

What You＇ll Learn

Key Ideas

－Identify parts of triangles and classify triangles by their parts．（Lesson 5－1）
－Use the Angle Sum Theorem． （Lesson 5－2）
－Identify translations， reflections，and rotations and their corresponding parts．
（Lesson 5－3）
－Name and label corresponding parts of congruent triangles．
（Lesson 5－4）
－Use the SSS，SAS，ASA，and AAS tests for congruence． （Lessons 5－5 and 5－6）

Key Vocabulary

congruent triangles（p．203）
right triangle（p．188）
triangle（p．188）

Why It＇s Important

Social Studies The Hopi people have lived on three isolated mesas in what is now northern Arizona for more than a thousand years．Oraibi，a Hopi village on Third Mesa，is the oldest continuously inhabited village in the United States．The Hopi live in multilevel adobe or stone villages called pueblos．

Triangles are the simplest of the polygons．You will determine how triangles are used to create the design on Hopi pottery in Lesson 5－3．

Study these lessons to improve your skills.

Check Your Readiness

Use a protractor to draw an angle having each measurement. Then classify each angle as acute, obtuse, or right.

Lesson 3-2, pp. 96-101

Lesson 3-5, pp. 116-121

1. 52°
2. 145°
3. 18°
4. 90°
5. 75°
6. 98°

Determine the measures of the complement and supplement of each angle.
7. 34°
8. 12°
9. 44°
10. 78°
11. 66°
12. 5°

Solve each equation. Check your solution.
Algebra
Review, p. 722

Algebra
Review, p. 723
13. $114+n=180$
15. $5 m=90$
17. $90-k=23$
19. $90=4 b-18$
21. $8 y-16=180$
23. $(n-4)+n=180$
14. $58+x=90$
16. $180=12 g$
18. $180-q=121$
20. $48+3 g=90$
22. $12 c+6=90$
24. $2 x+4 x+6 x=180$

FOLDABLES

Study Organizer

Make this Foldable to help you organize your Chapter 5 notes. Begin with 3 sheets of plain $8 \frac{1}{2}$ " by 11 " paper.
(1) Fold in half lengthwise.

Fold the top to the bottom.
(4) Label each tab as shown.
 the second fold to make two tabs.
 -

Reading and Writing As you read and study the chapter, write what you learn about the two methods of classifying triangles under the tabs.

5-1 Classifying Triangles

What You'll Learn

You'll learn to identify the parts of triangles and to classify triangles by their parts.
Why It's Important
Art Abstract artists use geometric shapes in their designs.
See Exercise 24.

Reading Geometry

Read the symbol \triangle as triangle. Other names for $\triangle D E F$ are $\triangle F D E, \triangle E D F$, $\triangle F E D, \triangle D F E$, and $\triangle E F D$.

Optical art is a form of abstract art that creates special effects by using geometric patterns. The design at the right looks like a spiral staircase, but it is made mostly of triangles.

In geometry, a triangle is a figure formed when three noncollinear points are connected by segments. Each pair of segments forms an angle of the triangle. The vertex of each angle is a vertex of the triangle.

Triangles are named by the letters at their vertices. Triangle $D E F$, written $\triangle D E F$, is shown below.

In Chapter 3, you classified angles as acute, obtuse, or right. Triangles can also be classified by their angles. All triangles have at least two acute angles. The third angle is either acute, obtuse, or right.

Reading Geometry
An equal number of slashes on the sides of a triangle indicate that those sides are congruent.

Triangles can also be classified by their sides.
Triangles
Classified by
Sides

Since all sides of an equilateral triangle are congruent, then at least two of its sides are congruent. So, all equilateral triangles are also isosceles triangles.

Some parts of isosceles triangles have special names.
Info
The angle formed by the congruent sides is called the vertex angle.

The two angles formed by the base and one of the congruent sides are

The congruent sides
 angle is called the base.

Examples

Classify each triangle by its angles and by its sides.

Explore You know that $\angle A$ is the vertex angle. Therefore, $\overline{A B} \cong \overline{A C}$.

Solve

$$
\begin{aligned}
A B & =A C & & \text { Definition of congruent segments } \\
5 x-7 & =23 & & \text { Substitution } \\
5 x-7+7 & =23+7 & & \text { Add } 7 \text { to each side. } \\
5 x & =30 & & \text { Simplify. } \\
\frac{5 x}{5} & =\frac{30}{5} & & \text { Divide each side by } 5 . \\
x & =6 & & \text { Simplify. }
\end{aligned}
$$

To find the measures of $\overline{A B}$ and $\overline{A C}$, replace x with 6 in the expression for each measure.

$$
\begin{array}{rlrl}
A B & B C \\
A B & =5 x-7 & B C & =3 x-5 \\
& =5(6)-7 & & =3(6)-5 \\
& =30-7 \text { or } 23 & & =18-5 \text { or } 13
\end{array}
$$

Therefore, $A B=23$ and $B C=13$.
Examine Since $A B=23$ and $A C=23$, the triangle is isosceles.

Gheck for Understanding

Communicating Mathematics

Guided Practice

Examples 1 \& 2

1. Draw a scalene triangle.
2. Sketch and label an isosceles triangle in which the vertex angle is $\angle X$ and the base is $\overline{Y Z}$.
3. Is an equilateral triangle also an isosceles triangle? Explain why or why not.

Classify each triangle by its angles and by its sides.
4.

5.

6.

Example 3

7. Algebra $\triangle A B C$ is an isosceles triangle with base $\overline{B C}$. Find $A B$ and $B C$.

Practice

Homework Help			
For Exercises	See Examples		
$8-17$	1,2		
$18-25$	1,2		
$26-27$	3		
Extra Practice			
See page 734.			

Classify each triangle by its angles and by its sides.
8.

9.

10.

11.

12.

13.

14.

15.

16.

17. Triangle $X Y Z$ has angles that measure $30^{\circ}, 60^{\circ}$, and 90°. Classify the triangle by its angles.

Make a sketch of each triangle. If it is not possible to sketch the figure, write not possible.
18. acute isosceles
19. right equilateral
20. obtuse and not isosceles
21. right and not scalene
22. obtuse equilateral
23. Architecture Refer to the photo at the right. Classify each triangle by its angles and by its sides.
a. $\triangle A B C$
b. $\triangle A C D$
c. $\triangle B C D$
24. Art Refer to the optical art design on page 188. Classify the triangles by their angles and by their sides.

Alcoa Office Building, San Francisco, CA
25. Quilting Classify the triangles that are used in the quilt blocks.
a.

Ohio Star
b.

Duck's Foot in the Mud
26. Algebra $\triangle D E F$ is an equilateral triangle in which $E D=x+5$, $D F=3 x-3$, and $E F=2 x+1$.
a. Draw and label $\triangle D E F$.
b. Find the measure of each side.
27. Algebra Find the measure of each side of isosceles triangle $A B C$ if $\angle A$ is the vertex angle and the perimeter of the triangle is 20 meters.

28. Critical Thinking Numbers that can be represented by a triangular arrangement of dots are called triangular numbers. The first four triangular numbers are $1,3,6$, and 10 .

Find the next two triangular numbers.

Mixed Review

Write an equation in slope-intercept form of the line with the given slope that passes through the given point. (Lesson 4-6)
29. $m=-3,(0,4)$
30. $m=0,(0,-2)$
31. $m=-2,(-2,1)$

Find the slope of the lines passing through each pair of points.
(Lesson 4-5)
32. $(5,7),(4,5)$
33. $(8,4),(-2,4)$
34. $(5,-2),(5,1)$

35. Sports In the Olympic ski-jumping competition, the skier tries to make the angle between his body and the front of his skis as small as possible. If a skier is aligned so that the front of his skis makes a 20° angle with his body, what angle is formed by the tail of the skis and his body? (Lesson 3-5)

Standardized

 Test Practice(A) (B) C C
36. Multiple Choice Use the number line to find $D A$. (Lesson 2-1)
(A) -10 (B) -6

(C) 6
(D) 10

What You'll Learn

You'll learn to use the Angle Sum Theorem.
Why It's Important construction Builders use the measure of the vertex angle of an isosceles triangle to frame buildings. See Exercise 21.

Graphing Calculator Tutorial See pp. 782-785.

If you measure and add the angles in any triangle, you will find that the sum of the angles have a special relationship. Cut and fold a triangle as shown below. Make a conjecture about the sum of the angle measures of a triangle.

You can use a graphing calculator to verify your conjecture.

Graphing Calculator Exploration

Step 1 Use the Triangle tool on the F2 menu. Move the pencil cursor to each location where you want a vertex and press ENTER. The calculator automatically
 draws the sides. Label the vertices A, B, and C.

Step 2 Use the Angle tool under Measure on the F5 menu to measure each angle.

Try These

1. Determine the sum of the measures of the angles of your triangle.
2. Drag any vertex to a different location, measure each angle, and find the sum of the measures.
3. Repeat Exercise 2 several times.
4. Make a conjecture about the sum of the angle measures of any triangle.

The results of the activities above can be stated in the Angle Sum Theorem.

Theorem 5-1
Angle Sum
Theorem

Words: The sum of the measures of the angles of a triangle is 180 .
Model:

You can use the Angle Sum Theorem to find missing measures in triangles.

Examples -1 Find $m \angle T$ in $\triangle R S T$.

Algebra Review

Solving One-Step
Equations, p. 722

$$
\begin{aligned}
m \angle R+m \angle S+m \angle T & =180 \\
54+67+m \angle T & =180 \\
121+m \angle T & =180 \\
121-121+m \angle T & =180-121 \\
m \angle T & =59
\end{aligned}
$$

Angle Sum Theorem Substitution Add.

2 Find the value of each variable in $\triangle D C E$.
$\angle A C B$ and $\angle D C E$ are vertical angles.
Vertical angles are congruent, so $m \angle A C B=m \angle D C E$. Therefore, $x=85$.

Now find the value of y.

$$
\begin{aligned}
m \angle D+m \angle D C E+m \angle E & =180 \\
55+85+y & =180 \\
140+y & =180 \\
140-140+y & =180-140 \\
y & =40
\end{aligned}
$$

Angle Sum Theorem Substitution
Add.
Subtract 140 from each side. Simplify.

Therefore, $x=85$ and $y=40$.

Your Turn

a. Find $m \angle L$ in $\triangle M N L$ if $m \angle M=25$ and $m \angle N=25$.
b. Find the value of each variable in the figure at the right.

You can use the Angle Sum Theorem to discover a relationship between the acute angles of a right triangle. In $\triangle R S T$, $\angle R$ is a right angle.

$$
\begin{aligned}
m \angle R+m \angle T+m \angle S & =180 \\
90+m \angle T+m \angle S & =180 \\
90-90+m \angle T+m \angle S & =180-90 \\
m \angle T+m \angle S & =90
\end{aligned}
$$

Angle Sum Theorem

Substitution
Subtract 90 from each side.
Simplify.
By the definition of complementary angles, $\angle T$ and $\angle S$ are complementary. This relationship is stated in the following theorem.

Words: The acute angles of a right triangle are complementary.

Theorem 5-2

Symbols: $x+y=90$

$$
\text { Symools: } x+y=y 0
$$

Example Algebra Link

$$
\begin{array}{rll}
m \angle A+m \angle B & =90 & \\
\text { Theorem } 5-2 \\
2 x+3 x & =90 & \text { Substitution } \\
5 x & =90 & \text { Combine like terms. } \\
\frac{5 x}{5}=\frac{90}{5} & \text { Divide each side by } 5 . \\
x & =18 & \text { Simplify. }
\end{array}
$$

Now replace x with 18 in the expression for each angle.

$$
\begin{array}{rlrl}
\angle A & \angle B \\
m \angle A & =2 x & m \angle B & =3 x \\
=2(18) \text { or } 36 & & =3(18) \text { or } 54
\end{array}
$$

An equiangular triangle is a triangle in which all three angles are congruent. You can use the Angle Sum Theorem to find the measure of each angle in an equiangular triangle.

Triangle $P Q R$ is an equiangular triangle. Since $m \angle P=m \angle Q=m \angle R$, the measure of each angle of $\triangle P Q R$ is $180 \div 3$ or 60 .

This relationship is stated in Theorem 5-3.

Check for Understanding

Communicating Mathematics

1. Choose the numbers that are not measures of the three angles of a triangle.
a. $10,20,150$
b. $30,60,90$
c. $40,70,80$
d. $45,55,80$
equiangular triangle
2. Explain how to find the measure of the third angle of a triangle if you know the measures of the other two angles.
3. Wiriting Math Is it possible to have two obtuse angles in a triangle? Write a few sentences explaining why or why not.

Guided Practice

Examples 1 \& 2

Example 3

Find the value of each variable.
4.

5.

6.

7. Algebra The measures of the angles of a triangle are $2 x, 3 x$, and $4 x$. Find the measure of each angle.

Excroises

Find the value of each variable.

Practice

Homework Help For Exercises	
$8-12,20,21$	See Examples
$13-16$	2
$17-19,22$	3
Extra Practice	
See page 734.	

8.

9.

10.

11.

12.

13.

14.

15.

16.

Find the measure of each angle in each triangle.
17.

18.

19.

20. The measure of one acute angle of a right triangle is 25 . Find the measure of the other acute angle.

Applications and Problem Solving

Standardized Test Practice

Mixed Review

21. Construction The roof lines of many buildings are shaped like the legs of an isosceles triangle. Find the measure of the vertex angle of the isosceles triangle shown at the right.
22. Algebra The measures of the angles of a triangle are $x+5$, $3 x+14$, and $x+11$. Find the measure of each angle.
23. Critical Thinking If two angles of one triangle are congruent to two angles of another triangle, what is the relationship between the third angles of the triangles? Explain your reasoning.

24. The perimeter of $\triangle G H I$ is 21 units. Find GH and GI. (Lesson 5-1)
25. State the slope of the lines perpendicular to the graph of $y=3 x-2$. (Lesson 4-6)

Identify each pair of angles as alternate interior, alternate exterior, consecutive interior, or vertical. (Lesson 4-2)
26. $\angle 1, \angle 5$
27. $\angle 9, \angle 11$
28. $\angle 2, \angle 3$

29. $\angle 7, \angle 15$
30. Short Response Points X, Y, and Z are collinear, and $X Y=45, Y Z=23$, and $X Z=22$. Locate the points on a number line. (Lesson 2-2)

5-3 Geometry in Motion

What You'll Learn

You'll learn to identify translations, reflections, and rotations and their corresponding parts.

Why It's Important
Art Artists use motion geometry to make designs. See Example 6.

We live in a world of motion. Geometry helps us define and describe that motion. In geometry, there are three fundamental types of motion: translation, reflection, and rotation.

In a translation, you slide a figure from one position to another without turning it. Translations are sometimes called slides.

In a reflection, you flip a figure over a line. The new figure is a mirror image.
Reflections are sometimes called flips.

Rotation

In a rotation, you turn the figure around a fixed point. Rotations are sometimes called turns.

When a figure is translated, reflected, or rotated, the lengths of the sides of the figure do not change.

Examples

Identify each motion as a translation, reflection, or rotation.

Reading Geometry

Read $\triangle A B C \rightarrow \triangle D E F$ as triangle $A B C$ maps to triangle $D E F$.

Each point on the preimage can be paired with exactly one point on its image, and each point on the image can be paired with exactly one point on the preimage. This one-to-one correspondence is an example of a mapping.

The symbol \rightarrow is used to indicate a mapping. In the figure, $\triangle A B C \rightarrow \triangle D E F$. In naming the triangles, the order of the vertices indicates the corresponding points.

Preimage		Image	Preimage		Image
A	\rightarrow	D	$\overline{A B}$	\rightarrow	$\overline{D E}$
B	\rightarrow	E	$\overline{B C}$	\rightarrow	$\overline{E F}$
C	\rightarrow	F	$\overline{A C}$	\rightarrow	$\overline{D F}$

This mapping is called a transformation.

Examples

In the figure, $\triangle X Y Z \rightarrow \triangle A B C$ by a reflection.
(4) Name the image of $\angle X$.

$\angle X$ corresponds to $\angle A$.
So, $\angle A$ is the image of $\angle X$.
(5) Name the side that corresponds to $\overline{A B}$.

Point A corresponds to point X.

Point B corresponds to point Y.
So, $\overline{A B}$ corresponds to $\overline{X Y}$.

Your Turn

In the figure, $\triangle L M N \rightarrow \triangle Q R S$ by a rotation.
d. Name the image of $\angle M$.
e. Name the angle that corresponds to $\angle S$.
f. Name the image of $\overline{L M}$.
g. Name the side that corresponds to $\overline{L N}$.

Translations, reflections, and rotations are all isometries. An isometry is a movement that does not change the size or shape of the figure being moved. Artists often use isometries in designs. One of the most famous artists to use this technique was M. C. Escher.

Example Art Link

Identify the type of transformation in the artwork at the right.

Each figure can be moved to match another without turning or flipping. Therefore, the motion is a translation.

M. C. Escher, Pegasus

Check for Understanding

Communicating Mathematics

Guided Practice

Examples 1-3

Examples 4 \& 5

1. Explain the difference between a translation and a rotation.
2. 11 antin Suppose $\triangle A B C \rightarrow \triangle R S T$. Antonio says that $\angle C$ corresponds to $\angle T$.
Keisha says she needs to see the drawing to know which angles correspond. Who is correct? Explain your reasoning.

Identify each motion as a translation, reflection, or rotation.

Vocabulary

translation reflection rotation transformation preimage isometry image mapping
3.

4.

5.

In the figure at the right, $\triangle X Y Z \rightarrow \triangle R S T$.
6. Name the image of $\overline{X Y}$.
7. Name the angle that corresponds to $\angle R$.

Example 6

8. Native American Designs The design below was found on food bowls that were discovered in the ruins of an ancient Hopi pueblo. Identify the transformations in the design.

Practice

Homework Help

For Exercises	See Examples
$9-17$	$1-3$
$18-24$	4,5
$25-27$	6
Extra Practice	

See page 734.

Applications and Problem Solving

Identify each motion as a translation, reflection, or rotation.
9.

10.

11.

12.

13.

14.

15.

16.

17.

In the figure at the right, $\triangle M N P \rightarrow \triangle F G H$.
18. Which angle corresponds to $\angle N$?
19. Which side corresponds to $\overline{M N}$?
20. Name the angle that corresponds to $\angle H$.
21. Name the image of point Q.
22. Name the side that corresponds to $\overline{G H}$.
23. Name the image of $\overline{P Q}$.
24. If $\triangle A B C \rightarrow \triangle P Q R$, which angle corresponds
 to $\angle R$?
25. Engines Cams are important parts of engines because they change motion from one direction to another. As the cam turns around, the pistons move up and down. Identify the transformation that occurs in the cams.

M. C. Escher, Flying Fish
26. Art The figure at the left shows an untitled work by M. C. Escher. Identify the type of transformation used to complete the work.
27. Critical Thinking The transformation below is called a glide reflection. How is this transformation different from a translation, reflection, and rotation?

Mixed Review

28. The measure of one acute angle of a right triangle is 30 . Find the measure of the other acute angle. (Lesson 5-2)
29. Algebra $\triangle X Y Z$ is an equilateral triangle in which $X Y=2 x+2$, $Y Z=x+7$, and $X Z=4 x-8$. Find the measure of each side. (Lesson 5-1)

Draw a figure for each pair of planes or segments. (Lesson 4-1)
30. parallel planes
31. skew segments
32. intersecting planes

Standardized

 Test Practice (A) B C33. Multiple Choice Which ordered pair represents the intersection of line t and line m ? (Lesson 2-4)

(A)	$(2,3)$
(B)	$(-2,-3)$
C	$(2,-3)$
(D)	$(-2,3)$

(A) $(2,3)$
(B) $(-2,-3)$
(C) $(2,-3)$
(D) $(-2,3)$

Quiz 1 Lessons 5-1 through 5-3

Classify each triangle by its angles and by its sides. (Lesson 5-1)

4. Algebra The measures of the angles of a triangle are $2 x, 5 x$, and $5 x$.

Find the measure of each angle. (Lesson 5-2)
5. Identify the motion as a translation, reflection, or rotation. (Lesson 5-3)

5-4

 Gongruent Triangles
What You'll Learn

You'll learn to identify corresponding parts of congruent triangles.
Why It's Important Crafts The pieces of fabric used to make a quilt are congruent to a template.
See Exercise 27.

Reading Geometry

Arcs are used to show which angles are congruent. Slash marks are used to show which sides are congruent.

You've learned that congruent segments have the same length and congruent angles have the same degree measure. In the following activity, you will learn about congruent triangles.

Step 1 On a piece of grid paper, draw two triangles like the ones below. Label the vertices as shown.

Step 2 Cut out the triangles. Put one triangle over the other so that the parts with the same measures match up.

Try These

1. Identify all of the pairs of angles and sides that match or correspond.
2. Triangle $A B C$ is congruent to $\triangle F D E$. What is true about their corresponding sides and angles?

If a triangle can be translated, rotated, or reflected onto another triangle so that all of the vertices correspond, the triangles are congruent triangles. The parts of congruent triangles that "match" are called corresponding parts.

In the figure, $\triangle A B C \cong \triangle F D E$. As in a mapping, the order of the vertices indicates the corresponding parts.
Congruent Angles
Congruent Sides

$$
\begin{array}{ll}
\angle A \cong \angle F & \overline{A B} \cong \overline{F D} \\
\angle B \cong \angle D & \overline{B C} \cong \overline{D E} \\
\angle C \cong \angle E & \overline{A C} \cong \overline{F E}
\end{array}
$$

These relationships help to define congruent triangles.

Definition of Gongruent Triangles (CPOTC)

If the corresponding parts of two triangles are congruent, then the two triangles are congruent.
If two triangles are congruent, then the corresponding parts of the two triangles are congruent.

CPCTC is an abbreviation for Corresponding Parts of Congruent Triangles are Congruent.

Examples

If $\triangle P Q R \cong \triangle M L N$, name the congruent angles and sides. Then draw the triangles, using arcs and slash marks to show the congruent angles and sides.

First, name the three pairs of congruent angles by looking at the order of the vertices in the statement $\triangle P Q R \cong \triangle M L N$.

So, $\angle P \cong \angle M, \angle Q \cong \angle L$, and $\angle R \cong \angle N$.
Since P corresponds to M, and Q corresponds to $L, \overline{P Q} \cong \overline{M L}$.
Since Q corresponds to L, and R corresponds to $N, \overline{Q R} \cong \overline{L N}$.
Since P corresponds to M, and R corresponds to $N, \overline{P R} \cong \overline{M N}$.

2 The corresponding parts of two congruent triangles are marked on the figure. Write a congruence statement for the two triangles.

List the congruent angles and sides.

$$
\begin{aligned}
\angle I & \cong \angle K & \overline{I H} & \cong \overline{K H} \\
\angle G & \cong \angle J & \overline{G H} & \cong \overline{J H} \\
\angle G H I & \cong \angle J H K & \overline{G I} & \cong \overline{J K}
\end{aligned}
$$

The congruence statement can be written by matching the vertices of the congruent angles. Therefore, $\triangle I G H \cong \triangle K J H$.

Your Turn

The corresponding parts of two congruent triangles are marked on the figure. Write a congruence statement for the two triangles.

Example Algebra Link

Algebra Review

Solving Multi-Step
Equations, p. 723
$\triangle R S T$ is congruent to $\triangle X Y Z$. Find the value of n.

Since $\triangle R S T \cong \triangle X Y Z$, the corresponding parts are congruent.

$$
\begin{aligned}
m \angle S & =m \angle Y & & \\
50 & =2 n+10 & & \text { Substitution } \\
50-10 & =2 n+10-10 & & \text { Subtract } 10 \text { from each side. } \\
40 & =2 n & & \text { Simplify. } \\
\frac{40}{2} & =\frac{2 n}{2} & & \text { Divide each side by } 2 . \\
20 & =n & & \text { Simplify. }
\end{aligned}
$$

Check for Understanding

Communicating Mathematics

Guided Practice

1. Explain what it means when one triangle is congruent to another.
2. Describe how transformations are used to determine whether triangles are congruent.

Θ Getting Ready

If $\triangle A B C \cong \triangle D E F$, name the corresponding side or angle.

Sample: $\angle B \quad$ Solution: $\angle B$ corresponds to $\angle E$.
3. $\angle F$
4. $\angle A$
5. $\overline{A C}$
6. $\overline{E F}$
7. If $\triangle X Y Z \cong \triangle E D F$, name the congruent angles and sides. Then draw the triangles, using arcs and slash marks to show the congruent angles and sides.

Example 2 Complete each congruence statement.

8.

$$
\triangle A B C \cong \triangle \quad ?
$$

9.

$$
\triangle C B A \cong \triangle \quad ?
$$

10. Algebra $\triangle R Q P$ is congruent to $\triangle O N M$. Find the value of x.

Exercises

Practice

Homework Help	
For Exercises	See Examples
$11,12,19-23$, 26,27	1
$13-18$	2
24,25	3
Extra Practice	
See page 735.	

For each pair of congruent triangles, name the congruent angles and sides. Then draw the triangles, using arcs and slash marks to show the congruent angles and sides.
11.

$\triangle A C B \cong \triangle E F D$

Complete each congruence statement.
13.

$$
\triangle B A D \cong \triangle \quad ?
$$

14.

$$
\triangle B C D \cong \triangle \quad ?
$$

15.

$$
\triangle A E B \cong \triangle \quad ?
$$

17.

$$
\triangle R T S \cong \triangle \quad ?
$$

16.

$\triangle _$? $\cong \triangle D F E$
18.

$$
\triangle A E D \cong \triangle \quad ?
$$

12.

$\triangle Q R S \cong \triangle T U V$

Applications and Problem Solving

Mixed Review

Standardized Test Practice (A) B C D

If $\triangle B C A \cong \triangle G F H$, name the part that is congruent to each angle or segment.
19. $\angle F$
20. $\overline{B A}$
21. $\angle A$
22. $\overline{F G}$
23. $\angle G$
24. If $\triangle P R Q \cong \triangle Y X Z, m \angle P=63$, and $m \angle Q=57$, find $m \angle X$.
25. Algebra If $\triangle D E F \cong \triangle H E G$, what is the value of x ?

26. Landscaping Two triangular gardens have the same size and shape. The landscaper needed 24 feet of fencing for one garden. How much fencing is needed for the second garden? Explain your reasoning.
27. Crafts Many quilts are designed using triangles. Quilters start with a template and trace around the template, outlining the triangles to be cut out. Explain why the triangles are congruent.

fabric triangles
28. Gritical Thinking Determine whether each statement is true or false. If true, explain your reasoning. If false, show a counterexample.
a. If two triangles are congruent, their perimeters are equal.
b. If two triangles have the same perimeter, they are congruent.

Identify each motion as a translation, reflection, or rotation.
(Lesson 5-3)
29.

30.

31.

32. Communication A support cable called a guy wire is attached to a utility pole to give it stability. Safety regulations require a minimum angle of 30° between the pole and the guy wire. Determine the measure of the angle between the guy wire and the ground. (Lesson 5-2)
33. Short Response If $m \angle R=45$, classify $\angle R$ as acute, right, or obtuse. (Lesson 3-2)

34. Multiple Choice Choose the false statement. (Lesson 1-3)
(A) Two points determine two lines.
(B) A line contains at least two points.
(C) Three points that are not on the same line determine a plane.
(D) If two planes intersect, then their intersection is a line.

Chapter 5 Investigation

Take
 a
 Shertcut

Materials

patty paper
scissors
straightedge

Introducing the Congruence Postulates

Is it possible to show that two triangles are congruent without showing that all six pairs of corresponding parts are congruent? Let's look for a shortcut.

Investigate

1. Use patty paper to investigate three pairs of congruent sides.
a. Draw a triangle on a piece of patty paper.
b. Copy the sides of the triangle onto another piece of patty paper and cut them out.

c. Arrange the pieces so that they form a triangle.
d. Is this triangle congruent to the original triangle? Explain your reasoning.
e. Try to form another triangle. Is it congruent to the original triangle?
f. Can three pairs of congruent sides be used to show that two triangles are congruent?

208 Chapter 5 Triangles and Congruence
2. Use patty paper to investigate three pairs of congruent angles.
a. Draw a triangle on a piece of patty paper.
b. Copy each angle of the triangle onto a separate piece of patty paper and cut them out. Extend
 angle to the edge of the patty paper.
c. Arrange the pieces so that they form a triangle.
d. Is this triangle congruent to the original triangle? Explain your reasoning.
e. Try to form another triangle. Is this triangle congruent to the original triangle?
f. Can three pairs of congruent angles be used to show that two triangles are congruent?

Extending the Investigation

In this investigation, you will determine which three pairs of corresponding parts can be used to show that two triangles are congruent.
Use patty paper or graphing software to investigate these six cases. (You have already investigated the first two.)

1. three pairs of congruent sides
2. three pairs of congruent angles
3. two pairs of congruent sides and the pair of congruent angles between them
4. two pairs of congruent sides and one pair of congruent angles not between them
5. two pairs of congruent angles and the pair of congruent sides between them
6. two pairs of congruent angles and one pair of congruent sides not between them

Presenting Your Conclusions

Here are some ideas to help you present your conclusions to the class.

- Make a poster that summarizes your results.
- Make a model with straws that illustrates why certain pairs of corresponding parts cannot be used to show that two triangles are congruent. Be sure to show counterexamples.

Investigation For more information on the congruence
postulates, visit: www.geomconcepts.com

5-5 SSS and SAS

What You'll Learn

You'll learn to use the SSS and SAS tests for congruence.

Why It's Important
construction Architects add strength to their buildings by using triangles for support. See Exercise 7.

Triangles are common in construction, because triangles, unlike squares, maintain thair shape under stress. You can see this yourself if you use straws and a string to make a triangle and a four-sided figure.

This rigidity hints at an underlying geometric concept: a triangle with three sides of a set length has exactly one shape.

Step 1 Draw an acute scalene triangle on a piece of paper. Label its vertices A, B, and C on the interior of each angle.

Step 2 Construct a segment congruent to $\overline{A C}$. Label the endpoints of the segment D and E.

Step 1
Step 3 Adjust the compass setting to the length of $\overline{A B}$. Place the compass at point D and draw a large arc above $\overline{D E}$.

Step 4 Adjust the compass setting to the length of $\overline{C B}$. Place the compass at point E and draw an arc to intersect the one drawn from point D. Label the intersection F.
Step 5 Draw $\overline{D F}$ and $\overline{E F}$.

Step 4

Try These

1. Label the vertices of $\triangle D E F$ on the interior of each angle. Then cut out the two triangles. Make a conjecture. Are the triangles congruent?
2. If the triangles are congruent, write a congruence statement.
3. Verify your conjecture with another triangle.

Reading Geometry

The abbreviation SSS is read as Side-Side-Side.

In the previous activity, you constructed a congruent triangle by using only the measures of its sides. This activity suggests the following postulate.

Example - 1 In two triangles, $\overline{P Q} \cong \overline{M L}, \overline{P R} \cong \overline{M N}$, and $\overline{R Q} \cong \overline{N L}$. Write a congruence statement for the two triangles.

Draw a pair of congruent triangles. Identify the congruent parts with slashes. Label the vertices of one triangle.

Use the given information to label the vertices of the second triangle.

By SSS, $\triangle P Q R \cong \triangle M L N$.

Your Turn

a. In two triangles, $\overline{Z Y} \cong \overline{F E}, \overline{X Y} \cong \overline{D E}$, and $\overline{X Z} \cong \overline{D F}$. Write a congruence statement for the two triangles.

In a triangle, the angle formed by two given sides is called the included angle of the sides.

Using the SSS Postulate, you can show that two triangles are congruent if their corresponding sides are congruent. You can also show their congruence by using two sides and the included angle.

Reading Geometry

The abbreviation SAS is read as Side-AngleSide.

Words: If two sides and the included angle of one triangle are congruent to the corresponding sides and included angle of another triangle, then the triangles are congruent. SAS Postulate

Model:

Symbols: If $\overline{A B} \cong \overline{R S}, \angle A \cong \angle R$, and $\overline{A C} \cong \overline{R T}$, then $\triangle A B C \cong \triangle R S T$.

Determine whether the triangles shown at the right are congruent. If so, write a congruence statement and explain why the triangles are congruent. If not, explain why not.

There are two pairs of congruent sides, $\overline{N O} \cong \overline{Y Z}$ and $\overline{M O} \cong \overline{\mathrm{XZ}}$. There is one pair of congruent angles, $\angle O \cong \angle Z$, which is included between the sides.

Therefore, $\triangle M N O \cong \triangle X Y Z$ by SAS.

Your Turn

b. Determine whether the triangles shown at the right are congruent by SAS. If so, write a congruence statement and tell why the triangles are congruent. If not, explain why not.

Check for Understanding

Communicating Mathematics

Guided Practice

Example 1

1. Sketch and label a triangle in which $\angle X$ is the included angle of $\overline{Y X}$ and $\overline{Z X}$.

Vocabulary

included angle
2. 11 民िति Karen says that there is only one triangle with sides of 3 inches, 4 inches, and 5 inches. Mika says that there can be many different triangles with those measures. Who is correct? Explain your reasoning.

Write a congruence statement for each pair of triangles represented.
3. $\overline{R T} \cong \overline{U W}, \overline{R S} \cong \overline{U V}, \overline{T S} \cong \overline{W V}$
4. $\overline{A B} \cong \overline{G H}, \overline{B C} \cong \overline{H I}, \angle B \cong \angle H$

212 Chapter 5 Triangles and Congruence

Example 2 Determine whether each pair of triangles is congruent. If so, write a

 congruence statement and explain why the triangles are congruent.5.

6.

Exercises

Practice

Homework Help	
For Exercises	See Examples
$8-11,20$	1
$12-15,16-19,22$	2
Extra Practice	
See page 735.	

Write a congruence statement for each pair of triangles represented.
8. $\overline{J K} \cong \overline{M N}, \overline{L K} \cong \overline{O N}, \angle K \cong \angle N$
9. $\overline{C B} \cong \overline{E F}, \overline{C A} \cong \overline{E D}, \overline{B A} \cong \overline{F D}$
10. $\overline{X Y} \cong \overline{C A}, \overline{X Z} \cong \overline{C B}, \angle X \cong \angle C$
11. $\overline{G H} \cong \overline{R T}, \overline{G I} \cong \overline{R S}, \overline{H I} \cong \overline{T S}$

Determine whether each pair of triangles is congruent. If so, write a congruence statement and explain why the triangles are congruent.
12.

13.

14.

15.

Use the given information to determine whether the two triangles are congruent by SAS. Write yes or no.
16. $\angle A \cong \angle D, \overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$
17. $\overline{E F} \cong \overline{C A}, \overline{B C} \cong \overline{E D}, \angle C \cong \angle E$
18. $\overline{B C} \cong \overline{D F}, \overline{B A} \cong \overline{E F}, \angle B \cong \angle F$
19. $\overline{A B} \cong \overline{D F}, \overline{C A} \cong \overline{D E}, \angle C \cong \angle F$

Applications and Problem Solving

Mixed Review

Standardized

Test Practice
20. Carpentry Suppose you are building a rectangular bookcase. How could you provide additional support so that the back of the bookcase won't shift?
21. Landscaping When small trees are planted, they are usually supported with a wooden stake as shown at the right. Explain how the stake provides support against the wind.
22. Critical Thinking Name the additional corresponding part needed to prove that the triangles below are congruent by SAS.

Exercise 21
23. If $\triangle P Q R \cong \triangle C A B, m \angle P=45$, and $m \angle R=38$, find $m \angle A$. (Lesson 5-4)
24. Word Processing The button in some computer programs makes the indicated change in the position of the word "Hello." Identify the change as a rotation, reflection, or translation. (Lesson 5-3)

The coordinates of the endpoints of a segment are given. Find the coordinates of the midpoint of each segment. (Lesson 2-5)
25. $(-1,-2),(-3,-8)$
26. $(4,8),(-3,-4)$
27. $(0,0),(x, y)$
28. Multiple Choice Express 0.0025 in scientific notation. (Algebra Review) (A) 2.5×10^{3} (B) 2.5×10^{4} (C) 2.5×10^{-3} (D) 2.5×10^{-4}

Quiz 2 Lessons 5-4 and 5-5

1. Design Which triangles in the figure appear to be congruent?
(Lesson 5-4)
2. If $\triangle X Y Z \cong \triangle R S T$, which angle is congruent to $\angle S$? (Lesson 5-4)
3. In two triangles, $\overline{X Z} \cong \overline{B C}, \overline{Y Z} \cong \overline{A C}$, and $\overline{Y X} \cong \overline{A B}$. Write a congruence statement for the two triangles. (Lesson 5-5)

Exercise 1
Determine whether each pair of triangles is congruent. If so, write a congruence statement and explain why the triangles are congruent. (Lesson 5-5)
4.

5.

5-6 ASA and AAS

What You'll Learn

You'll learn to use the ASA and AAS tests for congruence.

Why It's Important Surveying Surveyors use the ASA Postulate when setting up sight markers.
See Exercise 10.

Reading Geometry
The abbreviation ASA is read as Angle-SideAngle.

Example

The side of a triangle that falls between two given angles is called the included side of the angles. It is the one side common to both angles.

You can show that two triangles are congruent by using two angles and the included side of the triangles.

	Words:	If two angles and the included side of one triangle are congruent to the corresponding angles and included side of another triangle, then the triangles are congruent. Postulate 5-3 ASA Postulate
Model:		

The abbreviation AAS is read as Angle-AngleSide.

The Angle-Angle-Side Theorem is called a theorem because it can be derived from the ASA Postulate. In AAS, the S is not between the two given angles. Therefore, the S indicates a side that is not included between the two angles.

Info
Graphic

Theorem 5-4 AAS Theorem

Words: If two angles and a nonincluded side of one triangle are congruent to the corresponding two angles and nonincluded side of another triangle, then the triangles are congruent.

Symbols: If $\angle A \cong \angle R, C \cong T$, and $\overline{B C} \cong \overline{S T}$, then $\triangle A B C \cong \triangle R S T$.

Example

$\triangle A B C$ and $\triangle E D F$ each have one pair of sides and one pair of angles marked to show congruence. What other pair of angles must be marked so that the two triangles are congruent by AAS?

If $\angle B$ and $\angle F$ are marked congruent, then $\overline{A B}$ and $\overline{E F}$ would be included sides. However, AAS requires the nonincluded sides. Therefore, $\angle C$ and $\angle D$ must be marked congruent.

Your Turn

b. $\triangle D E F$ and $\triangle L M N$ each have one pair of sides and one pair of angles marked to show congruence. What other pair of angles must be marked so that the two triangles are congruent by AAS?
c. What other pair of angles must be marked so that the two triangles are congruent by ASA?

Determine whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible.

There are two pairs of congruent angles, $\angle A \cong \angle F$ and $\angle B \cong \angle D$. There is one pair of corresponding congruent sides, $\overline{C B} \cong \overline{E D}$, which is not included between the angles.
Therefore, $\triangle A B C \cong \triangle F D E$ by AAS.

Your Turn

d.

(4)

There are two pairs of congruent sides, $\overline{M N} \cong \overline{R P}$ and $\overline{N O} \cong \overline{R Q}$. There is one pair of congruent angles, $\angle M \cong \angle P$, which is not included between the sides.

Since SSA is not a test for congruence, it is not possible to show the triangles are congruent from this information.
e.

Check for Understanding

Communicating Mathematics

Guided Practice

Example 1

1. Sketch and label triangle $X Y Z$ in which $\overline{X Z}$ is an included side. Then name the two angles $\overline{X Z}$ is between.

Vocabulary

included side
2. Explain how you could construct a triangle congruent to a given triangle using ASA.
3. Writing Math Write a few sentences explaining the SSS, SAS, ASA, and AAS tests for congruence. Give an example of each.

Write a congruence statement for each pair of triangles represented.
4. In $\triangle D E F$ and $\triangle R S T, \angle D \cong \angle R, \angle E \cong \angle T$, and $\overline{D E} \cong \overline{R T}$.
5. In $\triangle A B C$ and $\triangle X Y Z, \angle A \cong \angle X, \angle B \cong \angle Y$, and $\overline{B C} \cong \overline{Y Z}$.

Example 2 Name the additional congruent parts needed so that the triangles are congruent by the postulate or theorem indicated.
6. ASA

7. AAS

Determine whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible.

Surveying land
8.

9. A

10. Surveying Two surveyors 560 yards apart sight a marker C on the other side of a canyon at angles of 27° and 38°. What will happen if they repeat their measurements from the same positions on another day? Explain your reasoning.
Example 1

Exeroises

Practice

Homework Help

For Exercises	See Examples
$11-14$	1
$15-18$	2
$19-22,23$	3,4
Extra Practice	
See page 735.	

Write a congruence statement for each pair of triangles represented.
11. In $\triangle Q R S$ and $\triangle T U V, \angle Q \cong \angle T, \angle S \cong \angle U$, and $\overline{Q S} \cong \overline{T U}$.
12. In $\triangle A B C$ and $\triangle D E F, \overline{A C} \cong \overline{E D}, \angle C \cong \angle D$, and $\angle B \cong \angle F$.
13. In $\triangle R S T$ and $\triangle X Y Z, \angle S \cong \angle X, \overline{S T} \cong \overline{X Z}$, and $\angle T \cong \angle Z$.
14. In $\triangle M N O$ and $\triangle P Q R, \angle M \cong \angle P, \angle N \cong \angle R$, and $\overline{N O} \cong \overline{R Q}$.

Name the additional congruent parts needed so that the triangles are congruent by the postulate or theorem indicated.
15. ASA

17. AAS

16. AAS

18. ASA

Determine whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible.
19. A

20.

21.

22.

23. Math History The figure shows how the Greek mathematician Thales (624 в.c.-547 в.c.) determined the distance from the shore to enemy ships during a war. He sighted the ship from point P and then duplicated the angle at $\angle Q P T$. The angles at point Q are right angles. Explain why QT represents the distance from the shore to the ship.
24. Critical Thinking In $\triangle R S T$ and $\triangle U V W$, $\angle R \cong \angle U, \angle S \cong \angle V$, and $\overline{R T} \cong \overline{U W}$. So, $\triangle R S T \cong \triangle U V W$ by AAS. Prove $\triangle R S T \cong \triangle U V W$ by ASA.

25. In two triangles, $\overline{M N} \cong \overline{P Q}, \overline{M O} \cong \overline{P R}$, and $\overline{N O} \cong \overline{Q R}$. Write a congruence statement for the two triangles and explain why the triangles are congruent. (Lesson 5-5)

If $\triangle \boldsymbol{H R T} \cong \triangle \boldsymbol{M} \boldsymbol{N} \boldsymbol{P}$, complete each statement. (Lesson 5-4)
26. $\angle R \cong$ \qquad
27. $\overline{H T} \cong$ \qquad
28. $\angle P \cong$ \qquad
Standardized Test Practice (A) (B) C
29. Multiple Choice The graph shows the sales of athletic and sports equipment from 1995 to 2002. Between which two years was the percent of increase the greatest?
(Statistics Review)
(A) 1996 to 1997
(B) 1998 to 1999
(C) 1999 to 2000
(D) 2000 to 2001

Source: National Sporting Goods Association

GHAPTEE Study Guide and Assessment

Understanding and Using the Vocabulary

After completing this chapter, you should be able to define each term, property, or phrase and give an example or two of each.

acute triangle (p.188)
base (p. 189)
base angles (p.189)
congruent triangle (p. 203)
corresponding parts (p. 203)
equiangular triangle (p. 195)
equilateral triangle ($p .189$)
image (p. 199)
included angle ($p .211$)
included side (p. 215)
isometry (p.200)
isosceles triangle (p. 189)
legs ($p .189$)
mapping (p. 199)
obtuse triangle (p. 188)
preimage (p. 199)
reflection (p. 198)
right triangle (p. 188)

GITTNET

Review Activities
For more review activities, visit: www.geomconcepts.com
rotation (p. 198)
scalene triangle (p. 189)
transformation ($p .199$)
translation (p. 198)
triangle (p. 188)
vertex (p. 188)
vertex angle (p. 189)

State whether each sentence is true or false. If false, replace the underlined word(s) to make a true statement.

1. Triangles can be classified by their angles and sides.
2. An isosceles triangle has two vertex angles.
3. The sum of the measures of the angles of a triangle is 360°.
4. An equiangular triangle is defined as a triangle with three congruent sides.
5. The acute angles of a right triangle are supplementary.
6. SSS, SAS, ASA, and AAS are ways to show that two triangles are congruent.
7. A translation is an example of a transformation.
8. An equilateral triangle is also an isosceles triangle.
9. AAS refers to two angles and their included side.
10. Reflections are sometimes called turns.

Skills and Concepts

Objectives and Examples

- Lesson 5-1 Identify the parts of triangles and classify triangles by their parts.

The triangle is acute and isosceles.

Review Exercises

Classify each triangle by its angles and by its sides.
11.

12.

Objectives and Examples

- Lesson 5-2 Use the Angle Sum Theorem.

Find $m \angle A$ in $\triangle A B C$.

$$
\begin{aligned}
m \angle A+m \angle B+m \angle C & =180 \\
m \angle A+120+38 & =180 \\
m \angle A+158 & =180 \\
m \angle A+158-158 & =180-158 \\
m \angle A & =22
\end{aligned}
$$

- Lesson 5-3 Identify translations, reflections, and rotations and their corresponding parts.
$\triangle A B C \rightarrow \triangle R S T$ by a translation.
$\angle R$ is the image of $\angle A$.
$\overline{B C}$ corresponds to $\overline{S T}$.

Review Exercises

Find the value of each variable.
13.

14.

15.

Suppose $\triangle A B E \rightarrow \triangle C B D$.

16. Name the angle that corresponds to $\angle D$.
17. Name the image of $\angle A B E$.
18. Name the image of $\overline{A E}$.
19. Identify the transformation that occurred in the mapping.

- Lesson 5-4 Name and label corresponding parts of congruent triangles.

Write a congruence statement for the two triangles.
$\triangle A B C \cong \triangle D E F$

Complete each congruence statement.
20.

21.

$$
\triangle M N O \cong \triangle _
$$

\qquad

Objectives and Examples

- Lesson 5-5 Use the SSS and SAS tests for congruence.

$\triangle R S T \cong \triangle L N M$ by SAS.
- Lesson 5-6 Use the ASA and AAS tests for congruence.

$\triangle X Y Z \cong \triangle G H F$ by AAS.

Review Exercises

Determine whether each pair of triangles is congruent. If so, write a congruence statement and explain why the triangles are congruent.
22.

z 23.

Applications and Problem Solving

26. Maps Classify the triangle by its sides.
(Lesson 5-1)

27. Algebra Find the measure of $\angle A$ in $\angle A B C$.
(Lesson 5-2)

28. Construction The W-truss is the most widely used of light wood trusses. Identify two pairs of triangles in the truss below that appear to be congruent. (Lesson 5-4)

222 Chapter 5 Triangles and Congruence

CHAPTER Test

Choose the letter of the description that best matches each term.

1. scalene triangle
2. right triangle
3. isosceles triangle
4. acute triangle
5. equilateral triangle
6. equiangular triangle
a. has a right angle
b. all sides are congruent
c. no sides are congruent
d. has a vertex angle
e. all angles are acute
f. all angles are congruent

Find the value of each variable.
7.

8.

9.

Identify each motion as a translation, reflection, or rotation.
10.

11.

12.

Complete each congruence statement.
13.

14.

15.

$$
\triangle A B C \cong \triangle \quad ?
$$

$\triangle \underline{?} \cong \triangle A B C$
16. In $\triangle C D E$, identify the included angle for sides $\overline{C D}$ and $\overline{E C}$.

Determine whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible.
17.

18.

19.

20. Sports The sail for a sailboat looks like a right triangle. If the angle at the top of the sail measures 54°, what is the measure of the acute angle at the bottom?

GHAPTER Preparing for Standardized Tests

Statistics Problems

On some standardized tests, you will calculate the mean, median, and mode of a data set. You will also choose the most appropriate measure for a data set. On the SAT and ACT, you will apply the concept of the mean to solve problems.
mean $=\frac{\text { sum of the numbers }}{\text { number of numbers }}$
median $=$ middle number of a set arranged in numerical order
mode $=$ the number(s) that occurs most often

Test-Taking Tip
Memory Tip A highway median is in the middle of the road. So a median is the middle number of an ordered data set.

Example 1

The heights of ten National Champion Trees are listed in the table below. What is the median, in feet, of the heights?

Tree	Height (ft)	Tree	Height (ft)
American Beech	115	Loblolly Pine	148
Black Willow	76	Pinyon Pine	69
Coast Douglas Fir	329	Sugar Maple	87
Coast Redwood	313	Sugar Pine	232
Giant Sequoia	275	White Oak	79

Hint If there is no single middle number, find the median by calculating the mean of the two middle values.

Solution To find the median, first list the heights in numerical order.
$\begin{array}{lllllllll}69 & 76 & 79 & 87 & 115 & 148 & 232 & 275 & 313\end{array} 329$
Since there are ten numbers, there is no middle number. The two numbers in the middle are 115 and 148. Calculate the mean of these two numbers.

$$
\frac{115+148}{2}=\frac{263}{2} \text { or } 131 \frac{1}{2}
$$

The median is $131 \frac{1}{2}$ feet.

Example 2

If the average of five numbers is 32 and the average of two of the numbers is 20 , then what is the sum of the remaining three numbers?

(A) 12	(B)	40	(C) $46 \frac{2}{3}$
(D)	120	(E)	140

Hint Use the formula for mean to calculate the sum of the numbers.

Solution On the SAT, average is the same as mean. First find the sum of the five numbers. Then use the formula for the mean. You know the average (32) and the number of numbers (5).

$$
\begin{aligned}
32 & =\frac{\text { sum of the five numbers }}{5} \\
5 \cdot 32 & =5 \cdot \frac{\text { sum of the five numbers }}{5} \\
160 & =\text { sum of the five numbers }
\end{aligned}
$$

Use the same method to find the sum of the two numbers.

$$
\begin{aligned}
& 20=\frac{\text { sum of the two numbers }}{2} \\
& 40=\text { sum of the two numbers }
\end{aligned}
$$

You can find the sum of the other three numbers by subtracting: (sum of the five numbers) - (sum of the two numbers) $=$
$160-40$ or 120 . The answer is D.

After you work each problem, record your answer on the answer sheet provided or on a sheet of paper.

Multiple Choice

1. Mr. Mendosa obtained estimates for painting from five companies. The estimates were $\$ 950, \$ 850, \$ 995, \$ 1000$, and $\$ 950$. What is the mode of these estimates? (Statistics Revierw)
```
(A) $150 (B) $949 (C) $950 (D) $995
```

2. $\sqrt{64+36}=$? (Algebra Review)

(A)	10	(B)	14	(C)
(D)	48		28	

3. Jared's study group recorded the time they spent on math homework one day. Here are the results (in minutes): $30,29,32,25,36,20$, $30,26,56,45,33$, and 34 . What was the median time spent? (Statistics Review)
(A) 20 min
(B) 25 min
(C) 30 min
(D) 31 min
4. The figure below shows an example of a(Lesson 5-3)

(A) dilation.
(C) rotation.
(D) translation.
5. Yoshi wants to buy a sweater priced at $\$ 59.95$. If the sales tax rate is 6%, which is the best estimate of the tax paid on the sweater? (Percent Review)

(A) $\$ 3.00$	(B) $\$ 3.60$
(C) $\$ 4.00$	(D) $\$ 4.20$

6. How many even integers are there between 2 and 100, not including 2 and 100 ?
(Algebra Review)

(A) 98	(B) 97	(C)	50
(D) 49	(E) 48		

7. Jenny recorded high temperatures every day for a week. The temperatures, in degrees Fahrenheit, were 48, 55, 60, 55, 52, 47 , and 40 . What was the mean temperature? (Statistics Review)
(A) 51
(B) 52
(C) 55
60
8. What is the value of x in the figure?
(Lesson 5-2)

(A)	10	(B)	18
(C)	27	(D) 63	

Grid In

9. There are 24 fish in an aquarium. If $\frac{1}{8}$ of them are tetras and $\frac{2}{3}$ of the remaining fish are guppies, how many guppies are there? (Algebra Review)

Extended Response

10. The table shows the percent of new passenger cars imported into the United States by country of origin in 2003. (Statistics Review)

Percent of New Passenger Cars Imported into U.S. by Country of Origin	
Country	New Cars (percent)
Canada	27
Germany	17
Japan	28
Mexico	10
Korea	7
Other	11

Source: Bureau of Census, Foreign Trade Division
Part A Make a circle graph to show the data. Label each section of the graph with the percent of imported cars.

Part B The total value of cars imported was about $\$ 114$ billion. Use this information to determine the value of cars imported from outside North America.

