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Preface to the Series

Since its discovery in 1911, superconductivity has been one of the most interesting topics
in physics. Superconductivity baffled some of the best minds of the 20th century and was
finally understood in a microscopic way in 1957 with the landmark Nobel Prize-winning
contribution from John Bardeen, Leon Cooper, and Robert Schrieffer. Since the early 1960s
there have been many applications of superconductivity including large magnets for medical
imaging and high-energy physics, radio-frequency cavities and components for a variety
of applications, and quantum interference devices for sensitive magnetometers and digital
circuits. These last devices are based on the Nobel Prize-winning (Brian) Josephson effect.
In 1987, a dream of many scientists was realized with the discovery of superconducting
compounds containing copper—oxygen layers that are superconducting above the boiling
point of liquid nitrogen. The revolutionary discovery of superconductivity in this class of
compounds (the cuprates) won Georg Bednorz and Alex Mueller the Nobel Prize.

This series on Selected Topics in Superconductivity will draw on the rich history of
both the science and technology of this field. In the next few years we will try to chronicle
the development of both the more traditional metallic superconductors as well as the
scientific and technological emergence of the cuprate superconductors. The series will
contain broad overviews of fundamental topics as well as some very highly focused treatises
designed for a specialized audience.
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Preface

Superconductivity is a striking physical phenomenon that has attracted the attention of
physicists, chemists, engineers, and also the nontechnical public. The theory of super-
conductivity is considered difficult. Lectures on the subject are normally given at the
end of Quantum Theory of Solids, a second-year graduate course.

In 1957 Bardeen, Cooper, and Schrieffer (BCS) published an epoch-making mi-
croscopic theory of superconductivity. Starting with a Hamiltonian containing electron
and hole kinetic energies and a phonon-exchange-pairing interaction Hamiltonian, they
demonstrated that (1) the ground-state energy of the BCS system is lower than that of
the Bloch system without the interaction, (2) the unpaired electron (quasi-electron) has
an energy gap A, at 0 K, and (3) the critical temperature 7, can be related to Ag by
2Ay = 3.53 kpT., and others. A great number of theoretical and experimental investiga-
tions followed, and results generally confirm and support the BCS theory. Yet a number
of puzzling questions remained, including why a ring supercurrent does not decay by
scattering due to impurities which must exist in any superconductor; why monovalent
metals like sodium are not superconductors; and why compound superconductors, in-
cluding intermetallic, organic, and high-7. superconductors exhibit magnetic behaviors
different from those of elemental superconductors.

Recently the present authors extended the BCS theory by incorporating band struc-
tures of both electrons and phonons in a model Hamiltonian. By doing so we were able
to answer the preceding questions and others. We showed that under certain specific
conditions, elemental metals at low temperatures allow formation of Cooper pairs by the
phonon exchange attraction. These Cooper pairs, called the pairons, for short, move as
free bosons with a linear energy—momentum relation. They neither overlap in space nor
interact with each other. Systems of pairons undergo Bose—Einstein condensations in two
and three dimensions. The supercondensate in the ground state of the generalized BCS
system is made up of large and equal numbers of + pairons having charges +2e¢, and
it is electrically neutral. The ring supercurrent is generated by the + pairons condensed
at a single momentum ¢, = 2T hL™', where L is the ring length and n an integer. The
macroscopic supercurrent arises from the fact that + pairons move with different speeds.
Josephson effects are manifestations of the fact that pairons do not interact with each
other and move like massless bosons just as photons do. Thus there is a close analogy
between a supercurrent and a laser. All superconductors, including high-7. cuprates, can
be treated in a unified manner, based on the generalized BCS Hamiltonian.

vii
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Because the supercondensate can be described in terms of independently moving
pairons, all properties of a superconductor, including ground-state energy, critical tem-
perature, quasi-particle energy spectra containing gaps, supercondensate density, specific
heat, and supercurrent density can be computed without mathematical complexities. This
simplicity is in great contrast to the far more complicated treatment required for the phase
transition in a ferromagnet or for the familiar vapor-liquid transition.

The authors believe that everything essential about superconductivity can be pre-
sented to beginning second-year graduate students. Some lecturers claim that much
physics can be learned without mathematical formulas, that excessive use of formulas
hinders learning and motivation and should therefore be avoided. Others argue that
learning physics requires a great deal of thinking and patience, and if mathematical
expressions can be of any help, they should be used with no apology. The average
physics student can learn more in this way. After all, learning the mathematics needed
for superconductor physics and following the calculational steps are easier than grasping
basic physical concepts. (The same cannot be said about learning the theory of phase
transitions in ferromagnets.) The authors subscribe to the latter philosophy and prefer
to develop theories from the ground up and to proceed step by step. This slower but
more fundamental approach, which has been well-received in the classroom, is followed
in the present text. Students are assumed to be familiar with basic differential, integral,
and vector calculuses, and partial differentiation at the sophomore—junior level. Knowl-
edge of mechanics, electromagnetism, quantum mechanics, and statistical physics at the
junior—senior level are prerequisite.

A substantial part of the difficulty students face in learning the theory of supercon-
ductivity lies in the fact that they need not only a good background in many branches
of physics but must also be familiar with a number of advanced physical concepts such
as bosons, fermions, Fermi surface, electrons and holes, phonons, Debye frequency, and
density of states. To make all of the necessary concepts clear, we include five preparatory
chapters in the present text. The first three chapters review the free-electron model of a
metal, theory of lattice vibrations, and theory of the Bose—Einstein condensation. There
follow two additional preparatory chapters on Bloch electrons and second quantization
formalism. Chapters 7-11 treat the microscopic theory of superconductivity. All basic
thermodynamic properties of type I superconductors are described and discussed, and
all important formulas are derived without omitting steps. The ground state is treated
by closely following the original BCS theory. To treat quasi-particles including Bloch
electrons, quasi-electrons, and pairons, we use Heisenberg’s equation-of-motion method,
which reduces a quantum many-body problem to a one-body problem when the system-
Hamiltonian is a sum of single-particle Hamiltonians. No Green’s function techniques
are used, which makes the text elementary and readable. Type II compounds and high-T.
superconductors are discussed in Chapters 12 and 13, respectively. A brief summary and
overview are given in the first and last chapters.

In a typical one-semester course for beginning second-year graduate students, the
authors began with Chapter 1, omitted Chapters 2—4, then covered Chapters 5-11 in that
order. Material from Chapters 12 and 13 was used as needed to enhance the student’s
interest. Chapters 2-4 were assigned as optional readings.

The book is written in a self-contained manner so that nonphysics majors who want
to learn the microscopic theory of superconductivity step by step in no particular hurry
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may find it useful as a self-study reference. Many fresh, and some provocative, views
are presented. Researchers in the field are also invited to examine the text.

Problems at the end of a section are usually of a straightforward exercise type
directly connected to the material presented in that section. By solving these problems,
the reader should be able to grasp the meanings of newly introduced subjects more firmly.

The authors thank the following individuals for valuable criticism, discussion, and
readings: Professor M. de Llano, North Dakota State University; Professor T. George,
Washington State University; Professor A. Suzuki, Science University of Tokyo; Dr. C.
L. Ko, Rancho Palos Verdes, California; Dr. S. Watanabe, Hokkaido University, Sapporo.
They also thank Sachiko, Amelia, Michio, Isao, Yoshiko, Eriko, George Redden, and
Brent Miller for their encouragement and for reading the drafts. We thank Celia Garcia
and Benigna Cuevas for their typing and patience. We specially thank César Zepeda and
Martin Alarcén for their invaluable help with computers, providing software, hardware,
as well as advice. One of the authors (S. F.) thanks many members of the Deparatmento
de Fisica de la Facultad de Ciencias, Universidad Nacional Auténoma de México for
their kind hospitality during the period when most of this book was written. Finally we
gratefully acknowledge the financial support by CONACYT, México.

Shigeji Fujita

Salvador Godoy
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Constants, Signs, and Symbols

Useful Physical Constants

Quantity Symbol Value

Absolute zero on Celsius scale -273.16°C

Avogadro’s number Ny 6.02x% 10%*

Boltzmann constant kg 138% 107" ergK'=138x10 ® JK™
Bohr magneton Up 9.22 x 107 erg gauss~!

Bohr radius ao 529%x 10 ecm =529 x 10 "' m

Electron mass m 0911x 10 g=9.11 x 10 ! kg
Electron charge (magnitude) e 480 X 10" esu=1.6x10"" C

Gas constant R 8.314 J mole ' K !

Molar volume (gas at STP) 2.24 x 10*cm? = 22.4 liter

Mechanical equivalent of heat 4.186J cal”

Permeability constant o 1.26% 10 H/m

Permittivity constant O 8.85% 102 F/m

Planck’s constant h 6.63% 107 erg sec = 6.63 X 107 J s
Planck’s constant/2Tt I3 1.05 x 1077 ergsec = 1.05 X 1034 J s
Proton mass m, 1.67x 102 g=1.67x107 kg

Speed of light ¢ 3.00 % 10" cm/sec”! =3.00 x 10° msec™

Mathematical Signs and Symbols

= equals

R

equals approximately

£ not equal to

= identical to, defined as
> greater than

> much greater than

< less than
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< much less than

> greater than or equal to

< less than or equal to

O proportional to

0 represented by, of the order
B the average value of x

In natural logarithm

Ax increment in x

dx infinitesimal increment in x

7* complex conjugate of a number z

ot Hermitian conjugate of operator (matrix) O
a’ transpose of matrix o
P! inverse of P

Oub —{ é itf"z ; Z Kronecker’ s delta

3(x) Dirac’ s delta function

ad nabla or del operator

X = dx/dt time derivative

grad p= (@ gradient of @

divA = 0-A divergence of A

curl A= [Ox A curl of A

0’ Laplacian operator

List of Symbols

The following list is not intended to be exhaustive. It includes symbols of special importance.

A Angstrom (= 107% cm = 1010 m)

A vector potential

B magnetic field (magnetic flux density)
C heat capacity

c velocity of light

c specific heat

D(p) density of states in momentum space
D(w) density of states in angular frequency
E total energy

E internal energy

E electric field

e base of natural logarithm

e electronic charge (absolute value)
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Hamiltonian density
Planck’s constant
single-particle Hamiltonian
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imaginary unit

Cartesian unit vectors
Jacobian of transformation
total current

single-particle current
current density
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momentum vector
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radial coordinate
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\% volume

Vv velocity (field)
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Introduction

In this chapter we describe basic experimental facts, theoretical background, thermody-
namics of superconductors and our microscopic approach to superconductivity including

the historical developments.

1.1. BASIC EXPERIMENTAL FACTS

1.1.1. Zero Resistance
Superconductivity was discovered by Kamerlingh Onnes! in 1911 when he measured

extremely small (zero) resistance in mercury below a certain critical temperature T,
(= 4.2 K). His data are reproduced in Fig. 1.1. This zero resistance property can be
confirmed by a never-decaying supercurrent ring experiment described in Section 1.1.3.

1.1.2. Meissner Effect

Substances that become superconducting at finite temperatures will be called su-
perconductors in the present text. If a superconductor below T.is placed under a weak
magnetic field, it repels the magnetic flux (field) B completely from its interior as shown
in Fig. 1.2 (see the cautionary remark on p. 18). This is called the Meissner effect, and

0.0020
]
!
0.0015 T
1
R '
'H
0.0010 ; g
i
]
!
0.0005 T ]
<10°® :
i
0.000
4.00 4.10 420 4.30 440 450
T(K)

Figure 1. 1. Resistance versus temperature.
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Figure 1.2. A superconductor expels a weak magnetic field (Meissner effect).

it was first discovered by Meissner and Ochsenfeld? in 1933.

The Meissner effect can be demonstrated dramatically by a floating magnet as shown in
Fig. 1.3. A small bar magnet above T simply rests on a superconductor dish. If temperature
is lowered below T, the magnet will float as indicated. The gravitational force exerted on the
magnet is balanced by the magnetic pressure due to the inhomogeneous B-field surrounding
the magnet, that is represented by the magnetic flux lines as shown.

1. 1. 3. Ring Supercurrent

Let us take a ring-shaped superconductor. If a weak magnetic field B is applied
along the ring axis and temperature is lowered below 7., the field is expelled from the
ring due to the Meissner effect. If the field is slowly reduced to zero, part of the magnetic
flux lines may be trapped as shown in Fig. 1.4. It was observed that the magnetic moment
so generated is maintained by a never-decaying supercurrent around the ring.?

1.1.4. Magnetic Flux Quantization

More delicate experiments *3 showed that the magnetic flux @ enclosed by the ring
is quantized:

b=nb, n=012,... (L.L.1)
P, = T 507 % 1077 Gauss e’ (1.1.2)
e

Figure 1.3. A floating magnet.
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Figure 1.4. A set of magnetic flux lines are trapped in the ring.

®, is called a flux quantum. The experimental data obtained by Deaver and Fairbank*
is shown in Fig. 1.5. The superconductor exhibits a quantum state described by a kind
of a macro-wave function. %’

1.1.5. Critical Magnetic Field

If a sufficiently strong magnetic field B is applied to a superconductor, supercon-
ductivity will be destroyed. The critical magnetic field B(T), that is, the minimum
field that destroys superconductivity, increases as temperature is lowered, so it reaches a
maximum value B.(0) = Byas T — 0. For pure elemental superconductors, the critical
field B, is not very high. For example the value of B, for mercury (Hg), tin (Sn) and
lead (Pb) are 411, 306, and 803 G (Gauss), respectively. The highest, about 2000 G, is
exhibited by niobium (Nb). Figure 1.6 exhibits the temperature variation of the critical
magnetic field B, (T) for some elemental superconductors.

1.1.6. Heat Capacity

At very low temperatures, the heat capacity of a normal metal has the temperature
dependence aT + bT3, where the linear term is due to the conduction electrons and the
cubic term to phonons. The heat capacity C of a superconductor exhibits quite a different
behavior. As temperature is lowered through 7., C jumps to a higher value and then
drops like 73 near T . 8 Far below T, the heat capacity Cy drops steeply:

Cy =constant x exp(- aT_/T) (1.1.3)
3 ol D/D,
20 gjg_o_Tg_gg

VU010 0.20 0.30 0.40
B(G)

Figure 1.5. The magnetic flux quantization [after Deaver and Fairbank (Ref. 4)].
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Figure 1.6. Critical fields B, change with temperature.

where a is a constant, indicating that the elementary excitations in the superconducting
state have an energy gap; this will be discussed in Section 1.1.7. The specific heat of
aluminum (Al) as a function of temperature’is shown in Fig. 1.7.

1.1.7. Energy Gap

If a continuous band of the excitation energy is separated by a finite gap [Ig
from the ground-state energy as shown in Fig. 1.8, this gap can be detected by
photoabsorption, ' quantum tunneling,11 and other experiments. The energy gap l:z]e turns
out to be temperature-dependent. The energy gap [ (1) as determined from the tunneling
experiments 12

maximum value [J g(O) as temperature is lowered toward 0 K.

is shown in Fig. 1.9. Note: The energy gap is zero at T, and reaches a

4
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E 3t ¢ y
‘6 o. .
g | .
é 4 .
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b ‘.
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Figure 1.7. Low-temperature specific heat of aluminum.
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Figure 1.8. Excitation-energy spectrum with a gap.

1.1.8. Isotope Effect

When the isotopic mass M of the lattice ions is varied, T, changes'*:
T oc M™%, a~1/2 (1.1.4)

indicating that the lattice vibration plays a role in bringing out superconductivity.

1.1.9. Josephson Effects

Let us take two superconductors separated by an oxide layer of thickness of the order
10 A, called a Josephson junction. We use this system as part of a circuit including a
battery as shown in Fig. 1.10. Above T, two superconductors S, and S, and the junction
I all show potential drops. If temperature is lowered beyond T, the potential drops in
S, and S, disappear because of zero resistance. The potential drop across the junction
I also disappears! In other words, the supercurrent runs through the junction / with no
energy loss. Josephson predicted, '“and later experiments '3 confirmed, this effect, called
the Josephson tunneling or DC Josephson effect.

We now take a closed loop superconductor containing two similar Josephson junc-
tions and make a circuit as shown in Fig. 1.11. Below T, the supercurrent | branches out
into |, and | . We now apply a magnetic field B perpendicular to the loop lying on the
paper. The magnetic flux can go through the junctions, and therefore it can be changed
continuously. The total current is found to have an oscillatory component:

1 =T1%cos(n®/®,), (I'Y = constant) (1.1.5)
8g(T)/Eg ® N ¢ Indium
1.0 [--—-%ewe—-0-950-02200. 088 0, & Tin
e ¢ lead
0.8 Theory——==%
PN
06 e
\%A
e
04 Ra
02 \
1l
0 0.2 0.4 0.6 0.8 1.0
T/ T,

Figure 1.9. The energy gap Dg(T) versus temperature, as determined by tunneling experiments [after Giaever
and Megerle (Ref. 12)].
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Figure 1.10. Two superconductors S; and S, and a Josephson junction /
are connected with a battery.

where @ is the magnetic flux enclosed by the loop, indicating that the two supercurrents
I, and |, macroscopically separated (~ 1 mm) interfere just as two laser beams coming
from the same source. This is called a Josephson interference. A sketch of interference
pattern'® is shown in Fig. 1.12. For various Josephsons effects, Josephson shared the
Nobel prize in 1973 with Esaki and Giaever. (Esaki and Giaever are the discoverers of the
tunneling effects in semiconductors and in conductor—oxide—superconductor sandwiches.)
The circuit in Fig. 1.11 can be used to detect an extremely weak magnetic field, the
detector called the superconducting quantum interference device (SQUID).

1.1.10. Penetration Depth

In our earlier description of the Meissner effect, we stated that the superconductor
expels a (weak) magnetic field B from its interior. The finer experiments reveal that
the field B penetrates into the superconductor within a very thin surface layer. Consider
the boundary of a semi-infinite slab. When the external field is applied parallel to the
boundary, the B-field falls off exponentially:

B(x) = B(0)e *'* (1.1.6)

Figure 1.11. Superconducting quantum interference device (SQUID).
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Figure 1.12. Current versus magnetic field [after Jaklevic er al. (Ref. 16)].

as indicated in Fig. 1.13. Here A, called a penetration depth, is of order 500 A in most
superconductors at very low temperatures. It is very small macroscopically, which allows
us to speak of the superconductor being perfectly diamagnetic. The penetration depth
plays a very important role in the description of the magnetic properties.

1.1.11. Occurrence of Elemental Superconductors

More than 40 elements are found to be superconductors. Table 1.1 shows the critical
temperature 7, and the critical magnetic field at 0 K, B;. Most nonmagnetic metals are
superconductors, with notable exceptions being familiar monovalent metals such as Li,
Na, K, Cu, Ag, Au, and Pt. Some metals can become superconductors under applied
pressures and/or in thin films, and these are indicated by asterisks.

1.1.12. Compound Superconductors

Thousands of metallic compounds are found to be superconductors. A selection of
compound superconductors with critical temperature 7. are shown in Table 1.2. Note: T,
tends to be higher in compounds than in elements. Nb,Ge has the highest 7, (~ 23 K).

Compound superconductors exhibit (type II) magnetic behavior different from that
of type I elemental superconductors. A very weak magnetic field is expelled from the
body (the Meissner effect) just as by the elemental (type I) superconductor. If the field
is raised beyond the lower critical field H, , the body allows a partial penetration of
the field, still remaining in the superconducting state. A further field increase turns the
body into a normal state after passing the upper critical field H_,. Between H, and

XA
/B(x) =B(0)€

superconductor

vacuum

Figure 1.13. Penetration of the field B into a superconductor slab.
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Table 1.1. Superconductivity Parameters of the Elements

Li | Be B C N O | Ne
Na | Mg Al | Si* | P S Ar
T.=|1.18
B. =105
K |Caj Sc | Ti V |Cr {Mn| Fe | Co{ Ni { Cu] Zn | Ga | Ge*| As | Se* | Kr
0.391538 0.87]1.09
100 | 1420 53 | 51
Rb| Sr | Y*| Zr |[Nb|[Mo| Tc | Ru [ Rh | Pd | Ag | Cd | In | Sn | Sb* | Te* | Xe
0.5419.20(092|7.77 | 0.51 3.40(3.4013.72
47 | 1980} 95 |1410| 70 293 1 309
Cs*|Ba*| La [ Hf [ Ta | W [ Re [ Os | Ir | Pt [ Au[ Hg | Tl | Pb | Bi* | Po | Rn
6.00 4.4810.0111.6910.65}0.14 4.1512.39(7.19
1100 830 [1.07| 1981 65 | 19 412 | 171 | 803

Fr | Ra | Ac

Th[Pa| U |[Np|Pu|Am|Cm | Bk | Cf | Es | Fm | Md | No | Lw
1.36 1.4 | 0.68
1.62

*denotes superconductivity in thin films or under high pressures.
Transition temperature in K and critical magnetic field at 0 K in Gauss.

H_, , the superconductor is in a mixed state in which magnetic flux lines surrounded by
supercurrents (vortices) penetrate the body. The critical fields versus temperature are
shown in Fig. 1.14. The upper critical field H,, can be very high (20T = 2 x 10° G for
Nb3Sn) Also the critical temperature 7, tends to be high for high-H.., superconductors.
These properties make compound superconductors useful materials.

1.1.13. High-T_ Superconductors

In 1986 Bednorz and Miiller ! reported their discovery of the first of the high- T,
cuprate superconductors (7, > 30 K) (La-Ba—Cu-O). Since then many investigations
have been carried out on the high-7,. superconductors including Y-Ba—Cu-O with 7T, =

Table 1.2. Critical Temperatures of Selected

Compounds
Compound T.(K) Compound T (K)
Nb,;Ge 23.0 MoN 12.0
Nb, (Al gGey,) 209 V;Ga 16.5
Nb3Sn 18.05  V;Si 17.1
Nb; Al 17.5 UCo 1.70
Nbg Au 11.5 Ti2C0 3.44

NbN 160  LasIn 10.4
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Figure 1.14. Phase diagrams of type I and type II superconductors.

94 K.!" The boiling point of abundantly available and inexpensive liquid nitrogen (N)
is 77 K. So the potential applications of high-7, superconductors, which are of type II,
appear enormous. The superconducting state of these conductors is essentially the same
as that of elemental superconductors.

1.2. THEORETICAL BACKGROUND

1.2.1. Metals; Conduction Electrons

All known superconductors are metals or semimetals above 7. A metal is a con-
ducting crystal in which electrical current can flow with little resistance. This electrical
current is generated by moving electrons. The electron has mass m and charge —e,
which is negative by convention. Their numerical values are m = 9.109 x 10728 g,
e =4802x107"" esu = 1.602 x 10 ' C. The electron mass is smaller by about 1837
times than the least massive hydrogen atom. This makes the electron extremely mobile.
Also it makes the electron’s quantum nature more pronounced. The electrons participat-
ing in the charge transport, called conduction electrons, are those that would have orbited
in the outermost shells surrounding the atomic nuclei if the nuclei were separated from
each other. Core electrons that are more tightly bound with the nuclei form part of the
metallic ions. In a pure crystalline metal, these metallic ions form a relatively immobile
array of regular spacing, called a lattice. Thus a metal can be pictured as a system of
two components: mobile electrons and relatively immobile lattice ions.

1.2.2. Quantum Mechanics

Superconductivity is a quantum effect manifested on a macroscopic scale. This is
most clearly seen by a ring supercurrent with the associated quantized magnetic flux.
To interpret this phenomenon, a thorough understanding of quantum theory is essential.
Dirac’s formulation of quantum theory in his book, Principles of Quantum Mechanics,”
is unsurpassed. Dirac’s rules that the quantum states are represented by “bra” or “ket”
vectors and physical observables by Hermitian operators, are used in the text whenever
convenient. Those readers who learned quantum theory by means of wave functions
may find Appendix A useful; there the principles of quantum mechanics for a particle
are reviewed.
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There are two distinct quantum effects, the first of which concerns a single par-
ticle and the second a system of identical particles. They are called first and second
quantization.

1.2.3. First Quantization; Heisenberg's Uncertainty Principle
Let us consider a simple harmonic oscillator characterized by the Hamiltonian

=P R 121
 2m 2 (1.2.1)

where m is the mass and k the force constant. The corresponding energy eigenvalues are

1 kN2
6":ﬁw0<n+§>, w05<—) , n=0,12,--- (1.2.2)

m

Note: The energies are quantized in Eq. (1.2.2), while the classical mechanical energy
can be any positive value; and the lowest quantum energy ¢, = fiw,/2, called the energy
of zero-point motion, is not zero. It is found that the most stable state of any quantum
system is not a state of static equilibrium in the configuration of lowest potential energy.
It is rather a dynamic equilibrium for the zero-point motion, which may be characterized
by the minimum total (potential + kinetic) energy under the condition that each coordinate
g have a mean range A g and the corresponding momentum p a range Ap, so that the
product Ag Ap satisty the Heisenberg uncertainty relation:

h
AgAp > 5 (1.2.3)

The most remarkable example of a macroscopic body in dynamic equilibrium is liquid
helium (He). This liquid with a boiling point at 4.2 K is known to remain liquid down
to 0 K. The zero-point motion of this light atom precludes solidification.

1.2.4. Quantum Statistics; Bosons and Fermions

Electrons are fermions; that is, they are indistinguishable quantum particles subject
to Pauli’s exclusion principle. Indistinguishability of the particles is defined by using the
permutation symmetry. Permutation operators and their principal properties are surveyed
in Appendix B. According to Pauli’s principle no two electrons can occupy the same
state. Indistinguishable quantum particles not subject to Pauli’s exclusion principle are
called bosons. Bosons can occupy the same state multiply. Every elementary particle
is either a boson or a fermion. This is known as the quantum statistical postulate.
Whether an elementary particle is boson or fermion is related to the magnitude of its
spin angular momentum in units of #. Particles with integer spin are bosons, while
those with half-integer spin are fermions. This is known as the spin statistics theorem
due to Pauli. According to this theorem and in agreement with all experimental evidence,
electrons, protons, neutrons, and u-mesons, all of which have spin of magnitude #/2, are
fermions, while photons (quanta of electromagnetic radiation) with spin of magnitude #,
are bosons. More detailed discussions on bosons and fermions are given in Appendix C.
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1.2.5. Fermi and Bose Distribution Functions

The average occupation number at state a, denoted by [N, L[] for a system of free
fermions in equilibrium at temperature 7 and chemical potential y, is given by the Fermi
distribution function:

1
exple, — 7k, T] + |

where [], is the energy associated with state a. The Boltzmann constant k, has the
numerical value kg = 1.381 x 107'% erg/deg = 1.381 x 10 2 JK~.

The average occupation number at state a for a system of free bosons in equilibrium
is given by the Bose distribution function:

(N =Jp(e) =

(1.2.4)

1
expl(e, — )/ksT] — 1

Note the formal similarity (+) between Egs. (1.2.4) and (1.2.5).

(N =fyle) = (1.2.5)

1.2.6. Composite Particles

Atomic nuclei are composed of nucleons (protons, neutrons), while atoms are com-
posed of nuclei and electrons. It is experimentally found that such composite particles are
indistinguishable quantum particles; moreover they move as either bosons or fermions.
According to Ehrenfest-Oppenheimer—Bethe’s rule,’ a composite is a fermion ifit con-
tains an odd number of fermions and a boson if the number of fermions in it is even.
The number of bosons contained in the composite does not matter. Thus He* atoms (four
nucleons, two electrons) move as bosons and He3 atoms (three nucleons, two electrons)
as fermions. Cooper pairs (two electrons) move as bosons; see Section 9.1.

1.2.7. Superfluids; Bose—Einstein (B—E) Condensation

Liquid He* (the most abundant isotope) undergoes a superfluid transition at 2.19 K.
Below this temperature, liquid He* exhibits frictionless (zero viscosity) flows remarkably
similar to supercurrents. The pioneering experimental works on superfluidity were done
mostly in the late thirties. In 1938 Fritz London?' advanced a hypothesis that the super-
fluid transition in liquid He* be interpreted in terms of a B-E condensation, > where a
finite fraction of bosons is condensed in the lowest energy state and the rest of bosons
have a gas like distribution (see Section 4.2).

1.2.8. Bloch Electrons; The Fermi Liquid Model

In a metal conduction electrons move mainly in a static periodic lattice. Because of
the Coulomb interaction among the electrons, the motion of the electrons is correlated.
However the crystal electron moves in an extremely weak self-consistent periodic field.
Combining this result with the Pauli’s exclusion principle, which applies to electrons
with no regard for the interaction, we obtain the Fermi Liquid model of Landau?
(See Section 5.3 and 6.8). In this model the quantum states for the Bloch electron
are characterized by k-vector K, zone number j, and energy

e = E;(k) (1.2.6)
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At 0 K all of the lowest energy states are filled with electrons, and there exists a sharp
Fermi surface represented by

E (k) = ¢, (1.2.7)

where U, is the Fermi energy. Experimentally all normal conductors are known to exhibit
a sharp Fermi surface at 0 K. Theoretically much of the band theory of solids®* and the
microscopic theory of superconductivity are based on this model. The occurrence of
superconductors critically depends on the Fermi surface; see Section 8.6.

1.2.9. Electrons and Holes

Electrons (holes) in the text are defined as quasi-particles possessing charge (mag-
nitude) that circulate clockwise (counterclockwise) when viewed from the tip of the
applied magnetic field vector B. This definition is used routinely in semiconductor
physics. Holes can be regarded as particles having positive charge, positive mass, and
positive energy; holes do not, however, have the same effective mass (magnitude) as
electrons, so that holes are not true antiparticles like positrons. Electrons and holes are
closely related to the electrons band structures; see Sections 5.7-5.8.

1.2.10. Second Quantization Formalism

In the second quantization formalism, where creation and annihilation operators
associated with each quantum state are used, a system of identical particles (bosons or
fermions) can be treated simply. This formalism also allows us to treat electrons and
holes in a parallel manner; this formalism is fully developed in Chapter 6.

1.3. THERMODYNAMICS OF A SUPERCONDUCTOR

We shall briefly discuss the thermodynamics of a superconductor.

1.3.1. Magnetic Flux Density B and Magnetic Field H

Electric currents necessarily induce magnetic fluxes. Magnetic fields are often exter-
nally applied to probe the properties of superconductors. Appreciation of the difference
between the magnetic flux density B and the magnetic field H is important in under-
standing the properties of a superconductor. We briefly discuss this subject here. The
reader interested in a more detailed description of electromagnetism should refer to the
excellent book by Rose-Innes and Rhoderick?

All experiments in electromagnetism support that the magnetic flux density B is a
basic field just as the electric field E is basic. A particle possessing charge ¢, is subject
to a Lorentz force:

F=g(E +VvxB) (1.3.1)
where V is the particle velocity. The B-field satisfies

0 -B=divB=0 (1.3.2)
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which means that the magnetic flux lines in the universe are closed. There are no sources
and no sinks for magnetic fluxes. Equation (1.3.2) also implies that the field B can be
described in terms of a vector potential A such that

B=V xA=curlA (1.3.3)
The B-field satisfies part of Maxwell’s equations:
o ,
—B(r,n=B=-VxE (1.3.4)
ot
Formulas (1.3.1)—(1.3.4) are valid in a vacuum. The magnetic field H is related to B by
B=yuH (1.3.5)

(u, = permeability of free space).

Let us now consider a magnetizable body. All known superconductors are crystals.
We define the magnetic flux density B averaged over the lattice unit cell. (We drop
the upper bar indicating the averaging hereafter.) The average field B by definition will
be connected to the applied magnetic field H, and the magnetization (magnetic dipole
moment per unit volume) M by

B=p R, + p,M (1.3.6)

We postulate that the average B-field satisfies Eqs. (1.3.1)—(1.3.4) in a solid just as in
a vacuum. The Bloch electron (wave packet) (see Sections 5.8-5.9) can be localized
only within the dimension of the lattice constant. Since the B-field enters as part of the
Lorentz force and not the H-field, the magnetic flux density B is the relevant magnetic
quantity in Bloch electron dynamics. In the present text, we shall call the B-field the
magnetic field just as we call the E-field the electric field. On the other hand, the
externally applied magnetic field is most often (90% or more) designated in terms of the
magnetic field H in solid-state physics. We shall sometimes follow this practice. To
convert the units, we simply apply Eq. (1.3.5): B, = p,H_ . The subscript a, meaning
the applied field, will be omitted when no confusion is feared.

1.3.2. Gibbs Free Energy

In dealing with thermodynamics of a superconductor the Gibbs free energy plays an
important role. Let us first review thermodynamics applied to a fluid. The fundamental
differential relation representing the First and Second laws of thermodynamics applicable
to a reversible process is

dE = -PdV + TdS (1.3.7)

where P is the pressure, V the volume, and S the entropy. The Gibbs free energy G for
the gas is defined by

G=E-TS+PV (1.3.8)
Using Egs. (1.3.7) and (1.3.8), we obtain
dG= VdP - SdT (1.3.9)



14 CHAPTER 1

which indicates that the Gibbs free energy G is a useful characteristic function of (P, T).
In fact we obtain immediately from Eq. (1.3.9):

9GP, Ty _ 0G as)
Y="p ap)r’ aT ), (1.3.10)

where the subscripts denote fixed variables in the partial derivatives.

Solids (and liquids) by definition are in the condensed state. They are characterized
by very low compressibility K = —(9¥ /0P);/V. Since we deal with superconducting
solids exclusively in the present text, we shall drop the effect of the applied pressure
hereafter. In other words we assume that

K, =0 (incompressible solids) (1.3.11)

Instead we include the effect of a magnetic field in thermodynamics of a superconductor.
The fundamental differential relation is given by

dE = TdS + p,H,dM (1.3.12)

where M is the total magnetic moment, meaning that the internal energy E can be
changed by supplying heat (first term) and applying a magnetic field u,H, (second
term). In analogy with Eqgs. (1.3.8) and (1.3.9), we define the Gibbs free energy G by

G=E-TS—pMH (1.3.13)
Using Eq. (1.3.12) we obtain
dG = —8dT ~ pMdH (1.3.14)

implying that the Gibbs free energy G is the characteristic function of the temperature T
and the applied magnetic field H. By inspection we obtain from Eq. (1.3.14):

0G G
- _ ) M= 1.3.15
- ar),, Ho {)H>T (131

1.3.3. Perfect Diamagnetism

We consider a long superconducting rod with a weak magnetic field applied parallel

to its length. By the Meissner effect, the magnetic fluxes are expelled from the rod and

the B-field inside will be zero. Then from Eq. (1.3.6) the magnetization M must equal

-H,:

B = py(H, + M)=0, M=-H, |H,| < H, (1.3.16)

This state is maintained until the H-field is raised to the critical field H.. By further
raising the H-field beyond H_., the superconductor is rendered normal, in which case:

B = poH,

a’

H, > H, (13.17)

By now reversing the H-field, the B-field retraces the same path. This behavior is shown
in Fig. 1.15 (a). The associated magnetization behavior is shown in (b). The sense of
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)

Figure 1.15. Magnetic behavior of a type I superconductor.

the magnetization M is always diamagnetic when the motion of free charges is involved.
Since the supercurrent is frictionless, the process occurs in a reversible manner.
The magnetic susceptibility X for a material is defined by

M = XH (1.3.18)
From Eq. (1.3.16) we obtain

X = -1 (H,<H,) (1.3.19)

The material is called paramagnetic or diamagnetic according to whether X is positive or
negative. If X = —1, it is called a perfect diamagnet. Thus the (type I) superconductor is
perfect-diamagnetic below H.. The magnetization behavior of a type II superconductor
is quite different; it will be discussed in Section 12.2.

1.3.4. Isothermal Process; Normal and Super States

Let us take a superconductor and apply a magnetic field isothermally (dT = 0).
The change in G can be calculated from Eq. (1.3.14)

H H,

G(T, H) — G(T,0) = ~;Lo/MdH = ;LO/ HdH = %H (1.3.20)
0

0

by using Eq. (1.3.16). Thus the Gibbs free energy G increases quadratically with
the applied field H, . The positive energy '“0H2/2 can be interpreted as the stored
magnetic field energy per unit volume needed to generate the deformed magnetic field
configuration, [see Fig. 1.2], from the uniform magnetic field configuration. Such a field-
theoretical interpretation is useful when a qualitative understanding of a phenomenon is
desired.

The state of a superconductor above H, is characterized by a vanishing magnetization
common in nonferromagnetic metals. We may define the hypothetical normal state
of the superconductor below H. to be the state in which M = 0. The Gibbs free
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Figure 1.16. Effect of applied magnetic field on Gibbs free energy.

energy G, (T, H) representing the normal state does not have the magnetization term,
and therefore it is independent of H. The Gibbs free energy G (T, H) representing the
superconducting state must be lower than Gy (T, H). (Only the state with the minimum
G is realized in nature.) We may postulate that the Gibbs free energy is the same for
both states at the critical field H, : Gg(T, H,) = Gy (T, H ). The behavior of G’s versus
H is shown in Fig. 1.16. The reader may verify that this behavior of G generates the
M-H and B-H curves shown in Fig. 1.15. From the diagram, we obtain

Gu(T,0) = Gy(T,0) = (%)/LOHATV (1321)

In the zero-temperature limit, the internal energy E is equal to the ground-state
energy W of the conductor. Thus we obtain from Eq. (1.3.21):

W, W,=E, —E;= (%)Mo H.(0) = (%)Uo Hy (T=0) (1322
The critical field H,. can be measured simply by applying a magnetic field parallel to a
superconducting rod and observing the field at which resistance appears.

The magnetization M has a jump —H_ at H = H_. The order of a phase transition
is defined to be the order of the derivative of a free energy whose discontinuity appears
for the first time. Since M = fuo’l(aG/iﬂH)T from Eq. (1.3.15), the normal-to-super
transition here is said to be a phase transition of first order.

1.3.5. Critical Fields; The Phase Diagram

All type I superconductors are found to have similar magnetic behaviors. The critical
field H, depends on the temperature 7, and its dependence can be represented within a

few per cent by
7\?
H = H, [1 ~ (F) } (1.3.23)

This behavior is illustrated by the H-T (phase) diagram in Fig. 1.14 (a). The values
of (H,,T,) were given earlier in Table 1.1. The approximate Eq. (1.3.23), called the
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Gorter—Casimir formula, was derived by these authors?® in their phenomenological two-
fluid model theory. The fact that the two measurable quantities (7, H) can be connected
with each other independently of the materials is noteworthy. This is often referred to as
the law of corresponding states. (Such a law is known for a simple liquid whose phase
diagrams is represented by a van der Waals equation.) It suggests that a microscopic
theory of superconductivity may be developed based on a generic model Hamiltonian.

1.3.6. Superconducting Transition, Supercondensate, and Two Fluid
Model

The superconducting transition is a sharp thermodynamic phase transition similar
to the vapor—liquid transition of water. But there is a significant difference: In the case
of water, the gas and liquid phases are both characterized by two independent thermo-
dynamic variables, such as the number density n and the temperature 7. In contrast
the superconducting phase has one peculiar component, called a supercondensate, which
dominates the electrical conduction; and the other component, called the normal compo-
nent, which behaves normally. The two components are intermixed in space, but they
are distinguished in momentum and move distinctly. In other words the superconducting
phase can be characterized by the normal thermodynamic variables (2, 7) and a macro-
wave function W, also called a Ginzburg—Landau complex order parameter] which
represents the supercondensate. The two-fluid (component) model is applicable only to
superconductor and superfluid. The appearance of the supercondensate wave function
Y below T, is somewhat similar to the appearance of a spontaneous magnetization M
below T, in a ferromagnet. The W is complex, while the M is real however.

1.3.7. Supercurrents

In true thermodynamic equilibrium, there can be no currents, super or normal. Thus
we must deal with a nonequilibrium condition when discussing the main properties of
superconductors, such as zero resistance, flux quantization, and Josephson effects. All of
these come from the moving supercondensate that dominates the transport and magnetic
phenomena. When a superconductor is used to form a circuit with a battery and a steady
state is established, all currents passing the superconductor are supercurrents. Normal
currents due to the motion of charged particles contributes zero because no voltage
difference can be developed in a homogeneous superconductor.

1.3.8. Surface Supercurrents and Meissner State

Experiments show that all supercurrents flow near the type I superconductor’s sur-
face within a thin layer characterized by field penetration depth A. These surface super-
currents run so that the B-field vanishes in the interior of the conductor. We say that the
superconductor is in the Meissner state. This behavior is shown in Fig. 1.17.

1.3.9. Intermediate State; Thin Films

The applied magnetic field H, is a vector field unlike the familiar scalar pressure.
Because of this the effect of an applied magnetic field in general depends on the shape
of the superconductor. To see this consider the hyperboloidal superconductor shown in
Fig. 1.18. If a weak field H  is applied along its axis, the closed surface supercurrents
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Figure 1.17. Surface supercurrents in a superconductor generate a Meissner state.

may be generated, and the magnetic shielding will be complete inside the body. If
however the field H , is applied nearly perpendicular to its axis, the surface supercurrents
cannot run in closed loops having curvatures of the same sign. Then the magnetic
shielding cannot be complete. In other words some magnetic flux must penetrate. For
a general direction of the field H, some part may be in the Meissner state where
the diamagnetic shielding is complete and others in the normal state. We say that the
superconductor is in an intermediate state. Structures of an intermediate state can be quite
complicated, depending on the shape of a conductor and the direction of the magnetic
field relative to its geometrical shape. This is true even when a superconductor is made
up of homogeneous and isotropic material. Good discussions of the intermediate state can
be found in the book by Rose-Innes and Rhoderick.” Since we are primarily interested
in the microscopic theory of superconductivity, we shall not discuss the intermediate
state further. Unless otherwise stated we assume that the magnetic field H, is applied
to an ideal long cylinder along its axis (see Fig. 1.2). Caution: Strictly speaking the
cylinder must not have sharp edge but be of an ellipsoidal shape. We also assume that
the superconductor in consideration is great in any dimension (direction) compared with
the penetration depth A This means that we exclude thin films from our consideration.

Figure 1.18. A hyperboloid.
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Superconductors in thin films in general have higher critical temperatures than in bulk.
We are thus omitting an important area of research.

1.4. DEVELOPMENT OF A MICROSCOPIC THEORY

We briefly sketch the historical development of the microscopic theory of supercon-
ductivity, including the epoch-making Bardeen—Cooper—Schrieffer (BCS) theory27 and
its subsequent developments.

1.4.1. Phonon Exchange Attraction

As noted earlier in Section 1.2.2, the lattice ions are never strictly at rest even at
0 K because of the quantum zero-point motion. In 1950 Frohlich proposed a model
for a superconductor in which electrons acquire attraction by the exchange of virtual
phonons.?® This was an important step in the construction of a microscopic theory of
superconductivity. Experiments indicate an isotope effect on the critical temperature T,
as described in Section 1.1.8, which can be explained only if the effect of an electron—
phonon interaction is included. In fact by using second-order perturbation theory we can
show that the interaction is attractive if the pair of electrons between which a phonon is
exchanged have nearly the same energies. This kinetic-energy dependence is noteworthy:
It reflects the quantum mechanical nature of the phonon-exchange attraction. We shall
discuss this attraction in detail in Chapter 7.

1.4.2. The Cooper Pair

In 1956 Cooper demonstrated” that however weak the interelectron attraction may
be, two electrons just above the Fermi sea could be bound. The binding energy is greatest
if the two electrons have opposite momenta (p, —p) and antiparallel spins (;,1). The
lowest bound energy w, is given by

o — —2fuwy, (14.1)
O exp[2/A (O] ~ 1 o

where 3, is the Debye frequency, v, a positive constant characterizing the attraction,
and A’ (0) the electron density of states per spin at the Fermi energy. Since the function
exp(1/x) has an essential singularity at x = 0, Eq. (1.4.1) cannot be obtained by a
perturbation expansion in powers of x =N (0)v, . If electrons having nearly opposite
momenta (p, —p + Q) are paired, the binding energy is less than Iup |. For small g, which
represents the net momentum of a Cooper pair, called a pairon for short, the energy
momentum relation is

1
w, = w + 3Ur9 <0 (1.4.2)
where v, = (20p/m*)!/2 is the Fermi velocity. Equations (1.4.1) and (1.4.2) play very
important roles in the theory of superconductivity. We shall derive them from the first
principles in Chapter 8.
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1.4.3. The Bardeen—Cooper-Schrieffer Theory

In 1957 Bardeen, Cooper, and Schrieffer (BCS) published a classic paper, ' which
is regarded as one of the most important theoretical works in the twentieth century. The
Nobel physics prize in 1972 was shared by Bardeen, Cooper, and Schrieffer for this
work. (Bardeen was awarded the prize the second time since he shared the 1956 prize
with Shockley and Brattain for the invention and development of a transistor.)

In this work BCS assumed a supercondensate made up of + pairons (pairons having
charges +2¢) and obtained an expression W for the ground-state energy:

W = hwp N (0w, = Nyw, (1.4.3)
where
N, = fuw, N (0) (1.4.4)

is the total number of pairons and w( the ground pairon energy given by Eq. (1.4.1). In
the variational calculation of the ground-state energy BCS found that unpaired electrons,
often called quasi-electrons, have energy

E, = (A4 &) (1.4.5)

where [, the kinetic energy of the Bloch electron measured relative to the Fermi
energy Ur . The energy constant A, called the energy gap in Eq. (1.4.5) is greatest at 0 K
and decreases to zero as temperature is raised to the critical temperature 7,,at which
the supercondensate ceases to exist. BCS further showed that the energy gap at 0 K,
A(T = 0) = A, and the critical temperature T, (in the weak coupling limit) are related

by
20, = 3.53k,T. (1.4.6)

These findings are among the most important results obtained in the BCS theory. A large
body of theoretical and experimental work followed several years after the BCS theory.
By 1964 the general consensus was that the BCS theory is an essentially correct theory
of superconductivity. 3

1.4.4. Quantum Statistical Theory; Independent Pairon Picture

BCS assumed a free-electron model having a Fermi sphere in their original work.
They also assumed the existence of electrons and holes in their model superconductor.
These two assumptions however contradict each other. If a Fermi sphere whose inside
(outside) is filled with electrons is assumed, there are electrons (holes) only. Besides this
logical inconsistency, if we assume a free-electron model, we cannot explain why the law
of corresponding states works so well, why monovalent metals like Na are not supercon-
ductors, or why compound superconductors including intermetallic, organic, and high-T;
superconductors exhibit type II behaviors. Recently Fujita and coworkers®' proposed a
generalized BCS Hamiltonian by incorporating the energy bands of electrons and phonons
more explicitly, and they proceeded to calculate thermodynamic and transport properties
by a standard method of quantum statistical mechanics. They could solve many puzzling
questions left unanswered by the BCS theory including those mentioned earlier, and why
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a ring supercurrent does not decay by scattering due to impurities that must exist in any
superconductor, why superconductors do not gain energy from an applied static voltage,
and why an applied magnetic field eventually destroys the superconducting state. We
present in this book this new quantum statistical theory of superconductivity.

If a system-Hamiltonian is composed of single-particle Hamiltonians, the quan-
tum many-body problem can be reduced to a one-body problem by using Heisenberg’s
equation-of-motion method.*? All of the properties including the ground-state energy,
critical temperature, elementary excitation energy spectra, supercondensate density, spe-
cific heat, and supercurrent density can be computed without mathematical complexities.

1.5. LAYOUT OF THE PRESENT BOOK

Chapters 2—4 are preliminaries and deal with the free-electron model of a metal,
with quantum theory of lattice vibrations and with the B—E condensation. These are
the materials expected of a undergraduate physics major, and they are unlikely to be
covered in a one-semester course on superconductivity theory. Readers who are not
physics majors will find these preliminary chapters useful. Such concepts as fermions,
bosons, Fermi energy, phonons, Debye frequency, B-E condensation, and density of
states are discussed and demonstrated. Quantum statistical calculations, starting with a
system Hamiltonian and ending with the computation of the measurable quantity (e.g.,
heat capacity) by means of a grand canonical ensemble are illustrated. Chapters 5 and 6
are also preliminaries. Chapter 5 deals with energy band structures and Bloch electron
dynamics. The Bloch theorem, Bloch electrons, Fermi liquid model, electrons and holes,
and nonspherical Fermi surfaces are introduced here. These concepts are indispensable
in developing the microscopic theory of superconductivity, as is the second quantization
formalism, which is fully developed in Chapter 6. The quantum many-body problem can
most simply be formulated and treated in the Heisenberg picture. The equation-of-motion
method is developed, which will be used repeatedly in the later chapters.

Chapters 7-11 constitute the central core of the present book, and deal with a
theory of superconductivity proper. The basic cause for superconductivity is the phonon-
exchange attraction, which is derived by employing a time-dependent quantum perturba-
tion method in Chapter 7, where the interaction between electrons and ions is reviewed.
For ease of presentation, we discuss the thermodynamic properties of superconductors
at 0 K, above and below T, in Chapters 8-10. In Chapter 8 many important formulas,
including those for the binding energy of a Cooper pair, Eq. (1.4.1), the excitation energy
of a moving pairon, Eq. (1.4.2), the ground-state energy of the BCS system, Eq. (1.4.3),
and the quasi-electron energy with a gap A, Eq. (1.4.5), are derived. Our theory is
developed by generalizing the BCS theory and incorporating the energy band structures
of electrons and phonons. In Chapter 9 we shall see that a system of free pairons having
a linear energy—momentum relation undergoes a B-E condensation transition of second
order. The critical temperature 7 depends on the pairons density n, and on the Fermi
velocity vp.In Chapter 10 we show that quasi-electrons having energy gaps A below
T are bound by the phonon-exchange attraction to form moving pairons having energy
gaps O . The quantum tunneling data are analyzed based on the pairon transport model.
The thermodynamic properties of the superconductor below T, is calculated under the as-
sumption that moving pairons rather than quasi-electrons are the elementary excitations in
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the superconductor. Supercurrents, flux quantization, Josephson effects, Londons’ equa-
tion, G-L wave function and quasi-wave functions are discussed in Chapter 11 from the
many-pairon condensation point of view. In the present text, a quantum statistical theory
of superconductivity is presented mainly for elemental superconductors. The theory can
be extended to compound superconductors with a slight modification by regarding optical
and acoustic phonons as the intermediary for bound pairons. In Chapters 12 and 13, we
briefly discuss compound and high- T, superconductors. Finally summary and remarks

are given in Chapter 14.
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Free-Electron Model for a Metal

In a metal conduction electrons move almost freely. The electrons obey the Fermi—Dirac
statistics, and the thermodynamic properties of moving electrons are very different from
what classical statistical mechanics predicts. These properties will be discussed based on
the free-electron model. Elementary discussions of electrical conduction and the motion
of a charged particle in electric and magnetic fields are also included. More advanced
treatments of a metal will be given in Chapter 5.

2.1. CONDUCTION ELECTRONS IN A METAL; THE HAMILTONIAN

Let us take a monovalent metal. The Hamiltonian H of the system may be repre-
sented by

N Pz

H¥Z Zz:‘r~r| 2/\(/![
*sz R Zz|r R 2.1.1)

>y

o = (4n,)"!. The sums on the right-hand side (rhs) represent, respectively, the kinetic
energy of electrons, the interaction energy among electrons, the kinetic energy of ions,
the interaction energy among ions, and the interaction energy between electrons and ions.
The metal as a whole is electrically neutral, and therefore the number of electrons should
equal the number of ions. Both numbers are denoted by N.

At very low temperatures, the ions will be almost stationary near the equilibrium
lattice points. (Because of quantum zero-point motion, the ions are not at rest even at
0 K. But this fact does not affect the following argument in a substantial manner.) Then
the system can be viewed as the one in which the electrons move in a periodic lattice
potential. The Hamiltonian of this idealized system that now depends on the electron
variables only can be written as

2 ke’ ,
H:ZﬁjLZZ{ro—rkﬁZ”erc 2.1.2)
J j>k J J

23
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Figure 2.1. A periodic potential in one dimension.

V(X)

where V(rj)represents the lattice potential, and the constant energy C depends on the
lattice configuration.
Let us drop the Coulomb interaction energy from Eq. (2.1.2). We then have

2
H = Z %1 + Z V(rj.) + constant (2.1.3)

which now characterizes a system of noninteracting electrons in the lattice. In Fig. 2.1
we draw a typical lattice potential in one dimension.

Quantum mechanical calculations (Bloch’s theorem; see Section 5.1) show that the
wave function |, which satisfies the Schrodinger equation:

hz
{——Vz +V <r)} P(r) = Ey(r) (2.1.4)
2m
has the form:
P (1) = e Tu (r), u, (r + Ry = u,(r) (2.1.5)

The absolute square of the wave function:
[0 = (0 (2.1.6)

then is lattice-periodic. That is, the probability distribution function for the electron has
the same periodicity as that of the lattice. The associated energy eigenvalues E have
forbidden regions (energy gaps), and the energy eigenstates are characterized by the wave
vector Kk and the zone number j, which enumerates the allowed energy bands:

E = ¢,(hk) (2.1.7)

A typical set of the energy bands is shown in Fig. 2.2.

At the absolute zero of temperature, these energy bands are filled with electrons
from the bottom up, the upper limit being provided by the Fermi energy Op This is due
to Pauli’s exclusion principle: No two electrons can occupy the same quantum state.

If the uppermost energy band is completely filled with electrons, no electrons can
gain energy in a continuous manner. In this case electrons cannot be accelerated by
an applied electric field, and the material having such an electronic band configuration
behaves like an insulator. This is true for all crystals formed by inert-gas atoms, such as
He.
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Figure 2.2. A typical set of the energy bands for the electrons in a crystal.

Consider now the case in which the uppermost energy band is partially filled with
electrons and the Fermi energy lies in the middle of the band. If a small electric field
E = —[@ is applied, those electrons having energies close to the Fermi energy can gain
the electric energy —e@in a continuous manner just as the classical electrons can. This
case corresponds to a metallic material. The detailed treatments (see Chapter 5) show
that those electrons in the partially filled band can flow in much the same manner as
electrons in free space, whose energy—momentum relation:

2 22

E,. = f—m = % 2.1.8)
is a simple function of the momentum p with no energy gap. Only the response to
the electric field is different. For most metals, the response of the conduction electrons
to the field can adequately be described by the effective mass approximation. That is,
the conduction electrons respond with a certain effective mass m* whose value is of
the order of the free electron mass m, the actual value depending on the energy band
structures. The dynamic behavior of the conduction electrons can then be characterized
by the energy—momentum relation:

conduction electron T 2m* 2

(2.1.9)

The foregoing discussions in terms of the energy bands are based on the Hamiltonian
in Eq. (2.1.3) with the neglect of the Coulomb interaction among electrons:

k,e?
2 T 2.1.10)
k

- |r,
J>k 7

This interaction is very important. However including of this interaction in the quantum
mechanical calculations does not destroy such outstanding features as energy bands with
gaps and the sharply defined Fermi energy. In this sense the Coulomb interaction plays
a secondary role. This interaction introduces a correlation among the electrons’ motion,
and its proper treatment is quite complicated. Later in Section 5.3, we shall develop a
single-electron picture approximation called the Fermi’s liquid model.
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2.2. FREE ELECTRONS; THE FERMI ENERGY

Let us consider a system of free electrons characterized by the Hamiltonian:

A

7

H = E 3 (2.2.1)
J

The momentum eigenstates for a quantum particle with a periodic cube box boundary
condition are characterized by three quantum numbers:

2wk | 2rh 2k
py=\—7 ) Pu=lT )k pa={T)! (2.2.2)

where L is the cube side-length, and j, k, and [ are integers. For simplicity, we indicate
the momentum state by a single Greek letter K:

pK = (px,/"py.k’p:./) (223)

The quantum state of our many-electron system can be specified by the set of occupa-
tion numbers {n,}, with each n, = n_  taking on either one or zero. The ket vector

representing such a state will be denotep(i by
{n}) = {n.}) (2.2.4)
The corresponding energy eigenvalue is given by
E(nh=> c.n, (2.2.5)

K

where [, = pf/Zm is the kinetic energy of the electron with momentum P,- The sum
of the occupation numbers n, equals the total number N of electrons:

> on,=N (2.2.6)

I

We assume that the system is in thermodynamic equilibrium, which is characterized
by temperature 7 = (kg B)"' and number density n. The thermodynamic properties of the
system can then be computed in terms of the grand canonical ensemble density operator:

e(x/\"— BH

P = TR{eF=FY (2.2.7)

The ensemble average of n, is represented by the Fermi distribution function f,:

TR{nﬁeaN—ﬂH} B

(n.) = TRV ] = [exp(Be, —a)+ 1]7" = f(e,) (2.2.8)

(Problem 2.2.1.) The parameter O in this expression is determined from

Ny 1 i o
R R DI ra DI 229

K
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f(e)

Figure 2.3. The Fermi distribution function against energy [. The solid line is for 7= 0 and the broken line
for a small T.

Hereafter we drop the subscript F on fr.
We now investigate the behavior of the Fermi distribution function f([J) at very low
temperatures. Let us set

o == —— (2.2.10)

Here the quantity u represents the chemical potential. At the low-temperature limit, the
chemical potential u approaches a positive constant yo : 4 — o > 0. We plot the Fermi
distribution function f({J) at 7 = 0 against the energy [ with a solid curve in Fig. 2.3.
It is a step function with the step at [ = u, . This means that every momentum state
p, for which 0, = p2 12m < g is occupied with probability 1, and all other states are
unoccupied. This special energy u,, is called the Fermi energy; it is often denoted by [,
and it can be calculated in the following manner:
From Eq. (2.2.9) we have

n=y! 2:[/“(‘%)]7:0 =y (the number of states K for which 0, < u)
# (2.2.11)

The momentum eigenstates in Eq. (2.2.2) can be represented by points in the three-
dimensional momentum space, as shown in Fig. 2.4. These points form a simple cubic

Figure 2.4. The momentum states for a periodic cubic boundary condition form a simple cubic lattice with the
lattice constant 27/ /L.
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(sc) lattice with the lattice constant 27#/L. Let us define the Fermi momentum P, by

fg =€y = 25 (2.2.12)

The number of occupied states will be equal to the number of lattice points within the
sphere of radius p,.. Since one lattice point corresponds to one unit cell for the sc lattice,
this number is equal to the volume of the sphere, (4T[/3)p3F, divided by the volume of
the unit cell, (2rA/L)*:

number of occupied states = 4 L (2.2.13)
P “\3 ) @rh/Ly -

Introducing this into Eq. (22.11), we obtain

(47 p?; _ 4_71’ pi
" <?) Qrh/LYP L ( 3 )(27Tﬁ)3 2.2.14)

This result was obtained under the assumption of a periodic cube-box boundary
condition. The result obtained in the bulk limit, where

<|=

L =V - oo, N - oo such that n = Constant (2.2.15)
is valid independent of the shape of the boundary (see Problem 2.2.2).

In our discussion so far, we have neglected the fact that an electron has a spin an-
gular momentum (or simply spin) as additional degrees of freedom. It is known that any
quantum state for an electron must be characterized not only by the quantum numbers
(PyjsPyjsP1) describing its motion in the ordinary space, but also by the quantum num-
bers describing its spin. It is further known that the electron has a permanent magnetic
moment associated with its spin and that the eigenvalues s, of the z-component of the
electronic spin are discrete and restricted to the two values +f /2. In the absence of a
magnetic field, the magnetic potential energy is the same for both spin states. In the
grand canonical ensemble, the states with the same energy are distributed with the same
probability. In taking account of the spins, we must then multiply the rhs of Eq. (2.2.14)
by the factor 2, called the spin degeneracy factor. We thus obtain

_ 87 1 3
R

(2.2.16)

(including the spin degeneracy). After solving this equation for p,, we obtain the Fermi
energy as follows:

_ 7’12(37r2n)2/3

2.2.17
F 2m ( )

Let us estimate the order of magnitude for [J. by taking a typical metal, Cu. This
metal has a specific weight of 9g cm™ and a molecular weight of 63.5, yielding the
number density n = 8.4 x 10 electrons/cm? . Using this value for n, we find that

e =kyTry T, 280,000 K (2.2.18)
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This T}, is called the Fermi temperature. The value found for the Fermi energy U, = kg Tp
is very high compared to the thermal excitation energy of the order kg 7, which we shall
see later in Section 2.4. This makes the thermodynamic behavior of the conduction
electrons at room temperature drastically different from that of a classical gas.

The Fermi energy by definition is the chemical potential at 0 K. We may look at
this relation in the following manner. For a box of a finite volume V, the momentum
states form a simple cubic lattice as shown in Fig. 2.4. As the volume V is made greater,
the unit-cell volume in the momentum space, (21th/L)3, decreases like V. However in
the process of the bulk limit, we must increase the number of electrons N in proportion
to V. Therefore the radius of the Fermi sphere within which all momentum states are
filled with electrons neither grows nor shrinks. Obviously this configuration corresponds
to the lowest energy state for the system. The Fermi energy [}, = pZ 12m represents the
electron energy at the surface of the Fermi sphere. If we attempt to add an extra electron
to the Fermi sphere, we must bring in an electron with an energy equal to [}, indicating
that U, =y, .

Problem 2.2.1. Verify Eq. (2.2.8).

Problem 2.2.2. The momentum eigenvalues for a particle in a periodic rectangu-
lar box with sides of unequal lengths (L,,L,, Ly) are given by Py = 27rﬁ_/‘/Ll,p_m =
2rhk/L,,p,, = 2mhl/L,. Show that the Fermi energy [, for free electrons is still given
Eq. (2.2.17) in the bulk limit.

2.3. DENSITY OF STATES

In many quantum statistical calculations, we must convert the sum over quantum
states into an integral. This conversion becomes necessary when we first find discrete
quantum states for a periodic box, then seek the sum over states in the bulk limit. This
conversion is a welcome procedure because the resulting integral is easier to handle than
the sum. The conversion is of a purely mathematical nature, but it is an important step
in carrying out statistical mechanical computations.

Let us first examine a sum over momentum states corresponding to a one-
dimensional motion. We take

> 4y (2.3.1)
p

where A(p) is an arbitrary function of p. The discrete momentum states are equally
spaced, as shown by short bars in Fig. 2.5. As the normalization length L is made
greater, the spacing (distance) between two successive states 2m#A/L becomes smaller.
This means that the number of states per unit momentum interval increases with L. We
denote the number of states within a small momentum interval Ap by An. Consider the
ratio An/Ap. Dividing both the numerator and denominator by Ap, we obtain

An 1 L

an . — (2.3.2)
Ap  momentum spacing per state  27h

This ratio An/Ap increases linearly with the normalization length L.
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Figure 2.5. The linear momentum states are represented by short bars forming a linear lattice with unit spacing
equal to 2704 /L.

Let us now consider a sum:
An
D Aw) AP (23.3)
! Awp

where A, p isthe [th interval and p, represents a typical value of p within the interval
A, p, say the p-value at the midpoint of A;p. The two sums Eqs. (2.3.1) and (2.3.3) have
the same dimension, and they are close to each other if (i) the function A(p) is a smooth
function of p, and (ii) there exist many states in A;p so that An/A;p can be regarded
as the density of states. The second condition is satisfied for the momentum states {p,}
when the length L is made sufficiently large. In the bulk limit, Eqs. (2.3.1) and (2.3.3)
will be equal:

A
Jlim Y Ap) =S A(p)A—nAlp (2.3.4)
—oC P

k(states) Ap

In the small interval limit the sum on the rhs becomes the integral [ dp A(p)dn/dp, where
[using Eq. (2.3.2)]

T (2.3.5)
dp  ap—0Ap  2nh o

is the density of states in the momentum space (line). In summary we therefore have

T d
3 ) - / dpA(p)d—; (2.3.6)
k —oc

We stress that condition (i) depends on the nature of the function A. Therefore if
A(p) is singular at some point, this condition is not satisfied, which may invalidate the
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limit in Eq. (2.3.6). Such exceptional cases do occur. (See Section 4.2.) We further note
that the density of states dn/dp = L(2Tt4)~" does not depend on the momentum.

The sum-to-integral conversion, which we have discussed, can easily be generalized
for a multidimensional case. For example we have

ZA(p,\,) - /d3pA(p)i)(p) as vV =10 5 oo (2.3.7)
P«

The density of states D (p) = dn/d }7 can be calculated by extending the arguments
leading to Eq. (2.3.2). We choose the periodic cubic box of side length L for the
normalization, take the spin degeneracy into account and obtain

dn 203

POV = B, T Gy

(2.3.8)
(with spin degeneracy).

Let us use this result and simplify the normalization condition in Eq. (2.2.9). We
then obtain

n=Lim(1/V) / Ep f(p*2myD (p) = 2(27h) 3 / Epft2amy (P =V1)
(2.3.9)

Next consider the energy density of the system. Using Egs. (2.2.5) and (2.2.8) we obtain

2
e = Lim <—';I—> = Lim(l/V)Z e fle,) = 2(2nh) ™ /d3p<§—m>f(p2/2m)

Equations (2.3.9) and (2.3.10) were obtained by starting with the momentum eigenvalues
corresponding to the periodic cube-box boundary conditions. The results in the bulk
limit however do not depend on the boundary condition.

The concept of the density of states can also be applied to the energy domain. This
is convenient when the sum over states has the form:

> gle,) 2.3.11)

where g(0y) is a function of the energy [J, associated with the state K. The sums in
Egs. (2.2.5) and (2.2.9) are precisely in this form.

Let dn be the number of the states within the energy interval dll. In the bulk limit,
this number dn will be proportional to the interval d[] so that

dn = N (e)de (2.3.12)
Here the proportionality factor
d
N=Z 23.13)
de

is called the densiry of states in the energy domain. This quantity A (0) generally depends
on the location of the interval dJ, and therefore on a typical energy U within d[J, say, the
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Figure 2.6. The density of states in energy A, (0) for free electrons in three dimensions grows like 072,

energy at the midpoint of the interval d0. If the set of the states {K} becomes densely
populated in the bulk limit and the function g is smooth, then the sum may be converted
into an integral of the form:

> )~ [degn 23.14)

K(states)

Let us now calculate the density of states A’ (0) for the system of free electrons. The
number of states dn in the spherical shell in momentum space is obtained by dividing
the volume of the shell 4Tip2dp by the unit cell volume (21t4/L)* and multiplying the
result by the spin degeneracy factor 2:

2 x dmpidp 87 p?
dn = = d, 23.1
"= TRk LY Oy ¥ (23.15)
Since p = 2mD)"?, we obtain
dp , ym\\/2
dp = yode = (52) e (23.16)
Using these equations we obtain
8w(2me) rm\1/2 Qu21/2m3/2 2
=V Ty