THE BEST SOFTWARE
WRITING |

Selected and Introduced by

Joel Spolsky

Apress’

The Best Software Writing I: Selected and Introduced by Joel Spolsky
Copyright © 2005 Edited by Joel Spolsky

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-500-9
Printed and bound in the United States of America9 87654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Lead Editor: Gary Cornell

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,
Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Assistant Publisher: Grace Wong

Project Manager: Beth Christmas

Copy Edit Manager: Nicole LeClerc

Copy Editor: Liz Welch

Production Manager: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor: Dina Quan

Proofreader: Nancy Sixsmith

Indexer: Broccoli Information Management

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Licensing: Tina Nielsen

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring
Street, 6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH
& Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-45035, e-mail orders@springer-ny.com,
or visit http://www. springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail
orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

To my sister Ruth. nx 50 NN pnpy apy-53 y11d 22

Ken Arnold

Leon Bambrick

Michael Bean
Rory Blyth
Adam Bosworth
danab boyd

Raymond Chen

Kevin Cheng
and Tom Chi

Cory Doctorow
ea_spouse
Bruce Eckel
Paul Ford

Paul Graham
John Gruber

CONTENTS

Aboutthe Editor vii
About the Authors iX
Introduction L. XV
Style IsSubstance 1
Award for the Silliest User Interface:

Windows Search 7
The Pitfalls of Outsourcing Programmers . . 9
Excel asa Database 17
ICSOC04 Talk 23
Autistic Social Software 35
Why Not Just Block the Apps That

Rely on Undocumented Behavior? 47
Kicking the Llama 51
Save Canada’s Internet from WIPO 53
EA: The HumanStory 59
Strong Typing vs. Strong Testing 67
Processing Processing 79
Great Hackers 95

The Location Field Is the New
Commandline 111

vi CONTENTS

Gregor Hobpe

Ron Jeffries
Eric Jobnson

Eric Lippert

Michael “Rands”

Lopp

Larry Osterman

Starbucks Does Not Use Two-Phase
Commit

Passion oL
C++—The Forgotten Trojan Horse

How Many Microsoft Employees Does
It Take to Change a Lightbulb?

What to Do When You’re Screwed

Larry’s Rules of Software
Engineering #2: Measuring Testers
by Test Metrics Doesn’t

Mary Poppendieck Team Compensation

Rick Schaut
Clay Shirky
Clay Shirky

Eric Sink
Eric Sink
Eric Sink

Aaron Swartz

MacWord 6.0
A Group Is Its Own Worst Enemy

Group as User: Flaming and the
Design of Social Software

Closing the Gap, Part 1
Closing the Gap, Part2
Hazards of Hiring

PowerPoint Remix

why the lucky stiff A Quick (and Hopefully Painless) Ride

Through Ruby (with Cartoon Foxes)

ABOUT THE EDITOR

Joel Spolsky is a globally recognized expert on the software development
process. His website, Joel on Software (www.joelonsoftware.com), is pop-
ular with software developers around the world and has been translated
into over 30 languages. As the founder of Fog Creek Software in New
York City, he created FogBugz, a popular project management system
for software teams. Joel has worked at Microsoft, where he designed
VBA as a member of the Excel team, and at Juno Online Services, devel-
oping an Internet client used by millions. He has written two previous
books: User Interface Design for Programmers (Apress, 2001) and Joel
on Software (Apress, 2004). Joel holds a BS from Yale in computer
science. Before college he served in the Israeli Defense Forces as a para-
trooper, and he was one of the founders of Kibbutz Hanaton.

ABOUT THE AUTHORS

Ken Arnold has loitered around the computing field for decades, includ-
ing attending Berkeley where he worked on the BSD project, creating the
curses library and helping on rogue; writing the “The C Advisor” col-
umn for Unix Review (later “The C++ Advisor” as progress led us down
the garden path); coauthoring The Java Programming Language and
other books; designing JavaSpaces and helping design Jini; and occa-
sionally (as shown here) pretending to be hip by blogging. His current
dalliances include the human factors of programming languages and
APIs, electronic voting systems your mother could trust, and the Napkin
pluggable look and feel for Java that makes provisional GUIs look, well,
provisional.

Leon Bambrick is a prolific programmer, satirist, and pugilist, working
out of the southern hemisphere. He first met Joel Spolsky when they
were stranded together on a desert island, with nothing but an 8086 and
a copy of Kernigan and Ritchie. His website, secretGeek.net, has a small
cameo in Star Wars Episode 111 — Revenge of the Sith—as an Imperial
Guard’s codpiece.

Michael Bean is a software developer and entrepreneur. He is currently
president and one of the founders of Forio Business Simulations. Before
Forio, Michael held senior management posts at consulting and soft-
ware firms in the United States and Europe. Michael was also a research
associate for the System Dynamics Group at MIT, where he developed
simulations that analyzed the strategic implications of manager deci-
sions. Michael has consulted with corporations and government
agencies nationally and internationally on transfer pricing, competitive
strategy, emerging technologies, and customer migration. He has con-
ducted scenario planning, systems thinking, and computer simulation

X ABOUT THE AUTHORS

seminars to corporations and government agencies worldwide. In addi-
tion, Michael has presented at national conferences on strategy,
software, and computer simulation.

Rory Blyth works for Microsoft as a corporate stooge. In his spare time,
he keeps a blog at www.neopoleon.com, ponders the universe, and consid-
ers himself to be one of the three missing Sankara stones, although he
probably isn’t, but it makes him feel better about being so bloody
insignificant.

Adam Bosworth joined Google recently as vice president of engineering.
He came to Google from BEA, where he was chief architect and senior
VP of advanced development and responsible for driving the engineering
efforts for BEA’s Framework Division. Prior to joining BEA, he
cofounded Crossgain, a software development firm acquired by BEA.
Known as one of the pioneers of XML, he held various senior manage-
ment positions at Microsoft, including general manager of the WebData
group, a team focused on defining and driving XML strategy. While at
Microsoft, he was responsible for designing and delivering the Microsoft
Access PC Database product and assembling and driving the team that
developed Internet Explorer 4.0’s HTML engine.

danah boyd is a PhD student in the School of Information Management
and Systems at the University of California, Berkeley, where she studies
how people negotiate a presentation of self in mediated social contexts to
unknown audiences using ethnographic methods. She is particularly inter-
ested in how youth develop a culturally situated understanding of self and
the role of technology in this process. Prior to Berkeley, danah received a
master’s in sociable media from the MIT Media Lab and a bachelor’s in
computer science from Brown University. Her work has ranged from psy-
chological studies of how depth cue prioritization is dependent on levels
of sex hormones to design installations of interactive social visualizations.
danah blogs extensively at Apophenia (www.zephoria.org/thoughts) and
Many-to-Many (www.corante.com/many).

Raymond Chen has worked in Microsoft’s Windows division since 1992
and has seen a lot of things come and go. His blog deals with the history
of Windows and the dying art of Win32 programming.

ABOUT THE AUTHORS xi

Kevin Cheng is an independent user experience specialist and global
nomad. He holds a master’s in human-computer interaction and
ergonomics from the University College London Interaction Centre
(UCLIC) and has spoken at UXNet, UPA, and ACM-SIGCHI. He is the
cofounder and cocreator of OK/Cancel (www.ok-cancel.com), an online
site believed to be in the top five of usability and HCI-themed comics.

Tom Chi has a Masters Degree in Electrical Engineering, which proba-
bly means he’s qualified neither to talk about HCI nor to write any sort
of funny thing. Yet, week after week he dreams the impossible dream at
ok-cancel.com. As for credentials, there is the small matter of having
designed Ul features for two releases of Microsoft Outlook, as well as
his dark history of consulting for F500 clients—but these are topics that
civilized people shouldn’t speak of. Shhh.

Cory Doctorow (craphound. com) is European Affairs Coordinator for the
Electronic Frontier Foundation (www.eff.org), a member-supported non-
profit group that works to uphold civil liberties values in technology
law, policy, and standards. He represents EFF’s interests at various
standards bodies and consortia, and at the United Nations’ World
Intellectual Property Organization. Doctorow is also a prolific writer
who appears on the mastheads at Wired, Make, and Popular Science
magazines, and whose science fiction novels have won the Campbell,
Sunburst, and Locus Awards. His novel Down and Out in the Magic
Kingdom is a finalist for this year’s Nebula Award. He is the coeditor of
the popular weblog Boing Boing (boingboing.net). Born in Canada, he
now lives in London, England.

Bruce Eckel (www.BruceEckel.com) is the author of Thinking in Java
(Prentice Hall, 1998, 2nd edition, 2000, 3rd edition, 2003, 4th edition,
2005), the Hands-On Java Seminar CD-ROM (available on the website),
Thinking in C++ (PH 1995; 2nd edition 2000, Volume 2, with Chuck
Allison, 2003), and C++ Inside ¢ Out (Osborne/McGraw-Hill, 1993),
among others. He’s given hundreds of presentations throughout the
world, published over 150 articles in numerous magazines, was a found-
ing member of the ANSI/ISO C++ committee, and speaks regularly at
conferences. He provides public and private seminars and design con-
sulting in C++ and Java.

xii ~ ABOUT THE AUTHORS

Paul Ford is an editor at Harper’s magazine, a frequent commentator on
NPR’s All Things Considered, and the sole proprietor of Ftrain.com. He
has fooled with computers for the last two decades, and feels no inclina-
tion to stop. He lives in Brooklyn, New York.

Paul Graham is an essayist, programmer, and programming language
designer. In 1995 he developed with Robert Morris the first web-based
application, Viaweb, which was acquired by Yahoo in 1998. In 2002 he
described a simple Bayesian spam filter that inspired most current filters.
He’s currently working on a new programming language called Arc, a
new book (probably) for O’Reilly, and is one of the partners in
Y Combinator. Paul is the author of On Lisp (Prentice Hall, 1993),
ANSI Common Lisp (Prentice Hall, 1995), and Hackers & Painters
(O’Reilly, 2004). He has an AB from Cornell and a PhD in computer sci-
ence from Harvard, and studied painting at RISD and the Accademia di
Belle Arti in Florence.

John Gruber is a freelance writer, web developer, designer, and Mac
nerd. He combines those interests on his website, Daring Fireball
(http://daringfireball.net/). John lives in Philadelphia with his wife
and son.

Gregor Hohpe leads the Enterprise Integration practice at
ThoughtWorks, Inc., a specialized provider of application development
and integration services. Gregor is a widely recognized thought leader
on asynchronous messaging architectures and coauthor of the seminal
book Enterprise Integration Patterns (Addison-Wesley, 2004). Gregor
speaks regularly at technical conferences around the world and main-
tains the website www.eaipatterns.com.

Ron Jeffries has been developing software longer than most people have
been alive. He holds advanced degrees in mathematics and computer sci-
ence, both earned before negative integers had been invented. His teams
have built operating systems, compilers, relational database systems,
and a large range of applications. Ron’s software products have pro-
duced revenue of over half a billion dollars, and he wonders why he
didn’t get any of it.

ABOUT THE AUTHORS xiii

Eric Johnson graduated from the University of Illinois with a BS in com-
puter science in 1993 and has worked at FactSet Research Systems ever
since. Currently he is the director of market data engineering and lives
with his wife and two kids in southwestern Connecticut. He can be
reached at johnson.eric@gmail.com.

Eric Lippert has been a software developer at Microsoft since 1996. He
spent his first five years working on VBScript, JScript, Windows Script
Host, and other scripting technologies and more recently has been
working on Visual Studio Tools For Office. He also writes a blog,
where he dispenses advice about scripting, security, and (occasionally)
romance. When not writing software or writing about software, Eric can
be found playing old songs on old pianos, trying to keep the mast of his
tiny sailboat upright, building kites, or talking his friends into helping
him fix his 97-year-old house.

Michael “Rands” Lopp is a Silicon Valley-based software engineering
manager. He’s ridden a variety of high-tech roller-coasters, including
Borland International, Netscape Communications, Apple Computer,
and a start-up you’ve unfortunately never heard of. In his spare time, he
writes a weblog at www.randsinrepose.com, where he optimistically con-
templates the fact that the world continues to get uncomfortably smaller.

Larry Osterman has been working at Microsoft since 1984. In that time,
he’s worked as a software engineer deep in the plumbing of various
Microsoft® products, including MS-DOS, MS-NET, LAN Manager,
Windows NT, Exchange, and eHome, and is currently working in the
Windows Multimedia Technologies group. Larry lives just north of
Seattle with his wife Valorie and their two kids, four cats, and two horses.

Mary Poppendieck is a seasoned leader in both operations and new prod-
uct development with more than 25 years of IT experience. She has led
teams implementing lean solutions ranging from enterprise supply chain
management to digital media, and built one of 3M’s first just-in-time lean
production systems. Mary is currently the president of Poppendieck LLC
in Minnesota. Her book Lean Software Development: An Agile Toolkit,
which brings lean principles to software development, won the Software
Development Productivity Award in 2004.

xiv. ABOUT THE AUTHORS

Rick Schaut grew up in Green Bay and Milwaukee, Wisconsin, where he
spent his childhood watching Paul Hornung score touchdowns and
Hank Aaron hit home runs. At one point, he believed that our national
anthem ended with, “the land of the free and the home of the Braves,”
and he had a hard time figuring out why every American League umpire
was named “Al” After graduating from high school, Rick studied
economics at the University of Wisconsin, Milwaukee, and computer
science at the University of Wisconsin. Rick joined Microsoft in 1990,
and has been working on versions of Microsoft Word ever since.

Clay Shirky teaches at NYU’s graduate Interactive Telecommunications
Program, and works with clients, including the Library of Congress,
Connecting for Health, and Nokia, on network design issues. He writes
about the cultural and economic issues of the Internet (archived at
shirky.com).

Eric Sink is the founder of SourceGear, a developer tools ISV. More of Eric’s
writings and rants can be found on his weblog at software.ericsink.com.
Eric and his wife live in central Illinois with their two young daughters
and one old cat.

Aaron Swartz is a teenage writer, hacker, and activist. Formerly the
Metadata Advisor to Creative Commons and member of the W3C’s
RDF Core Working Group, he is currently a student at Stanford
University, where he authors his popular weblog and is beginning work
on a technology startup.

why the lucky stiff is a computer progg’er and aspiring author with no
true achievements under his belt. Except there was that time when he
tore a building in half with his bare feet.

INTRODUCTION

New York City is a blast.

Just the other day, as I was walking the four blocks from my office to
the subway entrance, interesting things kept happening.

Not really interesting things, just modestly interesting things.

So, for example, some guy was running down the sidewalk franti-
cally, looking very much like a character in an R. Crumb comic, flapping
his arms broadly and making chicken sounds. Running isn’t the right
word. He was kind of pratfalling repeatedly and then catching himself
right before he hit the ground.

Then a taxi turning the corner nearly knocked over an old man who
was crossing the street a little bit too slowly for the taxi driver’s taste.

A couple of chubby, red-faced out-of-towners asked me if there was
a bar anywhere nearby. (There was. We were in front of it.)

Someone was handing out little advertising cards at the entrance to
the subway. Of course, the inside of the subway station was completely
littered with the cards because everybody who took one immediately
hurled it on the ground as violently as you can hurl a four-by-six post-
card. I almost slipped on one on the steps down.

Modestly interesting stuff, but quite forgettable in New York.

The next day I was talking to one of the summer interns we just
hired. For some reason, this year’s summer intern class consists of 75%
people who are either from Indiana or who went to school in Indiana.
Indiana, for those of you not familiar with our American landscape, is
somewhere in the middle—a state of farms, wholesome colleges with
corn-fed basketball-playing kids, Norman Rockwell towns, and the
occasional rust-belt hellmouth industrial city gasping its last breath. (As
I write these words I brace for the slew of angry letters from the Indiana
Department of Tourism and Infrastructure promoting the exciting cul-
tural scene, the many picturesque lakes, the world-class telephone

xvi INTRODUCTION

system, and the variety of ethnic restaurants. You might find a Mexican
restaurant and an Italian restaurant on the same block!)

Anyway, the intern said he had never lived in New York City, and
asked me what it was like. I didn’t really have a good answer, but I said,
“New York is the kind of place where 10 things happen to you every
day on the way to the subway that would have qualified as interesting
dinner conversation in Bloomington, Indiana, and you don’t pay them
any notice.”

Feeling smug with myself, I pulled down an atlas from the bookshelf
to find another state to insult.

Anyhow, I can’t remember why I told you that story.

Oh, wait, yes I can, but first I have to tell you another story.

A few months ago, I got a review copy of a book from another pub-
lisher, other than the publisher of this book, who will remain
anonymous, and the book will remain anonymous, and the author will
remain anonymous, because I’'m afraid I just have nothing good to say
about said book.

The publisher wanted to get a quote from me to put on the back
cover talking about how wonderful his book was. Normally I’'d be
happy to do that; ’'m a complete publicity slut and will do just about
anything to get my name in front of the reading public. My hope is that
if I do this enough, telemarketers who call me at home will be able to
pronounce my name.

The book started out looking promising. It filled a real need.
I remember several times standing in bookstores desperately trying to
find a book on the very topic, but there was nothing to be found. So
I started reading the manuscript full of high hopes.

Bleah.

I could hardly bear to keep reading.

The author kept saying smart and interesting things.

He even wrote clearly.

But the book was thoroughly, completely, boring. And worse, it was
completely unconvincing.

The author had violated the number one rule of good writing, the
“Show, don’t tell” rule. There was not a single story in the book. It was
chock-full of sentences like “A good team leader provides inspiration by
setting a positive example.” What the eff?

INTRODUCTION xVil

Pay attention. Here’s the way to say “A good team leader provides
inspiration by setting a positive example” without putting your audience
to sleep:

For a few months in the army I worked in the mess hall, clearing tables and
washing dishes nonstop for 16 hours a day, with only a half-hour break in
the afternoon, if you washed the dishes really fast. My hands were perma-
nently red, the front of my shirt was permanently wet and smelly, and
I couldn’t take it any more.

Somehow, I managed to get out of the mess hall into a job working for a high-
ranking Sergeant Major. This guy had years of experience. He was probably
20 years older than the kids in the unit. Even in the field, he was always
immaculate, wearing a spotless, starched, pressed full dress uniform with
impeccably polished shoes no matter how dusty and muddy the rest of the
world was around him. You got the feeling that he slept in 300-threadcount
Egyptian cotton sheets while we slept in dusty sleeping bags on the ground.

His job consisted of two things: discipline and the physical infrastructure of
the base. He was a bit of a terror to everyone in the battalion due to his role
as the chief disciplinary officer. Most people only knew him from strutting
around the base conducting inspections, screaming at the top of his lungs
and demanding impossibly high standards of order and cleanliness in what
was essentially a bunch of tents in the middle of the desert, alternately dust-
choked or mud-choked, depending on the rain situation.

Anyway, on the first day working for the Sergeant Major, I didn’t know what
to expect. [was sure it was going to be terrifying, but it had to be better than
washing dishes and clearing tables all day long (and it’s not like the guy in
charge of the mess hall was such a sweetheart, either!).

On the first day he took me to the officers’ bathroom and told me I would be
responsible for keeping it clean. “Here’s how you clean a toilet,” he said.

And he got down on his knees in front of the porcelain bowl, in his pressed
starched spotless dress uniform, and scrubbed the toilet with his bare hands.

To a 19-year-old who has to clean toilets, something which is almost by def-
inition the worst possible job in the world, the sight of this high-ranking,
38-year-old, immaculate, manicured, pampered discipline officer cleaning a
toilet completely reset my attitude. If he can clean a toilet, I can clean a toi-
let. There’s nothing wrong with cleaning toilets. My loyalty and inspiration
from that moment on were unflagging. That’s leadership.

See what I did here? I told a story. I’ll bet you’d rather sit through 10
of those 400-word stories than have to listen to someone drone on about
how “a good team leader provides inspiration by setting a positive
example.”

xviii INTRODUCTION

Anyway, I called up the editor of the book that they wanted me to
praise, and said I couldn’t, in good faith, recommend a boring book
without any stories in it, even if it was 100% correct and otherwise well-
written. I think they hate me now.

So be it.

The software development world desperately needs better writing. If
I have to read another 2000-page book about some class library written
by 16 separate people in broken ESL, I'm going to flip out. If T see
another hardback book about object-oriented models written with
dense faux-academic pretentiousness, I'm not going to shelve it any
more in the Fog Creek library: it’s going right in the recycle bin. If T have
to read another spirited attack on Microsoft’s buggy code by an enthu-
siastic nine-year-old Trekkie on Slashdot, I might just poke my eyes out
with a sharpened pencil. Stop it, stop it, stop it!

And that’s why when Gary Cornell suggested this book, I leapt at the
idea. It would be a chance to showcase some of the best writing about
software from the past year “or so.” The original idea was to make it
an annual, so the volume you’re holding would be “The Best Software
Writing of 2004,” but there were a bunch of great articles from 2003 that
we wanted to include, and we were afraid bookstores would return it at
the end of the year if there was a date in the title. I solicited nominations
from the faithful readers of my website, Joel on Software, and selected
the final stories myself, so the blame for what’s included and what isn’t
included is entirely my own, but full credit for really incredible writing in
a field that doesn’t normally get any goes to the contributors.

Ken Arnold
STYLE IS SUBSTANCE'

Python did something really interesting: it made whitespace matter
for the first time in a major programming language since FOR-
TRAN on punched cards. In Python, the way you create a block is
not by surrounding it with begin and end or { and }, but by indent-
ing it. That’s all.

A lot of geeks instinctively cringed. “Whitespace should never
matter!” they claimed, without remembering why. The main rea-
son was that you couldn’t always see whitespace, because it’s, um,
white. So, for instance, in the standard Unix Make, where certain
lines must begin with a tab character, if you or your editor replaced
such a tab character with eight spaces (how helpful!), you would
suddenly find your makefile didn’t work, and without any expla-
nation. So we all learned: whitespace mustn’t matter!

Well, yeah.

Maybe we went too far.

Here’s the beauty of Python.

In C-like languages (C, C++, Java) the human eye sees indenta-
tion as defining a block, but the compiler sees the { and the }. So in
cases where the indentation and the braces disagree, the one that is
less visible to humans—ithe braces—wins out. But why do we need
two ways to indicate a block, one for humans and one for compil-
ers¢ Why not stick with one way, so code always looks like what it
does?

. Ken Arnold, “Style Is Substance,” Artima Weblogs, Notes from Underfoot
(http://www.artima.com/weblogs/index.jsp?blogger=arnold), October 6, 2004.
See http://www.artima.com/weblogs/viewpost.jsp?thread=74230.

2 THE BEST SOFTWARE WRITING I

Ken Arnold took this small idea from Python all the way. He
proposes something even more radical—which, like many great
ideas, is so crazy it just might work. — Ed.

... wherein I decide to wade into the programming language equiv-
alent of TV wrestling: coding style . . .

’m sure this will cause me no end of grief, but 'm about to confess

publicly here that I am a heretic. (In this particular case ’'m only con-
fessing to heresy in computer language design. Other heresy confessions
will have to await another time.)

Pl state it right out: For almost any mature language (C, Java, C++,
Python, Lisp, Ada, FORTRAN, Smalltalk, sh, JavaScript, etc.) coding
style is an essentially solved problem, and we ought to stop worrying
about it. And to stop worrying about it will require worrying about it a lot
at first, because the only way to get from where we are to a place where
we stop worrying about style is to enforce it as part of the language.

Yup. ’m really saying that. I’'m saying that, for example, the next
ANSI C update should define the standard K&R C programming style?
into the language grammar. Programs that use any new features should
be required to be in K&R style or be rejected by the compiler as syntac-
tically illegal.

I’'m gonna pause here. When I was talking about this on a mailing list
I had to go through this several times. People didn’t quite get me because
they couldn’t believe someone was saying this. I mean this literally. For
example, I want the next C grammar to define that a space comes
between any keyword and an opening parenthesis: if (foo) would be
legal, but if(foo) would not. Not a warning, not optionally checked, but
actually forbidden by the language parser. Flat-out illegal. Can’t compile.

2. From Brian Kernighan and Dennis Ritchie’s The C Programming Language (Prentice
Hall, 1988), the standard and founding tome for the language.

KEN ARNOLD 3

Here is the logic in its simplest form:

* Premise 1: For any given language, there are one or a few
common coding styles.

Typically one is set by the founder(s) or earliest documenter, but
others will evolve over time. But even for C there are only a
handful of commonly used styles, ignoring trivial variations.

® Premise 2: There is not now, nor will there ever be, a program-
ming style whose benefit is significantly greater than any of the
common styles.

Get real. Discovering a style that improves your productivity
or code quality by more than a few percent over the common
styles is about as likely as discovering a new position for sex.
(Astronauts need not apply, unless they want to invite me along.)

e Premise 3: Approximately a gaboozillion cycles are spent on
dealing with coding style variations.

Think about it: How many reformatter/pretty-printers projects
are there on SourceForge?® alone? How many options does any
given IDE (including emacs) have for formatting code? How
many cycles are spent deciding on a style, documenting it,
enforcing it, and updating it? How many history logs for CVS,
ClearCase, etc., have a lot of noise from varying format changes?
How many brain cycles are spent on arguing about this topic?

* Premise 4: For any nontrivial project, a common coding style is a
good thing.
I really think this is pretty well agreed on. How constraining the
style is varies, but having several folks hacking on the same code
with conflicting coding styles introduces more pain than any
single style imposes on any single person. Every project I know
of has a style, if not spelled out at least by custom.

e Conclusion: Thinking of all the code in the entire world as a
single “project” with a single style, we would get more value
than we do by allowing for variations in style.

3. See http://sf.net.

4 THE BEST SOFTWARE WRITING I

Think of it. All the programming examples in one style. Web pages,
journals, papers, emails use one style. Reformatting issues gone.
Arguments over whose style is better gone. Reformatters become a
quaint historical artifact.

And most of all: No More Style Wars! Really! Think of all those
cycles that we could then plow into something more productive, like
vifemacs wars! Or world peace! Or a really good chocolate cookie
recipe! You choose!

Of course, you will never enforce any style globally unless people
have literally no choice. How many C programmers use “during” as a
stylistic preference to the keyword “while”? (Preprocessor abusers need
not apply. On second thought, please do: We need to identify you for our
eugenics program.) Or skip the parentheses around an if clause? They
don’t because they can’t. You know some would if they could. The thing
that stops these “personal styles” is that the C compiler will not accept
them. If you can’t compile your code you fix it. It’s so simple it’s stupid.
And therefore it works.

So I want the owners of language standards to take this up. I want
the next version of these languages to require any code that uses new
features to conform to some style. Let the standards committees gnash
and snarl and wring their hands over which of the common styles is the
winner. Sell tickets. We all get to comment and the language standards
geeks decide. We know where they’ll go—C will go to K&R; C++ will go
with Bjarne’s style (excuse me while I cringe); Java will go with the Sun
style as shown in the language spec and most of the Java books from
Sun (including mine); Lisp style is almost already set mostly in stone.
Perl is a vast swamp of lexical and syntactic swill and nobody knows
how to format even their own code well, but it’s the only major language
I can think of (with the possible exception of the recent, yet very Java-
like C#) that doesn’t have at least one style that’s good enough.

Some things are either uncheckable (Hungarian notation, using
“get” and “set” method prefixes) or not widely agreed upon (such as
import/#include ordering). These can be left for future standards. Or
not. The owners of the standard decide. But whatever they do, they
should set the style and build it into the actual freakin’ grammar.

This heresy encompasses one major sub-heresy: That whitespace
should matter.

Most style rules have to do with the placement of whitespace: new-
lines before or after curly braces, whitespace around operators or not,

KEN ARNOLD N

etc. So I’'m saying that languages should indeed care about whitespace.
A lot.

Yet one of the things we supposedly learned from languages like
FORTRAN was that whitespace should only matter to mark boundaries
between tokens. This was accepted wisdom because FORTRAN had
columns—the first five columns were reserved for a statement number
or a comment indicator, the sixth column with any character in it meant
a continuation of the previous line, seven through 72 had the code, and
the last eight were reserved for sequence numbers useful for reordering
the card deck if it was dropped. Yes, I mean cards, the physical type,
with rectangular holes. So if you put something in the wrong column, a
statement could become a comment or whatever, which was really
annoying. Also, D010I=1,100 was the same as D0 10 I = 1, 100 because
D0 was a keyword followed by a number and so the space wasn’t
required, although it made D010I=1 interesting, as that assigned 1 to a
variable named D0101.

I lived this ugliness, so I felt the pain. But this didn’t prove that white-
space shouldn’t matter. All it really proved was that FORTRAN’s
whitespace rules sucked. Freedom to put whitespace anywhere has
proven to be expensive and cycle-wasting in practice. We’re not editing
on punched cards anymore, and reformatters are as common as spam.
We can use this power: type code however you want to but before you
compile it, reformat it (or reformat on the fly, whatever).

In the end, this requires only that editors and IDEs will let you type
stuff and make it look right. This is basically just reformatting on the fly,
which many editors already do. We don’t need you to type zero, one, or
17 spaces between an if and its open parenthesis, we just need the editor
(assuming K&R C style) to put exactly one space there. And getting even
this right will be easier if there is only one style to worry about. It’s one
of the things that those reformatting or style-adapting cycles can go to.

Basically, freedom for formatting style has proven extremely expen-
sive, and does not deliver much value for cost. Think of it this way:
could you honestly fill in the following;:

1, [insert name here], know of a programming style whose impact on pro-
grammer productivity and/or program quality is large enough that my
freedom to choose it over any major common style validates the programmer
productivity and investment used industry wide in arguing about style,
imposing style, and reformatting to match styles. That style is [insert style
description here] and its benefits are [insert benefits here].

6 THE BEST SOFTWARE WRITING I

Or even the less demanding;:

I, [insert name here], know of a programming style whose impact on pro-
grammer productivity and/or program quality is = 5% when compared to
any major common style. That style is [insert style description here] and its
benefits are [insert benefits here].

I think you will mostly get snickers even suggesting that this can be
filled out. And on a single project alone you can spend 5% on coding
style issues—mostly up front, but it’s a continuous bleeding: style wars
cropping up over things as yet undefined; new tools being suggested,
written, or integrated; people forgetting to put it in the right style getting
corrected, polluting the change history; training new people in the style;
disciplining engineers who are uncooperative; and general bitching,
whining, and moaning.

So 5% doesn’t even touch the opportunity costs and other pain asso-
ciated with not having a mandated style across all the code in the world.

Or if you prefer the question the other way ’round: What benefits do
we get from freedom of style that outweighs the cost we pay for it?

To me the answer seems obvious: nowhere near enough.

Leon Bambrick

AWARD FOR THE SILLIEST USER
INTERFACE: WINDOWS SEARCH'

What do you want to
search for?

Pickures, music, or viden:

Documents (word
processing, spreadsheest,
ekc.d

&l files and folders

Prinkers, computers, ar . . .
peaple ' g Who’s been putting the mescaline in

@) Irformation in Help and the Microsoft Koolaid?
Support Center

Why is a dog asking me questions?

What if Google used this approach?

You may also want to.., .
- Would Google still be number one?

Q Search the Internet
Change preferences

1. Leon Bambrick, “Award for the Silliest User Interface: Windows Search,” secretGeek
(http://www.secretgeek.net). See http://www.secretgeek.net/ms_search.aspi#.

8 THE BEST SOFTWARE WRITING I

Google

So You’d Like to Search for Something!

Do you know where you last saw it? Yes or No

Is it bigger than a breadbox? Or smaller?

Is it animal, mineral, or vegetable?

Maybe you should buy a personal organizer! Then you won’t
keep losing things.
® Did you check under the bed?

©2004 Google - Searching 8,058,044,651 web pages

Unless Microsoft can correct this wrongheaded approach to search,
WinFS promises to be so overengineered as to be completely unusable.

Michael Bean

THE PITFALLS OF OUTSOURCING
PROGRAMMERS

Why Some Software Companies
Confuse the Box with the Chocolates'

Offshoring and outsourcing have become hot topics over the last
year, as the least creative U.S. companies rush to dump their soft-
ware development tasks on bright, educated programmers in India,
China, and Eastern Europe, and newly unemployed American pro-
grammers surprise themselves by making heartfelt arguments in
favor of protectionism.

I've read entire books about outsourcing, and fundamentally
nobody seems to understand that software development is design,
not manufacturing. Every single line of code that gets written
involves making a decision about the design of the software. And
for software companies, and any other company that derives com-
petitive advantage from proprietary software, outsourcing design
is, eventually, fatal.

In 2001 I wrote:

[Dluring the recent dotcom mania a bunch of quack business writers sug-
gested that the company of the future would be totally virtual—just a trendy
couple sipping Chardonnay in their living room outsourcing everything. What
these hyperventilating “visionaries” overlooked is that the market pays for
value added. Two yuppies in a living room buying an e-commerce engine from

1. Michael Bean, “The Pitfalls of Outsourcing Programmers,” Forio Business Simulations
(http://www.forio.com). See http://www.forio.com/outsourcing.htm.

10

THE BEST SOFTWARE WRITING I

company A and selling merchandise made by company B and warehoused
and shipped by company C, with customer service from company D, isn’t
honestly adding much value. In fact, if you’ve ever had to outsource a criti-
cal business function, you realize that outsourcing is hell. Without direct
control over customer service, you’re going to get nightmarishly bad cus-
tomer service—the kind people write about in their weblogs when they tried
to get someone, anyone, from some phone company to do even the most
basic thing. If you outsource fulfillment, and your fulfillment partner has a
different idea about what constitutes prompt delivery, your customers are
not going to be happy, and there’s nothing you can do about it, because it
took 3 months to find a fulfillment partner in the first place, and in fact, you
won’t even know that your customers are unhappy, because they can’t talk
to you, because you’ve set up an outsourced customer service center with the
explicit aim of not listening to your own customers. That e-commerce engine
you bought? There’s no way it’s going to be as flexible as what Amazon does
with obidos, which they wrote themselves. (And if it is, then Amazon has no
advantage over their competitors who bought the same thing). And no off-
the-shelf web server is going to be as blazingly fast as what Google does with
their hand-coded, hand-optimized server.?

Bean’s essay is the clearest and least politically charged writing
l've seen. It’s a pleasure to see such a lucid explanation that really
cuts to the heart of the issue, especially in a year of so much mor-
bidly bad writing on the topic. — Ed.

lothing and toys are manufactured overseas. So why not make soft-

ware there too, where labor is cheaper?

In the last few years, many U.S. technology companies have moved
their software development to India. In 2004, Hewlett-Packard became
India’s largest multinational IT employer,®> with more than 10,000

employees.

Internet companies in the 1990s. Ravi Chiruvolu, a partner at Charter
Venture Capital, wrote that “Venture Capitalists decided that because of

The enthusiasm for overseas outsourcing mirrors the enthusiasm for

2. Joel Spolsky, In Defense of Not-Invented-Here Syndrome. First published on the Web

3.

October 14, 2001. http://www.joelonsoftware.com/articles/fog0000000007.html.
See http://news.zdnet.co.uk/business/employment/0,39020648,39118282,00.htm.

MIicHAEL BEaAN 11

cheap engineering talent in countries like India it would be more cost
effective to outsource software development. If Nike could outsource
sneaker manufacturing, we could do the same with code.”* Following
similar logic, Oracle decided to double the number of software engineers
it employs in India to 6,000.°

Much of the writing on outsourcing asserts that companies that out-
source have an ethical obligation to retain jobs locally. Although the
outsourcing trend has resulted in a net transfer of jobs outside of the
United States, this isn’t about job losses in the U.S. We live in a global
economy. People in India deserve jobs as much as people in the United
States or anywhere else, and it’s worrisome when companies are criti-
cized for outsourcing solely because they have hired people overseas.

Although outsourcing isn’t unethical, software companies that out-
source are making a strategic blunder when they decide to move
development away from the rest of the organization. Outsourcing fails
when software companies confuse operational effectiveness and strat-
egy. Operational effectiveness is about working cheaper or faster.
Strategy is about the creation of a long-term competitive advantage,
which, for software companies, is the ability to create innovative appli-
cations.

Outsourcing programmers works when the software developed isn’t
a key part of the pipeline of innovation for products a company actually
sells. For example, when website design or back-office software such as
payroll or inventory control is outsourced, that can be good because it
improves operational effectiveness.

But writing innovative software cannot be done on an assembly line.
It requires hard-to-find development and design skills. Farming out devel-
opment to legions of programmers overseas will not create a differentiation
advantage. When a software company outsources development, that com-
pany loses its capacity to innovate and its competitive advantage.

This isn’t because Indian programmers are less skilled or less creative
than programmers elsewhere. Outsourcing hurts innovation when peo-
ple aren’t able to communicate frequently and casually. Frequent and

4. See http://www.charterventures.com/news/vcj techtalk 2003mar.pdf.
5. See http://www.zdnet.com.au/jobs/news trends/story/0,2000056653,20276211,00.htm.

12 THE BEST SOFTWARE WRITING |

casual conversations are impossible across nine time zones.® Innovation
is also sacrificed when the programmers who are making discoveries and
thinking of new ideas for your software aren’t around for the long term
because they don’t work for you. It doesn’t matter where your company
is based or where you outsource your programmers: if your software
company outsources its programmers developing your core software,
then it can’t support innovation.

If you’re building an innovative software company, you need to
retain your best and brightest programmers internally. Software compa-
nies entirely based in India can successfully innovate over the long term,
as can U.S. companies or companies based anywhere else. It’s the trend
of U.S. software companies outsourcing all their development that’s bad
strategy.

Why Some Software Companies
Confuse the Box with the Chocolates

I live near North Beach in San Francisco. North Beach is known for its
Italian restaurants, its nightlife, and for its little specialty shops.
Recently, I bought some chocolates from XOX Truffles, one of these
specialty shops in North Beach. These chocolates are fantastic. Owner
Jean-Marc Gorce makes them by hand, and his small shop has been
rated as one of the top 10 in the United States.

Jean-Marc recently started selling his chocolates in gold and blue
boxes. I like the new design. When I asked him about the boxes, he told
me that his wife designed them and he found a company in the
Philippines that could produce the boxes in the small volume they
needed for a good price.

6. The difference in time zone between the United States and India usually means there is no
overlap between the working days of each country. Teams that need to coordinate their
work via email usually find that a simple back-and-forth conversation that would take a
handful of emails and 20 minutes in the same time zone takes several weeks when com-
municating with someone who won’t read your message until the next morning, while
you are asleep. — Ed.

MICHAEL BEAN 13

Jean-Marc’s gold and blue boxes are an example of successful out-
sourcing. Jean-Marc sells chocolates, not boxes. The design and
production of chocolates is his core competency. Jean-Marc can out-
source box production, improving his operational efficiency without
sacrificing his reputation as a maker of superlative chocolates.

While outsourcing boxes improves Jean-Marc’s operational effective-
ness, he would never consider outsourcing his chocolate truffle
production because he would lose his core differentiation advantage.
Yet, in their enthusiasm for cost savings, many U.S. software companies
have done precisely that—outsourcing their core technology and key
strategic differentiator.

Design and Assembly Are Different

This isn’t the first time companies have tried to commoditize software
development. In the ’80s, Japanese companies unsuccessfully attempted
to set up software factories to manufacture programs. They discovered

14 THE BEST SOFTWARE WRITING |

that just throwing a lot of programmers together doesn’t create innova-
tive software.

But, as I’ve stated, not all outsourcing is bad. And in some industries,
outsourcing may be essential to stay competitive. For example, it makes
sense to outsource the manufacture of clothing and toys. Most of the
cost of clothing and toy manufacturing is in the assembly, not the design.
Those products can still be designed close to corporate headquarters but
assembled elsewhere to keep costs low.

Clothing Production Costs Software Production Costs

Assembly and Design
Manufacturing

Design Assembly and
Manufacturing

But writing a software program is primarily a design challenge.
Nearly all of the costs of creating software come from writing the pro-
gram, not the assembly. The assembly stage for software is really just
copying the final program onto a disk and enclosing it with a manual in
a box.

Harvard Business School’s Michael Porter,” an expert on strategy and
competitive advantage, nicely summarized the problem with competing
solely on operational effectiveness:®

“If all you’re trying to do is essentially the same thing as your rivals,
then it’s unlikely that you’ll be very successful. It’s incredibly arrogant
for a company to believe that it can deliver the same sort of product that

7. See http://dor.hbs.edu/fi_redirect.jhtml?facInfo=bio&facEmId=mporter.
8. See http://www.fastcompany.com/online/44/porter.html.

MICHAEL BEAN 15

its rivals do and actually do better for very long. That’s especially true
today, when the flow of information and capital is incredibly fast. It’s
extremely dangerous to bet on the incompetence of your competitors—
and that’s what you’re doing when you’re competing on operational
effectiveness.”

The software outsourcing fad is bad for companies not because of
the short-term programmer layoffs but because technology companies
will lose their capacity to innovate. Software companies that outsource
their programming talent will fail to innovate as rapidly as their com-
petitors. Ultimately, competitors that have in-house developers and can
innovate more rapidly will replace these companies.

Rory Blyth
EXCEL AS A DATABASE

Just wait until you find out that your corporate firewall strips the
pictures from incoming email. — Ed.

As a developer, you’ve probably, at some unfortunate point in your life
(possibly several points, actually), been handed an Excel file that has
been crammed full of “data” by someone in marketing and been told to
“do something with it.”

Columns probably didn’t line up, and a thousand different fonts were
used. Every feature of Excel was probably abused and abused again to
avoid having to use an actual database application for storage of the data.

Of course, it’s up to you to make sense of the layout, and marketing
could just give a bleepity-bleep about what a pain it is to suck weird data
out of Excel and “do something with it” when little or (more often) no
thought has been given to possibly making the data consistent or, dare I
say, orderly.

To this end, I’ve put together an art project to illustrate the process.
What you will see unfold before your peepers is a process of discovery—
my thoughts on how these files are created.

1. Rory Blyth, “Excel as a Database,” Neopoleon.com (http://www.neopoleon.com),
September 29, 2003. See http://neopoleon.com/blog/posts/434.aspx.

18 THE BEST SOFTWARE WRITING |

Note | wound up drawing one of the characters with fangs and, even-
tually, “crazy eyes”—I don’t know why | did this. It just felt right.>

Se T led His meein MT
because Koo d&wlw -H.w:)
feed puc parken dﬂm £ thar
solwire. Unforku , Al she darg
is stk W a0 k 55 dambase
and T donk kpow how b= vee Aeess,
56 Wi lewe e 5‘13‘.«:. SOW‘W"&Wﬂ
our, Duu.r E*W.S

Awasqi e »HN.»I Wonked a
&whux, ; H'w,n wL\j ghalm e
5 \]I\AS'(’ Use WDrJ

2. It’s because you’re a complete lunatic, Rory. — Ed.

\lim '1d|of[, Wa(c’ s 2

We nccof to .sc.quuw j@f‘
Hiis d&f—a (T2 Ex::e,]'.

SP(eaJsL\zar P‘m v, og’““’”"r

Thares 4 jooa’l "QL"“J Telwison —
Bm—{ lnm dre e Jé"‘j e
6"(’HR" lehl ’Q—I—Dﬂ'\ A{z.c.{,)

i{Tsd E-bfcs«l ‘?-

i km w/ 1' Tr "ma w/ \.
We could Lok 4 na1 F&s-rf']f
T kiow bow 0 ot @ MJ

P“-"t'e-a wf' (’.auld (}" ‘HMH’I'

RoRry BLyTH

19

20

THE BEST SOFTWARE WRITING I

Nob o c,ut'ﬁfj‘.

Remember whar happ&ﬂ“f

las< ﬂw&? |

1-@0\‘ ay w7 ‘S'i’mmf?.
V

Gbgeol!\! T lwow!

We could \)ﬁn(Qe +he
b, sk v mg o

Hren poste the '-mujb n®
Excell \

Vm,t e on 1 Seperly nqﬂ
there | b we dov+ havt
A, Sianner, I'” h&"u?- 2

Yake 4 Flnaw ok He
Pr:r\‘ﬂ)u\' W m‘] l!"“J"l“

Fuvome d‘lg'.w] cumerd,
/

Hey—I know what you’re thinking: “That was a little weird, Rory.”
Yup.

Untmwwwl\f} I on'\\{ bew
how 42 U"J hJM\ phow:: Lrom
mj cumert 4o W\\(Mac, %o

Tl do ther, and then

email the Pbﬁaw] Wr’r"

IS“ it Thae way we
can just “py the vhile

emal ato EXLd! 69"4

'(’br q an.p;oﬂ,’

RoRry BLyTH

21

1. Adam Bosworth, “ICSOC04 Talk,” Adam Bosworth’s Weblog: Thoughts on computing

2.

Adam Bosworth

|ICSOC04 TALK

Adam Bosworth is probably the most important software designer
you’ve never heard of, and one of the leading thinkers about soft-
ware architecture of our time. His point is simple: smart computer
scientists create marvelous edifices of rigid complexity that are sim-
ply too complicated for humans to really understand, so they never
go anywbhere. But the really smart computer scientists use their
intelligence to simplify their designs, making them workable for
the masses, and those are the architectures that matter.
Back in 2002 I wrote:*

Whenever somebody gives you a spec for some new technology, if you
can’t understand the spec, don’t worry too much. Nobody else is going
to understand it, either, and it’s probably not going to be important.
This is the lesson of SGML, which hardly anyone used, until Tim
Berners-Lee dumbed it down dramatically and suddenly people under-
stood it. For the same reason he simplified the file transfer protocol,
creating HTTP to replace FTP.

You can see this phenomenon all over the place; even within a given
technology some things are easy enough to figure out and people use
them (like COM’s IUnknown), while others are so morbidly compli-
cated (IMonikers) when they should be simple (what’s wrong with
URLs?) that they languish.

(http://www.adambosworth.net), November 18, 2004. See http://www.adambosworth.
net/archives/000031.html. Originally presented at the 2nd International Conference

on Service-Oriented Computing in New York City.

Joel on Software entry for April 2, 2002. On the Web at http://www. joelonsoftware.
com/news/20020402 . html.

24 THE BEST SOFTWARE WRITING I

The thing about the too-complicated specs is that nobody
wants to look stupid, so they never call the designers on designing
something too complicated. For years and years as C++ became
increasingly Byzantine and incomprehensible, nobody was will-
ing to say, “Stop it, this is too hard for any buman being to
understand,” because they didn’t want to look dumb, but they
did quietly vote with their feets by switching to Visual Basic and
PHP and Perl, which were understandable by mere mortals. You
don’t have to feel bad if you don’t understand CORBA and don’t
quite get what all those WS-* things are all about, because
nobody else will, either, and they’re unlikely to be important out-
side of a small niche. VoIP languishes for years and years because
H.323 is beyond the ability of mere mortals, until the Skype
designers toss the whole thing and make a doohickey that lets you
place phone calls over the Internet. There, was that so hard? — Ed.

gave a talk yesterday at the ICSOCO04.3 It was essentially a reminder to

a group of very smart people that their intelligence should be used to
accommodate really simple user and programmer models, not to build
really complex ones. Since I was preceded by Don Ferguson of IBM and
followed the next day by Tim Berners-Lee, it seemed especially wise to
stick to simple and basic ideas. Here is the talk.

I’'m sandwiched by smarter and more august speakers. Don Ferguson
of IBM builds edifices of such sophistication and elaboration as to daunt
the designers of the extraordinary archways of the Alhambra. Tim
Berners-Lee created the Web as we know it today and preaches a sort of
religion about the semantic Web from his aerie at MIT that is totally
over my head. These are very smart gentlemen. One would be foolish to
try to appear smart when speaking between them. Accordingly, I'm
going to take the opposite tack. 'm going to talk about the virtues of
KISS (which I’ll conveniently describe as keeping it simple and sloppy)
and its effect on computing on the Internet.

There has been, of course, an eternal tension between that part of
humanity that celebrates our diversity, imperfectability, and faults as

3. See http://icsoc.dit.unitn.it.

Apam BoswortH 25

part of the rich tapestry of the human condition and that part which
seeks to perfect itself, to control, to build complex codes and rules for
conduct which, if zealously adhered to, guarantee an orderly process.

This talk is about this conflict as it relates to computing on the
Internet. This talk is also a polemic in support of KISS. As such it is
unfair, opinionated, and perhaps even unconscionable. Indeed, at times
it will verge on a jeremiad.

It is an ironic truth that those who seek to create systems that most
assume the perfectibility of humans end up building the systems that are
the most soul destroying and most rigid—systems that rot from within,
until like great, creaking, rotten oak trees, they collapse on top of them-
selves, leaving a sour smell and decay. We saw it happen in 1991 with the
astonishing fall of the USSR. Conversely, those systems that best take into
account the complex, frail, brilliance of human nature and build in flexi-
bility, checks and balances, and tolerance tend to survive beyond all hopes.

So it goes with software. That software which is flexible, simple,
sloppy, tolerant, and altogether forgiving of human foibles and weak-
nesses turns out to be actually the most steel-cored, able to survive and
grow, while that software which is demanding, abstract, rich but sys-
tematized turns out to collapse in on itself in a slow and grim implosion.

Consider the spreadsheet. It is a protean, sloppy, plastic, flexible
medium that is, ironically, the despair of all accountants and auditors
because it is virtually impossible to reliably understand a truly complex
and rich spreadsheet. Lotus Corporation (now IBM), filled with
Harvard MBAs and PhDs in CS from MIT, built Improv. Improv set out
“to fix all this.” It was an auditor’s dream. It provided rarified heights of
abstraction, formalisms for rows and columns, and in short was truly
comprehensible. It failed utterly, not because it failed in its ambitions but
because it succeeded.*

4. Iremember Improv because it came out while I was working on Excel, and claimed to be
“the future of spreadsheets.” Rather than giving you a free-form grid of cells, Improv
required you to define strict n-dimensional hypercubes for your data. Rather than allow-
ing you to enter any formula in any cell, Improv only allowed you to define new rows
and columns whose values were computed from existing rows and columns. There was
none of the flexibility of traditional spreadsheets. Improv assumed that spreadsheets were
used for the kind of models made by MBA students. In fact, when we did a little market
research we found that most spreadsheet users are just making lists, and the real world
never fits into n-dimensional hypercubes as well as it did at Wharton. — Ed.

26 THE BEST SOFTWARE WRITING I

Consider search. I remember the first clunky demos that Microsoft
presented when Bill Gates first started to talk about Information At
Your Fingertips® with their complex screens for entering search criteria
and their ability to handle Boolean logic. One of my own products,
Access, had the seemingly easier Query by Example.® Yet, today half a
billion people search every day and what do they use? Not Query by
Example. Not Boolean logic. They use a solution of staggering simplic-
ity and ambiguity, namely free-text search. The engineering is hard, but
the user model is simple and sloppy.

Consider user interface. When HTML first came out it was unbeliev-
ably sloppy and forgiving, permissive and ambiguous. I remember
listening many years ago to the head, then and now, of Microsoft Office,
saying contemptuously in 1995 that HTML would never succeed
because it was so primitive and that Word would win because Word doc-
uments were so rich and controlled in their layout. Of course, HTML is
today the basic building block for huge swathes of human information.
What’s more, in one of the unintended ironies of software history,
HTML was intended to be used as a way to provide a truly malleable
plastic layout language that would never be bound by 2-dimensional
limitations—ironic because hordes of CSS fanatics have been trying to
bind it with straightjackets ever since and bad-mouthing tables, and gen-
erations of tools have been layering pixel-precise 2-dimensional layout
on top of it. And yet, ask any gifted web author, like Jon Udell, and they
will tell you that they often use it in the lazy, sloppy, intuitive human
way that it was designed to work. They just pour in content. In 1996 1
was at some of the initial XML meetings. The participants’ anger at
HTML for “corrupting” content with layout was intense. Some of the
initial backers of XML were frustrated SGML folks who wanted a
better, cleaner world in which data was pristinely separated from pres-
entation. In short, they disliked one of the great success stories of
software history, one that succeeded because of its limitations, not

5. Information At Your Fingertips, or IAYF, was the “vision” Bill Gates laid out for
Microsoft to work on in the early 1990s, before the Internet happened. — Ed.

6. Query by Example is a user interface that lets you search a database for rows by entering a
new row with some of the values filled in and the rest of the values left blank. Then you
press a button and the database engine returns a list of all the rows that match those partic-
ular values. So for example if you entered a row with “<18” in the age field and “NY” in
the State field, you’d get a complete list of people under the age of 18 in New York. — Ed.

Apam BoswortH 27

despite them. I very much doubt that an HTML that had initially
shipped as a clean layered set of content (XML, layout rules—XSLT, and
formatting—CSS) would have had anything like the explosive uptake.

Now I backed XML in 1996, but as it turns out, I backed it for
exactly the opposite reason. I wanted a flexible, relaxed, sloppy human
way to share data between programs, and compared to the RPCs and
DCOMs and ITOPs of that day, XML was an incredibly flexible, plastic,
easy-going medium. It still is. And because it is, not despite it, it has rap-
idly become the most widely used way to exchange data between
programs in the world. And slowly, but surely, we have seen the other
older systems collapse, crumple, and descend toward irrelevance.

Consider programming itself. An unacknowledged war goes on every
day in the world of programming. It is a war between the humans and
the computer scientists. It is a war between those who want simple,
sloppy, flexible, human ways to write code and those who want clean,
crisp, clear, correct ways to write code. It is the war between PHP and
C++/Java. It used to be the war between C and dBASE. Programmers at
the level of those who attend Columbia University, programmers at the
level of those who have made it through the gauntlet that is Google
recruiting, programmers at the level of this audience are all people who
love precise tools, abstraction, serried ranks of orderly propositions, and
deduction. But most people writing code are more like my son. Code is
just a hammer they use to do the job. PHP is an ideal language for them.
It is easy. It is productive. It is flexible. Associative arrays are the back-
bone of this language, which, like XML, is therefore flexible and
self-describing. They can easily write code that dynamically adapts to
the information passed in and easily produces XML or HTML. For
them, the important issue is the content and the community, not the
technology. How do they find the right RSS feeds? How do they enable
a community to collaborate, appoint moderators, and dynamically
decide whose posts can go through and whose should be reviewed? How
do they filter information by reputation? These are the issues that they
worry about, not the language.

In the same way, I see two diametrically opposed tendencies in the
model for exchanging information between programs today:

On the one hand we have RSS 2.0 or Atom. The documents that are
based on these formats are growing like a bay weed. Nobody really cares
which one is used because they are largely interoperable. Both are

28 THE BEST SOFTWARE WRITING I

essentially lists of links to content with interesting associated metadata.
Both enable a model for capturing reputation, filtering, standoff anno-
tation, and so on. There was an abortive attempt to impose a rich
abstract analytic formality on this community under the aegis of RDF
and RSS 1.0. It failed. It failed because it was really too abstract, too for-
mal, and altogether too hard to be useful to the shock troops just trying
to get the job done. Instead, RSS 2.0 and Atom have prevailed and are
used these days to put together talk shows and play lists (podcasting),
photo albums (Flickr), schedules for events, lists of interesting content,
news, shopping specials, and so on. There is a killer app for it, blog-
readers/RSS viewers. Anyone can play. It is becoming the easy, sloppy
lingua franca by which information flows over the Web. As it flows, it is
filtered, aggregated, extended, and even converted, like water flowing
from streams to rivers down to great estuaries. It is something one can
get directly using a URL over HTTP. It takes one line of code in most
languages to fetch it. It is a world that Google and Yahoo are happily
adjusting to, as media centric, as malleable, as flexible and chaotic, and
as simple and consumer focused as they are.

On the other hand, we have the world of SOAP and WSDL and
XML SCHEMA and WS_ROUTING and WS_POLICY and
WS_SECURITY and WS_EVENTING and WS_ADDRESSING and
WS_RELIABLEMESSAGING and attempts to formalize rich conversa-
tion models. Each spec is thicker and far more complex than the initial
XML one. It is a world with which the IT departments of the corpora-
tions are profoundly comfortable. It appears to represent ironclad
control. It appears to be auditable. It appears to be controllable. If the
world of RSS is streams and rivers and estuaries, laden with silt picked
up along the way, this is a world of Locks, Concrete Channels, Dams,
and Pure Water Filters. It is a world for experts, arcane, complex, and
esoteric. The code written to process these messages is so early-bound
that it is precompiled from the WSDLs, and as many have found, when
it doesn’t work, no human can figure out why. The difference between
HTTP, with its small number of simple verbs, and this world, with its
innumerable layers that must be composed together in Byzantine com-
plexity, cannot be overstated. It is, in short, a world only IBM and
Microsoft could love. And they do.

On the one hand we have Blogs and Photo Albums and Event
Schedules and Favorites and Ratings and News Feeds. On the other we

Apam BoswortH 29

have CRM and ERP and BPO and all sorts of enterprise-oriented, three-
letter acronyms.

As T said earlier, I remember listening many years ago to someone
saying contemptuously that HTML would never succeed because it was
so primitive. It succeeded, of course, precisely because it was so primi-
tive. Today, I listen to the same people at the same companies say that
XML over HTTP can never succeed because it is so primitive. Only with
SOAP and SCHEMA and so on can it succeed. But the real magic in
XML is that it is self-describing. The RDF guys never got this because
they were looking for something that has never been delivered, namely
universal truth. Saying that XML couldn’t succeed because the seman-
tics weren’t known is like saying that relational databases couldn’t
succeed because the semantics weren’t known or text search cannot suc-
ceed for the same reason. But there is a germ of truth in this assertion. It
was and is hard to tell anything about the XML in a universal way. It is
why InfoPath” has had to jump through so many contorted hoops to
enable easy editing. By contrast, the RSS model is easy with an almost
arbitrary set of known properties for an item in a list, such as the name,
the description, the link, and MIME type and size if it is an enclosure. As
with HTML, there is just enough information to be useful. Like HTML,
it can be extended when necessary, but most people do it judiciously.
Thus, blogreaders and aggregators can effortlessly show the content and
understanding that the value is in the information. Oh yes, there is one
other difference between blogreaders and InfoPath. Blogreaders are free.
They understand that the value is in the content, not the device.?

RSS embodies a very simple proposition that Tim Berners-Lee has
always held to be one of the most important and central tenets of his rev-
olution, namely that every piece of content can be addressed by a URL.
In the language of RSS we call these “permalinks.”® This idea has pro-
found value. Dave Sifry of Technorati pointed out to me recently that
one of the most remarkable things about RSS and weblogs (blogs) is the

7. A Microsoft product for filling out forms that is, essentially, a glorified XML editor. — Ed.

8. Well, some of them are. InfoPath is really so expensive that it is never touched outside of
corporations who are already paying a large annual license fee to Microsoft for the com-
plete version of Office. — Ed.

9. When a blogger wants to link to something another blogger wrote today, rather than link-
ing to their home page, which will change tomorrow, they link to the “permalink,” a
permanent link that will always display the same content. — Ed.

30 THE BEST SOFTWARE WRITING |

manner in which they have started to solve one of the most tragic things
about the Web, namely the incivility of the discourse. The Web, in many
ways, today represents a textbook example of the tragedy of the com-
mons. Because sending email is virtually free, we have spam. Because
posting messages is virtually free and anonymous, we have groups where
a small number of people can overwhelm the discussion with loud and
senseless chatter. But one of the values of being able to reference every
element is that now comments about elements can be distributed over
the Web. The Web becomes something like a giant room in which peo-
ple comment on other people’s thought via posts in their own weblogs.
In so doing they put their reputation on the line. These are hardly cheap
and anonymous posts. They take up real estate in a place that is associ-
ated with your own point of view and reputation. And thus the
comments tend to be measured, thoughtful, and judicious. Furthermore
if they are not, either you can decide that it is OK or you can opt out. It
is like dueling editorials in a pair of newspapers.

By contrast, the rigid abstract layers of web service plumbing are all
anonymous, endless messages flowing through under the rubric of the
same URL. Unless they are logged, there is no accountability. Because
they are all different and since the spec that defines their grammar, XML
Schema, is the marriage of a camel to an elephant to a giraffe, only an
African naturalist could love these messages. They are far better, mind
you, than the MOM messages'? that preceded them. Since they are self-
describing, it is possible to put dynamic filters in to reroute or reshape
them using XPATH and XSLT and XML Query and even other lan-
guages, all of which can easily detect whether the messages are relevant
and if so, where the interesting parts are. This is goodness. It is twenty-
first century. But the origination and termination points, wrapped in the
Byzantine complexity of JAX RPC or .NET, are still frozen in the early-
bound!! rigidity of the twentieth.

I would like to say that we are at a crossroads, but the truth is never
so simple. The truth is that people use the tools that work for them. Just
as for some programmers the right tool is PHP, and for others the right

10. Messaging-Oriented Middleware. I don’t know what it is, but it sounds horrible. — Ed.

11. 1 think what Adam means here by early-bound is that you write code assuming you know
exactly what all messages will look like, and the code is compiled to deal only with mes-
sages of exactly that format, and if anything ever changes, you get a nice exception and
nothing runs. — Ed.

Apam BoswortH 31

tool is Java, so it is true that for some programmers the right tool is RSS
and for others it is WS-*. There is no clear “winner” here. What I am
sure about is the volumes and the values. The value is in the information
and its ability to be effortlessly aggregated, evaluated, filtered, and
enhanced.

What does this mean to you? Think of the radio. When it was a nov-
elty, the real value was in the radio itself. There was relatively little
content, but lots of people wanted the radio. At a certain point, however,
radios got good enough and transmission got good enough and the value
ineluctably swung to the content. This is why the DRM!? fights are so
bitter, why podcasting is so revolutionary, why Howard Stern was paid
so much to play on a private radio model. That’s where the value is. We
have arrived at the same point for computing. The value is neither in the
computers nor in the software that runs on them. It is in the content and
the software’s ability to find and filter content and in the software’s abil-
ity to enable people to collaborate and communicate about content (and
each other). Who here really cares if Excel adds a new menu item unless
it is one that lets you more easily discover information on the Web, and
possibly update and interact with it or with others about it?

What about mobile phones? What do they mean? Is it really interest-
ing to have a spreadsheet or a PowerPoint on your mobile phone? Or is
it more interesting to know where the nearest ATM is, where the nearest
Indian restaurant that your friends like is, which are the CS books in the
store for a given course, which course has the best section person and
what its schedule is, or what the reviews of the books say? Is it really
interesting to have an address book that is synced to your PC, or is it
more interesting to see the presence of the people who are involved in
your class, your project, your party plans, and be able to coordinate and
plan an event with them? And if it is the latter, then isn’t the value really
coming from the knowledge of with whom you are working, socializing,
and studying; what they think about things you care about, such as
movies, classes, restaurants, and news articles, rather than the software
on the device itself? Isn’t the device really just a sort of n-way radio/
classified? Soon as you deliver context and content and community and
collaboration over the Web, 2 billion people will be able to see and
interact with your solutions.

12. Digital rights management — Ed.

32 THE BEST SOFTWARE WRITING |

There is a lot of talk about Web 2.0. Many seem to assume that the
“second” Web will be about rich intelligent clients who share informa-
tion across the Web and deal with richer media (photos, sound, video).
There is no doubt that this is happening. Whether it is Skype!? or our
product Hello,'* or iTunes,! people are increasingly plugging into the
Web as a way to collaborate and share media. But I posit that this isn’t
the important change. It is glitzy, fun, entertaining, useful, but at the end
of the day, not profoundly new.

What has been new is information overload. Email long ago became
a curse. Blogreaders only exacerbate the problem. I can’t even imagine
the video or audio equivalent because it will be so much harder to filter
through. What will be new is people coming together to rate, to review,
to discuss, to analyze, and to provide 100,000 Zagat’s,'® models of trust
for information, for goods, and for services. Who gives the best buzz cut
in Flushing? We see it already in eBay. We see it in the importance of the
number of deals and the ratings for people selling used books on
Amazon. As I said in my blog

My mother never complains that she needs a better client for Amazon.
Instead, her interest is in better community tools, better book lists, easier
ways to see the book lists, more trust in the reviewers, librarian discussions
since she is a librarian, and so on.

This is what will be new. In fact, it already is. You want to see the
future. Don’t look at Longhorn. Look at Slashdot: 500,000 nerds com-
ing together every day just to manage information overload. Look at
Bloglines.!” What will be the big enabler? Will it be Attention. XML!® as
Steve Gillmor and Dave Sifry hope? Or something else less formal and
more organic? It doesn’t matter. The currency of reputation and judg-
ment is the answer to the tragedy of the commons, and it will find a way.

13. A service providing free over-the-Internet phone calls — Ed.

14. Google’s picture-sharing application — Ed.

15. Apple’s online music store — Ed.

16. A restaurant guide with reviews contributed by readers. — Ed.
17. An online blog aggregator now owned by InterActiveCorp. — Ed.

18. An XML standard for keeping tracking of what you’re supposed to be paying attention
to. — Ed.

Apam BosworTH 33

This is where the action will be. Learning Avalon!® or Swing?® isn’t going
to matter. Machine learning and inference and data mining will. For the
first time since computers came along, Al is the mainstream.

I find this deeply satisfying. It says that in the end the value is in our
humanity, our diversity, our complexity, and our ability to learn to col-
laborate. It says that it is the human side, the flexible side, the organic
side of the Web that is going to be important and not the dry and ana-
lytic and taxonomical side, not the systematized and rigid and stratified
side that will matter.

In the end, T am profoundly encouraged and hopeful that the growth
on the Web is one that is slowly improving the civility and tenor of
discourse. Just as porn seems to be an unpleasant leading user of tech-
nology, so does crude and vituperative communication seem to be a
pattern for early adopters, and it is a relief to see that forms of gover-
nance, trust, and deliberation are now emerging.

There are those who will say that all this is utopian. If utopian means
not being afraid to dream, then indeed it is. So was Tim’s initial vision of
universal access to information. So is Google’s mission. T. E. Lawrence
wrote in the Seven Pillars of Wisdom, “All men dream: but not equally.
Those who dream by night in the dusty recesses of their minds wake in
the day to find that it was vanity: but the dreamers of the day are dan-
gerous men, for they may act their dream with open eyes, to make it
possible.”

I encourage all of you to act on your dreams with open eyes. |
encourage all of you to dream of an Internet that enables people to work
together, to communicate, to collaborate, and to discover. I encourage
all of you to remember that, in the long run, we are all human and, as
you add value, add it in ways that are simple, flexible, sloppy, and, in the
end, everything that the Platonists in you abhor.

19. The graphical programming library for Microsoft’s planned “Longhorn” operating
system. — Ed.

20. A graphical programming library for Java. — Ed.

danah boyd
AUTISTIC SOCIAL SOFTWARE'

I think 2004 will be remembered as the year that socially dysfunc-
tional Silicon Valley nerds started getting venture capital to codify
their own Asperger’s Syndrome in the social interfaces that they
created with services like Orkut and LinkedIn, and demonstrated
thoroughly just how completely they don’t understand human—
human interaction, let alone computer-mediated human—human
interaction. I noticed on danab’s blog recently that AOL only lets
you have 200 friends. First of all, 2002 Not even a base two num-
ber! What’s going on there! 1 can just hear Dustin Hoffman
in Rainman: “Can’t have more than 200 friends. Must discard a
friend. Kmart sucks.” — Ed.

As technologists, we often frame technological use rather than build
technology based on users’ practices and needs. In this talk, I step
back and offer a different framing for what we technologists and entre-
preneurs have done and what kinds of values we have instilled in users.
My goal is to challenge us to reconsider our approach so that we can truly
meet the needs of people.

1. danah boyd, “Autistic Social Software,” talk given at Supernova Conference, June 24,
2004. See http://www.danah.org/papers/Supernova2004.html.

36 THE BEST SOFTWARE WRITING |

Sociable Media, Sci-Fi, and
Mental Illness

While “social software” has recently emerged as a phenomenon in the
tech community, “sociable media” has been around since the beginning
of the Internet. Email, BBSes, Usenet, chat rooms, MUDs, and MOOs all
captured the imagination of technologists throughout the 1980s and
’90s. Alongside the development of these technologies, academics and
pundits spouted off about the utopian dreams that could be fulfilled by
these innovations. Their prescriptions mirrored the particular concepts
set forth by science fiction, often without the richness that the writers
were trying to convey. Idealists envisioned a world where embodied
identity would not matter because online, no one would know that
you’re a dog.

While many science fiction writers try to convey the nuances of
human behavior, their emphasis is on the storyline, and they often con-
vey the social issues around a technology as it affects that story. Building
universal assumptions based on the limited scenarios set forth by sci-fi is
problematic; doing so fails to capture the rich diversity of human behav-
ior. Science fiction is not trying to understand human psychology in
general; the authors are trying to tap into some aspect of human behav-
ior in order to convey a story.

Extending those conceptual models to the world at large fails to
handle the reality that our lives do not play out in a cleanly packaged
narrative. From a human psychology perspective, sci-fi models are often
naive and simplistic, tools for the story. Outside of sci-fi, human psy-
chology has been a topic of contemporary cultural discourse for the last
two decades, and topics of human dysfunction and mental illness have
captured the mainstream imagination through science news articles and
films. Remember, George Bush Sr. declared the 1990s “The Decade of
the Brain.”

Although all types of mental disorders hit the mainstream press, mul-
tiple personality disorder in particular captured the imagination of the
public during the 1980s and ’90s. Multiple personality was perceived to
be the canonical psychiatric disorder, and films tried to capture what the

DANAH BOYD 37

disorder was about. Even Newsweek titled one of its articles on MPD
“Unmasking Sybil: A re-examination of the most famous psychiatric
patient in history.”

Discussions of human psychology, mental disorders, and multiple
personality also appeared in studies of the Internet. Both Sandy Stone
and Sherry Turkle, two famous sociable media researchers, considered
the potentials brought on by digital interactions in terms of multiple per-
sonality. They saw the opportunity for “parallel lives” and “multiple
selves” as empowering, freeing the subject from the restraints of the
physical body in everyday life.

Sociable technologies not only supported but encouraged pseudony-
mous participation; even today, we talk about it as a protective tool
against privacy invasion. People were encouraged to fragment their
identity into different pseudonyms so that they could properly contextu-
alize their online participation. They were encouraged to develop
multiple selves.

Guess what? People aren’t that fragmented. While they may lead
faceted lives, their control over what information to present when is very
nuanced and cannot simply be partitioned into multiple identities.

Unfortunately, though, our earliest ideas about multiple personality
have pervaded not only the discourse around but also the actual tech-
nologies of sociable media. Whenever I raise concerns about privacy
or vulnerability, P’m often told that people should just create separate
identities.

Think about how asinine that is. Why on earth should we encourage
people to perform a mental disorder in the digital world? We do so
because we’ve built technology that does not take into consideration the
subtle nuances of the identity faceting with which people are already
accustomed. As geeks, we were trained to separate policy and mecha-
nism through systems courses. We rely on people to figure out the
policies, not realizing that we’ve framed what is possible through our
technology.

As we know, the Internet did not live up to the fantasy of a world
where social identity no longer mattered. In a project called “The Turing
Game,”? Amy Bruckman showed that people performed their everyday

2. See http://www.cc.gatech.edu/elc/turing/.

38 THE BEST SOFTWARE WRITING |

identity through their personas even when they were trying to perform
otherwise. Today, there is a technological tension between having a fed-
erated identity® (such as Passport) and continuing to build systems that
make users build new identities with each new system. The debate
around this has turned pseudo-religious, but every effort that 've seen
still focuses on the technology, not the people and practices. Because of
this inverted focus, things like access control lists (ACLs) and open
Friend of a Friend (FOAF) protocols are bound to fail. They aren’t situ-
ated in people’s lives.

Autism and Attention Deficit Disorder

While earlier sociable media was couched in representations of science
fiction and metaphors of popular psychology, contemporary sociable
media is not devoid of these references. Social disorders, albeit different
ones, still frame many of our conceptions about human psychology.
Consider the plethora of articles about autism and Asperger’s during
2003-2004. For those who aren’t familiar with Asperger’s, it is a mild
form of autism marked by normal intelligence and poor social and com-
munication skills. Asperger’s patients often systematize social activity in
order to give it the structure necessary to be procedurally performed in
everyday life. Recently, researchers have argued that Asperger’s and
autism run rampant in the Bay Area. It is important to note that
Asperger’s is often conflated with another one of mainstream media’s pet
“mental illnesses”: Attention Deficit Disorder. ADD is often marked by
an inability to focus on a given task, or, in the case of ADHD, a tendency
to hyperfocus and then lose complete focus. Just as with multiple per-
sonality, mainstream media has made autism and ADD appear to be
commonplace and everywhere.

Technologists have also adopted and promoted these concepts,
marking them as valuable to the way of geek life. Many of you are

3. A hypothetical system, never successfully built, in which a single database holds all your
account information so that you can use the same logon information to access every web-
site and account. — Ed.

DANAH BOYD 39

staring at your laptops, multitasking.* Although you will only remember
a fragment of this talk, you will probably tell me that you remembered
the important part or that you were practicing your continuous partial
attention. Some of you may already be ninja masters at this, but the
majority of you are probably paying poor attention to both the com-
puter task and to me. But you want to be a continuous partial attention
ninja master because you’ve been told that all of the cool kids are.

While autism is not nearly as chic as ADD, there are aspects of it that
are promoted in our culture. Geek culture has always eschewed ideas of
acceptable social interaction, and its members pride themselves on hav-
ing the right to act any way that they want. Don’t get me wrong—I’ve
been a rebel all of my life. But there is a value in understanding social life
and figuring out how to interact with people on shared terms.

Socially Inept Computers

Just like their creators, computers are notorious for being pretty socially
inept. Yet, with sociable media, computers take on a social role or
become mediators between people engaged in social interaction. Their
position in social life does not inherently make technology any more
sociable; their functions are intimately entwined with what people
enable them to do. Thus, the onus is on the programmers to empower
technology to operate in social life.

What does this mean for sociable media? We do not understand how
social life really works. Thus, we make crude approximations for it, and
we make crude approximations for human psychology, too. In the tech
world, we often make these assumptions based on material like science
fiction and pop psychology because we pride ourselves on being
removed from an understanding of social life. A simplistic or mechani-
cal understanding of social life is the mode of functioning for autistic
individuals.

4. At computer conferences these days, like the one where this talk was given, it’s not
unusual for 80% or 90% of the audience to be using laptops for something during the
presentations. — Ed.

40 THE BEST SOFTWARE WRITING I

From an autistic perspective, social life can and must be program-
matically and algorithmically processed and understood on simplistic
categorical levels. The nuanced relationships that people regularly man-
age in everyday life are boiled down to segmented possibilities. When we
teach autistic children to engage in social life, we teach them things like
facial expressions. We tell them that a smile means goodness, that a
frown should be concerning. Step by step, we dissect social affect and try
to formalize it so that these kids can understand the world. This is also
what we do with computers. How different is this from asking, “Are you
my friend, yes or no?”

Consider, for a moment, the recent surge of interest in articulated
social networks such as Friendster, Tribe.net, LinkedIn, Orkut, and the
like. These technologies attempt to formalize how people should con-
struct and manage their relationships. They assume that you can rate
your friends. In some cases, they procedurally direct how people can
engage with new people by giving you an absolute process through
which you can contact others.

While this approach certainly has its merits because it is computa-
tionally possible, ’'m terrified when people think that this models social
life. It’s so simplistic that people are forced to engage as though they
have autism, as though they must interact procedurally. This approach
certainly aids people who need that kind of systematization, but it is not
a model that makes sense universally to all people. Furthermore, what
are the implications of having technology prescribe mechanistic engage-
ment? Do we really want a social life that encourages autistic
interactions?

We technologists are notorious for building software based on our
own practices and values instead of constructing them based on people’s
values and needs. Yet, such an approach can often leave the mainstream
at a loss, forced to subscribe to the views set forth by developers or fail
trying. If we are really trying to build sociable media that supports social
interaction, shouldn’t we do it based on what social life looks like?
Shouldn’t we allow for the vast array of nuances that enable people to
interact differently depending on their needs?

None of the articulated social networks model everyday life. Feel free
to read my other work?® if you want to understand how these networks

5. See http://www.danah.org/papers

DANAH BOYD 41

diverge from social life and the theoretical knowledge that they’re pur-
portedly built on. But realize that creating an open source federated
identity across these networks doesn’t solve the underlying problems
embedded in the technology. You can’t cure multiple personality disor-
der in order to address autism. This is exactly what we’re trying to do
when we talk about FOAE.

This does not mean that simplistic models of daily life are not fun
and cannot be toyed with. People love to see such slices of themselves.
Why do you think quizzes like “Which Star Wars character are you?”
are so popular? They’re not insightful, but they provide for interesting
reflection, an opportunity for sharing and social play. They afford us the
same opportunity for internal and shared conversation as tarot cards.
That’s not the same as having a meaningful model of someone’s social
psychology.

Simplistic models of human interaction pervade our industry. When
technologies based on them are rapidly adopted, we tout the merits of
those technologies, without stopping to consider what people are actu-
ally doing with them.

Friendster’s Success

Consider Friendster. It was developed as a dating site. The expected
usage scenario was simple: get people to map out their social network so
that single people could be introduced to other single people in a trusted
environment. Guess what? For the majority of users, this scenario did
not resonate. Even those who used the “introduce” feature often did so
to introduce mutual friends so that they could connect on the site.
What was successful about Friendster had nothing to do with its
original purpose or design. Instead, users saw it as a flexible artifact that
they could repurpose to reflect their social practices. As I learned how
people embedded Friendster into their daily lives, I was fascinated by
how it manifested itself as so many different tools to so many different
people. Some saw it as an information-gathering tool, allowing them to
learn about friends and strangers. Others saw it as a performance tool
and a venting site. It was also used as a gaming device, a distribution

42 THE BEST SOFTWARE WRITING I

channel for the drug dealer, an antidepressant for the voyeur, a popular-
ity contest for the wannabe prom queen. Many also saw it as a cultural
artifact necessary for all watercooler discussions.

For a while, Friendster decided to limit acceptable behavior on its site.
Their reason was valid: server load problems. Due to ever-increasing
downtimes and poor performance, access was limited. Yet, efforts were
made to control what users did and how. This stopped the load problem
by putting off early adopters. Many of the earliest adopters grew bored
and disenchanted with the site; it no longer provided them with the
range of interactive opportunities that drew them there. Yet, it continued
to spread to new user groups whose practices differed, and they found
new mechanisms for interaction on Friendster.

Consider the hundreds of students from Singapore and Indonesia
who create Friendsters for their teachers so that they can write testimo-
nials about them. While the myriad of Fakesters haunted Friendster a
year ago, today’s Friendster is filled with underage users and fraudu-
lently constructed people who represent the arch nemeses of these teens’
lives.

The simplicity of Friendster allowed it to be repurposed over and
over again. Its popularity did not validate its underlying model, articu-
lated social networks, or the values embedded in the technology. Its
success validated that people love flexible artifacts that allow them to
reflect on their identity and their social situation. Friendster’s popularity
was viral because of its flexibility, not because people bought into the
values set forth by the company.

In the last year, hundreds of companies have decided that social net-
works are the hot thing and must be incorporated into everything. I'm
often told that social networks are the future of the sociable Internet.
Guess what? They were the cornerstone of the Internet, always. What is
different is that we’ve tried to mechanically organize them, to formalize
them. Doing so did not make social networks suddenly appear; formal-
ization meant that they became less serious, more game-like. All other
Internet social networks are embedded into another set of practices, not
seeking an application to validate their existence.

In their current version, social networks are a performance device.
We construct our identity in terms of other people. We collect friends
and communities to signal who we are, what we believe in. We pad our

DANAH BOYD 43

blogrolls® with people that we admire. These signals say a lot of things,
but they do not say anything about our actual social network—our trust
relationships or information flow.

People often ask me where those early adopters of Friendster went.
Sure, some went to Tribe.net or MySpace or other social networking
tools, but the vast majority of them just went back to their pre-
Friendster lives, no longer using any such tool. They weren’t into
Friendster for its social networking capabilities; they were into it
because it fit into their lives.

Situating Technology in Practice

I was asked to talk about the future, and I have to say that 'm a little
frustrated. There’s a tendency to follow the hype, perfect it, fix techno-
logical problems. But, in doing so, I fear that we lose track of the bigger
picture. What makes sense in this domain is not to perfect the technol-
ogy and deal with the social consequences later or to build a bazillion
replications, as though mimesis will bring cash flow. Instead, we must
step back and think about what social practices we’re aiming to address
and what values we’re inserting while trying to address them. We’ve
learned a lot during this iteration, but yet we have learned nothing.

The most successful sociable technologies are those that fit into peo-
ple’s lives and practices; they fill the gaps that people have rather than
creating artificial needs. Email and Usenet emerged to provide geeks
with a mechanism for communicating one-to-one and one-to-many;
they filled a need. Youth in Europe and Asia figured out how SMS could
be manipulated to meet their needs, and the technologists followed their
lead as new versions were developed. Even LiveJournal was based on a
standard practice: journaling. It too evolved based on what it was that
LiveJournal users were doing both online and off, and the practices that
exist there no longer resemble journaling.

6. A blogroll is a list of other blogs that you put in the margin of your blog, usually blogs you
read frequently, or blogs of friends, or blogs that you hope will link back to you. — Ed.

44 THE BEST SOFTWARE WRITING I

In other words, it is not to say that we can predict what technology
will fit into people’s lives, but we can learn from the technologies out
there in order to evolve our own.

There are three ways to make technology work in the context of
people:

1. Make a technology, market the hell out of it, and demand that
it fit into people’s lives. When this fails, logroll. In other words,
bundle it with something that they need so that they’re forced to
use it. Personally, I think that this is pretty disgusting, although
I recognize that it is the way that the majority of our industry
works.

2. Make a technology, throw it out to the public, and see what
catches on. Follow the people who use it. Understand them.
Understand what they are doing and why and how the technol-
ogy fits into their lives. Evolve to better meet the needs and
desires of the people who love the technology.

3. Understand a group of people and their needs and then develop a
technology that comfortably embeds itself within the practices of
those people. Make technology ubiquitous.

Personally, T believe that the latter two approaches are the conscien-
tious way of designing sociable technology. The third approach is the
common mechanism used by researchers in industry, while the second
can be the contribution that social software makes when it stops and
pays attention to what it has produced rather than just throwing out
more technology to fix technology problems.

We are talking about technology meant for people to engage with
other people. Users may do the darndest things, but they’re only peculiar
when you try to understand it in your framework. Reframe what they
are doing in their framework. Instead of demanding that they behave
like we want them to behave, try to understand why they chose a path
that is different from ours. When we can understand their perspective,
we’re halfway there.

The trick then is to design from that perspective, to truly get it, not
just be tolerant of it, to iterate our technology based on their perspective
since they’re the ones who are evolving the practices. When we ::groan::
about those darn users, we’re missing the point. They’re not interacting

DANAH BOYD 45

with technology to prove a point to us. They’re interacting with tech-
nology because it fits into their framework of the world. Understanding
that, really getting that . . . that is the key.

I’d like to conclude with a quote by Douglas Adams in his article
“How to Stop Worrying and Learn to Love the Internet”:

Working out the social politics of who you can trust and why is, quite liter-
ally, what a very large part of our brain has evolved to do.

Social software has the potential to truly reform the technology
development process. Startups all around us are throwing technology
out to the masses and they’re using it, challenging us with their unex-
pected uses. We can either turn our backs on them as we beg for venture
capital money using our frame of reference, or we can be true to them
and convince the world that this is a more conscientious and valuable
long-term approach for everyone involved. I vote that we focus on the
people and stop asking them to engage in autistic practices. Let’s
empower them to use their nuanced approaches to social life in a mean-
ingful way.

[Thanks to Cory Doctorow, Scott Lederer, Kevin Marks, and many
others for good pointers and conversation.|

Raymond Chen

WHY NOT JUST BLOCK
THE APPS THAT RELY ON
UNDOCUMENTED BEHAVIOR?"

Windows includes quite a few sneaky and beautiful hacks to make
sure that when you upgrade to a new version of the operating sys-
tem, all your old applications will continue to run.

I first learned about this from one of the developers of the hit
game SimCity, who told me that there was a critical bug in his
application: it used memory right after freeing it, a major no-no
that happened to work OK on DOS but would not work under
Windows where memory that is freed is likely to be snatched up by
another running application right away. The testers on the
Windows team were going through various popular applications,
testing them to make sure they worked OK, but SimCity kept
crashing. They reported this to the Windows developers, who dis-
assembled SimCity, stepped through it in a debugger, found the
bug, and added special code that checked if SimCity was running,
and if it was, ran the memory allocator in a special mode in which
you could still use memory after freeing it.

Young and inexperienced engineers are driven crazy by hacks
like this. But it’s precisely this kind of hack that made Windows
successful. Raymond Chen, an old-timer on the Windows team at
Microsoft, explains it best. — Ed.

. Raymond Chen, “Why Not Just Block the Apps That Rely on Undocumented Behavior?”
The Old New Thing (http://blogs.msdn.com/oldnewthing), December 24, 2003.
See http://blogs.msdn.com/oldnewthing/archive/2003/12/24/45779.aspx. Used with
permission from Microsoft Corporation.

48 THE BEST SOFTWARE WRITING I

hy not just block the apps that rely on undocumented behavior?

Because every app that gets blocked is another reason for people
not to upgrade to the next version of the Microsoft® Windows® operat-
ing system. Look? at all these programs that would have stopped
working when you upgraded from Windows 3.0 to Windows 3.1.

HKEY LOCAL MACHINE\SOFTWARE\Microsoft\
Windows NT\CurrentVersion\Compatibility

Actually, this list is only partial. Many times, the compatibility fix is
made inside the core component for all programs rather than targeting a
specific program, as the entries in this list do.

(The Windows 2000-to-Windows XP list is stored in your C:\
WINDOWS\AppPatch directory, in a binary format to permit rapid
scanning. To browse it, you can use the Compatibility Administrator
that comes with the Application Compatibility Toolkit.3)

Would you have bought Windows XP if you knew that all these pro-
grams were incompatible?

It takes only one incompatible program to sour an upgrade.

Suppose you’re the IT manager of some company. Your company
uses Program X for its word processor and you find that Program X is
incompatible with Windows XP for whatever reason. Would you upgrade?

Of course not! Your business would grind to a halt.

“Why not call Company X and ask them for an upgrade?”

Sure, you could do that, and the answer might be, “Oh, you’re using
Version 1.0 of Program X. You need to upgrade to Version 2.0 for $150
per copy.” Congratulations, the cost of upgrading to Windows XP just
tripled.

And that’s if you’re lucky and Company X is still in business.

I recall a survey taken a few years ago by our Setup/Upgrade team of
corporations using Windows. Pretty much every single one has at least

2. In the system registry; run regedit. — Ed.

3. See http://www.microsoft.com/windows/appcompatibility/.

RaymonD CHEN 49

one “deal-breaker” program, a program that Windows absolutely must
support or they won’t upgrade. In a high percentage of the cases, the
program in question was developed by their in-house programming
staff, and it’s written in Microsoft Visual Basic® (sometimes even 16-bit
Visual Basic), and the person who wrote it doesn’t work there any more.
In some cases, they don’t even have the source code any more.

And it’s not just corporate customers. This affects consumers too.

For Windows 95, my application compatibility work focused on
games. Games are the most important factor behind consumer technol-
ogy. The video card that comes with a typical computer has gotten better
over time because games demand it. (Microsoft Office Outlook® cer-
tainly doesn’t care that your card can do 20 bajillion triangles a second.)
And if your game doesn’t run on the newest version of Windows, you
aren’t going to upgrade.

Anyway, game vendors are very much like those major corporations.
I made phone call after phone call to the game vendors trying to help
them get their game to run under Windows 95. They didn’t care. A game
has a shelf life of a few months, and then it’s gone. Why would they
bother to issue a patch for their program to run under Windows 95?
They already got their money. They’re not going to make any more off
that game; its three months are over. The vendors would slipstream
patches and lose track of how many versions of their program were out
there and how many of them had a particular problem. Sometimes they
wouldn’t even have the source code any more.

They simply didn’t care that their program didn’t run on Windows 95.
(My favorite was the one that tried to walk me through creating a boot
floppy.)

Oh, and that Application Compatibility Toolkit I mentioned earlier.
It’s a great tool for developers, too. One of the components is the
Windows Application Verifier: if you run your program under the veri-
fier, it will monitor hundreds of API calls* and break into the debugger
when you do something wrong (like close a handle twice or allocate
memory with the GlobalAlloc function but free it with the LocalAlloc
function).

4. An API call is a request, made by a program, for Windows to do something. — Ed.

50 THE BEST SOFTWARE WRITING |

The new application compatibility architecture in Windows XP
carries with it one major benefit (from an OS development perspective):
See all those DLLs in your CAWINDOWS\AppPatch directory? That’s
where many of the compatibility changes live now. The compatibility
workarounds no longer sully the core OS files. (Not all classes of com-
patibility workarounds can be offloaded to a compatibility DLL, but it’s
a big help.)’

5. A DLL is a file, ending with the extension .DLL, containing code that can be used by a
program that’s already running. For example, if you wanted to write a spell-checker that
could be used by all your programs but that did not take up any memory while it was not
in use, you could write it as a DLL and then call it from your word processor and your
spreadsheet as needed. Most of the functionality of Windows is provided by DLLs, and
you’ll find hundreds of them in the Windows directory. — Ed.

Kevin Cheng and Tom Chi

KICKING THE LLAMA'

WHILE YOU WERE away,
| TOOK THE LIBERTY OF
DEVELOPING THE UI.
%’3 YOU REVIEW IT FOR

[l USER FRIENDLY MODE
[LOG EXCEPTIONS?
O FuLL DETARLS

19244 - TESTFILE © o1

EYTE-OFFSET: t ::'
QxO0001ZZET7 O
K | [»]

B <15 | RaNDUO|WHILE(L)

PUSH | POP | BATCH | SET GLOBAL PATH |

OK/Cancal

UM... WHAT IS [T?

KGcking the Lioma : copyright 2003 tom chi and Kevin cheng -

1. Kevin Cheng and Tom Chi, “Kicking the Llama,” OK/Cancel (http://
www.ok-cancel.com). See http://www.ok-cancel.com/comic/4.html.

Cory Doctorow

SAVE CANADA'’S INTERNET
FROM WIPO'

Here’s a neat trick. Try it at home.

Pick someone you hate. Doesn’t matter why.

Find their website.

Find some random paragraph on their website.

Send a letter to their Internet provider complaining that that
paragraph is a copyright violation, and invoke the DMCA. You
don’t even have to know what DMCA stands for. And of course
the paragraph doesn’t have to be a copyright violation. Just say
that you're the copyright holder and the paragraph in question was
copied out of your senior thesis in high school without your per-
mission.

Nine out of 10 times, that’s all it takes. Your enemy gets kicked
off his Internet provider and his account is closed down. Ta-da!
Instant vigilante justice.

Many, many years ago when the phone system was a government-
regulated monopoly, copyright owners tried to sue Ma Bell when
telephone users tried to use the phone system to transmit copyright
material. Why did they sue the phone company and not the person
sending the copyright material in the first place? For the same reason
Willie Sutton robbed banks: that’s where the money was.

. Cory Doctorow, “Save Canada’s Internet from WIPO,” boingboing.net, A Directory
of Wonderful Things (http://boingboing.net), November 6, 2004. See http://waw.
boingboing.net/2004/11/06/save_canadas_interne.html.

54

THE BEST SOFTWARE WRITING I

The phone companies, of course, weren’t responsible and
couldn’t possibly serve as copyright police for every phone con-
versation, and the law grew to recognize this. In the case where
someone is merely acting as a common carrier, carrying all data
regardless of content without prejudice, they can’t be held respon-
sible for the legal ramifications of that data.

In the early days of the Internet the same legal principle was
brought over from telephony. If you hire me to deliver bits from
point A to point B, no matter what those bits are—completely
random bits, copyright violations, ransom notes, love letters, or
music videos—I'm not responsible for the content; you are. I'm
just deliverin’ bits. It’s really the only legal principle that makes
sense.

Unfortunately, making sense wasn’t good enough for the
music industry, already apoplectic in rage at the amount of money
they weren’t able to divert from artists into their own pockets
because of MP3 trading. They wanted more power to prevent
piracy, and they wanted to be able to go after the responsible
businesses that contract to move bits from point A to point B,
because, as Willie Sutton said, that’s where the money was. So
they lobbied hard and long and won the passage of the DMCA, a
nasty bit of legislation that adds one innocuous-seeming provi-
sion: if you move bits from point A to point B, you won’t be held
responsible for the content you deliver, but only if you agree to
take down anything anyone complains about.

Never mind if that makes sense, never mind if that gives every
schmuck with a grudge the practical ability to censor anything
they want on any website they want merely by sending a letter. It
doesn’t matter if the gripe is legit or not; the carrier needs to be
able to use their “get out of jail free card” so usually they’ll com-
ply with your censorship request without investigating.

It’s crappy law, but that’s what we get when we let the enter-
tainment industry lobbyists write our laws. — Ed.

Cory DocTtorow 5§

anada is strongly considering ratifying the 1996 WIPO “Internet

Treaties.” These are the treaties that caused the United States to
implement the loathsome Digital Millennium Copyright Act (DMCA),
and they’ve wrought untold damage around the world. What will this
mean for Canada? Well, for starters, the Globe and Mail notes that a
notice-and-takedown regime is inevitable:

In what is bound to be a controversial element, the committee recommended
that Internet service providers (ISPs) must be held liable for copyrighted
material that goes through their systems. To be exempt from that liability,
the ISPs must show they are acting as true “intermediaries,” without actual
or constructive knowledge of the content.

ISPs should be required to comply with a “notice and takedown” system
against subscribers who violate copyright laws.

Boing Boing’s incomparable sysadmin, Ken Snider, a Canadian geek,
wrote

It is extremely important to me that our government not bow to CIRA.
I have high hopes that the current minority gov’t means they won’t deal with
this anytime soon, but I *want* to get the message out to every damned MP
I can get my hands on. The problem is, I don’t have any *specific* informa-
tion on these provisions. I was hoping you would, or at least, could point me
in the right direction (or even champion the cause with me! Woo!).

It’s *critically* important to me that Canada doesn’t follow the US in this
process. ’'m prepared to do whatever it takes to make the reasons *why* this
is a shitty idea known, I just need some help making my points clear and con-
cise, as well as containing the appropriate amount of “politik” that they’ll
make a difference.

So, Ken, here are some answers for you.

Copyright is a system for regulating technology—it regulates tech-
nologies used to make and distribute copies. We have lots of technology
regulation in the world: there are rules that govern the operation of
automobiles and rules that govern the marketing of electrical appliances.
This isn’t wrong per se.

56 THE BEST SOFTWARE WRITING |

But when the 20-horsepower locomotive was invented, the black-
smiths weren’t able to successfully lobby to have 80 horseshoes welded
to each engine, despite the rule that said that every “horse” used for
transport needed four shoes. When you invent a railroad, you need rail-
road rules for it, not horse-and-buggy rules. The fact that the railroad
doesn’t need shoes, or oats, or currycombs doesn’t reflect bugs in rail-
roading: those are the features of railroading.

The Internet has one overarching feature that makes it superior to
the technologies that preceded it: it can copy arbitrary blobs of data
from one place to another at virtually no cost, in virtually no time, with
virtually no control. This is not a bug. This is what the Internet is sup-
posed to do.

It was really foresighted in 1996 for WIPO to sit down to update
copyright law to suit the Internet. They recognized that the Internet was
a fundamentally different thing from the technologies that came before
it, and of course, a new technology needs new rules and regulation.

But WIPO got it horribly wrong. The approach that WIPO took to
regulating the Net was to create a set of rules that tried to make the
Internet act more like radio, or TV, or photocopiers—Ilike all the things
that it had already made rules for. The WIPO approach treated the ease
of copying on the Net as a bug, and set out to fix it.

Notice-and-takedown is an area where WIPO got it drastically, terri-
bly wrong.

If you own a restaurant, you’re not responsible for policing your cus-
tomers to ensure that none of them are carrying stolen bank loot. If
someone burst in and pointed at the guy at the back table and said,
“He’s wearing my hat!” no one would blame you if you didn’t wrestle
the hat away from him and give it back to the accuser.

But under notice-and-takedown, this is what we ask of our ISPs. If
you allow users to host stuff, you’re responsible for what they host.
If they put an infringing file on your server, you’re required to know
what they’ve put online, and you’ll share in their punishment if you fail
to block them from posting infringing material.

Now what is and isn’t a copyright infringement isn’t anything like a
clear-cut issue. ISPs aren’t equipped to evaluate what’s infringing and
what isn’t—hell, even Supreme Court judges have a hard time figuring it
out. Operating a server doesn’t qualify you to understand and evaluate
copyright law.

Cory DocTtorow 57

So there’s a get-out-of-jail in notice-and-takedown. If you respond to
accusations of infringement by taking your customers’ materials offline
quickly, you won’t share in their liability. Now, given the kinds of penal-
ties available to rights-holders for online infringement (in the U.S., it’s
$150,000 per infringement!), it’s not surprising that most ISPs avail
themselves of this “safe harbor,” removing stuff whenever a complaint
comes in.

But a complaint isn’t proof—someone who rings up your ISP and
says, “That file infringes on my rights” is like the guy who busts into a
restaurant and shouts, “That guy is wearing my hat!” There’s no way
for an ISP to evaluate whether he’s genuinely aggrieved, whether he’s
nursing a grudge, whether he’s just a nut. In the U.S., nuts, grudge-nursers,
and flakes all use notice-and-takedown to censor the Internet and get
material removed.

Usually rights-holders will counter that this can be addressed
through something called “counter-notification,” where an ISP that’s
removed something is given the right to contact its customer and say,
“This guy says you infringed his copyright. If you disagree, let us know
and we’ll put your file back online and you two can sort it out in court.”

But in practice, counter-notification is a rare beast. Most ISPs just do
the math and decide that sending a single counter-notification letter will
cost them more in lawyer-hours than the customer in question will ever
make for them. They just invoke the termination clause in nearly every
ISP contract and shut down the account.

This is why notice-and-takedown is a near-perfect tool for censor-
ship. Don’t like what your critics have to say? Just sent a takedown
notice and poof, it’s gone! The Scientologists love this tactic—they even
get Google to remove links to sites that are critical of their “church” by
asserting copyright infringement. Have a look at the truly chilling annals
of ChillingEffects,> which gathers up takedown notices and other nasty-
grams. The takedown notice is the favorite tool of the crank, the censor,
and the bully.

Even when applied to genuine copyrighted works, takedown is dan-
gerous to the point of unusability: the Business Software Alliance,
MPAA, and RIAA send out automatically generated takedowns by the
thousands, using software that does half-assed pattern matching on files

2. See http://chillingeffects.org.

58 THE BEST SOFTWARE WRITING |

available on the Net and then sending off letters to universities, ISPs,
and other entities demanding the takedown of book reports about
Harry Potter, Linux distributions with the same names as movies, and
academic work by professors with the same name as musicians.

What’s more, notice-and-takedown is almost always accompanied by
systems for piercing Internet users’ anonymity: if you want to find out
your stalking victim’s new address and number, you need only find the
message board where she’s posting about her troubles and write to the
ISP as an infringed-upon rights holder, demanding her info.

If Canada wants to “solve” the problems of the Internet, it should be
looking to find “Internet-native” solutions. Canada’s Internet laws
should treat copying as a feature, not a bug. It should empirically evalu-
ate which sectors are negatively impacted by file sharing (mounting
evidence suggests that almost none of the entertainment industry’s woes
can be blamed on the Net) and then solve those industries’ problems
with blanket licenses and other tools that don’t seek to regulate copying,
something that’s impossible to do without breaking the Internet.

Solutions that approach the Internet as a problem are no solutions
at all.

ea_spouse

EA: THE HUMAN STORY'

There is a major school of thought in software development, of
which 1 am a member, that says that programmers who work more
than 40 hours a week for extended periods of time actually get
less work done than programmers who are not in crunch mode all
the time. This is well studied and documented in books like
Peopleware? by Timothy Lister and Tom DeMarco. When people
work more than about eight hours a day at programming tasks, the
quality of their work suffers so much that they need to do two
hours of bug-fixing for every hour of coding that they do. The
work they do after eight hours is actually negative work.

Another core belief of mine is that an experienced employee is
worth much more than a new employee, and that it can take a new
employee a year to get fully up to speed and be as productive as the
senior members of the team. If ea_spouse is correct that EA’s
employee turnover is running 50% a year thanks to the long hours,
this company has a serious problem.

ea_spouse’s perspective is the human one, the perspective of the
employees and their families, which is important.

But I'd like to point out that even if all you cared about was the
employer’s perspective, if all you cared about was what Electronic
Arts should do to maximize their profits, the permanent crunch
time policy is still completely counterproductive.

. ea_spouse, “EA: The Human Story,” Live Journal (http://www.1livejournal.com/
users/ea_spouse), November 10, 2004. See http://www.livejournal.com/users/
ea_spouse/274.html.

. DeMarco, Tom and Timothy Lister. Peopleware: Productive Projects and Teams, 2nd Ed.
Dorset House, 1999.

60

THE BEST SOFTWARE WRITING I

Let’s do a little math.

When you force programmers to work 90-hour weeks, they
can’t do all the little errands that are a part of everyday life.
If they’re at work from 9 a.m. to 10 p.m., 7 days a week, when
are they supposed to get the emissions test for their car? When are
they supposed to pay their credit card bills? Or call their mom?

Ll tell you when: when they’re at work. All this stuff happens
during work, so immediately subtract 10 productive hours from
the real workweek. OK, we’re down to 80.

Nouw, those 40 hours of overtime? Probably worthless. Most
programmers, when forced to stay at work until late, will use the
extra time surfing the Web, chatting on IM, or doing anything but
writing code, not because they are lazy sloths, but because their
brain has shut down for the day. But I'll give EA management the
benefit of the doubt: let’s assume that somehow, all evidence to
the contrary, you get 10 hours worth of coding done in those
extra 40 hours. So now we’re down to 50 useful hours.

Now let’s add back the cost of recruiting to replace employees
who burn out. Recruiting and training a new employee is usually
estimated to cost about 12 months’ salary, total. This includes the
actual recruiting expenses, but it also includes the decreased pro-
ductivity of the new employee while they get up to speed, the time
they soak up from other employees who have to interview them
and show them the ropes after they’re hired, moving expenses and
startup bonuses, etc., etc.

If EA is losing 50% of their employees every year, rather than
the industry standard of about 5%, that extra turnover costs as
much as having 45% more employees. Or to put it in terms of our
50-hour workweek, we’re down to a little bit more than 25 pro-
ductive hours a week out of the average employee, because almost
half of the employee population is still in their first year and
therefore they haven’t yet earned back their startup costs.

So not only would 40-hour workweeks be more humane, they
would actually be significantly more profitable for Electronic
Arts. I’'m not just saying this due to some misconstrued ideology:
I have a software company of my own and we are pretty strict
about 40-hour workweeks, so I'm willing to put my money where
my mouth is.

EA_SPOUSE 61

In March 20035, Electronic Arts announced that “it will depart
from tradition by beginning to pay overtime to some workers.
Those workers would no longer be eligible for options or
bonuses.” Mmhmm. Well, it’s a start, but it sounds like they’re
doing the minimum necessary to comply with the law, and they
don’t fully understand just how unproductive a software sweat-
shop really is. — Ed.

y significant other works for Electronic Arts, and ’'m what you
might call a disgruntled spouse.

EA’s bright and shiny new corporate trademark is “Challenge
Everything.” Where this applies is not exactly clear. Churning out one
licensed football game after another doesn’t sound like challenging
much of anything to me; it sounds like a money farm. To any EA execu-
tive who happens to read this, I have a good challenge for you: how
about safe and sane labor practices for the people on whose backs you
walk for your millions?

I am retaining some anonymity here because I have no illusions
about what the consequences would be for my family if T was explicit.
However, I also feel no impetus to shy away from sharing our story,
because I know that it is too common to stick out among those of the
thousands of engineers, artists, and designers that EA employs.

Our adventures with Electronic Arts began less than a year ago. The
small game studio that my partner worked for collapsed as a result of
foul play on the part of a big publisher—another common story.
Electronic Arts offered a job, the salary was right and the benefits were
good, so my SO took it. I remember that they asked him in one of the
interviews, “How do you feel about working long hours?” It’s just a part
of the game industry—few studios can avoid a crunch as deadlines loom,
so we thought nothing of it. When asked for specifics about what
“working long hours” meant, the interviewers coughed and glossed on
to the next question; now we know why.

Within weeks production had accelerated into a “mild” crunch: eight
hours, six days a week. Not bad. Months remained until any real crunch
would start, and the team was told that this “pre-crunch” was to

62 THE BEST SOFTWARE WRITING |

prevent a big crunch toward the end; at this point any other need for a
crunch seemed unlikely, as the project was dead on schedule. I don’t
know how many of the developers bought EA’s explanation for the
extended hours; we were new and naive, so we did. The producers even
set a deadline; they gave a specific date for the end of the crunch, which
was still months away from the title’s shipping date, so it seemed safe.
That date came and went. And went, and went. When the next news
came it was not about a reprieve; it was another acceleration: 12 hours,
six days a week, 9 a.m. to 10 p.m.

Weeks passed. Again the producers had given a termination date on
this crunch that again they failed. Throughout this period the project
remained on schedule. The long hours started to take their toll on the
team; people grew irritable and some started to get ill. People dropped
out in droves for a couple of days at a time, but then the team seemed to
reach equilibrium again and they plowed ahead. The managers stopped
even talking about a day when the hours would go back to normal.

Now, it seems, is the “real” crunch, the one that the producers of this
title so wisely prepared their team for by running them into the ground
ahead of time. The current mandatory hours are 9 a.m. to 10 p.m.—
seven days a week—with the occasional Saturday evening off for good
behavior (at 6:30 p.m.). This averages out to an 85-hour workweek.
Complaints that these once more extended hours combined with the
team’s existing fatigue would result in a greater number of mistakes
made—and an even greater amount of wasted energy—were ignored.

The stress is taking its toll. After a certain number of hours spent
working the eyes start to lose focus; after a certain number of weeks
with only one day off fatigue starts to accrue and accumulate exponen-
tially. There is a reason why there are two days in a weekend—bad
things happen to one’s physical, emotional, and mental health if these
days are cut short. The team is rapidly beginning to introduce as many
flaws as they are removing.

And the kicker: for the honor of this treatment EA salaried employ-
ees receive a) no overtime; b) no compensation time! (“comp” time is the
equalization of time off for overtime—any hours spent during a crunch
accrue into days off after the product has shipped); ¢) no additional sick
or vacation leave. The time just goes away. Additionally, EA recently
announced that, although in the past they have offered essentially a type
of comp time in the form of a few weeks off at the end of a project, they

EA_SPOUSE 63

no longer wish to do this, and employees shouldn’t expect it. Further,
since the production of various games is scattered, there was a concern
on the part of the employees that developers would leave one crunch
only to join another. EA’s response was that they would attempt to min-
imize this, but would make no guarantees. This is unthinkable; they are
pushing the team to individual physical health limits, and literally giving
them nothing for it. Comp time is a staple in this industry, but EA as a
corporation wishes to “minimize” this reprieve. One would think that
the proper way to minimize comp time is to avoid crunch, but this bru-
tal crunch has been on for months, and nary a whisper about any
compensation leave, nor indeed of any end of this treatment.

This crunch also differs from crunch time in a smaller studio in that
it was not an emergency effort to save a project from failure. Every step
of the way, the project remained on schedule. Crunching neither acceler-
ated this nor slowed it down; its effect on the actual product was not
measurable. The extended hours were deliberate and planned; the man-
agement knew what they were doing as they did it. The love of my life
comes home late at night complaining of a headache that will not go
away and a chronically upset stomach, and my happy supportive smile
is running out.

No one works in the game industry unless they love what they do.
No one on that team is interested in producing an inferior product. My
heart bleeds for this team precisely because they are brilliant, talented
individuals out to create something great. They are and were more than
willing to work hard for the success of the title. But that goodwill has
only been met with abuse. Amazingly, Electronic Arts was listed #91 on
Fortune magazine’s “100 Best Companies to Work For” in 2003.

EA’s attitude toward this—which is actually a part of company pol-
icy, it now appears—has been (in an anonymous quotation that I've
heard repeated by multiple managers) “If they don’t like it, they can
work someplace else.” Put up or shut up and leave: this is the core of
EA’s Human Resources policy. The concept of ethics or compassion or
even intelligence with regard to getting the most out of one’s workforce
never enters the equation: if they don’t want to sacrifice their lives and
their health and their talent so that a multibillion-dollar corporation can
continue its Godzilla-stomp through the game industry, they can work
someplace else.

But can they?

64 THE BEST SOFTWARE WRITING |

The EA Mambo, paired with other giants such as Vivendi, Sony, and
Microsoft, is rapidly either crushing or absorbing the vast majority of
the business in game development. A few standalone studios that made
their fortunes in previous eras—Blizzard, Bioware, and Id come to
mind—manage to still survive, but 2004 saw the collapse of dozens of
small game studios, no longer able to acquire contracts in the face of
rapid and massive consolidation of game publishing companies. This is
an epidemic hardly unfamiliar to anyone working in the industry—
though, of course, it is always the option of talent to go outside the
industry, perhaps venturing into the booming commercial software
development arena. (Read my tired attempt at sarcasm.)

To put some of this in perspective, I myself consider some figures. If
EA truly believes that it needs to push its employees this hard—I actually
believe that they don’t, and that it is a skewed operations perspective
alone that results in the severity of their crunching, coupled with a cer-
tain expected amount of the inefficiency involved in running an
enterprise as large as theirs—the solution therefore should be to hire
more engineers, or artists, or designers, as the case may be. Never should
it be an option to punish one’s workforce with 90-hour workweeks; in
any other industry the company in question would find itself sued out of
business so fast its stock wouldn’t even have time to tank. In its first
weekend, Madden 2005 grossed $65 million. EA’s annual revenue is
approximately $2.5 billion. This company is not strapped for cash; their
labor practices are inexcusable.

The interesting thing about this is an assumption that most of the
employees seem to be operating under. Whenever the subject of hours
comes up, inevitably, it seems, someone mentions “exemption.” They
refer to a California law that supposedly exempts businesses from hav-
ing to pay overtime to certain “specialty” employees, including software
programmers. This is Senate Bill 88. However, Senate Bill 88 specifically
does not apply to the entertainment industry—television, motion pic-
ture, and theater industries are mentioned in particular. Further, even in
software, there is a pay minimum on the exemption: those exempt must
be paid at least $90,000 annually. I can assure you that the majority of
EA employees are in fact not in this pay bracket; ergo, these practices are
not only unethical, they are illegal.

EA_SPOUSE 65

I look at our situation and I ask “us”: why do you stay? And the
answer is that in all likelihood we won’t; and in all likelihood if we had
known that this would be the result of working for EA, we would have
stayed far away in the first place. But all along the way there were decep-
tions, there were promises, there were assurances—there was a big fancy
office building with an expensive fish tank—all of which in the end look
like an elaborate scheme to keep a crop of employees on the project just
long enough to get it shipped. And then if they need to, they hire in a
new batch, fresh and ready to hear more promises that will not be kept;
EA’s turnover rate in engineering is approximately 50%. This is how EA
works. So now we know, now we can move on, right? That seems to be
what happens to everyone else. But it’s not enough. Because in the end,
regardless of what happens with our particular situation, this kind of
“business” isn’t right, and people need to know about it, which is why I
write this today.

If T could get EA CEO Larry Probst on the phone, there are a few
things I would ask him. “What’s your salary?” would be merely a point
of curiosity. The main thing I want to know is, Larry: you do realize
what you’re doing to your people, right? And you do realize that they
are people, with physical limits, emotional lives, and families, right?
Voices and talents and senses of humor and all that? That when you
keep our husbands and wives and children in the office for 90 hours a
week, sending them home exhausted and numb and frustrated with their
lives, it’s not just them you’re hurting, but everyone around them, every-
one who loves them? When you make your profit calculations and your
cost analyses, you know that a great measure of that cost is being paid
in raw human dignity, right?

Right?

Bruce Eckel

STRONG TYPING VS.
STRONG TESTING'

I remember when I was working on VBA at Microsoft we had
lengthy debates about static vs. dynamic type checking.

“Static type checking” is when the compiler, at compile time,
checks that all your variables are the right type. For example, if you
have a function called log() that expects a number, and you call it
thus: log("foo"), passing in a string, well, with static type checking,
the compiler will say, “Wait a minute! You can’t pass a string to
that function because it expects a number,” and your program
won’t compile.

This is the opposite of dynamic type checking in which the
check is done at runtime. With dynamic type checking, log("foo")
would compile fine, but at runtime it would raise an error. The dis-
advantage of this is that you may not find out about the bug until
months later when somebody actually runs that line of code, espe-
cially if it’s in a rarely used function.

In designing VBA, where the original goal was to provide a
scripting language for Excel users, I was strongly in the “weak typ-
ing” camp, because it’s demonstrably easier for nonprofessional
programmers, who have enough trouble getting what a variable is,
let alone what a type is.

On my side, I had the Smalltalk community, who, in those days,
made the rather vague argument that “you’re still going to find out

. Bruce Eckel, “Strong Typing vs. Strong Testing,” Thinking About Computing, Articles
by Bruce Eckel on MindView.net (http://www.MindView.net), May 2, 2003. See
http://mindview.net/WebLog/log-0025.

68

THE BEST SOFTWARE WRITING I

about the problem, you just find out about it a few seconds
later...” Which is often true, but not always.

Eventually, 1 won the internal debate at Microsoft, and the
“Variant” data type—a structure that can hold values of any
type—was added to VBA and COM, and in fact later VBScript
came along, which only supported variants, so it must have been
a popular idea.

Yet, I always knew in the back of my mind that strong typing
is a clever way to have the compiler check for many kinds of
errors, and in fact, in C++, I always used the type system exten-
sively to error-check for all kinds of things. For example, if you
want to make absolutely sure that employees are never, ever, ever
paid a bonus, you can create a type system with managers and
employees and only managers have the PayBonus() method.
Nouw, hey, presto, if your program compiles, you can be sure only
the deserving and noble managers get bonuses, not the greedy
employees.

The trouble is that creating types solely for the purpose of
doing more tests at compile time is a little bit awkward. Types can
only do one kind of test, i.e., “Can I do this thing to that object?”
They can’t test “Does this function actually return 2.12 when the
input values are 1, 32, and ‘aardvark’?”

Effectively, it’s a puzzle for the programmer to come up with
some kind of clever type scheme that can be used to check some
small aspect of the program’s correctness.

It turns out, if you want to ensure program correctness, we
have a more straightforward and powerful tool: unit tests. So
I was very intrigued by Bruce Eckel’s idea of strong testing as a
substitute for strong typing.

Nouw, before I turn you over to Bruce, I must warn you that
dynamic typing has a serious downside in performance. Because
types need to be evaluated and checked at runtime, dynamically
typed languages will always be slower than statically typed
languages. This may be OK or it may not, depending on the
application. Python’s obligatory dynamic typing makes it a very
slow language. I use a spam filter written in Python that often
makes me wait several seconds to flag a single message as spam,
so when I need to mark 10 or 20 messages as spam I'm paying

Bruck ECckEL 69

something like a minute or two for this nice “dynamic typing”
feature. If you're running a farm of web servers, using a dynami-
cally typed language may mean that you need five or ten times as
many servers to service the same number of customers, which can
be very costly.

So do use your own judgment about what kind of perform-
ance your application requires, but if your unit tests provide good
code coverage, don’t feel too paranoid about giving up compile-
time type checking. — Ed.

In recent years my primary interest has become programmer produc-
tivity. Programmer cycles are expensive, CPU cycles are cheap, and
I believe that we should no longer pay for the latter with the former.

How can we get maximal leverage on the problems we try to solve?
Whenever a new tool (especially a programming language) appears, that
tool provides some kind of abstraction that may or may not hide need-
less detail from the programmer. I have come, however, to always be on
watch for a Faustian bargain, especially one that tries to convince me to
ignore all the hoops I must jump through in order to achieve this
abstraction. Perl is an excellent example of this—the immediacy of the
language hides the meaningless details of building a program, but the
unreadable syntax (based, I know, on backward-compatibility with
Unix tools like awk, sed, and grep) is a counterproductive price to pay.

The last several years have clarified this Faustian bargain in terms of
more traditional programming languages and their orientation toward
static type checking. This began with a two-month love affair with Perl,
which gave me productivity through rapid turnaround. (The affair was
terminated because of Perl’s reprehensible treatment of references and
classes; only later did I see the real problems with the syntax.) Issues of
static-vs.-dynamic typing were not visible with Perl, since you can’t build
projects large enough to see these issues and the syntax obscures every-
thing in smaller programs.

After moving to Python (free at www.Python.org)—a language that can
build large, complex systems—I began noticing that despite an apparent
carelessness about type checking, Python programs seemed to work

70 THE BEST SOFTWARE WRITING |

quite well without much effort, and without the kinds of problems you
would expect from a language that doesn’t have the static type checking
that we’ve all come to “know” is the only correct way of solving the pro-
gramming problem.

This was a puzzle: If static type checking is so important, why are
people able to build big, complex Python programs (with much shorter
time and effort than the static counterparts) without the disaster that I
was so sure would ensue?

This shook my unquestioning acceptance of static type checking
(acquired when moving from pre-ANSI C to C++, where the improve-
ment was dramatic) enough that the next time I examined the issue of
checked exceptions in Java,” I asked “why?” which produced a big
discussion® wherein I was told that if T kept advocating unchecked
exceptions, cities would fall and civilization as we know it would cease to
exist. In Thinking in Java, 3'* Edition (Prentice Hall PTR, 2002), I went
ahead and showed the use of RuntimeException as a wrapper class to
“turn off” checked exceptions. Every time I do it now, it seems right
(I note that Martin Fowler came up with the same idea at roughly the
same time), but I still get the occasional email that warns me I am violat-
ing all that is right and true and probably the USA Patriot act as well (hi,
all you guys from the FBI! Welcome to my weblog!).

But deciding that checked exceptions seem like more trouble than
they’re worth (the checking, not the exception—I believe that a single,
consistent error reporting mechanism is essential) did not answer the
question “Why does Python work so well, when conventional wisdom
says it should produce massive failures?” Python and similar dynami-
cally typed languages are very lazy about type checking. Instead of
putting the strongest possible constraints on the type of objects, as early
as possible (as Java does), languages like Ruby, Smalltalk, and Python
put the loosest possible constraints on types, and evaluate types only if
they have to.

2. Checked exceptions are a language feature where the compiler, at compile time, makes
sure that every function has some code, somewhere, to either handle every possible excep-
tion or at least admit that it’s not going to handle it so that someone else can be deemed
responsible. — Ed.

3. See http://www.mindview.net/Etc/Discussions/CheckedExceptions.

Bruck EckeL 71

This produces the idea of latent typing or structural typing, often
casually called “duck typing” (as in “If it walks like a duck, and talks
like a duck, we can just treat it like a duck”). This means that you can
send any message to any object, and the language only cares that the
object can accept the message. It doesn’t require that the object be a par-
ticular type, as Java does. For example, if you have pets that can speak
in Java, the code looks like this:

// Speaking pets in Java:
interface Pet {
void speak();

}

class Cat implements Pet {
public void speak() { System.out.println("meow!"); }
}

class Dog implements Pet {
public void speak() { System.out.println("woof!"); }
}

public class PetSpeak {
static void command(Pet p) { p.speak(); }
public static void main(String[] args) {
Pet[] pets = { new Cat(), new Dog() };
for(int i = 0; i < pets.length; i++)
command(pets[i]);

Note that command() must know the exact type of argument it’s going
to accept—a Pet—and it will accept nothing else. Thus, I must create a
hierarchy of Pet, and inherit Dog and Cat so that I can upcast them to the
generic command() method.

For the longest time, I assumed that upcasting was an inherent part of
object-oriented programming, and found the questions about same from
ignorant Smalltalkers and the like to be annoying. But when I started

72 THE BEST SOFTWARE WRITING |

working with Python T discovered the following curiosity. The above
code can be translated directly into Python:

Speaking pets in Python:
class Pet:
def speak(self): pass

class Cat(Pet):
def speak(self):
print "meow!"

class Dog(Pet):
def speak(self):
print "woof!"

def command(pet):
pet.speak()

pets = [Cat(), Dog()]

for pet in pets:
command (pet)

If you’ve never seen Python before, you’ll notice that it redefines the
meaning of a terse language, but in a very good way. You think C/C++ is
terse? Let’s throw away those curly braces—indentation already has
meaning to the human mind, so we’ll use that to indicate scope instead.
Argument types and return types? Let the language sort it out! During
class creation, base classes are indicated in parentheses. def means we
are creating a function or method definition. On the other hand, Python
is explicit about the this argument (called self by convention) for
method definitions.

The pass keyword says “I’ll define this later,” so it’s a variation on an
abstract keyword.

Note that command(pet) just says that it takes some object called pet,
but it doesn’t give any information about what the type of that object

Bruck EckeL 73

must be. That’s because it doesn’t care, as long as you can call speak(), or
whatever else your function or method wants to do. This is latent/duck
typing, which we’ll look at more closely in a minute.

Also, command(pet) is just an ordinary function, which is OK in
Python. That is, Python doesn’t insist that you make everything an
object, since sometimes a function is what you want.

In Python, lists and dictionaries (a.k.a. maps or associative arrays)
are both so important that they are built into the core of the language,
so I don’t need to import any special library to use them. You can see
this here:

pets = [Cat(), Dog()]

A list is created containing two new objects of type Cat and Dog. The
constructors are called, but no “new” is necessary (and now you’ll go

)

back to Java and realize that no “new” is necessary there, either—it’s
just a redundancy inherited from C++).
Iterating through a sequence is also important enough that it’s a

native operation in Python:
for pet in pets:

selects each item in the list into the variable pet. Much clearer and more
straightforward than the Java approach, I think, even compared to the
J2SES “foreach” syntax.

The output is the same as the Java version, and you can see why
Python is often called “executable pseudocode.” Not only is it simple
enough to use as pseudocode, it has the wonderful attribute that it can
actually be executed. This means you can quickly try out ideas in Python,
and when you get one that works, you can rewrite it in Java/C++/C# or
your language of choice. Or maybe you will realize that the problem is
solved in Python, so why bother rewriting it? (That’s usually as far as
I get.) I've taken to giving exercise hints in Python during seminars,
because then ’'m not giving away the whole picture, but people can see
the form that I’'m looking for in a solution, so they can move ahead. And
I’m able to verify that the pseudocode is correct by executing it.

74 THE BEST SOFTWARE WRITING |

But the interesting part is this: because the command(pet) method
doesn’t care about the type it’s getting, I don’t have to upcast. So 1 can
rewrite the Python program without using base classes:

Speaking pets in Python, but without base classes:
class Cat:
def speak(self):
print "meow!"

class Dog:
def speak(self):
print "woof!"

class Bob:
def bow(self):
print "thank you, thank you!"
def speak(self):
print "hello, welcome to the neighborhood!"
def drive(self):
print "beep, beep!"

def command(pet):
pet.speak()

pets = [Cat(): DOg()J BOb()]

for pet in pets:
command (pet)

Since command(pet) only cares that it can send the speak() message to
its argument, I’ve removed the base class Pet, and even added a totally
non-pet class called Bob, which happens to have a speak() method, so it
also works in the command(pet) function.

At this point, a statically typed language would be sputtering with
rage, insisting that this kind of sloppiness will cause disaster and may-
hem. Clearly, at some point the “wrong” type will be used with command()
or will otherwise slip through the system. The benefit of simpler, clearer

Bruck EckeL 75

expression of concepts is simply not worth the danger—even if that ben-
efit is a productivity increase of 5 to 10 times over that of Java or C++.

What happens when such a problem occurs in a Python program—
an object somehow gets where it shouldn’t be? Python reports all errors
as exceptions, like Java and C# do and like C++ ought to do. So you do
find out that there’s a problem, but it’s virtually always at runtime.
“Aha!” you say, “There’s your problem: you can’t guarantee the
correctness of your program because you don’t have the necessary com-
pile-time type checking.”

When 1 wrote Thinking in C++, 1st Edition (Prentice Hall PTR,
1998), I incorporated a very crude form of testing: I wrote a program
that would automatically extract all the code from the book (using com-
ment markers placed in the code to find the beginning and ending of
each listing), and then build makefiles that would compile all the code.
This way I could guarantee that all the code in my books compiled and
so, I reasoned, I could say, “If it’s in the book, it’s correct.” I ignored the
nagging voice that said, “Compiling doesn’t mean it executes properly,”
because it was a big step to automate the code verification in the first
place (as anyone who looks at programming books knows, many
authors still don’t put much effort into verifying code correctness). But
naturally, some of the examples didn’t run right, and when enough of
these were reported over the years I began to realize I could no longer
ignore the issue of testing. I came to feel so strongly about this that in the
third edition of Thinking in Java, 1 wrote:

If it’s not tested, it’s broken.

That is to say, if a program compiles in a statically typed language, it
just means that it has passed some tests. It means that the syntax is guar-
anteed to be correct (Python checks syntax at compile time as well—it
just doesn’t have as many syntax constraints). But there’s no guarantee
of correctness just because the compiler passes your code. If your code
seems to run, that’s also no guarantee of correctness.

The only guarantee of correctness, regardless of whether your lan-
guage is statically or dynamically typed, is whether it passes all the tests
that define the correctness of your program. And you have to write some
of those tests yourself. These, of course, are unit tests, acceptance tests,

76 THE BEST SOFTWARE WRITING |

etc. In Thinking in Java, 3rd Edition, 1 filled the book with a kind of unit
test, and these tests paid off over and over again. Once you become “test
infected,” you can’t go back.

It’s very much like going from pre-ANSI C to C++. Suddenly, the
compiler was performing many more tests for you and your code was
getting right, faster. But those syntax tests can only go so far. The com-
piler cannot know how you expect the program to behave, so you must
“extend” the compiler by adding unit tests (regardless of the language
you’re using). If you do this, you can make sweeping changes (refactor-
ing code or modifying design) in a rapid manner because you know that
your suite of tests will back you up, and immediately fail if there’s a
problem—just like a compilation fails when there’s a syntax problem.

But without a full set of unit tests (at the very least), you can’t guar-
antee the correctness of a program. To claim that the static type checking
constraints in C++, Java, or C# will prevent you from writing broken
programs is clearly an illusion (you know this from personal experi-
ence). In fact, what we need is:

Strong testing, not strong typing.

So this, I assert, is an aspect of why Python works. C++ tests happen
at compile time (with a few minor special cases). Some Java tests happen
at compile time (syntax checking), and some happen at runtime (array-
bounds checking, for example). Most Python tests happen at runtime
rather than at compile time, but they do happen, and that’s the impor-
tant thing (not when). And because I can get a Python program up and
running in far less time than it takes you to write the equivalent
C++/Java/C# program, I can start running the real tests sooner: unit
tests, tests of my hypothesis, tests of alternate approaches, etc. And if a
Python program has adequate unit tests, it can be as robust as a C++,
Java, or C# program with adequate unit tests (although the tests in
Python will be faster to write).

Robert Martin is one of the longtime inhabitants of the C++ com-
munity. He’s written books and articles, consulted, taught, etc. A pretty
hard-core, static type checking guy. Or so I would have thought, until
I read a weblog entry he made (at http://www.artima.com/weblogs/
viewpost.jsp?thread=4639 — Ed.). Robert came to more or less the same
conclusion T have, but he did so by becoming “test infected” first, then

Bruck EckeL 77

realizing that the compiler was just one (incomplete) form of testing,
then understanding that a dynamically typed language could be much
more productive but create programs that are just as robust as those
written in statically typed languages, by providing adequate testing.

Of course, Martin also received the usual “How can you possibly
think this?” comments. Which is the very question that led me to begin
struggling with the static/dynamic typing concepts in the first place. And
certainly both of us began as static type checking advocates. It’s inter-
esting that it takes an earth-shaking experience—like becoming test
infected or learning a different kind of language—to cause a reevalua-
tion of beliefs.

Paul Ford
PROCESSING PROCESSING'

I've long been a fan of Paul Ford’s website, Firain.com. So when
Apress asked me to put together this book, I knew it had to include
something of his.

Something about this article precisely captures the essence of
what I consider to be “elegance” in software writing. The clarity
and poetry in writing; the clean sparse lines of thought; the erudi-
tion; and the blockbuster, showstopper, mind-numbingly beautiful
closing paragraph ... I think I'm going to faint; get me a chair.

Either that or it’s really campy, but that’s good too. — Ed.

Late-night thoughts on little computer languages, the Web as a form, and my
own ignorance.

’ve been fiddling with Processing,”> a small computer language layered
above Java. Processing makes it possible to quickly create hopefully

interesting images and animations, like last week’s Square/Sphere/Static?
or yesterday’s Red Rotator.* So far I’'ve only dabbled with it, but the sys-
tem is engaging, easy to learn, and pops up out of the zip file with a

. Paul Ford, “Processing, Processing,” Ftrain.com (http://www.ftrain.com), September 2,
2003. See http://www.ftrain.com/ProcessingProcessing.html.

2. See http://processing.org/.

3. See http://www.ftrain.com/SquareSphereStatic.html#ProcessingProcessing.

4. See http://www.ftrain.com/RotatingSquares.html#ProcessingProcessing.

80 THE BEST SOFTWARE WRITING |

bare-bones but clever IDE that allows you to click “play” to compile
your applet.

Processing’s programming constructs are consistent and well thought
out—essentially simplified Java, although “simplified” is the wrong
word; it might be better to say “elegantized,” because the authors of
Processing have identified a target audience—geeky artists—and have
created something out of Java’s baroque environment that geeky artists
can learn quickly and explore immediately; they’ve whittled down Java’s
carved-oak throne into a slick, Swiss sling-back chair on an aluminum
frame.

Why am I discussing this here? I have a passion, which I do not discuss
in polite or easily bored company,’ for languages like Processing—
computer languages that compile not to executable code but to aesthetic
objects, whether pictures, songs, demos, or websites. Domain-specific
languages like this include CSound, which compiles to sound files;
POV-Ray, which compiles to 3D images; TeX, which compiles to typo-
graphically consistent manuscripts; or SVG (Scalable Vector Graphics),
an XML schema that creates vector graphics.

There are more general-purpose languages that are focused on meet-
ing the needs of a particular kind of programmer: ActionScript
undergirds Macromedia’s Flash, and is ubiquitous across the Web;
Graham Nelson’s Inform, with its large library of community-developed
enhancements, compiles to interactive text adventures. At the far end of
the spectrum are totally general languages like C, Java, Perl, and Python,
languages that are intended to let you do anything a computer can do.

Processing lives somewhere between the former and the latter kinds
of languages—it is, in one way, a general-purpose programming lan-
guage (particularly as it can call any Java function), but it is also
constrained by a very small set of primitives—points, spheres, rectan-
gles, etc.—and a straightforward model of 3D space, and it compiles to
a very specific kind of object: an interactive graphical widget. Processing
is most like Inform in its focus on a specific goal: Inform would not be
useful if you wanted to write a word processor, nor would Processing.
But if you want to create a text adventure, Inform is a solid choice, much
better than raw C, and if you want to create a 200X200 clickable thingy,
Processing is a pretty good bet.

5. Now you know how I see my audience.

PauL Forp 81

Languages like those mentioned previously reward study because
they represent the place where aesthetics touches computation—in
CSound, for instance, there is a score file and an orchestra file; the
orchestra contains a set of instruments, which are made up of oscilla-
tors, sound samples, and all manner of other time-bounded constructs:
signals, lines, and waves. The score file is a collection of beats and vari-
ables that are fed to the instruments. There is a great deal to learn from
such a language; it represents a very focused attempt to identify a cre-
ative grammar that is constrained by three things: (1) the computer’s
power to effectively manipulate only certain kinds of data, (2) the lan-
guage developers’ biases and understanding of their chosen discipline,
and (3) the willingness of regular programmers to work within the lim-
its of (1) and (2). ’'m not suggesting that everyone learn these languages,
but if, like me, you’re interested in understanding what computers can
do with media, and the cultural factors that go into building tools that
create media on computers, you’ll find that these languages are fascinat-
ing objects to study.

CSound was the first programming language I learned, in 1996,
using online documentation of such spotty quality that I was sent to the
library to better understand oscillator theory and the differences
between additive, subtractive, and granular syntheses, finally building a
homegrown oscilloscope out of an old TV in order to see the patterns of
energy inherent in the sound, trying to understand why a camel-backed
sine wave sounded so different from a sawtooth wave’s Matterhorn.
One CSound file I compiled took 20 hours to build, because there were
tens of thousands of interacting instruments, manipulating each other,
reverbrating all over the spectrum of audible sound. It sounded dreadful;
I am not a good musician. But it was fascinating to look inside sound
through that small language.

When I look at Processing, I see much that I learned from CSound
translated to the visual realm (Processing supports sound, but only mini-
mally). The oscillator in CSound is like a “for” loop in Processing; in the
code I posted yesterday, squares rotate around a fixed point, each frame
moving the squares forward a few pixels. In CSound I might define a
series of oscillators that modulated one another; one oscillator’s changing
values might add tremolo to another oscillator’s noisy chord. In
Processing, looping values can be added to one another (with some data
inserted from the mouse or other sources) that, instead of adding some

82 THE BEST SOFTWARE WRITING |

tremor to the sound of a synthesizer, push red squares around in a circle.
But the idea is the same: values change over time, rising and falling, and
this regular change in value can be useful in making something interest-
ing, or pretty, making it move or change frequency. It works because
humans happen to like shiny moving patterns, and sounds that change
frequency and amplitude in regular intervals over time.

Processing has taken me back to age 14, when I played with Deluxe
Paint’s animation mode on the Amiga, learning to spin text along the X,
Y, and Z axes, spending hours learning, by accident and because it was
fun, about perspective and geometry; I’ve been looking for a replace-
ment for that sense of visual flexibility for years, and Processing finally

fills the need.

Rereading the above, I am left with a question: if there are languages for
defining instruments and oscillators, lines and splines, and even lan-
guages like TeX for implementing the ideas of typography, why is there
no consistent system for web publishing that is widely accepted?

I know that there are thousands of content management systems, from
Midgard to Movable Type, and each of these represents a specific way of
seeing the world of content. They use databases; they sort things by date
and time, by author and category; they incorporate XML tags, schemas,
and DTDs. But there is no unified way to speak of them. There is no con-
sistent framework. I made this point in Web Pidgin,® but to explore it a
little further: Ftrain is built using a custom XML schema, XSLT (which is
actually two languages, the transformation language XSLT [Extensible
Stylesheet Language Transformations] and the document-tree-access lan-
guage XPath); a Makefile; XHTML1.1, which defines the structure of a
given page; CSS, which defines the appearance of the XHTML1.1; and
JavaScript, which defines some of the interactive features of the page. It
will eventually export to RSS0.91, RSS1.0, RSS2.0, and Atom, and an
entire copy of the site will be output in RDF (Resource Description
Framework). It contains Java applets, sound files in RealAudio and MP3
format, JPEGs, GIFs, PNG files, text files, Python scripts, Perl scripts, PHP
pages, and a search engine.

6. See http://www.ftrain.com/WebPidgin.html#ProcessingProcessing.

PaurL Forp 83

That’s one website, for one person. Too much.

TeX is extraordinarily flexible in what it defines a book to be, and
what might go into a book, and it has been used to publish thousands of
works. But it’s ultimately two small, homely languages: TeX for the lay-
out and MetaFont for the glyphs, with a variety of sublanguages and
libraries available to extend it. Suites like Adobe’s InDesign, Photoshop,
and Illustrator combo seem to address a similar problem: they provide a
consistent environment, in this case one where you point and click
instead of programming, for doing work. A problem is solved in one
place, in one environment, with one set of tools.

Websites are not any more complicated to produce than books—and
in fact are much less complicated in many ways—but the book produc-
tion process is codified and clearly established; there are norms, a clear
division of labor, and an understanding of what comes next at each
point. Read a few manuals of typography and visit a publishing plant,
look at a Heidelberg press, then talk to an editor at a large publishing
house. If you cut your teeth on the Web, the process will seem agoniz-
ingly slow and inflexible—for example, the demand for the latest Harry
Potter pushed back dozens of other books so that the multimillion-copy
first edition of Rowling’s book could be shipped. On the Internet, you
can simply snap a few new servers into place, buy more bandwidth, and
meet demand.

But you’d have to figure out who to call first, and figure out all man-
ner of switchover and high-availability processes before you could do
this; it’s possible, but not easy. So, all right, in the publishing world
there’s less flexibility, but less sobbing in terror. Because the web devel-
opment process is horrifying. There is no point where you can say with
total confidence, “I’'m done.” Right now I am fielding steady complaints
concerning this website from users of Macintosh Internet Explorer 5.2.
I’ve done about 10 different things to make this site passable in their
browser of choice, but with no luck.” The drawing board continually
beckons, as does the possibility of failure—because some problems gen-
uinely cannot be solved, not without resources, time, and research, and
all three are in short supply for those who must get the site up by 9 p.m.
Sunday night.

I think part of the problem is that the web folks are still riding high
on the new economy hubris, believing that they have some special

7. This site is, in truth, the dumbest possible hobby I could ever choose.

84 THE BEST SOFTWARE WRITING |

genius, some deep wisdom that transcends every thought process that
came before, that they are the fulfillment of the Macluhanist prophecy.
Except there are an awful lot of amazingly smart people who never gave
a damn about Cascading Style Sheets, working for nonprofits, selling
things, building things. And many of them, unlike many of us, still have
jobs doing what they love. You have to wonder how great the Web really
is, if so many of its staunchest advocates can’t make a living working to
improve it. I think it’s time to step back and say, “Is all this really worth
all the fuss?” Of course you can guess my answer,® but I think it’s still an
important question to ask.

Looking at Processing, I find myself thinking: I wish the Web worked
like this. I don’t wish the Web was a collection of little clickable graph-
ics, but rather T wish that people would take a step back and look at
everything we’ve done and “elegantize” the Web as a construct, define a
set of core goals that web developers want to solve, and create as small
a language as possible, based on the smallest possible set of principles,
that will help them meet those goals. At this point in my life as a web
developer, I don’t want tutorials on hacking my CSS so it looks good in
IE 5.2 for the Macintosh (I’'m about to give up on that very thing, in fact,
after dozens of hours); rather, I want an answer to the question “What
is a link?” I don’t want someone to make it easier, another Dreamweaver
or FrontPage, I want it to be elegant, like the computer language Scheme
is elegant. I want to know:

1. What is a web page? Where does it begin and end? Is such a con-
cept useful, or should we see the web page as a single view of a
much larger database of interlinked documents?

2. Is the browser the right way to navigate the Web? It’s okay for
viewing HTML pages, but I’'d much rather have a smart data-
base/spreadsheet that lets me search the Web and my local files,
and pops up a browser when I want one. That is, like Google, but
inside Excel. A huge portion of web content is metadata—search
boxes, tables of contents, navigation, most recently added. Just as
sites can have a single, tiny icon that appears in the URI naviga-
tion bar, wouldn’t it be useful for them to have a single
navigation system that is available at the top of the site?

8. T’ve written the world’s only 200-megabyte personal ad in the form of a website.

PaurL Forp 8§

3. Why is em better than i? When I’'m publishing content from 1901
and it’s in italics, it’s in italics, not emphasized. Typography has a
semantics that is subtle, changing, and deeply informed by history.
The current state of the Web ignores this more or less completely,
and repeatedly seeks to encode typographic standards and ideas
into tree-based data structures, like in a <g> (quote) tag.

4. Why are some semantic constructs more privileged than others?
Why are the blockquote, em, strong, and q tags more essential
than the nonexistent event, note, footnote, or fact tags? Because
HTML tried to inherit the implied semantics of typography, that’s
why! And those semantics are far more subtle and complex than
most people (outside of the TEI folks, and their text-aware kind)
will acknowledge. But sticking with them means we have a typo-
graphically and semantically immature Web. . . oh, it is madness,
madness.

5. How can content truly be reused? I don’t mean turning DocBook
XML into either a book or a set of web pages, but taking individ-
ual sentences and phrases and flowing them into timelines,
automatically extracting plays from short stories, that sort
of thing.

6. If links are to be given semantics, so that you don’t just say,
“Link to this page,” but “This page is a broadening of that
page,” or “The author of this page is a resource named X,”
what do we do with that? I mean, what does that actually
get us, really?

7. Why bother with a browser at all? Recently I found a huge data-
base of scanned-in magazines from 1800 to 1900, all rather
painfully listed in big tables of contents that I did not enjoy
browsing. So I spidered that database and made my own table
of contents, which I dropped into a database (and which my
friend Kendall Clark converted to RDE, so that it can be used in
Semantic Web applications; I'll try to release it before long).

The last three questions are loaded for me, because I’ve been work-
ing hard over the last two months to solve them here. I’'ve come up with
several solutions, which I’ll describe in a near-future essay. But I doubt
my solutions are very good; they’re just necessary so that I can do what
I want to do. The one thing that might be fun for others is that 'm going

86 THE BEST SOFTWARE WRITING |

to distribute the entire site (edging on 1,000,000 words before long) in a
straight RDF format, with an attached fact base of quotes, events, and
suchlike culled from the content. This way, if anyone wants to browse
Ftrain (or an Ftrain-like site) in some other format, they can simply write
the best interface for themselves. I plan to move asset management to a
spreadsheet. And I’'m going to buy some really nice socks, and a bell for
my bicycle.

So I’m up late wondering if it’s possible to create a CSound or Processing
for the Web. Something that understands links and the very specific
needs of designers, information architects, and readers/users of a site,
and something that is not bound by competing traditions from interface
design, publishing, journalism, and typography. Something that would
allow us to see the Web as a unified space, rather than as a set of design
interfaces (CSS), transformation languages (XSLT), data structure
addressing mechanisms (DOM, XPath), interface specifiers (JavaScript),
and markup approaches (XHTML).

One way things might go can be seen in REST (Representational
State Transfer). The REST architecture for the Web is an “elegantizing”
of something that, prior to its formal description, was quite ad hoc and
inconvenient. REST is a way to describe what URIs (like http://
ftrain.com) mean, how they can be used to generate queries across the
network, and how the entire Web can be seen as a collection not of pages
but of connectable programs that are accessed by URIs. Compare REST,
which is simple and already works, to web services, which add a layer of
complexity to the existing Web, exist in parallel to the content-based
Web, and are grounded in a collection of ideas about distributed objects
and network computing that arrived before the Web.

Both approaches try to do roughly the same thing. But Id argue that
what makes REST a success and web services less of a success is that
REST is truly grounded in the Web. It kept what worked and then made
it more elegant: easier to understand in a formal way, easier to teach.
Elegance is not just some sort of prissy foolishness; it’s a way to describe
ideas and solutions that have staying power, that appeal to something
outside of the moment, that can contribute to a discipline and be built

PaurL Forp 87

upon, rather than simply being applied to the problem at hand and for-
gotten. REST has these qualities: it made what was there better.

The same issue comes up with the Semantic Web. The Semantic Web
framework addresses problems of importance to the artificial intelli-
gence research community, but of less importance to everyone else. Less
robust but more web-like alternatives like SHOE (Simple HTML
Ontology Extensions), which allowed you to embed logical data inside
of HTML, have been put aside in order to create something that can
solve a much larger set of problems: the RDF/RDFS/OWL combination.
But a serious problem sometimes arises when a community that is heav-
ily invested in a set of ideas and practices (in this case, the knowledge
representation research community) defines the standard: they solve
problems most people don’t care about; they build general systems that
incorporate decades of research and anticipate hundreds of complex
problems no one else knows exists.

There’s nothing wrong with this, but it leads to strange dialogues
between the standards-makers and the wider world. In the case of the
Semantic Web, the dialogue is like this:

World: I’d love to make my website smarter, link things together
more intelligently.

Semantic Web Research Community: Sure! You need a generalized
framework for ontology development.

World: Okay. That’ll help me link things together more easily?

SWRC: Even better, it will lead to a giant throbbing robot world-
brain that arranges dentist appointments for you! Just read the
Scientific American article.

World: Will that be a lot of work?

SWRC: No. But even if it is, we will blame you for being too stupid
to understand why you need it.

World: Huh. T guess so. But I don’t understand why I need it,
exactly.

SWRC: That is because you are too stupid. It’s fine, we have your
best interests in mind.

World: T don’t want to nag, but while I read a book on set theory,
how about those fancy links?

SWRC: Well, if you insist, and can’t wait, there’s always XLink.

88 THE BEST SOFTWARE WRITING |

World: Aha. That looks handy... except, oh, there’s no easily
available implementation. And ’'m not really sure what it’s
supposed to do.

SWRC: That is because you are lazy and stupid.

World: Ah well. Do you think I should apply for grants for the
development of my little website Ftrain.com? Just enough for a
monthly unlimited Metrocard would be a help.

SWRC: We will have all the grants! Be gone with your bachelor’s
degree from a second-tier private liberal arts college! And where is
your RSS feed?

World: Sorry.
SWRC: Slacker! Bring me more graduate students, I am hungry!

Anyway, the way the Semantic Web works may incorporate XML
and be transmitted over HTTP, but it’s only a little bit like the current
web framework of HTML pages and suchlike. It took me about 15 min-
utes to fully understand SHOE, which was embedded inside of HTML.
It’s taken me two years to understand RDFE.? I lack anything like genius,
but I do score better on standardized tests than a box of hammers, and
two years is too long. (By the way, the secret to understanding RDF is to
read a tutorial for the language Prolog; the concepts are all the same,
and not that difficult to fathom, and then the opaque, nefarious RDF
spec comes right into focus.)

In any case, I did not come to slam RDF—TI use it and have come to
like it, believe in it as a fundamental technology for data interchange,
and have a billion ideas for using it here on Ftrain. But I’d also like to see
it defined in terms of an “elegantization” of the existing Web before I
leap up and down to praise it. In fact, I’d love to see all the standards at
the W3C and elsewhere defined in this abstract, indistinct way, even
though that will never happen: “This schema or standard makes things
more elegant and beautiful because. . .” Had this simple test been
applied, XML Schema would never have existed, SOAP (Simple Object
Access Protocol) would be eyed with deep suspicion, and REST and
RelaxNG would be placed in the pantheon of useful standards.

9. This reminds me of my rule: if you can’t understand the spec for a new technology,
don’t worry: nobody else will understand it either, and the technology won’t be that
important. — Ed.

PauL Forp 89

I care about all this because, you know, it can be beautiful. It isn’t,
right now. After countless hours setting up databases, tweaking CSS,
and defining schemas, learning RDF so that I can borrow ideas from it,
and thinking about what a link actually is, I can say with confidence that
the Web is not beautiful. In terms of the maturity of a technology, which
can be measured as being a technology’s ability to reflect the actual skills
and awareness of the individuals it seeks to serve, the Web is about
equivalent to a IBM PC Jr. The equivalent in interface abstraction of a
windowing interface has not yet come to this space. When you look at
your information architecture books, and your how-to-build-websites
books about 15 years from now, they’ll seem as relevant and ridiculous
as a manual for an Epson dot-matrix printer in these days of PostScript.
I don’t know what will take their place, but I’d place money on obsoles-
cence (as would everyone else, of course; this isn’t exactly a big idea).

The next-big-thing tends to come out of small groups of individuals
thinking very hard. Take windowing: you needed a Xerox Palo Alto
Research Center (PARC)-style facility to create the new unified way of
working on things, a collection of slightly unscrupulous businesspeople
looking to infringe on one another’s patents at Apple and Microsoft, and
a core of genius engineers who could be beaten and abused into absolute
exhaustion who were pushed to commodify the technology, to make it
cheaper and more accessible. Take those ingredients, a few million dol-
lars, and bam: you had it, the computer that would change the world,
the Apple Lisa.

And also the Macintosh soon after, when no one wanted to spend $8
trillion on the Lisa (and the Apple IT GS, and GEOS for the Commodore
64, which retrofitted old computers with new windows). The idea stuck.
The Mac is still here, along with its half-witted brother Windows, and
their friend X Windows, which suffers from multiple personality disor-
der. So it’ll be interesting to see where it comes from for the Web: who
helps focus the ideas, and which manic-depressive lunatic CEO is able to
turn it into a big, marketable, virus-like idea.

Maybe this is the question: if we can say that a website is a form, then
maybe we can create a language like Processing to help people build
websites; instead of new standards you could have libraries that would

90 THE BEST SOFTWARE WRITING |

plug into your development framework, like TeX does. That would beat
the 30-some standards that we juggle now, all of which overlap terribly.

I’m not talking about what will work, or what will happen, but what
could be elegant—what could allow people to create beautiful websites.
I have a few ideas that I've worked into Ftrain: I got rid of all internal
structures for the site, like sections, chapters, authors, and descriptions,
and instead express that data in an RDF-like syntax that is backed by a
(pseudo) ontology. This way, when someone wants to see all the stories
on the site, it can produce all the fictional stories as well as all the non-
fiction stories, and if they want to see just the fictional stories, well, we
can do that too. This is a very different way of thinking about a site, and
I’m not sure I understand it yet. But having an internal ontology of con-
tent structures does give me an awful lot of new ideas about navigation,
reading, and suchlike.

I got rid of markup-level arbitrary semantic boundaries like quotes
and blockquotes, which were evil, and use URI-addressable unique
nodes instead. So every event, quote, fact, lie, or so forth is totally
unique. I included conditional text, so that a quote can appear one way
inside, say, a newspaper article, and in a different way inside a collection
of quotes somewhere else; an article might have the line: "I dropped the
dog," President Bush said, "oh my God, I dropped the dog." But on the
George Bush page, you want the quote to read: I dropped the dog, oh my
God, I dropped the dog. George W. Bush. Using one source to create both
views is not as simple as it might look, at least not to a dullard with an
English degree. And it should be possible to grab one big Ftrain RDF
file, and an RDF file from someone using the same site kit, and merge
them into one big shared-ontology content base and browse them like
crazy. 'm over here working hard on that, alone and in total confusion
(while receiving dozens of messages asking where my RSS file is; my pri-
orities are obviously backwards).

Why bother with all this? Because it’s fun, and just as CSound helped
me understand what sound is, building my own system is a good way to
learn what text really is, what typography is, what narrative is in the
context of the Web. It’s a way to resolve the age-old tension between the
rhetorical tradition of the Sophists and the Aristotelian rhetorical tradi-
tion. The text that appears on the screen is straight prose, designed to go
down smoothly, smoothed and buffed to a rhetorical sheen. But the links
and the data used to manage the content are simple, logical statements:

PaurL Forp 91

Men are mortal. Socrates is a man. Therefore Socrates is mortal. Paul
Ford wrote this essay. Therefore Paul Ford is a writer. This page is
related to that page.

You’re reading something constructed using a rhetorical practice,
something informed both directly and indirectly by the entire history of
composition up until this point, from the Sophists to Derrida. But you’re
navigating it using pure logical statements, using spans of text or images
that, when clicked or selected, get other files and display them on your
screen. The text is based in the rhetorical tradition; the links are based in
the logical tradition; and somewhere in there is something worth figur-
ing out (and steps have been taken by people like Richard Lanham, the
people who developed the PLINTH system, and others).

A historian of rhetoric, Lanham points out that the entire history of
Western pedagogical understanding can be understood as an oscillation
between these two traditions, between the tradition rhetoric as a means
for obtaining (or critiqueing) power—language as a collection of inter-
connected signifiers co-relating, outside of morality and without a
grounding in “truth,” and the tradition of seeking truth, of searching for
a fundamental, logical underpinning for the universe, using ideas like the
platonic solids or Boolean logic, or tools like expert systems and particle
accelerators. Rather than one of these traditions being correct, Lanham
writes in The Electronic Word, it’s the tension between the two that
characterizes the history of discourse; the oscillation is built into
Western culture, and often discussed as the concept sprezzatura (the art
of making it look easy). And hence this site, which lets me work out that
problem in practice: what is the relationship between narratives and
logic? What is sprezzatura for the Web?

Hell if I know. My way of figuring it all out is to build the system and
write inside it, because I’'m too dense to work out theories. I have
absolutely no idea what I’'m doing, and most of it is done with a sense of
hopelessness, as when, like tonight, I produce nearly 4,500 words in a
sitting that represent the absolute best of my thinking, but those words
are as solid as cottage cheese, as filled with holes as swiss cheese, as
stinky as limburger, as tasty as a nice brie, as spreadable as Velveeta, as
covered in wax as a Gouda, as sharp as a mild cheddar from Cracker
Barrel, as metaphorically overextended as a cheese log.

Obviously it is late, and we are all tired. There are many people much
smarter than I will ever, ever be working in language, in the semiotics of

92 THE BEST SOFTWARE WRITING |

fiction, breaking down language into its component parts, defining, like
Saul Kripke, what a name actually is. They use equations, and seek
the truth. ’'m looking for a way to tell a story that works within the
boundaries established by these machines. I seek to entertain, amuse,
and evoke. ’'m too gullible to believe in the idea of truth. Which means
that I look on, in profound, gap-jawed stupidity, at the artificial intelli-
gence community, the specialists in linguistics, the algorithm experts, the
standard-writers, the algorithm specialists, the set theory specialists, the
textual critics and other hermenauts, and the statisticians, but I don’t
look on in jealousy, but in a kind of depression, like being a three-chord
guitarist missing a few fingers, trying to play a cover of Le Sacre du
Printemps. As much as I want to fathom it all, any sort of understand-
ing that might be complete eludes me. I’'ve met the people who can think
in thoughts longer than a few pages—and I am not of them.

That said, I have my good points. And as of now, the world has
4,500 more words in it.!° That’s worth something; even if they’re lousy
words, they might be a useful bad example to someone. Perhaps, for all
their jargon, they managed to entertain, amuse, or evoke. And I do have
a content management system that is beginning to work for me, that is
showing me the limits in my prose, paving the way for future work, and
letting me do some of the things with words that I could not do before,
and doing it in such a way that it is invisible to most readers, creating an
experience that is focused on the author’s ideas, and not on the medium
in which I work.

That is what is most painful about a new medium: how much the
work is about the medium itself. Weblogs are a pure example: there is a
significant percentage of weblogging that is about weblogging, as people
figure out what to do with the new forms, much as when people, faced
with a microphone, will say, “I am talking into the microphone, hello,
on the microphone, me, hey, microphone. Microphone. Hey. Me. I'm
here. Talking. Hi there, on the microphone. That’s me, talking. Please
check out my blog.” As any toddler’s parents will tell you, narcissistic
self-consciousness is a part of early growth, and it will take years before
we get it out of our collective systems, but eventually people will realize
the value of saying something besides “I am saying something,” and we
can go from there. The medium may be the message, but the message is
also the message.

10. More like 5,600. — Ed.

PaurL Forp 93

Me, I figure I can keep working in this vein (until I go broke), suffer-
ing from the same navel-gazing as everyone else, figuring out how to
broadcast my signal without getting too bogged down in the machinery
for the broadcasting, without whipping myself over my own ignorance
more than a few hours a day. I'll always be stupid, given the scope of
human thought, but I can try to avoid making a botched job of it, and
it’s not like I could ever stop with so many things to figure through. Like
the fool says: you know, it can be beautiful.

1.

Paul Grabam
GREAT HACKERS'

There’s no doubt that a software project won’t succeed without the
right programming superstars. Paul Grabam calls those superstars
hackers and has been thinking about what hackers have in common.

When this article first appeared, it was enormously controver-
sial, mainly because Paul implies that anyone who programs in
Java or who writes code for Windows could not possibly be a good
hacker. I disagree with that observation strongly; I guess Paul does-
n’t know the same people I know. The great hackers I know are
also the smartest students, so they go to top schools, where they
learn Unix, which they tend to prefer out of familiarity. And many
people use Visual Basic or Java because they’re not great hackers
and those languages let regular people get workable programs
written.

But the really great hackers aren’t prima donnas about their
tools, and they will use the tool that solves the problem at hand.
I'm far more impressed by someone who does something brilliant
with a terrible programming environment than someone who
won’t work on the problems that need to be solved because the
solution cannot be expressed in Python.

Anyway, don’t let that distract you from paying attention to
what is otherwise a very important essay by one of the great writ-
ers about software development today. — Ed.

Paul Graham, “Great Hackers,” July 2004. See http://paulgraham.com/gh.html.

96 THE BEST SOFTWARE WRITING |

(THIS ESSAY 1S DERIVED FROM A KEYNOTE TALK AT OSCON 2004.)

few months ago I finished a new book, and in reviews I keep notic-

ing words like “provocative” and “controversial.” To say nothing of
“idiotic.” T didn’t mean to make the book controversial. T was trying to
make it efficient. I didn’t want to waste people’s time telling them things
they already knew. It’s more efficient just to give them the diffs.? But I
suppose that’s bound to yield an alarming book.

Edisons

There’s no controversy about which idea is most controversial: the sug-
gestion that variation in wealth might not be as big a problem as we think.

I didn’t say in the book that variation in wealth was in itself a good
thing. I said in some situations it might be a sign of good things. A throb-
bing headache is not a good thing, but it can be a sign of a good thing—for
example, that you’re recovering consciousness after being hit on the
head.

Variation in wealth can be a sign of variation in productivity. (In a
society of one, they’re identical.) And that is almost certainly a good
thing: if your society has no variation in productivity, it’s probably not
because everyone is Thomas Edison. It’s probably because you have no
Thomas Edisons.

In a low-tech society you don’t see much variation in productivity. If
you have a tribe of nomads collecting sticks for a fire, how much more
productive is the best stick gatherer going to be than the worst? A factor
of two? Whereas when you hand people a complex tool like a computer,
the variation in what they can do with it is enormous.

2. “Diffs” are the lines of code that have changed from one version of a program to the
next. — Ed.

Paur GRaAHAM 97

That’s not a new idea. Fred Brooks wrote about it in 1974,3 and the
study he quoted was published in 1968. But I think he underestimated
the variation between programmers. He wrote about productivity in
lines of code: the best programmers can solve a given problem in a tenth
of the time. But what if the problem isn’t given? In programming, as in
many fields, the hard part isn’t solving problems, but deciding what
problems to solve. Imagination is hard to measure, but in practice it
dominates the kind of productivity that’s measured in lines of code.

Productivity varies in any field, but there are few in which it varies so
much. The variation between programmers is so great that it becomes a
difference in kind. I don’t think this is something intrinsic to program-
ming, though. In every field, technology magnifies differences in
productivity. I think what’s happening in programming is just that we
have a lot of technological leverage. But in every field the lever is getting
longer, so the variation we see is something that more and more fields
will see as time goes on. And the success of companies, and countries,
will depend increasingly on how they deal with it.

If variation in productivity increases with technology, then the
contribution of the most productive individuals will not only be dispro-
portionately large but will actually grow with time. When you reach the
point where 90% of a group’s output is created by 1% of its members,
you lose big if something (whether Viking raids, or central planning)
drags their productivity down to the average.

If we want to get the most out of them, we need to understand these
especially productive people. What motivates them? What do they need
to do their jobs? How do you recognize them? How do you get them to
come and work for you? And then of course there’s the question, how do
you become one?

More than Money

I know a handful of super-hackers, so I sat down and thought about
what they have in common. Their defining quality is probably that they

3. ...in his book The Mythical Man Month. - Ed.

98 THE BEST SOFTWARE WRITING |

really love to program. Ordinary programmers write code to pay the
bills. Great hackers think of it as something they do for fun, and which
they’re delighted to find people will pay them for.

Great programmers are sometimes said to be indifferent to money.
This isn’t quite true. It is true that all they really care about is doing
interesting work. But if you make enough money, you get to work on
whatever you want, and for that reason hackers are attracted by the idea
of making really large amounts of money. But as long as they still have
to show up for work every day, they care more about what they do there
than how much they get paid for it.

Economically, this is a fact of the greatest importance, because it
means you don’t have to pay great hackers anything like what they’re
worth. A great programmer might be ten or a hundred times as produc-
tive as an ordinary one, but he’ll consider himself lucky to get paid three
times as much. As I’ll explain later, this is partly because great hackers
don’t know how good they are. But it’s also because money is not the
main thing they want.

What do hackers want? Like all craftsmen, hackers like good tools.
In fact, that’s an understatement. Good hackers find it unbearable to use
bad tools. They’ll simply refuse to work on projects with the wrong
infrastructure.

At a startup I once worked for, one of the things pinned up on our
bulletin board was an ad from IBM. It was a picture of an AS400,* and
the headline read “despised by hackers.”®

When you decide what infrastructure to use for a project, you’re not
just making a technical decision. You’re also making a social decision,
and this may be the more important of the two. For example, if your
company wants to write some software, it might seem a prudent choice
to write it in Java. But when you choose a language, you’re also choos-
ing a community. The programmers you’ll be able to hire to work on a
Java project won’t be as smart as the ones you could get to work on a
project written in Python. And the quality of your hackers probably

4. A smaller version of the IBM mainframe, designed to run the same programs that main-
frames run on less expensive hardware. Almost entirely used by businesses for boring
business stuff. — Ed.

5. In fairness, I have to say that IBM makes decent hardware. I wrote this on an IBM laptop.

Paur GRAHAM 99

matters more than the language you choose. Though, frankly, the fact
that good hackers prefer Python to Java should tell you something about
the relative merits of those languages.

Business types prefer the most popular languages because they view
languages as standards. They don’t want to bet the company on
Betamax. The thing about languages, though, is that they’re not just
standards. If you have to move bits over a network, by all means use
TCP/IP. But a programming language isn’t just a format. A program-
ming language is a medium of expression.

I’ve read that Java has just overtaken Cobol as the most popular lan-
guage. As a standard, you couldn’t wish for more. But as a medium of
expression, you could do a lot better. Of all the great programmers I can
think of, T know of only one who would voluntarily program in Java.
And of all the great programmers I can think of who don’t work for Sun,
on Java, I know of zero.

Great hackers also generally insist on using open source software.
Not just because it’s better, but because it gives them more control.
Good hackers insist on control. This is part of what makes them good
hackers: when something’s broken, they need to fix it. You want them to
feel this way about the software they’re writing for you. You shouldn’t
be surprised when they feel the same way about the operating system.

A couple years ago a venture capitalist friend told me about a new
startup he was involved with. It sounded promising. But the next time I
talked to him, he said they’d decided to build their software on
Windows NT, and had just hired a very experienced NT developer to be
their chief technical officer. When I heard this, I thought, these guys are
doomed. One, the CTO couldn’t be a first-rate hacker, because to
become an eminent NT developer he would have had to use NT volun-
tarily, multiple times, and I couldn’t imagine a great hacker doing that;
and two, even if he was good, he’d have a hard time hiring anyone good
to work for him if the project had to be built on NT.®

6. They did turn out to be doomed. They shut down a few months later.

100 THE BEST SOFTWARE WRITING |

The Final Frontier

After software, the most important tool to a hacker is probably his
office. Big companies think the function of office space is to express
rank. But hackers use their offices for more than that: they use their
office as a place to think in. And if you’re a technology company, their
thoughts are your product. So making hackers work in a noisy, distract-
ing environment is like having a paint factory where the air is full of
SOot.

The cartoon strip Dilbert has a lot to say about cubicles, and with
good reason. All the hackers I know despise them. The mere prospect of
being interrupted is enough to prevent hackers from working on hard
problems. If you want to get real work done in an office with cubicles,
you have two options: work at home, or come in early or late or on a
weekend, when no one else is there. Don’t companies realize this is a sign
that something is broken? An office environment is supposed to be
something you work in, not something you work despite.

Companies like Cisco are proud that everyone there has a cubicle,
even the CEO. But they’re not so advanced as they think; obviously they
still view office space as a badge of rank. Note too that Cisco is famous
for doing very little product development in house. They get new tech-
nology by buying the startups that created it—where presumably the
hackers did have somewhere quiet to work.

One big company that understands what hackers need is Microsoft.
I once saw a recruiting ad for Microsoft with a big picture of a door.
Work for us, the premise was, and we’ll give you a place to work where
you can actually get work done. And you know, Microsoft is remarkable
among big companies in that they are able to develop software in house.
Not well, perhaps, but well enough.

If companies want hackers to be productive, they should look at
what they do at home. At home, hackers can arrange things themselves
so they can get the most done. And when they work at home, hackers
don’t work in noisy, open spaces; they work in rooms with doors. They
work in cozy, neighborhoody places with people around and somewhere
to walk when they need to mull something over, instead of in glass boxes
set in acres of parking lots. They have a sofa they can take a nap on

Paur GrRanam 101

when they feel tired, instead of sitting in a coma at their desk, pretend-
ing to work. There’s no crew of people with vacuum cleaners that roars
through every evening during the prime hacking hours. There are no
meetings or, God forbid, corporate retreats or team-building exercises.
And when you look at what they’re doing on that computer, you’ll find
it reinforces what I said earlier about tools. They may have to use Java
and Windows at work, but at home, where they can choose for them-
selves, you’re more likely to find them using Perl and Linux.

Indeed, these statistics about Cobol or Java being the most popular
language can be misleading. What we ought to look at, if we want to
know what tools are best, is what hackers choose when they can choose
freely—that is, in projects of their own. When you ask that question,
you find that open source operating systems already have a dominant
market share, and the number one language is probably Perl.

Interesting

Along with good tools, hackers want interesting projects. What makes a
project interesting? Well, obviously overtly sexy applications like stealth
planes or special effects software would be interesting to work on. But
any application can be interesting if it poses novel technical challenges.
So it’s hard to predict which problems hackers will like, because some
become interesting only when the people working on them discover a
new kind of solution. Before ITA (who wrote the software inside
Orbitz), the people working on airline fare searches probably thought it
was one of the most boring applications imaginable. But ITA made it
interesting by redefining the problem in a more ambitious way.

I think the same thing happened at Google. When Google was
founded, the conventional wisdom among the so-called portals was that
search was boring and unimportant. But the guys at Google didn’t think
search was boring, and that’s why they do it so well.

This is an area where managers can make a difference. Like a parent
saying to a child, T bet you can’t clean up your whole room in ten min-
utes, a good manager can sometimes redefine a problem as a more
interesting one. Steve Jobs seems to be particularly good at this, in part

102 THE BEST SOFTWARE WRITING |

simply by having high standards. There were a lot of small, inexpensive
computers before the Mac. He redefined the problem as: make one that’s
beautiful. And that probably drove the developers harder than any car-
rot or stick could.

They certainly delivered. When the Mac first appeared, you didn’t
even have to turn it on to know it would be good; you could tell from
the case. A few weeks ago I was walking along the street in Cambridge,
and in someone’s trash I saw what appeared to be a Mac carrying case.
I looked inside, and there was a Mac SE. I carried it home and plugged
it in, and it booted. The happy Macintosh face, and then the finder. My
God, it was so simple. It was just like ... Google.

Hackers like to work for people with high standards. But it’s not
enough just to be exacting. You have to insist on the right things. Which
usually means that you have to be a hacker yourself. I’'ve seen occasional
articles about how to manage programmers. Really there should be two
articles: one about what to do if you are yourself a programmer, and one
about what to do if you’re not. And the second could probably be con-
densed into two words: give up.

The problem is not so much the day-to-day management. Really
good hackers are practically self-managing. The problem is, if you’re not
a hacker, you can’t tell who the good hackers are. A similar problem
explains why American cars are so ugly. I call it the design paradox. You
might think that you could make your products beautiful just by hiring
a great designer to design them. But if you yourself don’t have good
taste, how are you going to recognize a good designer? By definition you
can’t tell from his portfolio. And you can’t go by the awards he’s won or
the jobs he’s had, because in design, as in most fields, those tend to be
driven by fashion and schmoozing, with actual ability a distant third.
There’s no way around it: you can’t manage a process intended to pro-
duce beautiful things without knowing what beautiful is. American cars
are ugly because American car companies are run by people with bad
taste.

Many people in this country think of taste as something elusive, or
even frivolous. It is neither. To drive design, a manager must be the most
demanding user of a company’s products. And if you have really good
taste, you can, as Steve Jobs does, make satisfying you the kind of prob-
lem that good people like to work on.

Paur GrRanam 103

Nasty Little Problems

It’s pretty easy to say what kinds of problems are not interesting: those
where instead of solving a few big, clear, problems, you have to solve a
lot of nasty little ones. One of the worst kinds of projects is writing an
interface to a piece of software that’s full of bugs. Another is when you
have to customize something for an individual client’s complex and
ill-defined needs. To hackers these kinds of projects are the death of a
thousand cuts.

The distinguishing feature of nasty little problems is that you don’t
learn anything from them. Writing a compiler is interesting because it
teaches you what a compiler is. But writing an interface to a buggy piece
of software doesn’t teach you anything, because the bugs are random.”
So it’s not just fastidiousness that makes good hackers avoid nasty little
problems. It’s more a question of self-preservation. Working on nasty
little problems makes you stupid. Good hackers avoid it for the same
reason models avoid cheeseburgers.

Of course some problems inherently have this character. And because
of supply and demand, they pay especially well. So a company that
found a way to get great hackers to work on tedious problems would be
very successful. How would you do it?

One place this happens is in startups. At our startup we had Robert
Morris working as a system administrator.® That’s like having the
Rolling Stones play at a bar mitzvah. You can’t hire that kind of talent.
But people will do any amount of drudgery for companies of which
they’re the founders.’

7. 1think this is what people mean when they talk about the “meaning of life.” On the face
of it, this seems an odd idea. Life isn’t an expression; how could it have meaning? But it
can have a quality that feels a lot like meaning. In a project like a compiler, you have to
solve a lot of problems, but the problems all fall into a pattern, as in a signal. Whereas
when the problems you have to solve are random, they seem like noise.

8. Robert Morris is one of the leading experts on Unix networking. He is now a professor at
MIT. - Ed.

9. Einstein at one point worked designing refrigerators. (He had equity.)

104 THE BEST SOFTWARE WRITING |

Bigger companies solve the problem by partitioning the company.
They get smart people to work for them by establishing a separate R&D
department where employees don’t have to work directly on customers’
nasty little problems.!? In this model, the research department functions
like a mine. They produce new ideas; maybe the rest of the company will
be able to use them.

You may not have to go to this extreme. Bottom-up programming
suggests another way to partition the company: have the smart people
work as toolmakers. If your company makes software to do x, have one
group that builds tools for writing software of that type, and another
that uses these tools to write the applications. This way you might be
able to get smart people to write 99% of your code, but still keep them
almost as insulated from users as they would be in a traditional research
department. The toolmakers would have users, but they’d only be the
company’s own developers.!!

If Microsoft used this approach, their software wouldn’t be so full of
security holes, because the less-smart people writing the actual applica-
tions wouldn’t be doing low-level stuff like allocating memory. Instead
of writing Word directly in C, they’d be plugging together big Lego
blocks of Word-language. (Duplo, I believe, is the technical term.)

Clumping

Along with interesting problems, what good hackers like is other good
hackers. Great hackers tend to clump together—sometimes spectacularly
s0, as at Xerox Parc. So you won’t attract good hackers in linear propor-
tion to how good an environment you create for them. The tendency to

10. It’s hard to say exactly what constitutes research in the computer world, but as a first
approximation, it’s software that doesn’t have users.

11. Something similar has been happening for a long time in the construction industry. When
you had a house built a couple hundred years ago, the local builders built everything in it.
But increasingly what builders do is assemble components designed and manufactured by
someone else. This has, like the arrival of desktop publishing, given people the freedom to
experiment in disastrous ways, but it is certainly more efficient.

Paur GrRanam 105

clump means it’s more like the square of the environment. So it’s winner
take all. At any given time, there are only about ten or twenty places
where hackers most want to work, and if you aren’t one of them, you
won’t just have fewer great hackers, you’ll have zero.

Having great hackers is not, by itself, enough to make a company
successful. It works well for Google and ITA, which are two of the hot
spots right now, but it didn’t help Thinking Machines or Xerox. Sun had
a good run for a while, but their business model is a down elevator. In
that situation, even the best hackers can’t save you.

I think, though, that all other things being equal, a company that can
attract great hackers will have a huge advantage. There are people who
would disagree with this. When we were making the rounds of venture
capital firms in the 1990s, several told us that software companies didn’t
win by writing great software, but through brand, and dominating chan-
nels, and doing the right deals.

They really seemed to believe this, and I think I know why. I think
what a lot of VCs are looking for, at least unconsciously, is the next
Microsoft. And of course if Microsoft is your model, you shouldn’t be
looking for companies that hope to win by writing great software. But
VCs are mistaken to look for the next Microsoft, because no startup can
be the next Microsoft unless some other company is prepared to bend
over at just the right moment and be the next IBM.

It’s a mistake to use Microsoft as a model, because their whole cul-
ture derives from that one lucky break. Microsoft is a bad data point. If
you throw them out, you find that good products do tend to win in the
market. What VCs should be looking for is the next Apple, or the next
Google.

I think Bill Gates knows this. What worries him about Google is not
the power of their brand, but the fact that they have better hackers.!?

12. Google is much more dangerous to Microsoft than Netscape was. Probably more danger-
ous than any other company has ever been. Not least because they’re determined to fight.
On their job listing page, they say that one of their “core values” is “Don’t be evil.” From
a company selling soybean oil or mining equipment, such a statement would merely be
eccentric. But I think all of us in the computer world recognize who that is a declaration
of war on.

106 THE BEST SOFTWARE WRITING |

Recognition

So who are the great hackers? How do you know when you meet one?
That turns out to be very hard. Even hackers can’t tell. 'm pretty sure
now that my friend Trevor Blackwell is a great hacker. You may have
read on Slashdot how he made his own Segway. The remarkable thing
about this project was that he wrote all the software in one day (in
Python, incidentally).

For Trevor, that’s par for the course. But when I first met him, I
thought he was a complete idiot. He was standing in Robert Morris’s
office babbling at him about something or other, and I remember stand-
ing behind him making frantic gestures at Robert to shoo this nut out of
his office so we could go to lunch. Robert says he misjudged Trevor at
first too. Apparently when Robert first met him, Trevor had just begun
a new scheme that involved writing down everything about every aspect
of his life on a stack of index cards, which he carried with him every-
where. He’d also just arrived from Canada, and had a strong Canadian
accent and a mullet.

The problem is compounded by the fact that hackers, despite their
reputation for social obliviousness, sometimes put a good deal of effort
into seeming smart. When I was in grad school I used to hang around the
MIT Al Lab occasionally. It was kind of intimidating at first. Everyone
there spoke so fast. But after a while I learned the trick of speaking fast.
You don’t have to think any faster; just use twice as many words to say
everything.

With this amount of noise in the signal, it’s hard to tell good hackers
when you meet them. I can’t tell, even now. You also can’t tell from their
resumes. It seems like the only way to judge a hacker is to work with him
on something.

And this is the reason that high-tech areas only happen around uni-
versities. The active ingredient here is not so much the professors as the
students. Startups grow up around universities because universities
bring together promising young people and make them work on the
same projects. The smart ones learn who the other smart ones are, and
together they cook up new projects of their own.

Paur GrRanam 107

Because you can’t tell a great hacker except by working with him,
hackers themselves can’t tell how good they are. This is true to a degree
in most fields. I’ve found that people who are great at something are not
so much convinced of their own greatness as mystified at why everyone
else seems so incompetent.

But it’s particularly hard for hackers to know how good they are,
because it’s hard to compare their work. This is easier in most other
fields. In the hundred meters, you know in 10 seconds who’s fastest.
Even in math there seems to be a general consensus about which prob-
lems are hard to solve, and what constitutes a good solution. But
hacking is like writing. Who can say which of two novels is better?
Certainly not the authors.

With hackers, at least, other hackers can tell. That’s because, unlike
novelists, hackers collaborate on projects. When you get to hit a few dif-
ficult problems over the net at someone, you learn pretty quickly how
hard they hit them back. But hackers can’t watch themselves at work. So
if you ask a great hacker how good he is, he’s almost certain to reply, I
don’t know. He’s not just being modest. He really doesn’t know.

And none of us know, except about people we’ve actually worked
with. Which puts us in a weird situation: we don’t know who our heroes
should be. The hackers who become famous tend to become famous by
random accidents of PR. Occasionally I need to give an example of a
great hacker, and I never know who to use. The first names that come to
mind always tend to be people I know personally, but it seems lame to
use them. So, I think, maybe I should say Richard Stallman, or Linus
Torvalds, or Alan Kay, or someone famous like that. But I have no idea
if these guys are great hackers. I’'ve never worked with them on any-
thing.

If there is a Michael Jordan of hacking, no one knows, including him.

Cultivation

Finally, the question the hackers have all been wondering about: how do
you become a great hacker? I don’t know if it’s possible to make your-
self into one. But it’s certainly possible to do things that make you

108 THE BEST SOFTWARE WRITING |

stupid, and if you can make yourself stupid, you can probably make
yourself smart too.

The key to being a good hacker may be to work on what you like.
When I think about the great hackers I know, one thing they have in
common is the extreme difficulty of making them work on anything they
don’t want to. I don’t know if this is cause or effect; it may be both.

To do something well you have to love it. So to the extent you can
preserve hacking as something you love, you’re likely to do it well. Try
to keep the sense of wonder you had about programming at age 14. If
you’re worried that your current job is rotting your brain, it probably is.

The best hackers tend to be smart, of course, but that’s true in a lot
of fields. Is there some quality that’s unique to hackers? I asked some
friends, and the number one thing they mentioned was curiosity. I'd
always supposed that all smart people were curious—that curiosity was
simply the first derivative of knowledge. But apparently hackers are par-
ticularly curious, especially about how things work. That makes sense,
because programs are in effect giant descriptions of how things work.

Several friends mentioned hackers’ ability to concentrate—their abil-
ity, as one put it, to “tune out everything outside their own heads.” I’ve
certainly noticed this. And I’ve heard several hackers say that after
drinking even half a beer they can’t program at all. So maybe hacking
does require some special ability to focus. Perhaps great hackers can
load a large amount of context into their head, so that when they look
at a line of code, they see not just that line but the whole program
around it. John McPhee wrote that Bill Bradley’s success as a basketball
player was due partly to his extraordinary peripheral vision. “Perfect”
eyesight means about 47 degrees of vertical peripheral vision. Bill
Bradley had 70; he could see the basket when he was looking at the
floor. Maybe great hackers have some similar inborn ability. (I cheat by
using a very dense language, which shrinks the court.)

This could explain the disconnect over cubicles. Maybe the people in
charge of facilities, not having any concentration to shatter, have no idea
that working in a cubicle feels to a hacker like having one’s brain in a
blender. (Whereas Bill, if the rumors of autism are true, knows all too
well.)

One difference I've noticed between great hackers and smart people
in general is that hackers are more politically incorrect. To the extent
there is a secret handshake among good hackers, it’s when they know

Paur GrRanam 109

one another well enough to express opinions that would get them stoned
to death by the general public. And I can see why political incorrectness
would be a useful quality in programming. Programs are very complex
and, at least in the hands of good programmers, very fluid. In such situ-
ations it’s helpful to have a habit of questioning assumptions.

Can you cultivate these qualities? T don’t know. But you can at least
not repress them. So here is my best shot at a recipe. If it is possible to
make yourself into a great hacker, the way to do it may be to make the
following deal with yourself: you never have to work on boring projects
(unless your family will starve otherwise), and in return, you’ll never
allow yourself to do a half-assed job. All the great hackers I know seem
to have made that deal, though perhaps none of them had any choice in
the matter.

Thanks to Jessica Livingston, Robert Morris, and Sarah Harlin for read-
ing earlier versions of this talk.

Jobhn Gruber

THE LOCATION FIELD IS THE
NEW COMMAND LINE'

[used to hate the idea that application development was moving to
the Web. Web browser-based interfaces, to me, were a huge step
backward, hailing back to the generation of mainframes with their
awful CICS interfaces. You get a form, you fill it out, you press
Enter, and you wait a few seconds while a mainframe in Dubuque
decides what form you get to fill out next.

Gaaaaaaaah!

But I'm coming around. Browsers have gotten a lot better, every-
body has upgraded, and the web development community has stopped
worrying about poor old Aunt Marge still running Netscape 0.9.
Creative programmers have shown us breathtakingly interactive user
interfaces built on the Web, like Flickr (http://www.flickr.com) and
Google Maps (http://maps.google.com), using Flash or Ajax* to
create a web page you can interact with in ways other than sub-
mitting a form and waiting for a whole new web page to arrive.

In terms of interactivity, it turns out drag and drop and fast
keyboard interfaces weren’t that important after all. Drag and
drop was completely nondiscoverable and required 25 minutes of
window arrangement before you could begin. Aunt Marge really
just wanted to click on a menu instead of memorizing keyboard

1. John Gruber, “The Location Field Is the New Command Line,” Daring Fireball
(http://daringfireball.net), June 22, 2004. See http://daringfireball.net/
2004/06/1location_field.

2. Asynchronous JavaScript and XmlHttpRequest

112 THE BEST SOFTWARE WRITING |

shortcuts. And the web-based applications turned out to be far
more popular than the—seemingly more ergonomic—Windows
user interfaces.

This does not bode well for Microsoft. To their credit, they saw
this coming long before anyone else, back when Marc Andreessen
was calling Windows “a set of poorly debugged device drivers”
and nobody else got what that meant. And their strategy for com-
bating it was surprisingly brave, the equivalent of sacrificing a
queen in chess: they had to make their own web browser, make it
so much better that everybody used it and the competition was
wiped out, but not efficient enough that it could replace Windows
for rich application development. That was a very brave move that
worked for about three years, but ultimately, you can’t beat back
the tide with a stick, and programmers got creative; that
XmlHttpRequest thing got in there somehow, and Microsoft over-
estimated how much the average user appreciated the little niceties
of the Windows user interface. — Ed.

hen you publish your opinions on a regular basis, it’s hard to
resist the urge to gloat after you’ve been proven correct. It’s also
rather easy to ignore the times when you’ve been proven wrong.

It’s a good thing I wasn’t publishing essays on software back in the
mid-to-late *90s, because if I had been, I’d currently be eating an awful
lot of crow with regard to what I would have written about the Web’s
potential as an application platform.

At that time, at the peak of the Netscape-Microsoft browser war, the
conventional wisdom was that the Web was the future of application
development. The technology certainly didn’t yet exist, but the idea was
that Netscape’s web browser posed a serious threat to Microsoft’s
Windows monopoly—that at some point in the future, user applications
would be written to run within the browser.

Thus, Microsoft’s incredible change of course, going from more or
less ignoring the Internet to completely dominating it within a few years.
The idea was that Microsoft killed Netscape because Microsoft saw
them as a threat to Windows.

Joun GruBer 113

Me, however, I just didn’t buy it. I completely saw the potential of the
Web as a publishing medium, but I just didn’t see how the Web was ever
going to serve as a high-quality application development environment.
The way I saw it, Microsoft killed Netscape not because it was a threat
to Windows, but simply because they (Microsoft) wanted control over
this new publishing medium.

I simply couldn’t have been more wrong. The conventional wisdom
was in fact correct—the Web has turned into a popular application
development environment. Where I’d gone wrong was in getting hung
up on the idea of it needing to be high quality before it could become
popular.

I was thinking in terms of the apps that I used every day, circa 1996:
BBEdit, QuarkXPress, Photoshop, Eudora. There was simply no way
that a “web app” could ever provide the same quality experience as the
“real” apps I was already using. And I was right about that—the user
experience of any app running in a web browser is crippled.

What I’d overlooked is that most people don’t use advanced text
editors or desktop publishing software; and more important, most
people simply don’t care about the quality of an app’s user experience.
Not at all. They just want it to work, and to be “easy.”

My saying that web apps would never become popular was like a
theater critic in the early 1950s dismissing television.

The user-experience limitations of a web app are glaringly obvious.
They simply don’t look or act like normal desktop apps. The browser in
which they’re running—that’s a normal app. But the web apps running
within the browser aren’t. They don’t have menu bars or keyboard
shortcuts. (The browser itself does.) This isn’t about being “Mac-like”—
it applies equally to Windows and open source desktop platforms.
Instead of looking and feeling like real Mac/Windows/Linux desktop
apps, web apps look and feel like web pages.

The persnickety little UI details T obsess over—these are nothing
compared to the massive deficiencies of even the best web app. But most
people don’t care, because web apps are just so damned easy to use.
What’s interesting is that web apps are “easy” despite their glaring user-
experience limitations.

What they’ve got going for them in the ease-of-use department is that
they don’t need to be installed, and they free you from worrying about
where and how your data is stored. Exhibit A: web-based email apps.

114 THE BEST SOFTWARE WRITING |

In terms of features, especially comfort features such as a polished Ul,
drag and drop, and a rich set of keyboard shortcuts, web-based email
clients just can’t compare to desktop email clients.

But...

With web-based email, you can get your email from any browser on
any computer on the Internet. “Installation” consists of typing a URL
into the browser’s location field. The location field is the new command
line.

Google’s Gmail has turned the competition up a notch by providing
a few features that actually do compare well against desktop email
clients—fast, accurate search (of course), and a very nice threaded dis-
play for discussions. Gmail also offers a bunch of keyboard shortcuts,
implemented in JavaScript, but as Mark Pilgrim described them in his
Gmail review,® they “[appear] to have been designed by vi* users (j
moves down, k moves up, and we are expected to memorize multi-key
sequences for navigation).”

Gmail’s threading and searching are indeed nice, but its overall look
and feel is far inferior to that of a real desktop mail client. What it has
going for it is what all webmail apps have—zero installation, zero main-
tenance, access from any computer, anywhere (including from work, a
major factor for personal email). Gmail is simply better than the other
major web-based mail apps; but Yahoo and Hotmail and the others are
still ragingly popular.

What I neglected to realize when I dismissed them a decade ago is
that web apps don’t need to beat desktop apps on the same terms.
What’s happened is that they’re beating them on an entirely different set
of terms. It’s all about the fact that you just type the URL and there’s
your email.

3. See http://diveintomark.org/archives/2004/04/10/gmail-accessibility.

4. An ancient Unix text editor designed before arrow keys on the keyboard were widely
available — Ed.

Joun GruBer 115

Who Loses As Web Apps Win?

What got me thinking about this was Joel Spolsky’s “How Microsoft
Lost the API War,”> a terrific essay published last week. The gist of
Spolsky’s argument is that Microsoft’s crown jewel is the Win32 APT—
the set of programming interfaces that developers use to write desktop
Windows software—and that web app development is gaining momen-
tum, at the direct expense of Win32 development.

The reason the Win32 API is so important to Microsoft’s Windows
monopoly is dependence: if your company relies on Win32 software,
then it also relies on Windows. And conversely, as a developer, writing
against the Win32 APIs allows your software to run on over 90 percent
of the computers in the world. That’s the cycle that built a $50 billion
pile of cash—customers use Windows because that’s where the software
is, and developers write Windows software because that’s where the cus-
tomers are.

Switching to, say, Mac OS X is an expensive proposition for a large
corporation. Not only do you need all-new hardware, but you also need
all-new software. And we’re not just talking about buying new
licenses—for large corporations, we’re also talking about custom apps
written in-house (what do you think all those Visual Basic developers
have been writing all these years?).

Switching to open source desktops—KDE or Gnome or what have
you—is also expensive. No, you don’t need new hardware, but you still
run into the same situation with regard to software. (Yes, I know—you
can run Win32 apps on Linux using the Wine Win32 emulator,® or with
Virtual PC for Macs, but these are second-class Win32 environments.
I’m not saying it can’t be done, just that it’s unappealing.)

5. From Joel on Software, Apress 2004. Also online at http://www. joelonsoftware.com/
articles/APIWar.html.

6. See http://www.winehq.com/.

116 THE BEST SOFTWARE WRITING |

Switching to web applications, however—well, that’s different. It can
be done gradually, because you can switch one app at a time while still
running Windows, and thus while still running all your other Win32
software.

It’s not so much that switching to web apps is cheap as that it’s easy.
In fact, in many ways, switching your employees to web apps is even eas-
ier than upgrading the Win32 apps they’re already using. That is, it’s
easier for corporations to migrate to web apps than it is for them to stay
Windows only.

Web apps are easier to deploy. No need to install software on each
client machine; there’s just one instance of the app, on a web server.
Every user gets the latest version of the software, automatically.

Custom web apps are easier to develop than custom desktop apps.
That’s not to say it’s easy to make a web app that looks and feels like a
desktop app—that’s not really even possible. But it’s easy to write a web
app that looks and feels like a web page, which is apparently good
enough for most purposes, especially data-entry and data-retrieval apps
that tie into server-hosted SQL databases.

And if you think the 90 percent market share of computers that can
run Win32 software is huge—how many computers do you think run a
typical web app?

Most email web apps (e.g., Gmail and Yahoo Mail) run on any com-
puter with Internet Explorer, Safari, or any Mozilla-derived browser.
Most weblog web apps (e.g., Blogger, Movable Type, WordPress, and
Textpattern) run in every browser I’ve ever tried. These apps are effec-
tively usable from any Internet-connected computer in the world.

I’ve been thinking about the rise of the Web as an application plat-
form for a while. But what hadn’t occurred to me until I read Spolsky’s
essay last week is this, which I think is quite remarkable: Microsoft
totally screwed up when they took aim at Netscape. It wasn’t Netscape
that was a threat to Windows as an application platform—it was the
Web itself.

They spent all that time, money, and development effort on IE, build-
ing a browser monopoly and crushing Netscape—but to what avail?
Here we are, and the Web is still gaining developer mindshare at the
expense of Win32.

Joun~ GruBer 117

There are certainly exceptions—banking sites come to mind—but for
the most part, web apps are being built to run in any modern browser,
not just IE.

I think Spolsky is very much correct that Microsoft is losing the API
war. But what’s ironic is that they’re losing this war despite the fact that
they won the browser war. Winning the browser war—destroying
Netscape—was supposed to prevent there ever even being an API war.

Gregor Hohpe

STARBUCKS DOES NOT USE
TWO-PHASE COMMIT!

Many years ago, 1 was working at an ISP that was rolling out a
new DSL service. Of course, they could not possibly have actually
provided the DSL service themselves. That would have required
vans and technicians and spli