploit for the PCF fabrication is the drilling of several tens to hundreds
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Figure 1.18: Scheme of the PCF fabrication process. The photographs of the
PCF preforms have been kindly provided by Crystal Fiber A/S.

of holes in a periodic arrangement into one final preform. However, a different
and relatively simple method, called stack-and-draw, introduced by Birks et al.
in 1996 [1.55], has become the preferred fabrication technique in the last years,
since it allows relatively fast, clean, low-cost, and flexible preform manufacture.

The PCF preform is realized by stacking by hand a number of capillary
silica tubes and rods to form the desired air–silica structure, as reported in
Fig. 1.18. This way of realizing the preform allows a high level of design flexibil-
ity, since both the core size and shape, as well as the index profile throughout
the cladding region can be controlled. After the stacking process, the capil-
laries and rods are held together by thin wires and fused together during an
intermediate drawing process, where the preform is drawn into preform canes.
This intermediate step is important in order to provide numerous preform
canes for the development and optimization of the later drawing of the PCFs
to their final dimensions [1.54]. Then, the preform is drawn down on a con-
ventional fiber-drawing tower, greatly extending its length, while reducing its
cross-section, from a diameter of 20 mm to a 80–200 µm one, as shown in
Fig. 1.18. With respect to standard optical fibers, which are usually drawn
at temperatures around 2100◦C, a lower temperature level, that is 1900◦C,



36 Chapter 1. Basics of photonic crystal fibers

is kept during the PCF drawing since the surface tension can otherwise lead
to the air-hole collapse. In order to carefully control the air-hole size during
the drawing process, it is useful to apply to the inside of the preform a slight
overpressure relative to the surroundings, and to properly adjust the drawing
speed [1.54]. In summary, time dynamics, temperature, and pressure variations
are all significant parameters which should be accurately controlled during the
PCF fabrication. Finally, the PCFs are coated to provide a protective stan-
dard jacket, which allows the robust handling of the fibers. The final PCFs
are comparable to standard fibers in both robustness and physical dimensions,
and can be both striped and cleaved using standard tools.

It is important to underline that the stack-and-draw procedure, represented
in Fig. 1.18, proved highly versatile, allowing complex lattices to be assembled
from individual stackable units of the correct size and shape. Solid, empty, or
doped glass regions can be easily incorporated, as reported in Fig. 1.19. A wide
range of different structures have been made by exploiting this technique, each
with different optical properties. Moreover, overall collapse ratios as large as
about 50,000 times have been realized, and continuous holes as small as 25 nm
in diameter have been demonstrated, earning an entry in the Guinness Book
of Records in 1999 for the World’s Longest Holes [1.5].

A very important issue is the comparison of the PCF stack-and-draw proce-
dure with the vapor deposition methods usually employed for standard optical
fibers. Obviously, it is more difficult that the preforms for conventional optical
fibers become contaminated, since their surface area is smaller. Moreover, the

Figure 1.19: Example of a PCF cross-section, showing the flexibility offered
by the stack-and-draw fabrication process.
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stacking method requires a very careful handling, and the control of air-hole
dimensions, positions, and shapes in PCFs makes the drawing significantly
more complex [1.54]. Finally, it is important to underline that the fabrica-
tion process of PCFs with a hollow core, realized by removing some elements
from the stack center, is much more difficult than that of standard optical
fibers, even if at present fibers with low loss and practical lengths have been
obtained [1.56].

1.5.2 Extrusion fabrication process

Silica–air preforms have also been extruded, enabling the formation of struc-
tures not readily attainable by stacking capillaries [1.1]. The extrusion process
has been recently applied to other glasses, which are not as readily available in
tube form as silica, like compound glasses. These materials, which provide a lot
of interesting properties, like an extended wavelength range for transmission
and higher values of the nonlinear coefficient, can be used to fabricate preforms
through the extrusion process due to their lower softening temperatures, which
make easier the fabrication procedure [1.54].

In this fabrication process a molten glass is forced through a die contain-
ing a suitably designed pattern of holes. Extrusion allows fiber to be drawn
directly from bulk glass, using a fiber-drawing tower, and almost any struc-
ture, crystalline or amorphous, can be produced. It works for many materials,
including chalcogenides, polymers, and compound glasses. However, selective
doping of specified regions, in order to introduce rare earth ions or render the
glass photosensitive, is much more difficult.

Different PCFs produced by the extrusion process have been presented in
literature. In particular, the fabrication of the first non-silica glass PCF by
exploiting this technique has been reported in 2002 by Kiang et al. [1.57]. A
commercial glass, called Schott SF57 glass, has been used, which has a soften-
ing temperature of only 519◦C and a high lead concentration, which causes a
relatively high refractive index of 1.83 at a wavelength of 633 nm and of 1.80 at
1530 nm. This material is interesting since its nonlinear refractive index, that
is 4.1 · 10−19 W2/m at 1060 nm, is more than one order of magnitude larger
than that of pure silica. Another highly nonlinear PCF has been fabricated
with the bismuth-oxide-based glass, which has proved to be an attractive novel
material for nonlinear devices and compact Er3+-doped amplifiers [1.58]. The
fiber fabrication presented in [1.58] consists of three steps. In the first step, the
structured preform of 16 mm outer diameter and the jacket tube are extruded.
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In the second step, the preform is reduced in scale on a fiber-drawing tower to
a cane of about 1.6 mm diameter. In the last step, the cane is inserted within
the jacket tube, and this assembly is drawn down to the final fiber.

Extrusion has been also used to fabricate a highly nonlinear PCFF with
SF6, a commercial glass produced by Schott, which has a refractive index of
1.76 at 1550 nm and a nonlinear index n2 = 2.2 × 1019 m2/W, higher than
that of silica [1.59]. Starting from the preform, fibers of tens of meter lengths
with core diameters in the range 1–10 µm have been drawn [1.59].

Notice that the method proposed in [1.59] can also be applied to other
commercial glasses, including some with higher nonlinearity and slightly lower
intrinsic loss. In particular, a tellurite PCF with an outer diameter of 190 µm
and a core diameter of 7 µm has been realized, as described in [1.60].

Recently, a PCF with the highest value of nonlinearity yet reported for
an optical fiber, that is 1860 (W ·km)−1 at 1550 nm, and improved loss values
has been fabricated by extrusion with a three-step procedure using the Schott
SF57 glass [1.61]. The three-step procedure used for the highly nonlinear PCF
fabrication is shown in Fig. 1.20a, while a schematic of the cross-section of
the extruded PCF is reported in Fig. 1.20b. By applying the same fabrication
approach to other glass materials with nonlinearity higher than that of SF57
glass, it will be possible to fabricate fibers with even higher values of the
effective nonlinearity per unit length [1.56].

(a) (b)

Figure 1.20: (a) Scheme of the fabrication process of the extruded SF57 glass
PCF and (b) schematic of the cross-section of the fiber proposed in [1.56].
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1.5.3 Microstructured polymer optical fibers

Microstructured polymer optical fiber (MPOF) have been also fabricated and
presented for the first time in 2001 [1.62]. The light-guiding mechanism in
MPOFs is the same as in PCFs, since it arises from a pattern of microscopic
air-holes which run all along the fiber length. MPOFs have emerged as a viable
alternative to glass PCFs for specific applications, due to the relatively low
draw temperatures associated with polymers, usually polymethyl methacry-
late (PMMA). A range of different materials and fabrication methods can
be used to make MPOF preforms. In addition to the capillary stacking tech-
nique, traditionally used for glass PCFs, polymer preforms can be made using
techniques such as extrusion, polymerization in a mold, drilling or injection
molding. With such techniques available, it becomes straightforward to obtain
different cross-sections in the preform, with air-holes of arbitrary shapes and
sizes in any desired arrangement [1.63].

The material properties of PMMA provide advantages relative to silica in
the fabrication of PCFs, because the drawing of all these fibers is governed
by the balance between surface tension and viscosity-related forces. While the
viscosity of PMMA and silica are of similar magnitudes at their respective draw
temperatures, PMMA surface tension is an order of magnitude lower than that
of silica. Thus, by lowering the draw temperature, and hence increasing both
the viscosity and the required draw tension, air-hole distortion and collapse
due to surface tension effects can be minimized, allowing fine-scale MPOFs to
be drawn.

The overall MPOF fabrication procedure is presented in [1.64]. After
designing the structure required in the final fiber and taking into account
the expected 30–40% hole collapse during fabrication, the air-hole pattern is
drilled into the primary preform using a computer numerical-controlled mill.
As reported in [1.65], the coated drill bits produce deep holes with minimal
drill wander, while leaving the inside of the holes with a smooth finish, the
latter being of importance in that it minimizes the likelihood of surface rough-
ness induced scattering in the drawn fiber. Air-hole sizes at the preform stage
are typically 1–10 mm in diameter. At the present time, the finest primary
preform structure that can be drilled involves 1 mm holes with 0.1 mm wall
thickness between holes to a depth of 65 mm. The longest preform that can
currently be drilled is 140 mm in length, using 2 mm drills that are 70 mm
long with a hole spacing of 2.5 mm. Note that the air-holes are drilled from
both ends of the preform [1.64].
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Primary preforms can be drawn directly to fiber using a one-stage process,
that is with primary oven only, although the fiber diameter control is generally
poor. The main role of the primary oven is thus to produce either a “stretched”
secondary preform or a microstructured cane which is subsequently sleeved to
form a secondary preform. The alternative employed depends primarily on
the dimensions required for the air-hole structure in the final fiber. For most
MPOF designs, the stretched secondary preform is drawn directly to fiber.
However, some MPOF designs, such as the small-core fibers, require that the
final air-hole sizes be of the order of a micron, or less, and hence the sleeving
technique is used. The final step involves drawing the secondary preform to
fiber [1.64].

In one of the realized fiber presented in [1.63] the photonic crystal cladding
consists of four rings of air-holes in a triangular lattice, embedded in an outer
sleeve. Small deformations are present, such as in the air-hole diameters and
shapes. Moreover, compared to the preform that the fiber was drawn from,
the air-hole structure in the fiber has a slightly reduced d/Λ ratio [1.63].

Casting is another useful technique for fabricating the MPOF preforms,
whose low-cost mass production is an important issue [1.66]. This method of-
fers some advantages with respect to stack-and-draw and drill-machining, since
it is possible to change easily the mold structure in order to make preforms
of different kinds of MPOF, with particular shape, dimension, and disposition
of the air-holes [1.66]. Moreover, the chemical and physical contamination,
which can cause the optical inhomogeneity, can be significantly reduced if
casting is realized in a sealed vessel, thus improving the MPOF scattering loss
performances [1.66].

In order to make preforms by casting, which can be used for both glass
and polymer, chemical precursors, like monomer, initiator, and chain-transfer
agent, are introduced in a mold which mirrors the desired air-hole distribution
in the preform. Then, after the polymer setting in the mold, the solid structure
is completely removed [1.66]. Even if a mold is expensive to design and produce,
it becomes an economic solution for a large production, because it is used to
fabricate many thousands of molded items. The molds used in the process
described in [1.66] are usually made of alloy stainless steel with a smooth and
highly polished surface, and are formed by separate parts, so that they can
be opened and the molded items can be easily removed. The final preform
structure is defined in the mold through the presence of steel wires or rods,
which are usually releasably attached in order to allow an individual removal.
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The first MPOF preform fabrication by casting has been demonstrated in
2001 [1.67], when a fiber with four rings of air-holes organized in a triangular
lattice has been drawn from a preform of 50 mm diameter and 250 mm length.
More recently, casting has been applied to make the preform of a LMA MPOF
[1.68] and to fabricate a PMMA preform with a large diameter, that is 7 cm,
characterized by 88 air-holes in a triangular lattice and an overall length of
40 cm [1.66]. This fiber preform has been made with a mold formed by a
glass tube, 88 metal rods, which define the air-holes, and two Teflon plates,
used to keep fixed the rods. The casted preform 40 cm long has been used to
fabricate more than a hundred kilometer of MPOF. The final fiber, drawn in
a three-stage process, which is necessary due to the large size of the preform,
is highly birefringent. In fact, it is characterized by an elliptical core obtained
by removing three air-holes [1.66].

1.5.4 OmniGuide fibers

A unique cigar-rolling technique has also been reported for a polymer–glass
combination [1.69]. In this technique, a multilayer mirror is effectively rolled
up to form a preform with a hollow core. This structure differs from the others
reported above in several respects. In fact, it uses two solid materials, but in a
configuration that results in an almost exclusively radial variation in refractive
index, as shown in the schematic reported in Fig. 1.21. The radial-only index
variation has intrinsic advantages for forming hollow-core fibers, being the
PBG-based guiding in a hollow core much easier to create, in principle, because
only a single periodicity is involved. On the contrary, the use of two solid
materials limits the choice to those with compatible thermal and thermo-
mechanical properties.

Excellent progress has been demonstrated to date, and a structure with a
bandgap in the 10 µm wavelength band has been produced [1.69]. In this fiber
the hollow core is surrounded by a solid multilayer structure of high-refractive
index contrast, leading to large photonic bandgaps and omnidirectional
reflectivity. In order to achieve high index contrast in the layered portion
of the fiber, a chalcogenide glass with a refractive index of about 2.8, that
is arsenic triselenide As2Se3, has been combined with a high glass-transition
temperature thermoplastic polymer, having a refractive index of about 1.55,
that is polyether sulfone (PES). The same polymer was used as a cladding
material, resulting in fibers composed of about 98% polymer by volume, not
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Figure 1.21: Schematic of the cross-section of a hollow-core cylindrical multi-
layer fiber.

including the hollow core. These fibers, called OmniGuide fibers, thus combine
high optical performance with polymeric processability and mechanical flex-
ibility. A variety of hollow-core fibers have been realized by depositing an
As2Se3 layer, which is 5–10 µm thick, by thermal evaporation onto a 25–50
µm-thick PES film, and the subsequent “rolling” of that coated film into
a hollow multilayer tube, called a fiber preform. This hollow macroscopic
preform was consolidated by heating under vacuum, and clad with a thick
outer layer of PES. The layered preform was then placed in an optical fiber
draw tower, and drawn down into tens or hundreds of meters of fiber having
well-controlled submicrometer layer thicknesses [1.69].

1.6 Photonic crystal fibers in the market

PCFs have always attracted a strong interest among the researchers since
1996. In fact, the microstructure presence in the optical fiber cross-section has
provided enhanced physical performances, which have led to new developments
in different application areas [1.70].

During the last decade the development of PCFs has been strongly driven
by the academia searching for new exciting waveguiding principles, and, at the
same time, by the interest of large companies, such as Lucent Technologies,
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Corning and NTT, which have focused parts of their resources on this new
class of specialty fibers [1.54]. The establishment of start-up companies, like
Crystal Fibres A/S and Blaze Photonics Ltd. (now a part of Crystal Fibres
A/S, Bath, UK), has been the result of the academic activities developed over
the last 7 years [1.54]. These companies have fabricated a lot of new PCF
products for the reasearch market, getting a strong patent portfolio. Due to
the presence of such different players, it is now difficult to predict which kind
of enterprise will eventually dominate the PCF market [1.54].

In the last decade, the research field of PCFs, which was initially a rev-
olutionary discovery, has become a mature technology, with many types of
products with a variety of unique properties fabricated and sold by different
companies all over the world. For example, different hollow-core fibers with the
transmission bandwidth centered at 800, 1060 and 1550 nm are commercialy
available in the market. Moreover, the PCF attenuation has become more and
more close to that of conventional optical fibers, and a high level of fabrica-
tion reproducibility has been reached [1.70]. Even if most of the actual PCF
customers are still university research groups, this situation is likely to change
in the next future.

At the moment, it can be expected that PCFs for higher-power next-
generation fiber lasers and amplifiers, and for supercontinuum generation will
be the first products to reach the “real” market, that is to gain commercial
opportunities also outside the academic world [1.54,1.70]. In fact, even if PCFs
were originally envisioned as a solution for higher data rates in telecommuni-
cations, conventional optical fibers currently in use are so good that PCFs do
not offer an obvious advantage right now.

For the future, the most interesting possibilities for PCFs are related to
fiber-based signal-processing devices with tunable properties, fibers for dis-
persion management, and gas- or liquid-filled fiber-based sensor devices [1.71].
In the meanwhile, an intense research in the PCF field should continue
in both academic research centers and companies, in order to obtain a
further reduction of the losses, in particular for hollow-core fibers, which
can have an important role for future telecommunications, to investigate
alternative materials, and to expand the range of possible PCF designs and
applications.
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Chapter 2

Guiding properties

This Chapter summarizes the results obtained by analyzing the PCF guiding
properties. These can be evaluated starting from a parameter which charac-
terizes the PCF modes, that is the value of the complex propagation constant
γ = α + jk0neff , being α the attenuation constant, neff the effective index and
k0 the wave number in the vacuum.

First of all, results regarding a new kind of PCFs, with a square lattice of
air-holes in a silica matrix, are reported. The influence of the lattice geometric
parameters, that is the hole-to-hole spacing, or pitch, Λ and the ratio d/Λ
between the air-hole diameter d and the pitch, on the effective index neff of
the PCF fundamental mode has been accurately investigated [2.1]. Moreover,
the modal cutoff of square-lattice PCFs has been evaluated by taking into
account the leakage losses, that is the attenuation constant α, according to Eq.
(A.9) of the second-order mode [2.2]. Both these analyses, already presented
in literature for triangular PCFs, have been performed for PCFs with a square
lattice of air-holes.

The same method used for the square-lattice PCFs has been applied to
study the cutoff properties of a new kind of LMA triangular PCFs, called
seven-rod, which have a large silica core obtained by removing the central
air-hole and the ones belonging to the first ring [2.3,2.4]. In fact, it is important
to investigate the trade-off between the effective area and the single-mode
operation regime of seven-rod triangular PCFs, in order to successfully exploit
them in practical applications.

Finally, the guiding, the leakage, and the birefringence properties of modi-
fied honeycomb PCFs with a hollow core, which guide light through the PBG
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effect, are described [2.5–2.7]. Air-guiding in PCFs with this kind of lattice
is interesting as the fiber provides a larger PBG across the air-line, defined
as neff = 1, with respect to that obtained with the triangular lattice. More-
over, the confinement loss of the fundamental and the first higher-order mode
has been calculated for the the modified honeycomb PCFs here designed, in
order to evaluate the wavelength range where the hollow-core fibers, highly
birefringent or not, can be considered effectively single mode.

2.1 Square-lattice PCFs

It has been already underlined in Chapter 1 that PCFs have particular pro-
perties, strictly related to the geometric characteristics of the air-holes in their
cross-section. As a consequence, it is interesting to analyze how a regular air-
hole disposition different from the more common triangular one can affect the
characteristics of the guided mode. Moreover, it is important to understand
in which terms all the results usually obtained for the triangular PCFs can be
applied to fibers with different lattice geometries.

To this aim, a PCF with a square lattice, whose cross-section is shown
in Fig. 2.1a, has been considered. In this fiber, the air-holes are organized
in a square lattice, characterized by the same geometric parameters as the
triangular one, that is Λ and d/Λ. Note that the technological feasibility of

(a) (b)

Figure 2.1: (a) Detail of the square-lattice PCF cross-section. (b) Comparison
of the air-hole positions in the first ring for square (solid line) and triangular
(dashed line) lattices [2.1].
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square-lattice PCFs has been demonstrated, and they can be drawn from
intermediate preforms realized with the standard stack-and-draw fabrication
process [2.8]. Recently, square-lattice fibers have been fabricated and charac-
terized in order to analyze their polarization properties, and a great potential
for high birefringence has been shown [2.9, 2.10].

2.1.1 Guidance

The guiding properties of PCFs with a square lattice of air-holes have been
investigated as a function of the geometric characteristics, that is the hole-to-
hole spacing Λ and the diameter d of the air-hole in the fiber cross-section, as
reported in Fig. 2.1a. All the studied square-lattice PCFs have a silica core,
obtained by introducing a defect, that is by removing an air-hole, in the center
of the fiber transverse section. Fig. 2.1b reports the first ring of air-holes of
a square-lattice PCF and a triangular one with the same Λ and d values,
showing a lower average value of the refractive index around the core in the
triangular PCF. In fact, in this case the first ring comprises six air-holes whose
distance from the core center is equal to Λ, thus resulting in a stronger field
confinement.

The influence of the geometric parameters Λ and d/Λ has been accurately
investigated through the FEM full-vector modal solver [2.11–2.13]. Five values
of the hole-to-hole spacing Λ, that is 1, 1.5, 2, 2.5, and 3 µm, have been chosen,
and d/Λ has been varied in the range 0.5–0.9. In particular, PCFs with five
rings of air-holes in the cross-section have been considered. It is important to
underline that for fibers with low Λ values, which have the highest leakage
losses, the FEM solver with PML as boundary conditions has been used, not
to affect the simulation results, as described in Appendix A.

Figure 2.2 shows the dispersion curve neff(λ) of the square-lattice PCFs
with different d/Λ values and Λ = 1, 2, and 3 µm, respectively, for the wave-
lengths between 1200 and 1600 nm. As expected, for a fixed Λ value, the
effective index decreases in all the considered wavelength range as d/Λ becomes
higher, that is the air-filling fraction of the photonic crystal cladding increases.
Moreover, as reported in Fig. 2.2a, when λ changes from 1200 to 1600 nm, the
neff values become lower, and the slope of the dispersion curve increases with
d/Λ. This is confirmed also in Fig. 2.2b and c for a pitch Λ of 2 and 3 µm,
respectively.

Looking at Fig. 2.3, it is possible to understand how the effective index of
the square-lattice PCF fundamental mode changes as a function of the pitch
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Figure 2.2: The effective index neff versus the wavelength of the square-lattice
PCFs with (a) Λ = 1 µm, (b) Λ = 2 µm, and (c) Λ = 3 µm for different d/Λ
values in the range 0.5–0.9 [2.1].
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Λ for a fixed d/Λ value. In this case d/Λ = 0.9 has been chosen, but results are
almost the same for the other air-hole dimensions considered in the analysis.
Notice that the highest neff values have been obtained for the larger pitch,
that is Λ = 3 µm. Moreover, the effective index decreases with the hole-to-
hole spacing in all the considered wavelength range. In particular, the decrease
of 0.5 µm in the pitch value, from 1.5 to 1 µm, causes the most significant
change in the effective index, which is, for example, 1.358 and 1.287 at 1550
nm, respectively.

In order to make a comparison of the guiding properties of PCFs with
different geometric characteristics, a square-lattice PCF and a triangular one
have been considered with five air-hole rings and the same values of Λ and
d/Λ. A small d/Λ value, that is 0.5, has been chosen for the two fibers, so that
the triangular PCF is single-mode in all the wavelength range considered also
for the largest pitch Λ = 3 µm [2.14, 2.15]. The dispersion curves neff(λ) are
reported in Fig. 2.4a for Λ = 1 µm and Λ = 3 µm. Notice that the fundamental
mode of the square-lattice PCFs has a higher effective index value for both
the considered pitch values. Moreover, the neff difference between square and
triangular PCFs with the same geometric parameters is higher for the smaller
pitch, that is 1 µm.

A further comparison has been made between the square-lattice PCFs and
the triangular ones, taking into account the effective area of the guided mode,
evaluated according to Eq. (A.7). As shown in Fig. 2.4b for d/Λ = 0.5, the

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

1.44

1200 1250 1300 1350 1400 1450 1500 1550 1600

n ef
f

λ (nm)

Λ = 1 µm, square
Λ = 1 µm, triangular
Λ = 3 µm, square
Λ = 3 µm, triangular

2

4

6

8

 10

 12

 14

 16

1200 1250 1300 1350 1400 1450 1500 1550 1600

A
ef

f(µ
m

2 )

λ (nm)

Λ = 1 µm, square
Λ = 1 µm, triangular
Λ = 3 µm, square
Λ = 3 µm, triangular

(a) (b)

Figure 2.4: Comparison of (a) the effective index and (b) the effective area
values for the square-lattice PCFs and the triangular ones with d/Λ = 0.5, for
Λ = 1 and 3 µm [2.1].
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and the triangular one with d/Λ = 0.9 and Λ = 1 µm [2.1].

PCFs with the square lattice have larger effective area for both the pitch values
considered. In particular, there is a quite greater difference between the Aeff

values of the two kinds of PCFs if the pitch is large, that is Λ = 3 µm. The same
behavior has been obtained for different geometric parameter values, that is
Λ = 1 µm and d/Λ = 0.9, as reported in Fig. 2.5. It is important to underline
that the effective area values of the square-lattice PCF are still small, being
lower than 2 µm2 in all the wavelength range considered, even if they are higher
than those of the triangular PCF. As an example, the square-lattice PCF has
an effective area at 1550 nm which is 18% larger than that of the fiber with the
triangular lattice. This difference can be explained by considering the different
air-hole position around the silica core, which is smaller for the triangular
PCFs. Moreover, the square lattice is characterized by a lower air-filling frac-
tion f = (π/4)(d/Λ)2, which is almost 86% of the one for the triangular lattice,
that is, f = (π/2

√
3)(d/Λ)2. As a consequence, the square-lattice PCFs pro-

vide higher values of the average refractive index of the cladding, that is a
lower step index, which results in a lower field confinement.

Finally, notice the tight field confinement, due to the large core diameter,
obtained in both the PCFs with Λ = 3 µm and d/Λ = 0.5, as shown in Fig. 2.6,
and d/Λ = 0.9, as shown in Fig. 2.7, respectively. Since the fundamental
component of the magnetic field is all confined inside the first air-hole ring,
its shape clearly underlines the differences in the position of the air-holes
belonging to the inner ring and, as a consequence, the different geometric
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(a) (b)

Figure 2.6: Fundamental component of the magnetic field at 1550 nm for
(a) the square-lattice PCF and (b) the triangular one with d/Λ = 0.5 and
Λ = 3 µm [2.1].

(a) (b)

Figure 2.7: Fundamental component of the magnetic field at 1550 nm for
(a) the square-lattice PCF and (b) the triangular one with d/Λ = 0.9 and
Λ = 3 µm [2.1].

characteristics of the two lattices, that is the square and the triangular one.
Notice that, due to their field shape, square-lattice PCFs could be useful if
applied as pig-tail fibers of integrated optical devices with a rectangular or a
square transverse section.

2.1.2 Cutoff

As it has been previously shown, square-lattice PCFs present a wider effective
area than triangular ones for fixed d/Λ and Λ values, so they can be of practical
interest as LMA fibers for high-power delivery. In order to successfully use
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square-lattice PCFs for this kind of applications, it is necessary to define their
single-mode operation regime. The modal cutoff of the square-lattice PCFs
with a finite number of air-hole rings has been accurately investigated, in order
to find the boundary between the single-mode and the multi-mode operation
regimes.

It has been already demonstrated that triangular PCFs with a silica core,
which guide light by modified total internal reflection, can be designed to be
endlessly single mode, that is only the fundamental mode can propagate in the
fiber core for all the wavelengths, unlike conventional fibers which exhibit a
cutoff wavelength below which higher-order modes are supported [2.16, 2.17].
A cutoff analysis for PCFs is not trivial as for conventional optical fibers
because all the modes propagating in PCFs with a finite air-hole ring number
are leaky [2.18–2.20]. The single-mode regime has been already successfully
investigated for triangular PCFs [2.14, 2.15, 2.17, 2.21]. In particular, it has
been evaluated that triangular PCFs are endlessly single mode for d/Λ < d∗/Λ
with d∗/Λ � 0.406 has been proposed [2.14, 2.15].

Different approaches have been used in literature to study the single-mode
regime of triangular PCFs, that is the wavelength range where only the first-
order mode is guided, while the higher-order ones are unbound. In particular,
it is necessary to clearly decide at which wavelength λ∗ the second-order mode
is no more guided, that is it becomes a delocalized cladding mode. In order to
find this transition, it is possible to take into account the divergence at long
wavelengths of its effective area [2.22], or its leakage losses, which are related to
the attenuation constant α, the real part of the complex propagation constant
in Eq. (A.2) [2.18,2.20]. In particular, the normalized cutoff wavelength λ∗/Λ
can be evaluated by observing the transition shown by the behavior of α/k0,
k0 being the wave number, versus λ/Λ [2.21]. This can be made evident by
calculating the Q parameter

Q =
d2 log[α/k0]
d2 log(Λ)

, (2.1)

because it exhibits a sharp negative minimum at λ∗/Λ [2.21]. Here, the phase
diagram with single-mode and multi-mode operation for square-lattice PCFs
has been obtained by calculating the Q parameter for different normalized
wavelength λ/Λ and by evaluating its negative minimum for PCFs with d/Λ
in the range 0.45–0.57. The analysis has been developed by fixing the guided-
mode wavelength at 633 nm, as well as at 1550 nm. The hole-to-hole distance Λ
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has been properly selected to obtain the desired normalized wavelength value.
Due to the strong influence of the air-hole ring number on the leakage losses
of PCFs with a finite cross-section [2.18, 2.19], fibers with four, six, and eight
rings have been considered for the modal cutoff analysis. In fact, it has been
already demonstrated that the transition of the Q parameter becomes more
acute and the method more reliable as the ring number increases [2.21]. Finally,
it is important to point out the numerical methods used in this analysis. The
complex propagation constants of the fundamental and the second-order mode,
as well as the field distributions, have been calculated by means of the FEM
full-vector modal solver with anisotropic PML [2.18, 2.20], as described in
Appendix A. The multipole method [2.23,2.24] has been also used to confirm
the simulation results, obtaining a good agreement.

In order to calculate the Q parameter according to Eq. (2.1), the behavior
of α/k0 versus the normalized wavelength λ/Λ for the second-order mode has
been evaluated. As shown in Fig. 2.8a for eight-ring PCFs with different d/Λ
values, α/k0 increases with λ/Λ, that is the confinement of the second-order
mode is lower for smaller pitch Λ. For all the considered d/Λ ratios the curves
show a transition, that is a change in the slope, which becomes sharper as the
air-hole diameter increases with respect to the pitch. Moreover, by varying d/Λ
from 0.45 to 0.57 the transition region moves toward the higher λ/Λ values,
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Figure 2.8: Second-order mode α/k0 versus the normalized wavelength λ/Λ
(a) for 8-ring square-lattice PCFs with d/Λ in the range 0.45–0.57 and (b)
as a function of the air-hole ring number, that is four, six, or eight, for a
square-lattice PCF with d/Λ = 0.57 [2.2].
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as it has been already demonstrated for triangular PCFs [2.21]. In addition,
notice that, when d/Λ = 0.45, it is difficult to identify the transition, which,
on the contrary, is very sharp when d/Λ = 0.57. The same behavior of α/k0

has been obtained for square-lattice PCFs with a lower air-hole ring number,
that is four and six. However, it must be observed that, in these cases, as
shown in Fig. 2.8b, the transition is not so sharp even for a high d/Λ value.

From the previous results, the Q parameter has been calculated through
a finite difference formula and the values obtained for the eight-ring square-
lattice PCFs are reported in Fig. 2.9a. The negative value of the curve min-
imum becomes higher as d/Λ increases, reaching −654 at λ/Λ � 0.532 for
d/Λ = 0.57. As the square-lattice PCF air-filling fraction decreases, the Q
minimum moves toward the lower λ/Λ values and becomes wide and difficult
to identify with high precision. For example, the negative minimum almost
disappears for the PCFs with d/Λ = 0.45, so its curve has not been drawn
in the figure. A similar behavior has been obtained also for the PCFs with
less air-hole rings. Fig. 2.9b, for example, reports data for the PCFs with
d/Λ = 0.57, showing that the Q minimum becomes less negative and moves
toward higher λ/Λ values when the ring number decreases. In particular, for
four-ring fibers the dip is very wide and the most negative value is only −73
at λ/Λ � 0.571, while it is −260 at λ/Λ � 0.541 when the square-lattice PCFs
have six air-hole rings.
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Figure 2.9: Q parameter values versus the normalized wavelength λ/Λ (a)
for 8-ring square-lattice PCFs with d/Λ in the range 0.45–0.57 and (b) as a
function of the air-hole ring number, that is, 4, 6, or 8, for a square-lattice
PCF with d/Λ = 0.57 [2.2].
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In summary, Figs. 2.8 and 2.9 clearly show that, when the leakage behavior
is strong, whatever the reason, for example, low d/Λ or few air-hole rings, it is
difficult to define the transition region and the related cutoff wavelength. On
the contrary, by considering a high number of air-hole rings the slope change
in α/k0 is more evident, the Q curve presents a sharp dip and it is possible
to find reliable values of the normalized cutoff wavelength λ∗/Λ. These values
for the square-lattice PCFs with eight air-hole rings are reported in Fig. 2.10,
which also shows data for four-and six-ring PCFs. Notice that the λ∗/Λ values
have been reported only for the well-defined and sharp minima, that is for
d/Λ ≥ 0.48 for eight-ring PCFs and for d/Λ ≥ 0.50 for four-, and six-ring
PCFs. As expected, results change by increasing the air-hole ring number,
tending to the values of a PCF with an ideal infinite cladding. This suggests
again that the Q parameter method must be applied assuming a high ring
number.

This conclusion is confirmed also by further comments on the results
reported in Fig. 2.10. In fact, it seems that PCFs with four air-hole rings
have a smaller single-mode region, defined by λ/Λ > λ∗/Λ, their cutoff values
being the highest ones. However, this result is in contradiction with the α/k0

values reported in Fig. 2.8b, which are also the highest for all the considered
λ/Λ. Figure 2.8b, in fact, indicates that the second-order mode suffers from
high leakage losses and consequently only the fundamental mode can actu-
ally propagate in a wider single-mode spectral range. In other words, the Q
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Figure 2.10: Normalized cutoff wavelength λ∗/Λ as a function of the d/Λ ratio
for square-lattice PCFs with four, six, and eight air-hole rings [2.2].
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parameter approach fails when a sharp minimum does not occur, as shown in
Fig. 2.9b for the case of four air-hole rings. On the contrary, by considering
eight air-hole rings, results are clearly readable and reliable. It is important
to highlight that the λ∗/Λ evaluated for PCFs with many rings of air-holes
also apply to fibers with few rings, being λ∗/Λ, in any case, an upper limit of
the cutoff wavelength. This means that fibers with a reduced number of rings
present an even larger single-mode region.

In order to give a further confirmation of what stated, the normalized cutoff
wavelength has been evaluated also according to another approach, the method
based on the second-order mode effective area proposed in [2.22]. Simulation
results for the PCFs with d/Λ = 0.52 are shown in Fig. 2.11. Notice that the
λ∗/Λ values, indicated by the crossing of the solid lines with the horizontal
axis, are, respectively, 0.273, 0.302, and 0.308 for the PCFs with four, six,
and eight air-hole rings. This means that λ∗/Λ increases with the air-hole ring
number, that is the PCFs which provide the better field confinement have the
smallest single-mode operation region and not the other way round, as could
be suggested by Fig. 2.10. Moreover, the difference between the normalized
cutoff wavelength values almost vanishes if PCFs with six, and eight rings are
considered. Thus, eight-ring square-lattice PCFs offer the most reliable results
and, in the following, will also be used to compare square and triangular lattice
PCF characteristics.
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for square-lattice PCFs with d/Λ = 0.52 and with four, six, and eight air-hole
rings [2.2].
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A first interesting comparison can be made on the endlessly single-mode
region. For fibers with a triangular lattice of air-holes, a fitting of the cutoff
curve has been evaluated according to the expression [2.21]:

λ∗/Λ � α · (d/Λ − d∗/Λ)γ , (2.2)

where d∗/Λ is the boundary of the endlessly single-mode region, resulting
in d∗/Λ = 0.406, α = 2.80 ± 0.12, and γ = 0.89 ± 0.02 [2.21]. The same
procedure, applied to the λ∗/Λ values of the square-lattice PCFs reported in
Fig. 2.10, provides d∗/Λ � 0.442, α = 4.192 ± 0.246 and γ = 1.001 ± 0.025.
The boundary between the single-mode and the multi-mode operation area is
reported in Fig. 2.12 for square-lattice PCFs and triangular ones. Notice that
the single-mode region for square-lattice PCFs, that is the one above the curve
in Fig. 2.12, is wider for lower d/Λ values, while the difference is significantly
reduced until it disappears as the air-filling fraction increases. Moreover, it
can be noticed that the d∗/Λ value is higher for square-lattice fibers, that is
they can be endlessly single mode in a wider range of the geometric parameter
values with respect to triangular PCFs, and they can be successfully used in
applications which need large-mode area fibers.

As a second part of the cutoff analysis, starting from the single-mode
regime information obtained with the Q parameter approach, the normal-
ized cutoff frequency V ∗ has been evaluated. The V parameter can be easily
calculated in a standard optical fiber, since it depends on the core radius and
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Figure 2.12: Phase diagram for eight air-hole ring PCFs characterized by the
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the core and cladding refractive indices, which are all well defined. The choice
of these parameters for PCFs is not trivial, and several formulations of the
normalized frequency have been proposed in literature [2.15, 2.17, 2.25–2.28],
based either on geometric and physical considerations, or analogies with clas-
sical theory of conventional fibers. In this study two different formulations of
the V parameter are considered. The first one is

V1 =
2π

λ
Λ
√

n2
eff − n2

FSM , (2.3)

which has been recently proposed for triangular PCFs [2.15,2.29]. In Eq. (2.3)
neff and nFSM are the effective indices, respectively, of the fundamental guided
mode and of the fundamental space-filling mode in the air-hole cladding, which
has been evaluated using a freely available software package [2.30]. The choice
of Λ as the effective core radius can be adopted also for the PCFs here studied,
since it is the natural length scale of both the triangular and the square lattices
[2.15,2.29]. The second V parameter definition considered, more similar to the
one used for conventional fibers, is

V2 =
2π

λ
ρ
√

n2
co − n2

FSM , (2.4)

where nco is the refractive index of the silica core at the operation wavelength,
and ρ is the effective core radius. In order to properly adapt the concept of
the V parameter to PCFs, several values for ρ have been proposed in lit-
erature for fibers characterized by a triangular lattice, that is 0.5Λ [2.31],
Λ/

√
3 [2.27,2.28], 0.625Λ [2.25], 0.64Λ [2.26], and Λ [2.17,2.25]. In the present

study the effective core radius for the square-lattice PCFs has been considered
equal to 0.67Λ. This value, different from all the others previously adopted
for triangular PCFs, has been evaluated through the method proposed by
Brechet et al. [2.26]. The technique consists in calculating the refractive index
of the fundamental space-filling mode nFSM and assessing a temporary V
parameter Vt according to Eq. (2.4) with ρ = Λ. Then, using the effective
index of the guided mode neff , the normalized propagation constant βn =
(n2

eff − n2
FSM)/(n2

co − n2
FSM) is determined. Substituting the βn value into the

characteristic equation for the step-index fibers with NA = (n2
co − n2

FSM)1/2,
a new normalized frequency V is obtained. Finally, the effective core radius
is given by the ratio ρ = V/Vt. By plotting ρ versus the normalized air-hole
diameter d/Λ, it can be shown that, in the limit of short wavelengths compared
to the air-hole size, that is d/λ ≥ 2, and for low air-filling fractions, that is
d/Λ ≤ 0.5, the effective core radius tends to a constant value regardless of d/Λ.
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Figure 2.13: Cutoff value V ∗ of the normalized frequency according to the
two definition for square-lattice PCFs with eight rings. Solid lines represent
the mean value of V ∗

1 and V ∗
2 [2.2].

As shown in Fig. 2.13, V ∗
1 and V ∗

2 have been evaluated for the eight air-
hole ring PCFs starting from the normalized cutoff wavelength at the d/Λ
values reported in Fig. 2.10. The mean values of V ∗

1 and V ∗
2 , respectively 2.67

and 2.46, are also reported as a solid line in Fig. 2.13 and have been assumed
as reference values like 2.405 for a standard fiber. Figure 2.14a and b show
the V number versus the normalized wavelength calculated according to Eqs.
(2.3) and (2.4), and the corresponding V ∗ mean value as a horizontal solid
line. Of course the crossings between the V ∗ line and the V number curves
for the two formulations give again the λ∗/Λ behavior versus d/Λ, that is the
single-mode–multi-mode phase diagram of Fig. 2.10.

Finally, it is important to notice that the value of V ∗
1 here evaluated for the

square-lattice PCFs is lower than π, the value for the triangular PCFs [2.15],
which has been obtained with the same V number expression and by looking at
the second-order mode field distribution on the fiber cross-section [2.15,2.29].
In particular, it has been shown that in triangular PCFs the second-order mode
effective transverse wavelength, related to the dimension of the defect region
where the mode fits in, is λ∗

⊥ � 2Λ at the cutoff condition. As a consequence,

the normalized cutoff frequency becomes V ∗
1 =

2π

λ∗
⊥

Λ � π [2.15]. In order

to extend the same approach to the square-lattice PCFs, the magnetic field
components shown in Fig. 2.15 have to be taken into account. It is important
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Figure 2.14: (a) V1 and (b) V2 behavior versus the normalized wavelength λ/Λ
for square-lattice PCFs with d/Λ between 0.43 and 0.57. A solid horizontal
line is drawn at the fixed value V ∗

1 and V ∗
2 , respectively [2.2].

to underline that the field shape of the second-order mode in these PCFs is
strongly influenced by the fourfold symmetry which characterizes the square
lattice, in particular by the position of the air-holes belonging to the first ring.
As a consequence, different λ∗

⊥ values can be obtained if the second-order
mode field amplitude is considered along the horizontal, or vertical, direction,
or along the 45◦ one. The two situations are depicted in Fig. 2.16a and b. In
the first case, the field shape is the same of the one reported for the triangular
PCFs [2.15], so λ∗

⊥ � 2Λ and V ∗
1 � π. On the contrary, if the 45◦ direction is

considered, the separation between the two first null values of the second-order
mode field amplitude increases, as shown in Fig. 2.16b, since the two opposite
air-holes belonging to the first ring are more distant. Thus λ∗

⊥ is higher, that
is 2

√
2Λ, and consequently V ∗

1 � π√
2
. It is interesting to point out that the

V ∗
1 value calculated in the present analysis, that is 2.67, is almost equal to the

mean value between π and
π√
2
, that is 2.68. The corresponding λ∗

⊥ � 2.34Λ

is obtained by the mean value of the inverse of 2Λ and 2
√

2Λ. In conclusion,
it is not possible to simply extend the derivation of V ∗

1 previously proposed
for triangular PCFs to the case of square-lattice PCFs, since a unique value
of λ∗

⊥ can not be easily found.
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(a) (b)

(c) (d)

Figure 2.15: (a) Hx, (b) Hy, (c) Hz, and (d) intensity distribution of the
second-order guided mode at λ/Λ � 0.127 for a four-ring square-lattice PCF
with d/Λ = 0.57 [2.2].
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Figure 2.16: Section of the square-lattice PCF cross-section (solid line) and
of the Hx field component (dotted line) (a) along the x-axis and (b) along the
45◦ direction [2.2].
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2.2 Cutoff of large-mode area triangular PCFs

The Q parameter method previously described has been applied also to study
the cutoff properties of a new LMA triangular PCF, called seven-rod core,
obtained by removing the central air-hole and the first six surrounding ones
in the fiber transverse section, as shown in Fig. 2.17b. In fact, it is important
to investigate the trade-off between effective area and single-mode operation
regime in LMA fibers, in order to successfully use them for different appli-
cations. In particular, LMA fibers, which can effectively support high opti-
cal intensities limiting the impact of nonlinear effects, are required for the
generation and the delivery of high-power optical beams for a wide range of
applications. For such applications another desirable feature is the single-mode
operation over the wavelength range of interest.

Using the conventional optical fiber technology, a large modal area can be
achieved either by reducing the numerical aperture, that is by lowering the
percentage of doping material in the core region, or by increasing the core
dimension. Better results in LMA fiber design can be reached by exploiting
PCFs. In particular, by considering triangular PCFs, it is possible to signifi-
cantly increase the effective area by narrowing the air-holes for a fixed Λ, or by
enlarging the pitch for a fixed d/Λ value. Moreover, the endlessly single-mode
property can provide the single-mode operation [2.32]. However, an upper limit
on the guided-mode area exists, given by the value of the losses. In fact, the air-
filling fraction decrease can cause an increase of the leakage losses [2.18,2.19],

(a) (b)

Figure 2.17: (a) One-rod and (b) seven-rod core triangular PCF cross-section
[2.3].
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while, as Λ becomes larger, there is a greater susceptibility to scattering losses
induced by microbending and macrobending [2.33].

Another LMA PCF design based on the triangular lattice has been pro-
posed in [2.33,2.34]. The triangular core region of these fibers, called three-rod
core triangular PCFs, has been obtained by removing three air-holes in the cen-
ter of the fiber cross-section. Three-rod core PCFs can provide an enhancement
of the guided-mode area of about 30% and a higher robustness when scaled
to a larger pitch [2.33]. As a drawback of the larger silica core dimension, the
ESM region of these PCFs is smaller than that of the traditional triangular
fibers, being limited by d/Λ < 0.25. Moreover, the triangular core symmetry
influences the shape of the guided-mode field intensity, which deviates from
the standard gaussian-like one.

In order to overcome these problems, a new triangular PCF can be consid-
ered instead of the traditional one-rod core fiber, reported in Fig. 2.17a. It is
characterized by a triangular lattice and a silica core formed by removing seven
central air-holes, as shown in Fig. 2.17b, so it will be referred as seven-rod core
PCF in the following. By removing the air-holes belonging to the first ring, a
wider silica region has been obtained, so seven-rod core PCFs present a larger
effective area for fixed d/Λ and Λ values, compared to one-rod core fibers. The
structure here studied has been chosen so that it can be readily fabricated. In
fact, the proposed geometry is feasible using the well-known stack-and-draw
technique without any additional difficulty.

Since the core dimension has a strong influence on the confinement of all
the PCF-guided modes and, as a consequence, on the single-mode regime of
triangular fibers, it is necessary to accurately define the single-mode opera-
tion regime of these LMA triangular PCFs, in order to successfully use them
for practical applications. To this aim, a detailed analysis of the seven-rod
core PCF cutoff properties has been carried out with the method previously
described, that is the Q parameter method, based on the leaky nature of the
second-order mode. In this case the negative minima of the Q parameter have
been evaluated for PCFs with d/Λ in the range 0.08–0.32. 10 air-hole ring
one-rod core triangular PCFs have been already used for the modal cutoff
analysis [2.21]. In the present study seven-rod core PCFs with nine rings have
been considered. In Fig. 2.18a, b, and c the second-order mode magnetic field
transverse components distribution at λ/Λ � 0.369 is reported for a LMA
PCF with d/Λ = 0.2. At this normalized wavelength the first higher-order
mode results confined in the fiber silica core. This is confirmed by the second-
order mode intensity distribution, shown in Fig. 2.18d.
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(a) (b)

(c) (d)

Figure 2.18: (a) Hx, (b) Hy, (c) Hz, and (d) field intensity distribution of the
second-order guided mode at λ = 1550 nm for the seven-rod core PCF with
d/Λ = 0.2 and Λ = 4.2 µm [2.3].

The behavior of α/k0 versus the normalized wavelength λ/Λ for the second-
order mode, which has been calculated for seven-rod core PCFs with different
d/Λ values, is shown in Fig. 2.19a. Conclusions analogous to those reported
in Section 2.1.2 for square-lattice PCFs can be drawn about the influence of
the PCF geometric parameters, that is the pitch Λ and the air-filling fraction
d/Λ, on the α/k0 curves for seven-rod core triangular fibers. The Q parameter
has been then evaluated through a finite difference formula, and the values
obtained are reported in Fig. 2.19b. Notice that the negative curve mini-
mum becomes higher when d/Λ increases, reaching −270 at λ/Λ � 1.19 for
d/Λ = 0.32. On the contrary, when the PCF air-filling fraction decreases, the
Q minimum shifts toward the lower λ/Λ values, becoming wide and difficult
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Figure 2.19: (a) Second-order mode α/k0 and (b) Q parameter values as a
function of the normalized wavelength λ/Λ for nine-ring seven-rod core trian-
gular PCFs with d/Λ in the range 0.08–0.32 [2.3].

to identify with high precision. For example, the negative minimum is about
−23.5 at λ/Λ � 0.2 for the PCFs with d/Λ = 0.08.

A second approach has been applied to confirm the results obtained with
the Q method. In fact, the limit of the single-mode region can be determined by
comparing the effective index neff = β/k0 of the second-order mode and that
of the fundamental space-filling mode nFSM for a fixed d/Λ value [2.33, 2.34].
The first higher-order mode at a certain wavelength λ is no longer guided if its
neff is lower than the nFSM at the same λ. As a consequence, the normalized
cutoff wavelength λ∗/Λ is obtained applying the condition neff = nFSM.

The second-order mode effective index and the nFSM have been reported
as a function of the normalized wavelength λ/Λ in Fig. 2.20a for the seven-rod
core triangular PCFs with d/Λ = 0.2 and d/Λ = 0.28. Notice that the value of
the normalized cutoff wavelength, evaluated by considering the crossing of the
neff and nFSM curves, becomes higher as the air-filling fraction of the photonic
crystal cladding increases, being 0.97 and 0.63 for d/Λ equal to 0.28 and 0.2,
respectively.

The λ∗/Λ values calculated with both the previous methods for seven-rod
core triangular PCFs with nine air-hole rings and d/Λ in the range 0.08–
0.32 are reported in Fig. 2.20b. Notice that the results obtained are in good
agreement, even if the Q parameter method is less precise for the PCFs with
the lower air-filling fraction, being the evaluated minima wider and less deep
for d/Λ ≤ 0.12.
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Figure 2.20: (a) Second-order mode neff and nFSM versus the normalized wave-
length λ/Λ for nine-ring seven-rod core triangular PCFs with d/Λ equal to 0.2
and 0.28. (b) Normalized cutoff wavelength λ/Λ as a function of the d/Λ ratio
for seven-rod core triangular PCFs, obtained with the Q parameter approach
and the nFSM method [2.3].

An interesting comparison can be made on the ESM region of triangular
PCFs with core defect regions of different dimension, obtained by removing
one or seven air-holes in the cross-section center. The fitting reported in Eq.
(2.2) has been applied to the λ∗/Λ values of the seven-rod core PCFs obtained
with the Q method and reported in Fig. 2.20b, providing d∗/Λ � 0.035, α =
4.432 ± 0.067 and γ = 1.045 ± 0.01. The boundary between the single-mode
and the multi-mode operation area for small- and large-core triangular PCFs
is reported in Fig. 2.21. Notice that the single-mode region for seven-rod core
PCFs, that is the one above the continuous line, is significantly smaller than
that of one-rod core fibers for lower d/Λ values, while the difference between
the two cutoff curves is reduced as the air-filling fraction increases. Moreover,
it is important to underline that seven-rod core PCFs are characterized by a
lower d∗/Λ value, that is they can be ESM in a smaller range of the geometric
parameter values with respect to one-rod core triangular fibers. In particular,
the LMA fibers here proposed are endlessly single-mode only for d/Λ < 0.035.

In order to give a complete description of the seven-rod core triangular
PCF cutoff properties, the normalized cutoff frequency V ∗ has been evalu-
ated, starting from the single-mode regime information obtained with the two
previous approaches. The formulation of the V parameter in Eq. (2.4) has been
considered. Notice that the effective core radius for seven-rod core triangular
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Figure 2.22: (a) Cutoff value V ∗ of the normalized frequency for seven-rod
core triangular PCFs with nine rings. (b) V behavior versus the normalized
wavelength λ/Λ for seven-rod core triangular PCFs with d/Λ between 0.08 and
0.32. The solid line represents the mean value of V ∗ in both the figures [2.3].

PCFs, evaluated through the method proposed by Brechet et al. [2.26] pre-
viously described, has been considered equal to 1.48Λ. As shown in Fig.
2.22a, V ∗ has been evaluated for the nine air-hole ring seven-rod core trian-
gular PCFs, starting from the normalized cutoff wavelength at the d/Λ values
reported in Fig. 2.20b. The mean value of V ∗, that is 2.416, is also shown as a
solid line in Fig. 2.22a. Moreover, it is reported also as a horizontal solid line
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in Fig. 2.22b, where the V parameter values, evaluated according to Eq. (2.4),
are shown versus the normalized wavelength.

Since it has been demonstrated a strong correlation between the achievable
guided-mode effective area and the single-mode regime, it becomes challenging
to fulfill simultaneously all the requirements to design LMA seven-rod core
triangular PCFs useful for practical applications. However, it is possible to
find a compromise between the achievable effective area and the number of
modes that PCFs guide over the wavelength range of interest. To this aim,
the effective area Aeff of the fundamental guided mode of LMA PCFs has
been calculated, according to Eq. (A.7). For example, the Aeff values obtained
for seven-rod core PCFs with Λ = 5.8 µm, and nine air-hole rings are shown
in Fig. 2.23 in the wavelength range 1000–2000 nm, as well as the boundary
between the single-mode and the multi-mode region previously evaluated. In
particular, it is possible to obtain an effective area at 1550 nm of about 320
and 268 µm2, respectively, by choosing d/Λ equal to 0.08 and 0.1, while still
keeping the seven-rod core PCFs in the single-mode operation regime. Notice
that, in order to reach similar Aeff values with one-rod core triangular PCFs
with the same air-filling fraction, it is necessary to consider larger pitch, that
is between 8 and 10 µm [2.32]. Moreover, it is important to underline that,
unlike conventional triangular PCFs, nine air-hole rings are enough to prevent
the LMA PCF guided-mode from being leaky, even for these low d/Λ and Λ

Figure 2.23: The effective area Aeff in µm2 as a function of the air-filling
fraction d/Λ and the wavelength λ for seven-rod core triangular PCFs with
Λ = 5.8 µm, and nine air-hole rings [2.3].
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(a) (b)

Figure 2.24: Magnetic field fundamental component at λ/Λ = 0.267 of (a)
seven-rod and (b) one-rod core triangular PCFs with d/Λ = 0.1 [2.3].

values. In fact, the fundamental mode of the seven-rod core triangular PCF
with d/Λ = 0.1 and Λ = 5.8 µm is completely confined in the silica core, as
shown in Fig. 2.24a. On the contrary, if a one-rod core triangular PCF with the
same geometric parameters and air-hole ring number, that is 10, is considered,
the guided mode at 1550 nm is leaky, as it is shown in Fig. 2.24b. The small
core dimension and the low air-filling fraction do not provide the necessary
field confinement.

Finally, a further solution with an enlarged core region for a fixed d/Λ
and Λ has been adopted, which should give a larger mode size then one-
rod core triangular PCFs, without significantly increasing the guided-mode
leakage losses. In particular, triangular PCFs with a silica core larger than
that of one-rod core fibers, but smaller than that of seven-rod core ones have
been considered. In fact, as represented in Fig. 2.25a, the diameter of the air-
holes belonging to the first ring is d1 = 0.5d in the studied PCFs, while the
air-hole ring number is still 10. Preliminary results of the cutoff analysis for
these LMA triangular PCFs have been obtained and they are here reported.
Looking at the magnetic field of the fundamental mode at 1550 nm guided
by this kind of PCFs, shown in Fig. 2.25b, it is possible to notice a higher
confinement with respect to one-rod core PCFs, even if the behavior of the
guided mode is still leaky. Moreover, α/k0 curves for the second-order mode,
evaluated as previously described for d/Λ in the range 0.2–0.4 and reported
in Fig. 2.26, do not present a net transition which describes the boundary
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(a) (b)

Figure 2.25: (a) cross-section of the triangular PCF with d1 = 0.5d. (b) Mag-
netic field fundamental component at λ/Λ = 0.267 of the triangular PCF with
d/Λ = 0.1 and d1 = 0.5d [2.3].
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Figure 2.26: Second-order mode α/k0 as a function of the normalized wave-
length λ/Λ for triangular PCFs with d1 = 0.5d for d/Λ between 0.2 and
0.4 [2.3].

between the single-mode and the multi-mode region, differently from those
reported in Fig. 2.19a for seven-rod core PCFs. As a consequence, more than
10 air-hole rings should be considered in order to successfully analyze the cutoff
properties of these PCFs.
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2.3 Hollow-core-modified honeycomb PCFs

While all the previous results regard the guiding properties of PCFs with a
silica core, which guide light for TIR, here the analysis of the dispersion, the
leakage, and the birefringence properties of hollow-core fibers which exploit the
PBG effect, called photonic bandgap fibers (PBGFs), is reported. In particular,
air-guiding has been studied in hollow-core PBGFs with a modified honeycomb
air-hole lattice. Moreover, the influence of the hollow-core dimension, as well
as of the cladding geometric parameters on the confinement loss and the single-
mode behavior of the fibers has been investigated.

2.3.1 Guidance and leakage

The guiding properties of the hollow-core PCFs are mainly influenced by the
wideness of the PBG crossed by the air-line. In particular, in a narrow PBG
the light guidance is possible in a restricted wavelength range, thus causing
high confinement loss. Different air-hole arrangements have been recently ana-
lyzed, in order to find an air-hole lattice with a wider PBG across the air-line.
Among the different air-hole arrangements, PCFs with a triangular lattice
have been usually employed for air-guiding [2.35, 2.36]. Unfortunately, in this
case the PBG crossed by the air-line is quite narrow. Improvements have been
reached by considering a triangular lattice with a high air-filling fraction, that
is with large air-holes. This choice provides a wide PBG and, consequently,
a better air guidance. Air-guiding in PCFs with honeycomb lattice has been
also numerically demonstrated [2.37] and the leakage losses have been calcu-
lated [2.38, 2.39].

In the present analysis hollow-core PCFs with a modified honeycomb lat-
tice, which has been proposed in [2.40], have been considered. In fact, it has
been demonstrated that a wide bandgap crossed by the air-line can be obtained
with this lattice, by properly choosing the geometric parameter values. All
these aspects have been investigated in [2.40]. Figure 2.27 shows the unit cell
of the modified honeycomb lattice. With respect to the original honeycomb
geometry, shown on the left of the same figure, with hole-to-hole spacing Λ
and air-hole diameter d, an extra air-hole with diameter dc is added in the
center of each cell. Notice that, when dc = 0, the lattice degenerates into the
basic honeycomb structure, whereas, when dc = d, the lattice corresponds to



80 Chapter 2. Guiding properties

Figure 2.27: (Left) Honeycomb unit cell. (Right) Modified honeycomb unit
cell. Grey regions represent silica [2.7].
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Figure 2.28: Photonic bandgap edges for d/Λ = 0.6 (solid line) and d/Λ = 0.64
(dotted line) [2.7].

the triangular one. The air-filling fraction of the modified honeycomb lattice
is given by

f =
π

3
√

3

[(
d

Λ

)2

+
1
2

(
dc

Λ

)2
]

. (2.5)

Moreover, the extra air-hole provides an additional degree of freedom in tailor-
ing the PBG. Two different d/Λ values have been chosen for the cladding, that
is 0.6 and 0.64, while keeping fixed both dc/Λ = 1.32 and Λ = 1.62 µm. The
PBG edges calculated for these d/Λ values are reported in Fig. 2.28. Notice
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that, when d/Λ = 0.6, which corresponds to an air-filling fraction f = 74.4%,
the air-line crosses the PBG from λ = 1333 to 1663 nm, that is in a wavelength
range twice wider than that of a triangular lattice with the same air-filling
fraction [2.41]. By increasing the air-filling fraction up to d/Λ = 0.64, the
bandgap slightly enlarges, while shifting toward shorter wavelengths, so that
the crossing with the air-line occurs at λ = 1237 and 1603 nm.

The hollow core of the PBGFs studied in the present analysis has been
obtained by removing the silica inside a circle of radius R, as shown in Fig.
2.29. Four different fibers, A, B, C, and D, have been analyzed. In particular,
fibers A and B, which have both a cladding with d/Λ = 0.6, are characterized
by R = 2Λ and R = 3Λ, respectively. Fibers C and D have the same hollow-
core dimension of fibers A and B, respectively, but a different d/Λ value, that
is 0.64. The refractive indices nSi = 1.45 and nair = 1 have been assumed for
the silica and air refractive index, respectively, and the chromatic dispersion
of the silica has been taken into account by calculating the refractive index
through the Sellmeier equation [2.42].

Figure 2.30 shows the dispersion curves of the fundamental and the higher-
order modes of the four fibers here considered. All the dispersion curves, which
are inside the bandgap for a wide wavelength range, are always under the
air-line, defined by neff = 1, as required for the air-guiding. Notice that all

Figure 2.29: PBGF cross-section with the hollow-core radius R. R = 2Λ for
fiber A and C, while R = 3Λ for fiber B and D [2.7].
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Figure 2.30: Dispersion curves of the fundamental and the higher-order modes
of the PBGFs (a) A, (b) C, (c) B, and (d) D, with (left column) d/Λ = 0.6 and
(right column) d/Λ = 0.64 when the core radius is (top) R = 2Λ and (bottom)
R = 3Λ [2.7].

the fibers are multi-mode. Moreover, the higher-order mode number increases
with d/Λ and with the core dimension. The distribution of the magnetic field
modulus at λ = 1550 nm for the fundamental and the first higher-order mode
of fiber A are reported in Fig. 2.31. It is important to underline that both the
guided modes are mainly confined in the hollow core, even if the confinement
is tighter for the fundamental one, which exhibits a gaussian-like shape.

Due to the finite number of the air-hole rings surrounding the PBGF hollow
core, all the guided modes are actually leaky, so the confinement loss CL is
a crucial parameter to calculate, in order to assess the applicability of the
fibers with modified honeycomb lattice here presented. This loss, related to
the leakage phenomenon, are defined, as usual, according to Eq. (A.9). As it
has been already demonstrated, CL strongly depends on the ring number and
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(a) (b)

Figure 2.31: Magnetic field modulus of (a) the fundamental and (b) the first
higher-order mode of fiber A at λ = 1550 nm [2.7].

on the wavelength [2.43]. In the present study PBGFs with eight unitary cells
around the hollow core have been considered. Figure 2.32 shows the spectral
behavior of the CL for the fundamental and the higher-order modes of the
four fibers. It is possible to notice that all the CL curves exhibit the U-shape
typical of PBGFs. As expected, the higher-order modes present higher CL
with respect to the fundamental one, due to the lower field confinement. It
is important to underline that the CL minimum for the higher-order modes
falls at longer wavelengths with respect to the fundamental mode one. In
fact, as it can be observed from Fig. 2.30, the higher-order modes present a
lower effective index than the fundamental one, thus the crossing of the PBG
center is at a longer wavelength. For the same reason, the CL minima shift
towards shorter wavelengths when d/Λ increases from 0.6 to 0.64. Focusing
on the fundamental mode CL, the minimum becomes lower by increasing
both the core radius R and the air-hole diameter d, that is the d/Λ value
for a fixed pitch. The reduction of the confinement loss due to the larger
core radius is higher when d/Λ = 0.64. For example, with d/Λ = 0.6 the
CL minimum changes from 12 dB/km at 1575 nm for fiber A to 0.9 dB/km
at 1550 nm for fiber B, with a decrease of one order of magnitude. When
d/Λ = 0.64, the difference between the CL minimum for fibers C and D is
more than two orders of magnitude, being 2 · 10−1 dB/km at 1450 nm for
fiber C and 5.5 · 10−3 dB/km at 1425 nm for fiber D. Notice that only the CL
values of the last PBGF are lower than the Rayleigh scattering limit. However,
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Figure 2.32: Confinement loss versus the wavelength of the fundamental and
the higher-order modes of the PBGFs (a) A, (b) C, (c) B, and (d) D, with
(left column) d/Λ = 0.6 and (right column) d/Λ = 0.64 when the core radius
is (top) R = 2Λ and (bottom) R = 3Λ [2.7].

by increasing the number of the air-hole rings surrounding the hollow core, it
is possible to further decrease the CL values of all the proposed fibers, making
them negligible not only at the PBG center, but in a wider wavelength range
[2.43, 2.6].

2.3.2 Birefringence

As already stated, another interesting property of hollow-core PCFs is related
to the phase-index and group-index birefringence, which have been investi-
gated both experimentally [2.44] and numerically [2.45–2.47], as already done
for solid-core PCFs [2.48–2.50]. The high refractive index contrast and the
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great flexibility of the fabrication process of microstructured fibers allow to
obtain a birefringence of at least one order of magnitude higher than that of
standard birefringent ones, such as PANDA and bow tie fibers, which usually
show a modal birefringence of the order of 10−4 [2.46]. These high birefrin-
gence values have been usually obtained with a proper asymmetric central
defect design in both solid and hollow-core PCFs, or by changing the size
and the shape of the air-holes surrounding the fiber silica core along the two
orthogonal axes [2.44, 2.46].

All the hollow-core PBGFs with high birefringence proposed in litera-
ture [2.45,2.47] and realized [2.44] are characterized by an unitary cell with a
high air-filling fraction, which results from the presence of big air-holes sep-
arated by very thin silica bridges, often seat of undesired surface modes. In
addition, it has been demonstrated that asymmetries in the silica ring sur-
rounding the hollow core of PBGFs, where these surface modes are located,
can strongly influence the fiber polarization properties [2.51]. Moreover, the
photonic crystal cladding extension determines the amount of the confinement
loss of the field of the guided modes and, in turn, whether or not they can actu-
ally propagate. Thus, in order to obtain a birefringent PBGF to be used in real
applications, it is mandatory to analyze the losses and the field distribution of
the modes sustained by the fiber, that is to identify proper lattice structures
and hollow-core designs which allow to avoid surface modes, to minimize the
fundamental mode confinement loss and to obtain an effectively single-mode
operation region.

To this aim, new hollow-core geometries have been considered in the modi-
fied honeycomb PBGFs previously described, providing birefringence values up
to 10−3, as well as the absence of surface modes [2.52], an effectively single-
mode behavior in C and L bands, and fundamental mode confinement loss
lower than 1 dB/km in the same wide wavelength range. All the highly bire-
fringent PBGFs here designed are characterized by d/Λ = 0.6, dc/Λ = 1.32
and Λ = 1.62 µm. As shown in Fig. 2.28 in Section 2.3, the PBG obtained
with these geometric parameter values is crossed by the air-line from λ = 1333
to 1663 nm [2.43].

The first considered hollow core, reported in Fig. 2.33, has been obtained
by removing eight lattice unitary cells around the central one in the fiber
cross-section, thus introducing a geometric asymmetry. The modulus of the
fundamental mode magnetic field main component at 1550 nm, that is at
the normalized wavelength λ/Λ � 0.957, is shown in Fig. 2.34 for the two
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Figure 2.33: Cross-section of a highly birefringent PBGF.

(a) (b)

Figure 2.34: Magnetic field modulus of the fundamental mode main compo-
nent, (a) x-polarized and (b) y-polarized, at λ = 1550 nm.

polarizations. It is possible to notice that the fundamental mode is strongly
confined in air, even if there is still some field in the silica regions surrounding
the hollow core.

The dispersion curve for the x and y polarization of the fundamental mode,
which is guided inside the PBG approximately from 1425 to 1750 nm, is rep-
orted in Fig. 2.35a. The phase-index birefringence B = |neff,x − neff,y| has
been calculated starting from the effective index values and it is shown as
a function of the normalized wavelength λ/Λ in Fig. 2.35b. It is important
to underline that the birefringence B is higher than 1 · 10−4 in a wavelength
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Figure 2.35: (a) Dispersion curve of the two polarizations of the fundamental
mode and (b) birefringence as a function of the normalized wavelength.

range of about 300 nm, reaching a maximum of 4 · 10−4 at λ/Λ � 0.895, that
is at 1450 nm, and then decreasing towards a minimum value of 1.14 · 10−4

at λ/Λ � 1.04, that is at 1685 nm. Finally, B increases again to 2.675 · 10−4

at the longest wavelength of the considered range. Notice that the birefringence
obtained with this modified honeycomb PBGF, which is 2.13 · 10−4 at 1550
nm, is similar to that of the conventional polarization maintaining fibers [2.46].
However, the hollow-core fiber proposed presents all the advantages related to
the light propagation in air.

The studied hollow-core birefringent fiber is surface-mode free. However, it
is multi-mode, since higher-order modes coexist with the fundamental one in
the PBG. Looking at the first higher-order mode dispersion curve in Fig. 2.36a,
it is possible to notice that the coupling with the fundamental mode is weak,
being the effective index difference between 2 · 10−3 and 8.6 · 10−3 in the λ/Λ
range between 0.895 and 1.08. In order to evaluate the first higher-order mode
influence on the propagation of the fundamental one, it is useful to calculate
the confinement loss, according to Eq. (A.9) [2.43]. In fact, if the second-order
mode CL values are high enough, only the fundamental mode can propagate
along the fiber. In particular, Fig. 2.36b reports the CL values as a function
of the normalized wavelengths for these two guided modes in the designed
PCF, which is characterized by eleven air-hole rings. As expected, the field
confinement in the hollow core is weaker for the first higher-order mode. In
fact, its CL values are at least one order of magnitude higher than those of the
fundamental one for both the polarizations in all the considered wavelength
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Figure 2.36: (a) Dispersion curve and (b) confinement loss for the two polar-
izations of the fundamental and the higher-order mode as a function of the
normalized wavelength.

range. In particular, the CL minimum is about 1.23 dB/km at 1605 nm and
1.2 dB/km at 1580 nm for the x and y polarization, respectively. As regards
the fundamental mode, its losses present the typical U-shape behavior with
a minimum of 0.17 and 0.09 dB/km at 1575 nm for x and y polarization,
respectively.

Starting from the previous considerations on the coupling efficiency and
the confinement loss of the first higher-order mode, the proposed birefringent
PBGF can be considered effectively single-mode in the wavelength range of
interest. Moreover, it is important to underline that the fundamental mode CL
are negligible, that is lower than the limit of 0.2 dB/km fixed by the Rayleigh
scattering, in a 50 nm wavelength range, between 1550 nm and 1600 nm, for
the x polarization, and in a 100 nm one, centered around 1565 nm, for the
y polarization. In particular, the designed fiber presents a birefringence value
between 1.58 · 10−4 and 2.13 · 10−4 in the 50 nm wavelength range where it is
effectively single mode.

A second kind of hollow-core asymmetry has been introduced in the mod-
ified honeycomb PBGFs by removing the silica inside an ellipse with minor
semiaxis a and major semiaxis b along the x and y direction, respectively.
Results regarding the three fibers shown in Fig. 2.37, called fibers A, B, and
C, are here discussed. In particular, for PBGF A a =

√
3Λ � 2.806 µm and

b = 3Λ � 4.86 µm, while the hollow cores of fibers B and C are slightly
smaller, being a = 2.5 µm and b = 4.5 µm, and a = 2.4 µm and b = 4.4 µm,
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(a) (b) (c)

Figure 2.37: Cross-section of the highly birefringent PBGF (a) A, (b) B, and
(c) C.

respectively. Notice that, differently from the other two fibers, eight air-holes
of diameter d are completely excluded from the hollow core of the PBGF C,
which is the smallest one.

Notice that the distribution of the magnetic field modulus at λ = 1550 nm
for the two polarizations of the fundamental mode, reported in Fig. 2.38 for
all the considered PBGFs, is mainly confined in the hollow core. Differences
in the guided-mode field distribution can be noticed, which are due to the
different hollow-core geometry of the three fibers.

The dispersion curves of the two polarizations of the fundamental and the
first higher-order mode, as well as the PBG edges, are reported in Fig. 2.39 for
the three designed PBGFs. It is important to underline the absence of surface
modes, which, on the contrary, strongly affect the realistic highly birefringent
PBGF previously studied [2.46], thus making difficult to distinguish the fun-
damental mode at some wavelengths. Notice that avoiding the surface-mode
presence prevents also the influence of the small structural features and dis-
torsions of the silica ring surrounding the fiber hollow core on the polarization
behavior of the PBGFs [2.51].

As already stated, a single-mode operation regime for the PBGFs is desir-
able, since the higher-order modes, if excited, can negatively affect the fiber
polarization properties [2.44]. Unfortunately, as reported in Fig. 2.39, all the
modified honeycomb birefringent PBGFs here designed are multi-mode. How-
ever, notice that the coupling between the fundamental and the higher-order
mode is very weak for the proposed PBGFs, being the effective index differ-
ence higher than 0.01, 0.009, and 0.006 for fiber A, B, and C, respectively, in
the considered wavelength range.
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(a) (b) (c)

Figure 2.38: Magnetic field modulus of (top) the x-polarization and (bottom)
the y-polarization of the fundamental mode at λ = 1550 nm for the highly
birefringent PBGF (a) A, (b) B, and (c) C.

The single-mode regime of the modified honeycomb fibers here proposed
have been again investigated by calculating the confinement loss of the fun-
damental and of the higher-order modes. In particular, a PBGF is considered
to be effectively single mode in the wavelength range where the fundamental
mode confinement loss is one order of magnitude lower than the CL minimum
of the first higher-order one. Figure 2.40 shows the spectral behavior of the
CL for the fundamental and the higher-order modes for fibers A, B, and C.
Notice that, as expected, the second-order mode CL is higher than that of
the fundamental one for all the three highly birefringent fibers. Moreover, it
is important to underline that the CL minimum for the higher-order modes
falls at longer wavelengths with respect to the fundamental mode one, which
is about 0.17 and 0.22 dB/km at 1600 nm for both the polarizations of PBGF
A and B, respectively. For fiber C there is a slightly higher difference between
the CL minimum values for the two polarizations, being 0.28 dB/km at 1600
nm and 0.19 dB/km at 1575 nm. According to the previous definition, it has
been demonstrated that fiber A can be considered effectively single-mode from
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Figure 2.39: Dispersion curves for the two polarizations of fundamental and
first higher-order modes of the highly birefringent PBGF (a) A, (b) B, and
(c) C.

1525 to 1660 nm, fiber B between 1535 and 1665 nm, and fiber C from 1550 to
1645 nm, that is in a wavelength range of 135, 130, and 95 nm, respectively.
Moreover, notice that in these wavelength ranges all the PBGFs with elliptical
hollow core present fundamental mode CL almost lower than 1 dB/km, which
becomes almost negligible around the PBG center.

Starting from the previous analysis, it is useful to consider the phase bire-
fringence B, shown in Fig. 2.41 for the three designed PBGFs, only in the
wavelength range where the fibers are effectively single mode. The birefrin-
gence value decreases for all the hollow-core fibers as the wavelength increases,
starting from a maximum value of about 5.8 · 10−4 1525 nm, 1 · 10−3 at 1535
nm and 7.2 · 10−4 at 1550 nm for PBGF A, B, and C, respectively. Notice
that the B values are higher for the fiber with the hollow core of intermediate
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Figure 2.40: Confinement loss for the two polarizations of fundamental and
first higher-order modes of the highly birefringent PBGF (a) A, (b) B, and
(c) C.
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dimension, that is for fiber B, being almost 3 · 10−4 in a wavelength range
of about 120 nm, that is all over the C and L bands. A further decrease of
the hollow-core dimension, as in fiber C, does not provide better birefringence
properties. In fact, simulation results have shown that intermediate birefrin-
gence values with respect to fibers A and B can be obtained with PBGF C,
as well as a smaller effectively single-mode range.

Bibliography

[2.1] A. H. Bouk, A. Cucinotta, F. Poli, and S. Selleri, “Dispersion properties
of square-lattice photonic crystal fibers,” Optics Express, vol. 12,
pp. 941–946, Mar. 2004. Available at: http://www.opticsexpress.org/
abstract.cfm?URI=OPEX-12-5-941

[2.2] F. Poli, M. Foroni, M. Bottacini, M. Fuochi, N. Burani, L. Rosa, A. Cu-
cinotta, and S. Selleri, “Single-mode regime of square-lattice photonic
crystal fibers,” Journal of Optical Society of America A, vol. 22, pp.
1655–1661, Aug. 2005.

[2.3] M. Foroni, F. Poli, L. Rosa, A. Cucinotta, and S. Selleri, “Cut-off prop-
erties of large-mode-area photonic crystal fibers,” in Proc. IEEE/LEOS
Workshop on Fibres and Optical Passive Components WFOPC 2005,
Palermo, Italy, June 22–24, 2005.

[2.4] S. Selleri, A. Cucinotta, M. Foroni, F. Poli, and M. Bottacini, “New
design of single-mode large-mode-area photonic crystal fibers,” in Proc.
International Congress on Optics and Optoelectronics SPIE-COO 2005,
Warsaw, Poland, Aug. 28–Sept. 2, 2005.

[2.5] L. Vincetti, F. Poli, A. Cucinotta, and S. Selleri, “Wide bandgap air-
guiding modified honeycomb photonic crystal fibers,” in Proc. CLEO
Europe 2005, Munich, Germany, June 12–17, 2005.

[2.6] S. Selleri, L. Vincetti, F. Poli, A. Cucinotta, and M. Foroni, “Air-
guiding photonic crystal fibers with modified honeycomb lattice,” in
Proc. IEEE/LEOS Workshop on Fibres and Optical Passive Compo-
nents WFOPC 2005, Palermo, Italy, June 22–24, 2005.



94 Chapter 2. Guiding properties

[2.7] L. Vincetti, M. Maini, F. Poli, A. Cucinotta, and S. Selleri, “Numerical
analysis of hollow core photonic band gap fibers with modified honey-
comb lattice,” Optical and Quantum Electronics, Dec. 2006.

[2.8] P. St. J. Russell, E. Marin, A. Dı́ez, S. Guenneau, and A. B. Movchan,
“Sonic band gaps in PCF preforms: enhancing the interaction of
sound and light,” Optics Express, vol. 11, pp. 2555–2560, Oct. 2003.
Available at: http://www.opticsexpress.org/abstract.cfm?URI=OPEX-
11-20-2555

[2.9] M. G. Franczyk, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. Fer-
rando, “Birefringent photonic crystal fiber with square lattice,” in Light-
guides and their Applications II, J. Wojcik and W. Wojcik, Eds. Proc.
SPIE, 2004, vol. 5576, pp. 25–28.

[2.10] Y. C. Liu and Y. Lai, “Optical birefringence and polarization
dependent loss of square- and rectangular-lattice holey fibers with
elliptical air holes: numerical analysis,” Optics Express, vol. 13,
pp. 225–235, Jan. 2005. Available at: http://www.opticsexpress.
org/abstract.cfm?URI=OPEX-13-1-225

[2.11] F. Poli, A. Cucinotta, M. Fuochi, S. Selleri, and L. Vincetti, “Char-
acterization of microstructured optical fibers for wideband dispersion
compensation,” Journal of Optical Society of America A, vol. 20, pp.
1958–1962, Oct. 2003.

[2.12] A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis
through the finite-element method,” IEEE Photonics Technology Let-
ters, vol. 14, pp. 1530–1532, Nov. 2002.

[2.13] A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, “Ampli-
fication properties of Er3+-doped photonic crystal fibers,” IEEE/OSA
Journal of Lightwave Technology, vol. 21, pp. 782–788, Mar. 2003.

[2.14] B. T. Kuhlmey, R. C. McPhedran, C. M. de Sterke, P. A. Robinson,
G. Renversez, and D. Maystre, “Microstructured optical fibers:
where’s the edge?,” Optics Express, vol. 10, pp. 1285–1290, Nov. 2002.
Available at: http://www.opticsexpress.org/abstract.cfm?URI=OPEX-
10-22-1285



Bibliography 95

[2.15] N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen,
“Modal cutoff and the V parameter in photonic crystal fibers,” Optics
Letters, vol. 28, pp. 1879–1881, Oct. 2003.

[2.16] J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-
silica single-mode optical fiber with photonic crystal cladding,” Optics
Letters, vol. 21, pp. 1547–1549, Oct. 1996.

[2.17] T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode
photonic crystal fiber,” Optics Letters, vol. 22, pp. 961–963, July 1997.

[2.18] D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Sel-
leri, “Leakage properties of photonic crystal fibers,” Optics
Express, vol. 10, pp. 1314–1319, Nov. 2002. Available at:
http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1314

[2.19] B. Kuhlmey, G. Renversez, and D. Maystre, “Chromatic dispersion and
losses of microstructured optical fibers,” Applied Optics, vol. 42, pp.
634–639, Feb. 2003.

[2.20] L. Vincetti, “Confinement losses in honeycomb fibers,” IEEE Photonics
Technology Letters, vol. 16, pp. 2048–2050, Sept. 2004.

[2.21] B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, “Modal cutoff in
microstructured optical fibers,” Optics Letters, vol. 27, pp. 1684–1686,
Oct. 2002.

[2.22] N. A. Mortensen, “Effective area of photonic crystal fiber,”
Optics Express, vol. 10, pp. 341–348, Apr. 2002. Available at:
http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341

[2.23] T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre,
G. Renversez, C. M. de Sterke, and L. Botten, “Multipole method for
microstructured optical fibers I. Formulation,” Journal of Optical Soci-
ety of America B, vol. 19, pp. 2322–2330, Oct. 2002.

[2.24] T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre,
G. Renversez, C. M. de Sterke, and L. Botten, “Multipole method for
microstructured optical fibers II. Implementation and results,” Journal
of Optical Society of America B, vol. 19, pp. 2331–2340, Oct. 2002.



96 Chapter 2. Guiding properties

[2.25] T. A. Birks, D. Mogilevstev, J. C. Knight, P. St. J. Russell, J. Broeng,
P. J. Roberts, J. A. West, D. J. Allan, and J. C. Fajardo, “The analogy
between photonic crystal fibres and step index fibres,” in Proc. Optical
Fiber Communications Conference OFC 1999, Feb. 21–26, 1999, paper
FG4-1.

[2.26] F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of
the characteristics of propagation into photonic crystal fibers, by the
finite element method,” Optical Fiber Technology, vol. 6, pp. 181–191,
Apr. 2000.

[2.27] M. Koshiba, “Full-vector analysis of photonic crystal fibers using the
finite element method,” IEICE Transactions on Electronics, vol. E85-C,
pp. 881–888, Apr. 2002.

[2.28] M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theo-
ries to holey fibers,” Optics Letters, vol. 29, pp. 1739–1741, Aug. 2004.

[2.29] M. D. Nielsen and N. A. Mortensen, “Photonic crystal fiber design based
on the V-parameter,” Optics Express, vol. 11, pp. 2762–2767, Oct. 2003.
Available at: http://www.opticsexpress.org/abstract.cfm?URI=OPEX-
11-21-2762

[2.30] S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-
domain methods for Maxwell’s equations in a planewave basis,”
Optics Express, vol. 8, pp. 173–179, Jan. 2001. Available at:
http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173

[2.31] A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Full-vector analy-
sis of a realistic photonic crystal fiber,” Journal of Optical Society of
America A, vol. 17, pp. 1333–1340, July 2000.

[2.32] J. C. Baggett, T. M. Monro, K. Furusawa, and D. J. Richardson, “Com-
parative study of large-mode holey and conventional fibers,” Optics Let-
ters, vol. 26, pp. 1045–1047, July 2001.

[2.33] N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and
H. Simonsen, “Improved large-mode-area endlessly single-mode pho-
tonic crystal fibers,” Optics Letters, vol. 28, pp. 393–395, Mar. 2003.



Bibliography 97

[2.34] M. Nielsen, N. A. Mortensen, J. Folkenberg, A. Petersson, and
A. Bjarklev, “Improved all-silica endlessly single-mode photonic crystal
fiber,” in Proc. Optical Fiber Communications Conference OFC 2003,
Atlanta, Georgia, USA, Mar. 23–28, 2003.

[2.35] C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West,
N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core
silica/air photonic bandgap fibre,” Nature, vol. 424, pp. 657–659, Aug.
2003.

[2.36] Y. Xu and A. Yariv, “Loss analysis of air-core photonic crystal fibers,”
Optics Letters, vol. 28, pp. 1885–1887, Oct. 2003.

[2.37] M. Yan and P. Shum, “Air guiding with honeycomb photonic bandgap
fiber,” IEEE Photonics Technology Letters, vol. 17, pp. 64–66, Jan. 2005.

[2.38] M. Yan, P. Shum, and J. Hu, “Design of air-guiding honeycomb photonic
bandgap fiber,” Optics Letters, vol. 30, pp. 465–467, Mar. 2005.

[2.39] T. Murao, K. Saitoh, and M. Koshiba, “Design of air-guiding mod-
ified honeycomb photonic band-gap fibers for effectively singlemode
operation,” Optics Express, vol. 14, pp. 2404–2412, Mar. 2006.
Available at: http://www.opticsexpress.org/abstract.cfm?URI=oe-
14-6-2404

[2.40] M. Chen and R. Yu, “Analysis of photonic bandgaps in modified hon-
eycomb structures,” IEEE Photonics Technology Letters, vol. 16, pp.
819–821, Jan. 2004.

[2.41] K. Saitoh and M. Koshiba, “Confinement losses in air-guiding pho-
tonic bandgap fibers,” IEEE Photonics Technology Letters, vol. 15, pp.
236–238, Feb. 2003.

[2.42] G. P. Agrawal, Nonlinear Fiber Optics. New York: Academic, 2001.

[2.43] L. Vincetti, F. Poli, and S. Selleri, “Confinement loss and nonlinearity
analysis of air-guiding modified honeycomb photonic bandgap fibers,”
IEEE Photonics Technology Letters, vol. 18, pp. 508–510, Feb. 2006.

[2.44] X. Chen, M. Li, N. Venkataraman, M. Gallagher, W. Wood,
A. Crowley, J. Carberry, L. Zenteno, and K. W. Koch, “Highly



98 Chapter 2. Guiding properties

birefringent hollow-core photonic bandgap fiber,” Optics Express,
vol. 12, pp. 3888–3893, Aug. 2004. Available at: http://www.
opticsexpress.org/abstract.cfm?URI=oe-12-16-3888

[2.45] K. Saitoh and M. Koshiba, “Photonic bandgap fibers with high bire-
fringence,” IEEE Photonics Technology Letters, vol. 14, pp. 1291–1293,
Sept. 2002.

[2.46] M. S. Alam, K. Saitoh, and M. Koshiba, “High group birefringence in
air-core photonic bandgap fibers,” Optics Letters, vol. 30, pp. 824–826,
Apr. 2005.

[2.47] M. Szpulak, R. Kotynski, T. Nasilowski, W. Urbańczyk, and H. Thien-
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Chapter 3

Dispersion properties

In this chapter results regarding the PCF dispersion properties are reported.
The analyses performed have shown that, by properly changing the geomet-
ric characteristics of the air-holes in the PCF cross-section, the waveguide
contribution to the dispersion parameter can be significantly changed, thus
obtaining unusual positions of the zero-dispersion wavelength, as well as par-
ticular values of the dispersion curve slope. In particular, by manipulating
the air-hole radius or the lattice period of the microstructured cladding, it is
possible to control the zero-dispersion wavelength, which can be tuned over a
very wide range [3.1–3.3], or the dispersion curves, which can be engineered
to be ultraflattened [3.4–3.7].

First of all, it is reported the study of the dispersion properties of triangular
PCFs with a high air-filling fraction, that is with small hole-to-hole spacing and
large air-holes, which can be designed to compensate the anomalous dispersion
and the dispersion slope of single-mode fibers [3.8–3.10]. In particular, the
geometric parameters which characterize these triangular PCFs have been
chosen to optimize the fiber length and the dispersion compensation over a
wide wavelength range.

Then the dispersion properties of PCFs with a square lattice of air-holes
have been investigated for different values of the geometric parameters which
describe the fiber cross-section. In particular, large air-holes and small pitch
have been considered, in order to make a comparison with the dispersion curves
of the triangular PCFs with the same Λ and d/Λ values [3.11]. It has been
demonstrated that also with this air-hole disposition, that is with the square
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lattice, negative values of the dispersion parameter and of the dispersion slope
can been obtained in the wavelength range centered at 1550 nm.

In the second part of the chapter the design of triangular PCFs with com-
pletely different characteristics, that is with flattened dispersion curve and
zero-dispersion wavelength around 1550 nm, which can be exploited for non-
linear applications, is described. The triangular PCF cross-section geometry
around the core has been modified in two different ways, in order to obtain
the desired dispersion properties and a small effective area, that is a high non-
linear coefficient. In the first fiber type the diameter of the air-holes belonging
to the first three rings has been properly changed, that is their dimension
has been decreased or increased [3.12]. On the contrary, in the second PCF
type the central air-hole has been removed and the diameter of three air-holes
belonging to the first ring has been reduced, thus obtaining a silica core with
a triangular shape [3.13, 3.14]. Results have demonstrated that it is possible
to successfully design highly nonlinear triangular PCF with effective area of
few µm2, flattened dispersion curve, and zero-dispersion wavelength in the C
band with both the core configurations here considered.

3.1 PCFs for dispersion compensation

PCFs with a high air-filling fraction have been designed in order to compensate
the anomalous dispersion and the dispersion slope of SMFs. In fact, their chro-
matic dispersion limits the data transmission rate in broadband wavelength
division multiplexing (WDM) systems. In particular, it becomes a critical issue
as soon as the transmission bit-rate increases over 10 Gb/s.

The positive dispersion of installed fibers can be compensated by dispersion
compensating fibers (DCFs) with a large dispersion of opposite sign. For WDM
systems this goal must be achieved over a broad wavelength range around
1550 nm, thus implying, besides large negative dispersion values, a proper
negative dispersion slope.

The present analysis has demonstrated that PCFs can be exploited to this
aim. In fact, their dispersion properties can be modified with high flexibility,
since the large refractive index variation between silica and air permits to
achieve a significant waveguide dispersion over a wide wavelength range. PCFs
with large air-holes have been already proposed in literature for dispersion
compensation, even though their description has been performed through a
simplified model consisting of a silica core in air [3.15]. When the wavelength
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Figure 3.1: Cross-section of a triangular PCF with the air-hole diameter d and
the pitch Λ [3.8].

increases, this approximation gets worse, as demonstrated for a holey fiber
with a small core and large air-holes, analyzed using the FEM solver [3.16].
Notice that a full-vector analysis is necessary to model PCFs with large air-
holes and large index variations and to accurately predict properties, such as
dispersion [3.17].

In this study, the design of triangular PCFs has been optimized by properly
tailoring the air-hole diameter d and the pitch Λ, as shown in Fig. 3.1, in
order to compensate both the positive dispersion and the positive dispersion
slope of single-mode fibers over a wavelength range around 1550 nm. To this
aim, triangular PCFs with large air-holes and a small pitch, that is with a
small core diameter dcore = 2Λ − d = Λ · (2 − d/Λ), have been considered. In
fact, in these conditions the possibility to obtain strong negative dispersion
values has been already demonstrated [3.16]. For all the triangular PCFs here
studied a proper number of air-hole rings has been considered, in order for the
solution to converge toward that of a fiber with an infinite photonic crystal
cladding. This results in a considerable reduction of the leakage losses [3.18].
In particular, through the complex FEM formulation, which allows radiation
field to be evaluated, as described in Appendix A, it has been shown that, by
choosing the ring number between three and nine, leakage losses of fibers with
d/Λ in the range 0.6–0.9 can be reduced under the Rayleigh scattering limit
[3.19, 3.20]. The dispersion parameter D has been derived in the wavelength
range 1200 nm–1600 nm.

The first fibers considered have d/Λ = 0.9 and Λ which varies between 0.6
and 1 µm. Figure 3.2a shows their dispersion parameter D for the wavelengths
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Figure 3.2: Dispersion parameter for PCFs (a) with d/Λ = 0.9 and different
Λ values, and (b) with Λ = 0.8 µm and different d/Λ values [3.8].

between 1200 and 1600 nm. D is always negative if Λ < 1 µm and becomes
positive only for the triangular PCF with Λ = 1 µm when λ < 1300 nm.
The absolute value of the dispersion parameter increases reducing the hole-
to-hole spacing Λ. For the triangular PCF with Λ = 0.6 µm D reaches a
value around −1700 ps/km · nm at 1550 nm, while for conventional DCFs it is
typically −100 ps/km · nm at this wavelength [3.15,3.21]. The dispersion slope
is always negative in the wavelength range considered if Λ ≥ 0.7 µm, while for
the PCF with the smallest pitch, Λ = 0.6 µm, D reaches a minimum at 1475
nm and then the dispersion slope becomes positive.

In order to understand how to optimize the PCF design, the effect of d
variation has been also investigated. For this reason the pitch has been fixed
to Λ = 0.8 µm, that is, a middle value between those previously considered,
and the ratio d/Λ has been varied from 0.9 to 0.6. As shown in Fig. 3.2b, D
is always negative in the wavelength range chosen for all the d/Λ values. As
d/Λ decreases from the initial value of 0.9, the dispersion slope changes and
becomes positive for the PCF with d/Λ = 0.6 if λ > 1525 nm. The minimum
value of D at 1550 nm, around −1000 ps/km · nm, has been obtained with the
largest air-holes, that is, with d/Λ = 0.9.

Results reported so far are summarized in Fig. 3.3, which shows the disper-
sion parameter values at 1550 nm. Notice that the dispersion value increases
significantly with Λ when d/Λ is fixed to 0.9, while it slowly decreases when
the air-holes become larger, as in the case Λ = 0.8 µm. This result suggests
important technological considerations. In fact, proper pitch values, rather
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Figure 3.3: Chromatic dispersion value at 1550 nm for the different triangular
PCFs considered [3.9].

than high air-filling fractions, allow to get fibers with dispersion values slightly
affected by small variations of the air-hole diameter, eventually introduced by
the fabrication process.

The anomalous dispersion of an SMF at 1550 nm is completely compen-
sated by a DCF if

DSMF · LSMF + DDCF · LDCF = 0 , (3.1)

where DSMF, DDCF, LSMF, and LDCF are, respectively, the dispersion para-
meters and the lengths of the single-mode and the dispersion-compensating
fibers. For a given SMF, if the absolute value of DDCF is bigger, the length of
the DCF can be shorter. The triangular PCF with Λ = 0.6 µm and d/Λ = 0.9,
which has the largest value of negative dispersion at 1550 nm, as shown in
Fig. 3.2a, can be about 17 times shorter than a classical DCF. Unfortunately
this fiber has a positive dispersion curve slope in the third window.

In fact, the dispersion slope is very important, being the parameter which
characterizes the dispersion compensation over a wavelength range. In an SMF
the slope of D(λ) at 1550 nm is positive. The two PCFs, with Λ = 0.6 µm and
d/Λ = 0.9 in Fig. 3.2a, and with Λ = 0.8 µm and d/Λ = 0.6 in Fig. 3.2b, have a
positive dispersion slope too, so they are suitable for dispersion compensation
only at one wavelength. In particular, the latter PCF has a lower value of D at
1550 nm, −755 ps/km · nm. All the other PCFs present a negative dispersion
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slope at 1550 nm and can be exploited to compensate the anomalous dispersion
of an SMF over a wide wavelength range.

In order to verify this aspect, the compensation ratio CR has been cal-
culated [3.15]. CR(λ) is the fraction of the SMF dispersion which the DCF
compensates at a wavelength λ, that is,

CR(λ) =
∣∣∣∣
DSMF(λ) · LSMF

DDCF(λ) · LDCF

∣∣∣∣ . (3.2)

The value of CR at 1550 nm is 1, because LSMF and LDCF have been chosen
to perfectly compensate dispersion at this wavelength through Eq. (3.1). By
substituting Eq. (3.1) in Eq. (3.2), CR can be expressed as

CR(λ) =
DSMF(λ)

DSMF
· DDCF

DDCF(λ)
. (3.3)

As an example of a standard SMF, the Corning R© SMF-28TM has been con-
sidered. Its D(λ) values have been calculated on a wavelength range of 100 nm
through

D(λ) ≈ S0

4

[
λ − λ4

0

λ3

]
, (3.4)

considering a zero-dispersion wavelength λ0 of 1311.5 nm and a zero-dispersion
slope S0 of 0.092 ps/km · nm2 [3.22]. CR(λ) evaluated for several triangular
PCFs is shown on a 100 nm wavelength range for d/Λ = 0.9 and different
Λ values in Fig. 3.4a, and for Λ = 0.8 µm and different d/Λ values in
Fig. 3.4b. The best compensation can be obtained with the PCF with d/Λ =
0.9 and Λ = 0.9 µm, because CR is 0.966 at 1500 nm and 1.016 at 1600
nm. In these cases the residual dispersion is, respectively, −0.505 ps/km · nm
and 0.318 ps/km ·nm. This PCF has DDCF = −590 ps/km · nm, so that, from
Eq. (3.1), LDCF can be only 2.94% of LSMF to completely compensate the
anomalous dispersion at 1550 nm.

Considering the slope of the curves in Fig. 3.4a, an even more flattened
CR(λ) over the 100 nm range can be obtained for a triangular PCF with
d/Λ = 0.9 and Λ between 0.9 and 1 µm. The dispersion curves for these fibers
are shown in Fig. 3.5a, while the corresponding CR values for the wavelengths
between 1500 and 1600 nm are reported in Fig. 3.5b. As expected, the opti-
mum pitch value, which provides the best dispersion compensation in the
considered wavelength range, is 0.94 µm. For this PCF, that is the one with
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Figure 3.5: (a) Dispersion parameter and (b) compensation ratio for PCFs
with d/Λ = 0.9 and different Λ in the range between 0.9 and 1 µm.

d/Λ = 0.9 and Λ = 0.94 µm, the dispersion parameter is −456 ps/km · nm at
1550 nm and the residual dispersion is −0.05 ps/km · nm and −0.21 ps/km · nm
at 1500 nm and 1600 nm, respectively.

Moreover, it is important to point out that there is a trade-off between the
DCF length and the wavelength range where the dispersion is well compen-
sated. While the PCF with d/Λ = 0.9 and Λ = 0.6 µm is the best for the first
aspect, the PCF with d/Λ = 0.9 and Λ = 0.9 µm is better for WDM systems.
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Table 3.1: Important parameters for different DCFs [3.8].
DCF LDCF/LSMF CR1500 CR1600

PCF (d/Λ = 0.9, Λ = 0.9 µm) 0.029 0.966 1.016
Standard 0.173 0.927 1.047
Wideband 0.183 0.9985 0.99

The behavior of the latter PCF as a dispersion compensating fiber for an
SMF-28 can be compared with the one of a standard DCF and a wideband
DCF. Typical values of the dispersion and of the dispersion slope at 1550 nm
have been chosen [3.21], such as D1550 = −100 ps/km · nm and S1550 = −0.22
ps/km · nm2 for a standard DCF, and D1550 = −95 ps/km · nm and S1550 =
−0.33 ps/km · nm2 for a wideband DCF. A linear behavior has been supposed
in the wavelength range between 1500 and 1600 nm. In order to evaluate the
efficiency of the different DCFs in a WDM system, the values of LDCF and of
CR at 1500 and 1600 nm have been considered and listed in Table 3.1. The
wideband DCF is the best over a range of 100 nm, but the PCF is considerably
shorter. For example, a typical 100 km long SMF-28 transmission link can be
compensated by 18.3 km of a wideband DCF and by only 3 km of a PCF with
d/Λ = 0.9 and Λ = 0.9 µm.

It is important to underline that the best value of d/Λ and Λ for the
triangular PCF obviously depends on the SMF to be compensated. As an
example, consider the Ritekom G-655 fiber, a nonzero dispersion fiber (NZDF)
with a dispersion parameter of 8.2 ps/km · nm and a dispersion slope of 0.043
ps/km · nm2 at 1550 nm [3.23]. As shown in Fig. 3.6a and b, the triangular
PCF with d/Λ = 0.9 and Λ = 1 µm can be assumed as the best DCF. In
fact, CR is 0.913 at 1500 nm and 1.047 at 1600 nm, resulting in a residual
dispersion of −0.55 ps/km · nm and 0.48 ps/km · nm, respectively. Moreover, to
completely compensate the anomalous dispersion, the length of the triangular
PCF can be 2.8% the length of the NZDF, being DDCF = −293 ps/km · nm.

A second important consequence of the small core diameter of the proposed
PCFs is the increase of the nonlinear coefficient. While this aspect can be
successfully exploited, for example, in Raman amplification, it can be critical
for applications like dispersion compensation. In order to evaluate the fiber
nonlinearity, the effective area Aeff has been accurately calculated according
to Eq. (A.7), since it is inversely related to the nonlinear coefficient. Results
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Figure 3.6: Compensation ratio for PCFs (a) with d/Λ = 0.9 and different
Λ values, and (b) with Λ = 0.8 µm and different d/Λ values compensating
Ritekom G-655 fiber [3.8].
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Figure 3.7: Effective area at 1550 nm for different triangular PCFs with large
air-holes and a small pitch [3.9].

are reported in Fig. 3.7. In conclusion, it is important to highlight that all the
triangular PCFs considered in the present analysis have a small core diameter,
about 1 µm, which can results in large coupling losses with standard fibers
[3.24,3.25]. However, taper holey fiber structures used as a spot-size converter
have been recently demonstrated [3.26], providing only 0.3 dB coupling loss
with a standard single-mode fiber. For the PCFs with Λ fixed to 0.8 µm, dcore
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becomes smaller when d/Λ increases and the Aeff has the same behaviour,
being about 8 µm2 when d/Λ = 0.6, and 1.8 µm2 when d/Λ = 0.9. Regarding
the PCFs with d/Λ fixed to 0.9, it is interesting to notice that dcore increases
with Λ, while Aeff becomes smaller. In fact, for Λ = 1 µm the effective area has
the minimum value, that is 1.6 µm2. On the contrary, for Λ = 0.6 µm, which
corresponds to the smallest core diameter, about 0.66 µm, the effective area is
4.2 µm2. This behavior can be explained considering that, when the PCF core
diameter becomes too small, the silica region inside the first ring, in spite of
the large surrounding air-holes, is unable to confine the field, which expands
itself on a broader area. This effect is confirmed by looking at the fundamental
component of the magnetic field at 1550 nm, shown in Fig. 3.8a and b for two
PCFs with Λ = 0.8 µm, with d/Λ = 0.6 and d/Λ = 0.9, respectively, and in
Fig. 3.8c and d for two PCFs with d/Λ = 0.9, with Λ = 0.6 µm and Λ = 1 µm,
respectively.

(a) (b)

(c) (d)

Figure 3.8: Magnetic field fundamental component at 1550 nm for the two
PCFs with Λ = 0.8 µm and (a) d/Λ = 0.6, and (b) d/Λ = 0.9, and for the two
PCFs with d/Λ = 0.9 and (c) Λ = 0.6 µm, and (d) Λ = 1 µm.
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Figure 3.9: Leakage losses at 1550 nm for different triangular PCFs with large
air-holes and a small pitch [3.9].

Last considerations suggest to analyze the losses of these triangular PCFs
in order to check the amount of leakage, which can represent a problem for their
successful application. Looking at the values evaluated at 1550 nm, reported
in Fig. 3.9 for the same fibers, it is possible to notice that, fixed d/Λ to 0.9,
the leakage losses decrease as soon as the pitch Λ varies from 0.6 to 1 µm.
In fact, these losses are about 14 dB/m when Λ = 0.6 µm, while they can
be neglected if Λ ≥ 0.8 µm, being lower than 10−4 dB/m, that is under the
Rayleigh scattering limit. Moreover, when Λ is fixed to 0.8 µm, the leakage
losses decrease as the air-holes become larger, that is for increasing d/Λ values.
In fact, the guided mode is more confined in the PCFs, due to the higher air-
filling fraction [3.19]. Finally, notice that, by increasing the number of air-hole
rings in the fiber cross-section, leakage losses can be neglected, being under
the Rayleigh limit, also for different triangular PCFs. For example, nine rings
are enough for d/Λ > 0.8 and Λ ≥ 0.8 µm.

3.2 Dispersion of square-lattice PCFs

With the previous thorough analysis it has been shown that triangular PCFs
with a silica core can be successfully used to compensate the positive dispersion
parameter and the dispersion slope of a SMF [3.8]. In order to investigate the
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Figure 3.10: Dispersion curves of the square-lattice PCFs with (a) Λ = 1 µm,
(b) Λ = 2 µm and (c) Λ = 3 µm for different d/Λ values in the range 0.5–0.9
[3.11].

possibility to design square-lattice fibers, shown in Fig. 2.1a, with the same
dispersion characteristics, the dispersion curves of these PCFs with hole-to-
hole spacing in the range 1–3 µm, and d/Λ between 0.5 and 0.9, previously
described in Chapter 2, have been accurately calculated.

Figure 3.10 shows the dispersion curves D(λ) of the square-lattice PCFs
with different d/Λ values and Λ = 1, 2 and 3 µm, which have been derived by
applying the simple finite difference formula of Eq. (A.4) to the effective index
values reported in Fig. 2.2 for the wavelengths between 1200 and 1600 nm.
Looking at Fig. 3.10a, notice that all the square-lattice PCFs with the smallest
pitch, that is 1 µm, have negative dispersion parameter in the C band, around
1550 nm, since the core dimension is very small and the waveguide disper-
sion dominates on the material one [3.6,3.27]. The minimum dispersion value
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at 1550 nm, −277 ps/km ·nm, has been obtained with the PCF character-
ized by Λ = 1 µm and d/Λ = 0.6. It is important to underline that the D
values increase with the air-hole diameter, so only the PCFs with d/Λ ≤ 0.7,
that is with small air-holes, have negative dispersion parameter in all the
wavelength range here considered. The fiber with the smallest air-holes, that
is the one with d/Λ = 0.5, has a dispersion curve with a minimum, about
−248 ps/km · nm, around 1550 nm and a positive dispersion slope for the
longer wavelengths. The other square-lattice PCFs, with d/Λ ≥ 0.6, have neg-
ative dispersion slope, so they can be used as dispersion compensating fibers.
As it has been already demonstrated for the triangular PCFs [3.6, 3.27], the
influence of the waveguide dispersion decreases when the pitch becomes larger.
This is confirmed also in Fig. 3.10b and c, which show results for Λ equal to 2
and 3 µm, respectively. Notice that the dispersion parameter of all these PCFs
is positive, independently from the air-hole dimension, that is from the d/Λ
value. It is interesting to underline that, as the pitch increases for a fixed d/Λ
value, the dispersion slope of the curves becomes more positive. Moreover, a
change of d/Λ causes a small difference in the dispersion parameter values, of
about 8 ps/km · nm in all the considered wavelength range, for the PCFs with
the higher Λ, that is 3 µm. Notice that the dispersion curve of the square-
lattice PCF with d/Λ = 0.5 and Λ = 2 µm is quite flat, around the value of
53 ps/km · nm, from 1425 to 1550 nm, as shown in Fig. 3.10b.

Figure 3.11 allows to understand how the dispersion properties of the
square-lattice PCFs change as a function of the pitch Λ for a fixed d/Λ value.
Fibers with d/Λ = 0.9 have been considered, whose neff values are reported
in Chapter 2 in Fig. 2.3. Notice that an increase of 0.5 µm in the pitch value,
that is from 1 to 1.5 µm, causes a significant change in the dispersion curve. In
fact, there is a great difference between the dispersion parameter values of the
two PCFs, which increases with the wavelength, being about 56 ps/km · nm at
1250 nm and about 310 ps/km · nm at 1600 nm. Moreover, the dispersion slope,
which is negative for the PCF with Λ = 1 µm in all the wavelength range con-
sidered, becomes almost null in the wavelength range between 1200 and 1450
nm, and positive for the longer wavelengths for the PCF with Λ = 1.5 µm.
When Λ ≥ 2 µm, the slope of the dispersion curves is always positive. Finally,
the dispersion parameter values, which are all higher than 50 ps/km · nm for
these PCFs, decrease as the pitch Λ increases from 2 to 3 µm.
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Figure 3.12: Comparison of the dispersion parameter for the square-lattice
PCF and the triangular one with d/Λ = 0.9 and Λ = 1 µm [3.11].

After the comparison of the guiding properties described in Chapter 2,
the dispersion curves for the square-lattice PCF and the triangular one with
Λ = 1 µm and d/Λ = 0.9 have been accurately evaluated. It has been already
demonstrated [3.8] that the triangular PCF with these geometric parameters
has negative dispersion and dispersion slope, as shown in Fig. 3.2a, and can be
successfully used as a dispersion compensating fiber for a NZDF, that is the
Ritekom G-655 fiber, as reported in Fig. 3.6a. As it is shown in Fig. 3.12, both
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the fibers have negative dispersion, which is greater in module for the trian-
gular PCF. For example, at 1550 nm D = −293 ps/km · nm for the triangular
PCF and D = −157 ps/km · nm for the square-lattice one. The last PCF could
compensate the positive dispersion of the NZDF in a wider wavelength range,
since its dispersion slope is lower around 1550 nm. In fact, its CR values
at 1500 nm and 1600 nm, being 0.964 and 1.007, respectively, are closer to
the optimum value, that is 1, than those for the triangular PCF, which are
0.913 at 1500 nm and 1.047 at 1600 nm [3.8]. However, a square-lattice PCF
longer than the triangular one would be necessary to completely compensate
the dispersion of the NZDF at 1550 nm, due to its lower negative dispersion
parameter value at this wavelength.

A final analysis of the properties of the square-lattice and the triangular
PCFs is reported in Fig. 3.13 for different values of the hole-to-hole spacing.
A small d/Λ value, that is 0.5, has been chosen for the comparison, so that
the triangular PCF is single-mode in all the wavelength range considered also
for the largest pitch Λ = 3 µm [3.28, 3.29]. It is interesting to notice that
the square-lattice PCF has a higher dispersion parameter than the triangular
one when the pitch is small, that is 1 µm, and lower D values when the hole-
to-hole distance is large, that is Λ = 3 µm, as reported in Fig. 3.13. The
dispersion slope is only slightly influenced by the geometric characteristics of
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Figure 3.13: Comparison of the dispersion parameter values for the square-
lattice PCFs and the triangular ones with d/Λ = 0.5, for Λ = 1 and 3 µm [3.11].
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the lattice, being similar for the two PCFs. The comparison between the two
PCFs which involves the effective area values in the wavelength range between
1200 and 1600 nm has been already described in Chapter 2.

3.3 Dispersion-flattened triangular PCFs

Results reported earlier in this chapter have proved that the PCF dispersion
properties can be engineered by changing the geometric parameters, that is Λ
and d. For example, it has been demonstrated that, in order to design triangu-
lar PCFs for dispersion compensation, it is necessary to choose large air-holes
and small pitch values. Now it is interesting to investigate how the geometric
parameters of the PCF cross-section can be changed to obtain fibers with a flat
dispersion curve and the zero-dispersion wavelength around 1550 nm. Notice
that PCFs with these characteristics and with a small effective area, that is a
high nonlinear coefficient, are suitable for a great number of telecommunica-
tion applications, such as wavelength conversion [3.30] or optical parametric
amplification [3.31].

In literature dispersion-flattened triangular PCFs have been obtained, for
example, by keeping fixed the geometry of the first ring of air-holes around
the core and by progressively enlarging the holes of the outer rings [3.32], or
by introducing dopants in the fiber cross-section center to realize a hybrid
core region with a threefold symmetry [3.33]. In the analysis here reported
two different approaches have been proposed in order to design triangular
PCFs with a flat dispersion curve and the zero-dispersion wavelength in the C
band. Notice that in both cases the dispersion parameter D has been derived
according to Eq. (A.4), as described in Appendix A.

3.3.1 PCFs with modified air-hole rings

In the first approach, triangular PCFs with a high air-filling fraction have been
considered as a starting point to design highly nonlinear fibers with the desired
dispersion characteristics. Their dispersion properties have been studied by
modifying only the diameter of the air-holes belonging to first, second, and
third ring. In particular, the present analysis starts from large air-holes and
small pitch PCFs, which can successfully compensate both the positive dis-
persion and the positive dispersion slope [3.8], assuring, at the same time,
small effective area and thus high nonlinear coefficient. Moreover, the attention
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Figure 3.14: Cross-section of the triangular PCF considered: d1, d2, and d3 are
the air-hole diameters in the first, second, and third ring, respectively [3.12].

posed on the geometry of the first air-hole rings can provide a further insight
on their role, allowing to separately evaluate their effect.

The present study starts from the triangular PCF with d/Λ = 0.9 and
Λ = 0.9 µm. As shown in Fig. 3.14, the air-hole diameters of the first, second,
and third ring are, respectively, d1, d2, and d3. The dispersion properties of
this PCF, that is a negative dispersion parameter and a negative dispersion
slope between 1200 and 1600 nm, as reported in Fig. 3.2a, can be modified
by changing the air-hole diameter in the first three rings, without significantly
affecting its good nonlinear characteristics. In fact, it has been evaluated,
according to Eq. (A.7), that the effective area is about 1.6 µm2 at 1550 nm,
so its nonlinear coefficient value is high, about 65 (W·km)−1. It is important
to underline that, considering nine air-hole rings in the PCF cross-section,
the leakage losses at 1550 nm can be neglected, being under the Rayleigh
scattering limit [3.20].

Initially, only the air-hole diameter d1 in the first ring has been changed,
while all the other geometric characteristics of the PCF, that is the pitch Λ
and the number of the air-hole rings, have been kept constant. As shown in
Fig. 3.15, by reducing d1/Λ to 0.8, 0.7, 0.6, 0.5, and 0.4, the dispersion para-
meter increases, as well as the dispersion slope, for all the wavelengths between
1200 and 1600 nm. Notice that for the PCF with d1/Λ = 0.4 the dispersion
slope becomes positive and the dispersion parameter at 1550 nm increases to
24 ps/km ·nm. The air-holes belonging to the first ring, which surround the
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Figure 3.15: Dispersion parameter of the PCF with d/Λ = 0.9 and Λ = 0.9 µm
for different d1/Λ values [3.12].

silica core, have a strong influence on the PCF dispersion properties, since
the guided-mode field is strictly confined in the central region of the large-
hole PCF cross-section. Although the air-hole diameter decreases, the effective
area at 1550 nm is not significantly modified, since it becomes 2.8 µm2 for the
PCF with d1/Λ = 0.4, that is less than twice the value for the PCF with
d1/Λ = d/Λ = 0.9.

Bringing back d1/Λ to the original value, that is 0.9, and then decreasing
only the air-hole diameter in the second ring, the dispersion parameter be-
comes more negative in all the wavelength range considered, as reported in
Fig. 3.16 for d2/Λ = 0.8, 0.7, and 0.6. It is interesting to notice that the PCFs
with d2/Λ in the range 0.7–0.9 have also a negative dispersion slope, so they
can be successfully used as dispersion compensating fibers. The most negative
dispersion value, −1426 ps/km ·nm, has been obtained at 1500 nm for the
PCF with d2/Λ = 0.6. However, the slope of this PCF dispersion curve is pos-
itive around 1550 nm. Finally, it is important to highlight that the decrease
of d2 produces a wider silica region between the first and the third air-hole
rings, so that the guided-mode field is less confined in the PCF silica core and
the effective area increases to 3.5 µm2.

The influence of the air-hole diameter of the third ring, that is of d3, on the
PCF dispersion properties is demonstrated by the results shown in Fig. 3.17.
If d3/Λ decreases to 0.8, 0.7, and 0.6, the dispersion parameter is not signifi-
cantly modified at the shorter wavelengths, due to the tight confinement of the
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Figure 3.16: Dispersion parameter of the PCF with d/Λ = 0.9 and Λ = 0.9 µm
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−2500

−2000

−1500

−1000

-500

0

1200 1250 1300 1350 1400 1450 1500 1550 1600

D
 (

ps
/k

m
•n

m
)

λ (nm)

d3/Λ = 0.9
d3/Λ = 0.8
d3/Λ = 0.7
d3/Λ = 0.6

Figure 3.17: Dispersion parameter of the PCF with d/Λ = 0.9 and Λ = 0.9 µm
for different d3/Λ values [3.12].

guided-mode field in the silica core. However, at wavelengths longer than 1400
nm the dispersion parameter value decreases much faster with d3/Λ. The PCF
with d3/Λ = 0.6 has a very high negative dispersion parameter value at 1550
nm, about −1430 ps/km · nm, a negative dispersion slope and an effective area
of 1.88 µm2.

The previous considerations about the influence of the air-holes of the
first three rings are useful to design triangular PCFs with the zero-dispersion
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Figure 3.18: Dispersion tailoring to obtain a flattened dispersion curve for the
PCFs with (a) d1/Λ = 0.44 and (b) d1/Λ = 0.43 [3.12].

−2

0

2

4

6

8

10

12

14

1200 1250 1300 1350 1400 1450 1500 1550 1600

D
 (

ps
/k

m
•n

m
)

λ (nm)

d1/Λ = 0.42, d2/Λ = 0.9, d3/Λ = 0.9
d1/Λ = 0.42, d2/Λ = 0.87, d3/Λ = 0.9
d1/Λ = 0.42, d2/Λ = 0.87, d3/Λ = 0.86

-2

0

2

4

6

8

10

12

14

1200 1250 1300 1350 1400 1450 1500 1550 1600

D
 (

ps
/k

m
•n

m
)

λ (nm)

d1/Λ = 0.42, d2/Λ = 0.9,   d3/Λ = 0.9
d1/Λ = 0.42, d2/Λ = 0.86, d3Λ = 0.9
d1/Λ = 0.42, d2/Λ = 0.86, d3/Λ = 0.93

(a) (b)

Figure 3.19: Dispersion tailoring to obtain the flattened dispersion curve for
the PCFs with d1/Λ = 0.42 and (a) d2/Λ = 0.87, and (b) d2/Λ = 0.86 [3.12].

wavelength around 1550 nm and a low-dispersion slope, without significantly
increasing the effective area and, as a consequence, without reducing the non-
linear coefficient. A possible procedure is explained in the following and results
are shown in Figs. 3.18 and 3.19. The value of d1/Λ is decreased in order to
obtain a flat dispersion curve in a wavelength range as large as possible. In
this way, the dispersion parameter becomes positive for all the wavelengths
considered, so it is necessary to reduce d2 to lower it.

The final dispersion tailoring is made increasing d3/Λ, in order to obtain
higher dispersion parameter values only at longer wavelengths. Two sets of
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dispersion curves are reported as examples in Fig. 3.18a and b for two differ-
ent values of d1/Λ, that is 0.44 and 0.43, respectively. Looking at Fig. 3.18a, it
is possible to notice that, only by decreasing d1/Λ to 0.44, the dispersion curve
presents a zero-dispersion wavelength around 1465 nm, so d2 has been left un-
changed. With the choice of d3/Λ = 0.93, the zero-crossing of the dispersion
curve moves to 1529 nm, but D values remain between ±0.5 ps/km · nm in a
quite small wavelength range, that is about 70 nm. On the contrary, the PCF
with Λ = 0.9 µm, d1/Λ = 0.43, d2/Λ = 0.88, d3/Λ = 0.93 and d/Λ = 0.9 has
dispersion properties much more similar to the desired ones. In fact, as shown
in Fig. 3.18b, its dispersion parameter values are between ± 0.5 ps/km · nm
from 1425 to 1600 nm, and the zero-dispersion wavelength is around 1500
nm. Moreover, its effective area is only 2.76 µm2 at 1550 nm, which assures a
nonlinear coefficient of about 42 (W·km)−1. A final example of the proposed
dispersion tailoring process is reported in Fig. 3.19, where two sets of disper-
sion curves are shown for the same d1/Λ, equal to 0.42, and different d2/Λ
values. By choosing d2/Λ = 0.87, the dispersion curve results flat around the
value of 1.65 ps/km · nm in the wavelength range between 1425 and 1600 nm,
so, differently from the previous cases, it is necessary to decrease d3/Λ in order
to slightly decrease D values, thus obtaining the zero-dispersion wavelength
around 1550 nm. In fact, as shown in Fig. 3.19a, the dispersion parameter
values of the PCF with Λ = 0.9 µm, d1/Λ = 0.42, d2/Λ = 0.87, d3/Λ = 0.86,
and d/Λ = 0.9 are between ±0.5 ps/km · nm from 1455 to 1560 nm, and its
zero-dispersion wavelength is around 1510 nm. Better results have been ob-
tained with a slightly smaller diameter of the air-holes belonging to the second
ring, that is d2/Λ = 0.86. Looking at Fig. 3.19b, it is possible to notice that
the dispersion curve of the PCF with Λ = 0.9 µm, d1/Λ = 0.42, d2/Λ = 0.86,
d3/Λ = 0.93, and d/Λ = 0.9, whose effective area is 2.84 µm2, is ultraflattened,
since the dispersion parameter values are between ±0.5 ps/km · nm in a 375
nm wavelength range.

3.3.2 Triangular-core PCFs

Among the highly nonlinear triangular PCFs with flattened dispersion curve
and zero-dispersion wavelength around 1550 nm, a novel one with a trian-
gular hybrid core region, obtained by replacing four air-holes with a central
germanium up-doped area and three fluorine down-doped regions, has been
recently proposed [3.33, 3.34]. Figure 3.20 reports the microscope picture of
the realized PCF and a schematic of the materials which constitute the fiber
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Figure 3.20: Schematic of the cross-section of the triangular-core fiber pre-
sented in [3.33]. The core regions is formed by an up-doped central element
surrounded by three down-doped regions and three air-holes.

core. The presence of different dopants in the fiber cross-section offers a fur-
ther possibility to control the dispersion curve and the nonlinear coefficient.
However, this advantage is paid in terms of an increase of the technological
effort in the fabrication process.

Starting from these considerations, the second approach followed in the
present study consists in designing all-silica triangular-core PCFs with a flat-
tened dispersion curve, the zero-dispersion wavelength around 1550 nm and
a high nonlinear coefficient, without the need of adding doped areas in the
transverse section. In fact, the PCFs here considered have a silica core with a
triangular shape, obtained by removing the central air-hole in the fiber cross-
section, and by reducing the diameter of the three surrounding air-holes, which
correspond to the fluorine down-doped areas of the fiber proposed in [3.33].
In this way, the possibility to control the refractive index profile by properly
changing only the dimension of the air-holes, without the need of any dopants,
which is one of the main advantages offered by PCFs, has been exploited. It
is important to underline that all the studied PCFs, which are simply made of
silica, have a triangular lattice of air-holes in the cross-section, characterized
by the pitch Λ and the air-hole diameter d. Three of the air-holes belonging
to the first ring have a different diameter df < d, as shown in Fig. 3.21, so
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Figure 3.21: Cross-section of an all-silica triangular-core PCF [3.14].

Figure 3.22: Fundamental component of the guided-mode magnetic field at
λ = 1550 nm for the PCF with Λ = 1.7 µm, d = 0.54 µm and df = 0.2 µm
[3.14].

that the PCF refractive index profile is similar to the one of the hybrid-core
nonlinear fiber in [3.33]. In fact, the core refractive index is higher than the
cladding one, while the three smaller air-holes act like the fluorine down-doped
areas. The PCF core sustains a guided mode, whose magnetic field fundamen-
tal component is reported in Fig. 3.22 for the particular case of λ = 1550 nm,
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Λ = 1.7 µm, d = 0.54 µm and df = 0.2 µm. Notice that the field distribution
has a triangular symmetry with a quasi-Gaussian shape in the center of the
core, thus allowing high coupling values with standard fibers [3.33].

In order to achieve a flattened dispersion curve around 1550 nm with the
triangular-core PCFs, the pitch Λ has been modified in the range 1.4–1.7 µm
and the air-hole diameter d has been properly chosen between 0.5 and 0.7 µm.
In addition, the zero-dispersion wavelength position in the C band has been
optimized by changing df . Since all the studied PCFs have small d/Λ values,
between 0.3 and 0.4, 12 air-hole rings have been considered in order to obtain
negligible leakage losses [3.19].

In Fig. 3.23a and b the dispersion curves of the PCFs with d = 0.65 µm
and Λ equal to 1.6 and 1.7 µm, respectively, are reported for different df values.
Notice that for both the considered Λ values the D parameter decreases as df

varies from 0 to 0.3 µm. A further increase of this diameter to 0.4 µm causes
a significant, but undesired change in the dispersion curve slope. By properly
fixing df = 0.29 µm when Λ = 1.6 µm, a triangular-core PCF with a zero-
dispersion wavelength λ0 = 1550.5 nm and a dispersion slope at λ0, called
S0, of about −1.8 · 10−2 ps/km · nm2 can be obtained. For the larger pitch,
simulation results have shown that the best df is 0.32 µm, being in this case
λ0 � 1563.3 nm and the dispersion slope around −1.3 · 10−2 ps/km · nm2.

Then, in order to show the influence of the air-hole dimension on the PCF
dispersion properties, the pitch Λ = 1.7 µm and the diameter df = 0.2 µm
have been fixed, and d has been changed between 0.53 and 0.65 µm. As shown
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Figure 3.23: Dispersion curves as a function of df for the PCFs with
d = 0.65 µm and (a) Λ = 1.6 µm, and (b) Λ = 1.7 µm [3.14].
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Figure 3.24: Dispersion curves as a function of d for the PCFs with
df = 0.2 µm and Λ = 1.7 µm [3.14].

in Fig. 3.24, D values decrease in all the wavelength range considered when the
air-holes become smaller, while the slope of the dispersion curve is only slightly
modified. The dispersion parameter is always negative when d = 0.54 µm,
reaching a maximum of about −0.14 ps/km ·nm at 1525 nm, with a very low
S0, that is about −1.7 · 10−3 ps/km · nm2 at 1550 nm. However, the small
diameter of all the air-holes in the triangular lattice of this PCF results in a
lower field confinement, which limits the value of the nonlinear coefficient.

A similar analysis has been performed also for different configurations
of the PCF cross-section. Figure 3.25a and b shows the best dispersion
curves obtained considering new Λ values with proper air-hole diameters
d and df . It is important to underline that the PCF with Λ = 1.4 µm
has df = 0 µm, that is the three air-holes with diameter df have been com-
pletely removed. Also in this case it is possible to achieve a good disper-
sion slope, about −3.8 · 10−2 ps/km · nm2, with a high nonlinear coefficient
γ = 10.92 (W·km)−1, calculated according to Eq. (A.8) in Appendix A.

In summary, simulation results have demonstrated that it is possible to
design triangular PCFs with flattened dispersion curve, zero-dispersion wave-
length around 1550 nm and high nonlinear coefficient with both the proposed
approaches, that is by modifying the diameter of the air-holes in the first three
rings, as well as by properly choosing the dimension of three air-holes belong-
ing to the first ring around the fiber silica core. Notice that the first triangular
PCFs here designed have flatter dispersion curves and smaller effective area



124 Chapter 3. Dispersion properties

−10

−8

−6

−4

−2

0

2

4

6

8

1200 1250 1300 1350 1400 1450 1500 1550 1600

D
 (

ps
/k

m
•n

m
)

λ (nm)

Λ = 1.4 µm, d = 0.55 µm, df = 0 µm
Λ = 1.5 µm, d = 0.60 µm, df = 0.20 µm
Λ = 1.6 µm, d = 0.65 µm, df = 0.29 µm
Λ = 1.7 µm, d = 0.54 µm, df = 0.20 µm
Λ = 1.7 µm, d = 0.63 µm, df = 0.30 µm
Λ = 1.7 µm, d = 0.65 µm, df = 0.32 µm

−3

−2

−1

0

1

2

3

4

 1460  1480  1500  1520  1540  1560  1580  1600

D
 (

ps
/k

m
•n

m
)

λ (nm)

Λ = 1.4 µm, d = 0.55 µm, df = 0 µm
Λ = 1.5 µm, d = 0.60 µm, df = 0.20 µm
Λ = 1.6 µm, d = 0.65 µm, df = 0.29 µm
Λ = 1.7 µm, d = 0.54 µm, df = 0.20 µm
Λ = 1.7 µm, d = 0.65 µm, df = 0.32 µm

(a) (b)

Figure 3.25: D versus the wavelength for the best designed triangular-core
PCFs in the range (a) 1200–1600 nm and (b) 1450–1600 nm [3.14].

than the triangular-core ones. However, as a drawback, their small pitch, that
is 0.9 µm, causes a reduced dimension of the silica core and, as a consequence,
an increase of the coupling losses toward standard SMFs, besides some further
difficulties in their fabrication process.
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Chapter 4

Nonlinear properties

In this chapter the nonlinear properties of PCFs are deeply analyzed.
Firstly, supercontinuum generation, one of the most important applications
of the fibers with enhanced nonlinear properties, is described, starting from
the numerous results, both experimental and theoretical, which have been
presented in literature so far.

Then, the attention is mainly directed to one particular nonlinear effect,
that is the four-wave mixing, which is exploited for the optical parametric
amplification. Many nonlinear triangular PCFs with different dispersion prop-
erties have been considered in order to optimize the amplifier gain perfor-
mances [4.1, 4.2].

Finally, a different kind of PCF, that is the hollow-core one, has been
considered, even if these fibers present negligible nonlinear characteristics. The
nonlinear coefficient of hollow-core PCFs with modified honeycomb lattice has
been evaluated, showing that also the nonlinear contribution of air should be
taken into account [4.3].

A detailed analysis of another nonlinear effect, that is the Raman one, and
its exploitation in PCFs, will be discussed apart in the Chapter 5.

4.1 Supercontinuum generation

Supercontinuum (SC) generation is a complex physical phenomenon which
causes a significant spectral broadening of laser pulses propagating in a non-
linear medium. The SC formation through the interaction of intense pulses
with matter has been discovered in the 1970s, first in condensed matter [4.4],
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then in single-mode fibers. In fact, by using an optical fiber as the nonlin-
ear medium, which offers a longer interaction length and a higher effective
nonlinearity, it is possible to significantly reduce the peak power, which was
higher than 10 MW for bulk materials [4.5]. After the first demonstrations,
the possible improvements of the SC characteristics, as well as a simplification
of the technical requirements for its generation have been theoretically and
experimentally investigated [4.5].

Due to its coherently pulsed nature and its high spatial brightness, SC
generated in optical fibers is an ideal source for a lot of applications, like fre-
quency metrology, fs-pulse phase stabilization, optical coherence tomography
(OCT), ultrashort pulse compression, spectroscopy of materials and photonic
structures, and fiber characterization [4.6].

4.1.1 Physics of supercontinuum generation

The most important aspects for the SC generation are the pulse length, the
peak power, and the dispersion of the nonlinear medium with respect to the
pumping wavelength, since the dispersion properties strongly influence the
plethora of nonlinear effects which lead to the pulse broadening [4.7]. In par-
ticular, the positive or negative dispersion determines which kind of nonlinear
effects participate in the SC formation, as well as the main characteristics
of the spectrum, that is its shape and stability [4.7]. For example, in optical
fibers it is necessary to choose a pulse wavelength near the zero-dispersion
wavelength, so the SC is restricted in the range around 1300 nm if conven-
tional single-mode fibers are considered. The use of dispersion-flattened or
dispersion-decreasing fibers can lead to a shift of the SC spectrum towards
longer wavelengths in S, C, and L band. In order to obtain SC also in the visi-
ble wavelength range, tapered fibers and, in particular, PCFs can be employed,
due to their unusual dispersion properties and their enhanced effective non-
linearity [4.5]. SC spectra in PCFs have been generated with pulse widths in
the range between the ten-fs and the ns regime, and with pump wavelengths
between 532 and 1500 nm [4.8].

4.1.2 Highly nonlinear PCFs

A significant advance in the research regarding the SC generation has been
reached with solid-core highly nonlinear PCFs. In particular, these fibers
offer enhanced nonlinear properties, due to their small effective area, thus
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significantly reducing the peak power necessary to generate the SC. In fact,
the SC formation in standard optical fibers requires pulses with an initial
peak intensities more than two orders of magnitude higher with respect to
the PCF case [4.9]. Moreover, by exploiting the dispersion tailoring, it is pos-
sible to properly shift the PCF zero-dispersion wavelength in the range of
the Ti:Sapphire femtosecond laser systems operating around 800 nm, thus
obtaining SC spectrum in the visible region [4.7]. Differently from other tech-
nologies, like amplified spontaneous emission source or incandescent lamp, SC
spectra generated in PCFs offer, at the same time, a high brightness and a
broad coverage [4.7]. However, it is important to underline that in conventional
optical fibers, where SC is mainly generated through the self-phase modula-
tion, the broadened spectra are symmetrical, bell-shaped-like, centered around
the pump wavelength and smoother with respect to the ones obtained in PCFs
[4.10]. In fact, the SC spectrum formed in PCFs is characterized by a complex
shape, since a lot of different effects, such as group-velocity dispersion (GVD),
self-phase modulation (SPM), cross-phase modulation (XPM), four-wave mix-
ing (FWM), stimulated Raman scattering (SRS), birefringence, high-order
soliton formation, third-order dispersion, and self-steeping, participate in the
generation process [4.10]. Moreover, the large number of nonlinear processes
involved in the SC generation in PCFs causes additional noise and a higher
sensitivity to the amplitude fluctuations of the incident light [4.10].

Highly nonlinear PCFs are usually characterized by a high air-filling frac-
tion and a small hole-to-hole spacing, typically in the range 1–3µm [4.7]. These
fibers can be multi-mode, with an extremely small core and a cobweb-like
microstructure, like the PCF shown in Fig. 4.1, or single-mode, with a slightly
larger silica core, smaller air-holes and a properly tailored zero-dispersion
wavelength [4.7]. The choice of the proper PCF in order to generate the SC
spectrum strongly depends on the wavelength range of the desired source and
on the available pump. In particular, the zero-dispersion wavelength of the
highly nonlinear PCF should be close to the center wavelength of the pump
source [4.7]. Nonlinear fibers proper to femtosecond sources at 800, 1060 and
1550 nm, as well as to nanosecond at 1060 and 1550 nm can be successfully de-
signed [4.7]. Highly nonlinear PCFs with two close zero-dispersion wavelengths
have been also designed and fabricated, which open up new interesting possi-
bilities for SC generation [4.7]. The length of the nonlinear PCF used for the
SC generation is strictly related to the pump pulse length, being shorter fibers
necessary for faster pulses. For example, for fs pulse 1 m or less of nonlinear
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Figure 4.1: Schematic of the cross-section of the cobweb holey fiber, proposed
in [4.11]. The core diameter is 1 µm and the width of the fine silica bridges
supporting the core is about 120 nm [4.12].

PCF is enough. On the contrary, a PCF 10–20 m long is necessary for the ps
or ns pumping at 1060 nm [4.7].

The first demonstration of this phenomenon in a highly nonlinear PCFs has
been reported in 2000 [4.13]. A solid-core triangular PCF with a core diameter
of about 1.7 µm and an air-hole diameter of 1.3 µm has been employed. In
particular, a 550 THz wide optical spectrum in the visible range, that is from
violet to infrared, has been obtained by launching pulses of 100 fs dura-
tion and kW peak power around the PCF zero-dispersion wavelength, that is
770 nm [4.13].

Highly birefringent PCFs

In order to improve the spectrum stability and to obtain the maximum broad-
ening at a certain pump power, a polarization maintaining (PM) nonlinear
PCF can be chosen. In fact, a power advantage close to a factor of two with
respect to a non-birefringent fiber can be obtained by aligning the pump source
polarization to one of the main axis of the PM nonlinear PCF. Moreover, the
SC spectrum generated in this condition is also polarized, thus becoming useful
for a wider range of applications [4.7].
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The SC around 1550 nm has been demonstrated in the Ge-doped PM
nonlinear PCF with low dispersion and low dispersion slope reported in [4.14].
Moreover, a ultrabroad SC spectrum, extending from 400 to 1750 nm, has been
generated in a 5 m long highly birefringent nonlinear PCF with an effective
area of 2.3 µm2, by using a mode-locked Ti:Sapphire laser [4.15]. It has been
shown that one more freedom degree in tailoring the SC characteristics is
offered by the different dispersion properties of the two polarizations of the
guided mode [4.15]. This consideration has been confirmed also by the experi-
mental results presented in [4.16], which demonstrate that the SC spectrum
generated at the output of a PM nonlinear PCF consists of a superposition
of the spectra formed independently by the two polarizations of the guided
mode.

4.1.3 Dispersion properties and pump wavelength

As already stated, many nonlinear processes are involved in the SC generation,
causing the formation of new spectral components and their spectral broad-
ening [4.17]. In fact, the origin of the SC generation is related to a refractive
index change, due to the electric field intensity and described by the non-
linear refractive index n2 [4.9]. As a consequence, a time-dependent phase is
induced, which causes the generation of new spectral components at a certain
spectral width around the pulse input wavelength. The efficiency of the nonlin-
ear processes is strongly influenced by the fiber dispersion, which is responsible
for the phase mismatch of different frequency components, and leads to effects
like group-delay and pulse-spreading [4.17]. In particular, it is important the
position of the fiber zero-dispersion wavelength λ0 with respect to the pump
wavelength λpump. For example, it has been reported that the broadest SC
spectra can be obtained when λpump > λ0, where the PCF dispersion is pos-
itive, that is in the anomalous dispersion regime [4.6]. On the contrary, the
spectra generated for λpump = λ0 or even λpump < λ0 are quite narrow, but
they have better flatness properties [4.6].

The property of dispersion tailoring offered by PCFs opens up a lot of new
interesting possibilities to exploit for SC generation.

Pump in the anomalous dispersion region

Since in highly nonlinear PCFs the zero-dispersion wavelength can be shifted
to the visible region, the typical wavelength of a fs Ti:Sapphire laser system,
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Figure 4.2: Scheme of the SC formation by fission of higher-order solitons, as
described in [4.9].

that is around 800 nm, falls in the fiber anomalous dispersion region, where
the pump pulse turns into a higher-order soliton. In fact, in the anomalous
dispersion region the balance between the GVD and the SPM is responsible for
the formation of solitons, whose order N increases with the pulse amplitude.
These higher-order solitons are not stable, due to the effects of third-order
dispersion, which are higher in PCFs with respect to conventional optical
fibers [4.9], intrapulse Raman scattering and self-steepening, so they break up
in their constituent first-order solitons, as shown in Fig. 4.2. During the decay,
in order to maintain its shape, every soliton emits a blue-shifted nonsolitonic
radiation at a wavelength which depends on the phase-matching condition
with the pulse itself, and at the same time it shifts to the infrared range,
until reaching the stability [4.8, 4.9]. In this way, a gap in the spectrum is
formed around the zero-dispersion wavelength [4.18]. After this mechanism,
which provides the initial spectral broadening, a complex interaction among
FWM, SRS, and dispersion of the fiber causes the formation of a broad and
flat SC [4.8,4.16]. These additional nonlinear processes have the positive effect
to help the spectrum flattening, filling the gap between the solitons, and the
nonsolitonic radiation in the visible spectral range [4.16].

It is important to underline that the anomalous dispersion, which is necess-
ary for the SC generation by soliton fission, is also responsible of the high
susceptibility of the broadened spectrum to the input pulse noise, which is
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amplified by modulation instabilities [4.19]. Other parameters of the input
pulse can significantly influence the properties of the SC generated [4.19]. In
fact, it has been demonstrated that the power and the chirp of the pulses, as
well as the linear properties of the PCF, that is its modal index and GVD,
significantly affect this SC generation mechanism and the spectrum charac-
teristics [4.20]. The SC spectra reported in literature usually do not extend to
the wavelengths lower than 380 nm [4.21]. The relative position of the pump
wavelength with respect to the zero-dispersion wavelength represents the main
limiting factor for the spectral broadening in the SC generation [4.21]. Broader
spectra can be generated by shifting the pump away from the zero-dispersion
wavelength, at the expense of the gap widening and of a drastic reduction
of the blue-wavelength components [4.18, 4.21]. A possible alternative is to
increase the pump power, which leads to the merging of the different spectral
components [4.18].

Pump in the normal dispersion region

The first results regarding the SC generation in a highly nonlinear PCF with
pumping in the normal dispersion regime have been presented in 2001 [4.22].
A smooth and stable SC spectrum has been obtained, which is suitable for
pulse compression and OCT [4.7, 4.22].

Differently from the case previously described, when the pump is in the nor-
mal dispersion regime and fs pulse are considered, the SPM becomes the most
important nonlinear effect for the SC generation, while the spectral broad-
ening towards the longer wavelengths is provided by the SRS [4.7, 4.8]. The
shape and the bandwidth of the SC spectrum generated in this condition are
strongly influenced by the pump position with respect to the zero-dispersion
wavelength and by the pump power [4.7, 4.18]. In particular, as the pump is
shifted closer to the zero-dispersion wavelength, other nonlinear processes, like
FWM, contribute to the SC generation and broader spectra can be formed, as
shown in [4.7] for a 2.5 µm core PCF with zero-dispersion wavelength around
900 nm. In fact, even for the pumping in the normal dispersion region, when
the pump power increases, an asymmetry is introduced in the spectrum, due to
the high dispersion slope and the SRS, and solitons are formed as soon as the
spectrum is broadened beyond the zero-dispersion wavelength, that is in the
anomalous dispersion regime [4.7]. For example, when the pump wavelength
is fixed at 800 nm, a soliton is generated around 940 nm, whose self-frequency
is shifted to the longer wavelengths for increasing pump power values [4.7].
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For longer pump wavelengths, closer to the zero-dispersion wavelength, mul-
tiple solitons are formed, whose positions depend on the pump power, and a
higher instability is introduced into the spectrum, which is more sensible to
the changes of the coupling efficiency and the power fluctuations in the pump
laser [4.23]. The influence of the pump power on the SC formation is shown
in [4.23] for the same PCF and a fixed pump at 875 nm. For the higher pump
power values new spectral components have been observed also at the lower
wavelengths with respect to the pump wavelength, which are probably due to
the FWM processes involving the solitons [4.23].

Pump between two zero-dispersion wavelengths

As already described, it is possible to tailor the PCF dispersion properties by
properly changing the geometry of the fiber cross-section. In particular, it is
possible to design highly nonlinear PCFs with two close zero-dispersion wave-
lengths, which can be successfully exploited for SC generation. By choosing
a pump wavelength between the two zero-dispersion wavelengths, stable, and
compressible spectra with a high spectral density and low noise can be gener-
ated [4.19]. As demonstrated by experimental measurements, the SC spectra
generated in PCFs with these dispersion properties are characterized by two
peaks at each side in the normal dispersion region [4.7, 4.19].

Differently to what happens in PCFs with only one zero-dispersion wave-
length or with two widely separated dispersion wavelengths, in these nonlinear
fibers SPM is responsible for the initial spectral broadening, thus providing
the seed for the FWM process, both degenerate and nondegenerate [4.7,4.19].
As soon as the intensity is low enough to satisfy the phase-matching condi-
tion, FWM becomes effective for the SC generation [4.7,4.19]. Since the soliton
dynamics have a minor role in the SC formation, a lower noise is contained in
the generated spectrum.

The SC obtained with PCFs with two zero-dispersion wavelengths presents
only a slight dependence on the input pulse on a wide range of pulse charac-
teristics [4.19]. By tuning the pump in the range between the zero-dispersion
wavelengths, the light is generated in the same two wavelength ranges, even
if the ratio between the two peaks can vary [4.7]. Moreover, since the center
wavelength of the two peak is related to the zero-dispersion wavelengths, a
desired SC spectrum for a certain application can be obtained by properly
designing the PCF dispersion properties [4.7]. For example, the nonlinear PCF
proposed in [4.19] has the zero-dispersion wavelengths at 780 and 945 nm.
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As demonstrated in [4.19], the sharp inner edges of the two peaks of the SC
spectrum generated with 40 fs pulses at 790 nm are fixed at about 740 and
950 nm, while the outer edges slowly moves outwards when the pulse energy
increases [4.19]. It is important to underline that, whatever the input pulse
characteristics, that is the wavelength, the energy and the chirp, the pump is
very effective, being almost complete the depletion of the power between 740
and 950 nm, which is contained into the two peaks [4.7, 4.19].

The physical mechanisms underlying the SC generation in this kind of
nonlinear PCFs explained so far apply for the fiber reported in [4.19], which
presents a separation of about 165 nm between the two dispersion wavelengths.
On the contrary, it has been demonstrated that in a PCF with a wider spacing
between the two zero-dispersion wavelengths, that is around 700 nm, the most
important processes for the SC formation are the amplification of dispersive
waves and the soliton self-frequency shift (SSFS) [4.21]. In fact, due to the
SSFS, the center wavelengths of the multiple solitons split from the initial
pump pulses, which are close to the zero-dispersion wavelength in the visible,
shift towards the zero-dispersion wavelength in the infrared, that is λZDI in
Fig. 4.3, thus acting as pumps for the amplification of dispersive waves beyond

Figure 4.3: Scheme of the dispersive wave amplification in a two zero-
dispersion wavelength PCF, as described in [4.21]. λZDI and λZDV are the
zero-dispersion wavelengths in the infrared and the visible, respectively.
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λZDI [4.21]. This mechanism of SC generation, described in [4.21] for a non-
linear PCF with zero-dispersion wavelength at 690 and 1390 nm, represents
an interesting possibility to increase the SC bandwidth in the infrared, with-
out negatively affecting the blue wavelength components [4.21]. Obviously, the
optimum position of the second zero-dispersion wavelength, that is the one in
the infrared, is influenced by the necessity of the soliton spectrum to extend
towards λZDI . In particular, the position of λZDI with respect to the pump
wavelength is related to the input pulse energy, the fiber nonlinear properties
and its confinement losses in the infrared wavelength range [4.21].

4.1.4 Influence of the pump pulse regime

In the first experiments of SC generation in PCFs high power fs pulses have
been used. However, it has been demonstrated that the spectral broadening
in this kind of fibers can be obtained also with ps and ns pulses. In these
conditions SPM becomes a negligible effect, while SRS and parametric FWM
participate in the SC formation [4.24]. Telecommunication sources more cost-
effective with respect to the very expensive fs laser systems, such as fiber
amplifiers, can be employed for the SC generation in nonlinear PCFs [4.7].

Short pulse regime

As it has been already explained in Sections 4.1.2 and 4.1.3, a highly nonlinear
PCF with dispersion properties properly designed is an excellent medium for
the SC generation with fs pulses [4.25]. Independently to the position of the
pump with respect to the zero-dispersion wavelength, in the short pulse regime
broader SC spectra can be obtained by increasing the PCF length or the pulse
power. Higher pulse power provides also flatter spectra with lower intensity
fluctuations, which are important for applications where SC is simply used as
a broadband source [4.6]. Moreover, higher quality spectra can be generated
with pulses which are weak, that is with a peak power of some kW, and long
that is of 100 fs, by using long PCFs, that is of the order of 1 m [4.10]. On
the contrary, if a reduction of the initial pump power is desirable, as for some
commercial applications like OCT, it is better to use shorter pulses [4.10].

In most of the experiments performed so far with fs pulses Ti:Sapphire
laser systems operating around 800 nm with pulse energies of several nJ or
more have been used. Recently, also erbium-doped fiber lasers around 1560 nm
have been considered as compact diode-pumped sources for the SC formation,



4.1. Supercontinuum generation 139

since they provide some advantages. In fact, it is possible to transfer the SC
generation technology towards the telecommunication window, that is the C
band centered at 1550 nm, with these fiber lasers, which are also more compact
and more reliable with respect to bulky Ti:Sapphire laser systems [4.25]. A
drawback of this kind of sources is the fact that it is necessary to amplify the
pulse energy to the high levels adequate for the SC generation [4.25].

Up to now, an erbium-doped fiber laser has been used to generate a broad
SC spectrum only in a silica highly nonlinear PCF with zero-dispersion wave-
length around 1500 nm. However, with this PCF high energy pulses or fiber
lengths of several meters are necessary for the SC generation. As an alterna-
tive, an extruded PCF made with SF6 glass, which is characterized by a higher
nonlinear refractive index and different dispersion properties with respect to
the silica fiber, has been used to generate an octave-broad SC spectrum [4.25].

Long pulse regime

The SC formation in PCFs is possible also by considering longer pulses. In
this case the SC generation is the result of the formation of new spectral com-
ponents through the SRS or the FWM, with a subsequent broadening due to
the merging of these spectral components, while the SPM of the pump pulses
is negligible [4.26]. This mechanism for the SC formation requires less expen-
sive sources, but the generated spectrum is affected by the asymmetry typical
of the SRS and by the inefficiency related to the phase-matching parametric
processes [4.26].

The cobweb PCF reported in Fig. 4.1 has been used to generate a broad SC
spectrum with long pump pulses, that is broader than 10 ps, of sub-kilowatt
power at 647 nm, that is in the normal dispersion regime, as reported in [4.26].
It is important to underline that, for the maximum peak power, the SC extends
from 400 to beyond 1000 nm, covering all the visible spectral range and the
near infrared, so the use of intense ultrashort pulses is not necessary for an
efficient SC formation in highly nonlinear PCFs [4.26]. However, the position
of the pump wavelength with respect to the zero-dispersion wavelength is very
important for the SC formation when long pump pulses are employed [4.26].

Long pulses, that is in the ns regime, around 1060 nm can be used for the
spectral broadening, which is dominated by SRS [4.7]. Since the generation
of spectral components at wavelengths shorter than 1000 nm is difficult to
obtain, the pump at 1064 nm can be combined with its second harmonic at
532 nm. In this way a SC spectrum two-octave wide has been formed in a
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nonlinear PCF by using ns pulses with a peak power of about 3 kW [4.7].
In fact, besides SRS, the FWM between the two pumps is responsible for
the presence of the new spectral components at the wavelengths lower than
532 nm [4.7].

PCFs can be designed with two-zero dispersion wavelengths also in
the telecommunication wavelength range. For example, the nonlinear fiber
reported in [4.27] is characterized by two zero-dispersion wavelengths around
1475 and 1650 nm [4.7]. In order to obtain the SC spectrum, the nonlinear
PCF has been pumped at a wavelength between the two zero-dispersion wave-
lengths, that is at 1555 nm, with 2 ps pulses. Looking at the spectra reported
in [4.7] for different pump power values, it is possible to notice significant dif-
ferences with respect to the results obtained in PCFs with similar dispersion
properties pumped by fs pulses around 800 nm, shown, for example, in [4.21].
In particular, even if the two peaks are still present in the generated spectrum,
the pump power in the range between the two zero-dispersion wavelength is
not depleted, due to the lower values of the input pulse power and of the PCF
nonlinear coefficient in the C band [4.7]. In these conditions the SPM process
is significantly reduced and, consequently, also the FWM efficiency decreases.
As a result, the spectrum is characterized by a large peak, due to the residual
pump light, and by spectral components at long wavelengths, due to the SRS.
With shorter pulses the SPM process is more effective and reduce the pump
power, even if an almost complete pump depletion is possible only at shorter
wavelengths, that is in the 800 nm region [4.7].

4.1.5 Applications

The most important application of the SC spectra is the replacement of the
white light sources, which are usually tungsten-based, in different charac-
terization setups, such as for spectroscopy, microscopy, interferometer-based
dispersion measurements, and broadband attenuation measurements [4.7]. SC
sources, which are characterized by the spectral width of a tungsten lamp
and the intensity of a laser, solve the problems of the traditional incandes-
cent sources, that is the low brightness and the coupling inefficiency to optical
fibers [4.7]. Moreover, these new sources can drastically improve the signal-to-
noise ratio, reduce the measurement time or widen the spectral range where
the measurements can be made [4.28]. Most of the SC sources experimentally
realized have an output power in the mW range, but also higher output power
values have been obtained [4.7].
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The main negative aspect of the SC sources with respect to the traditional
incandescent ones is the high cost of their pump, which can be, in the extreme
case, a very expensive large fs system [4.7]. Consequently, more compact and
cost-effective schemes for the SC generation should be developed, by taking
into account, for example, the sources around 1060 nm with long pulses in the
ns and ps regime [4.7].

One of the most important applications of the SC sources is the OCT, a new
technology, based on low-coherence interferometry, used for in vivo and in situ
cross-sectional morphological imaging of transparent and non-transparent bio-
logical tissue on a micrometer scale [4.29]. OCT requires smooth spectra, that
is variations of less than 10 dB, since spectral gap can affect the image quality
and the measurement precision [4.10]. While broad spectra which extend also
into the visible range down to 400 nm are necessary to provide access to wave-
lengths interesting for spectroscopic OCT of biological chromophores [4.10],
the spectral region between 1200 and 1500 nm is particularly important for
the OCT, since it permits high penetration depth in biological tissues and
spectrally resolved imaging of the water absorption bands [4.29]. However,
the OCT longitudinal resolution is inversely proportional to the source width
and proportional to the square of the central wavelength, so it becomes poor
at long wavelength for sources which are not wide enough [4.7]. In standard
OCT systems sources based on the amplified spontaneous emission from doped
fibers or semiconductors, or superluminescent diodes are considered as light
sources, usually providing a longitudinal resolution of 10–15 µm [4.7,4.29]. All
these sources suffer limited bandwidth and restricted wavelength range [4.7].
On the contrary, as it has been already demonstrated, the SC spectra gener-
ated in PCFs are characterized by enormous bandwidths, thus providing an
unprecedented resolution [4.7]. In fact, it has been demonstrated the use of
the SC generated in a PCF in a OCT system for in vivo imaging of biological
tissue, reaching for the first time a resolution of 2.5 µm in the wavelength
range around 1300 nm [4.29]. The SC sources obtained in PCFs with slow
pulses around 1060 nm are particularly promising for the OCT, because the
large flat spectrum mainly generated by SRS is very stable and can be filtered
in order to select the desired wavelength range [4.7].

The octave-spanning frequency comb which can be generated in PCFs
with fs pulses has provided significant advantages in frequency metrology [4.9].
In particular, frequency standards based on SC have been one of its first
applications to be commercialized [4.7].
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SC sources offer important improvements also for the low-coherence white-
light interferometry, useful for displacement measurements, for the position
determination of flaws in optical waveguides, and for the chromatic disper-
sion measurement in optical fibers and planar waveguides, because the spatial
resolution obtainable increases with the source bandwidth [4.28].

Due to their high degree of spatial coherence, SC sources are useful in
spectroscopy for the fast data acquisition on small-volume samples in biology,
chemistry, medicine, physics, or environmental monitoring. In fact, the SC
light can be focused into a small spot, or collimated in a narrow beam for
long-path length measurements in analytes with low absorbance [4.28].

4.2 Optical parametric amplification

Parametric amplification provides a new possibility to amplify signals in
optical transmission systems, besides erbium-doped or Raman fiber ampli-
fiers. The parametric gain is based on highly efficient FWM, relying on the
relative phase between four interacting photons [4.30–4.32]. By pumping the
fiber with an intense wave, a wide and flat gain spectrum can be obtained
over two bands surrounding the pump wavelength. Modern high-power sources
have increased the interest in optical parametric amplifiers (OPAs), whose
gain bandwidth can be tailored to operate at any wavelength, providing
amplification outside the conventional erbium-doped one. Besides broadband
amplification at arbitrary wavelength, the parametric process offers a variety of
applications, such as, for example, wavelength conversion, pulse reshaping and
soliton–soliton interaction [4.30]. Multiple pump schemes can further enhance
the OPA efficiency, both in terms of maximum gain and bandwidth [4.33].

Fiber nonlinearity and dispersion are fundamental aspects for a successful
OPA design. In fact, to achieve high and broadband gain in OPAs, the phase-
matching condition demands a low dispersion slope, while the efficiency of
the nonlinear process requires a small fiber effective area, in order to have a
high nonlinearity. In the last few years, highly nonlinear optical fibers with
nonlinear parameter five to ten times higher than that of conventional fibers
have been introduced, and OPA gains up to 50 dB have been experimentally
demonstrated [4.34].

PCFs are very interesting for optical parametric amplification [4.35], since
they can significantly enhance the FWM process [4.36–4.39], whose conversion
efficiency is strictly related to the dispersion and the nonlinear properties of the
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optical fiber through the phase-matching condition [4.30]. In fact, PCFs offer
the possibility to engineer the zero-dispersion wavelength, the dispersion curve
and the nonlinear coefficient value. In particular, highly nonlinear PCFs [4.40],
as well as fibers with very flat dispersion curves around the zero-dispersion
wavelength, have been successfully designed [4.41]. Also PCFs with both these
properties have been proposed [4.42].

In the study reported here the two kinds of all-silica triangular PCFs with
flattened dispersion curve, zero-dispersion wavelength around 1550 nm and
high nonlinear coefficient described in Chapter 3 have been considered. In
order to show that triangular PCFs have interesting properties for parametric
amplification, the phase-matching condition has been analyzed by varying the
parameters which define the fiber cross-section geometry. The present analysis
has been performed by means of the full-vector modal solver based on the
FEM, described in Appendix A. Simulation results have demonstrated that
the possibility offered by triangular PCFs to engineer the dispersion curve, as
well as the nonlinear coefficient value, can be successfully exploited to satisfy
the FWM phase-matching condition, with positive consequences on the gain
bandwidth of the parametric amplification process [4.1, 4.2].

4.2.1 Triangular PCFs for OPA

The first fiber type, described in Section 3.3.1, has been designed by changing
the diameter d1, d2, and d3 of all the air-holes belonging to the first three rings
around the core, as it is shown in Fig. 3.14. It has been already demonstrated
that a proper choice of Λ, d, d1, d2, and d3 can provide very high nonlinear
coefficient values and very flat dispersion curves. In particular, the following
geometric parameters have been chosen, that is Λ = 0.9 µm, d = 0.81 µm,
d1 = 0.42Λ, d2 = 0.87Λ, and d3 = 0.86Λ. The dispersion curve of this PCF
with three modified air-hole rings is shown in Fig. 3.19a.

In the second triangular PCF type here considered, shown in Fig. 3.21,
three of the air-holes belonging to the first ring have a different diameter
df < d. As reported in Section 3.3.2, due to the shape of the silica core, these
fibers are called triangular-core PCFs. Among the PCFs previously designed
with the best dispersion and nonlinear properties, that is the ones with the
dispersion curves reported in Fig. 3.25, three fibers have been considered in
the present analysis, as reported in Table 4.1.
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Table 4.1: Zero-dispersion wavelength and dispersion slope of the designed
PCFs of the first (first row) and the second (last three rows) type [4.1, 4.2].

Λ (µm) d (µm) df (µm) λ0 (nm) S0 (ps/km ·nm2)
0.9 0.81 – 1510.5 −0.94 · 10−2

1.4 0.55 0.0 1540.2 −3.87 · 10−2

1.6 0.65 0.29 1550.5 −1.8 · 10−2

1.7 0.65 0.32 1563.3 −1.3 · 10−2

Table 4.2: Nonlinear coefficient γ for the PCFs of the first (first row) and the
second (last three rows) type [4.1, 4.2].

Λ (µm) d (µm) df (µm) γ (W ·km)−1

0.9 0.81 – 40.73
1.4 0.55 0.0 10.92
1.6 0.65 0.29 10.97
1.7 0.65 0.32 9.7

Dispersion and nonlinear properties

The zero-dispersion wavelength λ0 and the dispersion slope S0 values of the
fibers analyzed in the present study are summarized in Table 4.1. The values
for the fiber of the first type are shown in the first row, while the ones for
the triangular-core PCFs are reported in the last three rows. Notice that for
the PCF with Λ = 0.9 µm the zero-dispersion wavelength occurs at a slightly
lower value, that is 1510.5 nm, and the dispersion slope is very low, as well.

The nonlinear coefficient values at 1550 nm, evaluated according to
Eq. (A.8) in Appendix A, are reported in Table 4.2 for the studied PCFs.
Notice that the triangular-core PCF with the lowest slope has also the lowest
γ value. This suggests that for this kind of fibers a proper trade-off between
the dispersion slope and the nonlinear coefficient values must be found. For
this reason, considering the PCFs of the second type, the attention will be
focused on the first and the second fiber in Tables 4.1 and 4.2, that is the fiber
with Λ = 1.4 µm, d = 0.55 µm, df = 0 µm, and the one with Λ = 1.6 µm,
d = 0.65 µm, df = 0.29 µm, which have almost the same nonlinear coefficient
value. As already observed, the fiber of the first type has been selected for its
high γ value, that is 40.73 (W·km)−1, which is due to its small pitch.
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4.2.2 Phase-matching condition in triangular PCFs

In order to show how the triangular lattice PCFs here proposed can be success-
fully used for optical parametric amplification, the phase-matching condition
has been analyzed. Under the assumption of undepleted pump, this condition
reads as

κ = ∆β + 2γPp = 0 , (4.1)

where κ is the phase-mismatch parameter, ∆β is the linear wave-vector mis-
match and Pp is the pump power [4.30]. When this condition is satisfied, the
maximum gain can be obtained through the parametric amplification, since
the power flow from the pump at λp to the signal at λs, which are involved
in the FWM process, is highly efficient [4.30]. The phase-matching is obtained
when the nonlinear phase shift 2γPp is compensated by a negative ∆β [4.30].
The linear component of the phase-mismatch parameter can be calculated by
expanding in Taylor series the phase constant β(ω) around the zero-dispersion
frequency ω0 = 2πc/λ0, that is,

∆β =
{

β3(ωp − ω0) +
β4

2

[
(ωp − ω0)2 +

1
6
(ωp − ωs)2

]}
(ωp − ωs)2 , (4.2)

where β3 and β4 are, respectively, the third and fourth derivative of β(ω)
calculated at ω0, ωp is the pump frequency and ωs the signal one. In the present
analysis the contribution from β4 has been considered, as shown in Eq. (4.2).
In fact, when taking into account PCFs, the waveguide contribution to the
dispersion curve is significant, thus higher-order derivatives of β(ω) are usually
larger than in conventional fibers, and they can not be neglected [4.37, 4.38].

The values of β3 and β4 for the three fibers considered in the present study
are reported in Table 4.3. Notice that the first type PCF, that is the one
with Λ = 0.9 µm, has β3 and β4 which are, respectively, about five and two
times lower than those of the triangular-core PCFs with Λ = 1.4 µm and

Table 4.3: Dispersion properties of the PCFs of the first (first row) and the
second (last two rows) type [4.1, 4.2].

Λ (µm) d (µm) df (µm) β3 (ps3/km) β4 (ps4/km)
0.9 0.81 – −1.38 · 10−2 1.40 · 10−4

1.4 0.55 0.0 −6.31 · 10−2 5.57 · 10−4

1.6 0.65 0.29 −2.84 · 10−2 2.99 · 10−4



146 Chapter 4. Nonlinear properties

Λ = 1.6 µm. It is important to underline that the values of β3 and β4 have
been evaluated by deriving the 8th order polynomial fitted to the dispersion
curve. Moreover, their accuracy has been checked following a second approach,
besides the expression given by Eq. (4.2). In particular, the linear wave-vector
mismatch has been calculated also through the relation

∆β = β(ωs) + β(ωi) − 2β(ωp) , (4.3)

being β(ωs), β(ωi), and β(ωp) the phase constant, respectively, of signal, idler
and pump, which have been obtained by the FEM solver, as described in
Appendix A. The agreement between the two approaches is very good.

The linear wave-vector mismatch versus the wavelength difference between
the signal and the pump, |λs−λp|, has been calculated in the range 0–60 nm for
the three considered PCFs. For example, Fig. 4.4a and b report two sets of ∆β
curves obtained by choosing different λp, in order to get similar values of the
∆β minimum, that is −5 and −10 km−1, respectively, and thus to compare
the properties of the three different PCFs. Notice that, being β3 negative
for all the considered PCFs, ωp must be greater than ω0, that is λp < λ0,
in order to obtain a negative ∆β, as shown in Eq. (4.2). It is important to
underline the presence of two symmetrical minima in all the ∆β curves, which
are due to the different sign of β3 and β4. In fact, according to Eq. (4.2), as
|λs − λp| increases, the positive contribution of β4 to the linear wave-vector
mismatch becomes higher, until it dominates the negative one provided by β3.
As a consequence, ∆β decreases initially when λs � λp, it reaches a negative
minimum value and then it increases, becoming positive and no longer useful
for satisfying the phase-matching condition. Moreover, results have shown that
the value and the position of the minimum are strictly related to the pump
wavelength. In particular, it becomes more negative and further from λp when
|λp −λ0| increases, as it can be easily observed for all the considered PCFs by
comparing Fig. 4.4a with b.

Looking at the three ∆β curves shown in Fig. 4.4a or b, it is possible
to notice the influence of β3 and β4 on the linear wave-vector mismatch. In
particular, the minima of the linear wave-vector mismatch, as well as the
condition ∆β = 0, can be obtained for greater values of |λs − λp| if the PCF
with the lowest β3 and β4 is considered, that is the first type one with Λ =
0.9 µm. Moreover, the same minima values of ∆β can be reached by choosing a
pump wavelength further from λ0. For example, by considering the minimum
equal to −10 km−1, λp − λ0 � −1.95 nm for the first-type PCF with Λ =
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Figure 4.4: Linear wave-vector mismatch ∆β versus λs−λp for the three PCFs
of Table 4.3. The pump wavelength λp has been chosen to obtain ∆β minima
of about (a) −5 km−1 and (b) −10 km−1 [4.2].

0.9 µm, λp − λ0 � −1.5 nm for the triangular-core PCF with Λ = 1.6 µm,
while λp − λ0 � −0.9 nm for the one with Λ = 1.4 nm.

Finally, it is important to underline that, for 2γPp values lower than the
absolute value of the ∆β minimum, the phase-matching condition of Eq. (4.1),
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that is κ = 0, is satisfied for two different signal wavelengths. This is shown
in Fig. 4.4a and b by the curve intersections with the horizontal lines, which
represent an arbitrary value of the nonlinear phase shift 2γPp. Obviously, Pp

must be chosen in order to maximize the gain value and bandwidth, according
to the selected kind of fiber. For example, by decreasing Pp, the two intersec-
tion points go far away one from the other. This increases the bandwidth, but
it can cause the gain curve to be affected by strong ripples. On the contrary,
two close intersection points result in a flattened gain curve with a reduced
bandwidth. It is important to underline that the difference between the two
signal wavelength values which satisfy the phase-matching condition is higher
for the PCF with the lowest β3 and β4 values, being wider its ∆β minimum.
This has a positive influence on the parametric gain bandwidth.

Optical parametric gain in triangular PCFs

Under the assumption of undepleted pump, the signal power gain can be
expressed as

G = 10 log 10
{

1 +
[
γPp

g
sinh(gL)

]}
, (4.4)

where L is the fiber length and g =
√

(γPp)2 − (κ/2)2 is the parametric gain
coefficient [4.30]. The signal gain of the considered PCFs has been calculated
versus |λs−λp| for two different lengths, 1 and 0.5 km, by varying Pp so that the
product between the pump power, the nonlinear coefficient and the fiber length
is constant and, consequently, the maximum G is kept almost fix [4.30]. In the
present analysis Pp values have been chosen in order to provide a maximum
gain of about 16 dB.

As shown in Fig. 4.5, a very flat gain can be obtained over a wide signal
wavelength range with all the triangular PCFs here considered. Notice that the
bandwidth is wider when the phase-matching condition is satisfied with the
most negative ∆β value, that is −10 km−1, as reported in Fig. 4.5b. Moreover,
a larger gain bandwidth can be obtained with the PCF characterized by the
lowest β3 and β4 for both the amplifier configurations reported in Fig. 4.5a and
b. In particular, considering the fiber of the first type, a 3 dB-bandwidth of
30 and 35 nm has been reached, by satisfying the phase-matching condition,
respectively, for a nonlinear phase shift of 5 km−1, corresponding to Pp =
0.062 W and a fiber length equal to 1 km, and a nonlinear phase shift of
10 km−1, corresponding to Pp = 0.124 W and a fiber length equal to 0.5 km.
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Figure 4.5: Signal power gain G versus λs − λp. The pump power level used
for each PCF is indicated in the figure label. All the fibers are (a) 1.0 km and
(b) 0.5 km long, respectively [4.2].

Notice that the Pp values used for the first type PCF are about four times lower
than those necessary for the two triangular-core fibers, being 0.230 and 0.460
W, respectively. This is due to the difference among the nonlinear coefficient
values of the three triangular PCFs, as reported in Table 4.2.
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4.3 Nonlinear coefficient in hollow-core PCFs

Differently from small silica-core PCFs, which are characterized by enhanced
nonlinear properties, hollow-core PBGFs provide a very small overlap between
the guided-mode field distribution and silica, thus allowing to dramatically
reduce the nonlinear effects [4.43]. However, it is important to give an exact
evaluation of the nonlinear characteristics also of this particular kind of PCFs.
To this aim, the four modified honeycomb PBGFs previously studied in Section
2.3 have been considered for a thorough analysis of the nonlinear properties.
The nonlinear coefficient of the fundamental mode has been calculated for all
the PBGFs, thus showing the influence of the hollow core, as well as of the
cladding geometric parameters [4.3, 4.44].

The nonlinear coefficient γ describes the change of the fundamental mode
phase constant β due to the nonlinear effects for a given input power P . It has
been calculated according to

γ =
δβ

P
=

2π

λ

δneff

P
, (4.5)

being β = k0 ·neff , where k0 is the wave number in the vacuum and neff

is the effective index of the guided mode. Conversely to what happens in
conventional optical fibers, in the hollow-core PBGFs it is necessary to sep-
arate the contribution to the nonlinear effects of air and silica, which are
both present in the fiber cross-section. As a consequence, two values of the
nonlinear-index coefficient n2 have been considered in the present analysis,
that is n2SiO2

= 2.6 ·10−20 m2/W [4.45] and n2air = 2.9 ·10−23 m2/W [4.46] for
silica and air, respectively. Notice that, despite its very low nonlinearity, the
air contribution is not negligible for PBGFs, due to the high field confinement
into the hollow core and the small overlap with silica. Bjarklev et al. [4.47]
have shown that, in this case, the variation δneff in Eq. (4.5) is given by

δneff = P

⎛
⎜⎜⎝n2air

n2
airε

2
0c

2
∫

Sair

|E|4dS

(vg

∫

S
E · D dS)2

+

+n2SiO2

n2
SiO2

ε20c
2
∫

SSiO2

|E|4dS

(vg

∫

S
E · D dS)2

⎞
⎟⎟⎟⎠ , (4.6)
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where D = ε0εrE, c is the speed of light in the vacuum and vg is the group
velocity of the guided mode. It is possible to demonstrate [4.48] that the
guided-mode power P is related to vg according to

P =
1
2

∫

S
E × H

∗ · ẑdS =
1
2
vg

∫

S
E · DdS . (4.7)

Then, by substituting Eq. (4.7) into Eq. (4.6), and the last one into Eq. (4.5),
the PBGF nonlinear coefficient can be expressed as

γ = γair + γSiO2 =
2π

λ

n2air

Aeffair

+
2π

λ

n2SiO2

AeffSiO2

, (4.8)

where i = air, SiO2 and

Aeffi =

(∫

Si

E × H
∗ · ẑdS

)2

n2
i ε

2
0c

2
∫

S
|E|2dS

(4.9)

is the effective area evaluated as in [4.47]. This expression of γ has allowed
to take into account both the vectorial effects and the nonlinear-index coeffi-
cient variations in the fiber cross-section, which are otherwise neglected in the
definition given in [4.45].

The spectral variation of the nonlinear coefficient for the four PBGFs A,
B, C, and D, whose cross-section is shown in Fig. 2.29, is reported in Fig. 4.6.
Notice that the silica contribution, that is γSiO2 , is negligible for all the fibers
in the wavelength range considered, with the exception of the PBG edges,
since the guided mode becomes delocalized. As a consequence, the nonlinear
coefficient mainly depends on the air contribution, in particular on the Aeffair

value. This is the reason why γ significantly depends on the hollow-core size,
whereas its dependence on the cladding geometric parameters is very weak.
It is important to underline that for the two fibers with R = 3Λ, that is for
the PBGFs B and D, the value of the nonlinear coefficient is more than two
orders of magnitude lower than that of standard optical fibers. In particular,
it is lower than 4 · 10−3 (W·km)−1 over a large wavelength range, wider than
the low-loss region and the effectively single-mode one. Finally, notice that,
in order to obtain a significant reduction of the nonlinear coefficient value for
the hollow-core PBGFs, it is better to increase the mode field diameter by
changing, for example, the size and the shape of the hollow core, rather than
to further reduce the field–silica overlap.
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Figure 4.6: Nonlinear coefficient versus the wavelength of the fundamental
mode of the PBGFs (a) A, (b) C, (c) B, and (d) D, with d/Λ = 0.6 (left
column) and d/Λ = 0.64 (right column) when the core radius is R = 2Λ (top)
and R = 3Λ (bottom) [4.3].
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Chapter 5

Raman properties

The importance of Raman amplification in optical communication systems
has become more and more relevant in the last years. The gain mechanism
in Raman amplification is the SRS, that is, a nonlinear scattering process by
which energy is transferred from a pump wavelength to a signal one, which can
be longer, in the Stokes process, or shorter, in the anti-Stokes one [5.1, 5.2].
The gain flexibility, that is, the possibility to obtain amplification at any
wavelength in any fiber, is one of the key advantage of Raman fiber ampli-
fiers. Broadband and low noise-figure Raman amplifiers can be obtained with
multipumping schemes [5.3–5.5]. Moreover, distributed Raman amplification
provides a significant improvement of the noise performances and an increase
of the signal power budget in transmission fibers [5.6, 5.7].

As already observed in previous Chapters, PCFs can greatly enhance
nonlinear effects [5.8–5.11], compared to conventional optical fibers. As a con-
sequence, PCFs can be successfully used as Raman amplification fibers [5.12].
A continuous-wave pumped Raman laser [5.13], as well as an L+-band Raman
amplifier in a PCF [5.14] have been already experimentally demonstrated.
Enhanced Raman properties can be obtained in both index-guiding and
hollow-core PCFs. For example, by filling the PCF hollow-core with hydro-
gen, it is possible to reduce the threshold power for the SRS by two order of
magnitude [5.15]. On the contrary, the nonlinear properties of index-guiding
fibers can be improved by changing only the geometric characteristics of
the air-hole lattice in the PCF cross-section, or by introducing a proper
germania-doped area in the fiber core.

159
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Two meaningful parameters, that is the Raman effective area AR
eff and the

Raman gain coefficient γR, have been considered to describe the fiber Raman
performances. The Raman effective area [5.16] takes into account the overlap
between the field profiles of the pump and the signal, which participate to the
Raman amplification process, thus providing a more complete description of
the Raman properties of the fibers.

Triangular PCFs have been considered in order to design nonlinear fibers
with enhanced performances for Raman amplification. The behavior of AR

eff

and γR as a function of the triangular lattice geometric parameters, that is Λ
and d/Λ, has been investigated for all-silica PCFs and germania-doped core
ones [5.16, 5.17]. Results of the present analysis have shown that a proper
design of triangular PCFs can significantly improve the Raman gain perfor-
mances, that is minimize the Raman effective area and maximize the Raman
gain coefficient. Germania-doped triangular PCFs have been analyzed too,
showing that the best Raman gain coefficient value can be obtained when the
doped area is internally tangent to the first air-hole ring in the fiber cross-
section. Moreover, the Raman properties of tellurite-based triangular PCFs
have been evaluated and compared with the silica-based ones. Simulation
results have demonstrated that, by fixing the geometric parameters and by
changing only the glass matrix from silica to tellurite, an increase of two order
of magnitude in the triangular PCF Raman gain coefficient is possible, due
to the better Raman properties of the tellurite glass [5.18]. Triangular PCFs
with enlarging air-holes and a germania-doped core have been also considered,
in order to decrease the coupling losses to the standard single-mode fibers.
In fact, all the PCFs with good Raman properties, that is with enhanced
nonlinearity, have a small core diameter. The design analysis here reported
has provided useful informations for a proper trade-off between the effective
area and the Raman gain coefficient values, in order to successfully employ
highly nonlinear PCFs for actual applications [5.19].

After investigating the Raman properties of solid-core triangular PCFs
with different geometric characteristics, the guiding mechanism based on
the PBG has been considered to design honeycomb PCFs with a germania-
doped solid core, which present enhanced Raman properties. Results have
demonstrated that, with respect to silica-core honeycomb PCFs, the proposed
fibers with a germania-doped core avoid a drastic reduction of the effective
area, while providing considerable higher Raman gain coefficient values [5.20].
Different germania concentrations has been considered too.
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The gain and noise performances of different triangular PCF-based Raman
amplifiers have been also analyzed. Results have shown that good Raman
gain performances can be obtained by changing the PCF geometric charac-
teristics and the germania concentration [5.21]. Moreover, simulations have
been performed with low-loss triangular PCFs recently fabricated. It has been
demonstrated that the maximum Raman gain achievable is strongly influenced
by the fiber background losses, which are particularly high in nonlinear PCFs,
especially at the pump wavelength.

Starting from the last consideration, the performances of Raman ampli-
fiers based on triangular PCFs have been analyzed by evaluating the potential
improvements obtainable with a reduction of the background losses. Simula-
tion results have shown that the Raman amplifier performances are strongly
affected by the attenuation, in particular by the difference of the loss level at
the pump and the signal wavelengths [5.22].

A further analysis has been performed on Raman amplifiers based on
low-loss triangular PCFs when multiple pumps are used. Different pump
wavelengths and power distributions have been considered with the aim to
reduce the gain spectrum ripple as much as possible. The study here presented
has demonstrated that a flat Raman gain can be obtained in both the C and
L band [5.23,5.24]. Higher gain values can be reached in the latter band, since
the attenuation at the pump wavelengths used in this case is lower, while the
efficiency of the pumps for the C band is strongly reduced by the OH-peak
attenuation.

All the results here summarized clearly show that, in order to completely
exploit the good PCF Raman properties, it is fundamental to develop a fully
optimized PCF fabrication process, necessary to reduce not only the total
attenuation, but also the OH-absorption peak, which strongly affects the pump
efficiency.

5.1 Raman effective area and Raman
gain coefficient

The Raman propagation equations for one signal and one pump interacting, in
the continuous-wave case and neglecting the double Rayleigh backscattering
and the amplified spontaneous Raman scattering, are
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dIs

dz
= gRIsIp − αsIs (5.1)

dIp

dz
= ±

(
ωp

ωs
gRIpIs + αpIp

)
, (5.2)

where Is and Ip are the signal and the pump intensities, αs and αp account
for the fiber losses at the signal and the pump frequency, respectively, that is
ωs and ωp, and gR is the Raman gain efficiency between the pump and the
signal [5.25]. By integrating Eqs. (5.1) and (5.2) on the fiber transverse section
S, it yields

dPs

dz
= γRPsPp − αsPs (5.3)

dPp

dz
= ± (γ̂RPpPs + αpPp) , (5.4)

where Ps and Pp are the signal and the pump powers and γR is the Raman
gain coefficient, defined as

γR =
∫∫

S gR(x, y)Is(x, y)Ip(x, y) dx dy∫∫
S Is(x, y) dx dy

∫∫
S Ip(x, y) dx dy

. (5.5)

The coefficient
γ̂R =

ωp

ωs
γR (5.6)

has been also introduced in Eq. (5.4).
By taking into account that

Pk =
∫∫

S
Ik(x, y) dx dy k = s, p , (5.7)

it is possible to provide an alternative definition of the Raman gain coefficient
starting from Eq. (5.5), that is,

γR =
∫∫

S
gR(x, y)is(x, y)ip(x, y) dx dy , (5.8)

where is and ip are the signal and the pump normalized intensities, respec-
tively, which satisfy the following conditions

∫∫

S
ik(x, y) dx dy = 1 (5.9)
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and
ik(x, y) =

Ik(x, y)
Pk

k = s, p . (5.10)

Moreover, since the Raman properties strongly depend on the medium, a
precise evaluation of the Raman gain coefficient requires the knowledge of the
different contributions given by the materials which constitute the fiber. Since
the most common fibers consist of a silica host, SiO2, with germania, GeO2,
added in the core to increase the refractive index, the definition of the Raman
gain coefficient can be extended as in [5.26], that is,

γR =
∫∫

S
CSiSi(1 − 2m(x, y))is(x, y)ip(x, y)dxdy

+
∫∫

S
CGeSi2m(x, y)is(x, y)ip(x, y)dxdy . (5.11)

In this expression γR has been decomposed into a sum of two contributions,
one from pure silica, with bound Si–O–Si, and the other from binary germania
and silica, with bound Ge–O–Si. Notice that each contribution is calculated by
integrating the normalized intensities of the pump and the signal, weighted by
the fractional distribution of the bridges Si–O–Si, that is (1 − 2 m(x, y)), and
Ge–O–Si, that is 2 m(x, y), being m(x, y) the germania concentration [5.26].
Equation (5.11) is implicitly dependent on the spectral separation ∆ν between
the pump and the signal through CSiSi(∆ν) and CGeSi(∆ν), which are the
Raman spectra relative to the bounds Si–O–Si and Ge–O–Si, respectively.
However, in the following analysis a fixed separation between the pump and the
signal ∆ν � 13.2 THz has been assumed, which corresponds to a wavelength
separation of about 100 nm in the C band, in order to consider the peak Raman
gain coefficient. The pump and the signal wavelengths have been chosen equal
to 1450 and 1550 nm, respectively, but the same analysis can be performed for
any wavelengths of the interacting signals. The peak gain spectra CSiSi and
CGeSi in Eq. (5.11) have been evaluated following the method presented in
[5.26]. By taking into account the results for pairs of different fibers with known
Raman gain coefficient values, it has been found that CSiSi = 3.34 · 10−14 m/W
and CGeSi = 1.18 · 10−13 m/W.

The Raman effective area can be defined as it follows

AR
eff =

∫∫
S Is(x, y) dx dy

∫∫
S Ip(x, y) dx dy∫∫

S Is(x, y)Ip(x, y) dx dy

=
1∫∫

S is(x, y)ip(x, y) dx dy
. (5.12)
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Considering a mean value of the Raman gain efficiency gR in the fiber cross-
section, the relation between the Raman gain coefficient and the Raman
effective area can be expressed as

γR =
gR

AR
eff

. (5.13)

Notice that the coefficient gR represents a total value of the Raman gain
efficiency associated with the fiber, which takes into account the materials
that compose the fiber and their spatial distribution. If the interacting signals
have the same frequency, the Raman effective area coincides with that given
by the “classical” definition

Aeff =
(
∫∫

S I(x, y) dx dy)2∫∫
S I(x, y)2 dx dy

. (5.14)

According to the previous definition of Eq. (5.12), the Raman effective
area usually presents values between those calculated with the expression
in Eq. (5.14) at the pump and the signal wavelength. In fact, AR

eff accounts for
the overlap between both the fields on the fiber cross-section, thus providing
an insight into the strength of the Raman interaction. The Raman effective
area contains implicitly more information than the “classical” Aeff , since it is
a function of the fiber geometry and of the signal wavelength, but also of the
pump wavelength or, equivalently, of the frequency separation between the
pump and the signal. For these reasons it is a more complete parameter for
the description of the Raman properties.

The normalized intensities of the pump and the signal which appear in
the previous equations have been evaluated as described in Appendix A. In
particular, the intensity has been calculated according to the Poynting vector
definition reported in Eq. (A.5), which has a general validity. This formulation
is more accurate than the one presented in [5.27]. Moreover, it is important to
underline that there is a difference in the calculation of the Raman effective
area and the Raman gain coefficient. In fact, only the glass zones in the PCF
cross-section give a contribution to the Raman gain coefficient, while in the
calculation of the effective area it is necessary to consider all the fiber section,
that is also the contribution of the field in the air-holes.
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5.2 Raman properties of triangular PCFs

The Raman properties of triangular PCFs have been investigated by changing
the geometric parameters that characterize the fiber cross-section, that is the
air-filling fraction d/Λ and the pitch Λ of the air-hole lattice, as well as the
characteristics of the fiber solid core. In fact, by properly modifying these
parameters, it is possible to change the guided-mode field distribution and, as
a consequence, the Raman effective area and the Raman gain coefficient.

5.2.1 Silica triangular PCFs

Initially, PCFs with a triangular lattice of air-holes in a silica bulk, shown
in Fig. 3.1 with the geometric parameters d and Λ, have been considered for
the Raman property analysis. In order to obtain fibers with good nonlinear
properties, triangular PCFs with large air-holes and small pitch have been
designed. In particular, d/Λ has been chosen equal to 0.6, 0.7, 0.8, and 0.9,
and a pitch which varies between 0.7 and 2.3 µm has been considered. Notice
that the number of air-hole rings is variable, since it depends on the geometric
parameters of the studied PCFs. However, simulation results have demon-
strated that eight air-hole rings are enough for all the studied PCFs to obtain
accurate values of the Raman effective area and the Raman gain coefficient.

Figure 5.1a and b report the values of the Raman effective area and the
Raman gain coefficient, respectively, as a function of the pitch Λ for the
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Figure 5.1: (a) Raman effective area and (b) Raman gain coefficient behavior
as a function of the pitch Λ for the PCFs with different d/Λ, that is 0.6, 0.7,
0.8, and 0.9 [5.16].
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triangular PCFs with d/Λ in the range 0.6–0.9. Results have shown that, for a
fixed d/Λ, there is an optimum value of Λ which minimizes AR

eff and maximizes
γR. This condition is achieved when the PCF presents a high refractive index
difference between the silica core and the photonic crystal cladding and, at
the same time, a small core radius, thus providing a high guided-mode field
confinement. It is important to underline that in a PCF with a given d/Λ the
core dimension increases by enlarging the pitch Λ. On the contrary, the aver-
age refractive index of the microstructured cladding remains the same, since
it depends only on the air-filling fraction. In order to explain the AR

eff behavior
versus the pitch, it is useful to consider the two extreme situations, that is
Λ → 0 and Λ → ∞. Being d/Λ constant, in the first case the core radius of the
triangular PCF tends to disappear, that is Λ−d/2 → 0. As a consequence, the
field is no more guided and AR

eff → ∞. The second case is quite similar, since it
corresponds to a PCF with air-holes of infinite dimension, infinitely separated.
The core radius Λ − d/2 → ∞ and again AR

eff → ∞. For pitch values between
these two extreme conditions, the field of the guided mode is confined in the
PCF silica core, and AR

eff reaches a minimum for a well-defined optimum Λ.
Analogous conclusions can be drawn for the Raman gain coefficient. In fact, it
results inversely proportional to the Raman effective area in Eq. (5.11) when
the fiber is undoped, that is m = 0. Hence, a minimum of the Raman effective
area corresponds to a maximum of the Raman gain coefficient.

Moreover, Fig. 5.1 shows that the PCFs with d/Λ = 0.9 have the smallest
Raman effective area and the highest values of the Raman gain coefficient. In
particular, a maximum γR of about 21 (W·km)−1 has been obtained for the
PCF with d/Λ = 0.9 and Λ = 1 µm. These good performances are due to the
high air-filling fraction of the photonic crystal cladding around the central sil-
ica core. Notice that the structure of the triangular PCFs with a high d/Λ value
is quite similar to that of other highly nonlinear holey fibers presented in lit-
erature [5.28,5.29], whose high nonlinearity has been obtained with very large
air-filling fraction in the cladding, that is with large air-holes closely spaced.

Another important issue concerns the location of the minimum of AR
eff , that

is the value of the optimum Λ, called Λopt, which provides the best Raman
effective area. In Table 5.1 the geometric parameters of the PCFs with the
best Raman performances are summarized. In particular, the values of the
PCF core radius rco, assumed equal to Λ − d/2, are reported in the third
column, while the product between the relative air-hole diameter d/Λ and the
core radius is shown in the fourth column. It is interesting to underline that all
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Table 5.1: Parameters of the PCFs which provide the best Raman perfor-
mances [5.16].

d/Λ Λopt (µm) rco (µm) d/Λ · rco (µm)
0.6 1.2 0.84 0.504
0.7 1.1 0.715 0.505
0.8 1 0.6 0.48
0.9 1 0.55 0.495

the PCFs with the best performances are characterized by a product d/Λ · rco

around 0.5 µm. Since d/Λ describes the PCF air-filling fraction, it is strictly
related to the refractive index difference ∆n between the core and the photonic
crystal cladding. Results reported in Table 5.1 show that all the PCFs with the
minimum AR

eff have a well defined combination of ∆n and rco. This relation is
really meaningful, because it allows to calculate a first approximation of Λopt

for a fixed d/Λ.
Afterward, it has been also investigated the possibility of improving

the Raman amplification performances of triangular PCFs by introducing
a germania-doped area in the fiber core, by exploiting the better Raman
properties of germania with respect to silica. This study has been developed
by following two different directions. Initially, it has been investigated how
the Raman gain coefficient changes when the germania concentration in the
doped core area increases, while all the other geometric parameters are kept
constant. PCFs with Λ = 1.6 µm, d/Λ equal to 0.4, 0.6, and 0.8, and a
circular GeO2-doped region with radius Rd = Λ/2 have been considered. The
germania concentration has been progressively increased, starting from 5% up
to 25% mol, with step of 5% mol. An example of the analyzed PCFs, that is
the one with d/Λ = 0.6 and Λ = 1.6 µm, is shown in Fig. 5.2a. The evaluated
values of the Raman gain coefficient are reported in Fig. 5.2b as a function of
the germania concentration. Notice that, for a fixed d/Λ, γR linearly increases
with the GeO2 concentration. Moreover, an excellent agreement has been
obtained with the linear interpolation of the γR values measured by Galeener
et al. [5.30] or the ones reported in [5.31].

A second analysis has been carried out, in order to find the optimum
germania-doped region dimension. Once again PCFs with d/Λ equal to 0.6,
0.7, 0.8, and 0.9 have been considered. For each d/Λ, it has been chosen a
pitch Λ = Λopt, previously calculated for the all-silica PCFs and reported in
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Figure 5.2: (a) Transverse section of the germania-doped PCF with d/Λ = 0.6,
Λ = 1.6 µm and Rd = Λ/2. (b) Raman gain coefficient of the germania-doped
PCFs with Λ = 1.6 µm, Rd = Λ/2 and d/Λ = 0.4, 0.6, and 0.8, as a function
of the germania concentration [5.16].

Figure 5.3: Transverse section of the germania-doped PCF with d/Λ = 0.7,
Λ = 1.1 µm and Rd � 2.75 µm, corresponding to a doped-region over the
second ring of air-holes [5.16].

Table 5.1. The GeO2 concentration has been fixed to 20% mol, which cor-
responds to a refractive index of 1.47 at 1550 nm for the doped silica. The
germania-doped area has been progressively enlarged, starting from a circu-
lar region with radius Rd � Λ/2 up to an area which includes the first three
air-hole rings. An example of a doped PCF considered in the present analysis,
that is the one with d/Λ = 0.7 and Λ = 1.1 µm, is shown in Fig. 5.3. Notice
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that, when the doped region is internal to the first air-hole ring, the radius
Rd can be straight defined. Otherwise, if the GeO2-doped region extends over
the first air-hole ring, as in the PCF reported in Fig. 5.3, only a mean value
of Rd can be defined. Such a doped-region profile has been chosen in order to
analyze structures as much as possible similar to the physically feasible PCFs,
since perfect circular doped regions extending in the photonic crystal cladding
can not be easily fabricated.

Figure 5.4a and b report the values of the Raman effective area and the
Raman gain coefficient of the PCFs previously described, as a function of the
mean doped-area radius Rd. It is important to underline that a maximum
γR value exists for each PCF. This occurs when the germania-doped area is
internally tangent to the first air-hole ring, that is for a well-defined value of the
doped-area radius Rd,opt = Λ−d/2. Since Rd,opt is different for the considered
PCFs, being related to their geometric parameter values, the position of the
maximum is not the same for all the γR curves. Notice that the AR

eff minima,
reported in Fig. 5.4a, have been obtained for Rd values which are sometimes
different from Rd,opt. This mismatch can be explained considering that the
Raman gain coefficient of a germania-doped PCF is calculated according to
Eq. (5.11). As a consequence, γR is not simply inversely proportional to AR

eff ,
as it happens in all-silica PCFs. In fact, it depends on the guided-mode field
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Figure 5.4: (a) Raman effective area and (b) Raman gain coefficient of the
PCFs doped with 20% mol of GeO2, with d/Λ = 0.6, 0.7, 0.8, and 0.9, and
Λopt = 1.2, 1.1, 1, and 1 µm, respectively, as a function of the doped-area
mean radius [5.16].
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confinement and also on the overlap between the field and the germania-doped
region. Being CGeSi > CSiSi, the more the field is confined in the doped region,
the higher is γR. As a consequence, situations can occur when the maximum
γR value does not correspond to the AR

eff minimum.

It is possible to explain the behavior of the Raman effective area as a
function of Rd. AR

eff depends on two factors, the refractive index difference
∆n and the core dimension. For the doped PCFs it is difficult to give a plain
definition of the core area. For example, if Rd < Λ − d/2, the core can be
assumed equal to the germania-doped region, while, if Rd > Λ − d/2, the
core is approximatively the circular area internally tangent to the first air-
hole ring with rco = Λ − d/2. When the doped region is tangent to the first
air-hole ring, the field senses both the refractive index difference between the
germania-doped core and the silica bulk, and that between the former and
the surrounding air-holes. On the contrary, when the dopant extends over the
first air-hole ring, the field confinement is mainly due to the refractive index
difference between the doped core and the air-holes. As a consequence, the
field tails can leak out in the bridges among the air-holes, so that the Raman
effective area slightly increases with a further widening of the doped region. As
reported in Fig. 5.4a, the stronger AR

eff variation with Rd has been obtained
for the PCF with the smallest d/Λ ratio and the largest Λ, that is the one
with d/Λ = 0.6 and Λ = 1.2 µm, being larger the inter space between the
neighboring air-holes. Moreover, the AR

eff minimum has been usually obtained
for Rd around Λ − d/2, according to the optimum combination between the
core dimension and the core-cladding refractive index difference ∆n. In other
words, only a perfect balance between the core radius and ∆n can lead to the
minimum of the AR

eff .

The explanation of the Raman gain coefficient behavior as a function of Rd,
reported in Fig. 5.4b, is quite similar to the previous one, even if the maximum
occurs always for Rd = Λ − d/2. Notice that, by enlarging the doped region
over the first air-hole ring, γR is not significantly improved. This happens for
two reasons: the Raman effective area increase when Rd > Λ − d/2, as shown
in Fig. 5.4a, and the higher field fraction falling into the air-holes, which does
not contribute to the Raman gain coefficient value. On the other side, doped
areas which are too small, that is with Rd < Λ − d/2, are not useful. In
fact, in the studied PCFs the guided-mode field always extends almost to
the first air-hole ring, so that the wider is the doped region, obviously still
with Rd ≤ Λ − d/2, the higher is γR. As a consequence, the γR maximum is
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obtained when Rd = Λ − d/2, that is when the germania-doped region comes
into contact with the first air-hole ring. This is a meaningful result, especially
from a technological point of view. In fact, PCFs are fabricated by stacking
tubes and rods of glass into a structure, that is a macroscopic scaled preform
with the air-hole pattern required in the final fiber. Results here obtained have
demonstrated that, in order to design an optimum doped PCF for Raman
amplification, it is just necessary to add a central germania-doped rod in the
fabricated preform, which will be the core of the drawn fiber.

Finally, it is important to point out some considerations on the absolute
value of the Raman gain coefficient peak for different fiber types. By compar-
ing the values obtained for doped triangular PCFs with those of other com-
mercially available traditional fibers, a significant improvement can be noted.
Table 5.2 reports the γR peak value for a standard single-mode fiber, that is
an SMF, a non-zero dispersion-shifted fiber (NZ-DSF), which is similar to a
dispersion-shifted fiber (DSF), a dispersion compensating fiber, or DCF, which
provides good Raman performances due to its intrinsic high nonlinearity, and,
finally, a fiber designed on purpose for Raman amplification [5.32]. Although
the last two fibers have high Raman gain coefficient values, their performances
are lower than those reachable with the triangular PCFs here studied. In fact,
PCFs can offer a tighter guided-mode field confinement, and thus an effec-
tive nonlinearity per unit length 10–100 times higher than that of traditional
optical fibers [5.14]. Another interesting comparison can be made between the
γR of triangular PCFs and that of another highly nonlinear holey fiber with
a cobweb structure of air-holes, shown in Fig. 4.1 [5.33]. Due to the large air-
filling fraction surrounding the central silica core, the cobweb holey fiber is
characterized by AR

eff � 1.41 µm2 and γR � 22 (W·km)−1. Notice that the
γR values calculated for the doped triangular PCFs, whatever the d/Λ ratio,
are always higher than 20 (W·km)−1 and, selecting a doped PCF with a high
air-filling fraction, values of γR higher than 40 (W·km)−1 can be obtained, as
shown in Fig. 5.4b. The enhancement can be greater if the germania concen-
tration is increased over 20% mol or, alternatively, if other glass matrix, like
tellurite, are used to fabricate the triangular PCFs [5.15, 5.34].

Table 5.2: Raman gain coefficient peak value for different fiber types [5.16].
SMF NZ-DSF/DSF DCF Raman fiber

0.5 (W·km)−1 0.7–0.8 (W·km)−1 3 (W·km)−1 5–6 (W·km)−1
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5.2.2 Tellurite triangular PCFs

It is interesting to investigate how the good Raman properties of tellurite
glasses [5.35] can be combined with the great flexibility of PCFs [5.36]. In
fact, tellurite glasses offer useful properties, such as high refractive index, good
infrared transmittance, and high optical nonlinearity. Recently, it has been
demonstrated that tellurite glass can be used to fabricate low-loss PCFs with
the extrusion process [5.37]. In addition, strong stimulated Raman scattering
has been experimentally observed in this tellurite PCF [5.37].

The Raman amplification properties of triangular PCFs have been ana-
lyzed by considering a tellurite matrix, which substitutes the silica one. The
geometric parameters Λ and d/Λ have been changed in the same range as for
the silica-based fibers. Since in tellurite-based fibers the Stokes frequency shift
is about 21 THz [5.35], the pump wavelength has been fixed to 1390 nm, in
order to obtain Raman amplification around 1550 nm. Moreover, the Raman
gain coefficient γR has been calculated according to Eq. (5.8), where gR is the
Raman gain efficiency between the pump and the signal. Notice that gR = 0
must be assumed in the air-holes. For the tellurite-based PCFs gR has been
considered 30 times higher than that of the silica glass [5.35], whose value is
3.34 · 10−14 m/W, as reported in Section 5.2.1.

Simulation results are reported in Fig. 5.5 for the PCFs with d/Λ = 0.6−0.9
and Λ in the range 0.7–1µm. Looking at Fig. 5.5a, it is interesting to notice
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Figure 5.5: (a) Raman effective area and (b) Raman gain coefficient values for
tellurite PCFs with different d/Λ, that is 0.6, 0.7, 0.8, and 0.9, as a function
of the pitch Λ [5.18].



5.2. Raman properties of triangular PCFs 173

that the AR
eff is lower than in silica-based fibers and, differently from the silica

case, it always increases with the pitch Λ, also in the range 0.7–1 µm. This
means that both the signal and the pump fields are much more focused within
the core for all the Λ values, thanks to the higher tellurite refractive index, that
is 1.998 at 1550 nm. The tellurite-based PCF with d/Λ = 0.9 and Λ = 0.7 µm
has the minimum AR

eff , that is 0.62 µm2. The same fiber realized with the
silica glass matrix has an AR

eff more than three times higher, that is about
2 µm2. The lower AR

eff values of the tellurite-based fibers, combined with the
higher Raman gain efficiency, provide a significant increase of the Raman gain
coefficient. Starting from these considerations, it is possible to predict that the
γR of the PCF with d/Λ = 0.9 and Λ = 0.7 µm will be nearly two order of
magnitude higher than the values obtained with the silica-based PCFs. This
is confirmed by the Raman gain coefficient values reported in Fig. 5.5b. It is
worth saying that these extremely high γR values can allow very short PCFs
to be used as Raman amplifying medium, thus reducing the impact of the
higher tellurite glass background losses [5.35].

5.2.3 Enlarging air-hole triangular PCFs

The study of the PCF Raman performances here reported has shown that
the best behavior can be obtained in triangular PCFs with a very small core
dimension, which allows to obtain good nonlinear properties. As a drawback,
the resulting mismatch between the field sustained by these highly nonlinear
PCFs and by standard optical fibers critically increases the splicing and the
coupling losses. For this reason, triangular PCFs with a fixed core diame-
ter, still smaller than that of standard single-mode fibers, but larger than
those of the PCFs investigated in Sections 5.2.1 and 5.2.2, have been consid-
ered. In addition, air-hole tailoring has been exploited to enlarge the guided-
mode effective area. In order to maintain high Raman gain coefficient values,
a germania-doped region has been introduced in the fiber core. However, this
tightly confines the field, since the refractive index difference between the core
and the photonic crystal cladding increases. As a consequence, a proper design
of this kind of triangular PCFs has to provide a trade-off between the values
of the Raman gain coefficient and of the effective area.

The analysis has been performed by considering three kinds of triangular
PCFs with increasing dimensions of the air-holes. The hole-to-hole spacing,
Λ = 1 µm, and the air-hole diameter of the first ring, d1 = 0.2 µm, are
the same for all the PCFs, and, consequently, also the core diameter, defined
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by dcore = 2Λ − d1. The diameter dn of the air-holes in the nth outer ring,
with n ≥ 1, has been chosen according to dn+1/Λ = dn/Λ + ∆. Different ∆
value has been considered for the three fiber types, that is 0.05, 0.1, and 0.15,
respectively. Notice that the air-hole diameters have been modified as long as
their variation influences the effective area of the guided mode. The air-hole
diameter in the remaining outer rings has been fixed to d = 0.9 µm, in order
to reduce the leakage losses [5.38].

In order to obtain improved Raman performances, a germania-doped area
has been introduced in all the PCFs here studied. The doped-region radius
has been fixed to rd = 0.85 µm, while the germania concentration has been
changed from 0% to 19.3%. The guided-mode magnetic field at 1550 nm is
reported in Fig. 5.6a for the all-silica PCF with ∆ = 0.05. Looking at Fig.
5.6b, it is possible to notice the higher field confinement due to the presence
of a 19.3% germania-doped area in the PCF core.

The Raman performances of the triangular PCFs with enlarging air-holes
have been studied by calculating the Raman gain coefficient and the Raman
effective area according to Eqs. (5.11) and (5.12), respectively. The behavior of
AR

eff and γR as a function of the germania concentration for the three kinds of
PCFs considered is reported in Fig. 5.7. Results have shown that, by increasing
the germania concentration, the Raman effective area linearly decreases in all
cases, while the Raman gain coefficient has the inverse behavior. For example,
γR is 2.1 (W·km)−1 for the PCF with ∆ = 0.05 if only silica is present in the
fiber cross-section, and it becomes about 7.2 (W·km)−1 when the germania

(a) (b)

Figure 5.6: Fundamental component of the guided-mode magnetic field at
1550 nm for the (a) undoped and (b) the 19.3% germania-doped PCF with
∆ = 0.05.
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Figure 5.7: Raman properties for the PCFs with (a) ∆ = 0.05, (b) ∆ = 0.1,
and (c) ∆ = 0.15 with different germania concentrations.

concentration is 19.3%, as reported in Fig. 5.7a. Notice that the influence
of the germania-doped area on the PCF Raman properties changes with ∆,
that is with the air-hole diameter in the photonic crystal cladding, even if
the core diameter is the same. In fact, the Raman effective area of the PCF
with ∆ = 0.05 is halved, by adding a germania-doped area with the highest
concentration, while AR

eff decreases from 7.8 to 5.6 µm2 for the PCF with
∆ = 0.15. The decrease of AR

eff for the PCF with the lowest ∆ value can be
easily understood looking at Fig. 5.6. In fact, the guided-mode field is tighter
confined in the central area of the doped PCF cross-section.

5.3 Raman properties of honeycomb PCFs

As described in Chapter 1, PCFs guide light by two different mechanisms, that
is, by modified TIR and by means of the PBG effect. The first PCF which
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(a) (b)

Figure 5.8: Fundamental component of the guided-mode magnetic field at
1550 nm for a honeycomb PCF (a) with an extra air-hole in the core center
and (b) with a solid core.

exploited the latter guiding mechanism was characterized by a honeycomb
lattice with a defect in the silica core given by an extra air-hole, as shown in
Fig. 1.5 [5.39]. Even if the honeycomb PCFs present interesting and uncon-
ventional properties [5.40,5.41], the extra air-hole causes a ring-shaped guided
mode, shown in Fig. 5.8a, rather than a gaussian-like one, as in conventional
fibers. Solid-core honeycomb PCFs [5.42–5.44], besides overcoming this prob-
lem, as demonstrated by the guided-mode field reported in Fig. 5.8b, open
up new possibilities to further enhance the nonlinear properties, in particular
the Raman ones. For this purpose, germania-doped regions can be added in
the core or in the cladding of the honeycomb PCFs, provided their inclusion
maintain the guided mode within the bandgap.

In the present study new solid-core honeycomb PCFs with a gaussian-like
field distribution have been designed to improve the Raman gain coefficient,
while assuring Raman effective area values higher than those obtained with
index-guiding triangular PCFs. These requirements can be achieved by prop-
erly moving the guided solution within the bandgap through the variations of
the central defect characteristics. The Raman performances of the germania-
doped honeycomb PCFs have been studied again by calculating the Raman
gain coefficient and the Raman effective area according to Eqs. (5.11) and
(5.12), respectively.

Figure 5.9a reports the cross-section of the honeycomb PCFs here con-
sidered, which have a lattice characterized by air-holes with diameter d =
0.5Λ, and up-doped circular regions with diameter dGe = Λ and a germania
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Figure 5.9: (a) Detail of the honeycomb PCF cross-section. (b) PBGs as a
function of the wavelength and effective index for the pump at 1450 nm and
the signal at 1550 nm versus dd/Λ for the PCF with Λ = 2.5 µm [5.20].

concentration of 19.3%. As shown in Fig. 5.9b for Λ = 2.5 µm, this structure
presents two PBGs, which have been calculated by a freely available software
package [5.45]. In order to obtain a mode guided by the PBG mechanism, a
core defect has been added in the honeycomb PCF cross-section, by substi-
tuting the central area of diameter dGe with a doped region of diameter dd

and a lower germania concentration, that is 15%. Figure 5.9b reports also the
effective index neff of the guided mode at the wavelengths of the pump and
the signal involved in the Raman amplification process, that is 1450 and 1550
nm, respectively, for different dd/Λ values. Notice that when dd = 0, which
corresponds to an all-silica core, the neff is almost at the PBG center for both
the wavelengths. As the core defect is enlarged, the effective index increases
and moves toward the upper PBG edge.

This displacement of the guided state results in a lower field confinement,
which counterbalances the field focusing given by the higher refractive index
difference introduced by the germania-doped central region. These two oppo-
site mechanisms acting on the field confinement allow to reduce the Raman
effective area variations and, at the same time, to increase the Raman gain
coefficient, thanks to the germania doping. For example, when the pitch is
2.5 µm, the two honeycomb PCFs with dd/Λ = 0 and dd/Λ = 1.14 have al-
most the same AR

eff , but the γR values are, respectively, 3.6 and 6.2 (W·km)−1,
as shown in Fig. 5.10a. The maximum γR of 7.4 (W·km)−1, which is more
than twice the one of the silica-core honeycomb PCF, has been obtained when
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Figure 5.10: AR
eff and γR versus the core defect diameter normalized to the

pitch dd/Λ for the honeycomb PCFs with (a) Λ = 2.5 µm, (b) Λ = 3 µm, and
(c) Λ = 4 µm [5.20].

dd/Λ = 0.9. This fiber provides a Raman effective area which is only 1.5 µm2

lower than that of the PCF with dd = 0. A similar qualitative behavior of AR
eff

and γR has been found for different Λ values, that is 3 and 4 µm, as shown
in Fig. 5.10b and c, respectively. For example, the results obtained for the
honeycomb PCFs with Λ = 3 µm, reported in Fig. 5.10b, suggest to choose
dd/Λ = 1.2 to double the γR with respect to the silica core fiber, while just
reducing AR

eff from 12.8 to 11.3 µm2.

5.4 PCF Raman amplifiers

The performances of PCF-based Raman amplifiers have been studied with an
accurate model which combines the calculation of the Raman gain coefficient
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[5.26, 5.46] and the solution of the Raman propagation equations [5.4].
The Raman gain coefficient γR is related to the frequency separation ∆ν

between the interacting signals and it is calculated according to

γR(∆ν) =
∫∫

S
CSiSi(∆ν)(1 − 2m(x, y))is(x, y)ip(x, y)dxdy

+
∫∫

S
CGeSi(∆ν)2m(x, y)is(x, y)ip(x, y)dxdy . (5.15)

This is a general definition of the Raman gain coefficient, since the dependency
of the Raman spectra CSiSi and CGeSi, and consequently of γR, on the frequency
separation ∆ν is clearly expressed. As explained in Section 5.1, Eq. (5.11)
derives directly from Eq. (5.15) when ∆ν � 13.2 THz, which provides the
Raman gain coefficient peak. It is important to underline that CSiSi(∆ν) and
CGeSi(∆ν) are equal to 0 in the air-holes of the PCF cross-section, since the
air contribution to the Raman amplification process is null.

The analysis of the Raman fiber amplifier performances is based on
a set of propagation equations, which describe the forward and backward
power evolutions along the fiber of pumps, signals, noise, and signal Rayleigh
backscattering. The model includes the SRS and its amplification, the spon-
taneous Raman emission and its temperature dependence, the Rayleigh
backscattering, the fiber loss, and the arbitrary interaction within pumps,
signals and noise from either propagation directions [5.4, 5.5]. The accurate
description of the Raman amplification of the WDM signals which simultane-
ously propagate along the PCF has been obtained by solving the propagation
equations. Two methods, the Runge-Kutta algorithm and the Adams method,
have been used to solve the differential equations, obtaining the same results.

5.4.1 Model for PCF Raman amplifiers

The Raman fiber amplifier is modeled through the following equations in the
continuous-wave case:

dP±(z, λi)
dz

= ±
{
− α(λi) +

NT∑
j=1

γ̂R(λi, λj)
[
P+(z, λj)

+P−(z, λj) + n+(z, λj) + n−(z, λj)
]

(5.16)

+
NT∑

j=i+1

2KpE(λi, λj)γ̂R(λi, λj)
}

P±(z, λi) ;
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dn±(z, λi)
dz

= ±
{
− α(λi) +

NT∑
j=1

γ̂R(λi, λj)
[
P+(z, λj)

+P−(z, λj) + n+(z, λj) + n−(z, λj)
]

+
NT∑

j=i+1

2KpE(λi, λj)γ̂R(λi, λj)
}

n±(z, λi) (5.17)

±
i−1∑
j=1

KpE(λi, λj)γ̂R(λi, λj)
[
P+(z, λj)

+P−(z, λj) + n+(z, λj) + n−(z, λj)
]

±r(λi)n∓(z, λi) ;

dn±
SRB(z, λi)

dz
= ±

{
− α(λi) +

NT∑
j=1

γ̂R(λi, λj)
[
P+(z, λj)

+P−(z, λj) + n+(z, λj) + n−(z, λj)
]

(5.18)

+
NT∑

j=i+1

2KpE(λi, λj)γ̂R(λi, λj)
}

n±
SRB(z, λi)

±r(λi)
[
n∓

SRB(z, λi) + P∓(z, λi)
]

.

P±(z, λi) is the forward/backward power of the pump or the signal
at the wavelength λi at the distance z along the fiber. n±(z, λi) is the
forward/backward power of the noise due to the amplified spontaneous Raman
scattering and the Rayleigh backscattering. n±

SRB(z, λi) is the forward/back-
ward power of the Signal Rayleigh Backscattering (SRB). Notice that the
contribution to the noise due to the Rayleigh backscattering of the signals
has been distinguished from the other noise components, in order to evaluate
the negative impact of the Double Rayleigh Backscattering (DRB) on the
Raman fiber amplifier performances. In fact, some of the scattered light of
the forward propagating signals is recaptured and it can pick up an additional
power increase, due to the Raman amplification, while it is traveling back-
ward along the fiber. After a rescattering and a recapture, the nSRB becomes
forward propagating, so it is effectively a DRB noise, and it can create the
multiple path interference [5.1]. In the propagation equations γ̂R(λi, λj) is
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defined according to

γ̂R(λi, λj) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γR(∆νi,j)
Kp

· λref

λj
λi > λj

0 λi = λj ,

−λj

λi
· γR(∆νi,j)

Kp
· λref

λi
λi < λj

(5.19)

where ∆νi,j = |(c/λi)− (c/λj)|, Kp is the polarization factor, here considered
equal to 2, and λref/λp, p=i,j opportunely scales the Raman gain coefficient
when the pump wavelength is different from λref [5.46]. The noise spectrum is
200 nm wide, from 1450 to 1650 nm, and it is divided into NT = 500 slots of
width ∆λ = 0.4 nm around the central wavelength λi. In Eqs. (5.16)–(5.18) the
temperature dependence of the spontaneous Raman emission is described by

E(λi, λj) =
hc2∆λ

λi(λ2
i − ∆λ2/4)

⎡
⎢⎢⎢⎢⎣
1 +

1

exp

(
hc|λi − λj |

λiλjkT

)
− 1

⎤
⎥⎥⎥⎥⎦

, (5.20)

where h is the Planck’s constant, c is the light speed in vacuum, k is the
Boltzmann’s constant, and T is the absolute temperature of the fiber, fixed
to 300.15 K. In Eqs. (5.16)–(5.18) α(λi) and r(λi) are, respectively, the fiber
background loss and the Rayleigh backscattering coefficient at the wavelength
λi, both expressed in m−1. r(λi) is the product of the Rayleigh scattering loss
αs(λi) and the recapture fraction B(λi) [5.1]. Due to the lack of experimental
data for PCFs, the Rayleigh backscattering coefficient has been calculated by
adapting to the PCF case an expression suited for single-mode optical fiber
with arbitrary refractive index profiles and scattering-loss distributions [5.47].
The Rayleigh scattering loss is defined according to αs(λi) = CR/λ4

i , being CR

the Rayleigh scattering coefficient [5.25]. Notice that the value of CR for pure
silica glass, which is assumed to be 1 dB/km/µm4 for a low-loss PCF [5.48], is
modified by the presence of a GeO2-doped area in the fiber cross-section, which
causes a relative refractive index difference ∆n(x, y) [5.49]. By exploiting the
accurate normalized intensity evaluated through the FEM solver, as reported
in Appendix A, the Rayleigh backscattering coefficient for the PCFs here
considered has been calculated according to

r(λi) = αs(λi)B(λi) =
3

8πλ2
i n

2
Si

∫∫

S
CR(1 + 44∆n(x, y))i2(x, y)dxdy , (5.21)
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where nSi = 1.45 is the refractive index of silica. After solving the propagation
equations Eqs. (5.16)–(5.18) through the Runge-Kutta algorithm or the Adams
method, the net gain G and the Noise Figure (NF) can be easily calculated
[5.1]. The negative effect of the DRB on the signal at the wavelength λi is
evaluated by calculating the ratio between the SRB power n+

SRB(λi) and the
signal power P+(λi) at the PCF end, that is,

DRB(λi) = 10 · log10
n+

SRB(λi)
P+(λi)

. (5.22)

5.4.2 Triangular PCF Raman amplifiers

After testing the proposed Raman fiber amplifier model with different kinds
of standard single-mode fibers, a low-loss single-mode PCF with Λ = 4.2 µm
and d = 1.85 µm, that is with d/Λ = 0.44, has been considered [5.50]. This
fiber has been preferred to highly nonlinear PCFs with very small effective
area, since, in spite of their high Raman gain coefficient, they prevent efficient
Raman amplification, as reported in [5.12], because of the high attenuation
values [5.51]. A GeO2-doped area internally tangent to the first air-hole ring
has been added in the PCF cross-section, in order to increase the Raman gain
coefficient value [5.16]. The radius of the up-doped region has been fixed to 3
µm, while different germania concentrations have been taken into account, that
is 6.3%, 8.7%, 11.2%, 15%, and 19.3%. The considered PCF background losses
α(λ) have been experimentally measured in [5.50] and they have been assumed
independent from the germania concetration. As reported in [5.50], they reach
a minimum value of 0.58 dB/km at 1550 nm. In Fig. 5.11 the γR(∆ν) val-
ues calculated with Eq. (5.15) for the all-silica PCF and the germania-doped
ones are reported. Notice that the γR peak value increases with the GeO2

concentration and slightly moves toward a lower value of the frequency shift
∆ν between the interacting signals in the Raman amplification process. The
maximum Raman coefficient value is 3.28 (W·km)−1 at ∆ν/c = 433 cm−1 for
the PCF with the highest germania concentration, 19.3%, and 1.33 (W·km)−1

at ∆ν/c = 442 cm−1 for the all-silica PCF. As shown in Fig. 5.12, also the
Rayleigh backscattering coefficient r(λ) becomes higher when the PCF is more
doped. When the GeO2 concentration is 19.3%, r is 5.3 ·10−7m−1 at the short-
est wavelength in the considered range, 1450 nm, and decreases to 4.1·10−7m−1

at the longest one, that is 1650 nm.
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Figure 5.12: Rayleigh backscattering coefficient versus the wavelength for the
germania-doped PCFs with different concentrations [5.21].

In order to study the performances of the PCF Raman amplifier, 48 C-band
channels with a frequency separation of about 100 GHz and an input power of
−8 dBm/ch have been considered. Two counter-propagating pumps at 1450
and 1460 nm with a total input power of 933 mW have been used. The amplifier
length has been chosen to be 6 km, since simulation results have shown that
this is the optimum length for the PCF doped with the highest germania
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Figure 5.13: Net gain G versus the signal wavelength for the PCFs with Λ =
4.2 µm, d/Λ = 0.44 and different germania concentrations in the doped area
[5.21].

concentration. As shown in Fig. 5.13, the net gain changes as a consequence of
the Raman gain coefficient increase reported in Fig. 5.11, due to the raising of
the GeO2 concentration. The maximum gain for the all-silica PCF is 4.74 dB
at 1559.4 nm. The presence of the germania-doped area allows to increase this
gain. For example, a concentration of 6.3% causes a gain increase of about 3
dB at the same signal wavelength, while a concentration of 19.3% provides a
gain of 13.7 dB at 1554.8 nm.

The power evolution of the two pumps and the 48 signals which propagate
along this PCF is represented in Fig. 5.14. It is evident from these results that
the pump at 1450 nm is more depleted than the one at 1460 nm, since the
lower wavelength pump has a strong Raman interaction with a higher number
of the C band signals here considered.

The noise performances of the PCF Raman amplifier have been described
by the NF and the DRB parameter. In Fig. 5.15 the DRB is shown as a
function of the signal wavelength for the various GeO2 doping levels here
considered. For a fixed PCF geometry, the DRB parameter values increase with
the germania concentration. For example, at 1550 nm the DRB is −57.6 dB
for the all-silica PCF with d/Λ = 0.44 and Λ = 4.2 µm, and it increases
to −40.5 dB when the germania concentration is 19.3%. Results have shown
that the PCF amplifier with the best Raman gain, that is the one with the
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highest germania concentration, has also the worst NF values. In fact, the
noise figure has a maximum value of 8.48 dB for the signal at 1530 nm, then
it decreases as the wavelength increases, reaching the minimum value of 7.86
dB at 1567.6 nm.

The gain flexibility which can be obtained with Raman amplifiers has
been analyzed by changing the wavelength separation ∆λp between the two
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counter-propagating pumps [5.2]. While the pump at the lower wavelength
has been fixed to 1450 nm, the second one has been chosen at 1460, 1470,
1480, and 1490 nm. The pumping scheme with only one backward-propagating
pump at 1450 nm with the same total power of 933 mW, which corresponds
to ∆λp=0 nm, has been considered too. The gain spectra obtained for the
6 km long PCF with the germania concentration of 19.3% are reported in
Fig. 5.16 for different ∆λp values. The best pumping scheme, according to the
net gain values, is the one with ∆λp=10 nm. However, a gain of at least 13 dB
has been reached for ∆λp ≤ 20 nm. The wavelength of the gain peak increases
with the wavelength separation between the two pumps, being, respectively,
1547.6, 1554.8, and 1558.8 nm for ∆λp = 0, 10, and 20 nm.

A final analysis of the PCF geometric parameter influence on the Raman
amplifier performances has been carried out. A single-mode PCF with the same
d/Λ value, that is 0.44, and a smaller pitch Λ = 3.2 µm has been considered
[5.50]. According to the measurements reported in [5.50], the PCF with the
smaller pitch has a minimum loss of 1 dB/km at 1630 nm. For example,
at 1550 nm, which is the wavelength of the central channel considered in
the simulations, the background loss is 1.1 dB/km for the PCF with Λ =
3.2 µm, almost twice the value for the PCF with the larger pitch. The Raman
effective area AR

eff of this triangular PCF, that is 15.5 µm2, is smaller than
the one of the PCF with Λ = 4.2 µm, that is 25 µm2. Since the Raman gain



5.4. PCF Raman amplifiers 187

0

1

2

3

4

5

6

0 100 200 300 400 500 600 700

γ R
 (

1/
W

•k
m

)

∆ν/c (cm−1)

Λ = 3.2 µm, GeO2 = 0 %
Λ = 3.2 µm, GeO2 = 19.3 %
Λ = 4.2 µm, GeO2 = 0 %
Λ = 4.2 µm, GeO2 = 19.3 %

−2

0

2

4

6

8

 10

 12

 14

1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570

G
 (

dB
)

λ (nm)

Λ = 3.2 µm, 0 %
Λ = 3.2 µm, 19.3 %
Λ = 4.2 µm, 0 %
Λ = 4.2 µm, 19.3 %

(a) (b)

Figure 5.17: Comparison between (a) the Raman gain coefficient spectra and
(b) the Raman gain spectra for the two PCFs with d/Λ = 0.44, without the
germania-doped area and with the highest GeO2 concentration [5.21].

coefficient is inversely related to the Raman effective area as previously stated
in Section 5.2, the all-silica PCF with Λ = 3.2 µm has higher γR values, as
reported in Fig. 5.17a. The presence of the doped area, which is still internally
tangent to the first air-hole ring, with a GeO2 concentration of 19.3% causes
higher γR values in the triangular PCF with Λ = 3.2 µm. Figure 5.17a shows
that a maximum Raman gain coefficient value of about 5 (W·km)−1 has been
obatined for the germania-doped PCF with the smallest pitch.

Finally, the Raman performances of the two triangular PCFs have been
compared, by using the same amplifier configuration previously described,
with ∆λp=10 nm. Simulation results have shown that it is necessary to fix the
length of the PCF with Λ = 3.2 µm to 5 km in order to maximize the gain
obtained with a germania concentration of 19.3%. Notice that this optimum
lenght is lower than the one calculated for the first PCF, which is 6 km. In
Fig. 5.17b, the net gain spectra for the two all-silica PCFs and the two GeO2-
doped PCFs with the highest concentration are reported. It is interesting
to notice that lower gain values have been obtained for the PCF with the
higher γR, that is the one with Λ = 3.2 µm. The analysis performed has
shown that the decrease of G is caused by an increase of the background
losses α(λ), due to the different geometric parameters. As reported in [5.50],
the Rayleigh component of the background losses is higher when the pitch is
reduced. In particular, the Rayleigh scattering coefficient CR for the PCF with
Λ = 3.2 µm is almost twice the one of the PCF with Λ = 4.2 µm, causing
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an increase of the Rayleigh backscattering coefficient r(λ). As a consequence,
the DRB values for the PCF with the smallest pitch are higher at all the
signal wavelengths considered, as shown in Fig. 5.18. This is due also to the
stronger field confinement, which can be obtained by reducing the pitch for
a fixed d/Λ value. Notice that the difference between the DRB values for the
two all-silica PCFs is 1.33 dB at 1550 nm, and it becomes 7.26 dB if a 19.3%
germania-doped region is added.

The PCF flexibility allows to considerably reduce the Raman effective area,
and thus to increase the Raman gain. However, the background losses, related
to the PCF geometry, can become a crucial factor for the amplifier perfor-
mances. In order to clearly show this trade-off, the Raman performances of
PCFs with different values of the Raman gain coefficient and of the background
losses have been analyzed, taking into account a single signal at 1550 nm with
an input power of −8 dBm and 933 mW of pump power at 1450 nm. The fiber
length is fixed to 6 km and the background losses are those experimentally
measured in [5.50] for the PCF with d/Λ = 0.44 and Λ = 4.2 µm. These loss
values have been reduced or increased, multiplying by a factor equal to 0.5,
1, 2, or 5, in order to investigate how the fiber losses influence the amplifier
design. Figure 5.19a shows the dependence of the Raman gain coefficient on
the triangular PCF geometric parameters, that is Λ, which varies between 2.2
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and 5.2 µm, and d/Λ, chosen between 0.4 and 0.48. γR values higher than
that of the PCF with d/Λ = 0.44 and Λ = 4.2 µm can be obtained by de-
creasing the pitch or enlarging the air-hole diameter, as it has been already
demonstrated in previous sections. The obtained γR values have been used to
compute the Raman gain for the various loss levels, as reported in Fig. 5.19b.
Results have shown that good Raman gain values of at least 10 dB can be
reached for γR ≥ 1.5 (W·km)−1, if the background losses are halved. On the
contrary, an increase of the loss values dramatically reduces the Raman per-
formances and high values of γR are not enough to obtain gain for the fiber
length considered. In conclusion, as long as the fabrication process will not
provide a further background loss reduction, a trade-off between the losses
and the PCF effective area design has to be found.

5.5 Impact of background losses on PCF Raman
amplifiers

As demonstrated by the results reported in Fig. 5.19, despite their high Raman
gain coefficient values, the possibility to successfully use nonlinear PCFs as
Raman amplifiers for telecommunication applications is currently limited by
their high attenuation values [5.12].
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Thus, it is interesting to analyze the influence of the background losses
on the gain and noise performances of triangular PCF Raman amplifiers,
by considering the three low-loss fibers presented in [5.52]. These PCFs are
particularly suitable for this kind of analysis, since they have almost the
same geometric parameters and differ only for the background and the OH-
absorption losses. The present study has been carried out through the model
previously described in Section 5.4.1.

The first PCF, referred to as fiber A in [5.52], has d/Λ = 0.625 and
Λ = 4 µm. Fibers B, and C have the same pitch value and a slightly lower
air-filling fraction, that is d/Λ = 0.6. The background loss values of PCFs A,
B, and C, which have been measured in [5.52], are compared in Fig. 5.20a for
the wavelength range 1450–1650 nm. Starting from the Rayleigh scattering
coefficients reported in [5.52], that is 1.0, 2.3, and 1.9 dB/km/µm4 for PCF
A, B, and C, respectively, the Rayleigh backscattering coefficient spectra have
been computed, as shown in Fig. 5.20b. The evaluation of the Raman gain
coefficient has provided peak values of about 2.06 (W·km)−1 for fiber A and
1.97 (W·km)−1 for fibers B and C. In the studied PCF Raman amplifiers a 1
W counterpropagating pump at 1450 nm and 40 channels between 1540.4 and
1571.6 nm, with a frequency separation of about 100 GHz and an input power
of −20 dBm/ch, have been considered.
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Figure 5.21: (a) Raman gain spectra and (b) DRB for the three PCFs with
the optimum length [5.22].

As shown in Fig. 5.21a, the maximum Raman gain, 12 dB, has been
achieved with the 9 km long fiber A, which has the lowest losses, in particular
0.37 dB/km at 1550 nm. Unfortunately, as a consequence of its good gain
performances, fiber A has also the highest DRB values, reported in Fig. 5.21b,
even if its Rayleigh backscattering coefficient is the lowest for all the consid-
ered wavelengths, as shown in Fig. 5.20b. Notice that an increase of the losses
causes a significant decrease of the maximum Raman gain. In fact, the best
gain for fiber B, the one with the highest losses, is only 1 dB, obtained for
a 0.8 km fiber length. Fiber C, as expected, presents intermediate values for
both the gain and the DRB.

Once optimized the background losses, a further improvement can be
achieved with a reduction of the OH-absorption losses [5.52]. For example,
a fiber with the loss spectra of fiber C, which has been fabricated in order
to reduce the OH-absorption peak around 1380 nm, down scaled to the fiber
A loss level has been considered. Simulation results, assuming the same PCF
A γR(λ) and r(λ), have demonstrated that a loss reduction of only 0.33 dB/km
at the pump wavelength causes much better Raman performances with respect
to PCF A, as shown in Fig. 5.22. In fact, a gain increase of about 4 dB can
be reached when the optimized fiber length is 9 km. Due to the higher pump
efficiency, the same maximum gain previously reached with a 9 km long fiber
A, that is 12 dB, can be obtained with a half-length optimized PCF, that is
4.5 km long.
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5.6 Multipump PCF Raman amplifiers

In the analysis here presented a broadband approach has been applied to one
of the ultralow-loss triangular PCF considered in Section 5.5, that is fiber
A [5.52], in order to provide, for the first time, a preliminary investigation of
the performances of PCF-based multipump Raman amplifiers. The attention
is focused on multipump schemes, as the spectral flexibility of Raman amplifi-
cation allows to obtain broadband amplification by combining multiple pump
wavelengths. In particular, by using the superposition rule proposed in [5.5]
the wavelengths and the power levels of the Raman pumps can be optimized
and, for example, amplifiers with gain bandwidths greater than 100 nm have
been already demonstrated by using conventional fibers [5.3].

The triangular PCF here considered to study the Raman amplifier per-
formances is the one with Λ = 4 µm and d/Λ = 0.625 [5.52], described in
Section 5.5 as fiber A. It is important to recall that this fiber has a maximum
Raman gain coefficient of 2.06 (W ·km)−1 and it has been chosen since it is an
ultralow-loss PCF, whose background loss spectrum is reported in Fig. 5.20a.
The PCF-based Raman amplifier analyzed is characterized by a 40-channel
input WDM spectrum extended between 1540.4 and 1571.6 nm, with a fre-
quency separation of about 100 GHz and an input power of −20 dBm per
channel. As in Section 5.5 the fiber length has been chosen equal to 9 km,
lower than the real drawn fiber length of 10 km [5.52]. The performances of
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Figure 5.23: (a) Raman gain for 40 input signals, employing one, two, three,
and five backward pumps. (b) Raman gain spectra for six pumps with equal
power of 167 mW each. λ1 is fixed at 1430 nm, λ2 at 1435 nm, λ3 at 1440 nm
and λ5 at 1461 nm. For schemes 1–4, λ6 = 1464 nm while λ4 is 1445, 1452,
1455 and 1458 nm, respectively. For scheme 5, λ4 = 1458 nm and λ6 = 1466nm
[5.24].

the triangular PCF Raman amplifiers have been investigated by considering
different pumping configurations, that is by changing the number of pumps,
their wavelength and the power associated with each one.

Firstly, schemes with two, three, and five pumps have been considered, with
a constant total pumping power of 1 W and a constant wavelength spacing of
10 nm. The simulated schemes present two pumps at 1450 and 1460 nm, three
pumps at 1440, 1450, and 1460 nm, and five pumps at 1430, 1440, 1450, 1460
and 1470 nm. The calculated gain spectra are shown in Fig. 5.23a, together
with the gain curve obtained for a single pump at 1450 nm for comparison pur-
poses. Notice that, by adding the second pump at 1460 nm, the gain increases
for the wavelengths above 1550 nm, reaching a maximum value of 13.6 dB at
1560 nm. Increasing the number of pumps lowers the peak value, but flattens
the gain spectrum, reaching a maximum value of 8.5 dB at 1560.4 nm, with
a minimum of 6.9 dB at 1571.6 nm in the five-pump scheme. Although this
is the best case so far, the gain ripple results about 1.6 dB in the considered
signal wavelength range. Moreover, it is interesting to compare these results
with those providing the optimum flatness over the C band when using two
pumps, that is 1428 and 1455 nm [5.5]. The curve, obtained, respectively, with
548 and 452 mW pump powers and labeled as 2 pumps bis in Fig. 5.23a, is
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very flat, with ripples lower than 0.5 dB, but the maximum gain is just around
5.5 dB. By properly changing the power levels, it can be increased up to 7 dB,
to the detriment of the flatness profile, whose ripple exceeds 1 dB.

In order to achieve better performances, still keeping fixed the total amount
of power launched into the PCF, an amplifier with six pumps has been consid-
ered, with a number of different wavelength configurations. The wavelengths of
the first pumps, that is λ1, λ2, λ3, and λ5, have been fixed, while λ4 and λ6 have
been changed in the ranges 1445–1458 nm, and 1464–1466 nm, respectively.
The total optical power of 1 W has been evenly divided among the six pumps.
As shown by the spectra of the first four schemes reported in Fig. 5.23b, by
progressively upshifting the wavelength λ4, while fixing λ6 to 1464 nm, the
gain spectrum is raised only in the high wavelength range. In fact, while in
scheme 1 the gain difference over the full range is almost 2 dB, the gain ripple
lowers to about 0.5 dB in the reduced ranges 1540–1564 nm and 1540–1567
nm for schemes 2 and 3, respectively. By further raising λ4 in scheme 4, a gain
ripple of 0.84 dB has been obtained for all the signal wavelengths considered.
Moreover, by choosing a higher value of 1466 nm for λ6 in scheme 5, the gain
performance is only slightly influenced, showing a peak of 7.7 dB around 1564
nm, while the flatness improves to 0.76 dB.

Since the pump interaction with the signals depends on the pump spectral
separation, in particular since pumps with longer wavelengths mainly inter-
act with longer wavelength signals, unequal power allocation between pumps
can improve the PCF-based Raman amplifier gain flatness. On the other hand,
signals with shorter wavelengths typically receive gain contributions more uni-
formly from all the pumps. Several simulations have been thus performed by
distributing the power unevenly among the pumps, while keeping total power
equal to 1 W, in order to obtain a gain spectrum as flat as possible with the
wavelength distributions of schemes 1 and 3. The best gain spectra obtained
are shown in Fig. 5.24 a and b and the corresponding power distributions
are reported in Table 5.3. Notice that high pump power should be supplied at
wavelengths near or higher than 1460 nm, that is at wavelengths λ5, and λ6, in
order to increase the gain at higher signal wavelengths with respect to the even
power distribution. Moreover, pump 1 should also be allocated a high power
share, since it is the pump wavelength that suffers highest background losses,
as shown in Fig. 5.20a. As a consequence, in the considered cases λ1, λ5, and
λ6 almost always account for more than two thirds of the total pump power.
One important criterion in the design of PCFs for Raman amplification is thus
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Figure 5.24: Gain spectra for pumping scheme (a) 1 and (b) 3 with varying
pump powers, as reported in Table 5.3 [5.24].

Table 5.3: Pump powers for selected pumping schemes [5.24].
Pp1 Pp2 Pp3 Pp4 Pp5 Pp6

(mW) (mW) (mW) (mW) (mW) (mW)
Pumping scheme 1

1 250 150 120 50 210 220
z‘2 240 130 120 60 230 220
3 250 140 120 60 220 210
4 250 140 120 70 210 210

Pumping scheme 3
1 180 110 140 150 220 200
2 220 130 130 80 220 220
3 240 130 120 60 230 220
4 200 110 120 120 240 210

the reduction of the OH peak, which considerably reduces the low-wavelength
pump efficiency.

All the spectra belonging to scheme 1, shown in Fig. 5.24a, have peaks at
1549 and 1562 nm, with a maximum gain of 7.2 dB for the latter wavelength
using power distribution 2. However, for all the considered configurations the
gain ripple is between 0.5 and 0.65 dB. The effect of upshifting the wavelength
λ4 is apparent in the spectra belonging to scheme 3, shown in Fig. 5.24b.
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Notice that all the gain curves exhibit a peak gain at 1564 nm. In particular,
with power distribution 4 the maximum gain is 8.8 dB, but the gain ripple
increases to about 1.8 dB. A substantial decrease of Pp4 while increasing Pp1, as
in power distributions 2 and 3, flattens the gain ripple to 1.3 dB, but lowers the
peak gain to about 8 dB. As a consequence, from the flatness profile point of
view, the optimal pump configuration is 3 for pumping scheme 1 in Table 5.3,
being the gain flatness in this case lower than 0.5 dB in the wavelength range
between 1540 and 1572 nm. In Fig. 5.25a the depletion of the six pumps for
this configuration is reported. Notice that the pumps at longer wavelengths
are lower absorbed, because of the weaker losses due to OH ions and the
interaction with a minor number of signals.

Finally, notice that the 40 channels so far considered cover the C band and
a small part of the L band. If only channels located in L band, from 1590 to
1622 nm, are considered, a much higher gain is obtainable. Simulation results
reported in Fig. 5.25b have shown that a mean gain higher than 13.5 dB
with a ripple lower than 0.6 dB can be obtained in L band with six pumps at
1475, 1482, 1490, 1505, 1510, and 1520 nm, with power allocations of 210, 150,
100, 150, 200, and 190 mW, respectively. For comparison, in the same figure
also the gain obtained in the C band with the best pumping scheme, that
is pump configuration 3 for pumping scheme 1, is reported. It is interesting
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to underline that in L band a much higher gain is obtained with the same
total power, because the losses at the higher pumps wavelengths are more
than halved in comparison with the losses near 1430 nm, where the first pump
wavelength for the C band is located.

As a final remark, it must be observed that Raman amplifiers based on
PCFs are still quite far from commercial exploitation due to actual constrains
which limit their performances, as observed in the previous discussions. In
particular, the background attenuation of the fiber, especially at the pump
wavelength, the required total pump budget, the complex fiber design, and
the final achievable gain, result in PCF Raman amplifiers not competitive
with those based on standard technology fibers.
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Chapter 6

Erbium-doped fiber amplifiers

In recent years, PCFs have emerged as an attractive alternative and also as
active fibers. PCFs used as active fibers have been first reported in [6.1]. In
particular, the possibility of obtaining very small– or very large–mode area
with this new kind of optical fibers has been exploited to realize new fiber
lasers [6.1, 6.2] or fiber amplifiers with single transverse mode operation and
efficiency higher than in conventional doped fibers. Moreover, it has been
investigated the influence of the PBG on the spontaneous emission of an Er3+-
doped PCF [6.3]. However, the research on rare earth-doped PCFs has been
mainly focused on the development of Y b3+-doped fiber lasers [6.4] and on the
possibility offered by PCFs to properly control the overlap factors between the
field and the dopant [6.5, 6.6], or to reduce the pump power in erbium-doped
fiber amplifiers (EDFAs) [6.7]. The advantages offered by PCFs have been
exploited to realize also cladding-pumped lasers and amplifiers. In particular,
a highly efficient cladding-pumped single transverse mode Y b3+-doped PCF
laser has been demonstrated [6.8], while a large-mode-area Nd3+-doped one
has been proposed [6.9], as well as a wide-band cladding-pumped EDFA based
on an air-clad PCF [6.10]. The first EDFA realized with a triangular PCF,
providing up to 44 dB of internal gain, has been experimentally demonstrated
in [6.11]. Then, the influence of the fiber length and of the wavelength on
the amplifier gain and noise performances has been experimentally character-
ized [6.12]. Recently, the same small-core erbium-doped aluminosilicate PCF
has been exploited to realize a simple Fabry Pérot laser with a slope efficiency
of 57.3% and a threshold as low as 0.55 mW, and to demonstrate a device
with a broadband tuning range, that is 104 nm around 1550 nm, and a laser
threshold as low as 0.48 mW [6.13].

203
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In order to study the amplification properties of the erbium-doped PCFs,
a numerical model which combines the full-vector modal solver based on the
FEM with a population and propagation rate equation solver, as reported
in [6.5], has been developed. The FEM-based solver has been applied to eval-
uate the pump, the signal and the Amplified Spontaneous Emission (ASE)
beam intensities, which are the input data for the population and propagation
rate equations, describing the beam evolution along the doped fiber. These
equations have been solved by means of the Runge-Kutta algorithm.

This amplifier model has been successfully applied to study the amplifi-
cation properties of honeycomb PCFs and of a cobweb holey fiber [6.5, 6.14].
Results have demonstrated that active fibers with superior characteristics with
respect to standard ones can be obtained by a proper PCF design. However,
the PCFs considered in [6.5], due to the presence of the central air-hole in the
honeycomb fibers and the very small core size of the cobweb one, sustain field
distributions quite different from the fundamental mode of a standard optical
fiber, and this can be critical in terms of coupling and splice losses.

The described EDFA model has been also applied to triangular erbium-
doped PCFs providing numerical results in perfect agreement with experi-
mental ones. Then, it has been used to design triangular PCFs which exhibit
high gain values and low losses when spliced with a standard SMF [6.15].
With the triangular PCF EDFA here proposed it is no more necessary to use
a high NA fiber to achieve good intermediate mode matching, as in [6.11].
Moreover, simulation results have demonstrated the practical application of
erbium-doped PCFs as amplifiers and lasers compatible with conventional
optical fiber systems.

6.1 Model for doped-fiber amplifiers

The overlap between the dopant and the field distributions provides a figure
of the interaction between the dopant ions and the signals and, in turn, of the
amount of the achievable amplification. This overlap can be easily evaluated in
conventional doped-fiber amplifiers, since both the dopant concentration, often
constant all over the fiber core, and the field profile are well known. PCFs, on
the contrary, present a very complicated refractive index distribution, which
makes difficult the field evaluation, unless proper numerical methods, able to
accurately describe the local variation of the field, are adopted.
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The field component profiles have been obtained by means of the full-vector
modal solver. In particular, the normalized intensity mode distribution i(x, y)
has been derived according to Eq. (A.5), as described in Appendix A. By
definition, the integral of the normalized intensity over the whole transverse
PCF cross-section is equal to one. The FEM is applied to evaluate the pump,
the signal and the ASE beam intensities, defined as

Ik(x, y, z) = ik(x, y)Pk(z) , (6.1)

with the subscript k referring to the pump, the signal, or the ASE spectrum
[6.16,6.17]. These intensities are the input data for the population rate equa-
tions and the propagation rate equations, which describe the field—dopant
interaction and the evolution of the pump, the signal, and the ASE beams
along the doped fiber. These equations are solved by means of the Runge-
Kutta algorithm.

It is worth noting that in the present analysis of the PCF-based EDFA
performances a metastable lifetime equal to 10.5 ms has been assumed.
Potentially, photonic crystals may alter the properties of active materi-
als [6.18], increasing the lifetime of the rare earth elements incorporated
into silica. At present time, due to the lack of experimental measurements,
no data are available. However, the proposed approach can be indifferently
applied whatever the lifetime. Finally, it is important to underline that the
analysis has been here restricted to erbium as dopant, but the method can be
applied to the study of any other rare earth ion.

6.2 EDFAs based on honeycomb and cobweb PCFs

Erbium-doped PCF performances have been analyzed, in order to understand
how the air-hole geometry and the dopant distribution can be designed, with
the aim to improve the amplification properties. Different PCF types have been
considered, which guide light by exploiting the PBG effect or the modified TIR.
All the simulations have been performed by applying the model previously
described, which allows an accurate description of the amplification of WDM
signals simultaneously propagating along the doped PCF.

First of all, the amplification properties of an erbium-doped PCF with the
air-holes arranged in a honeycomb lattice have been considered. As reported
in Fig. 6.1, an extra air-hole of radius rc has been introduced in the center of
the fiber cross-section, acting as the defect which provides the light-guiding
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Figure 6.1: Schematic of the central part of the honeycomb PCF cross-section,
showing the doped region in grey [6.5].

through the PBG effect. The erbium dopant has been placed in a ring around
the central air-hole with major radius rd and minor radius rc, where the signal
and the pump intensity distributions are more significant. In order to success-
fully use the proposed EDFA model with the honeycomb PCFs, it is necessary
to calculate also the upper and the lower limit of the PBG, within which the
core defect allows the field propagation. These have been evaluated using a
freely available software package [6.19], and then the full-vector FEM-based
solver has been applied by properly translating the guided-mode research
inside the PBG. The gain performances of the honeycomb PCF EDFA have
been analyzed by investigating how the radius rc of the defect air-hole and the
dopant concentration distribution on the fiber cross-section can be optimized
to improve the amplification with respect to the standard step-index doped
fibers.

The possibility offered by PCFs to properly control the guided-mode field
distribution and, as a consequence, the overlap factor between the field and
the dopant has been here exploited. Figure 6.2a and b report the normalized
intensities along the y-axis of the pump at 980 nm and of the signal at 1560 nm
for the honeycomb PCF with rc = r and for a standard SMF. It is important
to underline that the pump and the signal normalized intensity peaks are
almost the same for the honeycomb PCF. On the contrary, the maximum
signal intensity is only 50% of the pump one for the SMF. These differences
in the field distributions significantly affect the overlap integrals, according
to the value of the doped-area radius. Results have demonstrated that, by
properly reducing the guided-mode area of the pump and the signal, with an
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Figure 6.2: Normalized intensities at 980 and 1560 nm of (a) the honeycomb
PCF with rc = r and of (b) the standard SMF [6.5].

erbium-doped honeycomb PCF it is possible to achieve a gain enhancement
respect to a SMF of more than 10 dB for a fixed dopant concentration per
unit length [6.5, 6.14].

The amplification properties of a cobweb holey fiber, shown in Fig. 4.1,
have been also analyzed, by changing the radius rd of the erbium-doped area
in the center of the fiber cross-section. Results have confirmed the usefulness
of the method here proposed in order to design doped-PCFs with better per-
formances than conventional erbium-doped fibers.

6.3 EDFAs based on triangular PCFs

Both the honeycomb PCF and the cobweb holey fiber present high coupling
losses toward standard SMFs, commonly used in telecommunication systems,
as already stated. Consequently, it is not possible to completely exploit the
advantages in term of signal gain provided by these erbium-doped PCF types.

As an interesting alternative, erbium-doped triangular PCFs can be consid-
ered. In particular, the amplification properties of the doped fiber used for the
first experimental demonstration of a triangular PCF EDFA [6.11] have been
extensively analyzed with the model here proposed. After making a compari-
son with the measurement results, it has been investigated the influence of the
dopant radius and of the diameter of the air-holes in the first ring on the ampli-
fier performances. Great attention has been payed to triangular PCF designs
which allow to greatly reduce the splice losses toward the conventional SMFs.
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The first erbium-doped fiber considered in the study here reported is the
triangular PCF presented in [6.11]. The air-hole diameter d and the pitch Λ
are equal to 1 and 2 µm, respectively, corresponding to d/Λ = 0.5. The erbium
ions, whose concentration is about 2.6×1025 ions/m3, are confined in a region
with a radius of 0.5 µm in the PCF core center. The EDFA characteristics cho-
sen for the simulations are the same used in the experimental setup reported
in Fig. 6.3 [6.11], that is the doped fiber length is LF = 4.5 m and the back-
ward pump power at 980 nm is 225 mW. Due to the lack of experimental data,
the background losses of the doped PCF have been considered equal to zero.
However, this approximation does not affect the validity of the results, since
the erbium-doped fiber length is usually only few meters, differently from the
PCF-based Raman amplifiers, where the fiber losses represent a crucial factor
in the amplifier design [6.20].

The amplifier performances have been calculated for different signal wave-
lengths, that is 1533, 1550, 1570, and 1590 nm, by changing the signal input
power. In order to make a comparison with the experimental measurement
results shown in Fig. 6.4a, the internal gain values calculated with the sim-
ulations are reported as a function of the power at the amplifier output in
Fig. 6.4b. It is important to underline that the results here presented are in
very good agreement with the experimental values obtained in [6.11], thus
proving the validity of the model. The amplifier spectral gain and noise fig-
ure, evaluated for a single signal in the wavelength range between 1520 and
1580 nm, are reported in Fig. 6.5a. Notice that a signal internal gain of 46
dB has been reached at 1533 nm. Moreover, it is important to underline that

Figure 6.3: Schematic diagram of the PCF-based EDFA proposed in [6.11].
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Figure 6.4: Single channel gain saturation characteristics of the EDFA at var-
ious wavelengths obtained with (a) the experimental measurements reported
in [6.11] and (b) the numerical simulations.
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Figure 6.5: (a) Spectral gain and noise figure of the PCF-based amplifier. (b)
Gain at 1533 nm versus LF for the PCF with d/Λ = 0.5 and Λ = 2 µm [6.15].

the peak value of 49.5 dB has been obtained at 1530 nm, while the gain
decreases to 33.5 dB at 1550 nm. In order to calculate the optimum length of
the PCF-based EDFA experimentally realized, the amplifier gain for the signal
at 1533 nm has been evaluated for different LF values. As shown in Fig. 6.5b,
a further gain increase of 1.5 dB can be achieved with a doped-fiber length of
5.5 m. In fact, a longer PCF allows to fully exploit the pump power, with a
consequent gain increase.
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Figure 6.6: Gain versus the erbium-doped PCF length LF for different (a) rd

values when d1 = d and (b) d1 values when rd = 0.5 µm [6.15].

As in conventional doped fibers, the amplifier gain depends on the fiber
length, as well as on the dopant radius. In order to study this effect in the
triangular PCF EDFA, the dopant radius rd has been varied between 0.5 µm
and 1.5 µm, without changing the PCF geometric parameters. As shown in
Fig. 6.6a, the optimum doped fiber length, defined as the length for which
the gain at 1533 nm is maximum, strongly decreases by enlarging the doped
region, while the peak gain remains almost unchanged. In particular, a gain of
about 47 dB has been obtained with a doped PCF only 1.5 m long when rd is
equal to 1.5 µm, corresponding to a doped region tangent to the first air-hole
ring. It has been already demonstrated that the amplifier gain depends also
on the field confinement inside the erbium-doped PCF [6.5]. This confinement
can be modified by changing only the diameter d1 of the air-holes belonging
to the first ring. In Fig. 6.6b the gain versus LF is reported for d1 between
1.0 and 1.6 µm, by keeping rd fixed to 0.5 µm, in order to study only how
the field confinement variation affects the gain. Results have shown that, for a
fixed length of the doped PCF, the gain strongly depends on d1. For example,
by considering LF = 3.5 m, the gain is less than 41 dB when d1 = 1.0 µm,
while it is more than 47 dB when d1 = 1.6 µm. This suggests that an enlarged
first ring air-hole size can be usefully exploited in order to enhance the guided-
mode field confinement, both at the signal and the pump wavelengths, and,
consequently, to increase the overlap integrals [6.5]. However, the maximum
gain obtainable seems to be almost independent on d1, provided that the fiber
length is properly adjusted. When both rd and d1 are different from the initial
values, in particular rd = 1.2 µm and d1 = 1.6 µm, the same maximum gain is
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obtained with LF = 1.5 m. Simulations have been performed also to evaluate
the role of the second air-hole ring size d2, but results have demonstrated that
the value of d2 does not affect in any way the amplifier performances.

Results presented so far suggest that high gain values can be easily obtained
with erbium-doped PCFs. However, the losses due to the mode mismatch
between the PCF and the standard SMF can be a severe limiting factor.
In [6.11] this problem has been partially solved by using a high NA fiber
as intermediate fiber, as shown in the experimental setup of Fig. 6.3. Each
splice loss between the PCF and the high NA fiber has been measured to be
about 1.7 dB. Moreover, also the loss between the high NA fiber and the stan-
dard one should be included, and this corresponds to an overall loss of almost
3 dB. Instead of using an intermediate fiber, a possible solution could be the
design of a PCF which minimizes the coupling loss. In literature it has been
already shown that the splice losses decrease by increasing the pitch Λ and by
reducing d/Λ [6.21]. Thus, a triangular PCF with d/Λ = 0.5, rd/Λ = 0.25
and Λ = 3 µm, instead of Λ = 2 µm as in [6.11], has been considered.
According to [6.22], this fiber is single mode both at the pump and the signal
wavelengths. The splice losses due to the mode field mismatch have been cal-
culated on the basis of formulae proposed in [6.23] and [6.24]. This calculation
is not enough for a very accurate description of the PCF splicing issue, which
is not as simple as in conventional fibers [6.25], but it is effective to the present
analysis aim. The calculated loss between a SMF-28 fiber and the triangular
PCF is 5.8 and 3.6 dB for Λ = 2 and 3 µm, respectively. Notice that the
coupling losses are high for the PCF with d/Λ = 0.5 and Λ = 2 µm, being its
effective area at 1550 nm, that is 6.57 µm2, more than one order of magnitude
lower than that of the SMF-28, that is 86 µm2. It is important to underline
that the losses are reduced of about 2 dB when the pitch increases to 3 µm,
while the maximum gain is still 47.5 dB for both the PCFs.

This result would suggest to greatly increase the pitch, but the triangular
PCFs could become multi-mode, according to [6.22]. To avoid this drawback
and to further decrease the losses, the ratio d/Λ has been reduced to 0.4 and
Λ values in the range 2—12 µm have been considered. It is important to
underline that rd has been kept fixed to 0.25Λ, so the doped area enlarges
proportionally with the whole PCF cross-section as Λ increases. The signal
gain at 1533 nm is reported in Fig. 6.7a as a function of the amplifier length
for the different PCFs with d/Λ = 0.4. Notice that the optimum length of
the PCF-based EDFA is always between 5.5 and 6 m, regardless of the pitch
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value, even if the gain slightly decreases for larger Λ. However, the maximum
gain is still 45.5 dB for the PCF with Λ = 12 µm. Notice that the PCFs with
d/Λ = 0.4 and Λ in the range 3–12 µm exhibit the same gain dependence
on the fiber length. Only the PCFs with Λ = 2 and 2.5 µm show a slightly
different behavior. This is due to the difference between the overlap integrals
at the signal and the pump wavelengths, which becomes lower when the pitch
Λ increases, as reported in Fig. 6.7b. Results reported in Fig. 6.7a demonstrate
that no detriment to the amplifier gain is caused by the pitch enlargement in
the erbium-doped triangular PCF. On the contrary, this provides a significant
splice loss reduction, as reported in Fig. 6.8a, which shows the calculated
coupling losses between a SMF-28 and a triangular PCF versus the pitch Λ.
Notice that for the PCFs with d/Λ = 0.4 the splice losses decrease from 4.5
dB, when Λ = 2 µm, to only 0.003 dB, when Λ = 8 µm. This great reduction
can be explained by considering that the PCF with Λ = 8 µm, which yields
a maximum gain of 46.5 dB for LF = 4.5 m, has an effective area of 91
µm2, very similar to the SMF-28 one. Since the guided-mode field confinement
decreases as the pitch value becomes higher, the effective area of the PCFs
with Λ > 8 µm is larger than that of the SMF-28, thus causing a worsening
of the coupling loss. However, the difference between the effective area of the
triangular PCF and of the SMF-28 increases slowly with Λ. For example, even
if its effective area is more than twice the one of the SMF-28, that is 198
µm2, the splice losses of the PCF with Λ = 12 µm are lower than those of
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6 µm [6.15].
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the erbium-doped fiber presented in [6.11]. In conclusion, results here reported
have shown that with the triangular PCF with d/Λ = 0.4 and Λ = 8 µm it is
possible to reduce the coupling loss of almost 5 dB, while keeping unchanged
the amplifier gain performances.

Finally, the PCF with d/Λ = 0.4 and Λ = 6 µm, which provides 0.25
dB loss toward the standard SMF, as shown in Fig. 6.8a, has been consid-
ered in detail and simulations have been performed to evaluate the effect of
the dopant radius on the amplifier gain characteristics. In particular, the ra-
dius rd has been changed between 0.25Λ and 0.75Λ. Here, d1 has been kept
unchanged, because enlarging d1 would cause an increase of the guided-mode
field confinement, with a consequent growth of the splice losses. Results are
reported in Fig. 6.8b, where the optimum doped fiber length Lopt versus rd/Λ
is shown. Notice that Lopt decreases from 6.2 m, when rd = 0.25Λ, to 1.5 m,
when rd = 0.75Λ, while the maximum gain remains higher than 47 dB. In
conclusion, an example of the design parameters for two of the proposed PCF
amplifiers with a desired gain of 47 dB is reported in Table 6.1.

In the last part of the present analysis a coupling loss reduction between the
PCF-based EDFA and the conventional SMF has been obtained by designing
an erbium-doped PCF with a larger effective area. To this aim, it has been
considered again the triangular fiber realized in [6.11] and shown on the left
in the inset of Fig. 6.9. The first air-hole ring has been removed from the fiber
cross-section, as reported on the right in the inset of Fig. 6.9, thus obtaining
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Table 6.1: Design parameters for two of the proposed PCF amplifiers [6.15].
Λ = 2 µm Λ = 6 µm

d/Λ 0.5 0.4
Losses (dB) 5.8 0.25

rd (µm) 1.5 4.5
Lopt (m) 1.5 1.5
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Figure 6.9: Gain at 1533 nm as a function of LF for the PCF without the first
air-hole ring for two different rd values. Inset: triangular PCF cross-section
(left) with and (right) without the first air-hole ring.

a larger silica core region and a lower field confinement. Without the first
air-hole ring, the effective area of the PCF with d/Λ = 0.5 and Λ = 2 µm
becomes almost 19 µm2, that is about 3.6 times higher than that of the doped-
fiber presented in [6.11]. The effective area increase, clearly shown in Fig.
6.10, where the fundamental component of the guided-mode magnetic field
at 1533 nm of the triangular PCF with and without the first air-hole ring is
reported, causes a coupling loss reduction of 3.5 dB with respect to the 5.8 dB
of the erbium-doped PCF presented in [6.11]. By taking into account the gain
behavior as a function of the length LF of the doped PCF without the first
air-hole ring, reported in Fig. 6.9, it is possible to notice that a maximum gain
of about 47 dB can still be reached, providing that a longer EDFA, that is 19
m long, is considered. This conclusion is a direct result of the lower overlap
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(a) (b)

Figure 6.10: Fundamental component of the guided-mode magnetic field at
1533 nm of the triangular PCF (a) with and (b) without the first air-hole ring.

integral value at both the pump and the signal wavelengths. Then the radius
of the erbium-doped area has been changed in the triangular PCF without the
first air-hole ring, in order to obtain the same maximum gain with a shorter
fiber. Simulation results reported in Fig. 6.9 have shown that, by choosing
rd = 0.435Λ = 0.87 µm, a maximum gain of about 47 dB has been obtained
with LF = 6 m.
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Appendix A

Finite Element Method

A.1 Formulation

All the analyses of the PCF properties presented in this book have been per-
formed by using the FEM. The FEM allows the PCF cross-section in the
transverse x – y plane to be divided into a patchwork of triangular elements,
which can be of different sizes, shapes, and refractive indices. In this way any
kind of geometry, including the PCF air-holes, as well as the medium char-
acteristics, can be accurately described. In particular, the FEM is suited for
studying fibers with nonperiodic air-hole arrangements. Moreover, it provides
a full-vector analysis which is necessary to model PCFs with large air-holes
and high index variations, and to accurately predict their properties [A.1].

The formulation of the FEM here considered is based on the curl–curl equa-
tion. For a medium described by the complex tensors of the relative dielectric
permittivity ¯̄εr and the magnetic permeability ¯̄µr it reads

∇× (ε−1
r ∇× h) − k2

0µrh = 0 , (A.1)

where h is the magnetic field, and k0 = 2π/λ is the wave number in the
vacuum, λ being the wavelength. The magnetic field of the modal solution is
expressed as h = He−γz, where H is the field distribution on the transverse
plane and

γ = α + jk0neff (A.2)
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is the complex propagation constant, with α the attenuation constant and neff

the effective index.
By applying the variational finite element procedure, Eq. (A.1) yields the

algebraic problem [A.2]

([A] − (
γ

k0
)2[B]){H} = 0 , (A.3)

where the eigenvector {H} is the discretized magnetic field-vector distribution
of the mode. The matrices [A] and [B] are sparse and symmetric, thus allowing
an efficient resolution of Eq. (A.3) by means of high-performance algebraic
solvers. In order to enclose the computational domain without affecting the
numerical solution, anisotropic Perfectly Matched Layers (PML) are placed
before the outer boundary [A.3, A.4]. This formulation is able to deal with
anisotropic material both in terms of dielectric permittivity and magnetic
permeability, allowing anisotropic PML to be directly implemented.

The FEM has allowed the successful investigation of PCF dispersion
[A.5–A.8], amplification [A.9, A.10] and nonlinear properties [A.11–A.13].
Moreover, the complex FEM formulation has been very useful, for instance,
to evaluate the PCF leakage or confinement losses, due to the finite number
of air-hole rings in the cladding lattice [A.3,A.14].

In addition, the high flexibility of the method results in solutions whose
accuracy has been thoroughly checked, either considering different FEM
formulations or through comparisons with different numerical approaches
[A.15,A.16]. Furthermore, fiber symmetry can be used to reduce the compu-
tational domain and, consequently, both time and memory required, without
affecting the accuracy of the computed solution.

As an example, a PCF cross-section and the corresponding mesh used for
the simulations are reported in Fig. A.1a and b, respectively. Notice that, by
properly changing the dimension of the triangular elements which constitute
the mesh, it is possible to accurately describe all the regions with different
geometric and dielectric properties in the fiber transverse section. In particular,
as shown in Fig. A.1b, the silica region, where the guided-mode field is mainly
confined, are described with a lot of triangles of reduced dimensions. The
magnetic field fundamental component of the guided mode, computed at 1550
nm, is reported in Fig. A.1c.
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(a) (b) (c)

Figure A.1: (a) Geometry and (b) mesh of the cross-section of a small-core
nonlinear PCF. Green and yellow regions represent, respectively, the air-holes
and the silica bulk. (c) Fundamental component of the magnetic field at 1550
nm evaluated with the FEM-based full-vector modal solver.

A.2 PCF parameter evaluation

Dispersion

Starting from the knowledge of the effective refractive index neff versus the
wavelength, the dispersion parameter

D(λ) = −λ

c

d2neff

dλ2
(A.4)

can be derived using simple finite difference formulae. The chromatic disper-
sion of silica is taken into account through the Sellmeier equation [A.17], so the
refractive index of the structure is changed, according to the working wave-
length, before using the FEM solver to get the modal field and neff , as in
Eq. (A.2).

Nonlinear coefficient

The FEM can be exploited to evaluate the guided-mode field distribution in
PCFs, necessary to compute the effective area and the nonlinear coefficient.

In order to accurately evaluate the effective area, the fundamental mode
intensity distribution is calculated from the Poynting vector definition, which
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involves the three components of both the electric and the magnetic fields of
the guided mode.

First, the magnetic field H = (Hx, Hy, Hz) on the fiber cross-section is cal-
culated and then, from the expression of H, the electric field E = (Ex, Ey, Ez)
is obtained through the Maxwell equation.

Hence, from the definition of the Poynting vector, the normalized intensity
is given by

i(x, y) =
1
P
Re

[
E × H ∗

2
· ẑ

]
, (A.5)

where P is the integral of the intensity over the section of the PCF, that is,

P =
∫∫

S
Re

[
E × H ∗

2
· ẑ

]
dx dy =

∫∫

S
Re

[
Ex H∗

y − E∗
yHx

2

]
dx dy . (A.6)

Then, the effective area of the PCF fundamental guided mode can be
calculated according to

Aeff =
1∫∫

S i2(x, y)dxdy
, (A.7)

where i(x, y) is the guided-mode normalized intensity distribution, as in
Eq. (A.5) [A.9].

As a consequence, the nonlinear coefficient can be evaluated as

γ = (2π/λ) ·
∫∫

S
n2(x, y)i2(x, y)dxdy , (A.8)

where n2(x, y) is 3 · 10−20 m2/W in the silica bulk and 0 in the air-holes, and
i(x, y) is the normalized intensity, according Eq. (A.5) [A.9].

The accuracy of the Aeff calculation here presented has been checked by
comparing the values calculated with the FEM simulations with those experi-
mentally measured with a Scanning Near-field Optical Microscope (SNOM).
The SNOM technique can be used to evaluate the effective area of an optical
fiber, since it permits to study the field distribution on its transverse section.
In fact, an optical probe, that is a nanometric tapered single-mode optical
fiber, is approached in the near field of the fiber under investigation. The
image process is based on a pixel by pixel acquisition sequence, moving step
by step the probe above the fiber cross-section and scanning all the region of
interest. The image processing is performed by a computer, which stores all
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the data collected from each pixel [A.18]. It is important to underline that a
good agreement has been found with the simulation results obtained through
the FEM solver for all the PCFs considered in the measurements [A.19].

Confinement losses

In a PCF with an infinite number of air-holes in the photonic crystal cladding,
the propagation is theoretically lossless. However, in the fabricated fibers the
number of air-holes is finite, so the guided modes are leaky.

The confinement loss CL of the mode is deduced from the attenuation
constant α in Eq. (A.2) as

CL = 20α log10 e = 8.686α (dB/m) . (A.9)
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Air guiding, 14, 20, 79, 81
Air-filling fraction, 58
Air-hole, 12

lattice, 39
liquid-filled, 34
microstructure, 42
surface, 22
tailoring, 173, 174

Air-line, 79, 81
Attenuation, 7
Attenuation constant, 53

Bragg fiber, 13

Complex propagation constant, 53
Cutoff analysis, 60, 65

fundamental space-filling mode,
73

normalized cutoff frequency, 65
normalized cutoff wavelength,

63, 64, 73
normalized wavelength, 60
phase diagram, 60
Q parameter, 60–64, 70, 71
second-order mode effective

area, 64

Design flexibility, 7, 35, 36, 39, 143
Dispersion, 99, 100

compensating fiber, 100, 103,
105, 106, 171

compensation, 99, 100, 103,
105

compensation ratio, 104
material, 110
parameter, 101
slope, 100, 103
tailoring, 114, 118, 131, 133,

136, 143
waveguide, 100, 110, 145

Effective area, 164
photonic bandgap fiber, 151

Effective index, 53, 150
Endlessly single-mode, 12, 18
Erbium-doped fiber amplifier, 203

gain, 210
dopant radius influence, 210,

213, 215
geometry influence, 210
length influence, 209, 214
optimum length, 210

metastable lifetime, 205
model, 204, 205

beam intensity, 205
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noise figure, 208
overlap dopant/field, 204,

206, 212, 215
population and propagation

rate equations, 204, 205
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Runge-Kutta method, 204,
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Fabrication process, 22, 33, 35–37,
43

casting, 40, 41
cigar-rolling technique, 41, 42

preform, 42
coating, 36
dehydration, 22
drawing, 34–40, 42
drilling, 34, 39
etching, 22
extrusion, 37–39

cane, 38
die, 37
preform, 37
soft-glass, 37, 38, 139
tellurite, 38, 172

polishing, 22
polymer, 39

mold, 39, 40
polymerization, 39
polymethyl methacrylate, 39
preform, 39, 40

preform, 34, 35
cane, 35

silica capillary, 35
silica rod, 35
stack-and-draw, 35, 36
stacking, 35, 37

Fiber cross-section, 7
geometric characteristics, 7, 99

Finite element method, 219, 220
confinement loss, 223
dispersion parameter, 221
effective area, 221, 222
formulation, 219

complex, 220
full-vector analysis, 219
intensity, 221

normalized, 222
Poynting vector definition,
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mesh, 220
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modal solution

attenuation constant, 220,
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nonlinear coefficient, 221, 222
perfectly matched layer, 220
variational procedure, 220

algebraic problem, 220
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High-power
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laser and amplifier, 18, 43

Hollow-core
fiber, see photonic crystal fiber
guidance, 14

Honeycomb lattice, 14, 79, 176
germania-doped, 176

Large-mode area fiber, 12
Light trapping, 9
Loss, 21, 43

bending, 25, 31–33
critical radius, 31
diameter, 33
long-wavelength bend loss

edge, 31
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minimum position, 31
short-wavelenght bend loss

edge, 31
theoretical model, 32, 33

confinement, 25, 28, 29, 53, 82,
84, 85, 87, 90, 109

ring number dependence, 29,
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wavelength dependence, 29
coupling, 107, 173, 204, 207,

211, 212, 214
hollow-core, 23
imperfection, 21, 22
infrared absorption, 21, 25
intrinsic, 9, 21
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OH absorption, 21, 25, 161
Rayleigh scattering, 21, 22, 25

limit, 88
scattering, 23, 25
solid-core fiber, 21, 23
surface mode, 28
surface roughness, 22, 25
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Modified honeycomb lattice, 79

air-filling fraction, 80
Modified total internal reflection, 7,
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Nonlinear coefficient, 150
photonic bandgap fiber, 150,
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effective index variation, 150

Nonlinear effective index
vectorial effect, 151

Nonlinear refractive index, 37, 38
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silica, 150

Normalized intensity, 162, 164
Poynting vector definition, 164

Omniguide fiber, 41, 42
chalcogenide glass, 41
polymer, 41

Optical fiber, 8
active, 18

core-pumped, 18
double-cladding, 18

bending, 31, 32
birefringent, 85
cutoff, 31, 60

normalized cutoff
wavelength, 67

dispersion, 100, 101
non-zero dispersion, 106,

112, 171
SMF-28, 104, 106

effective area
SMF-28, 211

erbium-doped, 204, 206, 207,
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fabrication process, 34
drawing, 34, 35
preform, 34, 36
vapor deposition, 34, 36

guided mode, 11
large-mode area, 70
loss, 21
nonlinear coefficient, 151
normalized frequency, 65
polarization maintaining, 15
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single-mode, 9, 171
supercontinuum generation,

130, 131, 134
Optical parametric amplifier, 142

Parametric amplification, 142, 145
four wave mixing, 142

linear wave-vector mismatch,
145, 146

nonlinear phase shift, 145,
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phase-matching condition,
142, 143, 145–148

phase-mismatch parameter,
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pump power, 145, 148
gain, 142, 148

bandwidth, 143, 148
coefficient, 148

Periodic, 8
dielectric constant, 8
lattice, 9

air-hole, 9
potential, 8
refractive index, 8, 9
structure, 35

wavelength-scale, 9
Phase constant, 146, 150
Phase-index birefringence, 85, 86,

91
Photonic bandgap, 7–9, 14, 25, 33,

41, 79, 81, 177
effect, 13
energy level, 9
fiber, 28, 79, 85, 88, 150
guidance, 34, 41, 160, 176, 177,

206

long-wavelength edge, 33
material, 9, 13
photon transmission, 9
short-wavelength edge, 33
wavelength, 9

Photonic crystal, 7, 8
cladding, 9, 11, 13, 15

air-filling fraction, 12
effective refractive index, 11,

32
fundamental space-filling

mode, 66
gap, 13
triangular lattice, 11

effective refractive index, 11
fiber, see photonic crystal fiber
microstructure, 8
two-dimensional, 9, 11

fundamental mode, 11
Photonic crystal fiber, 7, 9, 33, 42

anomalous dispersion, 17
birefringent, 15, 85, 88
cutoff, 60
dispersion-flattened, 17, 143

modified air-hole rings, 143
triangular hybrid core, 119

double-cladding, 19
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effective area, 106
effective core radius, 66
effectively single-mode, 88, 90
equivalent core radius, 32
erbium-doped, 205
high numerical aperture, 19
highly nonlinear, 17, 131, 133,

135, 136, 139, 140, 143,
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supercontinuum generation,
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hollow-core, 7, 13, 14, 20, 23,
25, 26, 29, 33, 37, 41, 43,
79, 84, 85, 88, 150, 159

19-cell design, 23
guiding bandwidth, 23, 26
seven-cell design, 23
surface mode, 26, 27, 85, 89

honeycomb, 160, 176
erbium-doped, 204, 205, 207
germania-doped, 176
solid-core, 176

index-guiding, 11, 15
large air-holes, 17, 31, 32, 99,

100, 219
large mode area, 12, 17, 31, 33,

53, 59, 70
leaky mode, 28, 82, 223
loss, 21
market, 43
modified honeycomb, 79, 85,

88, 150
multi-mode regime, 60
multicore, 20
nonlinear

polarization maintaining,
132

nonlinear coefficient, 106, 143,
149, 150

normalized cutoff wavelength,
60

normalized frequency, 32, 33,
66

PBG-based, 28
Raman amplifier, 159, 183
rare earth-doped

erbium-doped, 203
ytterbium-doped, 203

seven-rod core
endlessly single-mode, 74

single-mode regime, 60
small core, 17, 107, 150
soft-glass, 37, 38
solid-core, 7, 11, 17, 21, 28, 29,

55, 159
square-lattice, 54, 55, 57, 59,

99, 113
dispersion compensating,

110–112
effective core radius, 66
endlessly single-mode, 65
negative dispersion, 110
normalized cutoff frequency,

67
normalized cutoff

wavelength, 67
tellurite, 38
triangular, see triangular

photonic crystal fiber
Propagation constant

free-space, 11
longitudinal component, 11

Raman amplification, 159, 173
anti-Stokes process, 159
gain flexibility, 159, 185, 192
germania, 167
model, 178, 179

double Rayleigh
backscattering, 180, 182

gain, 184
noise, 180
Rayleigh backscattering

coefficient, 181, 188
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Rayleigh scattering loss, 181
recapture fraction, 181
signal Rayleigh

backscattering, 180
spontaneous Raman

emission, 181
multipump, 161, 192, 194
propagation equations, 161,

179
Adams method, 179
Runge-Kutta method, 179

Raman backscattering
coefficient, 182

Raman effective area, 160,
163–166, 169, 170, 173,
174, 176, 177, 186

minimum, 166, 170
Raman gain coefficient, 160,

164, 179, 182, 187
germania concentration, 167,

174
germania-doped region, 167
peak, 162, 163, 165, 166,

169–174, 176, 177
Raman gain efficiency, 162, 172

mean, 164
Raman spectrum, 170, 179

germania, 163
peak, 163
silica, 163

stimulated Raman scattering,
159

Stokes process, 159
Refractive index, 11

control, 120
homogeneous medium, 11
periodic, 9

Scanning near-field optical
microscope, 222

Sellmeier equation, 81, 221
Semiconductor, 8

band strcuture, 8
Silica, 34, 163

chromatic dispersion, 81, 221
Solid-core fiber, see photonic

crystal fiber
Square lattice, 53, 54

air-filling fraction, 58
air-hole diameter, 55
hole-to-hole spacing, 55

Stop-band, 9
Supercontinuum generation, 17, 43,

129, 130, 132, 133
applications, 140

frequency metrology, 141
low-coherence

interferometry, 142
optical coherence

tomography, 141
spectroscopy, 142

dispersion at pump wavelength,
130, 133

anomalous dispersion regime,
134

normal dispersion regime,
135

two zero-dispersion
wavelengths, 136, 137, 140

pulse length, 130
long pulse regime, 139, 140
short pulse regime, 138, 140

pulse peak power, 130, 135,
136, 138
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pulse source, 138, 139
spectrum, 131–136, 138–141
white light source, 140

Tellurite, 172, 173
Raman properties, 172
refractive index, 173

Triangular lattice, 11, 14, 17, 40,
41, 80, 120

air-filling fraction, 58, 166
air-hole diameter, 101
hole-to-hole spacing, 101

Triangular photonic crystal fiber,
11, 18, 29, 31, 33, 55, 57,
79, 99, 101, 107, 109, 113,
143, 145, 160, 166, 182

all-silica, 165
all-silica triangular core, 143
core diameter, 101, 166
dispersion compensating, 109,

112, 114, 116
dispersion-flattened, 17, 100,

114, 118
all-silica triangular core, 120
modified air-hole rings, 115

effective core radius, 66
endlessly single-mode, 12, 18,

60
endlessly single-mode region,

65
enlarging air-holes, 160

germania-doped, 173, 174
erbium-doped, 203, 204, 207,

208, 210, 211
fundamental mode, 12

germania-doped, 160, 167, 169,
171, 182

core diameter, 170
higher-order mode, 12
large air-holes, 101, 114, 165,

166, 173
large-mode area, 70, 77
low-loss, 190, 192
negative dispersion, 102, 106
nonlinear, 100, 114, 118, 120,

132, 189
normalized cutoff frequency, 67
normalized frequency, 66
one-rod core, 31
Raman amplifier, 161, 165

attenuation influence, 187,
188, 197

geometric parameter
influence, 186, 188, 189,
191

OH-absorption influence, 191,
195, 196

optimum doped-area radius,
169, 170

optimum pitch, 166
seven-rod core, 53, 70, 71

effective area, 76
effective core radius, 74
erbium-doped, 214
normalized cutoff frequency,

74
tellurite, 160, 172
three-rod core, 32, 71

endlessly single-mode, 71

Wave number (vacuum), 53, 150
WDM transmission system, 100,
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