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Introduction

The existence of cosmic strings was first proposed in 1976 by Tom Kibble, who
drew on the theory of line vortices in superconductors to predict the formation
of similar structures in the Universe at large as it expanded and cooled during
the early phases of the Big Bang. The critical assumption is that the strong and
electroweak forces were first isolated by a symmetry-breaking phase transition
which converted the energy of the Higgs field into the masses of fermions and
vector bosons. Under certain conditions, it is possible that some of the Higgs
field energy remained in thin tubes which stretched across the early Universe.
These are cosmic strings.

The masses and dimensions of cosmic strings are largely determined by the
energy scale at which the relevant phase transition occurred. The grand unification
(GUT) energy scale is at present estimated to be about 1015 GeV, which indicates
that the GUT phase transition took place some 10−37–10−35 s after the Big Bang,
when the temperature of the Universe was of the order of 1028 K. The thickness of
a cosmic string is typically comparable to the Compton wavelength of a particle
with GUT mass or about 10−29 cm. This distance is so much smaller than the
length scales important to astrophysics and cosmology that cosmic strings are
usually idealized to have zero thickness.

The mass per unit length of such a string, conventionally denoted µ, is
proportional to the square of the energy scale, and in the GUT case has a value
of about 1021 g cm−1. There is no restriction on the length of a cosmic string,
although in the simplest theories a string can have no free ends and so must
either be infinite or form a closed loop. A GUT string long enough to cross
the observable Universe would have a mass within the horizon of about 1016 M�,
which is no greater than the mass of a large cluster of galaxies.

Interest in cosmic strings intensified in 1980–81, when Yakov Zel’dovich
and Alexander Vilenkin independently showed that the density perturbations
generated in the protogalactic medium by GUT strings would have been large
enough to account for the formation of galaxies. Galaxy formation was then (and
remains now) one of the most vexing unsolved problems facing cosmologists. The
extreme isotropy of the microwave background indicates that the early Universe
was very smooth. Yet structure has somehow developed on all scales from
the planets to clusters and superclusters of galaxies. Such structure cannot be

ix



x Introduction

adequately explained by random fluctuations in the density of the protogalactic
medium unless additional ad hoc assumptions about the process of galaxy
formation are made.

Cosmic strings, which would appear spontaneously at a time well before the
epoch of galaxy formation, therefore provided an attractive alternative mechanism
for the seeding of galaxies. The first detailed investigations of the string-seeded
model were based on the assumption that the initial string network quickly
evolved towards a ‘scaling solution’, dominated by a hierarchy of closed loops
which formed as a by-product of the collision and self-intersection of long
(horizon-sized) strings, and whose energy scaled as a constant fraction of the total
energy density of the early, radiation-dominated Universe. With the additional
assumption that each loop was responsible for the formation of a single object,
the model could readily account for the numbers and masses of the galaxies, and
could also explain the observed filamentary distribution of galaxy clusters across
the sky.

Despite its initial promise, however, this rather naive model later fell into
disfavour. More recent high-resolution simulations of the evolution of the string
network have suggested that a scaling solution does not form: that in fact loop
production occurs predominantly on very small scales, resulting in an excess of
small, high-velocity loops which do not stay in the one place long enough to act as
effective accretion seeds. Furthermore, the expected traces of cosmic strings have
not yet been found in either the microwave or gravitational radiation backgrounds.
As a result, work on the accretion of protogalactic material onto string loops has
largely been abandoned, although some work continues on the fragmentation of
planar wakes trailing behind long strings.

Nonetheless, research into the properties and behaviour of cosmic strings
continues and remains of pressing interest. All numerical simulations of the
string network to date have neglected the self-gravity of the string loops, and
it is difficult to estimate what effect such neglect has on the evolution of the
network. Indeed, the gravitational properties of cosmic strings are as yet only
poorly understood, and very little progress has been made in developing a self-
consistent treatment of the dynamics of cosmic strings in the presence of self-
gravity.

Even if it proves impossible ever to resurrect a string-seeded cosmology,
the self-gravity and dynamics of cosmic strings will remain an important field of
study, for a number of reasons. On the practical level, cosmic strings may have
played an important role in the development of the early Universe, whether or
not they can single-handedly explain the formation of galaxies. More abstractly,
cosmic strings are natural higher-dimensional analogues of black holes and
their gravitational properties are proving to be just as rich and counter-intuitive.
Cosmic string theory has already thrown some light on the structure of closed
timelike loops and the dynamics of particles in 2+ 1 gravity.

A cosmic string is, strictly speaking, a vortex solution of the Abelian Higgs
equations, which couple a complex scalar and real vector field under the action of
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a scalar potential. However, as was first shown by Dietrich Förster in 1974, the
action of an Abelian Higgs vortex can be adequately approximated by the Nambu
action1 if the vortex itself is very nearly straight. To leading order in its curvature,
therefore, a cosmic string can be idealized as a line singularity, independently
of the detailed structure of the Higgs potential. To describe a cosmic string in
terms of the Nambu action is to reduce it to a more fundamental geometrical
object, predating the cosmic string and known to researchers in the early 1970s
as the ‘relativistic string’. Nowadays, the dichotomy is perceived to lie not so
much between vortex strings and relativistic strings as between cosmic strings
(vortex strings treated as relativistic strings) and superstrings (the supersymmetric
counterparts of relativistic strings).

In this volume I have attempted to summarize all that is at present known
about the dynamics and gravitational properties of individual cosmic strings in
the zero-thickness or ‘wire’ approximation. Chapter 1 is devoted to a summary
of the field-theoretic aspects of strings, starting from a description of the role of
the Higgs mechanism in electroweak unification and ending with a justification
of the wire approximation for the Abelian Higgs string, on which the Nambu
action is based. Throughout the rest of the book I treat cosmic strings as idealized
line singularities, and make very few references to the underlying field theory.
Nor do I give any space to the cosmological ramifications of cosmic strings
(other than what appears here and in chapter 1), the structure and evolution of
string networks, or to the theory of related topological defects such as global
strings, superconducting strings, monopoles, domain walls or textures. Any
reader interested in these topics would do best to consult ‘Cosmic strings and
domain walls’ by Alexander Vilenkin, Physics Reports, 121, pp 263–315 (1985),
‘The birth and early evolution of our universe’ by Alexander Vilenkin, Physica
Scripta T36, pp 114–66 (1990), Cosmic Strings and Other Topological Defects
by Alexander Vilenkin and Paul Shellard (Cambridge University Press, 1994) or
‘Cosmic strings’ by Mark Hindmarsh and Tom Kibble, Reports on Progress in
Physics, 58, 477 (1995).

In chapter 2 I give an outline of the dynamics of zero-thickness strings in a
general background spacetime, including an introduction to pathological features
such as cusps and kinks. Chapter 3 concentrates on the dynamics of cosmic
strings in a Minkowski background, whose symmetries admit a wide range of
conservation laws. A catalogue of many of the known exact string solutions in
Minkowski spacetime is presented in chapter 4. Although possibly rather dry, this
chapter is an important source of reference, as most of the solutions it describes
are mentioned in earlier or later sections. Chapter 5 examines the more limited
work that has been done on the dynamics of cosmic strings in non-flat spacetimes,
principally the Friedmann–Robertson–Walker, Schwarzschild, Kerr and plane-
fronted (pp) gravitational wave metrics.

1 The action of a two-dimensional relativistic sheet. It was first derived, independently, by Yoichiro
Nambu in 1970 and Tetsuo Goto in 1971.
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From chapter 6 onwards, the focus of the book shifts from the dynamics to
the gravitational effects of zero-thickness cosmic strings. Chapter 6 itself takes
an extensive look at the gravitational effects of cosmic strings in the weak-field
approximation. In chapter 7 the exact strong-field metric about an infinite straight
cosmic string is analysed in some detail. Although one of the simplest non-
trivial solutions of the Einstein equations, this metric has a number of unexpected
properties. Chapter 8 examines systems of infinite straight cosmic strings, their
relationship to 2 + 1 gravity, and the proper status of the Letelier–Gal’tsov
‘crossed-string’ metric. Chapter 9 describes some of the known variations on
the standard straight-string metric, including travelling-wave solutions, strings
through black holes, strings embedded in radiating cylindrical spacetimes, and
snapping string metrics. Finally, chapter 10 collects together a miscellany of
results relating to strong-field gravity outside non-straight cosmic strings, an area
of study which remains very poorly understood.

The early stages of writing this book were unfortunately marred by personal
tragedy. For their support during a time of great distress I would like to thank
Tony and Helen Edwards, Bernice Anderson, Michael Hall, Jane Cotter, Ann
Hunt, Lyn Sleator and George Tripp. Above all, I would like to dedicate this
book to the memory of Antonia Reardon, who took her own life on 12 May 1994
without ever finishing dinner at the homesick restaurant.

Malcolm Anderson
Brunei, June 2002



Chapter 1

Cosmic strings and broken gauge
symmetries

One of the most striking successes of modern science has been to reduce the
complex panoply of dynamical phenomena we observe in the world around us—
from the build-up of rust on a car bumper to the destructive effects of cyclonic
winds—to the action of only four fundamental forces: gravity, electromagnetism,
and the strong and weak nuclear forces. This simple picture of four fundamental
forces, which became evident only after the isolation of the strong and weak
nuclear forces in the 1930s, was simplified even further when Steven Weinberg in
1967 and Abdus Salam in 1968 independently predicted that the electromagnetic
and weak forces would merge at high temperatures to form a single electroweak
force.

TheWeinberg–Salammodel of electroweak unification was the first practical
realization of the Higgs mechanism, a theoretical device whereby a system of
initially massless particles and fields can be given a spectrum of masses by
coupling it to a massive scalar field. The model has been extremely successful
not only in describing the known weak reactions to high accuracy, but also in
predicting the masses of the carriers of the weak force, the W± and Z0 bosons,
which were experimentally confirmed on their discovery in 1982–83.

A natural extension of the Weinberg–Salam model is to incorporate the
Higgs mechanism into a unified theory of the strong and the electroweak forces,
giving rise to a so-called grand unification theory or GUT. A multitude of
candidate GUTs have been proposed over the last 30 years, but unfortunately the
enormous energies involved preclude any experimental testing of them for many
decades to come. Another implication of electroweak unification is the possibility
that a host of exotic and previously undreamt-of objects may have formed in the
early, high-temperature, phase of the Universe, as condensates of the massive
scalar field which forms the basis of the Higgs mechanism. These objects include
pointlike condensates (monopoles), two-dimensional sheets (domain walls) and,
in particular, long filamentary structures called cosmic strings.

1



2 Cosmic strings and broken gauge symmetries

Most of this book is devoted to a mathematical description of the
dynamics and gravitational properties of cosmic strings, based on the simplifying
assumption that the strings are infinitely thin, an idealization often referred to as
the wire approximation. As a consequence, there will be very little discussion of
the field-theoretic properties of cosmic strings. However, in order to appreciate
how cosmic strings might have condensed out of the intense fireball that marked
the birth of the Universe it is helpful to first understand the concept of spontaneous
symmetry-breaking that underpins the Higgs mechanism.

In this introductory chapter I, therefore, sketch the line of theoretical
development that leads from gauge field theory to the classical equations
of motion of a cosmic string, starting from a gauge description of the
electromagnetic field in section 1.1 and continuing through an account of
electroweak symmetry-breaking in section 1.2 to an analysis of the Nielsen–
Olesen vortex string in section 1.3 and finally a derivation of the Nambu action
in section 1.5. The description is confined to the semi-classical level only, and
the reader is assumed to have no more than a passing familiarity with Maxwell’s
equations, the Dirac and Klein–Gordon equations, and elementary tensor analysis.

The detailed treatment of electroweak unification in section 1.2 lies well
outside the main subject matter of this book and could easily be skipped on a first
reading. Nonetheless, it should be remembered that cosmic strings are regarded
as realistic ingredients of cosmological models solely because of the role of the
Higgs mechanism in electroweak unification. Most accounts of the formation of
cosmic strings offer only a heuristic explanation of the mechanism or illustrations
from condensed matter physics, while the mathematics of electroweak unification
is rarely found outside textbooks on quantum field theory. Hence the inclusion
of what I hope is an accessible (if simplified) mathematical description of the
Weinberg–Salam model.

In this and all later chapters most calculations will be performed in Planck
units, in which the speed of light c, Newton’s gravitational constant G and
Planck’s constant � are all equal to 1. This means that the basic units of distance,
mass and time are the Planck length �Pl = (G�/c3)1/2 ≈ 1.6 × 10−35 m, the
Planck mass mPl = (c�/G)1/2 ≈ 2.2 × 10−8 kg and the Planck time tPl =
(G�/c5)1/2 ≈ 1.7 × 10−43 s respectively. Two derived units that are important
in the context of cosmic string theory are the Planck energy EPl = (c5�/G)1/2 ≈
1.9 × 108 J and the Planck mass per unit length mPl/�Pl ≈ 1.4 × 1027 kg m−1,
which measures the gravitational field strength of a cosmic string. More familiar
SI units will be restored when needed.

Some additional units that will be used occasionally are the electronvolt,
1 eV ≈ 1.6 × 10−19 J, the solar mass, 1M� ≈ 2.0 × 1030 kg, the solar radius,
1R� ≈ 7.0× 108 m, the solar luminosity 1L� ≈ 3.9× 1026 J s−1 and the light
year, 1 l.y.≈ 9.5 × 1015 m. The electronvolt is a particularly versatile unit for
particle physicists, as it is used to measure not only energies but massesm = E/c2

and temperatures T = E/kB, where kB is Boltzmann’s constant. Thus 1 eV is
equivalent to a mass of about 1.8×10−36 kg or 8.2×10−29mPl, and equivalent to
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a temperature of about 1.2× 104 K. (As a basis for comparison, the rest mass of
the electron in electronvolt units is 0.511MeV, while the temperature at the centre
of the Sun is only about 1 keV.)

Throughout this book, spacetime is assumed to be described by a four-
dimensional metric tensor with signature −2, so that timelike vectors have
positive norm and spacelike vectors have negative norm. If the background is
flat the metric tensor is denoted by ηµν , whereas if the spacetime is curved it
is denoted by gµν . Greek indices µ, ν, . . . run from 0 to 3 (with x0 usually
the timelike coordinate), lower-case roman indices i, j, k, . . . from either 1 to
3 or 2 to 3 as indicated in the relevant sections, and upper-case roman indices
A, B, . . . from 0 to 1. Also, round brackets around spacetime indices denote
symmetrization, and square brackets, anti-symmetrization, so that for example
S(µν) = 1

2 (Sµν + Sνµ) and S[µν] = 1
2 (Sµν − Sνµ) for a general 2-tensor

Sµν . Unless otherwise stated, the Einstein summation convention holds, so that
repeated upper and lower indices are summed over their range.

Because sections 1.1 and 1.2 review material that is long established and
familiar to most theoretical particle physicists, I have included no references
to individual books or papers. Anyone interested in studying gauge theories
or electroweak unification in more detail should consult a standard textbook
on quantum field theory. Examples include Quantum Field Theory by Claude
Itzykson and Jean-Bernard Zuber (McGraw-Hill, Singapore, 1985); Quantum
Field Theory by Franz Mandl and Graham Shaw (Wiley-Interscience, Chichester,
1984); and, for the more mathematically minded, Quantum Field Theory and
Topology by Albert Schwarz (Springer, Berlin, 1993). Similarly, an expanded
treatment of the discussion in sections 1.3 and 1.4 of the Nielsen–Olesen vortex
string and defect formation, in general, can be found in the review article ‘Cosmic
strings’ by Mark Hindmarsh and Tom Kibble, Reports on Progress in Physics, 58,
477 (1995).

1.1 Electromagnetism as a local gauge theory

The first unified description of electricity and magnetism was developed by James
Clerk Maxwell as long ago as the 1860s. Recall that Maxwell’s equations relating
the electric field E and magnetic flux density B in the presence of a prescribed
charge density ρ and current density j have the form

∇ · B = 0 ∇ × E+ ∂

∂ t
B = 0 (1.1)

and

∇ · E = ρ ∇ × B− ∂

∂ t
E = j. (1.2)

Here, for the sake of simplicity, the electric and magnetic field strengths are
measured in Heaviside units (in which the permeability and permittivity of free
space are 4π and 1/4π respectively), with a factor of 4π absorbed into ρ and j.



4 Cosmic strings and broken gauge symmetries

Maxwell’s equations can be recast in a more compact and elegant form
by passing over to spacetime notation. Here and in the next section, points in
spacetime will be identified by their Minkowski coordinates xµ = [t, x, y, z] ≡
[t, r], which are distinguished by the fact that the line element ds2 = dt2 −
dr2 ≡ ηµν dxµ dxν is invariant under Lorentz transformations, where ηµν =
diag(1,−1,−1,−1) is the 4 × 4 metric tensor. In general, spacetime indices on
vectors or tensors are lowered or raised using the metric tensor ηµν or its inverse
ηµν = (ηµν)−1 = diag(1,−1,−1,−1), so that for example Aµ = ηµν Aν for
any vector field Aµ. In particular, ηµληλν = δµν , the 4× 4 identity tensor (that is,
δ
µ
ν = 1 if µ = ν and 0 if µ �= ν).

Maxwell’s equations can be rewritten in spacetime notation by defining a
4-current density jµ = [ρ, j] and a 4-potential Aµ = [A0,A], in terms of which

E = −∇A0 − ∂

∂ t
A and B =∇ ×A. (1.3)

The homogeneous equations (1.1) are then automatically satisfied, while the
inhomogeneous equations (1.2) reduce to

�Aµ − ∂µ(∂ν Aν) = jµ (1.4)

where ∂µ = ∂/∂xµ ≡ [∂/∂ t,∇] and ∂µ = [∂/∂ t,−∇] are the covariant and
contravariant spacetime derivative operators and� = ∂µ∂µ ≡ ∂2/∂ t2−∇2 is the
d’Alembertian.

One of the interesting features of the 4-vector equation (1.4) is that the
potential Aµ corresponding to a given current density jµ is not unique. For
suppose that Aµ = Aµ0 is a solution to (1.4). Then if 	 is any sufficiently
smooth function of the spacetime coordinates the potential Aµ = Aµ0 + ∂µ	
is also a solution. Note, however, that the electric and magnetic flux densities
E and B are unaffected by the addition of a spacetime gradient ∂µ	 to Aµ.
This is one of the simplest examples of what is known as gauge invariance,
where the formal content of a field theory is preserved under a transformation
of the dynamical degrees of freedom (in this case, the components of the 4-
potential Aµ, which is the archetype of what is known as a gauge field). Gauge
invariance might seem like little more than a mathematical curiosity but it turns
out to have important consequences when a field theory comes to be quantized. In
particular, electromagnetic gauge invariance implies the existence of a massless
spin-1 particle, the photon.

Although the details of field quantization lie outside the scope of this book,
it is instructive to examine the leading step in the quantization process, which is
the construction of a field action I of the form

I =
∫
� d4x . (1.5)

Here the Lagrange density or ‘lagrangian’ � is a functional of the field variables
and their first derivatives, and is chosen so that the value of I is stationary
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whenever the corresponding field equations are satisfied. In the electromagnetic
case, � should depend on Aµ and ∂ν Aµ. The value of I is then stationary
whenever Aµ satisfies the Euler–Lagrange equation

∂�

∂Aµ
− ∂ν

(
∂�

∂[∂ν Aµ]
)
= 0 (1.6)

which reduces to the electromagnetic field equation (1.4) if � has the form

� = − 1
4 FµνF

µν − jµAµ (1.7)

with Fµν = ∂µAν − ∂ν Aµ. Strictly speaking, (1.7) is just one of a large family
of possible solutions for the lagrangian, as the addition of the divergence of an
arbitrary 4-vector functional of Aµ, jµ and the coordinates xµ to � leaves the
Euler–Lagrange equation (1.6) unchanged.

A notable feature of the lagrangian (1.7) is that it is not gauge-invariant, for
if Aµ is replaced with Aµ + ∂µ	 then � transforms to � − jµ∂µ	. In view
of the equation ∂µ jµ = 0 of local charge conservation—which is generated by
taking the 4-divergence of (1.4)—the gauge-dependent term jµ∂µ	 ≡ ∂µ( jµ	)
is a pure divergence and the field equations remain gauge-invariant as before.
However, the gauge dependence of � does reflect the important fact that the
4-current jµ has not been incorporated into the theory in a self-consistent
manner. In general, the material charges and currents that act as sources for the
electromagnetic field will change in response to that field, and so should be treated
as independent dynamical variables in their own right.

This can be done, in principle, by adding to the lagrangian (1.7) a further
component describing the free propagation of all the matter sources present—be
they charged leptons (electrons, muons or tauons), charged hadrons (mesons such
as the pion, or baryons such as the proton) or more exotic species of charged
particles—and replacing jµ with the corresponding superposition of 4-currents.
In some cases, however, it is necessary to make a correction to jµ to account for
the interaction of the matter fields with the electromagnetic field.

As a simple example, a free electron field can be described by a bispinor ψ
(a complex 4-component vector in the Dirac representation) which satisfies the
Dirac equation

iγ µ∂µψ − mψ = 0 (1.8)

where m is the mass of the electron and γ µ = [γ 0, γ 1, γ 2, γ 3] are the four
fundamental 4 × 4 Dirac matrices. Since γ 0 is a Hermitian matrix (γ 0† = γ 0)
while the other three Dirac matrices are anti-Hermitian (γ k† = −γ k for k = 1, 2
or 3) with γ 0γ k = −γ kγ 0, the Hermitian conjugate of (1.8) can be written as

i∂µψγµ + ψm = 0 (1.9)

where ψ = ψ†γ 0. Both the Dirac equation (1.8) and its conjugate (1.9) are
generated from the lagrangian

�el = iψγµ(∂µψ)− mψψ. (1.10)
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By adding ψ×(1.8) to (1.9)×ψ it is evident that ∂µ(ψγ µψ) = 0. The free
electron 4-current jµel is, therefore, proportional to ψγ

µψ , and can be written as

jµel = eψγµψ (1.11)

where the coupling constant e must be real, as ψγµψ is Hermitian, and can
be identified with the electron charge. It is, therefore, possible to couple the
electromagnetic field and the electron field together through the lagrangian:

� = − 1
4 FµνF

µν − jµel Aµ + �el

≡ − 1
4 FµνF

µν − eψγµAµψ + iψγµ(∂µψ)− mψψ. (1.12)

Here, the presence of the interaction term jµel Aµ in � modifies the Euler–
Lagrange equations for ψ and ψ to give the electromagnetically-coupled Dirac
equations

iγ µ∂µψ − mψ = eγ µAµψ and i∂µψγµ + mψ = −eψγµAµ (1.13)

which replace (1.8) and (1.9) respectively. However, as is evident from (1.13), it
is still true that ∂µ(ψγ µψ) = 0, so jµel remains a conserved 4-current and there is
no need to make any further corrections to �.

It is often convenient to write the lagrangian (1.12) in the form

� = − 1
4 FµνF

µν + iψγµ(Dµψ)− mψψ (1.14)

where Dµ = ∂µ + ieAµ is the electromagnetic covariant derivative. Because the
electromagnetic and Dirac fields interact only through the derivative Dµ, they are
said to be minimally coupled. One advantage of introducing the operator Dµ is
that the effect of a gauge transformation of the potential Aµ is easily seen. For
if Aµ is replaced by Aµ + ∂µ	 then Dµ is transformed to Dµ + ie∂µ	. The
lagrangian (1.14) will, therefore, remain invariant if ψ is replaced by ψe−ie	
and ψ by ψeie	. Thus � is gauge-invariant if the components of the Dirac
bispinor ψ are suitably rotated in the complex plane. It is for this reason that
the electromagnetic field is characterized as having a local U(1) symmetry, U(1)
being the group of complex rotations and the qualifier ‘local’ referring to the fact
that the rotation angle e	 can vary from point to point in spacetime. (By contrast,
a theory which is invariant under the action of group elements that are constant
throughout spacetime is said to have a ‘global’ symmetry.)

Coupling other charged leptonic species to an electromagnetic field can be
achieved in exactly the same way, although, of course, the mass m is typically
different for each species. The same is, in principle, true of hadronic coupling, as
all hadrons can be decomposed into two or more quarks, which (like the electron)
are spin- 12 fermions. However, because quarks are always bound together in pairs
or triples by the strong nuclear force there is little value in coupling quarks to an
electromagnetic field except as part of a more general theory which includes the
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strong interaction. (Of course, protons and other spin- 12 baryons can also, as a
first approximation, be coupled to the electromagnetic field in the same way as
leptons.)

Another type of matter field which turns out to be a crucial ingredient of
electroweak unification is a complex scalar field (or multiplet of scalar fields) φ
which satisfies the Klein–Gordon equation:

(�+ m2)φ = 0 (1.15)

and, at a quantum level, describes charged spin-0 bosons of mass m. The
corresponding lagrangian is:

�sc = (∂µφ†)(∂µφ)− m2φ†φ. (1.16)

It is easily seen that (1.15) gives rise to a conserved current

jµsc = ie′[φ†(∂µφ)− (∂µφ†)φ] (1.17)

where e′ is a coupling constant, the scalar charge. (Note, in particular, that if φ is
real then jµsc vanishes and the corresponding spin-0 bosons are uncharged.)

Adding �sc to the bare electromagnetic lagrangian (1.7) and replacing jµ

with jµsc then gives a tentative lagrangian of the form

� = − 1
4 FµνF

µν−ie′Aµ[φ†(∂µφ)−(∂µφ†)φ]+(∂µφ†)(∂µφ)−m2φ†φ. (1.18)

However, the presence of the interaction introduces an inhomogeneous source
term on the right of the Klein–Gordon equation, which now reads:

(�+ m2)φ = −ie′[Aµ∂µφ + ∂µ(Aµφ)] (1.19)

and jµsc is no longer conserved, as

∂µ j
µ
sc = 2e′2∂µ(Aµφ†φ). (1.20)

It is, therefore, necessary to add a correction term � to the lagrangian
constructed so that the divergence of the new 4-current is zero under the action
of the corrected field equations. In general, if � is a lagrangian depending
on an electromagnetic potential Aµ coupled to one or more matter fields then
the associated 4-current is jµ = −∂�/∂Aµ. Hence, if � is assumed to
be a functional of φ†, φ and the electromagnetic variables only, the condition
∂µ jµ = 0 reduces to

2e′2∂µ(Aµφ†φ)− ∂µ
(
∂�

∂Aµ

)
+ ie′

(
φ†
∂�

∂φ†
− φ ∂�

∂φ

)
= 0. (1.21)

This has an obvious solution� = e′2AµAµφ†φ, with a corresponding 4-current
jµ = jµsc−2e′2Aµφ†φ. Adding� to the right of (1.18) gives a lagrangianwhich
is again minimally coupled, as it can be cast in the form

� = − 1
4 FµνF

µν + (D∗µφ†)(Dµφ)− m2φ†φ (1.22)
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where now Dµ = ∂µ+ ie′Aµ. As in the fermionic case, the lagrangian is invariant
under the U(1) gauge transformation Aµ → Aµ + ∂µ	, φ → φe−ie′	 and
φ† → φ†eie

′	.
Finally, mention should be made of the possibility of massive gauge

fields. If Wµ is a vector potential (possibly complex) whose spin-1 carrier
particles on quantization have mass mW , then the simplest generalization of the
electromagnetic 4-vector equation (1.4) in the absence of sources jµ is the Proca
equation:

�Wµ − ∂µ(∂νW ν )+ m2
WW

µ = 0. (1.23)

The corresponding lagrangian is

�W = − 1
2Wµν(W

µν)∗ + m2
WW

µW∗
µ (1.24)

where Wµν = ∂µWν − ∂νWµ. If Wµ is complex, the carrier particles are charged,
whereas if Wµ is real they are neutral. Note, however, that �W is not invariant
under gauge transformations of the form Wµ → Wµ + ∂µ	. It is the search
for a gauge-invariant description of massive gauge fields that leads ultimately to
electroweak unification.

1.2 Electroweak unification

The existence of the weak interaction was first suggested by Wolfgang Pauli in
1930 as a way of explaining certain short-range nuclear reactions that seemed to
violate energy and momentum conservation. The most famous example is beta
decay, in which a neutron decays to form a proton and an electron. The simplest
explanation is that the production of the electron is accompanied by the emission
of a light (possibly massless) uncharged spin- 12 lepton, the neutrino, which carries
off the missing energy and momentum. Thus the electron bispinor ψe is paired
with a second complex bispinor ψνe which describes the electron neutrino field,
and it turns out that there are similar bispinor fields ψνµ and ψντ describing the
muon and tauon neutrinos (although the latter is a relatively recent addition to
electroweak theory, as the tauon itself was only discovered in 1975).

Another important ingredient of electroweak theory was added in 1957 with
the discovery that weak interactions fail to conserve parity (or space-reflection
symmetry). For example, in beta decay the electron can, in principle, emerge
with its spin either parallel or anti-parallel to its direction of motion, and is
said to have either positive or negative helicity in the respective cases. If parity
were conserved, electrons with positive helicity would be observed just as often
as those with negative helicity. However, the electrons produced in beta decay
almost always have negative helicity.

Now, any Dirac bispinor ψ can be decomposed as a sum ψL + ψR of left-
handed and right-handed fields:

ψL = 1
2 (1− γ5)ψ and ψR = 1

2 (1+ γ5)ψ (1.25)
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where the Hermitian matrix γ5 = iγ 0γ 1γ 2γ 3 satisfies the identity γ 25 = 1, and so
P± = 1

2 (1 ± γ5) are both projection operators (that is, P2± = P±). For massless
fermions, ψL and ψR are negative- and positive-helicity eigenstates respectively
(hence the names ‘left-handed’ and ‘right-handed’). For massive leptons, ψL

and ψR remain good approximations to helicity eigenstates, particularly at high
energies.

The crucial feature of weak parity-violation is that only left-handed leptons
(and right-handed anti-leptons) are ever involved in weak reactions. In fact, each
of the lepton helicity states can be assigned a number analogous to the ordinary
electric charge, called the weak isospin charge, which measures its strength in
certain weak interactions. In suitable units, the weak isospin charge ofψL is equal
to − 1

2 for electrons, muons and tauons, and equal to + 1
2 for neutrinos, while the

weak isospin charge of ψR is zero for all leptons. Like photons, the carriers of
the weak interaction are themselves (weakly) uncharged.

However, weak interactions are observed to come in two types: those like
the electron–neutrino scattering process νµ + e− → νµ + e− which involve no
exchange of electric charge, and those like inversemuon decay νµ+e− → νe+µ−
in which there is an exchange of electric charge (in this case, from the electron to
the muon fields). This suggests that the weak interaction is described by not one
but three gauge fields to allow for exchange particles with positive, negative and
zero electric charge.

The above considerations lead to the following procedure for constructing
a lagrangian � for the weak interaction. In analogy with the free-electron
lagrangian (1.10), the lagrangian for the free-lepton fields has the form

�lep = iψeγ
µ(∂µψe)+ iψνeγ

µ(∂µψνe)+ · · · (1.26)

where the ellipsis (. . .) denotes equivalent terms for the muon and tauon fields and
their neutrinos. Mass terms like meψeψe have been omitted for reasons that will
become clear later. Since γ5γ µ = −γ µγ5 for all Dirac matrices γ µ it follows

that P†
+γ 0γ µP− = P†

−γ 0γ µP+ = 0 and so ψ
R
γ µ∂µψ

L = ψL
γ µ∂µψ

R = 0 for
any fermion field ψ .

Thus the lagrangian (1.26) can be expanded as

�lep = i[ψL
e γ
µ(∂µψ

L
e )+ψR

e γ
µ(∂µψ

R
e )+ψL

νe
γ µ(∂µψ

L
νe
)+ψR

νe
γ µ(∂µψ

R
νe
)]+· · · .
(1.27)

Here, since the right-handed neutrino field ψR
νe

has neither weak nor electric
charge it can be discarded. Also, the two left-handed fields ψL

e and ψL
νe

can be
combined into a ‘two-component’ vector field�L

e = (ψL
νe
, ψL

e )
�. The free-lepton

lagrangian then becomes

�lep = i[�L
e γ
µ(∂µ�

L
e )+ ψR

e γ
µ(∂µψ

R
e )] + · · · (1.28)

where, of course, �
L
e = (ψL

νe
, ψ

L
e ).
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The example of the electromagnetic field suggests that the interaction
between the lepton fields and the weak field can be described by minimally
coupling three gauge fields Akµ (where k = 1, 2, 3) to the left-handed terms
in �lep. Furthermore, if the resulting lagrangian is to be invariant under
transformations of Akµ and �L

e which, in some way, generalize the gauge
transformations Aµ → Aµ + ∂µ	 and ψ → ψe−ie	 of the electromagnetic
and Dirac fields, it is necessary to find a continuous three-parameter group which
acts on the components of the complex two-component field �L

e .
A suitable candidate for this group is SU(2), the group of unitary complex

2 × 2 matrices with determinant 1, which is generated by the three Hermitian
matrices

τ 1 =
(
0 1
1 0

)
τ 2 =

(
0 −i
i 0

)
and τ 3 =

(
1 0
0 −1

)
. (1.29)

(That is, U is an element of SU(2) if and only if U = eiM for some real linear
combinationM of τ 1, τ 2 and τ 3.) The gauge fields Akµ can, therefore, be mapped
linearly to a single Hermitian matrix operator:

Aµ = τ k Akµ (1.30)

and coupled to the lepton fields by replacing ∂µ with Dµ = ∂µ + 1
2 igAµ in the

left-handed terms in �lep, where g is the weak isospin coupling constant. (The
constant 1

2 is included here as a measure of the weak isospin of the left-handed
fields, which strictly speaking is the charge conserved under the action of τ 3 only,
and hence has opposing signs for the electron and neutrino components.)

The corresponding gauge transformations of Aµ are then specified by
demanding that the resulting lagrangian remain invariant when �L → U−1�L

and�
L → �

L
U for each of the lepton species, whereU is any element of SU(2).

If Aµ is assumed to transform to Aµ+δAµ then�L
γ µ(Dµ�L) remains invariant

if
δAµ = −(∂µU−1)U/( 12 ig)+ U−1AµU− Aµ. (1.31)

The connection with the rule for U(1) gauge transformations becomes clearer if

U is expressed as e
1
2 ig�, where � is a real linear combination of the generators

τ 1, τ 2 and τ 3. Then U±1 ≈ I ± 1
2 ig� for small values of �, and the limiting

form of δAµ is:
δAµ ≈ ∂µ�+ 1

2 ig[Aµ,�] (1.32)

where [Aµ,�] ≡ Aµ�−�Aµ.
The next step is to generalize the electromagnetic field energy term

− 1
4 Fµν F

µν to the case of the three SU(2) gauge fields Akµ. One obvious
possibility is to add

− 1
4 ( f1µν f

µν

1 + f2µν f
µν

2 + f3µν f
µν

3 ) ≡ − 1
8 Tr(fµνf

µν) (1.33)
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to the lepton lagrangian, where fkµν = ∂µAkν − ∂ν Akµ and fµν = ∂µAν − ∂νAµ.
(The right-hand side of (1.33) follows from the fact that Tr(τ jτ k) = 2δ j k for
the three generating matrices τ k .) However, such a term is not locally SU(2)-
invariant, as

fµν → U−1fµνU+2(∂[µU−1)Aν]U+2U−1A[ν(∂µ]U)+2(∂[µU−1)(∂ν]U)/( 12 ig)
(1.34)

if Aµ→ Aµ + δAµ with δAµ given by (1.31).
This problem can be eliminated by simply replacing ∂µ in fµν with the

coupled derivative Dµ, so that the field energy term becomes − 1
8 Tr(FµνF

µν),
where

Fµν = DµAν − DνAµ ≡ ∂µAν − ∂νAµ + 1
2 ig[Aµ,Aν]. (1.35)

Then, under the transformation Aµ→ Aµ + δAµ,
Fµν → [∂µ − (∂µU−1)U+ 1

2 igU
−1AµU][−(∂νU−1)U/( 12 ig)+U−1AνU]

− [∂ν − (∂νU−1)U+1
2 igU

−1AνU][−(∂µU−1)U/( 12 ig)+U−1AµU]
= U−1FµνU (1.36)

where the last line follows after expanding and invoking the identity (∂µU−1)U =
−U−1(∂µU). Hence,

Tr(FµνFµν)→ Tr(U−1FµνFµνU) = Tr(FµνFµν) (1.37)

and is locally SU(2)-invariant as claimed.
A candidate lagrangian for the coupled weak and lepton fields is therefore:

�SU (2) = − 1
8 Tr(FµνF

µν)+ i�
L
e γ
µ(∂µ + 1

2 igAµ)�
L
e + iψ

R
e γ
µ∂µψ

R
e + · · · .

(1.38)
It turns out that the corresponding quantized field theory is renormalizable (that
is, finite to all orders in perturbation theory). However, it suffers from the serious
defect that the lepton fields and the bosons carrying the gauge fields Aµ are all
massless. This is contrary to the observed fact that at least three of the leptons
(the electron, muon and tauon) are massive, while the extremely short range of
the weak force indicates that the gauge bosons must be massive as well. It might
seem possible to manually insert the lepton masses by adding mass terms like
meψeψe to the lagrangian, but

ψeψe ≡ ψL
eψ

R
e + ψR

e ψ
L
e (1.39)

is clearly not SU(2)-invariant, and adding terms of this type destroys the
renormalizability of the theory.

The solution to this quandary is to construct a lagrangian which jointly
describes the weak and electromagnetic fields by adding a fourth,U(1)-invariant,
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gauge field Bµ, and then coupling the entire system to a pair of complex scalar
fields φ = (φ1, φ2)� whose uncoupled lagrangian

�sc = (∂µφ†)(∂µφ)− V (φ†φ) (1.40)

is a generalization of the Klein–Gordon lagrangian (1.16), containing as it does a
general scalar potential V in place of the Klein–Gordon mass term m2φ†φ.

The scalar fields will be discussed in more detail shortly. First, the gauge
field Bµ is incorporated into the lagrangian by minimally coupling it to both the
left-handed and right-handed fields �L and ψR, with coupling constants − 1

2g
′

and −g′ in the two cases. The coefficients − 1
2 and −1 outside g′ here measure

what is called the weak hypercharge of the lepton fields, which is defined to be
the difference between the electric charge (in units of |e|) and the weak isospin
charge of the particle. Thus the left-handed electron (−1+ 1

2 ) and neutrino (0− 1
2 )

fields both have a weak hypercharge of − 1
2 , while the right-handed electron field

(−1 + 0) has weak hypercharge −1. It is the weak hypercharge rather than
the electric charge by which Bµ is coupled to the lepton fields because, as will
become evident later, Bµ combines parts of the electromagnetic and uncharged
weak fields.

If the field energy contribution of Bµ is assumed to have the standard
electromagnetic form − 1

4GµνG
µν , where Gµν = ∂µBv − ∂νBµ, the electroweak

lagrangian becomes

�ew = − 1
8 Tr(FµνF

µν)− 1
4GµνG

µν + iψ
R
e γ
µ(∂µ − ig′Bµ)ψR

e

+ i�
L
e γ
µ(∂µ + 1

2 igAµ − 1
2 ig

′Bµ)�L
e + · · · . (1.41)

This lagrangian is invariant under both the local SU(2) transformations Aµ →
Aµ + δAµ and �L → U−1�L and the local U(1) transformations Bµ →
Bµ + ∂µ	, �L → �Le− 1

2 ig
′	 and ψR → ψRe−ig′	, and so is said to have

SU(2)×U(1) symmetry.
Turning now to the contribution of the complex scalar fields φ = (φ1, φ2)�,

the scalar potential V can assume a wide variety of forms but one simple
assumption is to truncate V after the first three terms in its Maclaurin expansion
to give

V (φ†φ) = V0 + α2φ†φ + β2(φ†φ)2 (1.42)

where the constant V0 is chosen so as to normalize V to zero in the ground state.
Note that α2 need not be positive: it is common to write the leading coefficient as
a square in analogy with the mass term m2φ†φ in (1.16). However, β2 must be
positive to ensure that V is bounded below, since otherwise the theory is unstable
to the production of scalar particles with arbitrarily high energies.

If the scalar doublet φ is assumed to transform like �L under SU(2) gauge
transformations then its upper component φ1 has weak isospin charge + 1

2 and
its lower component φ2 has weak isospin charge − 1

2 . In situations where φ has
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a non-zero expectation value it is conventional to use the SU(2) gauge freedom
to transform φ1 to 0, leaving φ2 as the only physical component. To ensure that
this field has zero electric charge, φ is assigned a weak hypercharge+ 1

2 , and so
if it is minimally coupled to the interaction fields the full electroweak lagrangian
becomes

� = �ew + (∂µφ + 1
2 igAµφ + 1

2 ig
′Bµφ)†(∂µφ + 1

2 igAµφ + 1
2 ig

′Bµφ)

− V0 − α2φ†φ − β2(φ†φ)2 − ge(�L
eψ

R
e φ + φ†ψR

e�
L
e )− · · · . (1.43)

The last (or Yukawa) term in (1.43), which models the interaction between
the scalar and electron fields, is the only possible SU(2)-invariant combination
of the electron fields and φ which is quadratic in the first and linear in the
second. Of course, similar terms describing the interaction of φ with themuon and
tauon fields are included as well, although the values of the associated coupling
constants ge, gµ and gτ are, in general, all different.

The crucial feature of the lagrangian (1.43) is that the global minimum of V
occurs when φ†φ = − 1

2α
2/β2. Thus if α2 > 0 the vacuum expectation value of

φ is 〈φ〉 = (0, 0)�, and the scalar fields are effectively decoupled from the gauge
and lepton fields in (1.43). This means that the electroweak exchange particles
and the leptons remain massless, while the charged spin-0 bosons described by φ
have mass α.

However, if α2 < 0 the vacuum expectation value of φ is non-zero:

〈φ〉 = ( 1√
2
|α|/β)ϕ ≡ λϕ (1.44)

where ϕ is some scalar doublet with ϕ†ϕ = 1. Since the electroweak lagrangian
(1.43) remains invariant under a local SU(2) transformation if φ → U−1φ, and
SU(2) is a three-parameter group, it is always possible to choose U so that φ is
transformed into the canonical form φ = (0, φ2)� where φ2 is now real at all
points in spacetime. In particular, 〈φ〉 = (0, λ)� and if φ2 is expanded about its
vacuum value in the form φ2 = λ+ σ , where σ is real, then to leading order in σ
the Weinberg–Salam lagrangian (1.43) reads

� = �ew + 1
4 [(g′Bµ − gAµ3 )(g′Bµ − gA3µ)+ g2(Aµ1 Aµ1 + Aµ2 A2µ)](λ+ σ)2

+ ∂µσ∂µσ − 4β2λ2σ 2 − ge(ψL
eψ

R
e + ψR

e ψ
L
e )(λ+ σ)+ · · · (1.45)

plus terms cubic and quartic in σ . (Here, V0 has been set equal to β2λ4 so that
V = 0 when σ = 0.)

The lagrangian can be further simplified by recalling that ψ
L
eψ

R
e +ψR

e ψ
L
e =

ψeψe and introducing the normalized fields

Zµ = (g2 + g′2)−1/2(g′Bµ − gA3µ) Aµ = (g2 + g′2)−1/2(gBµ + g′A3µ)
and

Wµ = 1√
2
(A1µ + iA2µ) (1.46)
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in terms of which

� = �ew + ∂µσ∂µσ + 1
4 [(g2 + g′2)ZµZµ + 2g2WµW∗

µ](λ+ σ)2
− 4β2λ2σ 2 − geψ̄eψe(λ+ σ)+ · · · . (1.47)

Here, in view of the fact that ψ̄L
e γ

µψL
e + ψ̄R

e γ
µψR

e = ψeγ
µψe,

�ew = − 1
8 Tr(FµνF

µν)− 1
4GµνG

µν + iψ̄eγ
µ[∂µ − i(g2 + g′2)−1/2gg′Aµ]ψe

+ 1
2 (g

2 + g′2)−1/2Zµ[(g′2 − g2)ψL
e γ
µψL

e + 2gg′ψR
e γ
µψR

e ]
+ iψ

L
νe
γ µ∂µψ

L
νe
+ 1

2 (g
2 + g′2)1/2ψL

νe
γ µZµψ

L
νe

+ 1√
2
g(ψ

L
νe
γ µW∗

µψ
L
e + ψL

e γ
µWµψ

L
νe
)+ · · · (1.48)

with

− 1
8 Tr(FµνF

µν)− 1
4GµνG

µν = − 1
2Wµν(W

µν)∗− 1
4 Zµν Z

µν− 1
4 Fµν F

µν (1.49)

(where Wµν = ∂µWν − ∂µWν , Zµν = ∂µZν − ∂µZν and Fµν = ∂µAν − ∂µAν),
plus a host of third- and fourth-order cross terms describing the interactions of the
Wµ, Zµ and Aµ fields.

The physical content of the theory when α2 < 0 can be read directly from
(1.47), (1.48) and (1.49). The first line of (1.48) indicates that the electron field
is minimally coupled to the electromagnetic field Aµ and has electric charge
e = −(g2 + g′2)−1/2gg′. From the second line of (1.47) the mass of the electron
field is me = λge. The neutrino field remains massless and uncoupled to the
electromagnetic field but both it and the electron field are coupled to the charged
field Wµ and the neutral field Zµ. Furthermore, the quadratic field terms in the
first line of (1.47) indicate that the spin-1 carriers of these fields (the W± and Z0

bosons) are massive, with

m2
W = 1

2g
2λ2 and m2

Z = 1
2 (g

2 + g′2)λ2. (1.50)

Finally, the real scalar field σ describes a neutral spin-0 particle (the Higgs boson)
with mass

m2
H = 4β2λ2 ≡ −2α2. (1.51)

Because the ground state φ = (0, λ)� of the Higgs field φ is not invariant
under the action of the gauge group SU(2) when α2 < 0, but the theory retains
a local U(1) symmetry associated with the electromagnetic field Aµ, the SU(2)
symmetry is said to be spontaneously broken. Thus the leptons and the carriers
of the weak fields, which are massless in the unbroken phase (α2 > 0), borrow
mass from the scalar boson fields in the broken phase. (Although the neutrinos
remain massless in the simplest versions of the Weinberg–Salammodel, non-zero
neutrino masses are easily incorporated by restoring the right-handed neutrino
fields ψR

ν .)
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Furthermore, knowledge of the electron charge e and the muon decay
lifetime, together with data from neutrino scattering experiments, allow the values
of the constants g, g′ and λ to be determined with reasonable accuracy. The
corresponding predicted values of the masses of the W± and Z0 bosons are
mW ≈ 80 GeV and mZ ≈ 90 GeV, which have been experimentally confirmed.
Unfortunately, there is no direct evidence relating to the mass mH of the Higgs
boson (a particle which has not yet been observed), although it is almost certainly
greater than about 65 GeV and could be as high as 1000 GeV.

The SU(2) symmetry which underlies electroweak unification is clearly
broken at everyday low temperatures. However, it is expected that the symmetry
would be restored at temperatures above about 1015 K (or 100 GeV, the
approximate energy of the W± and Z0 bosons), which are thought to have
prevailed during the first 10−11 s after the Big Bang. The reason for the restoration
of the symmetry is that, at non-zero temperatures, the scalar potential V in (1.40)
should be replaced by an effective potential VT which is calculated by quantizing
the full electroweak lagrangian and adding the 1-loop radiative corrections.

At high temperatures T this effective potential has the form

VT = V (φ†φ)+ AT 2φ†φ + O(T ) (1.52)

where A is a positive constant, plus temperature-dependent terms which do not
involve φ. The coefficient of φ†φ in VT is, therefore, α2+ AT 2 and (if α2 < 0) is
negative for T < Tc and positive for T > Tc, where Tc = (−α2/A)1/2. Thus the
transition from the unbroken to the broken phase should occur as the temperature
drops below a critical temperature Tc of roughly the same order as the Higgs mass
mH. However, the term of order T in VT , which is only poorly understood, may (if
non-negligible) delay the onset of the phase transition to temperatures well below
the critical temperature, leading to a phase of supercooling followed by bubble
nucleation, in which Planck-sized bubbles with non-zero 〈φ〉 appear randomly
and then expand until they fill the Universe.

1.3 The Nielsen–Olesen vortex string

To appreciate the connection between electroweak unification and the formation
of cosmic strings, consider once again the Weinberg–Salam lagrangian (1.43)
in the broken case α2 < 0, and suppose that the Higgs field φ has the form
φ = φ0eiχ(0, 1)� at all points in spacetime, where φ0 ≥ 0 and χ are both real
functions. If the Higgs field is close to equilibrium then it is to be expected that
φ0 ≈ λ almost everywhere. However, it is possible that around some simple
closed curve C the value of χ changes by 2π (or any other non-zero multiple
2πn of 2π). If the curve C is continuously deformed to a point �, as illustrated
in figure 1.1, then either φ0 = 0 at � or, since χ must have a unique value at �
if φ0 �= 0, the net change in χ jumps from 2π to 0 on some member C ′ of the
sequence of curves linking C to �. Since φ must be a continuous function of the
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Figure 1.1. Deformation of the closed curve C to a point.

Figure 1.2. The net change in χ jumps from 2π to 0 on C ′.

spatial coordinates, the second case is possible only if φ0 = 0 at at least one point
on C ′.

An example of a jump of this kind is sketched in figure 1.2, which shows the
variations in the real and imaginary components of φ2 = φ0eiχ along three curves
C1, C ′ and C2. The curve C1 is assumed to sit just outside C ′, and the change
in χ along it is 2π . By contrast, the value of χ on the curve C2 (assumed to sit
just inside C ′) lies entirely in the range (0, π), and its net change is 0. Clearly,
a necessary condition for this particular jump to occur is that C ′ pass through
φ2 = 0.

The state φ = (0, 0)� is often called the false vacuum, as it coincides
with the vacuum expectation value of φ in the unbroken phase (α2 > 0). If
the symmetry is broken, the potential energy V of the false vacuum is larger
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than that of the true vacuum φ = λϕ, and so any point with φ = (0, 0)� (as
well as neighbouring points) will have a higher energy than the ambient vacuum.
Furthermore, it is evident from the deformation argument outlined earlier that a
point with φ = (0, 0)� must occur on every smooth 2-surface which has C as
its boundary, and that these points must form one or more continuous curves or
filaments in space. Such a filament of non-zero Higgs field energy is called a
string (or more specifically, if it arises from the lagrangian (1.43), an electroweak
string).

More formally, the word ‘string’ denotes a general class of topological
defects that may form when a quantum field theory possesses a set� of vacuum
states whose first homotopy group (that is, the group of equivalence classes of
loops in�, two loops being equivalent if they can be smoothly deformed into
each other without leaving�) is non-trivial. In the case of electroweak strings,
the set of vacuum states of the form λeiχ(0, 1)� is in one-to-one correspondence
with U(1), and the class of loops in U(1) with no net change in the phase angle
χ is clearly inequivalent to the class of loops on which χ changes by 2π (or
any other non-zero multiple of 2π , hence the first homotopy group is �). Other
possible types of topological defects include two-dimensional sheets or domain
walls (which typically form when� itself is disconnected) and point defects or
monopoles (which form when� contains inequivalent classes of closed surfaces
rather than loops).

However, the example of the electroweak string cited earlier is somewhat
misleading, as the full vacuum manifold � in the broken phase is the set of
scalar doublets of the form λϕ, where ϕ†ϕ = 1, rather than λeiχ(0, 1)�. In
component form the condition ϕ†ϕ = 1 reads |ϕ1|2 + |ϕ2|2 = 1, so� is in one-
to-one correspondence with �3, the surface of the unit sphere in four (Euclidean)
dimensions. As in the more familiar case of the unit sphere �2 in 3 dimensions,
any closed loop in �3 can always be deformed continuously to a point, so the
first homotopy group of� is trivial. This means that an electroweak string with
φ = φ0eiχ(0, 1)�, where the net change in χ on some set of closed curves is
non-zero, can, in principle, ‘unwind’ to a pure vacuum state λϕ everywhere by
evolving through states with a non-zero upper component φ1.

Whether such an unwinding is energetically favoured can only be determined
by perturbation analysis. It turns out that electroweak strings are stable in some
parts of the parameter space defined by the values of the constants g, g′ and β, and
unstable in other parts. The experimentally-determined value of mW corresponds
to a region in parameter space where electroweak strings are definitely unstable,
but they can be stabilized by only minor modifications to the theory. Stable strings
also arise in a host of more elaborate particle theories, some of which will be
discussed later, in section 1.4.

The canonical example of a local gauge field theory that gives rise to
stable strings is the Abelian Higgs model, which is constructed by coupling a
single complex scalar field φ to a locally U(1)-invariant gauge field Bµ. The
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corresponding lagrangian is:

� = − 1
4GµνG

µν + (∂µφ + ieBµφ)∗(∂µφ + ieBµφ)− V0 − α2φ∗φ − β2(φ∗φ)2
(1.53)

where Gµν = ∂µBν − ∂νBµ as before, and e plays the role of the electroweak
coupling constant 1

2g
′. On quantization the Abelian Higgs model retains the

essential phenomenological features of the bosonic sector of the electroweak
model. In the unbroken phase (α2 > 0) the gauge field describes massless neutral
spin-1 bosons and the scalar field φ describes charged spin-0 bosons with mass α.
In the broken phase (α2 < 0) the lagrangian decouples to describe neutral spin-0
particles (the Higgs bosons) with mass mH = 2βλ and neutral spin-1 particles
(the analogues of the Z0 bosons) with mass mV =

√
2|e|λ, where λ = 1√

2
|α|/β

as before.
For present purposes the most interesting feature of the Abelian Higgs model

is the structure of the strings that can appear in the broken phase. Strings of
this type, called local U(1) strings, arise because the set � of true vacuum
states φ = λeiχ is in one-to-one correspondence with U(1), just like the vacuum
states λeiχ (0, 1)� of the electroweak string. However, unlike electroweak strings,
the vacuum states of local U(1) strings do not form part of a larger manifold
of vacuum states with a trivial homotopy group. So local U(1) strings cannot
spontaneously unwind and evaporate.

Now, the Euler–Lagrange equations for the fields Bµ and φ read as

�Bµ − ∂µ∂νBν = ie(φ∗∂µφ − φ∂µφ∗)− 2e2φ∗φBµ (1.54)

and

�φ + ie(2Bµ∂µφ + φ∂µBµ)− e2BµBµφ = 2β2(λ2 − φ∗φ)φ (1.55)

respectively. At a classical level, much of the research on the dynamics of cosmic
strings has centred on generating exact or approximate filamentary solutions to
these two equations. The simplest assumption, first systematically explored by
Holger Nielsen and Poul Olesen in 1973 [NO73], is that the solution is static
and cylindrically symmetric. This means that, if r and θ are standard polar
coordinates, defined so that x = r cos θ and y = r sin θ , then

Bµ = B(r)∂µθ and φ = �(r)eiχ(θ) (1.56)

for some choice of functions B , � and χ .
A single string centred on the z-axis will have �(0) = 0 and �(r) ≈ λ for

large r . Since the azimuthal vector ∂µθ is undefined at r = 0, it must also be the
case that B(0) = 0. From (1.55) it is evident that a possible dimensionless radial
coordinate is ρ = 2βλr ≡ mHr . Furthermore, χ will change by some non-zero
integer multiple 2πn of 2π as the angle θ increases from 0 to 2π . Since the Higgs
lagrangian (1.53) is locallyU(1)-invariant, it is always possible to apply the gauge
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transformation Bµ → Bµ + ∂µ	 and φ → φe−ie	, where 	 = e−1(χ − nθ), to
reduce χ to nθ . This absorbs χ into Bµ, and without loss of generality (provided
that e �= 0) the field variables can be rescaled in the form:

Bµ = e−1[P(ρ)− n]∂µθ and φ = λQ(ρ)einθ (1.57)

for some functions P and Q.
In view of the cylindrical symmetry of the problem, much of the analysis that

follows is simplified by converting fromMinkowski coordinates xµ = [t, x, y, z]
to cylindrical coordinates xµ = [t, r, θ, z]. The metric tensor is then ηµν =
diag(1,−1,−r2,−1), and, since, in particular, Grθ = −Gθr = mHP ′/e, the
lagrangian becomes

�/(m2
Hλ

2) = −b−1ρ−2P ′2 − Q′2 − ρ−2P2Q2 − 1
4 (1− Q2)2 (1.58)

where a prime denotes d/dρ and b = 1
2e

2/β2 ≡ m2
V/m

2
H is the so-called

Bogomol’nyi parameter.
Furthermore, in a general curvilinear coordinate system the action integral is

I =
∫
�η1/2 d4x (1.59)

where η ≡ − det(ηµν) is the norm of the determinant of the metric tensor. In
cylindrical coordinates η = r2 and so the Euler–Lagrange equations become

r
∂�

∂X
− ∂µ

(
r
∂�

∂[∂µX]
)
= 0 (1.60)

where X denotes any of the field variables in the lagrangian.
The Euler–Lagrange equations for the rescaled functions P and Q therefore

read:
P ′′ − ρ−1P ′ = bQ2P (1.61)

and
Q′′ + ρ−1Q′ − ρ−2P2Q = 1

2 (Q
2 − 1)Q. (1.62)

These equations need to be solved subject to the boundary conditions P(0) = n,
Q(0) = 0 and limρ→∞ Q(ρ) = 1. Since Q ≈ 1 for large ρ, (1.61) reduces to
a modified Bessel equation for P in this limit, and thus P can be expressed as
a linear combination of an exponentially growing and an exponentially decaying
function of ρ for large ρ. The exponentially growing solution is incompatible
with (1.62), and so limρ→∞ P(ρ) = 0.

In general, equations (1.61) and (1.62) cannot be integrated exactly, although
simplifications do occur if b = 0 or 1. Nonetheless, it is relatively straightforward
to show that, with s ≡ sgn(n),

sP ≈ |n| − p0ρ
2 + bq20

4(|n| + 1)
ρ2|n|+2

Q ≈ q0ρ|n| − q0 (1+ 4|n|p0)
8(|n| + 1)

ρ|n|+2
(1.63)
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Figure 1.3. Variation of P and Q as functions of ρ in the case b = 1 and n = 1.

for small ρ, and that if b > 1
4

sP ≈ p∞ρ1/2e−
√
bρ and Q ≈ 1− q∞ρ−1/2e−ρ (1.64)

for large ρ, where p0, q0, p∞ and q∞ are positive constants to be determined.
Thus (recalling that ρ = mHr ) the Higgs field falls off exponentially with a

characteristic length scale 1/mH, while the vector field has a characteristic decay
scale 1/(

√
bmH) ≡ 1/mV. The larger of these two length scales defines the radius

of the Nielsen–Olesen vortex. (Note, however, that if b = 1
4 then 1 − Q falls off

as e−ρ rather than ρ−1/2e−ρ , while if b < 1
4 it falls off as ρ−1e−2

√
bρ .)

In the special case b = 1 (which occurs when mV = mH) the differential
equations (1.61) and (1.62) can be rewritten as

X ′ = −ρ−1QY and Y ′ = −ρ−1sPY − ρQX (1.65)

respectively, where X = ρ−1sP ′ − 1
2 (Q

2 − 1) and Y = ρQ′ − sPQ. The trivial
solution X = Y = 0 is consistent with the known behaviour of P and Q in the
limits of small and large ρ (with p0 = 1

4 and p∞ = q∞) and so two first integrals
of the field equations are

sP ′ = 1
2ρ(Q

2 − 1) and Q′ = ρ−1sPQ. (1.66)

Figure 1.3 shows the variation of the rescaled vector field P and the rescaled
Higgs field Q with ρ in the case where b = 1 and n = 1. The value of q0 in this
solution is determined (iteratively) to be about 0.60, while p∞ = q∞ ≈ 2.2.

If b = 0 (or, equivalently, e = 0) the first of the field equations (1.61)
can be integrated exactly. However, the Higgs field φ and the gauge field Bµ
decouple in the Abelian Higgs lagrangian when e = 0, and the local U(1)
gauge transformation that led to the rescaling equations (1.57) breaks down. The
equations for P and Q are, therefore, invalid. In fact, because the lagrangian
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(1.53) possesses only global U(1) invariance when e = 0, it is not possible to
transform away the complex argument χ and the theory retains an extra degree
of freedom that is reflected by the fact that in the broken phase it gives rise to
massless spin-0 particles (the Goldstone bosons) as well as Higgs bosons. Strings
that form in the broken phase of the Goldstone model are called global strings.
Unlike local strings, global strings have a divergent mass per unit length and so
are more difficult to incorporate into cosmological models.

At a classical level, the stress–energy content of a system of fields with
lagrangian � can be described by a symmetric 4 × 4 stress–energy tensor Tµν

whose covariant components

Tµν = −2 ∂�
∂ηµν

− ηµν� (1.67)

are constructed by varying the action integral I with respect to ηµν . (See
[Wei72, pp 360–1], for a detailed derivation. Note, however, that a sign reversal
is necessary here, as Weinberg chooses to work with a spacetime metric with
signature +2.) In the case of the Abelian Higgs lagrangian (1.53), each raised
spacetime index marks the presence of one factor of ηµν , and so

Tµν = GµλG,λν − 2(∂(µφ
∗ − ieB(µφ

∗)(∂ν)φ + ieBν)φ)− ηµν� (1.68)

In particular, for a static, cylindrically-symmetric solution of the form (1.57)
the stress–energy tensor is diagonal, with T tt = ε the energy density of the vortex
and T jk = − diag(pr , pθ , pz) its pressure tensor. Clearly,

ε = −pz = −� ≡ m2
Hλ

2[b−1ρ−2P ′2+ Q′2+ ρ−2P2Q2+ 1
4 (1− Q2)2] (1.69)

while after some manipulation it can be seen that the radial and azimuthal
pressures take the forms

pr = m2
Hλ

2[b−1ρ−2P ′2 + Q′2 − ρ−2P2Q2 − 1
4 (1− Q2)2] (1.70)

and

pθ = m2
Hλ

2[b−1ρ−2P ′2 − Q′2 + ρ−2P2Q2 − 1
4 (1− Q2)2]. (1.71)

Thus the energy density of the vortex is everywhere positive, while the
longitudinal pressure pz is negative and should more properly be referred to
as a longitudinal tension. The constitutive relation pz = −ε, which holds for
all Nielsen–Olesen vortex strings, is one of the defining features of a canonical
cosmic string. In the particular case b = 1,

ε = −pz = m2
Hλ

2[ 14 (1− Q2)2 + 2ρ−2P2Q2 + 1
4 (1− Q2)2] (1.72)

while pr = pθ = 0. The scaled energy density ε/(m2
Hλ

2) in this case is plotted
against ρ for the n = 1 solution in figure 1.4.
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Figure 1.4. The energy density ε (in units of m2
Hλ

2) as a function of ρ in the case b = 1
and n = 1.

Since the speed of light c has the value 1 in Planck units, the total energy per
unit length of any of the vortex solutions is equivalent to its mass per unit length,
which is conventionally denoted by µ and is given by

µ = 2π
∫ ∞

0
εr dr (1.73)

When b = 1, this integral reduces to

µ = 2πλ2
∫ ∞

0
[ 12 (1− Q2)2 + 2ρ−2P2Q2]ρ dρ

= 2πλ2
∫ ∞

0
[(ρ−1P ′)′P + (ρQ′)′Q − sP ′] dρ (1.74)

where the second line follows by combining (1.61), (1.62) and the first equation
of (1.66). Thus

µ = 2πλ2[ρ−1PP ′ + ρQQ′ − sP]∞0 − 2πη2
∫ ∞

0
(ρ−1P ′2 + ρQ′2) dρ

= 2πλ2(2q0 + 1)− 1
2µ (1.75)

and since q0 = 1
4 in this case, the mass per unit length µ is just 2πλ2 ≡ m2

V/e
2.

More generally, µ = 2πλ2µ̄(b) for some function µ̄. Numerical studies indicate
that µ̄ diverges as | ln b| as b→ 0 from above, which is consistent with the known
behaviour of global strings.

Two other quantities of interest are the integrated in-plane pressures in the
general case b �= 1. Since the stress–energy tensor Tµν by construction satisfies
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the conservation equation ∂µT
µ
ν = 01, and all t and z derivatives are zero, it

follows that ∂x T xν + ∂yT yν = 0. Hence,

0 =
∫
x(∂xT

x
ν + ∂yT yν ) dx dy

=
∫
[xT xν ]x=∞x=−∞ dy +

∫
[xT yν ]y=∞y=−∞ dx −

∫
T xν dx dy (1.76)

and since the components of the stress–energy tensor fall off exponentially at
infinity,

∫
T xν dx dy = 0. Similarly,

∫
T yν dx dy = 0.

Thus the integrated in-plane pressures
∫
px dx dy and

∫
py dx dy are in all

cases zero. This result is not peculiar to Nielsen–Olesen strings, but is true of any
material system whose stress–energy tensor is independent of t and z and falls off
more rapidly than r−1 at infinity. However, it does indicate that Nielsen–Olesen
strings have a particularly simple integrated stress–energy tensor∫

Tµν dx dy = µ diag(1, 0, 0− 1). (1.77)

Finally, it should be noted that Nielsen–Olesen strings also carry a magnetic
flux

M = lim
r→∞

∫ 2π

0
(−Bθ Bθ )1/2r dθ = lim

ρ→∞

∫ 2π

0
e−1|P(ρ)− n| dθ = 2π |n|/e

(1.78)
and so a string with winding number n carries |n| units of the elementary magnetic
flux 2π/e. It was mentioned earlier that the topology of the Higgs field prevents
local U(1) strings from unwinding. However, it is possible for a Nielsen–Olesen
string with winding number n to break up into |n| strings, each carrying an
elementary magnetic flux.

In fact, a perturbation analysis carried out by Bogomol’nyi [Bog76] indicates
that Nielsen–Olesen strings with |n| > 1 are unstable to a break-up of this type
if b < 1 (that is, if mV < mH) but remain stable if b > 1 (or mV > mH). At a
physical level, this instability can be explained by the fact that magnetic flux lines
repel one another and so the gauge field Bµ acts to disrupt the vortex, whereas the
effect of the Higgs field φ is to confine the vortex so as to minimize the volume
in which |φ| �= λ. The strengths of the two competing fields are proportional to
the ranges 1/mV and 1/mH of their carrier particles, and so the gauge field wins
out if mV < mH.

1 See, for example, Weinberg [Wei72, pp 362–3], where it is shown that any stress–energy tensor Tµν
generated as a functional derivative of an action integral is conserved, provided that the lagrangian �
is invariant under general coordinate transformations. Alternatively, the identity ∂µT

µ
ν = 0 can be

verified directly by taking the divergence of (1.68) and invoking the Euler–Lagrange equations (1.54)
and (1.55).
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1.4 Strings as relics of the Big Bang

The success of the Weinberg–Salam model in unifying the electromagnetic and
weak forces has naturally led to a concerted effort to combine the electroweak
and strong forces in a similar way. The strong force, which acts on the quark
constituents of hadrons and is mediated by carrier particles called gluons, is
accurately described by the theory of quantum chromodynamics (or QCD),
which is based on the eight-parameter gauge group SU(3). It is relatively
straightforward to combine the electroweak and QCD lagrangians to give a single
lagrangian with SU(3)×SU(2)×U(1) symmetry which describes what is known
as the standard model. However, it is tempting to hope that the standard model
can be reformulated as the broken phase of a GUT described by a single gauge
group whose symmetries are restored at high temperatures.

One of the advantages of such a theory is that it would depend on only
one coupling constant rather than the three (g, g′ and the strong coupling
constant gs) that appear in the standard model. The temperature at which grand
unification might occur can be estimated by extrapolating the effective (that is,
finite-temperature) values of these three coupling constants to a point where
they are roughly equal. The resulting GUT temperature is about 1028–1029 K
(or 1015–1016 GeV), which is only three or four magnitudes smaller than the
Planck temperature EPl/kB ≈ 1032 K and is well beyond the range of current or
conceivable future particle accelerator technology.

Because the energies involved in grand unification are almost completely
inaccessible to experiment, the range of possible GUTs is constrained only by
the requirements of mathematical consistency The simplest gauge group that
can break to produce SU(3) × SU(2) × U(1) is SU(5) but theories based on
SU(5) unification do not give rise to stable strings. The smallest group consistent
with the standard model that does allow for stable strings is SO(10), which can
be broken in a variety of ways. The versions of SO(10) unification that are
most interesting from the viewpoint of cosmology (because they give rise to the
longest-lived strings) involve supersymmetry (invariance under boson–fermion
interchange), which has been postulated to operate at high energies but has not
yet been observed. Also, the fact that the extrapolated values of the strong
and electroweak coupling constants do not all converge at the same temperature
suggests that grand unification might involve two (or more) phase transitions,
which opens even more possibilities.

Ever since the observational confirmation of the cosmological expansion of
the Universe in the 1950s and the discovery of the cosmic microwave background
in 1964 it has been evident that at some time in the distant past, between about
10× 109 and 15× 109 years ago, the Universe formed a dense soup of particles
and radiation with a temperature of the order of the Planck temperature. This
state, known nowadays as the Big Bang, effectively marks the earliest time in
the history of the Universe that could conceivably be described by the equations
of classical cosmology. However, it should be stressed that it is not possible
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to directly observe conditions in the Universe before about 300 000 years after
the Big Bang, as it was only then, at a temperature of about 3000–4000 K, that
the opaque electron–proton plasma filling the Universe recombined to form an
effectively transparent hydrogen gas.

As the Universe expanded and cooled from its initial ultra-hot state it
presumably underwent one or more grand unification phase transitions as the
temperature dropped below 1028–1029 K, around 10−39–10−37 s after the Big
Bang, and a further electroweak phase transition at a temperature of about 1015 K,
some 10−11 s after the Big Bang. In both cases stable strings could possibly have
formed. In the simplest models, the expectation value of the Higgs field φ slowly
moves away from zero as the temperature drops below the critical temperature
Tc ∼ mH. If the manifold of true vacuum states is U(1), the phase factor χ will,
in general, assume different values in different regions in space. It is expected
that the values of χ will be correlated on length scales of the order of 1/mH, but
that the difference in values between widely separated points will be randomly
distributed. Whenever the net change in χ around a closed curve is non-zero, a
string must condense somewhere in the interior of the curve. The overall effect,
as confirmed by numerical simulations, is the appearance of a tangled network of
strings with a structure much like spaghetti.

In the immediate aftermath of the phase transition, when the temperature is
still close to Tc, the string tension remains small and the motion of the strings is
heavily damped by the frictional effects of the surrounding high-density medium.
However, once the temperature has dropped sufficiently far (to about 1025 K
some 10−31 s after the Big Bang in the case of GUT strings) the string tension
approaches its zero-temperature value µ ∼ m2

H and the motion of the strings
is effectively decoupled from the surrounding medium. Henceforth, the strings
move at relativistic speeds, and the evolution of the string network is driven
principally by the gradual radiative decay of closed loops of string which break
off from the network as a result of self-intersections of long (horizon-sized)
strings. The dominant mechanism of energy loss from loops of GUT-scale string
is gravitational radiation, but in the case of the much lighter electroweak strings
the emission of Higgs and vector particles is more important.

Since mH ∼ (10−4–10−3)mPl for a GUT string, the mass per unit length of
such a string would be µ ∼ 10−8–10−6 in Planck units or, equivalently, 1019–
1021 kg m−1. Thus, a loop of GUT string of length 105 light years (or 1021 m),
which is the typical size of a galaxy, would have a total mass of 1040–1042 kg or
1010–1012M�, which is also the typical mass range of a galaxy. By contrast,
an electroweak string has mH ∼ 10−17mPl and so a mass per unit length of
µ ∼ 10−34 or approximately 10−7 kg m−1. A galaxy-sized loop of electroweak
string would, therefore, have a mass of only 1014 kg, which is roughly the mass
of a 3-km asteroid. Also, the thickness 1/mH of a GUT string would be 103–104

Planck lengths, or 10−32–10−31 m, whereas the thickness of an electroweak string
would be about 10−18 m, which is only three orders of magnitude smaller than
the electron radius.
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From these estimates it is evident that the gravitational effects of GUT
strings would be strong enough to have potentially important consequences for
cosmology, but the gravitational effects of electroweak strings would not. The
formation of gravitationally-bound clumps of baryonic matter, the precursors of
today’s galaxies or galaxy clusters, was not feasible until the Universe cooled
sufficiently to allow hydrogen to recombine, and the radiation and matter fields
to decouple, about 300 000 years after the Big Bang. The current distribution
of baryonic matter in the Universe should be traceable directly to the collapse
of such clumps. This constraint, as well as the observed inhomogeneities in
the cosmic microwave background (which effectively consists of photons that
were last scattered just before recombination), indicates that perturbations in the
density of the protogalactic medium at the time of recombination must have been
about 10−5 of the mean density.

One of the enduring unsolved problems in modern cosmology is to explain
how density perturbations of this size might have arisen in the early Universe.
Cosmic strings were first seriously considered as ingredients of cosmological
models in the early 1980s because a stationary loop of GUT string with mass per
unit lengthµ ∼ 10−6 would act naturally as a seed for density perturbations of the
required size. However, as mentioned in the Introduction, the initial promise of
a string-seeded cosmology was not borne out in numerical simulations, primarily
because the loops that broke off from the primordial string network typically
moved at relativistic speeds and were unable to act as effective accretion seeds.
Nonetheless, the fact that cosmic strings provide localized sources of mass and
energy in an otherwise homogeneous Universe remains an attractive feature, and
research into their potential cosmological effects will undoubtedly continue in the
absence of a convincing alternative mechanism of structure formation.

There are, of course, many other possible types of topological defect that
may have appeared in the early Universe. In particular, the complete absence
of information about conditions in the early Universe between the breaking of
the GUT symmetry at 10−39–10−37 s and the electroweak phase transition at
10−11 s gives ample scope for numerous extra phase transitions. One that has been
explored in some detail is the postulated breaking of the Peccei–Quinn symmetry,
which rotates the phases of left-handed and right-handed fermions in opposite
directions, at a temperature of 109–1011 GeV. This could give rise to both domain
walls and axion strings (a special type of global string).

Another possibility is the formation of monopoles, which appear whenever
a large gauge group spontaneously breaks down to a subgroup containing U(1).
Monopoles are an inevitable consequence of a GUT phase transition (although not
an electroweak one), and since GUT monopoles have very large masses (about
1016 GeV or 10−8 g) their presence would imply an unacceptably high matter
density for the Universe. One way to resolve this problem is to assume that
the GUT phase transition proceeded by bubble nucleation, with all parts of the
Universe that are currently observable expanding exponentially from a single
Planck-sized bubble for a period of about 10−37–10−35 s. The effect of this
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process, known as inflation, would have been to dilute the monopole density to
an acceptably low level. Once inflation ended, the Universe would have reheated
to the critical temperature Tc and expansion and cooling would have continued
normally. Inflation poses a problem for the formation of cosmic strings, as any
GUT strings would usually be inflated away with the monopoles. However, it is
possible to fine-tune the model so that the Universe passes through the GUT phase
transition a second time—allowing GUT strings to recondense—at the end of the
inflationary epoch.

Further possibilities include hybrid defects, such as monopoles joined by
strings or domain walls bounded by strings. Finally, by adding extra scalar
or spinor fields to the Higgs lagrangian it is possible to form cosmic strings
which carry bosonic or fermionic currents. Provided that these currents are not
too large, they will propagate along the string without dissipation, causing the
string to behave like a superconducting wire. It turns out that the current on
a superconducting string loop can potentially stabilize the loop, allowing it to
persist almost indefinitely. GUT-scale superconducting loops would then survive
to the present epoch with the same catastrophic densities as undiluted monopoles.
However, electroweak superconducting strings would be more benign and could
interact strongly with cosmic magnetic fields and plasmas.

In what follows I will be considering in detail the dynamics and gravitational
effects of individual non-superconducting local strings only. Thus there will be
little mention of the evolution of the primordial string network or its implications
for the formation of large-scale structure in the Universe. Although the actual
value of the mass per unit length µ of a string is not crucial to an analysis of its
motion or gravitational field, it will normally be assumed to take on its GUT value
of about 10−6. Furthermore, for reasons explained shortly, the strings will almost
everywhere be treated as zero-thickness lines, which effectively involves ignoring
most of the field structure of the underlying vortices. In the few cases where the
field-theoretic properties of the strings are important, reference will be made to
the simple local U(1) string described in section 1.3.

1.5 The Nambu action

The local U(1) string has been extensively studied since 1973, and is now well
understood at a semi-classical level. Furthermore, as will be seen in chapters 7
and 9, the Nielsen–Olesen vortex can be coupled to the Einstein equations to
produce an exact (although numerically generated) self-gravitating solution, and
this exact solution persists even after the addition of a certain class of gravitational
disturbances known as travelling waves. However, all known field-theoretic
solutions retain a high degree of spacetime symmetry that is unlikely to be a
feature of realistic cosmological strings, whether they condensed at electroweak
or GUT energy scales.

Even in the absence of gravity, there is little prospect that an exact solution to
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the Abelian Higgs field equations (1.54) and (1.55) will ever be found describing
a curved or oscillating string, if only because non-trivial string solutions would
radiate field energy and therefore be dissipative. Hence, in order to study the
dynamics of general string configurations it is necessary to simplify the problem
by removing some of the degrees of freedom. Since the thickness of a GUT string
is only a few orders of magnitude larger than the Planck length, one obvious
simplification is to assume that the string actually has zero thickness. This was
first done by Nielsen and Olesen, who suggested that in the zero-thickness limit
non-straight vortex strings should behave like Nambu strings, a class of two-
dimensional mathematical objects that had earlier (in 1970) been proposed by
Yoichiro Nambu to explain the observed hadron particle spectrum. A rigorous
derivation of this result was published by Dietrich Förster [För74] in 1974.

In the case of the standardNielsen–Olesen vortex, the rescaled field variables
P and 1− Q assume their false vacuum values (n and 1 respectively) on the axis
of symmetry, and fall off exponentially with the cylindrical radius ρ. The centre
of the string is, therefore, the set of points {x = y = 0}, which form a two-
dimensional surface T spanned by the unit vectors in the t- and z-directions. The
surface T is called the world sheet of the string. In parametric form, the world
sheet of the Nielsen–Olesen vortex has the equation xµ = [τ, 0, 0, σ ], where τ
and σ are arbitrary independent variables. More generally, the world sheet of a
curved or moving string can be expressed in the form

xµ = Xµ(ζ A) (1.79)

for some differentiable 4-vector function Xµ of two parameters ζ A = (ζ 0, ζ 1).
At each point on a parametrized 2-surface such as (1.79) the choice of world-

sheet coordinates ζ A induces a natural pair of tangent vectors {tµA = Xµ,A },
where ‘,A’ denotes partial differentiation with respect to ζ A. Furthermore,
provided that the tangent vectors tµA are everywhere linearly independent and not
both spacelike, there is a unique spacelike normal plane N� through each point
� on T. Let {nµ( j )} be a pair of orthonormal spacelike vector fields that span N�

at each point � (see figure 1.5), with j ranging from 2 to 3 in this case. Thus
n( j ) · n(k) = −δ j k at all points on the world sheet. (The dot product here denotes
the inner or metric product, so that n( j ) · n(k) ≡ ηµνnµ( j )nν(k).) In general there is

no unique or even preferred choice of normals nµ( j ), as the defining features of the
normals are preserved under spatial rotations of the form nµ → Rnµ, where R is
any point-wise defined 2 × 2 rotation matrix. However, it will here be assumed
that the normals nµ( j ) are at least once differentiable functions of the parameters

ζ A.
Once the parametrization (1.79) and the normal vector fields have been

specified, it is possible to transform from the original Minkowski coordinate
system xµ = [t, x, y, z] to a system of spacetime coordinates x̄µ =
[ζ 0, ζ 1, χ2, χ3] tailored to the geometry of the world sheet T by setting

xµ = Xµ(ζ A)+ nµ(k)(ζ A)χk . (1.80)
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Figure 1.5. The normal plane N�.

That is, given a general spacetime point xµ its coordinates ζ A are the world-sheet
coordinates of the point � at which the normal surfaceN� through xµ intersects T,
while r̄ = (δ j kχ jχk)1/2 is the geodesic distance from xµ to the world sheet along
N� (refer again to figure 1.5 for an illustration). The action for a zero-thickness
string centred on T is generated by rewriting the Higgs lagrangian (1.53) in terms
of the tailored coordinates x̄µ and expanding it in powers of r̄ .

To do this, it is necessary first of all to transform the metric tensor from
its Minkowski form ηµν = diag(1,−1,−1,−1) to its tailored form η̄µν =
ηκλ	

κ
µ	

λ
ν , where	

κ
µ = ∂xκ/∂ x̄µ. Thus	µj = nµ( j ) and

	
µ
A = tµA + nµ(k),A χk ≡ (δBA + K B

( j )Aχ
j )tµB − ωAnµ( j )ε jkχk (1.81)

where K( j )AB = n( j ),A ·tB are the extrinsic curvature tensors and ωA = n(2) ·
n(3),A is the twist vector of the world sheet, while ε j k is the 2 × 2 alternating

tensor (with ε23 = −ε32 = 1 and ε22 = ε33 = 0) and ε jk ≡ δ jmεmk .
Upper-case indices are everywhere lowered and raised using the first

fundamental form or intrinsic 2-metric of the world sheet γAB = tA · tB and its
inverse γ AB = (γAB)−1. Note also that because n(2) · n(3) = 0 and n( j ) · tA = 0
the twist vector ωA can alternatively be written as −n(3) · n(2),A and the extrinsic
curvature tensors K( j )AB as −n( j ) · tA,B ≡ −n( j ) · X,AB , which incidentally
demonstrates that K( j )AB is symmetric in A and B . The components of η̄µν can,
therefore, be expanded in the form:

η̄AB = γAB + 2K( j )ABχ
j + KC( j )AK(k)BCχ jχk − ωAωBr̄2

η̄Aj = ωAε j kχk and η̄ j k = −δ j k . (1.82)

Now, the coordinates x̄µ are uniquely defined only out to the local radius
of curvature of the world sheet, where neighbouring normal planes first begin to
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cross. More precisely, the coordinates x̄µ become degenerate when the coordinate
basis vectors {	µA,	µk } cease to be linearly independent, which, in turn, occurs
when the matrix δBA + K B

( j )Aχ
j in (1.81) has vanishing determinant. Thus the

tailored coordinate system breaks down at points χ j on the family of ellipses

1+ K A
( j )Aχ

j + 1
2 (K

A
( j )AK

B
(k)B − K A

( j )BK
B
(k)A)χ

jχk = 0. (1.83)

The ‘radius of curvature’ of the world sheet, therefore, depends not only
on the choice of normal surface N� but also on the choice of radial direction on
N�. Let κ−1 be a typical value of this local radius of curvature. In general, for
strings that are locally straight on Planck length scales, it is to be expected that
κ−1 will be much larger than the exponential decay scale 1/mH of the Higgs field
(and, of course, κ−1 →∞ in the limiting case of a Nielsen–Olesen vortex). The
dimensionless parameter ε = κ/mH is, therefore, very small and forms a natural
expansion parameter when studying the structure of non-straight strings.

The crucial assumption behind the expansion method is that the string fields
Bµ and φ vary on length scales of order κ−1 in the tangential directions and of
order 1/mH in the normal directions. That is, if the fields are treated as functions
of the dimensionless variables

σ A = κζ A and ρ j = mHχ
j (1.84)

then their gradients with respect to σ A and ρ j are of comparable magnitude.
Furthermore, it is evident from (1.83) that κ is, by definition, a characteristic

magnitude of the curvature tensors K A
( j )B , while the twist vector ωA = n(2) ·n(3),A

also has the same dimensions as κ . Thus if K̂( j )AB = κ−1K( j )AB and ω̂A =
κ−1ωA the tailored metric tensor η̄µν can be rewritten in the dimensionless form

η̄AB = γAB + 2ε K̂( j )ABρ
j + ε2(K̂ C( j )AK̂(k)BCρ jρk − ω̂Aω̂B ρ̂2)

η̄Aj = εω̂Aε j kρk and η̄ j k = −δ j k (1.85)

where ρ̂ = mHr̄ .
As was the case with the Nielsen–Olesen vortex, it is always possible to use

a U(1) gauge transformation to reduce the string fields to the form

Bµ = e−1(Pµ − n∂µθ̄) and φ = λQeinθ̄ (1.86)

where θ̄ is the polar angle on each of the normal planes (so that χ2 = r̄ cos θ̄
and χ3 = r̄ sin θ̄ ) and n �= 0 is the winding number of the string around the
world sheet T, but the vector field Pµ is now not necessarily parallel to ∂µθ̄ . Note
also that if ∂̂µ denotes partial differentiation with respect to the dimensionless
variables σ A and ρ j then ∂µθ̄ = mH∂̂µθ̄ . The covariant vector field Pµ has the
same transformation properties as ∂µ and can therefore be recast in dimensionless
form by writing PA = κ P̂A and Pj = mH P̂j .
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If the dynamical variables P̂µ and Q are expanded in powers of ε:

P̂µ = P̂0µ+ε P̂1µ+ε2 P̂2µ+· · · and Q = Q0+εQ1+ε2Q2+· · · (1.87)
and the metric tensor η̄µν expanded similarly by inverting (1.85) to give

η̄AB = γ AB − 2ε K̂ AB
( j ) ρ

j + 3ε2 K̂ AC
( j ) K̂

B
(k)Cρ

jρk + · · ·
η̄Aj = εω̂Aε jkρk − 2ε2ω̂B K̂ A

(m)Bρ
mε

j
kρ
k + · · ·

and
η̄ j k = −δ j k + ε2ω̂Aω̂Aε jmεknρmρn + · · · (1.88)

then the Higgs lagrangian (1.53) can also be formally expanded in powers of ε.
The functions appearing in the expansions of P̂µ and Q are then found by solving
the Euler–Lagrange equations at successive orders in ε.

In the tailored coordinate system the action integral for the vortex reads:

I =
∫
�η̄1/2 d4x̄ (1.89)

where

η̄ ≡ − det(η̄µν) = γ [1+ ε K̂ A
( j )Aρ

j + 1
2ε

2(K̂ A
( j )AK̂

B
(k)B − K̂ A

( j )B K̂
B
(k)A)ρ

jρk]
(1.90)

with γ ≡ − det(γAB). Thus, at order ε0,

�0η̄0
1/2 = m2

Hλ
2γ 1/2[− 1

4b
−1δ jmδknG0 j kG0mn

− δ j k(∂̂ j Q0∂̂k Q0 + Q2
0 P̂0 j P̂0k)− 1

4 (Q
2
0 − 1)2] (1.91)

where G0 j k = ∂̂ j P̂0k− ∂̂k P̂0 j . The corresponding Euler–Lagrange equations read
1
2δ
jm ∂̂ j (∂̂m P̂0k − ∂̂k P̂0m) = bQ2

0 P̂0k (1.92)

and
δ j k(∂̂ j ∂̂k Q0 − Q2

0 P̂0 j P̂0k) = 1
2Q0(Q

2
0 − 1) (1.93)

which are just the non-axisymmetric generalizations of the Nielsen–Olesen
equations (1.61) and (1.62). Because P̂0 j and Q0 satisfy the same boundary
conditions as the Nielsen–Olesen functions Pj = P∂ j θ and Q, it follows that
P̂0 j and Q0 must be axisymmetric and their dependence on ρ̂ the same as the
dependence of Pj and Q on ρ.

Thus, to leading order in ε the action integral I for a general vortex string is

I0 =
∫
�0η̄

1/2
0 d4x̄

= m2
Hλ

2
∫
γ 1/2 d2ζ

∫
[− 1

4b
−1δ jmδknG0 j kG0mn

− δ j k(∂̂ j Q0∂̂k Q0 + Q2
0 P̂0 j P̂0k)− 1

4 (Q
2
0 − 1)2] d2χ (1.94)
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or, in view of (1.72) and (1.73),

I0 = −µ
∫
γ 1/2 d2ζ (1.95)

where µ is the constant mass per unit length of the string as before. The
expression on the right of this equation is called the Nambu action. It contains
information about the dynamics of the string world sheet by virtue of the fact that
γ = det(tA · tB) is a functional of the world-sheet tangent vectors tµA = Xµ,A .

If the components Xµ of the position vector of the world sheet are treated
as dynamical variables in their own right then, since any parametric variation
δγAB in the 2-metric γAB will induce a corresponding variation δγ 1/2 =
1
2γ

1/2γ ABδγAB in γ 1/2, the Euler–Lagrange equations for Xµ become

(γ 1/2γ AB Xµ,A ),B = 0. (1.96)

This is the equation of motion for a zero-thickness cosmic string in a Minkowski
background. At a heuristic level, (1.96) describes the vibrations of a perfectly
elastic string whose sound propagation speed is equal to the speed of light c.
It, and its generalization to non-flat background spacetimes, will be discussed in
some detail in chapters 2 to 5.

Before exploring the extremely rich world of string dynamics in this, the
wire approximation, it is instructive to briefly examine the possible effects on the
equation of motion of higher-order terms in the Higgs lagrangian. Expanding
�η̄1/2 in powers of ε is algebraically very tedious, and only the final conclusions
will be outlined here. A complete derivation of these results can be found in
[And99b] and [ABGS97].

One feature to note about the expansion of �η̄1/2 is that the first-order
perturbations P̂1 j and Q1 appear only linearly at order ε, in the form

εγ 1/2

{
∂�0

∂ P̂0 j
P̂1 j + ∂�0

∂[∂̂ j P̂0k]
∂̂ j P̂1k + ∂�0

∂Q0
Q1 + ∂�0

∂[∂̂ j Q0]
∂̂ j Q1

}
. (1.97)

The resulting Euler–Lagrange equations are just the leading-order equations
(1.92) and (1.93) for P̂0 j and Q0 and no new information is obtained.
Furthermore, the leading tangential components P̂0A of P̂µ do not appear until
order ε2. The first-order corrections to�η̄1/2 are, therefore, all metric terms linear
in the normal coordinates ρ j , and by symmetry they make no net contribution to
the action integral I .

At order ε2 there are three non-trivial Euler–Lagrange equations, namely two
coupled linear inhomogeneous equations for P̂1 j and Q1 and an uncoupled linear
inhomogeneous equation for P̂0A. The driving terms in the coupled equations are
both proportional to the mean curvature K A

( j )A of the world sheet. Now, taking
the normal projection of the equation of motion (1.96) gives:

0 = n(i) · (γ 1/2γ AB X,A ),B
= (γ 1/2γ AB),B n(i) · tA + γ 1/2γ ABn(i) · X,AB = −γ 1/2K A

( j )A (1.98)
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and so the world sheet of a zero-thickness string has zero mean curvature. The
equations for P̂1 j and Q1 are, therefore, strictly homogeneous, and P̂1 j = Q1 =
0. Also, the equation for P̂0A is easily solved, giving

P̂0A = ω̂Aρ j εk j P̂0k . (1.99)

The corresponding corrected action integral turns out to be

I0 + ε2 I2 = −
∫
γ 1/2[µ+ ε2α1δ j k K̂ A

( j )B K̂
B
(k)A] d2ζ (1.100)

where α1 = − ∫
r̄2�0 d2χ is a positive constant. However, it turns out that

the presence of I2 adds no extra terms to the Euler–Lagrange equations for the
position vector Xµ, and so the second-order corrections make only a trivial
contribution to the action. This result follows because δ j k K̂ A

( j )B K̂
B
(k)A = −R̃,

the intrinsic scalar curvature of the world sheet, and
∫
γ 1/2 R̃ d2ζ is a topological

invariant (that is, γ 1/2 R̃ can be expressed as a pure divergence: see [Sto89,
p 141]).

At order ε3 the corrections to �η̄1/2 are again all odd functions of the normal
coordinates ρ j and so make no net contribution to I . It is only at order ε4,
where the Euler–Lagrange equations involve P̂2 j , Q2 and P̂1A, that non-trivial
corrections to the action appear. The corrections to the action integral are then

ε4 I4 = − ε4
∫
γ 1/2[α2(δ j k K̂ A

( j )B K̂
B
(k)A)

2

+ α3δ j kδmn K̂ A
( j )B K̂

B
(k)C K̂

C
(m)D K̂

D
(n)A] d2ζ (1.101)

where the constants α2 and α3 are complicated integrals of the field variables.
Numerical investigation indicates that α2 can be either positive or negative,
depending on the value of the Bogomol’nyi parameter b, while α3 is a negative
definite function of b.

The most important question relating to the correction terms in (1.101) is the
effect they have on the rigidity of the string. A string is said to be rigid if its
corrected motion leads to smaller world-sheet curvature than would be predicted
on the basis of the Nambu equations of motion, and anti-rigid if the correction
terms act to enhance the curvature of the world sheet. Numerical simulation of
the collapse of a circular loop of string under the action of the Euler–Lagrange
equations generated by the corrected action (1.101) indicates that the string in
this case is anti-rigid (meaning that the string collapses to a point faster than a
Nambu string would: see [ABGS97] for more detail).

However, in the case of an infinite string in the shape of an oscillating helix,
the effect of the corrections is to increase the curvature at some points on the world
sheet and reduce it at others. A string of this type therefore seems to exhibit the
characteristics of both rigidity and anti-rigidity at different times. Nonetheless,
oscillating helical strings are always anti-rigid at the moment of maximum
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curvature, and there are further theoretical grounds for believing that anti-rigidity
is, in general, more common than rigidity. This gives a qualified assurance that
high-curvature features predicted on the basis of the wire approximation will not
be suppressed by string rigidity. And, as will be seen later, it is in situations of
high curvature that the dynamical and gravitational behaviour of Nambu strings
is richest and most intriguing.



Chapter 2

The elements of string dynamics

2.1 Describing a zero-thickness cosmic string

As was explained in the concluding sections of the last chapter, a cosmic string
is essentially a long, thin filament of Higgs field energy, with a thickness smaller
than the radius of an electron and a length that could, in principle, stretch across
the 1010 or more light years to the edge of the visible Universe. In the wire
approximation, such a string is most easily visualized as a line of particles, each
with infinitesimal mass, interacting by means of a strong elastic tension. The
string can either be open (that is, infinite) or form a closed loop. Under the
action of its elastic tension the string can vibrate, oscillate or rotate at high speeds
and support a variety of transient, semi-permanent or permanent structures. The
resulting range of possible string trajectories will be examined in detail in this and
the next three chapters.

In the language of relativistic physics, the background spacetime through
which the string moves will be assumed to be a smooth four-dimensional
Lorentzian manifold equipped with a metric tensor gµν . In elementary terms,
a four-dimensional manifold is a set of points M together with a collection of
subsets {Uα} covering M and a set of one-to-one functions {φα} which each
map the corresponding subset Uα to an open subset of �4 . The functions φα
are smooth in the sense that if S is in the intersection of Uα and Uβ then they
induce a smooth map from φα(S) to φβ(S) (which are both subsets of �4 ). A
general point � inM is identified by its local coordinates xµ = [x0, x1, x2, x3] in
�
4 (which may vary from one coordinate patch to another), and the invariant or
proper distance ds between two neighbouring points xµ and xµ + dxµ is given
by ds2 = gµν dxµ dxν . Furthermore, at each point � it is always possible to
find a smooth transformation of the coordinates xµ near � that reduces gµν to the
Minkowski form diag(1,−1,−1,−1) at �.

For present purposes the metric tensor gµν (which may or may not be flat)
is considered to be fixed ab initio. The effect of assuming a fixed background
is to neglect the gravitational field of the string itself, and, therefore, the back-
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reaction of this field on the string’s dynamics. The problem of self-consistently
coupling the gravitational field to the string’s motion is one of the most difficult in
string dynamics, and little progress has yet been made towards finding a complete
solution. A comprehensive discussion of the problem, in both the weak-field
approximation and the strong-field limit, will be given in chapters 6 and 10.

In the wire approximation, the trajectory of a cosmic string is represented as
a two-dimensional surface T, or world sheet, embedded in the manifold M. The
zero-thickness string is, therefore, a higher-dimensional analogue of the idealized
(point) particle, which can be characterized as tracing out a one-dimensional
surface (or curve) on M. Indeed, the term ‘world sheet’ was coined in analogy
with the standard expression ‘world line’ used to describe the trajectory of a
particle. The topology of the world sheet will depend on the type of string it
describes. For an infinite string T has the topology of a plane, while for a closed
loop T has the topology of a cylinder. More complicated topologies are possible
if the string intersects itself (or another string) and breaks up into two or more
daughter loops.

As was the case with the core of a local U(1) string in section 1.5, the
equation of the world sheet can be written parametrically in the form

xµ = Xµ(ζ 0, ζ 1) (2.1)

where the variables ζ 0 and ζ 1 are usually referred to as world-sheet or gauge
coordinates and the Xµ are (usually) twice-differentiable functions constrained
by an equation of motion (see section 2.2). However, if the string supports a
certain type of discontinuity known as a kink, the requirement that the Xµ be
twice differentiable can be relaxed slightly. Kinks will be discussed at greater
length in section 2.7.

For a straight string lying along the z-axis in Minkowski spacetime the world
sheet has an obvious parametrization Xµ = [τ, 0, 0, σ ], where τ ≡ ζ 0 and
σ ≡ ζ 1. However, there is, in general, no preferred choice of gauge coordinates
ζ 0 and ζ 1, and the only conditions that will for the present be placed on the
choice of coordinates is that they preserve the differentiability properties of the
functions Xµ, and that the first partial derivatives of Xµ are nowhere zero. A set
of coordinates of this type will be referred to as a regular gauge.

As was seen in section 1.5, the choice of parametrization specifies two
tangent vector fields tµA = Xµ,A which span the tangent space at each point
on T. (As before, the index A runs from 0 to 1.) In a regular gauge in the
absence of kinks, the tangent vectors are everywhere continuous, differentiable
and non-zero. The corresponding 2-metric γAB induced on the world sheet by the
spacetime metric gµν is

γAB = gµν tµA tνB . (2.2)

In all standard treatments of string dynamics, the string material is assumed
to be non-tachyonic. This means that at almost all points on the world sheet
T the tangent space is spanned by one timelike and one spacelike vector, and
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so the 2-metric γAB has signature 0 (that is, has one positive and one negative
eigenvalue). It is possible, however, for the tangent space to become degenerate
and collapse into a null line at certain points on the world sheet, at which the 2-
metric is singular. Such points are called cusps. For the moment I will ignore the
possibility of cusps and resume discussion of them in section 2.6.

Ideally, any description of a cosmic string should be invariant under
transformations of both the spacetime and gauge coordinates. Depending on
the context, therefore, the quantity tµA can be regarded as either a set of two
spacetime vectors or a set of four gauge vectors. Furthermore, by introducing
the connections generated separately by gµν and γAB :

�
µ
κλ = 1

2g
µν(gνκ,λ+gνλ,κ −gκλ,ν ) (2.3)

and
�CAB = 1

2γ
CD(γDA,B +γDB,A −γAB ,D ) (2.4)

it is possible to define a world-sheet derivative of tµA :

DB t
µ
A = tµA ,B +�µκλtκAtλB − �CAB tµC (2.5)

which behaves as a contravariant tensor under spacetime transformations and as
a covariant tensor under gauge transformations1. The derivative operator DB can
be generalized in the natural way to apply to mixed spacetime/gauge tensors of
arbitrary rank2.

Both tµA and its world-sheet derivatives are, of course, defined only on the
world sheet. However, whereas the tangent vectors lie along the world sheet, the
gauge components of DBt

µ
A (regarded as spacetime vectors) are all orthogonal to

the world sheet:
tC · DBtA = 0. (2.6)

This last result follows from the identity �CAB = γ CE (tA,B ·tE + �µνλtµA tνBtλE ),
which can be verified by expanding (2.4), and is a useful auxiliary to the equation
of motion, as will be seen shortly.

Another important quantity is the scalar curvature of the world sheet. If Xµ

is three-times differentiable the commutator of the second covariant derivatives of
tµA is

DBDCt
µ
A − DCDBtµA = Rµκλν t

κ
At
λ
C t
ν
B − R̃E ACBtµE (2.7)

1 From here onwards, partial differentiation with respect to spacetime coordinates xµ will be denoted
by a subscripted index ‘,µ’ rather than the operator ∂µ .
2 Specifically, for a general tensor S,

DC S
µ1...µm A1 ...Ap
ν1...νn B1...Bq

= S
µ1...µm A1 ...Ap
ν1...νn B1...Bq

,C

plus one factor of �
µk
κλ t

κ
C contracted with S for each upper spacetime index µk , plus one factor of

�
Ak
CD contracted with S for each upper gauge index Ak , minus one factor of �λκνk t

κ
C contracted with S

for each lower gauge index νk , and minus one factor of �DBkC
contracted with S for each lower gauge

index Bk .
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where Rµκλν and R̃E ACB are the curvature tensors of the background spacetime
M and the world sheet T, respectively.3 After projecting equation (2.7) onto the
world sheet and contracting over the gauge indices, the scalar curvature R̃ of T
can be expressed in the form:

R̃ = γ ABγ CD(Rµκλν tκAtνBtλC tµD + DCtA · DBtD − DBtA · DCtD) (2.8)

where the second covariant derivatives of tµA have been eliminated in favour of
first derivatives through the use of the orthogonality relation (2.6). Since the world
sheet is two-dimensional, the curvature tensor R̃E ACB has the simple form

R̃E ACB = 1
2 R̃(δ

E
C γAB − δEBγAC ) (2.9)

and so can easily be reconstructed once R̃ is known.

2.2 The equation of motion

The process by which the lagrangian for a localU(1) vortex string can be reduced
to a simple action integral over the string’s world sheet in the zero-thickness limit
was described in some detail in section 1.5. Strictly speaking, the analysis given
there applies only to a string moving in a flat background, but the generalization
to a curved background is straightforward.

An alternative, and much more direct, derivation follows the line of
reasoning used by Yoichiro Nambu when he first formulated the theory of
relativistic strings. Nambu assumed that the action integral I that generates the
string equation of motion must be a functional of gµν and the unknown functions
Xµ which

(i) is invariant with respect to both spacetime and gauge transformations; and
(ii) involves no higher derivatives of Xµ than the first.

The unique solution (up to a constant scaling factor) is the Nambu action
[Nam71, Got71]:

I = −µ
∫
γ 1/2 d2ζ (2.10)

where µ is the (constant) mass per unit length of the string, and γ = − det(γAB)
as before.

It should be noted that the Nambu action is not the only possible action
integral for a two-dimensional surface. More general classical models exist
involving lagrangians that depend on the extrinsic curvature or twist of the

3 Here, the convention assumed for the Riemann tensor is that

Rµκλν = �µκλ,ν −�µκν,λ+�µνρ�ρκλ − �µλρ�ρκν
and similarly for R̃E ACB .
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world sheet [Pol86, LRvN87, And99b] and, therefore, violate condition (ii).
As mentioned in section 1.5, the reason for including higher-order terms in the
lagrangian is to correct for the curvature of the string but their effects on the
dynamics of the string are usually significant only in the neighbourhood of a cusp
or a kink [CGZ86, ABGS97].

The essential difference between the action integral (2.10) and the formally
identical expression for the zero-thickness action I0 of section 1.5 is that, in the
general case of a non-flat spacetime, the lagrangian γ 1/2 depends non-trivially
on the functions Xµ through the dependence of the metric tensor gµν on the
spacetime coordinates.

If the action of equation (2.10) is integrated between two fixed non-
intersecting spacelike curves in M, then the functions Xµ which extremize I
(and thus the area of the world sheet between the curves) satisfy the usual Euler–
Lagrange equations:

∂

∂ζ A

(
∂γ 1/2

∂Xµ,A

)
− ∂γ

1/2

∂Xµ
= 0. (2.11)

This equation can be expanded by recalling that δγ 1/2 = 1
2γ

1/2γ ABδγAB
and γAB = gµνXµ,A Xν,B , so that

(γ 1/2γ ABgλµX
λ,A ),B − 1

2γ
1/2γ ABgκλ,µ X

κ ,A X
λ,B = 0 (2.12)

or, since γ AB ,B = −γ ACγ BDγCD,B and Xµ,A = tµA ,
0 = γ 1/2[gλµ(γ AB tλA,B −γ ACγ BDγCD,B tλA + 1

2γ
CDγCD,B t

λ
A)

+ γ AB (gλµ,κ − 1
2gκλ,µ )t

κ
At
λ
B]. (2.13)

In view of the definitions (2.3) and (2.4) of the connections and (2.5) this equation
reads simply:

γ AB DBt
µ
A = 0. (2.14)

On the face of it, the equation of motion (2.14) has four independent
components. However, the orthogonality result (2.6) indicates that the
components of (2.14) tangent to the world sheet are identically zero, and so only
two of the components are non-trivial. The projection operators pµν and qµν
parallel and normal to the world sheet, respectively, are defined to be

pµν = gµκgνλγ CDtκCtλD (2.15)

and
qµν = gµν − pµν. (2.16)

In terms of the projection operators, the non-trivial components of the equation of
motion can be rewritten in the form

qµνγ
AB Xν ,AB = −qµν�νρσ pρσ (2.17)



40 The elements of string dynamics

where the right-hand side is a known function of Xµ and its first partial derivatives
alone.

Since the determinant of γAB is negative, equation (2.17) is a hyperbolic
partial differential equation. The characteristics of this equation (that is, the
curves along which the initial data propagates) are curves on the world sheet
whose tangent vectors τ A are orthogonal to the vector solutions nA of the equation
γ ABnAnB = 0. The constraint τ AnA = 0 is obviously satisfied if τ A = γ ABnB ,
and so it is evident that the tangent vectors τ A are null with respect to the induced
2-metric:

γABτ
Aτ B = 0. (2.18)

In other words, the characteristics are the level curves of the null tangent
vectors that span the tangent space at each point on T. It is therefore possible to
reconstruct a string’s trajectory from a knowledge of the coordinates Xµ and the
tangent vectors Xµ,A on any one spacelike cross section of the world sheet. The
fact that (2.17) constitutes a system of only two equations for the four unknown
functions Xµ indicates that two degrees of freedom, corresponding to arbitrary
transformations of the gauge coordinates, still remain once the initial data have
been specified.

In view of the equation of motion (2.14), the expression (2.8) derived earlier
for the scalar curvature R̃ of the world sheet simplifies to give

R̃ = Rκλµν p
κµ pλν + γ ABγ CDDCtA · DBtD . (2.19)

Hence, R̃ splits naturally into two parts, one a linear combination of the
components of the background curvature tensor tangent to T and the other
dependent on the local dynamics of the string.

An alternative way of expressing the equation of motion (2.14) is in terms
of the extrinsic curvature of the world sheet. If nµ(2) and n

µ

(3) are orthonormal
vector fields which at each point on the world sheet form a basis for the subspace
of M orthogonal to T, as described in section 1.5, then the extrinsic curvature
tensors K(2)AB and K(3)AB of the world sheet T in a general non-flat spacetime
are defined to be

K( j )AB = tµB DAn( j )µ ≡ −n( j )µDAtµB (2.20)

where the second identity follows because n( j ) · tB = 0 everywhere. In particular,
since DAt

µ
B is orthogonal to the world sheet, and gµν = γ EF tµE tνF − δ j knµ( j )nν(k),

the expression (2.19) for the scalar curvature R̃ becomes

R̃ = Rκλµν p
κµ pλν − δ j k K A

( j )BK
B
(k)A. (2.21)

Now, in view of (2.20), the mean curvature of the world sheet is

K A
( j )A = −n( j )µγ AB DAtµB (2.22)

which vanishes by virtue of the equation of motion (2.14). Thus, as was
demonstrated previously in the case of a flat background, the equation of motion
is equivalent to the two curvature constraints K A

( j )A = 0.
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2.3 Gauge conditions, periodicity and causal structure

The equation of motion (2.14) for a relativistic string can be greatly simplified by
an appropriate choice of gauge coordinates ζ 0 and ζ 1. A fundamental result of
differential equation theory (see [Eis40, p 151]) states that it is always possible to
choose two real coordinates σ+ and σ− on a surface with an indefinite 2-metric
so that the line element has the form

ds2 = f1(σ+, σ−) dσ+ dσ− (2.23)

and so the diagonal elements of γAB are zero. The coordinate net defined by σ+
and σ− is identical to the family of null characteristics of the equation of motion
described in the previous section. For this reason, I will refer to any choice of
gauge coordinates that reduces the line element to the form (2.23) as a light-cone
gauge. (It should be noted that, historically, the term ‘light-cone gauge’ has been
used in a slightly different sense: see section 3.2.)

Clearly, γAB is conformally flat (that is, γAB = f1ηAB , where ηAB is some
flat 2-metric) in any light-cone gauge. Since γ AB�CAB is identically zero for any
conformally-flat 2-metric, the equation of motion (2.14) reduces to

∂

∂σ−
tµ+ +

∂

∂σ+
tµ− + 2�µκλt

κ+tλ− = 0 (2.24)

or, equivalently,
Xµ;+− = 0 (2.25)

where the subscripted symbol ‘; ±’ is shorthand for the first covariant derivative
Xν± Dν along the world sheet, with Xν± = ∂Xν/∂σ± and Dν the four-dimensional
covariant derivative as before.

Equation (2.25) needs to be supplemented by the gauge conditions

X+ · X+ = X− · X− = 0 (2.26)

which ensure that the diagonal elements of γAB are zero. Note that there is no
unique choice of light-cone coordinates, as any differentiable reparametrization
of the form

σ+ → σ+(σ+) and σ− → σ−(σ−) (2.27)

will preserve the gauge condition (2.26) and so the general form (2.23) of the line
element on T.

Since any physical spacetime M is time-orientable, the parameters σ+ and
σ− can always be chosen to be future-directed, meaning that if uµ is any future-
directed timelike vector field then u · X+ and u · X− are positive everywhere.
Corresponding to each light-cone gauge of this type it is possible to define a
future-directed timelike coordinate

τ = 1
2 (σ+ + σ−) (2.28)
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and an orthogonal spacelike coordinate

σ = 1
2 (σ+ − σ−) (2.29)

which convert the line element on T into the diagonal form

ds2 = f2(τ, σ )(dτ 2 − dσ 2). (2.30)

In this, what I will refer to as the standard gauge4, the equation of motion
becomes

Xµ;ττ = Xµ;σσ (2.31)

subject to the gauge conditions

X2
τ + X2

σ = 0 and Xτ · Xσ = 0. (2.32)

Here, the subscripted derivatives ‘; τ ’ and ‘; σ ’ are defined analogously to ‘; ±’
(with the semi-colon omitted in the case of the first derivative).

As mentioned earlier, the topology of the world sheet will vary according
to the type of string being described. If the string is infinite, T is non-compact
and it is always possible to choose the gauge coordinates (whether standard or
light-cone) to have range �2 . However, if the string forms a closed loop then T
has cylindrical topology and the gauge coordinates will typically be discontinuous
across a particular timelike curve � on the world sheet.

To be definite, let � be the line σ = 0. If � denotes any point on � then � has
light-cone coordinates σ+ = σ− = τ . Since T is spacelike-compact, there exists
a second point �∗ on T with gauge coordinates

σ+ = τ + L+ and σ− = τ − L− (2.33)

(which is spacelike-separated from � in T provided that L+ and L− are both
positive) for which

Xµ(�∗) = Xµ(�). (2.34)

In principle, the gauge periods L+ and L− could be functions of τ . However,
the requirement that the tangent vector Xµτ also be continuous5 across� translates
directly into the equation

(L ′+ − L ′−)Xµτ (�)+ (L ′+ + L ′−)Xµσ (�) = 0 (2.35)

where a prime denotes differentiationwith respect to τ . From (2.35) and the linear
independence of Xµτ and Xµσ it follows that L ′+ and L ′− are separately zero, and
4 The standard gauge is sometimes called the conformal gauge, as γAB is conformally flat. Of course,
the light-cone gauge is just as much a conformal gauge. Another common name for the standard gauge
is the orthonormal gauge.
5 This condition ensures that the local velocity of the string is continuous across �. If it were violated,
the string would normally break apart, which is precisely what happens at a fragmentation event. The
only situation in which the continuity condition can be violated without fragmentation is at a kink (see
section 2.7).
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thus the gauge periods are both constant.6 It is always possible to rescale σ+ and
σ− so that L+ and L− are equal (with their value denoted by L). The periodicity
condition (2.34) then becomes, in the new standard gauge,

Xµ(τ, 0) = Xµ(τ, L). (2.36)

It should be stressed that the gauge periods L+ and L− are constants only
if T has strict cylindrical topology. Analogous but more complicated results can
apply in other cases. For example, if a single loop fragments into two (so that
the world sheet has a ‘trousers’ topology) then the gauge periods have different
values on each of the three loops. For a more detailed discussion, see [Tho88]
and [And90].

Henceforth, when discussing closed loops, I will assume that the light-cone
coordinates have been chosen so that L+ = L− and thus the lines of constant
τ form closed loops on T (with gauge period L). This restriction is not in itself
sufficient to determine a unique choice of standard or light-cone gauge. However,
the residual gauge freedom can be removed in a natural way in Minkowski
spacetime. The resulting gauge will be discussed in more detail in section 3.1.

Before turning to discuss the role of conservation laws in string dynamics,
it is instructive to briefly examine the causal structure of the world sheet viewed
as a self-contained two-dimensional manifold. If � is any point on T, the causal
future J+(�) of � is defined to be the set of points � on T for which there is a
future-directed causal curve in T from � to �. (A causal curve is a curve whose
tangent vector uµ is everywhere timelike or null, so that u · u ≥ 0.) Similarly,
the causal past J−(�) of � is the set of points � on T for which there is a future-
directed causal curve in T from � to �. A designation which may be less familiar
but is equally important in the context of cosmic strings is the set D(�) of points
causally disconnected from � in T but connected to it by one or more spacelike
curves, defined by

D(�) = [J+(J−(�))− J−(�)] ∩ [J−(J+(�))− J+(�)]. (2.37)

The boundaries of J+(�), J−(�) and D(�) are segments of the integral
curves of the null tangent vectors on T or, equivalently, lines of constant σ+ and
σ− in any light-cone gauge. Any spacelike curve on T through � lies entirely
in D(�) (except at � itself). It is clear that any point in J+(�) lies inside the
causal future of � as defined on the full background spacetime M, and that a
similar result holds for J−(�). However, a point in D(�) need not be causally
disconnected from � inM.

6 Equation (2.35) will not hold if the point � lies on a kink, and so, in principle, L+ and L− need only
be piecewise constant on a kinked loop. However, L+ and L− must be continuous functions of τ ,
since otherwise there will be connected segments of the world sheet which map to the same spacetime
point Xµ , contradicting the requirement that the gauge be regular. A similar argument indicates that
L+ and L− will remain constant even if � passes through a cusp (see section 2.6), where the tangent
vectors, although continuous, are parallel.
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Figure 2.1. Causal structure of an infinite string.

If the world sheet has the topology of �2 then its causal structure is identical
to that of two-dimensional Minkowski spacetime with J+(�), J−(�) and D(�)
as shown in figure 2.1. A more interesting causal structure obtains if the world
sheet has strict cylindrical topology. The causally-disconnected set D(�) is then
compact, as shown in figure 2.2. Even more complicated situations arise in cases
of string intersection or fragmentation. In particular, if a string breaks into two
and � is any point on one of the daughter loops, points on the second daughter
loop, although causally disconnected from �, typically do not lie in D(�). Thus,
the union of J+(�), J−(�) and D(�) does not generally cover the world sheet T
(see [And90]).

2.4 Conservation laws in symmetric spacetimes

Although cosmic strings are most elegantly described in terms of a two-
dimensional world sheet, in astrophysical or cosmological problems it is often
more natural to visualize them as one-dimensional objects (line singularities) in
space. A question which then arises is whether a cosmic string can be assigned
well-defined properties such as length, mass, energy, momentum, angular
momentum and so forth. Typically, an infinite string cannot be meaningfully
described in this way but if the underlying spacetime admits certain types
of isometries a string loop will have simple analogues of some or all of the
Newtonian macroscopic properties.

Of course, even in the absence of isometries it is possible to write
down a formal expression for the stress–energy tensor Tµν of a general string
configuration directly from the action integral (2.10). The relevant procedure is
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Figure 2.2. Causal structure of a loop.

outlined in [Wei72], and in the present case gives7

Tµν(x) = 2µg−1/2
∫

∂

∂gµν
(γ 1/2)δ4(x − X) d2ζ

= µg−1/2
∫
γ 1/2γ AB Xµ,A X

ν ,B δ
4(x − X) d2ζ (2.38)

where g = − det(gµν) and the integral is taken over the entire world sheet. In the
standard gauge, the stress–energy tensor takes the somewhat simpler form

Tµν(x) = µg−1/2
∫
(Xµτ X

ν
τ − Xµσ Xνσ )δ4(x − X) d2ζ (2.39)

from which it can be seen that the relativistic string is characterized by a
distributional energy density T ττ ≡ tτµt

τ
ν T

µν which integrates out to give an
energy per unit length µ, and a longitudinal tension −T σσ ≡ −tσµ tσν Tµν of the
same magnitude.

By virtue of the equation of motion (2.14), the stress–energy tensor satisfies
the conservation equation

DνT
µν = 0. (2.40)

If the background spacetime admits a Killing vector field kµ then the
corresponding momentum current kµTµν is divergence-free, and a conserved
7 Again, a sign reversal is necessary here, as Weinberg chooses to work with a spacetime metric with
signature +2.
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macroscopic property can be constructed by taking an appropriate volume
integral. However, this method of formulating conservation laws for a cosmic
string is rather unwieldy not least because the definition of the stress–energy
tensor (2.38) itself involves a double integral over the world sheet.

An equivalent but simpler approach is to work directly from the equation of
motion. If kµ is a Killing vector field then

γ AB DB(k · X,A ) = kµ(γ AB DB Xµ,A )+ γ AB Xµ,A Xν,B Dνkµ = 0 (2.41)

where the first term on the right vanishes because of (2.14) and the second through
the Killing equation D(νkµ) = 0. At this point it proves useful to introduce the
world-sheet momentum currents PAµ , which are the canonical conjugates of the
world-sheet tangent vectors:

PAµ = µ
∂

∂Xµ,A
(γ 1/2) = µγ 1/2γ ABgµνXν,B . (2.42)

If the left-hand side of (2.41) is converted to an ordinary divergence and written
in terms of PAµ , the result is the very simple conservation equation

(k · PA),A = 0. (2.43)

One important consequence of (2.43) is that if S is a closed subset of the
world sheet with boundary ∂S = {ζ A(s)} then, from Stokes’ theorem,

0 =
∫

S
(k · PA),A d2ζ =

∮
∂S
γ−1/2k · PAnA d� (2.44)

where
nA = γ 1/2|γCD ζ̇C ζ̇ D|−1/2εAB ζ̇ B (2.45)

is the outward unit normal on ∂S and

d� = |γCD ζ̇C ζ̇ D|1/2 ds. (2.46)

(Here, as before, εAB is the flat-space alternating tensor, with ε01 = −ε10 = 1
and ε00 = ε11 = 0; and an overdot denotes d/ds.) In particular, if S is bounded
by two spacelike slices of the world sheet then the line integrals of γ−1/2k · PA
along each of the slices will yield the same value.

The local conservation laws embodied in equation (2.43) and its integral
version (2.44) are applicable to any string in a symmetric spacetime, irrespective
of the topology of its world sheet. If the string is infinite, however, the line
integral of a momentum current along a spacelike section of the world sheet will
not generally converge, and so a global statement of conservation is usually not
possible. This reflects the fact that an infinite string will typically have an infinite
energy and momentum. In the case of a string loop, by contrast, macroscopic laws
do exist and can often be useful in analysing the dynamics of the string.
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Figure 2.3. The subset S.

In particular, if the world sheet T of the string has strictly cylindrical
topology then there is a conserved integral C(k) corresponding to each Killing
vector field kµ given by:

C(k) =
∮
�

γ−1/2k · PAnA d� ≡ µ
∮
�

γ 1/2γ ABk · X,A εBC ζ̇C ds (2.47)

where � is any closed spacelike curve on T with winding number 1. To see that
the choice of � is immaterial (and so C(k) is conserved), note that if � is any point
on �, and �′ is a second closed curve through the set D(�) with winding number
1 and the same orientation as �, then � − �′ bounds a closed subset S of the
world sheet, as shown in figure 2.3. In view of equation (2.44), the line integral
of γ−1/2k · PA along �′ also has the value C(k). By iterating this procedure as
many times as necessary, the result can be extended to any closed spacelike curve
�′ on T to the past or future of �.

Strictly speaking, the requirement that the curve � be spacelike in the
definition of C(k) is not essential if T has cylindrical topology. Any closed curve
with winding number 1 will generate the same conserved quantity. However,
in more complicated cases involving string collisions or fragmentation the
mechanics of stress–energy conservation can be obscured unless attention is
restricted to spacelike slices through the world sheet. For example, if a single
string loop intersects itself and breaks into two daughter loops then any spacelike
slice that lies to the past of the fragmentation event will generate a single
conserved integral C0(k); whereas a spacelike slice that passes to the future
of the fragmentation event will induce two closed curves on T and, therefore,
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two conserved integrals C1(k) and C2(k), which separately characterize the
two daughter loops8. It is clear from the discussion following (2.47) that
C1(k)+ C2(k) = C0(k).

For a general string loop, the conserved quantity C(k) is often most easily
evaluated by choosing � to be a curve of constant τ in the standard gauge, for
then (2.47) becomes

C(k) = µ
∫ L

0
k · Xτ dσ. (2.48)

If the Killing vector field kµ is timelike then C(k) can be interpreted as an energy
integral for the string; whereas if kµ is spacelike then C(k) is a momentum
integral. In the special case where the orbits of kµ are closed spacelike curves,
C(k) will be an angular momentum integral. Minkowski spacetime is, of course,
maximally symmetric, and so the full range of conservation laws are available for
a string loop if the background spacetime is flat. These laws will be discussed at
greater length in section 3.3.

2.5 Invariant length

In the absence of any underlying symmetry, it is not possible to characterize the
trajectory of a string loop in terms of conserved energy or momentum integrals.
Nonetheless, there do exist integrals defined on appropriate subsets of the world
sheet which, although not normally conserved, can be recognized as natural
extensions of familiar conserved scalar functionals in Minkowski spacetime.

The simplest integral invariant of this type is what is called the invariant
length of a string loop, which is closely related to its energy. Consider, first of
all, a spacelike section of the loop represented by a closed curve � = {ζ A(s)} on
T with winding number 1. The length of this section is just the proper distance
along �:

�(�) =
∮
�

|γAB ζ̇ A ζ̇ B |1/2 ds (2.49)

where an overdot denotes d/ds as before.
In general, the length �(�) varies from one spacelike section of the string to

another. This feature is not particular surprising, as even in Minkowski spacetime
different inertial observers would be expected to measure different lengths for an
extended object like a cosmic string. In a general spacetime, moreover, there is
typically no spacelike surface that a freely-falling observer would regard as his or
her instantaneous rest frame. It would, therefore, be useful to be able to assign to
a string loop a length which is not observer-dependent. (Recall that this can be
done for rigid rods in Minkowski spacetime. The proper length of a rigid rod is a
strict upper bound for the length of the rod as measured by any inertial observer.)

8 The mechanics of string fragmentation is discussed in more detail in section 2.7.
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Given any point � on the world sheet of a string loop, the invariant length of
the loop at � is defined to be [And90]

�I(�) = 2
√
A(�) (2.50)

where

A(�) =
∫
D(�)

γ 1/2 d2ζ (2.51)

is the area of the subset D(�) whose interior is causally disconnected from �.
Note that �I is invariant with respect to both spacetime and gauge transformations
and although it typically varies from point to point on the world sheet T, it does
not rely on any particular slicing of T. The factor of two appears in (2.50) so
as to ensure that �I coincides with the standard formulation of invariant length in
Minkowski spacetime (see section 3.3).

The invariant length possesses a number of useful features in Minkowski
spacetime [And90]. It is conserved (provided that the world sheet retains strict
cylindrical topology), and it constitutes an upper bound for any measurement of
the length of the string. Furthermore, the quantity µ�I can be shown to be a
lower bound for any measurement of the energy of the string. If a single loop
breaks into two, the invariant length is no longer conserved on the full world
sheet but assumes a constant value �0 at points sufficiently far to the past of the
fragmentation event, and constant values �1 and �2 at points on the daughter loops
to the future of the fragmentation event. The length �0 is always strictly greater
than �1+�2, with the difference �0−(�1+�2) corresponding to the kinetic energy
of the relative motion of the daughter loops.

In a general spacetime, however, the invariant length is typically not
conserved nor is it possible to interpret �I(�) as an upper bound for the length
�(�) of the loop as measured along any spacelike curve � through �.

2.6 Cusps and curvature singularities

So far the analysis of string dynamics has proceeded on the assumption that
the first fundamental form γAB of the world sheet is non-degenerate. However,
analytic studies of solutions to the equation of motion (2.14) in a Minkowski
background suggest that it is very common for the 2-metric γAB to become non-
degenerate at isolated points on the world sheet (see section 3.6). Points of this
type, which are known as cusps, have important consequences for the evolution
of a string network, as the flux of gravitational radiation from a string loop is
typically dominated by the radiation from its cusps (see chapter 6). The possibility
of cusplike behaviour was first recognized by Neil Turok in 1984 [Tur84].

A point of degeneracy of γAB occurs whenever the determinant γ vanishes
or, equivalently, whenever the tangent vectors tµA are linearly dependent. Since
the tangent space is normally spanned by a spacelike and a timelike vector, the
vectors tµA are both null at an isolated cusp, and the tangent space collapses to
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a null line there. Of course, a point of degeneracy need not be isolated and
solutions are known to exist in a Minkowski background with lines of cusps
which divide the world sheet into two or more disjoint regions. Since a cusp
is an ordinary point of the standard-gauge equation of motion (2.31), there is, in
principle, no obstacle to continuing a solution through a line of cusps. Whether
such a continued solution is physically meaningful is open to question, however,
as the gravitational field of a string diverges at a cusp, and non-isolated cusps are
typically prone to gravitational collapse. Examples of strings with non-isolated
cusps are examined in sections 4.2.1 and 4.2.2.

The dynamics of a string in the neighbourhood of an isolated cusp is easily
analysed in a general background metric. Suppose that an isolated cusp occurs
at a point � on the world sheet, and choose the spacetime coordinates xµ to be
locally inertial at �, so that gµν = ηµν + O(|x − X (�)|2), where ηµν is the
Minkowski tensor. If we adopt a regular light-cone gauge and identify � with the
point σ+ = σ− = 0 then in some neighbourhood of � the tangent vectors have the
form

Xµ+ = λ+nµ + aµσ+ + bµσ− + o(σ+, σ−) (2.52)

and
Xµ− = λ−nµ + bµσ+ + cµσ− + o(σ+, σ−) (2.53)

where the vectors nµ, aµ, bµ, and cµ and the scalars λ+ > 0 and λ− > 0 are all
constant, nµ is future-directed null and the other three vectors satisfy the gauge
constraints

a · n = b · n = c · n = 0. (2.54)

As a result, the components of the world-sheet metric tensor

γAB = γ 1/2
(
0 1
1 0

)
(2.55)

tend to zero as γ 1/2 = X+ · X− = o(σ+, σ−) at �.
Since the spacetime connection �µκλ is of order |X − X (�)| near �, the

equation of motion
γ AB Xµ,AB = −γ AB�µκλ XκAXλB (2.56)

reads simply as Xµ,+− = 0 to leading order or, equivalently, bµ = 0. Hence, the
parametric equation of the string near the cusp is

Xµ(σ+, σ−) = Xµ(�)+(λ+σ++λ−σ−)nµ+ 1
2a
µσ 2++ 1

2c
µσ 2−+o(σ 2+, σ+σ−, σ 2−).

(2.57)
In particular, the constant-time slice x0 = 0 through � intersects the world

sheet along a parametric curve with the equation

(λ+σ+ + λ−σ−)n0 + 1
2a

0σ 2+ + 1
2c

0σ 2− = 0 (2.58)
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Figure 2.4. A generic cusp.

to leading order in σ+ and σ− (where nµ = [n0,n] and similar conventions apply
to aµ and cµ), and so the projection of the world sheet onto this 3-surface near
the cusp has the vector form

r0(σ ) = r(�)+ (u+ v)σ 2 + o(σ 2) (2.59)

where

u = 1

8(n0)3
λ−2+ (n0a− a0n) v = 1

8(n0)3
λ−2− (n0c− c0n) (2.60)

and
σ = (λ+σ+ − λ−σ−)n0.

Geometrically, this means that the projection of the string onto any spacelike
3-surface through p does indeed exhibit a cusplike singularity, with the cusp
directed anti-parallel to the vector k = u+v, as shown in figure 2.4. Furthermore,
since a · n = c · n = 0 the vector n which defines the direction of the string’s
null 4-velocity at the cusp is orthogonal to both u and v, and so is orthogonal to
the apex of the cusp. The rate at which the two branches of the projection open
out from the cusp depends on the higher-order terms in equation (2.57). If, as is
usually the case, the position function Xµ is three-times differentiable at � then
the next lowest term in (2.59) will be of order σ 3 and the projection of the string
will trace out a curve with equation y ∝ x2/3 relative to an appropriate choice of
axes. This situation is examined in more detail in section 3.6.

The formation and dissolution of the cusp in the local Lorentz frame defined
by the inertial coordinates xµ can also be examined by introducing a local time
coordinate

τ = (λ+σ+ + λ−σ−) n0 + 1
2a

0σ 2+ + 1
2c

0 σ 2−. (2.61)

In terms of τ and σ , the projection of the string’s trajectory onto surfaces of
constant τ near the cusp has the form

r(τ, σ ) = r(�)+ nτ + u(τ + σ)2 + v(τ − σ)2 + o(τ 2, τσ, σ 2) (2.62)
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Figure 2.5. The development of a generic cusp.

and the development of a generic cusp is shown schematically in figure 2.5. The
plane in which the cusp forms is spanned by the vectors u and v. Note that the
trajectory is time-symmetric about the cusp for small values of τ . The cusp itself
is shown as a straight line, as nothing has been assumed about the higher-order
terms in (2.57) responsible for the divergence of the two branches of the cusp.

Another important feature of a cusp is that the local stress–energy density of
the string is divergent. To see this, recall from section 2.4 that the stress–energy
tensor of the world sheet is

Tµν(x) = µg−1/2
∫
γ 1/2γ AB Xµ,A X

ν,B δ
4(x − X) d2ζ (2.63)

and so, in the notation of (2.57),

Tµν(x) = µg−1/2
∫
(Xµ+Xν− + Xµ−Xν+)δ4(x − X) dσ+ dσ−

≈ 2µλ+λ−nµnν
∫
δ4(x − X) dσ+ dσ− (2.64)

near the cusp. Since the transformation between the gauge variables σ+ and σ−
and physical spacetime coordinates tangent to the world sheet is singular at the
cusp, the integral on the right of this expression diverges as the field point xµ

approaches �.
In fact, if xµ is the point [τ, r(τ, σ ) + x], where τ , σ and r are defined as

before, and x ·rσ (τ, σ ) = 0 (so that x is normal to the world sheet), then for small
values of τ , σ and |x|,∫

δ4(x − X) dσ+ dσ− ≈ [2λ+λ−(n0)2]−1
∫
δ(τ − τ ′)

× δ3[r(τ, σ )+ x− r(τ ′, σ ′)] dτ ′ dσ ′

= [2λ+λ−(n0)2]−1
∫
δ3[r(τ, σ )+ x− r(τ, σ ′)] dσ ′



Cusps and curvature singularities 53

= [2λ+λ−(n0)2]−1 δ2(x)
|rσ (τ, σ )| (2.65)

where

|rσ (τ, σ )| = 2[(u+ v)2σ 2 + 2(u2 − v2)στ + (u− v)2τ 2]1/2. (2.66)

Hence,

Tµν(x) ≈ 2µnµnν(n0)−2 δ2(x)
|rσ (τ, σ )| (2.67)

near the cusp, and the stress–energy per unit length of string diverges as
|rσ (τ, σ )|−1. In particular, on the spacelike surface τ = 0 defined by the
formation of the cusp,

Tµν(x) ≈ µnµnν(n0)−2 δ2(x)
|u+ v||σ | . (2.68)

The fact that the stress–energy of the world sheet diverges in this way was first
recognized by Alexander Vilenkin (see [Vac87]).

Given the pathological behaviour of the stress–energy tensor at a cusp, it
is not surprising that cusps can also be identified with singularities of the scalar
curvature function R̃. This can be seen by first referring to the expression (2.19)
for R̃. If the background curvature is bounded and the world-sheet position
function Xµ is twice differentiable then R̃ diverges only at points where the 2-
metric γAB is non-invertible, which can occur only at a cusp in a regular gauge
(and, therefore, in any gauge, as R̃ is, by definition, gauge-invariant).

To demonstrate the converse result—namely that every isolated cusp is a
singularity of R̃—it is most convenient to work in the light-cone gauge, as then

R̃ = 2γ−1(γ 1/2),+− −2γ−3/2(γ 1/2),+ (γ 1/2),−
= 2γ−1/2(ln γ 1/2),+− (2.69)

where γ 1/2 = X+ · X−, and the subscripts denote partial derivatives with
respect to σ+ and σ−, as before. Suppose that R̃ is bounded in some deleted
neighbourhood N of an isolated cusp �. Then (ln γ 1/2),+− is also bounded in N
(as γ 1/2 = 0 at �), and so

ln γ 1/2 = B(σ+, σ−)+ f (σ+)+ g(σ−) (2.70)

where B is bounded in N but f and g need not be. Thus, γ 1/2(�) = 0 only if f
or g diverges at �. However, if f (or g) diverges at � then γ 1/2 must vanish on a
curve of constant σ+ (or σ−) through �, and the cusp cannot be isolated. Hence,
R̃ is necessarily unbounded in the neighbourhood of an isolated cusp.
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2.7 Intercommuting and kinks

The Nambu action (2.10) is, as was seen in section 1.5, only the lowest-order
approximation to a large family of more complicated phenomenological models
for a cosmic string. As such, its range of applicability does not extend to situations
where the local geometry of the fields constituting the string differs appreciably
from a gently curving vortex tube. A cusp, where the local curvature of the
string is effectively infinite, is one example of a point on the world sheet where
the Nambu approximation fails and it remains an open question whether field-
theoretic effects would act to dampen or accentuate cusps.

The Nambu approximation also breaks down when two strings (or segments
of the same string) are close enough to interact. The most common situation
of this type occurs when two strings cross, and fortunately it is relatively
straightforward to simulate the process of string intersection at the full field-
theoretic level. This was first done in the case of colliding global U(1)
strings by Paul Shellard [She87]; and for the more pertinent case of local
U(1) strings (which were described in detail in section 1.5) by Moriarty et
al [MMR88a, MMR88b], Shellard and Ruback [SR88], Shellard [She88] and
Matzner and McCracken [MM88].

In general, collisions involving straight segments of local strings are
modelled by taking two copies of the Nielsen–Olesen vortex string and
translating, rotating and Lorentz boosting the field variables φ and Bµ until the
transformed single-string solutions (φ1, B1µ) and (φ2, B2µ) are approaching one
another at a given angle and with a given relative velocity. Provided that the cores
of the two strings are initially far enough apart, the initial state of the composite
two-string system can be adequately approximated by the fields φ = φ1φ2 and
Bµ = B1µ + B2µ. The subsequent evolution of these fields is then studied by
numerically integrating the Abelian Higgs equations of motion (1.54) and (1.55)
forward in time.

The resulting numerical simulations predict that on colliding two pieces of
string will not pass uneventfully through one another but rather will intercommute
(‘exchange partners’) as shown in figure 2.6. This is true irrespective of the
relative velocities of the two pieces or of the angle of collision (provided that
the two segments are not exactly parallel). Indeed, for low relative velocities
(less than about 0.4c) the intercommuting event is effectively elastic, although a
considerable amount of field energy can be radiated away from the collision if the
velocity is of the order of 0.9c or greater.

To understand why intercommuting is an almost universal phenomenon (in
collisions of global strings as well as of local strings), recall that the Nielsen–
Olesen vortex string carries a magnetic flux proportional to its winding number
n. If attention is restricted to the stable cases n = ±1, it is evident that the sign
of n determines the orientation of the string relative to the background coordinate
system. In fact, an n = −1 string (henceforth an anti-string) can be generated by
reflecting an n = +1 string through the plane perpendicular to the string axis.
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Figure 2.6. The intercommuting of two straight strings.

Figure 2.7. The intercommuting of a string/anti-string pair.

If a string and a parallel anti-string pass close to one another, as shown
in the first frame of figure 2.7, the total winding number about any loop which
encloses both strings will be 0, and it is possible for the two vortices to unwind
and evaporate. This is precisely what happens in simulations of head-on collisions
of string/anti-string pairs at low to moderate velocities, although if the relative
velocity is greater than about 0.9c a new string/anti-string pair, much less
energetic than the original pair and moving in the reverse directions, appears
in the aftermath of the annihilation [MMR88a]. For string/anti-string pairs that
collide at small angles, as in the second frame of figure 2.7, it is expected that
the overlapping sections will evaporate in a similar way, leaving the free ends
of the two strings to reconnect as shown in the third frame of the figure. This
is again confirmed by numerical simulations, although for collision velocities
greater than about 0.9c the situation is complicated by the appearance of a residual
loop of string enclosing the point of intersection, which subsequently collapses
and evaporates [MM88].

In the case of collisions between straight-string segments that are aligned in
roughly the same direction, the mechanics of intercommuting is slightly different.
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Figure 2.8. The intercommuting of almost-parallel strings.

Peter Ruback [Rub88] has shown that, in the critical case where the Bogomol’nyi
parameter b is equal to 1 (and the radial forces due to the Higgs field φ and
the gauge field Bµ cancel one another exactly), the low-velocity collision of two
parallel strings can be treated analytically and that the strings involved in such a
collision will scatter at right angles. This rather surprising prediction has since
been confirmed numerically for a wide range of values of the collision velocity
and the Bogomol’nyi parameter b, although once again complications (in the form
of the appearance of an additional weak string/anti-string pair) can occur at ultra-
relativistic velocities [She88].

When two strings that are almost parallel collide, it is to be expected that the
overlapping sections will also scatter at right angles. An illustration is given in
figure 2.8, where the two strings are initially moving in directions perpendicular
to the plane of the diagram. The scattered segments therefore emerge from the
point of intersection moving left and right across the plane of the diagram. This
means that the scattered segments can only reconnect with the two left-hand or
right-hand halves, causing the strings to intercommute as shown.

The importance of intercommuting for the dynamics of the Nambu string lies
in the fact that the collision fragments typically contain points where the tangent
plane to the world sheet is discontinuous, and so the fragments themselves are
kinked. In figure 2.6, both daughter strings support a kink (in fact, a coincident
pair of kinks, one moving up the string and the other down it) at the point of
intersection. Kinks are not temporary features like isolated cusps, and indeed at
the level of the Nambu approximation they can propagate indefinitely around the
world sheet without dissipation.

In order to describe the evolution of a kink, suppose that in standard-gauge
coordinates the trajectory of the kink—which is just a line of discontinuity of
the tangent plane—has the equation σ = σk(τ ). In the vicinity of the kink, the
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position function Xµ has the general form

Xµ(τ, σ ) =
{
V µ(τ, σ ) if σ ≤ σk(τ )
Wµ(τ, σ ) if σ ≥ σk(τ ) (2.71)

where the vector functions Vµ and Wµ are twice differentiable, and
Wµ(τ, σk(τ )) = V µ(τ, σk(τ )). The tangent vectors tµA = Xµ,A are, therefore,
piecewise continuous across the kink, with a discontinuity of the formµAH (σ −
σk), where


µ
A(τ ) = WµA (τ, σk(τ ))− VµA (τ, σk(τ )) (2.72)

and H is the Heaviside step function.
If we now impose the equation of motion (2.31) it is easily seen that V µ

and Wµ both satisfy the equation Xµ;ττ = Xµ;σσ away from the kink, while the
step-function discontinuity gives rise to the further constraint:

(µττ −µσσ ) H (σ − σk)− (σ ′kµτ +µσ )δ(σ − σk) = 0 (2.73)

where

µ
AB(τ ) = Wµ;AB(τ, σk(τ ))− V µ;AB(τ, σk(τ )). (2.74)

The term proportional to H in (2.73) vanishes by virtue of the
differentiability properties of V µ andWµ, and so the equation of motion imposes
the single constraint

σ ′k
µ
τ +µσ = 0. (2.75)

Furthermore, the string will break apart at the kink unless

d

dτ
Wµ(τ, σk(τ )) = d

dτ
V µ(τ, σk(τ )) (2.76)

or, equivalently,
µτ + σ ′kµσ = 0. (2.77)

Combining the constraints (2.75) and (2.77) gives σ ′2k = 1. That is, a kink
can only propagate along lines of constant τ + σ or τ − σ , and since the four-
velocity

d

dτ
Xµ(τ, σk(τ )) = Xµτ ± Xµσ (2.78)

of the kink is a null vector by virtue of the gauge conditions (2.32), it will always
move at the speed of light relative to the background spacetime. This result is
simply a restatement of the fact that the characteristics of the equation of motion
are null curves.

Although kinks propagate at the speed of light, the local velocity of the
string itself in the neighbourhood of a kink, while discontinuous, is, in general,
subluminal on both sides of the kink (see chapter 4). Furthermore, kinks are
distinguished from cusps in that the scalar curvature function R̃ is bounded in a
deleted neighbourhood of a kink, although the discontinuity in R̃ on the locus of
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the kink itself is unbounded. This can be seen by calculating R̃ explicitly. If the
discontinuity in γ across the kink is represented in the form

γ = γ1 + (γ2 − γ1)H (σ±) (2.79)

where γ1 and γ2 are smooth functions, it follows from equation (2.69) that

R̃ = R̃1 + (R̃2 − R̃1)H (σ±)+ [γ−3/21 + (γ−3/22 − γ−3/21 )H (σ±)]
× [γ 1/21 (γ

1/2
2 ),∓ −γ 1/22 (γ

1/2
1 ),∓ ]δ(σ±). (2.80)

Here, R̃1 and R̃2 are the (smooth) curvature functions generated separately by
γ1 and γ2. The discontinuity in R̃, therefore, includes a delta-function-like
singularity, although strictly speaking the presence of the product H (σ±)δ(σ±)
on the right-hand side of (2.80) places the singularity outside the framework of
conventional distribution theory.

However, this description applies only to idealized (zero-thickness) kinks.
A more realistic version of a kink is a narrow segment of the string where the
gradients of the tangent vectors are large but bounded. All the relevant dynamical
quantities (including the scalar curvature) are then continuous across the kink,
although the local curvature is typically very large. If two kinks of this type cross,
an extremely narrow cusp known as a microcusp forms. These will be discussed
in more detail in section 3.6.



Chapter 3

String dynamics in flat space

The Minkowski spacetime is the only backgroundmetric of cosmological interest
in which the string equation of motion (2.14) can be integrated exactly. It is,
therefore, not surprising that most work on string dynamics has been done in
the Minkowski background, and that string dynamics in flat space is reasonably
well understood. Only the Robertson–Walker background is of comparable
importance and there little can be done without resort to approximations or
numerical techniques (see section 5.1).

In this chapter theMinkowski version of the string equation of motion will be
examined in some detail. The various laws relating to conservation of momentum,
angular momentum and invariant length will be formulated explicitly and the
inter-relationship between the kinks, cusps and self-intersections of a string loop
will be analysed with the aid of a particular representation known as the Kibble–
Turok sphere. In addition, a number of methods for generating exact periodic
solutions will be presented.

3.1 The aligned standard gauge

In what follows, it is assumed that the Minkowski metric tensor ηµν has its
Cartesian form diag(1,−1,−1,−1) and that the parametrization xµ = Xµ(τ, σ )
of the world sheet has been chosen so that τ and σ are standard-gauge coordinates
(see section 2.3). As mentioned in the previous chapter, there is no unique choice
for the gauge coordinates in the standard gauge. One simple way to eliminate
the residual gauge freedom is to identify τ with the Minkowski time coordinate
x0 = t . I will call this choice the aligned standard gauge.

Whichever form of the standard gauge is prescribed, the equation of motion
(2.31) in a Minkowski background reads:

Xµ,ττ = Xµ,σσ (3.1)

subject to the gauge conditions

X2
τ + X2

σ = 0 and Xτ · Xσ = 0. (3.2)

59
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The general solution to (3.1) is

Xµ(τ, σ ) = Aµ(τ + σ)+ Bµ(τ − σ) (3.3)

where Aµ and Bµ are arbitrary functions of their arguments, save for the gauge
constraints

A′2 = B ′2 = 0 (3.4)

where a prime here denotes the derivative with respect to the relevant argument.
The trajectory Xµ(τ, σ ) is thus a linear superposition of left- and right-moving
modes which propagate along the string at the speed of light.

If the gauge coordinates (τ, σ ) are not initially aligned with the time
coordinate t , this can easily be achieved by defining a new pair of standard-gauge
coordinates (τ, σ ) which satisfy the equations

A0(τ + σ) = 1
2 (τ + σ) and B0(τ − σ) = 1

2 (τ − σ). (3.5)

Then, after dropping the bars, the general solution (3.3) becomes

Xµ(τ, σ ) = [τ, 12a(τ + σ)+ 1
2b(τ − σ)] (3.6)

where a and b are 3-vector functions with the property that

a′2 = b′2 = 1. (3.7)

The functions a′ and b′, therefore, lie on the surface of a unit sphere, first
introduced by Tom Kibble and Neil Turok in 1982 [KT82] and as a result often
referred to as the Kibble–Turok sphere1. The implications of the Kibble–Turok
sphere for the dynamics of a string loop will be considered in more detail in
sections 3.6–3.9.

If the string is closed and contains only one connected component (so that the
world sheet T has strict cylindrical topology), then in the aligned standard gauge
lines of constant τ form closed loops on T. The function Xµ(τ, σ ) is, therefore,
periodic in σ with some constant gauge period L, so that

Xµ(τ, 0) = Xµ(τ, L) (3.8)

for all values of τ . In terms of the mode functions a and b, the periodicity
condition (3.8) reads:

a(τ )+ b(τ ) = a(τ + L)+ b(τ − L). (3.9)

1 It should be mentioned that many authors have chosen to use a gauge convention in which a is a
function of σ − τ and b a function of σ + τ . The principal drawback of this convention is that cusps
occur when a′ and b′ are anti-parallel rather than parallel, which, in turn, complicates discussion of
the Kibble–Turok representation. In what follows, I will adhere to the convention of (3.6) throughout,
transforming previously published solutions into this form where necessary.
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Since the tangent vector Xµσ is also a periodic function of σ , it follows that

a′(τ )− b′(τ ) = a′(τ + L)− b′(τ − L) (3.10)

as well. The most general solution of these two equations is

a(τ ) = â(τ )+ Vτ and b(τ ) = b̂(τ )+ Vτ (3.11)

where V is a constant vector, and â and b̂ are periodic functions with period L
satisfying the relations

(̂a′ + V)2 = (̂b′ + V)2 = 1. (3.12)

As will be seen shortly, the vector V can be interpreted as the bulk velocity of the
string loop, while the gauge period L is related to the energy of the loop.

In terms of the periodic mode functions â and b̂, the string trajectory takes
the form

Xµ(τ, σ ) = [τ, 12 â(τ + σ)+ 1
2 b̂(τ − σ)+ Vτ ]. (3.13)

Although the functions â and b̂ each have period L, the entire trajectory, in fact,
has period L/2, as was first pointed out by Kibble and Turok [KT82]. To see this,
note that

Xµ(τ + L/2, σ + L/2)
= [τ + L/2, 12 â(τ + σ + L)+ 1

2 b̂(τ − σ)+ V(τ + L/2)]
= [τ + L/2, 12 â(τ + σ)+ 1

2 b̂(τ − σ)+ V(τ + L/2)] (3.14)

which is simply the original configuration (3.13) translated by an amount LV/2.

3.2 The GGRT gauge

An alternative method of fixing a choice of standard gauge, first formulated by
Goddard, Goldstone, Rebbi and Thorn in 1973 [GGRT73], is to choose a constant
timelike or null vector uµ and define

τ = u · X
2u · P (3.15)

where Pµ is the constant total 4-momentum of the string. If uµ is timelike, the
effect is to set τ equal to 1

2E ′ t
′, where t ′ is the time coordinate and E ′ the energy

of the string in a frame with 4-velocity parallel to uµ. Goddard et al [GGRT73]
themselves preferred a gauge choice in which uµ is null, as this leads to some
simplifications when quantizing the relativistic string, which was their primary
concern. The resulting gauge is what was originally meant by the term ‘light-
cone gauge’ or (less commonly) ‘light-front gauge’. I will refer to it simply as the
GGRT gauge.
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Since the total 4-momentum Pµ of an infinite string is undefined, it is
often preferable to replace the factor 2u · P in (3.15) with some fixed constant.
Following Christopher Thompson [Tho88], who revived the GGRT gauge in
1988, I will replace 2u · P with 1 and make the choice

uµ = [1, 0, 0,−1] (3.16)

so that
τ = t + z (3.17)

where z is the third spatial component of Xµ.
As in the aligned standard gauge, the general solution (3.3) to the equation of

motion consists of a linear superposition of left- and right-moving modes, which
in the present case will be written as

Xµ(τ, σ ) = [tL(τ +σ)+ tR(τ −σ),p(τ +σ)+q(τ−σ), zL(τ+σ)+ zR(τ −σ)]
(3.18)

where p and q are 2-vector functions. The GGRT gauge choice τ = t + z implies
that

t ′L + z′L = 1
2 and t ′R + z′R = 1

2 (3.19)

and so, after some algebraic manipulation, the gauge constraints (3.2) read:

t ′L − z′L = 2p′2 and t ′R − z′R = 2q′2. (3.20)

Solving the last two sets of equations simultaneously gives

t ′L = 1
4 + p′2 t ′R = 1

4 + q′2

and
z′L = 1

4 − p′2 z′R = 1
4 − q′2. (3.21)

These restrictions, which take the place of the constraints a′2 = b′2 = 1 in the
aligned standard gauge, have the specific advantage of being linear in the t–z
mode functions. Thus, for example, a solution containing only a finite number
of harmonics in σ± = τ ± σ can be generated by simply choosing the functions
p and q to be finite harmonic series and integrating (3.21). The corresponding
procedure in the aligned standard gauge is far more complicated (see section 3.5).

However, if the string forms a closed loop then the equations (3.21) need to
be supplemented by the condition∫ L

0
(t ′L − t ′R) dσ =

∫ L

0
(z′L − z′R) dσ = 0 (3.22)

or, equivalently, ∫ L

0
p′2 dσ+ =

∫ L

0
q′2 dσ− (3.23)
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which, to a large extent, vitiates the advantage of the GGRT gauge in generating
finite-harmonic solutions.

Another disadvantage of the GGRT gauge is that the coordinates τ and σ are
singular at a cusp if the cusp velocity is parallel to uµ (as u · Xτ = 1 everywhere
but u · Xτ = 0 at a cusp in any non-singular gauge). Furthermore, solutions in the
GGRT gauge trace out curves on the surface of the paraboloid t − x2 − y2 = 1

4
rather than on the unit sphere. The resulting geometric description is typically
harder to visualize and so has less heuristic value than the Kibble–Turok sphere.

Finally, it should be noted that for any particular choice of uµ the GGRT
gauge is incompatible with all standard-gauge solutions (3.3) in which either
u · A or u · B is identically zero, as in such cases there is no reparametrization
{σ+(σ+), σ−(σ−)} that can transform u · X into a function of τ alone. Since A′µ
and B ′µ are both null vectors the (unwelcome) possibility that either u · A = 0
or u · B = 0 is consistent with the gauge conditions if uµ is null but not if uµ is
timelike. An example of this problem will be encountered in section 5.6.

Despite these caveats, the use of the GGRT gauge has helped to generate
a number of simple solutions that would otherwise have remained undiscovered
(see [Tho88]).

3.3 Conservation laws in flat space

Because the Minkowski spacetime has maximal symmetry, the components of
the world-sheet momentum currents PAµ defined in section 2.4 are all separately
conserved. The contravariant components of the momentum currents are

PµA = µγ 1/2γ AB Xµ,B (3.24)

where, in the aligned standard gauge,

Xµτ = [1, 12a′ + 1
2b
′] Xµσ = [0, 12a′ − 1

2b
′] (3.25)

γ 1/2 = X2
τ = 1

2 (1− a′ · b′) (3.26)

and
γ AB = γ−1/2 diag(1,−1). (3.27)

The local Lorentz factor of the string is λ = γ−1/4, which diverges (and so
indicates the formation of a cusp) whenever a′ · b′ = 1.

An observer at rest with respect to the spacetime coordinates would measure
the local 4-momentum at any point on the string to be

pµ = λµXµτ = γ−1/4µ[1, 12a′ + 1
2b
′] (3.28)

and the element of proper distance along the string as

d� = (−X2
σ )

1/2 dσ = γ 1/4 dσ. (3.29)
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Hence, the total energy E and momentum p of a segment of the string
covering the parameter range σ to σ + σ as measured by such an observer
are

E =
∫
p0d� = µσ and p =

∫
p d� = 1

2µ(a−b). (3.30)

Note, in particular, that the local energy content of the string is proportional to σ
in the aligned standard gauge.

The total 4-momentum Pµ of a string loop with parametric period L is most
conveniently calculated by integrating PµA around a curve of constant τ , as in
equation (2.48), so that

Pµ = µ
∫ L

0
Xµτ dσ = µ

∫ L

0
[1, 12 â′(τ + σ)+ 1

2 b̂
′(τ − σ)+ V] dσ. (3.31)

Since the mode functions â and b̂ are periodic with period L, they make no
contribution to Pµ, and so

Pµ = µL[1,V]. (3.32)

Hence, µL is the total energy of the string as expected, and V can be interpreted
as its bulk velocity.

A similar conclusion can be drawn from the dynamics of the centre-of-mass
4-vector X̄µ of the loop, which is defined by

X̄µ(τ) = L−1
∫ L

0
Xµ dσ = L−1

∫ L

0
[τ, 12 â(τ+σ)+ 1

2 b̂(τ−σ)+Vτ ] dσ. (3.33)

In view of the periodicity of â and b̂, this equation can be expressed more
compactly as

X̄µ(τ) = [τ, X̄0 + Vτ ] (3.34)

where

X̄0 = L−1
∫ L

0
[ 12 â(σ )+ 1

2 b̂(−σ)] dσ (3.35)

is the spatial centre-of-mass at time τ = 0. Thus the centre-of-mass of the loop
follows an inertial trajectory with 3-velocity V.

An additional result, due to TomKibble [Kib85], is that the root mean square
velocity of a string loop in its centre-of-momentum frame, averaged over a period
of oscillation, is 1√

2 . This follows from the fact that, if r(τ, σ ) is the spatial
position vector of the string, then

r,ττ = r,σσ and r2σ = 1− r2τ (3.36)

and so the period mean of r2τ in a general Lorentz frame is

〈r2τ 〉 ≡
1

L2

∫ L

0

∫ L

0
r2τ dσ dτ =

1

L

∫ L

0
V · rτ dσ − 1

L2

∫ L

0

∫ L

0
r · r,ττ dσ dτ
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= V2 − 1

L2

∫ L

0

∫ L

0
r · r,σσ dσ dτ = V2 + 1

L2

∫ L

0

∫ L

0
r2σ dσ dτ

= V2 + 〈1− r2τ 〉. (3.37)

Hence, 〈r2τ 〉 = 1
2 (1 + V2) and so, in particular, 〈r2τ 〉 = 1

2 in the centre-of-
momentum frame. Since 〈rτ 〉 = V, the mean square deviation of rτ from the bulk
velocity V in a more general frame is

〈(rτ − V)2〉 = 1
2 (1− V2). (3.38)

However, it should be pointed out that the integrals over σ in (3.37) are mass-
weighted averages rather than ordinary spatial averages, as it is γ 1/4 dσ rather
than dσ that is the proper distance element. This is evident also from the
calculation of the total 4-momentum Pµ, which indicates that the bulk velocity
〈rτ 〉 = V is mass-weighted. As a result, the value of 〈r2τ 〉 is weighted towards
segments of the loop with high Lorentz factor and so, in a sense, overstates the
actual mean square velocity.

Another useful conserved quantity is the total angular momentum of a string
loop [Tur84]. This can be calculated in two ways. If n is any unit 3-vector then
the rotational Killing vector about n is

kµ = [0,n× r] (3.39)

where r is again the spatial position vector. The total angular momentum of the
string about n is, therefore,

J (n) = µ
∫ L

0
k · Xτ dσ = 1

4µn ·
∫ L

0
(a+ b)× (a′ + b′) dσ. (3.40)

Now, in terms of the periodic mode functions â and b̂,

(a+ b)× (a′ + b′) = â× â′ + b̂× b̂′ + â× b̂′ + b̂× â′

+ 2τV× (̂a′ + b̂′)+ 2(̂a+ b̂)×V (3.41)

where, since

d

dσ
[̂b(τ−σ)× â(τ+σ)] = b̂(τ −σ)× â′(τ +σ)+ â(τ +σ)× b̂′(τ−σ) (3.42)

the third, fourth and fifth terms on the right of (3.41) all vanish on integration.
Hence,

J (n) = 1
4µn ·

∫ L

0
(̂a× â′ + b̂× b̂′) dσ + n · (M× V) (3.43)

where

M = 1
2µ

∫ L

0
(̂a+ b̂) dσ ≡ 1

2µLX̄0 (3.44)
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is the mass moment of the loop. The angular momentum vector measured by an
observer at rest with respect to the coordinate system is, therefore,

J = 1
4µ

∫ L

0
(̂a× â′ + b̂× b̂′) dσ +M× V. (3.45)

Note, in particular, that the left- and right-moving modes contribute separately
to J.

In the rest frame of the loop, â′ and b̂′ are both unit vectors, and so â and
b̂ trace out closed curves each of length L in �3 . Suppose that â traces a planar
curve which does not intersect itself. Then

Aa = 1
2

∫ L

0
â× â′ dσ (3.46)

is a vector normal to the plane with magnitude equal to the area enclosed by the
curve. In the more general case where the curve does intersect itself, Aa can be
found by breaking the curve up into non-intersecting closed segments and adding
the corresponding vector areas. Furthermore, if the curve is not planar, it is always
possible to project â onto a plane normal to the direction of Aa and so generate a
closed planar curve with length strictly less than L; the magnitude of Aa is then
the area enclosed by this curve.

Since the area enclosed by a curve of fixed length is maximal when the curve
is a circle, |Aa| is bounded above by L2/(4π). A similar argument applies to the
contribution of the b̂ mode to the angular momentum vector J, and so

|J| ≤ 1

4π
µL2 (3.47)

for any loop configuration [SQSP90]. Equality holds in (3.47) if and only if the
mode functions â and b̂ trace out co-planar circles with the same orientation. This
corresponds to a trajectory in the form of a rotating doubled straight line whose
ends are moving at the speed of light (see section 4.2.2).

An alternative way to characterize the angular momentum of a loop is to first
construct the angular momentum currents

MµνA = µ(XµXν,A −XνXµ,A ). (3.48)

By virtue of the flat-space equation of motion γ AB Xµ,AB = 0, these satisfy the
conservation equation

γ ABMµνA ,B = µ(Xµγ AB Xν,AB −Xνγ AB Xµ,AB ) = 0. (3.49)

Hence, the conserved total angular momentum tensor of the loop is

Mµν =
∫ L

0
Mµντ dσ =


0 −Mx −My −My

Mx 0 Jz −Jy
My −Jz 0 Jx
Mz Jy −Jx 0

 (3.50)
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and so can be used to reconstruct the components of bothM and J in any Lorentz
frame.

A further macroscopic property of interest is the invariant length of a closed
loop. The parametric period L in an aligned standard gauge typically has
different values in different reference frames. The minimum possible value of
the parametric period occurs in the rest frame of the loop, and is

Lmin = (1− V2)1/2L (3.51)

where L and V are the parametric period and bulk velocity of the loop in an
arbitrary frame. Since the quantity µLmin is the magnitude of the 4-momentum
Pµ (equation (3.32)), it is natural to interpret Lmin as, in some sense, the rest
length of the string. It was first identified by Tanmay Vachaspati and Alexander
Vilenkin [VV85] in 1985, and called by them the invariant length of the loop.

As previously mentioned (section 2.5), the invariant length �I(�) of a string
loop in an arbitrary background spacetime is defined to be twice the square root of
the area of the subset D(�) whose interior is causally disconnected from the point
�. This definition is motivated by the fact that �I(�) is a natural world-sheet scalar
and reduces to the invariant length Lmin at all points on the world sheet when the
background is Minkowski. To see this, it is most convenient to calculate �I in the
light-cone coordinates σ± = τ±σ corresponding to an arbitrary aligned standard
gauge (τ, σ ). Then

�I(σ+, σ−) = 2

(∫ σ−

σ−−L

∫ σ++L

σ+
X+ · X− dσ+ dσ−

)1/2
=
[ ∫ σ−

σ−−L

∫ σ++L

σ+
(1− a′ · b′) dσ+ dσ−

]1/2
(3.52)

where, in terms of the periodic mode functions â(σ+) and b̂(σ−),

1− a′ · b′ = 1− â′ · b̂′ − (̂a′ + b̂′) ·V− V2. (3.53)

Hence,

�I(σ+, σ−) =
[ ∫ σ−

σ−−L

∫ σ++L

σ+
(1− V2) dσ+ dσ−

]1/2
= (1− V2)1/2L (3.54)

as claimed.
As well as comprising a strict lower bound for the parametric period L, the

invariant length Lmin has the useful property that it forms an upper bound for the
proper length of the string loop as measured in any Lorentz frame. The length � of
the loop on a cross-sectional surface of constant τ in the aligned standard gauge
is

�(τ ) =
∫ L

0
(−X2

σ )
1/2 dσ ≤

[
L
∫ L

0
(−X2

σ ) dσ

]1/2
(3.55)



68 String dynamics in flat space

where the second term on the right follows from Schwarz’s inequality. Now,

−X2
σ = 1

4 (̂a
′2 + b̂′2 − 2̂a′ · b̂′) ≤ 1

4 (̂a
′2 + b̂′2 + 2|̂a′||̂b′|) (3.56)

and so, again by virtue of Schwarz’s inequality,∫ L

0
(−X2

σ ) dσ ≤ 1
4

∫ L

0
â′2 dσ + 1

4

∫ L

0
b̂′2 dσ

+ 1
2

(∫ L

0
â′2 dσ

)1/2(∫ L

0
b̂′2 dσ

)1/2
. (3.57)

Finally, in view of the gauge conditions (3.12) on the periodic mode functions â
and b̂,

â′2 = 1− 2̂a′ · V− V2 and b̂′2 = 1− 2̂b′ · V− V2 (3.58)

and, therefore,
�(τ ) ≤ (1− V2)1/2L = Lmin. (3.59)

Note that this upper bound is achievable whenever â′ and b̂′ are anti-parallel
and X2

σ is constant at all points on the surface of constant τ . This will occur if
and only if the periodic mode functions have the form

â(τ + σ) = (1− V2)1/2 û(σ + τ − τ0) (3.60)

and
b̂(τ − σ) = (1− V2)1/2 û(σ + τ0 − τ ) (3.61)

where τ0 is a constant, and û is a periodic function with period L and satisfies the
constraints

û′2 = 1 and û′ · V = 0. (3.62)

In particular, the measured length will be equal to the invariant length Lmin in the
rest frame of the string loop whenever the loop is momentarily stationary.

3.4 Initial-value formulation for a string loop

A considerable amount of effort has been invested by a number of authors in
generating simple yet interesting solutions which satisfy the periodicity condition
(3.8), largely for the purpose of estimating the flux of gravitational radiation
from realistic string loops (see section 6.5). A common method is to decompose
the trajectory into Fourier components and then impose the constraints a′2 =
b′2 = 1, a procedure which can be simplified considerably by using a spinorial
representation (see section 3.5). However, a method which has more direct
physical appeal is to reconstruct a trajectory from its initial data on a surface
of constant Minkowski time t .
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Suppose then that on an initial surface t = 0 a string loop has position vector
r0(θ) and velocity v0(θ), where θ is a parametric variable with range 0 to θ∗, and
r0 and v0 are periodic functions of θ so that

r0(0) = r0(θ∗) and v0(0) = v0(θ∗). (3.63)

If the trajectory of the loop is described using the aligned standard gauge, θ must
be a function of the spacelike gauge coordinate σ on the initial surface, and so at
τ = 0 the world-sheet tangent vectors have the form

Xµτ = [1, v0] (3.64)

and

Xµσ =
[
0, r′0

dθ

dσ

]
. (3.65)

The gauge constraint Xτ · Xσ = 0 then requires that v0 ·r′0 = 0, so the initial
velocity of the loop must be chosen to be everywhere orthogonal to r′0. This
restriction is simply a reflection of the fact that a string is locally invariant with
respect to boosts parallel to the world sheet, and so any longitudinal component
in the string’s velocity is undetectable. In view of the second gauge constraint

0 = X2
τ + X2

σ = 1− r′20
(
dθ

dσ

)2
− v20 (3.66)

the parameter θ and the gauge coordinate σ are related by the equation

dθ

dσ
= |r′0|−1

√
1− v20. (3.67)

Since according to equation (3.6), the tangent vectors on the initial surface
τ = 0 are just

Xµτ (0, σ ) = [1, 12a′(σ )+ 1
2b
′(−σ)] (3.68)

and
Xµσ (0, σ ) = [0, 12a′(σ )− 1

2b
′(−σ)] (3.69)

it follows immediately that, if θ(0) = 0,

a(τ + σ) = r0(θ(σ + τ ))+
∫ θ(σ+τ )

0
v0

dσ

dθ
dθ (3.70)

and

b(τ − σ) = r0(θ(σ − τ ))−
∫ θ(σ−τ )

0
v0

dσ

dθ
dθ. (3.71)

In particular, if the loop is initially motionless then the full trajectory is

Xµ(τ, σ ) = [τ, 12r0(θ(σ + τ ))+ 1
2r0(θ(σ − τ ))] (3.72)
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where the function θ(σ ) is determined implicitly by the equation

dσ

dθ
= |r′0|. (3.73)

In the more general case of non-static initial data, the parametric period L of
the loop is given by

L =
∫ θ∗

0
(1− v20)

−1/2|r′0| dθ (3.74)

while the bulk velocity of the loop is

V = L−1
∫ θ∗

0
(1− v20)

−1/2|r′0|v0 dθ. (3.75)

Examples of solutions generated using this method will be given in section 4.6.

3.5 Periodic solutions in the spinor representation

Even though the general solution (3.6) to the string equation of motion in a
Minkowski background is extremely simple, the problem of constructing periodic
solutions which satisfy the gauge condition a′2 = b′2 = 1 is not entirely
trivial. As mentioned earlier, one possible method is to begin with periodic initial
data, although the integrals (3.70) and (3.71) which then result are usually very
complicated. An alternative is to expand the mode functions a′ and b′ as a finite
series of harmonics in σ+ = τ + σ and σ− = τ − σ , respectively.

For example, if a′ contains only zero- and first-order harmonics then it has
the general form

a′ = V+ C cos(2πσ+/L)+ S sin(2πσ+/L) (3.76)

where C and S are constant vectors. The gauge condition a′2 = 1 then implies
that

C · V = S · V = C · S = 0 C2 = S2 and V2 + C2 = 1 (3.77)

so that the general solution for a′ reads:

a′ = (n1 × n2) cosφ + n1 sinφ cos(2πσ+/L)+ n2 sin φ sin(2πσ+/L) (3.78)

where n1 and n2 are any two orthogonal unit vectors and φ is an arbitrary constant.
A similar first-order solution exists for b′.

Finding periodic solutions in this way rapidly becomes unworkable as the
number of harmonics increases. If a′ contains all harmonics up to order N , so
that

a′ = V+
N∑
n=1

Cn cos(2πnσ+/L)+
N∑
n=1

Sn sin(2πnσ+/L) (3.79)
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then the gauge condition a′2 = 1 is equivalent to 4N + 1 separate conditions
on 2N + 1 vectors. Fortunately, it is possible to generate solutions containing
all harmonics up to an arbitrary order relatively easily by working in a spinor
representation due to Robert Brown, Eric Rains and Cyrus Taylor [BRT91],
which, in turn, expands on earlier work by Brown and David DeLaney [BD89].

The first step is to represent the components of a′ as the complex 2×2matrix

P =
(

1+ a′z a′x − ia′y
a′x + ia′y 1− a′z

)
. (3.80)

The gauge condition a′2 = 1 then becomes detP = 0. Because of this constraint,
P can always decomposed as the product of a complex two-spinor � and its
Hermitian conjugate:

P = ��†. (3.81)

The only condition that needs to be imposed on � a priori is that �†� = 2, as
TrP = 2. As an example, one very simple choice for � is:

� =
(√

2
0

)
(3.82)

which corresponds to

P =
(
2 0
0 0

)
or, equivalently, to a′ = [0, 0, 1]. (3.83)

The general solution containing all harmonics up to order N can be
constructed by simply choosing

� =
1∏

n=N
Qn(ξ+)�0 (3.84)

where �0 is any constant two-spinor satisfying the constraint �
†
0�0 = 2, the

variable ξ+ is shorthand for 2πσ+/L, and

Qn(ξ+) =
(
e−iξ+/2 0

0 eiξ+/2

)(
cos 1

2φn −i sin 1
2φne

iθn

−i sin 1
2φne

−iθn cos 1
2φn

)
(3.85)

(with φn , θn arbitrary) is the most general rotation matrix containing first-order
harmonics in ξ+/2. Because Qn is unitary, the trace condition �†� = 2 is
automatically preserved.

Although �0 is, in principle, arbitrary, all the harmonic solutions will be
generated (up to a spatial rotation) if �0 is chosen to have the simple form (3.82).
The effect of this is to align the highest-order harmonics along the x–y plane. As
an illustration, the family of 01-harmonic solutions generated by this method is

a′ = sin(ξ+ − θ1) sinφ1̂x− cos(ξ+ − θ1) sin φ1̂y+ cosφ1̂z (3.86)
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while the family of 012-harmonic solutions is

a′ = [sinφ1 sin2(φ2/2) sin(2θ2 − θ1)+ cosφ1 sin φ2 sin(ξ+ − θ2)
+ sin φ1 cos2(φ2/2) sin(2ξ+ − θ1)]̂x+ [sin φ1 sin2(φ2/2) cos(2θ2 − θ1)
− cosφ1 sin φ2 cos(ξ+ − θ2)− sin φ1 cos2(φ2/2) cos(2ξ+ − θ1)]̂y
+ [cosφ1 cosφ2 − sinφ1 sin φ2 cos(ξ+ + θ2 − θ1)]̂z. (3.87)

String trajectories involving both types of mode function will be examined in
more detail in section 4.4.1.

A more generic use of the spinor formalism, which predates the method of
Brown et al and is applicable to any standard gauge rather than just the aligned
standard gauge, was first developed by Hughston and Shaw [HS88]. Recall that
in the standard gauge the general solution to the equation of motion is

Xµ(τ, σ ) = Aµ(σ+)+ Bµ(σ−) (3.88)

where A′µ and B ′µ are both null vectors. On writing

P =
(
A′t + A′z A′x − iA′y
A′x + iA′y A′t − A′z

)
(3.89)

the gauge constraint A′2 = 0 becomes detP = 0 and so P can again be
decomposed as the product of a complex two-spinor � = [ψ1, ψ2]� and its
Hermitian conjugate. However, the decomposition is not unique, as any rotation
in the phases of ψ1 and ψ2 which leaves ψ1ψ̄2 invariant also leaves P invariant.
Hughston and Shaw chose to scale � so that

ψ1ψ
′
2 − ψ2ψ

′
1 = 1 (3.90)

almost everywhere, from which it follows that ψ1ψ
′′
2 −ψ2ψ

′′
1 = 0 and, therefore,

that
� ′′ = U(σ+)� (3.91)

for some scalar functionU .
It is thus possible to generate periodic solutions of the equation of motion

by substituting a suitable periodic function U into equation (3.91) and solving
for �. It is readily seen that if U is real then the orbit of A′µ is planar, whereas
if U is complex it is non-planar. Although this method can generate additional
solutions in those cases where (3.91) is tractable, it is difficult to control the
gauge in which the solution appears. Furthermore, because there is no simple
relationship between the form of U and the form of �, it is not a convenient
method for generating solutions with a finite number of harmonics. Brown et al
[BRT91] have shown that in the aligned standard gauge the 01-harmonic solutions
correspond to the simple choice U = constant (in fact U = −π2/L2 in the
notation used here) but that for the family of 012 solutions U is a forbiddingly
complicated function of σ+.
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Figure 3.1. The Kibble–Turok sphere.

3.6 The Kibble–Turok sphere and cusps and kinks in flat
space

In the aligned standard gauge, as we have seen, the position vector Xµ(τ, σ ) of a
string loop can be characterized by two vector functions a(σ+) and b(σ−) whose
derivatives trace out a pair of curves on the surface of the Kibble–Turok sphere, as
shown in figure 3.1. Furthermore, in the centre-of-momentum frame of the loop,
a and b are strictly periodic functions of their arguments with period L, and so∫ L

0
a′(σ+) dσ+ =

∫ L

0
b′(σ−) dσ− = 0. (3.92)

That is, the centroids of both the a′ and b′ curves lie at the centre of the sphere. In
particular, this means that neither curve can lie wholly inside a single hemisphere.

The Kibble–Turok representation, although simple, has provided a number
of valuable insights into the dynamics and evolution of strings in flat space.
Consider, first of all, a string loop without kinks in its centre-of-momentumframe.
The a′ and b′ curves are then closed and continuous and since neither can lie
wholly inside a hemisphere it requires some work to prevent the curves from
crossing. Furthermore, if the curves do cross, they must do so an even number of
times (if points of cotangency are excluded). Now, it was seen in section 3.3 that
a cusp appears whenever a′ ·b′ = 1 or, equivalently, whenever the a′ and b′ curves
cross. Thus it can be seen that cusps are, in some sense, generic to kinkless loops
and necessarily occur in pairs.

In fact, following Thompson [Tho88] it is possible to divide cusps into two
classes depending on the relative orientation of the a′ and b′ curves. The tangent
vectors to the two curves are proportional to a′′ and b′′ respectively, and so at a
cusp the vector a′′ × b′′ is normal to the surface of the Kibble–Turok sphere. If
this vector is directed out of the sphere, so that (a′′ × b′′) · a′ > 0, the cusp is
said to be a procusp (or simply a cusp). However, if the vector is directed into the
sphere, so that (a′′ ×b′′) ·a′ < 0, the cusp is referred to as an anti-cusp. It is clear
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from the geometry of the Kibble–Turok sphere that for kinkless loops the number
of cusps and anti-cusps is equal and that cusps and anti-cusps occur alternately
along the a′ and b′ curves.

In order to examine the structure of a general cusp in more detail, it is
conventional to assume that the position vector Xµ(τ, σ ) is an analytic function
of the standard-gauge coordinates σ and τ at the cusp. Then in a neighbourhood
of the cusp (here taken to be at τ = σ = 0)

a′ = vc + a′′cσ+ + 1
2a
′′′
c σ

2+ + O(σ 3+) (3.93)

and
b′ = vc + b′′cσ− + 1

2b
′′′
c σ

2− + O(σ 3−) (3.94)

where σ± = τ ± σ as before and vc is a unit vector, the instantaneous velocity
of the cusp. (In terms of the somewhat more general analysis of a cusp given in
section 2.6, the vectors vc, a′′c and b′′c are just n, 4u and 4v respectively.)

In view of the gauge conditions a′2 = b′2 = 1, the coefficient vectors satisfy
the constraints

vc · a′′c = vc · b′′c = 0 and vc · a′′′c + |a′′c |2 = vc · b′′′c + |b′′c |2 = 0 (3.95)

and so on the face of it it would appear that once the direction of vc is specified the
structure of the cusp to third order is fixed by seven parameters: the magnitudes
of a′′c and b′′c , the angle between a′′c and b′′c , and the components of a′′′c and b′′′c
normal to vc. In particular, the tangent vector tc = 1

2 (a
′′
c + b′′c ) to the cusp and the

direction sc = 1
2 (a

′′′
c − b′′′c ) of the spreading of the string (see figure 3.2) satisfy

vc · tc = 0 and vc · sc = 1
2 (|b′′c |2 − |a′′c |2). (3.96)

Note that at τ = 0 the circumcusp region is described parametrically by the
equation

r(0, σ ) = 1
2 tcσ

2 + 1
6 scσ

3 + O(σ 4) (3.97)

and so unless tc and sc are linearly dependent the cusp locally has the
characteristic y ∝ x2/3 shape mentioned in section 2.6.

José Blanco-Pillado and Ken Olum have recently shown [BPO99] that it is
possible to reduce the number of independent third-order parameters at a cusp
to four by invoking a suitable Lorentz transformation. To see this, note first that
under a Lorentz boost to a frame with velocity v0 the null vectors

A′µ = [1, a′] and B ′µ = [1,b′] (3.98)

transform to give

A′µ = [λ0(1− a′ · v0),A] and B ′µ = [λ0(1− b′ · v0),B] (3.99)

where λ0 = (1 − |v20|)−1/2 and A and B are vector functions of σ+ and σ−
respectively. In the boosted frame the role of the mode functions a′ and b′ is
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Figure 3.2. The vectors vc, tc and sc.

assumed by two new functions ã′ and b̃′ of the corresponding aligned gauge
coordinates σ̃+ and σ̃− and the analogues of the vectors A′µ and B ′µ are:

Ã′µ ≡ [1, ã′] = faA
′µ and B̃ ′µ ≡ [1, b̃′] = fbB

′µ (3.100)

where

fa = λ−10 (1− a′ · v0)−1 and fb = λ−10 (1− b′ · v0)−1. (3.101)

Similarly, the world-sheet derivative operators D± = ∂/∂σ± and D̃± =
∂/∂σ̃± are related by

D̃+ = faD+ and D̃− = fbD− (3.102)

and so the higher derivatives of ã′ and b̃′ can be calculated from the identities

[0, ã′′] = D̃+ Ã′µ = faD+( faA′µ) = f 2a D+A′µ + A′µ faD+ fa (3.103)

[0, b̃′′] = D̃− B̃ ′µ = fb D−( fbB ′µ) = f 2b D−B ′µ + B ′µ fbD− fb (3.104)

[0, ã′′′] = D̃2+ Ã′µ = f 3a D
2+A′µ + 3 f 2a D+ faD+A′µ

+ [ f 2a D2+ fa + fa(D+ fa)2]A′µ (3.105)

and

[0, b̃′′′] = D̃2− B̃ ′µ = f 3b D
2−B ′µ + 3 f 2b D− fbD−B ′µ

+ [ f 2b D2− fb + fb(D− fb)2]B ′µ. (3.106)

At a cusp, the null vectors A′µ and B ′µ are equal and orthogonal to both
D+A′µ and D−B ′µ, while

fa = fb = f ≡ λ−10 (1− vc · v0)−1 (3.107)
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and

D+ fa = λ0 f 2a′′c · v0 and D− fb = λ0 f 2b′′c · v0. (3.108)

Hence, in view of (3.95) the dot products of various pairwise combinations
of (3.103)–(3.106) give:

|̃a′′c |2 = f 4|a′′c |2 |̃b′′c |2 = f 4|b′′c |2 and ã′′c · b̃′′c = f 4a′′c · b′′c
(3.109)

ã′′c · ã′′′c = f 5(a′′c · a′′′c + 2λ0 f |a′′c |2a′′c · v0) (3.110)

b̃′′c · b̃′′′c = f 5(b′′c · b′′′c + 2λ0 f |b′′c |2b′′c · v0) (3.111)

ã′′c · b̃′′′c = f 5{a′′c · b′′′c + λ0 f [3(a′′c · b′′c )b′′c · v0 − |a′′c |2b′′c · v0]} (3.112)

and

b̃′′c · ã′′′c = f 5{b′′c · a′′′c + λ0 f [3(a′′c · b′′c )a′′c · v0−|b′′c |2 a′′c · v0]}. (3.113)

The first three equations indicate that the vectors a′′c and b′′c are rescaled
by a factor of f 2, and possibly rotated about the direction of vc (to which they
must remain orthogonal), but are otherwise unchanged by the Lorentz boost.
Altogether, the seven equations contain three free parameters (the components of
the boost velocity v0), and can be used to impose a variety of possible coordinate
conditions at the cusp.

For example, if a′′c and b′′c are non-parallel the tangent vector tc = 1
2 (a

′′
c+b′′c )

can be rescaled to a unit vector by choosing f appropriately. It is then possible
to fix a′′c · v 0 and b′′c · v0 so that a′′c · sc = b′′c · sc = 0, and, therefore, that the
direction of spread sc is parallel to the cusp velocity vc. As a result, the cusp
can be characterized by only four independent parameters: the relative magnitude
of a′′c and b′′c , the angle between a′′c and b′′c , and the components of a′′′c normal
to vc. Note that, in view of equations (3.96) and (3.109), it is never possible to
find a Lorentz boost which makes vc and sc orthogonal if they are initially non-
orthogonal.

Figure 3.3 illustrates the time development of a generic cusp in the frame
where |tc| = 1 and vc and sc are parallel. The four free cusp parameters, which
have been randomly generated, are |a′′c |/|b′′c | = 0.4456, �(a′′c ,b′′c ) = 0.9422,
a′′′c · tc = 0.9882 and a′′′c · (tc × vc) = −0.3164. Unfortunately the projections of
the near-cusp region onto the planes spanned by tc and vc and by tc and tc × vc
contain swallow-tail caustics which obscure the structure of the cusp itself, so the
figure shows the projections after rotating these planes by π/4. In each row the
time coordinate τ ranges from −0.3 (left) to 0.3 (right) at intervals of 0.1, while
|σ −σa| ranges from−0.6 to 0.6, where σa is the value of σ at the apex of the arc.
Varying the values of the free parameters has little effect on the overall geometry
of the near-cusp region, except in certain critical cases that will be discussed in
more detail in section 3.9.
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Figure 3.3. Time development of a generic cusp.

To second order in τ and σ the local Lorentz factor λ = (X2
τ )
−1/2 in the

vicinity of a cusp is given by

λ−2 = 1
2 (1− a′ · b′) ≈ 1

4 (|a′′c |2σ 2+ − 2a′′c · b′′cσ+σ− + |b′′c |2σ 2−) (3.114)

and the subset of the world sheet on which λ is greater than some value λmin is
(in the limit of large λ) the interior of an ellipse in τ–σ parameter space with
semi-major and semi-minor axes s± satisfying

s2± = 2λ−2min

[
|a′′c |2 + |b′′c |2 ±

√
(|a′′c |2 + |b′′c |2)2 − 4|a′′c × b′′c |2

]
/|a′′c × b′′c |2.

(3.115)
In particular, the duration of the cusp (the time during which λ > λmin

somewhere on the string) is given by

|τ | < λ−1minρτ (3.116)

while the equivalent inequality for the spacelike gauge coordinate σ is

|σ | < λ−1minρσ (3.117)

where

ρτ = |a′′c × b′′c |−1|a′′c + b′′c | and ρσ = |a′′c × b′′c |−1|a′′c − b′′c | (3.118)

are characteristic length scales associated with the cusp.
Of course, the physical radius ρ of the region in which the local Lorentz

factor is greater than λmin is proportional not to σ but rather to σ 2 (see section 2.6).
At the moment at which the cusp forms (i.e. at τ = 0), it follows from equations
(3.6), (3.93), (3.94) and (3.114) that the physical radius is

ρ = λ−2min ρc where ρc ≡ |a′′c + b′′c |−1 = 1
2 |tc|−1. (3.119)
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Moreover, it is easily seen that ρσ ≥ 4ρc, and so the physical radius satisfies the
inequality

ρ ≤ 1
4λ
−2
minρσ . (3.120)

In the rest frame of the string the vectors a′′ and b′′ typically havemagnitudes
of order L−1, and so the length scales ρτ , ρσ and ρc are normally of order L.
However, ρc can be substantially smaller than L at a microcusp (see below), and
in the most extreme cases could be as small as the thickness of the string. For a
GUT string, this core thickness would be about 10−29 cm, and could be as small
as 10−50L for a string of cosmological size. Another scale factor which turns out
to be an important determinant of the magnitude of gravitational effects near a
cusp is

Rc = (|a′′c |2 + |b′′c |2)−1/2. (3.121)

It is clear that Rc ≤ ρc, and Rc and ρc are almost always of the same order.
Furthermore, all four length scales dilate as f −2 = λ20(1 − vc · v0)2 under a
Lorentz boost, and so are not Lorentz-invariant.

In the case of a string loop confined to a plane, the Kibble–Turok
representation consists simply of two coincident great circles on the unit sphere.
Cusps are, therefore, inevitable on a planar loop without kinks. Moreover, the
fact that the a′ and b′ curves are coincident everywhere means that the cusps are
extended rather than isolated and form a closed curve with a non-trivial homotopy
on the world sheet. The cusps are, therefore, either persistent features of the
string, as in the example to be discussed in section 4.2.2, or occur simultaneously
along a segment of the string which has momentarily been compressed to a
point, as in the case of the circular loop analysed in section 4.2.1. Even more
complicated behaviour is possible if the loop supports kinks, as these can both
emit and absorb long-lived cusps. Examples will be given in sections 4.2.4 and
4.6.

Incidentally, if a cusp does occur as a persistent feature on a string world
sheet, then (like a kink) it must propagate with the speed of light relative to the
background spacetime. To see this, suppose that the trajectory of the cusp is
σ = σc(τ ) for some differentiable function σc. Then the cusp traces out the
spatial curve

rc(τ ) = 1
2 [a(τ + σc(τ ))+ b(τ − σc(τ ))] (3.122)

with instantaneous speed

|r′c(τ )| = 1
2 [(1+ σ ′c)2 + 2(1− σ ′2c )a′ · b′ + (1− σ ′c)2]1/2 = 1 (3.123)

as the unit vectors a′ and b′ are, by definition, parallel at all points on the cusp’s
trajectory.

So far this analysis of the Kibble–Turok sphere has focused on loops without
kinks. The effect of including loops with kinks is simply to relax the requirement
that the a′ and b′ curves be continuous. A kink corresponds to each break in either
of the two curves. An example of the Kibble–Turok representation of a loop with
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Figure 3.4. Kibble–Turok sphere of a loop with two kinks and one cusp.

two kinks, one left-moving and one right-moving, is shown in figure 3.4. One
immediate consequence of the Kibble–Turok representation is that it is clear that
a loop can support any number of kinks, and there is no necessary correlation
between the number of left-moving and the number of right-moving kinks.

Furthermore, as is evident from figure 3.4, once a loop develops kinks the
number of cusps need no longer be even, as the a′ and b′ curves need not cross
an even number of times. This result is slightly deceptive, however. As was
indicated in section 2.7, kinks on a real string would not be true discontinuities
in the tangent vectors, but narrow segments where the gradients of the tangent
vectors are large but bounded. (In fact, the fields constituting a string typically
do not vary on length scales smaller than the radius of the vortex, which as has
been mentioned is about 10−29 cm for a GUT string.) As a result, a kink does not
represent a real break in either the a′ or b′ curves, and the ends of any break are
effectively joined by a segment on which either a′′ or b′′ is very large.

Since the physical dimensions of the joining segment are of the order of the
Planck length, the segment is unlikely to have any detailed structure and can be
represented by the great circle which joins the two ends of the kink. If a segment
of this type crosses the other curve on the Kibble–Turok sphere then a special
class of cusp known as a microcusp forms. Indeed, there are two possible types
of microcusp: one where the break in one curve crosses a continuous segment of
the other; and one where two breaks cross, as shown in figure 3.5.

In the first case, a′′ is very large at the microcusp but b′′ is not (or vice versa),
and so the length scales ρτ and ρσ are, in general, not particularly small. Hence,
the duration of such a microcusp is typically no smaller than that of an ordinary
cusp, although the cusp radii ρc and Rc are much smaller than the macroscopic
length scale L. This type of microcusp is a false microcusp.

In the second case, by contrast, both a′′ and b′′ are very large at the microcusp
and both the duration and radius of the microcusp are consequently, very small.
This is a true microcusp. In both cases, the magnitude of the separation vector
sc = 1

2 (a
′′′
c − b′′′c ) will be considerably larger than L−2. As will be seen shortly,



80 String dynamics in flat space

Figure 3.5. False and true microcusps.

the energy content Ec of a cusp scales roughly as |vc · sc|−1/2 and so the energy
of a microcusp is typically much smaller than that of a standard cusp. Like
cusps, microcusps can be divided into two further classes (pro-microcusps and
anti-microcusps) according to the relative orientation of the a′ and b′ curves at
the point of intersection.

Examples of loops with both true and false microcusps are examined in
section 4.3.

3.7 Field reconnection at a cusp

The importance of cusps for the secular evolution of a string trajectory lies in the
fact that radiation from cusps is almost certainly the dominant form of energy
loss for the string. A cusp typically radiates both gravitational and Higgs field
energy. A more detailed discussion of gravitational radiation from cusps is given
in chapter 6. The field-theoretical aspects of Higgs vortex strings lies somewhat
outside the subject matter of this book but it is possible on the basis of the simple
dynamical considerations outlined earlier to give an order-of-magnitude estimate
of the power radiated by a cusp.

Naively, a realistic cosmic string can be visualized as a cylindrical wire with
a small but non-zero radius r . Near a cusp the wire doubles back on itself and so
for a brief period of time the two branches of the cylinder will overlap. It is to
be expected that microphysical forces will become important in the overlapping
region, and lead to the emission of particles with some characteristic total energy
Ec. To estimate the size of this region, note that the separation of the two branches
of the string at time τ = 0 (the moment of formation of the cusp) at a given value
of |σ | is

|r(0, σ )− r(0,−σ)| ≈ 1
6 |sc|σ 3 (3.124)

where sc = 1
2 (a

′′′
c − b′′′c ) as before. If this separation distance is set equal to 2r
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then the overlap region would seem to cover the parameter range

|σ | ≤ σov ≡ (12r/|sc|)1/3 ∼ r1/3L2/3 (3.125)

and so have a physical radius of the order of |tc|σ 2ov ∼ r2/3L1/3. This estimate
was first published in 1987 by Robert Brandenburger [Bra87].

However, as Blanco-Pillado and Olum have rightly pointed out [BPO99], this
derivation of σov neglects the effect of Lorentz contraction on the cross-sectional
shape of the wire. Since the string is travelling close to the speed of light near the
cusp, the wire will be elliptical in cross section rather than circular, with semi-
major axis r and semi-minor axis r/λ in the direction of vc, where from (3.114)
the local Lorentz factor has the form

λ−1 ≈ |tc|σ. (3.126)

Equating the component of the separation vector 1
6 scσ

3 in the direction of vc with
the minor axis 2r/λ then gives

σov ≈ (6r |tc|/|vc · sc|)1/2 = (6r/|a′′c − b′′c |)1/2 ∼ r1/2L1/2. (3.127)

The corresponding physical radius |tc|σ 2ov is of order r , independently of the
macroscopic length scale L. The total energy Ec available in the overlap region
is of order µσov ∼ µr1/2L1/2 and any particles emitted by the cusp will have
Lorentz factors of the order of |tc|−1σ−1ov ∼ (L/r)1/2.

The derivation of the estimate (3.127) for σov has of course been very
heuristic. A more careful analysis by Blanco-Pillado and Olum [BPO99] shows
that because the velocity v of the string near the cusp deviates slightly from
vc, the minor axes of the two branches of the wire are rotated relative to vc,
and so the separation of the branches needs to be somewhat larger than r/λ.
The corresponding value of σov is also larger than that shown in (3.127) but
nonetheless remains of order r1/2L1/2. Note that for a GUT string r ∼ 10−29 cm
and µ ∼ 1021 g/cm, and so a loop the size of a star cluster (L ∼ 1020 cm) would
have σov ∼ 10−5 cm and a characteristic cusp energy Ec ∼ 1038 erg, which is the
mass-energy content of about 1017 g or, equivalently, the total energy output of the
Sun over 6 h. The Lorentz factor at the boundary of the overlap region would be
λmin ∼ L/σov ∼ 1025, and the corresponding cusp duration L/λmin ∼ 10−16 s.

Provided that r � L, the field energy Ec ∼ µr1/2L1/2 radiated by an
individual cusp will be negligibly small in comparisonwith the total energyµL of
the string loop, and so should have minimal impact on the dynamics of the loop.
For a long time it was thought that the effect of cusps on the secular evolution of
a loop could be adequately approximated by assuming that the a′ and b′ curves
would be slowly and continuously deformed by the energy loss at the cusps. This
forms the basis for the ‘adiabatic’ approach to loop evolution, which is discussed
in more detail in section 3.9.

Recently, however, Olum and Blanco-Pillado have suggested an alternative
view of the dissipation of cusps that seems to have been vindicated by lattice



82 String dynamics in flat space

Figure 3.6. Reconnection at a cusp.

field theory simulations of Higgs vortex strings [OBP99]. According to the
‘overlap’ model, the field energy that can be released at a cusp is contained in the
circumcusp region |σ | ≤ σov where the two branches of the string overlap. One
simple way to model this energy release is to assume that the entire circumcusp
region is excised from the string and replaced with a smooth segment joining the
two points r(0,−σov) and r(0, σov), as in figure 3.6. The modified trajectory
then evolves according to the usual Nambu–Goto equations of motion (3.1) until
another cusp appears and the process of excision and reconnection is repeated.
Although obviously an idealization, this routine provides a reasonable schematic
description of the mechanism of cusp dissipation in Olum and Blanco-Pillado’s
simulations.

To generate a more precise description of the reconnection process, suppose
as before that the cusp appears at τ = σ = 0, and let the mode functions
be ai(σ+) and bi(σ−) for τ < 0, and af(σ+) and bf(σ−) for τ > 0. During
reconnection a smooth bridging segment appears to replace the branches of the
string that previously occupied the parameter range |σ | ≤ σov. The details of the
process of evaporation and reconnection will, of course, depend on field-theoretic
considerations that are outside the scope of the present analysis. However, it
is possible to sketch out the salient features of the process by making a few
simplifying assumptions.

First of all, since the evaporation of the circumcusp region presumably
proceeds from the cusp downwards, it seems reasonable to assume that each point
on this part of the string snaps back to the bridging segment under the action of the
unbalanced string tension, and so the position vector rf of the bridging segment
satisfies

rf(σ ) = ri(σ )+ q(σ )r′i(σ ) (3.128)

where ri is the position vector before reconnection, and q is some scalar function
with q(±σov) = 0. Also, if it is assumed that the reconnection process is
minimally inelastic then the components of the velocity vf of the bridging segment
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transverse to the bridge will be the same as the corresponding components of the
initial velocity vi, and so

vf(σ ) = vi(σ )− [vi(σ ) · r′f(σ )]|r′f(σ )|−2r′f(σ ). (3.129)

Now, the original gauge coordinate σ will not, in general, retain its role as
an aligned standard gauge coordinate on the bridging segment. In fact, according
to (3.67) the new spacelike coordinate σ in the aligned standard gauge is given by

dσ

dσ
= |r′f|/

√
1− |vf|2 ≡ |r′f|2[|r′i|2|r′f|2 + q2(vi · r′′i )2]−1/2 (3.130)

where all terms on the right are understood to be functions of σ , and

|r′f|2 = (1+ q ′)2|r′i|2 + 2q(1+ q ′)(ri · r′′i )+ q2|r′′i |2. (3.131)

In particular, the total energy of the bridging segment is

Ef = µσ = µ
∫ σov

−σov
|r′f|2[|r′i|2|r′f|2 + q2(vi · r′′i )2]−1/2 dσ (3.132)

while from (3.70) and (3.71) the reconnected mode functions are

a′f(σ ) = vi + |r′f|−2{[|r′i|2|r′f|2 + q2(vi · r′′i )2]1/2 − q(vi · r′′i )}r′f (3.133)

and

b′f(−σ) = vi − |r′f|−2{[|r′i|2|r′f|2 + q2(vi · r′′i )2]1/2 + q(vi · r′′i )}r′f. (3.134)

The undetermined function q can be fixed by minimizing the total energy
Ef. It is evident from (3.130) that the bridging segment which minimizesEf is
likely to approximate closely a straight-line segment from ri(−σov) to ri(σov), as
this minimizes the physical distance

∫ |r′f| dσ . In fact, if the near-cusp expansions
ri(σ ) ≈ 1

2 tcσ
2 + 1

6scσ
3 (3.135)

and
vi(σ ) ≈ vc + ucσ (with uc ≡ 1

2 (a
′′
c − b′′c )) (3.136)

are inserted into (3.132) then, to leading order in σov/L ∼ (r/L)1/2,

Ef = µ
∫ σov

−σov
[(1+ q ′)σ + q]2{σ 2[(1+ q ′)σ + q]2+ κ2σ 2q2}−1/2 dσ (3.137)

where κ = 1
2 (sc · vc)/|tc|2 is a dimensionless parameter. It is clear that at this

level of approximation Ef will be minimized if (1 + q ′)σ + q = 0, which, in
turn, gives

q(σ ) = 1
2 (σ

2
ov − σ 2)/σ. (3.138)
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From (3.128) it can be seen that the corresponding bridging segment has the form

rf(σ ) = 1
2 tc σ

2
ov + 1

4sc(σ
2
ov − 1

3σ
2)σ (3.139)

and so is geometrically straight as suggested.
In the lattice field theory simulation published by Olum and Blanco-Pillado

[OBP99] the bridging segment is indeed approximately straight over the middle
two-thirds of its length but bends over near the boundary of the overlap region to
match smoothly onto the exterior string trajectory. Since the length 1

6 |sc|σ 3ov of the
bridging segment is, by definition, of roughly the same size as the boosted string
thickness r/λ at the boundary of the overlap region, the smoothing effects of the
non-zero string thickness are presumably independent of the ratio L/r (which for
reasons of limited resolution is set at only 15 in the simulation). Thus the straight-
line approximation (3.139) is a fairly crude one, although it is probably the best
that can be offered in the absence of additional assumptions about the nature of
the underlying fields.

If the bridging segment is assumed to be straight then the new spacelike
coordinate σ is given by

σ =
∫

1
4 |vc · sc|−1|sc|2(σ 2ov − σ 2) dσ = 1

4 |vc · sc|−1|sc|2(σ 2ov − 1
3σ

2)σ (3.140)

and, in particular, the total energy of the bridge is

Ef = µσ = µ
3 |vc · sc|−1|sc|2σ 3ov. (3.141)

Note here that Ef ∼ µr(r/L)1/2 is for a cosmological string a negligible
fraction of the original cusp energy Ec ∼ µr(L/r)1/2.

Also, at this level of approximation the new mode functions a′f and b′f are
extremely simple, as

a′f ≈ vc + (|vc · sc| − vc · sc)|sc|−2sc (3.142)

and
b′f ≈ vc − (|vc · sc| + vc · sc)|sc|−2sc. (3.143)

It was seen in (3.96) that vc · sc = 1
2 (|b′′c |2−|a′′c |2), and so if |b′′c | > |a′′c | the mode

functions reconnect over the range |σ | < σov with
a′f ≈ vc and b′f ≈ vc − 2|vc · sc||sc|−2sc. (3.144)

That is, the mode function a′ is essentially unchanged on the bridging
segment but the mode function b′ jumps from the neighbourhood of vc at σ =
−σov to the point vc − 2(vc · sc)|sc|−2sc on the Kibble–Turok sphere and then
back to vc at σ = σov, as shown in figure 3.7. In particular, if the cusp is boosted
into a frame in which sc is parallel to vc then (since vc · sc > 0 by assumption) b′
jumps from vc to the antipodal point −vc and back again. If, on the other hand,
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Figure 3.7. Reconnection on the Kibble–Turok sphere.

|b′′c | < |a′′c | then the mode function b′ remains unchanged and it is the mode
function a′ that reconnects through the point vc − 2(vc · sc)|sc|−2sc.

In physical terms this means that the cusp evaporates to leave a pair of co-
moving kinks separated by such a small gauge distance σ ∼ (σov/L)3 that
they are effectively indistinguishable and together constitute a fundamentally new
feature: a reversing segment propagating around the string at the speed of light.
The new parametric period L ′ = L + σ − 2σov will, of course, be negligibly
smaller than L if the string is cosmological, and at intervals of L ′/2 the reversing
segment will develop into a cusplike feature with a maximum Lorentz factor
|tc|−1σ−1ov ∼ (L/r)1/2. It was seen earlier that (L/r)1/2 could easily be as high as
1025 for a cosmological string, so this truncated cusp retains many of the extreme
conditions characteristic of a true cusp, although it is much less energetic and is
presumably stable to the emission of Higgs field energy.

Finally, mention should be made of the effects of cusp evaporation on the
total momentum of the string. To leading order in σov/L the momentum of the
excised segment is

pi ≈ 2µvcσov (3.145)

whereas the momentum of the bridging segment is

pf ≈ µ
3 |sc · vc|−1[|sc|2vc − (vc · sc)sc]σ 3ov. (3.146)

The difference pi − pf is the momentum of the radiated cusp energy, which
for a cosmological string is effectively just pi. Thus, not surprisingly, the
evaporation of the cusp boosts the loop in the direction of −vc.

3.8 Self-intersection of a string loop

Another property of a string loop which is potentially just as important for the
evolution of a cosmological string network as the number of cusps or kinks is
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the number of times the loop intersects itself during an oscillation period. It
was mentioned in section 2.7 that when two segments of a string cross they
almost invariably intercommute. A loop with a large number of self-intersections
would, therefore, quickly disintegrate into a profusion of daughter loops, many
of them moving at high bulk velocities relative to the centre-of-momentum frame
of the original loop. It is through this mechanism that numerical simulations
of primordial string networks rapidly become dominated by small, high-velocity
loops.

In the aligned standard gauge, a string loop intersects itself whenever the
position function r(τ, σ ) coincides for two separate values of σ ; that is, whenever

a(τ + σ1)+ b(τ − σ1) = a(τ + σ2)+ b(τ − σ2) (3.147)

for distinct values σ1 and σ2 (modulo the parametric period L). If the loop then
intercommutes, it will break into two daughter loops, one with parametric range
σ+ ∈ [τ + σ1, τ + σ2] and σ− ∈ [τ − σ2, τ − σ1] and the other with parametric
range σ+ ∈ [τ+σ2, τ+σ1] and σ− ∈ [τ−σ1, τ−σ2] (all modulo L). In terms of
the Kibble–Turok representation, the a′ and b′ curves of the original loop are each
broken into two segments, and the two daughter loops each inherit one segment
from each curve. Clearly, both daughter loops support at least one left-moving and
one right-moving kink, corresponding to the ends of the two inherited segments.

The total 4-momenta of the two daughter loops in the original loop’s centre-
of-momentum frame are easily calculated and (if σ2 > σ1) reduce to

Pµ(1) = µ[σ2 − σ1, a(τ + σ2)− a(τ + σ1)] (3.148)

and
Pµ(2) = µ[L − (σ2 − σ1),−a(τ + σ2)+ a(τ + σ1)]. (3.149)

Thus, although the spatial components of the momenta balance exactly, the
energies of the two daughter loops emerge in the ratio L−(σ2−σ1) : σ2−σ1, and
are by no means necessarily equal. Similarly, the bulk velocities of the daughter
loops are

V(1) = a(τ + σ2)− a(τ + σ1)
σ2 − σ1 and V(2) = −a(τ + σ2)+ a(τ + σ1)

L − (σ2 − σ1)
(3.150)

and although they are guaranteed by the mean-value theorem to be subluminal,
they do not, in general, add to zero. In particular, if σ2 − σ1 � L then one of the
daughter loops is slow moving and retains most of the energy of the original loop,
while the other is small and moves off at near-light speed.

The fact that the Kibble–Turok representation of a daughter loop after self-
intersection consists simply of segments from the two curves on the parent
Kibble–Turok sphere indicates that new cusps cannot be created by self-
intersection. If a particular cusp is inherited by one of the daughter loops, it
will not appear on the other daughter. Indeed, if two segments which cross
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Figure 3.8. Three cusps replaced by a microcusp.

on the parent sphere are inherited separately by the two daughter loops, the
corresponding cusp will disappear altogether. Since a similar argument also
applies to the intersection of segments from different loops, it might seem that
the process of intercommuting would act to quickly destroy any cusps that were
originally supported by the string network.

However, it must be remembered that each cusp that disappears during an
intersection event is typically replaced by a microcusp on both daughter loops,
as the gaps in the curves on the Kibble–Turok spheres of the daughter loops are
not true discontinuities. Similarly, if a cusp is inherited by one of the daughter
loops, a corresponding microcusp is inherited by the other. As a result, the
total number of cusps and microcusps generally doubles with each generation
of daughter loops [Gar88]. The doubling need not be exact, however, as there is
no strict correspondence between excised cusps and the microcusps that replace
them. For example, if two tangled segments of the a′ and b′ curves which intersect
one another a number of times are replaced by kinks, the resulting great circle
segments can intersect one another (and so form a microscusp) at most once (see
figure 3.8). Conversely, if the a′ and b′ curves contain neighbouring convoluted
segments which do not cross, and one of the segments is replaced by a kink, it
is possible that two or more false microcusps will be created (see figure 3.9).
Nonetheless, even if the total number of cusps and microcusps on the daughter
loop differs from that of the parent loop, the difference is always an even integer.

The inclusion of gravitational back-reaction from string loops is thought to
complicate the relationship between cusps and microcusps even further. It was
seen earlier that the curvature of the world sheet is extremely high on the locus
of a kink. It is believed that gravitational radiation from a string loop would
be driven preferentially by regions of high curvature, and would, therefore, act
to broaden any kinks (in the sense that the local magnitude of a′′ or b′′ would
gradually be reduced to its characteristic value L−1: see section 6.11 for a more
detailed discussion). As a consequence, any microcusps on a loop would also be
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Figure 3.9. Creation of a pair of microcusps.

broadened by gravitational dissipation, and would eventually become true cusps,
which, in turn, would quickly evaporate to form truncated cusps. Overall, it seems
likely that, in the words of David Garfinkle, ‘kinkless loops with cusps’ would be
more generic than ‘cuspless kinky loops’ [Gar88]. (However, numerical solutions
have, to date, been more supportive of the converse view: see section 6.9.2.)

Since the occurrence of a self-intersection is determined by the properties of
the functions a and b rather than their derivatives, the Kibble–Turok sphere is of
itself little help in analysing the dynamics of self-intersection. However, Andreas
Albrecht and Thomas York have devised a simple extension of the Kibble–Turok
formalism which is particularly adapted to the question of whether a given loop
intersects itself [AY88]. Given any solution of the equation of motion and a
positive constant < L, we can define

a(σ+) = 1


[a(σ+ +)− a(σ+)] (3.151)

and

b(σ−) = 1


[b(σ−)− b(σ− −)]. (3.152)

Note that |a| and |b| are bounded above by 1. Hence, as σ+ and σ− vary
from 0 to L the functions a and b trace out closed curves inside the Kibble–
Turok sphere. Furthermore, as  tends to 0, a → a′ and b → b′, while
as  tends to L, the curves defined by a and b both shrink to the origin of
the sphere2. Thus, as  varies from 0 to L, the curves traced out by a and
b generate two surfaces which stretch across the Kibble–Turok sphere and are
bounded by the a′ and b′ curves respectively. I will call these surfaces � and �,
and the sub-surfaces interior to a and b will be denoted � and�.
2 Strictly speaking, this is true only in the centre-of-momentum frame of the loop. In a more general
frame, the a and b curves shrink to the point inside the sphere which corresponds to the bulk
velocity V, as can be seen from (3.11).



Self-intersection of a string loop 89

A self-intersection of a string loop occurs whenever a(σ+) = b(σ−)
for some combination of the values of σ+, σ− and . At a geometric level,
each self-intersection corresponds to a point where the a and b curves cross
for some value of . By virtue of the periodicity of the mode functions a
and b (in the centre-of-momentum frame), the functions a and b satisfy the
complementarity relations

a(σ+) = −(L −)aL−(σ+ +) (3.153)

and

b(σ−) = −(L −)bL−(σ− −). (3.154)

Hence, whenever the curves a and b cross, the complementary curves aL−
and bL− also cross. This is a reflection of the fact that if the loop breaks into
two at a self-intersection, one of the daughter loops will have a parametric period
 and the other a parametric period L − . Furthermore, as was seen earlier,
the bulk velocities of the two daughter loops are just a(σ+) and aL−(σ+ +),
respectively.

For the purposes of the following analysis, it is convenient to assume for
the moment that a loop does not fragment when it intersects itself. In principle,
therefore, a given loop can intersect itself any number of times during the course
of an oscillation period. The total number of self-intersections is calculated by
simply counting the number of times the a and b curves cross as  varies
from 0 to L/2. This number, in turn, is related to the linking number Y () of
the a and b curves. The linking number of a and b is the number of times
the curve b passes through the sub-surface � in the direction of the outward
normal to � minus the number of times b passes through � in the opposite
direction, where the outward normal on � is defined relative to the orientation
of the curve a that bounds �. At values of  which correspond to a self-
intersection of the string loop, the linking number Y is discontinuous, and jumps
by 1.

Just as cusps and microcusps can be assigned a polarity, the concept of
linking number allows self-intersections to be divided into two classes according
to whether Y jumps by +1 or −1 as  increases through its value at the self-
intersection. The change in Y at the jump will be referred to as the polarity hsi
of the self-intersection. As will be seen shortly, self-intersections do not always
occur in pairs like cusps but they can be created and destroyed in pairs.

For small values of , the value of the linking number on a kinkless loop is
determined solely by the properties of the cusps. This is because a and b tend
to a′ and b′ as  → 0, and so the curve b can only pass through the surface
� in the neighbourhood of a point where the curves a′ and b′ cross. From the
expansions (3.93) and (3.94) of the mode functions near a cusp, it follows that

a ≈ vc + 1
2a
′′
c+ 1

6a
′′′
c 

2 and b ≈ vc − 1
2b
′′
c+ 1

6b
′′′
c 

2 (3.155)
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for small values of , and so

|a|2 ≈ 1− 1
12 |a′′c |22 and |b|2 ≈ 1− 1

12 |b′′c |22. (3.156)

Hence, the curve b passes inside a, and so passes through �, only if
|b′′c | > |a′′c |. Furthermore, it is easily verified that if b does pass through �
it passes through in the direction of the outward normal if (a′′c × b′′c ) · a′c > 0, and
in the opposite direction otherwise. As a result, the linking number for small is

Y (0+) =
∑
cusps

fcgc (3.157)

where

fc =
{
1 if |b′′c | > |a′′c |
0 if |b′′c | < |a′′c | (3.158)

and the factor gc is equal to +1 at a cusp and −1 at an anti-cusp.
If the loop supports kinks, equation (3.157) needs to be generalized to

include microcusps. In the limit as → 0, the curves a and b do not tend to
segments of great circles at a kink but rather to straight-line segments which join
the two ends of the kink and pass through the interior of the unit sphere. If δa′ and
δb′ denote the jump in a′ or b′ across a kink, a straight-line segment on b will
pass inside a straight-line segment on a at a true microcusp only if |δb′| > |δa′|.
At a false microcusp, only one of the two curves is discontinuous but if δa′ or δb′
is defined to be zero on the continuous curve, it is again the case that b passes
inside a if |δb′| > |δa′|. Hence, equation (3.157) can be extended to loops with
kinks by summing over all microcusps as well as cusps, and setting

fc =
{
1 if |δb′c| > |δa′c|
0 if |δb′c| < |δa′c| (3.159)

at each microcusp. As for cusps, the factor gc is equal to +1 at a microcusp and
−1 at an anti-microcusp.

Consider now the second limit = L/2. According to the complementarity
relations (3.153) and (3.154),

aL/2(σ+) = −aL/2(σ+ + L/2) and bL/2(σ−) = −bL/2(σ− − L/2)
(3.160)

and so the curves aL/2 and bL/2 are symmetric about the origin. This means
that each time bL/2 passes through the surface �L/2 in one direction, it will
pass through it in the opposite direction half a period later, and, therefore, that
Y (L/2) = 0. Consequently, as  increases from 0 to L/2, the linking number
Y varies from the value Y (0+) to 0. Since each jump in Y corresponds to a self-
intersection, and Y need not be a monotonic function of  (as the curves a
and b can cross any even number of times as  varies from 0 to L/2 without
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affecting the net change in Y , provided that the total polarity of the corresponding
self-intersections is zero), it follows that

total number of self-intersections =
∣∣∣∣ ∑
cusps

fcgc

∣∣∣∣+ 2N (3.161)

where N is a non-negative integer. An equivalent restatement of this result is that
the sum of the polarities of the self-intersections satisfies∑

self−intersections
hsi = −

∑
cusps

fc gc. (3.162)

If a loop does break into two at a self-intersection, this analysis can in
principle be repeated to determine whether either of the daughter loops will
intersect itself. Since the Kibble–Turok representation of each daughter loop
consists of segments from the a′ and b′ curves on the parent Kibble–Turok
sphere, the functions a and b on the daughter loops are closely related to
their analogues on the parent loop. One difference is that as the increment 
approaches the parametric period of the daughter loop, the corresponding a and
b curves shrink to the point V representing the bulk velocity of the daughter
loop rather than to the origin but this does not materially affect the analysis.

To be definite, suppose that a self-intersection occurs at the points τ = σ = 0
and τ = 0, σ = ∗ on the parent loop, and consider the daughter loop that
inherits the segments σ+ ∈ [0,∗] and σ− ∈ [−∗, 0]. If a and b denote the
anologues of the functions a and b on the daughter loop then

a(σ+) =
{
a(σ+)
−1[a(σ+ +−∗)− a(σ+)+ a(∗)− a(0)] (3.163)

for 0 < σ+ < ∗ − and∗ − < σ+ < ∗ respectively; and

b(σ+) =
{
b(σ−)
−1[b(σ−)− b(σ− +∗ −)+ b(0)− b(−∗)] (3.164)

for  − ∗ < σ− < 0 and −∗ < σ− <  − ∗ respectively. Note that the
loop remains connected at the kink points σ+ = 0,∗ and σ− = −∗, 0, as
b(0)− b(−∗) = a(∗)− a(0).

A self-intersection can, therefore, appear on the daughter loop in one of two
ways: either (i) a(σ+) = b(σ−) for some choice of σ+ ∈ [0,∗ − ] and
σ− ∈ [−∗, 0]; or (ii)
a(σ+ +)− a(σ+) = b(σ−)− b(σ− +∗ −)+ b(0)− b(−∗) (3.165)

for some choice of σ+ε[0,∗ − ] and σ−ε[−∗, − ∗]. In the first case,
the daughter loop inherits a self-intersection from its parent, in the sense that if
the parent loop had not fragmented at time τ = 0 the segment constituting the



92 String dynamics in flat space

daughter loop would, in any case, have intersected itself before τ = ∗/2 (the
time required for the two kinks to each propagate halfway around the segment).
The second case corresponds to an entirely new self-intersection.

An alternative way of exploring the connection between the number of self-
intersections on a parent loop and its daughter loops is to compare the boundary
linking numbers Y (0+). Any cusps or microcusps that are inherited directly from
the parent loop would make an unchanged contribution to Y (0+) on the daughter
loop. However, the segments excised from the a′ and b′ curves as a result of
the fragmentation are replaced by one or more microcusps on the daughter loop,
and there seems to be no general rule governing the change this induces in Y (0+).
Sample solutions indicate that the value of Y (0+) on a daughter loop can be larger
or smaller than, or equal to, the boundary linking number on the parent loop.
Similarly, there is no obvious rule relating the sum of Y (0+) over all daughter
loops to the value of Y (0+) on the parent loop.

3.9 Secular evolution of a string loop

A loop of cosmic string in a cosmological background or in the vicinity of a
gravitating object will not move according to the flat-space solution (3.6) but will,
in general, be subject to more complicated dynamics (see chapter 5). However, if
the external perturbation is sufficiently weak the Kibble–Turok formalism and its
extension to self-intersections can be used to place constraints on the possible
evolution of the loop. The critical assumption is that the background metric
is close to flat and the evolution of the loop can be represented by continuous
deformations of the a′ and b′ curves on the surface of the Kibble–Turok sphere.
It was seen in section 3.7 that this assumption breaks down whenever a cusp
evaporates but if it is understood that any cusps on a string loop would, in reality,
be truncated and presumably stable to the emission of Higgs field energy then
the assumption remains reasonable until such time as the loop intersects itself or
strays close enough to intersect another string.

The single most important tool for analysing the secular evolution of a string
loop is the Albrecht–York formula (3.162), which relates the number of cusps
of various types (which for present purposes will include microcusps as well as
ordinary cusps) to the number of self-intersections on the loop. As Albrecht and
York were the first to realize, there are three basic ways in which cusps and self-
intersections can be created, altered or destroyed [AY88].

The simplest of these occurs when a pair of self-intersections with opposite
polarities hsi spontaneously appears and bifurcates or merges and annihilates. (In
practice, of course, it is only the creation of self-intersections that is relevant, as
any pre-existing self-intersections will have long ago fragmented the string into
daughter loops.) The mechanics of the creation of a pair of self-intersections is
illustrated in figure 3.10, which shows a slowly-evolving loop at essentially the
same parametric time during three successive oscillation periods.
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Figure 3.10. Creation of a pair of self-intersections.

Figure 3.11. Cusp–anti-cusp annihilation.

The second process of interest involves the spontaneous creation or
annihilation of a pair of cusps. It is clear from the geometry of the Kibble–Turok
sphere that the number of cusps and microcusps on a loop must be even, and that
cusps (of all types) can only be created or destroyed in pairs. An example of cusp
annihilation is shown in figure 3.11. It is evident that two cusps can coalesce only
if they constitute a cusp–anti-cusp pair and furthermore, that at the moment of
annihilation both cusps will share the same second-order structure vectors a′′c and
b′′c and, therefore, the same value of fc. The same is true of cusp creation. Thus,
in both cases

∑
fcgc = 0 for the cusp–anti-cusp pair, and the process of cusp

creation or annihilation can be seen to have no effect on the number or type of
self-intersections.

The point at which the two cusps coincide in figure 3.11 is sometimes
referred to as a degenerate cusp. At a degenerate cusp the vectors a′′c and
b′′c are parallel (although generally of different magnitudes). As a result, the
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characteristic cusp length scales ρτ and ρσ introduced in section 3.6 are divergent.
This is just an indication that the near-cusp expansion performed in equations
(3.93) and (3.94) contains too few terms to describe a cusp of this type adequately.

At a degenerate cusp a′′c = αq and b′′c = βq, where q is a unit vector
orthogonal to the vector vc which defines the direction of the null 4-velocity at
the cusp. If the second-order expansions (3.93) and (3.94) for a′ and b′ at the
cusp are extended to fourth order in σ+ and σ− as follows:

a′ = vc + αqσ+ + 1
2a
′′′
c σ

2+ + 1
6a
(4)
c σ

3+ + 1
24a

(5)
c σ

4+ + O(σ 5+) (3.166)

and

b′ = vc + βqσ− + 1
2b
′′′
c σ

2− + 1
6b
(4)
c σ

3− + 1
24b

(5)
c σ

4− + O(σ 5−) (3.167)

then the local Lorentz factor λ has the form:

λ−2 = 1
4 (ασ+ − βσ−)(ασ+ − βσ− + q · a′′′c σ 2+
− q · b′′′c σ 2− + 1

3q · a(4)c σ
3+ − 1

3q · b(4)c σ
3−)

+ 1
16 (|a′′′c |2σ 4+ − 2a′′′c · b′′′c σ 2+σ 2− + |b′′′c |2σ 4−)+ · · · . (3.168)

The boundary of the subset of the world sheet on which the Lorentz factor
is greater than some minimum value λmin is evidently quite complicated but
reasonable approximations for the maximum cusp size and duration can be found
by setting ασ+ − βσ− = 0. Then

σ+σ− = 4αβ|β2a′′′c − α2b′′′c |−1λ−1min (3.169)

and the duration of the cusp is given by

|τ | = |α + β||β2a′′′c − α2b′′′c |−1/2λ−1/2min (3.170)

while the (parametric) cusp size is

|σ | = |α − β||β2a′′′c − α2b′′′c |−1/2λ−1/2min . (3.171)

Note here that unlike an ordinary cusp, whose size and duration scale as
L/λmin, a degenerate cusp scales as L/λ

1/2
min and is, therefore, typically larger and

longer-lasting. In particular if λmin ∼ (L/r)1/2, as is the case for the boundary
of an evaporating cusp or the apex of a truncated cusp, then the duration of a
degenerate cusp is of order L3/4r1/4 rather than L1/2r1/2. For a cosmological
string with r ∼ 10−29 cm and L ∼ 1020 cm the duration of a degenerate cusp
would, therefore, be about 10−3 s as opposed to the 10−16 s calculated for an
ordinary cusp in section 3.7. The physical size of a degenerate cusp would
similarly be magnified by a factor of order (L/r)1/4, although the size of the
overlap region and its energy content Ec are unchanged as they depend on the
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Figure 3.12. Time development of a degenerate cusp.

bridging vector sc, which has no special properties at a degenerate cusp. The time
development of a degenerate cusp is shown in figure 3.12. The cusp parameters,
time intervals and viewing angles for the cusp are the same as for the ordinary
cusp depicted in figure 3.3 (except that the angle between the vectors a′′c and b′′c
has been set to zero), so the two diagrams are directly comparable. Note here that,
although the cusp itself appears only momentarily at τ = 0, a cusplike geometry
persists for much longer than in the generic case.

The last of the three evolutionary processes consistent with the Albrecht–
York formula (3.162) involves the creation or destruction of a self-intersection by
a cusp. It is topologically impossible for an isolated cusp to change its cusp type
gc under continuous deformations but there is no obstacle to a change in the cusp
factor fc of an individual cusp. Such a change corresponds to a reversal in the sign
of the quantity |b′′c |− |a′′c | which signals the rate at which the two mode functions
move away from the crossover point vc. If the cusp factor fc changes from 1 to 0
(or vice versa) then according to (3.162) the quantity

∑
hsi must change by ±1,

and so the cusp creates or destroys a self-intersection of the required polarity. (As
before, only the process of creation will be considered physically admissible.)

At a physical level, in view of the gauge condition vc · sc = 1
2 (|b′′c |2−|a′′c |2),

the cusp factor fc changes whenever the relative orientation of the bridging vector
sc and the cusp velocity vc reverses. Thus a continuous deformation of the mode
functions which leads to a change in the cusp factor corresponds to a bulk twisting
of the near-cusp region as shown schematically in figure 3.13. It is, therefore, not
very surprising that a self-intersection forms—although it is perhaps surprising
that it forms as soon as |b′′c | − |a′′c | vanishes, and that the process must always
involve a cusp.

Contrary to the claims of Albrecht and York [AY88], a self-intersection
created in this way need not appear at the location of the cusp itself. The
linking number formula (3.162) only requires that the sum of hsi over all self-
intersections change by ±1, and, in principle, this can be accomplished by the
crossover of the a and b curves at any value of . This is illustrated in
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Figure 3.13. Appearance of a self-intersection as a result of cusp twisting.

Figure 3.14. Self-intersections on a continuous sequence of loops.

figure 3.14, which depicts the appearance of a self-intersection in a continuous
sequence of string trajectories belonging to a 4-parameter family of strings—
the ‘balloon’ strings—that will be discussed in more detail in section 4.3.
In the notation of that section the sequence shown has the parameter values
( 12π,−1; π6 , q), where q ranges from −0.15 to −0.1525 at intervals of −0.0005.
The top sixth of the string (|σ/L| ≤ 0.074) is plotted, in projection, at the moment
of cusp formation, with the cusp at the apex (where σ = 0). For convenience, the
horizontal scale is magnified by a factor of about 250. The cusp factor fc changes
from 0 to 1 at q = −0.15 039 and a self-intersection appears not at the cusp itself
but some way down the string (in fact at σ/L = ±0.065 54).

As the magnitude of the parameter q continues to increase, the locus of
the self-intersection moves down the string as shown in figure 3.15, which now
depicts the whole string at the moment of cusp formation, with the horizontal
magnification set at about 2 to 1. At the south pole of the string there is a (true)
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Figure 3.15. Migration of a self-intersection down a sequence of loops.

microcusp, and the magnitudes of the jumps in the two mode functions at the
microcusp are equal when q = −2/3. At this value of q the self-intersection
merges with the microcusp and disappears.

In the absence of detailed simulations of the secular evolution of a cosmic
string under the action of its own or other sources of gravity, it is difficult to judge
whether the three basic types of interaction sketched out in figures 3.10, 3.11 and
3.13 are commonplace or exceptional processes or whether their overall effect
would be to multiply or attenuate the number of cusps and self-intersections.
What is clear, however, is that the inclusion of cusp evaporation complicates the
situation considerably. In particular, if the locus of a cusp can drift along the
mode functions as envisaged in figure 3.11, cusp evaporation will be a recurrent
process, with each cusp leaving behind a trail of reversing segments as it migrates
and radiates. The resulting Kibble–Turok representation would be extraordinarily
convoluted, to say the least.

Another example of the problems posed by truncated cusps lies in the
mechanics of the process of cusp twisting depicted in figure 3.13. For a true
(singular) cusp a continuous deformation of the mode functions which reverses
the sign of |b′′c | − |a′′c | essentially involves perturbations localized around the
crossover point vc, and would seem to entail few drastic consequences for the
string other than the apearance of a self-intersection. The corresponding transition
for a truncated cusp is more awkward, as a reversal in the direction of the bridging
vector sc is necessarily coupled with the exchange of a reversing segment between
the two mode functions. Thus if it is the b′ mode that initially reconnects to
the point vc − 2(vc · sc)|sc|−2sc at a truncated cusp, any continuous deformation
leading to a reversal in the sign of vc · sc will push the reconnection point back
to vc, where, in principle, it could now be transferred to the a′ mode. However,
once the reconnection point returns to vc a true cusp will appear, and this will
presumably radiate Higgs field energy and evaporate immediately, creating a new
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reconnection whose structure (since vc · sc = 0) depends on higher-order terms in
the cusp expansion. In this case, therefore, the appearance of a self-intersection
will probably be circumvented.



Chapter 4

A bestiary of exact solutions

In this chapter I will describe a number of exact solutions to the string equations
of motion in Minkowski spacetime. The purpose of this is not only to illustrate
the richness and complexity of string dynamics but also to introduce some of
the standard trajectories that have been used in benchmark calculations of the
gravitational back-reaction and radiation fluxes from a cosmic string (a topic to
be discussed in some detail in chapter 6). Each of the solutions examined here will
be written in the aligned standard gauge. Unless otherwise stated, each trajectory
is described in its centre-of-momentum frame. Where applicable, all the cusps,
kinks and self-intersections supported by the string are identified and the angular
momentum vector J is given if finite and non-zero. In all examples involving
loops, the parameter L denotes the invariant length of the string, so that the total
energy in the centre-of-momentum frame is µL.

4.1 Infinite strings

4.1.1 The infinite straight string

The simplest of all string configurations in Minkowski spacetime is the infinite
straight string. In the rest frame of the string the equation of the world sheet is

Xµ = [τ, 0, 0, σ ] (4.1)

where the spatial coordinates have been chosen so that the string is aligned with
the z-axis. In fact, the spatial projections of the trajectory are just straight lines
along the z-axis, and the world sheet of the string is intrinsically flat. The infinite
straight string is the only possible static configuration in the absence of external
forces.

If the string is boosted so that it has a velocity V = Vx x̂ + Vy ŷ normal to
the world sheet then the equation of the world sheet in the aligned standard gauge
becomes

Xµ = [τ, Vxτ, Vyτ, (1− V2)1/2σ ]. (4.2)

99
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In this case, the mode decomposition of the trajectory reads:

a(σ+) = σ+V+ (1− V2)1/2σ+ẑ (4.3)

and
b(σ−) = σ−V− (1− V2)1/2σ−̂z (4.4)

and, in particular, a′·b′ = 2V2 − 1 everywhere.

4.1.2 Travelling-wave solutions

Another important class of solutions supported by infinite strings are travelling
waves. These are constructed by taking a straight string and superposing a single
left- or right-movingmode. For example, if the underlying straight string is at rest
and aligned with the z-axis then travelling-wave solutions which propagate up the
string have the general form

Xµ = [τ, 0, 0, σ ] + [0, x(τ − σ), y(τ − σ), z−(τ − σ)] (4.5)

where, in view of the gauge condition X2
τ + X2

σ = 1,

z−(σ−) = 1
2σ− ± 1

2

∫ σ−

0

√
1− 4x ′2(u)− 4y ′2(u) du (4.6)

and the functions x and y satisfy the inequality x ′2 + y ′2 ≤ 1
4 but are otherwise

arbitrary. The minus sign in equation (4.6) corresponds to trajectories on which
the spacelike tangent vector Xµσ is inclined at less than 1

4π to the vertical
(‘shallow’ waves), and the plus sign to trajectories on which Xµσ is inclined at
between 1

4π and 1
2π to the vertical (‘steep’ waves).

The analogous equation for travelling waves which propagate down the
string is

Xµ = [τ, 0, 0, σ ] + [0, x(τ + σ), y(τ + σ), z+(τ + σ)] (4.7)

with

z+(σ+) = − 1
2σ+ ± 1

2

∫ σ+

0

√
1− 4x ′2(u)− 4y ′2(u) du. (4.8)

Travelling waves propagate along a string with a fixed shape and a pattern
speed equal to the speed of light. However, the local velocity of the string is not
directed along the z-axis nor is it generally lightlike. In fact,

X2
τ = 1

2

[
1∓

√
1− 4x ′2 − 4y ′2

]
= cos2 θ (4.9)

where θ is the angle between the spacelike tangent vector and the vertical. In
particular, for shallow waves the local Lorentz factor λ = |Xτ |−1 is bounded
above by

√
2, while for steep waves λ ≥ √2.
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Figure 4.1. Profiles of two shallow travelling sine waves.

If the local speed of the string is small compared to c then the profile of
the travelling wave can be read off directly from the coordinate functions x and
y but for relativistic speeds the shape of the wave is significantly distorted. For
example, if the coordinate functions describe a sine wave in the x–z plane, so that
x(σ−) = ε sin σ− and y(σ−) = 0, then for shallow-wave solutions the vertical
coordinate z = σ + z−, which has the explicit form

z(τ, σ ) = 1
2σ+ − 1

2

∫ σ−

0

√
1− 4ε2 cos2(u) du (4.10)

is just σ + O(ε2) for small values of ε, and (because x = ε sin σ− is of order
ε) the profile of the shallow-wave solution has a recognizably sinusoidal shape.
However, if ε takes on its limiting value of 1

2 then for shallow waves

z(τ, σ ) = 1
2σ+ + 1

2 (cos σ− − 1) sgn(σ−) (4.11)

and the profile of the trajectory becomes a train of cycloids with a noticeably
narrower base (see figure 4.1, which compares the cases ε = 0.2 and ε = 0.5).

The distortion is even more extreme for steep-wave solutions, as can be
seen in figure 4.2, which shows the profile of the steep travelling sine wave with
ε = 0.5. As the value of ε decreases, the vertical compression of the steep-wave
solutions becomes ever more severe, and in the limit of small ε

z(τ, σ ) ≈ τ − 1
2ε

2(σ− + sin σ− cosσ−). (4.12)

In this limit, the string consists of a ladder of short, straight, almost horizontal
segments (with length 2ε) moving in the z-direction at near-light speed.

One of the simplest travelling-wave solutions is a piecewise-straight string
which supports a single kink, as in figure 4.3. If the upper branch of the string is
at rest, and the angle between the lower branch and the vertical is θ , then for an
upward-moving kink

Xµ =
{ [τ, 0, 0, σ ] for σ ≥ τ
[τ,−(τ − σ) sin θ cos θ, 0, σ + (τ − σ) sin2 θ ] for σ ≤ τ (4.13)
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Figure 4.2. Profile of a steep travelling sine wave.

Figure 4.3. A straight string with a single kink.

where the spacelike coordinates have been chosen so that the branches span the x–
z plane. Note that although the kink propagates directly up the string at the speed
of light, the lower branch of the string moves obliquely with a speed V = sin θ .
The velocity of the moving branch can be reversed by replacing τ − σ with
−(τ + σ) in (4.13) and breaking the configuration at σ = −τ rather than at
σ = τ .

Strictly speaking, equation (4.13) applies only if the angle of inclination θ
of the moving branch is less than 1

2π . Kinks with junction angles θ ≥ 1
2π are

not viable, as they require the moving branch to travel either at light speed (if
θ = 1

2π) or at superluminal speeds (if θ > 1
2π). The effect of continuing θ

to values beyond 1
2π in (4.13) is not to increase the junction angle but simply

to reflect the moving branch from the left side to the right side of figure 4.3.
However, the prohibition on junction angles θ ≥ 1

2π holds only if one of the
branches is stationary. If both branches are allowed to move then kinks with any
value of θ are possible, as is evident from many of the solutions examined later in
this chapter.

4.1.3 Strings with paired kinks

The kinked solutions described in the previous section are non-static but maintain
a constant profile. By contrast, a string that is initially at rest and has the same
kinked spacelike cross section as before will decompose into a pair of kinks
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Figure 4.4. A string with paired kinks.

moving in opposite directions. If φ denotes the initial angle between the two
branches, the equation of the trajectory reads:

Xµ =
{ [τ, 0, 0, σ ] for σ ≥ τ
[τ, 12 (τ − σ) sin φ, 0, 12 (τ + σ)− 1

2 (τ − σ) cosφ] for |σ | ≤ τ
[τ,−σ sin φ, 0, σ cosφ] for σ ≤ −τ .

(4.14)
The evolution of the trajectory is shown in figure 4.4. The two kinks

propagate along their respective branches at the speed of light, with the straight-
line segment joining the kinks moving in the direction midway between the
branches at a speed V = sin(φ/2).

In practice, kinks would normally form on a string as a result of
intercommuting events associated with self-intersections or intersections with
other strings. As a simple example of an intercommuting event, consider two
infinite straight strings, one at rest aligned with the z-axis and one parallel to the
x-axis and moving with speed V in the y-direction. If the strings cross at the
origin at time t = 0 then the trajectories of the reconnected fragments are:

Xµ(1) =

[τ, 0, 0, σ ] for σ ≥ τ
[τ,− 1

2 (1− V 2)1/2(τ − σ), 12V (τ − σ), 12 (τ + σ)] for |σ | ≤ τ
[τ, (1 − V 2)1/2σ, V τ, 0] for σ ≤ −τ

(4.15)
and

Xµ(2) =
 [τ, (1− V

2)1/2σ, V τ, 0] for σ ≥ τ
[τ, 12 (1− V 2)1/2(τ + σ), 12V (τ + σ),− 1

2 (τ − σ)] for |σ | ≤ τ
[τ, 0, 0, σ ] for σ ≤ −τ .

(4.16)
The projection of the trajectories onto the x–z plane for τ ≥ 0 is shown

in figure 4.5. The straight-line segments linking each pair of intercommuted
branches move in opposite directions with speed 1/

√
2, independently of the

intersection speed V .

4.1.4 Helical strings

As a final example of a solution of the equations of motion supported by an infinite
string, consider a string in the shape of a helix with radius R and pitch angle α. If
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Figure 4.5. The intercommuting of two straight strings.

Figure 4.6. A helical string in breathing mode.

the string is initially at rest, the equation of the trajectory reads:

Xµ = [τ, R cos(kτ ) cos(kσ), R cos(kτ ) sin(kσ), σ sin α] (4.17)

where k = R−1 cosα. The projection of the trajectory onto the x–z plane is
shown in figure 4.6 for a pitch angle α = 1

4π ; the projection onto the y–z plane
is identical, except for a displacement of πR tanα/2 (one quarter period) along
the z-axis. The helix first contracts laterally under the action of the string tension
and degenerates into a (non-static) straight line along the z-axis at kτ = 1

2π . It
then re-expands until it reaches its maximum radius R again at kτ = π , when it
once more has its original helical shape, although rotated by an angle π about the
z-axis. The pattern is, of course, periodic with a period 2π/k in τ .

This particular trajectory is often referred to as a helical string in ‘breathing
mode’, as the helix does not propagate along the string. The local Lorentz factor
of the string is

λ = [1− cos2 α sin2(kτ )]−1/2 (4.18)

and so assumes a maximum value of secα when the helix has momentarily
degenerated into a straight line at kτ = 1

2π . For 0 < α < 1
2π the Lorentz

factor is finite everywhere, and the string does not support any cusps. For
α = 1

2π the trajectory is just a static straight line, while in the limit as α → 0
the helix becomes a cylindrical shell with an infinite surface density. Although
the trajectory in the latter case is unphysical, its projection onto the x–y plane
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Figure 4.7. Profiles of boosted helical strings.

is mathematically equivalent to the collapsing circular loop to be examined in
section 4.2.1.

If the breathing-mode solution (4.17) is boosted by a speed V along the z-
axis, the result is a helix whose profile propagates along the axis:

Xµ = [τ, 12 R cos(k+σ+)+ 1
2 R cos(k−σ−), 12 R sin(k+σ+)

− 1
2 R sin(k−σ−), z(τ, σ )] (4.19)

where
k± = R−1(1− V 2)1/2(1± V sin α)−1 cosα (4.20)

and

z(τ, σ ) = (1− V 2 sin2 α)−1[(1− V 2)σ sinα + V τ cos2 α]. (4.21)

Note here that although the speed of the helical pattern up the axis is V , the
local speed of the string itself has a vertical component (1−V 2 sin2 α)−1V cos2 α
strictly smaller than V , a discrepancy which illustrates the fact that boosts parallel
to the string are undetectable. The profile of the helix is also significantly distorted
for relativistic values of V , as can be seen from figure 4.7, which shows the x–z
projection of a helix with pitch angle α = 1

4π at time τ = 0 boosted vertically
with V = 0, 0.3, 0.6 and 0.9.

4.2 Some simple planar loops

4.2.1 The collapsing circular loop

A string loop in the shape of a circle which is initially at rest will accelerate
inwards under the action of its own tension and ultimately collapse to a point. If
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Figure 4.8. Collapse and re-expansion of a circular loop.

the loop lies in the x–y plane and has invariant length L then the equation of the
trajectory is

Xµ = [τ, R cos(τ/R) cos(σ/R), R cos(τ/R) sin(σ/R), 0] (4.22)

where R = L/2π . The loop collapses to a point at τ = L/4. The local Lorentz
factor of the string is

λ = sec(2πτ/L) (4.23)

and so diverges at τ = L/4. Thus the entire string is concentrated into a single
cusp at the moment of collapse.

The fate of the loop once it has collapsed to a point will be discussed in more
detail in later chapters. However, it should be noted that if the solution (4.22) is
taken seriously then the loop re-emerges from the collapse point and expands until
it reaches its maximum radius L/2π again at τ = L/2, as shown in figure 4.8.
The cycle of collapse and re-expansion then repeats indefinitely.

The collapsing circular loop also has a high degree of spatial symmetry and,
for this reason, its gravitational field has been studied more extensively than any
other non-trivial solution of the equations of motion (see chapter 10).

4.2.2 The doubled rotating rod

A planar loop solution that is mathematically very similar to the collapsing
circular loop is the doubled rotating rod, whose equation is

Xµ = [τ, R cos(τ/R) cos(σ/R), R sin(τ/R) cos(σ/R), 0] (4.24)

where R = L/2π again. This differs from the circular loop trajectory (4.22)
only in that the parameters τ and σ have been interchanged in the x- and y-
components. The shape of the doubled rotating rod is that of a straight line of
length L/π that rotates about its midpoint with a period L. The local Lorentz
factor of the string is

λ = sec(2πσ/L) (4.25)
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and so the two endpoints of the rod (at σ = L/4 and σ = 3L/4) are permanent
cusps travelling at the speed of light.

It is important to note that the full parameter range of [0, L] in σ covers the
length of the rod twice, and so the rest mass per unit length at any point on the
rod is 2µ rather than µ. The discrepancy between the invariant length L and the
actual length 2L/π of stringlike material in the rod is due to relativistic length
contraction.

Unlike the collapsing circular loop, the doubled rotating rod has a non-zero
angular momentum vector

J = 1

4π
µL 2̂z. (4.26)

In fact, as was seen in section 3.3, the rotating rod has the largest angular
momentum of all solutions with the same values of µ and L.

4.2.3 The degenerate kinked cuspless loop

The Kibble–Turok representations of both the collapsing circular loop and the
doubled rotating rod consist of pairs of unit circles in the x–y plane. It is evident
from the geometry of the Kibble–Turok sphere that a planar loop will be free of
cusps only if at least one of the mode curves is discontinuous. The most extreme
case of this type occurs when both mode curves degenerate into a pair of antipodal
points, so that the equation of the trajectory becomes

Xµ = [τ, 12a(τ + σ)+ 1
2b(τ − σ)] (4.27)

where

a(σ+) =
{
(σ+ − L/4)̂a for 0 ≤ σ+ ≤ L/2
(3L/4− σ+ )̂a for L/2 ≤ σ+ ≤ L (4.28)

and

b(σ−) =
{
(σ− − L/4)̂b for 0 ≤ σ− ≤ L/2
(3L/4− σ−)̂b for L/2 ≤ σ− ≤ L (4.29)

and â and b̂ are linearly independent unit vectors.
The resulting solution is cuspless but supports two right-moving kinks at

σ+ = 0 and L/2, and two left-moving kinks at σ− = 0 and L/2. The loop itself
has the shape of a rectangle with sides oriented in the directions of â+b̂ and â−b̂,
and a total perimeter length which varies from α−L to α+L, where

α± = 1√
2
(1± â · b̂)1/2. (4.30)

The rectangle periodically collapses to form a doubled straight line when the
kinks cross. The evolution of the trajectory for the choice â = x̂ and b̂ = ŷ
is illustrated for a full period (0 ≤ τ < L/2) in figure 4.9 and in the case â = x̂
and b̂ = (̂x+ ŷ)/

√
2 in figure 4.10.
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Figure 4.9. A degenerate kinked cuspless loop with orthogonal branches.

Figure 4.10. A degenerate kinked cuspless loop with branches at 45◦.

The local speed of the branches on a degenerate kinked cuspless loop is α±,
where the choice of sign depends on the orientation of the branch. If â and b̂ are
orthogonal (as in figure 4.9) then the local speed is everywhere 1/

√
2. Although

the solutions described here do not support macrocusps, they do support (true)
microcusps whenever two kinks cross, as at τ = 0 and L/4 in figures 4.9 and
4.10.

4.2.4 Cat’s-eye strings

Cat’s-eye strings are planar solutions of the equations of motion that are
intermediate between the kinked cuspless loops of the previous section and the
collapsing circular loop or doubled rotating rod. The Kibble–Turok representation
of a cat’s-eye string consists of one continuousmode curve and one discontinuous
mode curve, so that the loop supports kinks moving in one direction only. As
an example, consider the case where the discontinuous mode curve traces out
two quarter circles on the Kibble–Turok sphere. There are then two possible
configurations, depending on whether the mode curves have the same or opposite
orientations.
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If the orientations are the same, the resulting trajectory is a spinning cat’s-eye
described by the mode functions

a(σ+) = L

2π
[cos(2πσ+/L )̂x+ sin(2πσ+/L )̂y] (4.31)

and

b(σ−) =


L

π
[cos(πσ−/L )̂x + sin(πσ−/L )̂y] for 0 ≤ σ− ≤ L/2

L

π
[{1− sin(πσ−/L)}̂x+ {1+ cos(πσ−/L)}̂y] for L/2 ≤ σ− ≤ L

(4.32)
where b is (of course) assumed to be periodic with period L in σ−. The evolution
of the trajectory is shown in figure 4.11. The loop supports two kinks moving
in an anti-clockwise direction around the string, and two semi-permanent cusps
moving in the opposite direction. The local Lorentz factor of the string is

λ =
{
21/2[1− cos{π(τ + 3σ)/L + φ}]−1/2 for 0 < σ− < L/2
21/2[1− sin{π(τ + 3σ)/L + φ}]−1/2 for L/2 < σ− < L

(4.33)

where the phase factor φ is equal to 0 if σ−/L lies in (0, 1) modulo 2 and φ = π
otherwise. The cusps, therefore, move along the paths σ = L/3 − τ/3 and
σ = 5L/6− τ/3 for 0 < τ < 3L/8.

At τ = 0 the cusps appear at the positions of the kinks together with a
pair of self-intersections. The self-intersections subsequently move towards the
middle of the string and can just be seen in the second frame of figure 4.11. When
τ/L ≈ 0.1112 (shortly before frame 3) the self-intersections meet in the middle
of the string and annihilate. The kinks and cusps continue to propagate around
the string until τ = 3L/16, at which moment the kinks (at the obtuse angles
of the diamond) form false microcusps. The loop then shrinks laterally until its
opposite sides cross and create a new pair of self-intersections at τ/L ≈ 0.2638.
When τ = 3L/8 the cusps and self-intersections merge with the kinks, which
continue to propagate freely until τ = L/2. The loop is then back in its original
configuration, and the cycle is repeated indefinitely.

As its name suggests, the spinning cat’s-eye string carries a significant
angular momentum. In fact, its total angular momentum vector is

J =
(

3

8π
− 1

2π2

)
µL 2̂z (4.34)

and the magnitude of J is 86% of the angular momentum of a doubled rotating
rod with the same values of µ and L.

When the two mode curves have opposing orientations, the resulting solution
describes an oscillating cat’s-eye. This can be constructed by taking

a(σ+) = L

2π
[cos(2πσ+/L )̂x− sin(2πσ+/L )̂y] (4.35)
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Figure 4.11. The spinning cat’s-eye string.

and leaving the b mode function in the form given by equation (4.32). The
evolution of the corresponding trajectory is shown in figure 4.12. In comparison
with the spinning cat’s-eye, the oscillating cat’s-eye is more nearly circular and
its motion is largely radial rather than rotational. The oscillating cat’s-eye does
support a pair of kinks and a pair of cusps moving in the opposite direction but
the persistence time of the cusps is relatively brief. The local Lorentz factor of
the string is

λ =
{
21/2[1+ cos{π(3τ + σ)/L + φ}]−1/2 for 0 < σ− < L/2
21/2[1− sin{π(3τ + σ)/L + φ}]−1/2 for L/2 < σ− < L

(4.36)

where the phase factor φ is defined as before.
The cusps are, therefore, present only between τ = L/4 and τ = 3L/8,

moving along the paths σ = 3L/2 − 3τ and σ = L − 3τ . Note that the kinks
and cusps coincide at τ = L/4 and τ = 3L/8 in figure 4.12 but are separately
visible at τ = 5L/16, when the string traces out a four-pointed star. At this
moment (false) microcusps also appear at the locations of the kinks but the string
is otherwise free of both macrocusps and microcusps.

The angular momentum vector of the oscillating cat’s-eye is

J =
(

1

8π
− 1

2π2

)
µL 2̂z (4.37)

and has a magnitude only 14% of the angular momentum of a rotating rod with
the same values of µ and L.

If the discontinuous mode curve on the Kibble–Turok sphere is dilated so
that it more nearly approaches a full circle, the spinning and oscillating cat’s-
eye strings more closely resemble the rotating rod and circular loop, respectively.
At the other extreme, if the discontinuous mode curve degenerates into a pair of
antipodal points the result is a degenerate cat’s-eye string with mode functions of
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Figure 4.12. The oscillating cat’s-eye string.

the general form

a(σ+) = L

2π
[cos(2πσ+/L )̂x+ sin(2πσ+/L )̂y] (4.38)

and

b(σ−) =
{
(σ− − L/4)̂x for 0 ≤ σ− ≤ L/2
(3L/4− σ− )̂x for L/2 ≤ σ− ≤ L (4.39)

where, of course, x̂ could be replaced by any unit vector in the x–y plane.
The trajectory of the degenerate cat’s-eye is shown in figure 4.13. The local

Lorentz factor of the string is

λ =
{
21/2[1+ sin 2π(τ + σ)/L]−1/2 for 0 < τ − σ < L/2
21/2[1− sin 2π(τ + σ)/L]−1/2 for L/2 < τ − σ < L

(4.40)

and so as well as a pair of kinks the degenerate cat’s-eye supports semi-permanent
cusps moving along the paths σ = L/4 − τ and σ = 3L/4 − τ during the
time interval −L/8 < τ < L/8. At τ = 0 in figure 4.13 the cusps can be
seen at the top and bottom of the diamond, while the kinks are at the extreme
right and extreme left. Initially the top left and bottom right branches of the
string are moving outwards, while the other two branches are moving inwards and
ultimately cross at the origin at τ/L = 1

8− 1
4π ≈ 0.0454. This event creates a pair

of self-intersections which subsequently migrate along the string and can be seen
near the extreme ends in the second frame of figure 4.13. Each cusp–kink pair
coalesces with the corresponding self-intersection to form a (false) microcusp at
τ = L/8, leaving a kink which propagates freely around the loop until τ = 3L/8.
At this point the kinks each emit a cusp and a self-intersection and the sequence
described earlier is reversed: the self-intersections move back towards the centre
of the string until the branches unwind at τ/L = 3

8 + 1
4π ≈ 0.4546.

It is readily seen that in the case of the degenerate cat’s-eye only the mode
function a carries angular momentum and so the angular momentum vector

J = 1

8π
µL 2̂z (4.41)
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Figure 4.13. The degenerate cat’s-eye string.

has a magnitude equal to one-half the angular momentum of a rotating rod with
the same values of µ and L.

4.3 Balloon strings

Balloon strings are a non-planar family of trajectories constructed principally to
illustrate the process discussed in section 3.9 by which a self-intersection can be
created as a result of cusp twisting. The mode functions a′ and b′ both trace
out arcs of great circles on the Kibble–Turok sphere, in the x–z and y–z planes
respectively. The mode functions cross at the north pole of the sphere, producing
a cusp but both are generally broken in the vicinity of the south pole, creating one
or more microcusps.

The defining feature of the mode functions is that they are piecewise
harmonic functions of the light-cone coordinates σ±, with a break in smoothness
occurring at a single pair of points arranged symmetrically about the north pole
of the Kibble–Turok sphere. Thus (with ξ+ = 2πσ+/L) the function a′ has the
general form:

a′(σ+) =
{
sin(mξ+ )̂x+ cos(mξ+)̂z for |ξ+| < χ
sin(nξ+ − ps+)̂x+ cos(nξ+ − ps+)̂z for χ < |ξ+| < π (4.42)

for some choice of constants m, n, p and χε(0, π), with s+ ≡ sgn(ξ+). The
continuity of the mode function at |ξ+| = χ imposes the condition

p = (n − m)χ (modulo 2π) (4.43)

while the string will be in its centre-of-momentum frame only if a′ satisfies the
moment condition

∫ L
−L a′ dσ+ = 0, which translates into the constraint

m−1 sin(mχ)+ n−1[sin(nπ − p)− sin(nχ − p)] = 0. (4.44)
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If the function a′ is required to map continuously onto a smooth great circle
in the limit as p → 0, the constraint equations (4.43) and (4.44) have the unique
parametric solution:

m(α, p) = α

α + p
n(α, p) and χ(α, p) = α + p

n(α, p)
(4.45)

where

n(α, p) = 2+ π−1 p − π−1 sin−1
(
p sinα

α

)
− 2π−1 cos−1

(
p sin α

α

)
(4.46)

and α = nχ − p is the co-latitude on the Kibble–Turok sphere of the transition
points |ξ+| = χ .

Integrating (4.42) gives the contribution of a to the position vector of the
string as

a(σ+) =


L

2πm
[− cos(mξ+ )̂x+ sin(mξ+)̂z]

L

2πn
[{C − cos(nξ+ − ps+)}̂x+ {S + sin(nξ+ − ps+)}̂z]

(4.47)

for |ξ+| ≤ χ and χ < |ξ+| ≤ π respectively, with

C(α, p) = − p cosα
α

and S(α, p) = p sin α

α
. (4.48)

Repeating this analysis for the second mode function b′ gives

b(σ−) =


L

2πm
[− cos(mξ−)̂y+ sin(mξ+ )̂z]

L

2πn
[{C − cos(nξ− − qs−)}̂y+ {S + sin(nξ− − qs−)}̂z]

(4.49)

for |ξ−| ≤ χ and χ < |ξ−| ≤ π respectively, where s− = sgn(ξ−) and m, n, χ , C
and S are now functions of the parameter q and a second co-latitude angle β. The
full trajectory is, therefore, characterized by the four adjustable parameters α, p, β
and q , which henceforth will be referred to in the shorthand form (α, p; β, q). In
what follows, I will assume that α and β lie in the range (0, π), and that |p/α| < 1
and |q/β| < 1 to ensure that m and n are well defined for both modes.

The arcs traced out by the mode functions a′ and b′ intersect at the north pole
of the Kibble–Turok sphere, indicating the presence of a macrocusp at τ = σ = 0,
but are generally discontinuous at |ξ±| = π . The jump points on the a′ curve
occur at a co-latitude n(α, p)π − p on the Kibble–Turok sphere, which is readily
seen to be less than π if p < 0 and greater than π if p > 0. Similarly, the jump
points on the b′ curve occur at a co-latitude n(β, q)π − q which is less than π if
q < 0 and greater than π if q > 0. Thus if p and q are both negative the two mode
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curves break before reaching the south pole of the Kibble–Turok sphere, and the
resulting kinks in the two modes cross at the south pole, marking the appearance
of a (true) microcusp at (τ, σ ) = (0, L/2).

If one of p or q is positive the situation is more complicated, as then one of
the mode curves crosses the south pole a total of three times, twice as part of a
continuous segment and once on a kink. So if p is positive and q is negative (or
vice versa), the south pole marks the appearance at different times of two false
microcusps and one true microcusp. Furthermore, if p and q are both positive a
total of nine cusps of various types (four macrocusps, four false microcusps and
one true microcusp) appear as a result of mode-crossing at the south pole.

In terms of the parameters α, p, β and q , the condition |a′′c | = |b′′c | for
the creation or annihilation of a self-intersection as a result of the twisting of the
cusp at σ = 0 becomes m(α, p) = m(β, q). As explained in section 3.9, a self-
intersection created in this way does not generally appear at the cusp itself, and in
the case of the balloon strings it occurs at the position of the first of the transition
points |ξ±| = χ , so that

σsi = ± L

2π
min[χ(α, p), χ(β, q)]. (4.50)

The microcusp at σ = L/2 can also absorb or emit a self-intersection, although
in this instance the self-intersection always appears or disappears at the position
of the microcusp. The microcusp will emit or absorb a self-intersection whenever
the jumps at |ζ±| = π in the two mode functions have the same magnitude or,
equivalently, when

n(α, p)π − p = n(β, q)π − q. (4.51)

Figures 4.14 and 4.15 show the x–z and y–z projections of the
( 12π,−1; 16π,−0.15) balloon string, which was seen in section 3.9 to be close
to self-intersection at σ/L = ±0.06554 when τ = 0. As in figures 4.8–4.13, the
projections of the loop are depicted at times τ = 0, L/16, L/8 and 3L/16 (top
row) and τ = L/4, 5L/16, 3L/8 and 7L/16 (bottom row). The two kinks can
be seen separately at the bottom-most point in the x–z projection and near the
centre of the lower horizontal segment at τ = 3L/16, L/4 and 5L/16 in the y–z
projection. (The other apparent kinks in figure 4.15 are just projection caustics.)

4.4 Harmonic loop solutions

4.4.1 Loops with one harmonic

It was shown in section 3.5 that the most general mode function containing only
zero- and first-order harmonics in ξ+ = 2πσ+/L has

a′(σ+) = sin(ξ+ − θ1) sinφ1̂x− cos(ξ+ − θ1) sin φ1̂y+ cosφ1̂z (4.52)
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Figure 4.14. The ( 12π,−1; 16π,−0.15) balloon string in the x–z projection.

Figure 4.15. The ( 12π,−1; 16π,−0.15) balloon string in the y–z projection.

where the coordinates have been chosen so that the zero-order harmonic is aligned
with the z-axis. Note that if the solution describes a loop in its centre-of-
momentum frame then cosφ1 must be zero. Furthermore, it is always possible
to rezero the parameters τ and σ so that θ1 = 0 or π . The mode function a can,
therefore, be written in the form

a(σ+) = L

2π
[cos(2πσ+/L )̂x+ sin(2πσ+/L )̂y]. (4.53)

A similar argument can be applied to the mode function b, giving

b(σ−) = L

2π
[cos(2πσ−/L )̂u+ sin(2πσ−/L )̂v] (4.54)

where û and v̂ are any two orthogonal unit vectors.
In the case where û and v̂ span the x–y plane the solution describes either

the collapsing circular loop or the doubled rotating rod examined in sections 4.2.1
and 4.2.2, depending on the relative orientation of the mode curves on the Kibble–
Turok sphere. However, if either û or v̂ has a non-zero z-component then the loop
is non-planar. For example, if û = x̂ and v̂ = ẑ the trajectory oscillates back and
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Figure 4.16. A non-planar 1-harmonic string projected onto the plane spanned by x̂ and
ŷ− ẑ.

Figure 4.17. The same string projected onto the plane spanned by x̂ and ŷ+ ẑ.

forth between an ellipse of semi-major axis of length L/2π in the x̂ direction and
semi-minor axis of length (L/2π)/

√
2 in the ŷ− ẑ direction, and a doubled rod of

length (L/2π)/
√
2 parallel to ŷ+ ẑ, as demonstrated in figures 4.16 (which shows

the projection onto the plane spanned by x̂ and ŷ− ẑ) and 4.17 (the projection onto
the plane spanned by x̂ and ŷ + ẑ). The local Lorentz factor of the string in this
case is

λ = 21/2[cos2(2πτ/L)+ sin2(2πσ/L)]−1/2 (4.55)

and so cusps appear momentarily at τ = L/4, at the extreme points σ = 0 and
L/2 of the doubled rod, as would be expected. Also, the angular momentum of
the loop

J = 1

8π
µL2(̂z−̂y) (4.56)

and so has a magnitude 1/
√
2 = 71% of the angular momentum of a rotating rod

with the same energy µL and invariant length L.
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In general, the 1-harmonic solutions described by the mode functions (4.53)
and (4.54) are all very similar to the trajectory illustrated in figures 4.16 and 4.17.
They pass through a sequence of ellipses before degenerating into a doubled rod,
with cusps appearing momentarily at the ends of the rod. If ψ denotes the angle
between the plane spanned by the vectors û and v̂ and the x–y plane then, without
loss of generality, the mode function b can be cast in the form

b(σ−) = L

2π
[cos(2πσ−/L )̂x + sin(2πσ−/L)(cosψ ŷ + sinψ ẑ)] (4.57)

as the remaining freedom to rotate û and v̂ about the z-axis can be eliminated
by rotating the x–y plane through the same angle and then rezeroing σ+. The
collapsing circular and rotating rod solutions are recovered when ψ = π and
ψ = 0 respectively.

In terms of ψ , the local Lorentz factor of the general non-planar 1-harmonic
loop solution is:

λ = 21/2[(1− cosψ) cos2(2πτ/L)+ (1+ cosψ) sin2(2πσ/L)]−1/2 (4.58)

and so provided that | cosψ| < 1 the rod (together with its associated cusps)
forms momentarily at τ = L/4, aligned in the direction of the vector (1 +
cosψ)̂y + sinψ ẑ. The total length of this rod is 2−1/2(1 + cosψ)1/2L/π . Also,
the angular momentum vector of the loop

J = 1

8π
µL2[(1+ cosψ)̂z− sinψ ŷ] (4.59)

and has magnitude

|J| = 1

4π
2−1/2(1+ cosψ)1/2µL2. (4.60)

4.4.2 Loops with two unmixed harmonics

One of the easiest way of constructing loop solutions involving two different
harmonics is to allocate a single harmonic to each of the mode functions a and
b. In analogy with equations (4.53) and (4.54) the mode functions then have the
general form

a(σ+) = L

2πp
[cos(pξ+)̂x+ sin(pξ+ )̂y] (4.61)

and

b(σ−) = L

2πq
[cos(qξ−)̂u+ sin(qξ−)̂v] (4.62)

where p and q are any two non-zero integers, ξ± = 2πσ±/L and û and v̂
are orthogonal unit vectors as before. I will refer to these as p/q harmonic
solutions. They were first examined in detail by Conrad Burden and Lindsay
Tassie [BT84, Bur85].
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Without loss of generality it can be assumed that p and q are relatively prime,
since otherwise the full range [0, L) of the parameter σ will cover the string more
than once. In particular, all solutions with |p| = |q| will be excluded, as they
have already been discussed in section 4.4.1. The total angular momentum of a
p/q harmonic string is

J = 1

8π
µL2(p−1̂z+q−1û×̂v) (4.63)

and so the a and b modes separately contribute an angular momentum vector
proportional to that of the corresponding 1-harmonic solution but scaled as p−1
or q−1.

The simplest p/q harmonic solutions are planar loops, which can be
generated by setting û = x̂ and v̂ = ŷ. (As before, a rotation of û and v̂ about the
z-axis does not yield any new solutions, as it just corresponds to a spatial rotation
and a translation in the zero point of σ+.) Solutions of this type have angular
momentum

J = p + q
4πpq

µL 2̂z (4.64)

while their local Lorentz factor is

λ = 21/2[1− cos(pξ+ − qξ−)]−1/2. (4.65)

The loops, therefore, support permanent cusps with trajectories of the form

σ = q − p

q + p
τ + n

q + p
L (4.66)

where n is some integer. Given that the solutions are periodic with period L in
σ , the total number of cusps is |p + q|. The cusps trace out a fixed circle in the
background spacetime, as the distance of each cusp from the origin is

|rc| = L

4π

∣∣∣∣ p + qpq

∣∣∣∣ . (4.67)

Furthermore, if the position vector of the planar p/q harmonic solutions is
rewritten in the form

r(τ, σ ) = 1

2

[
p + q
pq

cosχ(cosφx̂+ sin φŷ)+ p − q
pq

sinχ(sin φx̂− cosφŷ)
]

(4.68)
where

φ = π
L
[(p+q)τ+ (p−q)σ ] and χ = π

L
[(p−q)τ+ (p+q)σ ] (4.69)

then it is evident that the solutions are rigidly rotating. To see this, consider the
set of points with χ = χ0 for some constant χ0. These all lie on a circle centred
on the origin, with phase angle

φ = 4πpq

L(p + q) τ +
p − q
p + q χ0. (4.70)
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Since dφ/dτ is constant and independent of the choice of χ0, the entire
configuration traced out by the string is rotating with a uniform pattern speed:

ω = 4π |pq|
L|p + q| . (4.71)

The formula for the pattern speed also follows directly from the expression (4.67)
for |rc|, as it was seen in section 3.6 that persistent cusps always propagate at the
speed of light. Franz Embacher [Emb92] has shown that the planar p/q harmonic
solutions are the only planar loops in flat space that rotate rigidly. This result will
be explored in more detail in section 4.5.

Comparison of (4.64) and (4.71) reveals an unexpected and somewhat
counter-intuitive feature of the planar p/q harmonic solutions, namely that the
pattern speed ω is inversely proportional to the magnitude |J| of the angular
momentum vector. The contrast between ω and |J| is starkest when p = N + 1
and q = −N with N large, as then ω ≈ 4πN2/L but |J| ≈ µL2/(4πN2).
In the limit as N → ∞ the angular momentum of the string goes to zero but
the pattern speed is infinite. The string in this limit traces out a circle (with an
infinite winding number) which is static and, of course, rotationally symmetric.
There is thus no inconsistency in the relationship between ω and |J|, although it is
important to recognize that the pattern speed is not at all indicative of the string’s
rotational energy.

In addition to being stationary, the planar p/q harmonic solutions possess
discrete rotational symmetry. At a fixed value of τ the functions cosχ and sinχ
in (4.68) assume any particular pair of values [cosχ0, sinχ0] or their antipodes
[− cosχ0,− sinχ0] a total of |p + q| times as σ ranges from 0 to L. The
corresponding pattern, therefore, has |p + q|-fold rotational symmetry, as would
be expected given that the string is known to support |p + q| permanent cusps.

One final property of the planar p/q harmonic strings that is helpful in
visualizing the trajectory is the winding number of the pattern. From (4.61) and
(4.62) it is clear that if |p| < |q| then the mode function a has the dominant
amplitude, whereas if |p| > |q| then b is dominant. The winding number of the
entire pattern is just the winding number of the dominant mode, and so is equal
to the smaller of |p| and |q|.

Figures 4.18 and 4.19 each show the patterns traced out by the eight planar
p/q harmonic strings with the smallest available values of |p| and |q|, with q > 0
in figure 4.18 and q < 0 in figure 4.19. Note that as |p| and |q| increase the
diameter of the pattern generally shrinks if the invariant length L remains fixed.
To illustrate fully the details of the smaller patterns, the second row in both figures
has been magnified by a factor of two. Note also that a given solution with q > 0
has substantially more rotational energy than the corresponding solution with
q < 0. The configurations in figure 4.18 thus have, on average, smaller pattern
speeds than those in figure 4.19. The pattern frequencies Lω/(2π) in figure 4.18
range from 4/3 for the 2/1 string to 15/4 for the 5/3 string, whereas in figure 4.19
the frequencies range from 5/2 for the 5/− 1 string to 24 for the 4/− 3 string.
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Figure 4.18. Planar p/q harmonic strings with pq > 0.

Figure 4.19. Planar p/q harmonic strings with pq < 0.

As was the case with the 1-harmonic strings, the family of non-planar p/q
harmonic strings can be fully described by the introduction of a third parameter
ψ which measures the angle between the planes spanned by the position vectors
of the a and b modes. The equation for the b mode then reads:

b(σ−) = L

2πq
[cos(qξ−)̂x+ sin(qξ−)(cosψ ŷ + sinψ ẑ)] (4.72)

and the local Lorentz factor of the corresponding loop is

λ = 21/2[1− sin(pξ+) sin(qξ−)− cosψ cos(pξ+) cos(qξ−)]−1/2 (4.73)

while its net angular momentum is

|J| = (p
2 + q2 + 2pq cosψ)1/2

4π |pq| µL2. (4.74)
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Figure 4.20. The 2/1 harmonic string with ψ = 1
2π in the x–y projection.

It follows after some algebraic manipulation of (4.73) that if | cosψ| < 1
then cusps occur only when sin(pξ+) sin(qξ−) = 1. With τ and σ both ranging
over [0, L) it would appear that, in general, a non-planar p/q harmonic string has
a total of 4|pq| cusps (of the normal type), located at

τ = (q + p + 4mq + 4np)
L

8pq
σ = (q − p + 4mq − 4np)

L

8pq
(4.75)

and

τ = (−p − q + 4mq + 4np)
L

8pq
σ = (p − q + 4mq − 4np)

L

8pq
(4.76)

(all modulo L), where m and n are integers in [1, 2|p|] and [1, 2|q|] respectively.
However, any trajectory constructed from the p/q harmonic modes (4.61)

and (4.62) is invariant under the translations

(τ, σ )→
(
τ + L

2|p| , σ +
L

2|p|
)

and (τ, σ )→
(
τ + L

2|q| , σ −
L

2|q|
)

(4.77)
and so the fundamental period of the loop is not L but T = min{ L

2|p| ,
L

2|q| }. The
number of distinct cusps appearing during a single period T in τ is, therefore,
2min{|q|, |p|}.

Figures 4.20 and 4.21 show the time development of the 2/1 harmonic
loop with ψ = 1

2π , in the x–y and x–z planes respectively, for τ between 0
and 7

32 L. This solution supports two cusps over a single period T = 1
4 L, at

(τ/L, σ/L) = ( 1
16 ,

5
16 ) and (

3
16 ,

15
16 ). By comparison, the corresponding planar

loop—illustrated in the first frame of figure 4.18—has three permanent cusps
and rotates with a pattern speed 8π

3L consistent with threefold symmetry and a
fundamental period of 1

4 L.
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Figure 4.21. The 2/1 harmonic string with ψ = 1
2π in the x–z projection.

4.4.3 Loops with two mixed harmonics

The equation for the most general 012-harmonic mode (modulo spatial rotations)
was previewed in section 3.5. If the loop is in its centre-of-momentum frame, two
of the four free parameters in that equation are constrained by the requirement
that either sinφ1 = cosφ2 = 0 or cosφ1 = sin(φ2/2) = 0. In the first case, the
mode function contains only first-order harmonics in ξ+, while in the second case
it contains only second-order harmonics. Thus a solution containing nothing other
than first- and second-order harmonics must have one of the harmonics allocated
to the mode function a and the other to b. This means that the (non-planar) 2/1
harmonic and 2/ − 1 harmonic loops are the most general solutions containing
only first-and second-order harmonics.

The analogous result is not true for solutions containing only first- and third-
order harmonics, however. In this case, solutions can be found in which the two
harmonics are mixed between the two modes. The most general solution of this
type was first constructed by David DeLaney et al [DES90], building on earlier
work by Kibble and Turok [KT82], Turok [Tur84] and Chen et al [CDH88].
Following DeLaney et al I will refer to this solution as the 1–3/1–3 harmonic
loop.

DeLaney et al derived the general expression for a 1–3 harmonic mode
function a′ by taking a general 12-parameter 3-vector containing both harmonics
and then solving the constraint |a′| = 1 to eliminate seven of the parameters.
A somewhat more elegant approach is to use the spinor method of section 3.5
to generate the six-parameter 0123-harmonic mode function and adjust the
parameters so as to remove the 0- and 2-harmonics while retaining a mixture
of the 1- and 3-harmonics. This gives

a′(σ+) = ± {[cos2(φ2/2) sin(3ξ+ − θ1)− sin2(φ2/2) sin(ξ+ + θ1 − 2θ2)]̂x
+ [− cos2(φ2/2) cos(3ξ+ − θ1)+ sin2(φ2/2) cos(ξ+ + θ1 − 2θ2)]̂y
− sin(φ2) cos(ξ+ + θ2 − θ1)̂z}. (4.78)
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The choice of sign in (4.78) can always be absorbed into ξ+, while θ1 and
θ2 can be reduced to a single parameter by rezeroing ξ+ to eliminate θ1 from the
3-harmonics and then defining θ = θ2 − 2θ1/3. With an additional phase shift
of 3

2π in ξ+ (to conform with the conventions first used by Turok [Tur84]1) the
resulting mode function a is:

a(σ+) = L

2π
{[ 13 cos2(φ/2) sin(3ξ+)+ sin2(φ/2) sin(ξ+ − 2θ)]̂x

+ [− 1
3 cos

2(φ/2) cos(3ξ+)− sin2(φ/2) cos(ξ+ − 2θ)]̂y
+ sinφ cos(ξ+ + θ )̂z} (4.79)

where the subscript has been dropped from φ2. Similarly, the correspondingmode
function b can be cast in the form

b(σ−) = L

2π
{[ 13 cos2(φ∗/2) sin(3ξ−)+ sin2(φ∗/2) sin(ξ− − 2θ∗)]̂x

+ [− 1
3 cos

2(φ∗/2) cos(3ξ−)− sin2(φ∗/2) cos(ξ− − 2θ∗)]̂v
+ sin φ∗ cos(ξ− + θ∗)ŵ} (4.80)

with v̂ = cosψ ŷ+ sinψ ẑ and ŵ = cosψ ẑ− sinψ ŷ for some choice of angle ψ .
The mode functions (4.79) and (4.80) together characterize the full five-

parameter family of 1–3/1–3 harmonic solutions. The angular momentum of the
solutions is:

J = µL
2

8π
{[sin2(φ/2) sinφ sin θ(4 cos2 θ − 1)

+ sin2(φ∗/2) sinφ∗ sin θ∗(4 cos2 θ∗ − 1)]̂x
+ [sin2(φ/2) sinφ cos θ(4 cos2 θ − 3)− 1

3 (1− cosφ∗ + cos2 φ∗) sinψ
+ sin2(φ∗/2) sinφ∗ sin θ∗(4 cos2 θ∗ − 3) cosψ ]̂y
+ [ 13 (1− cosφ + cos2 φ)+ 1

3 (1− cosφ∗ + cos2 φ∗) cosψ
+ sin2(φ∗/2) sinφ∗ sin θ∗(4 cos2 θ∗ − 3) sinψ ]̂z}. (4.81)

The expression for the local Lorentz factor λ is too complicated to reproduce here
and is of minimal value in identifying salient features such as cusps.

The 1–3/1–3 harmonic solutions have been studied extensively in [KT82,
Tur84, CT86, CDH88, DES90], with a view primarily to identifying the subset
of the parameter space where the loops self-intersect. A series of Monte Carlo
simulations performed by Delaney et al [DES90] indicate that between 40%
and 60% of the parameter space is occupied by self-intersecting loops, with the
fraction more strongly dependent on the resolution of the simulation than on
the measure assumed for the parameter space. An earlier study by Chen et al
1 Note, however, that Turok takes a to be a function of σ − τ and b to be a function of σ + τ . See
section 3.1 for an explanation of the conventions used here.
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[CDH88] examined the three-parameter sub-family of 1–3/1 harmonic solutions
that results when φ∗ = π and θ∗ is set to zero2. In this case, between 30% and
40% of the parameter space generates self-intersecting loops. Self-intersection is
least likely to occur when θ = 0 (the 1- and 3-harmonics are in phase) and most
likely to occur when φ = 1

2π (the harmonics in a′ have equal amplitudes).
An even smaller sub-family of solutions, first published by Neil Turok

[Tur84] in 1984, can be recovered by setting φ∗ = π and θ = θ∗ = 0, so
that

a(σ+) = L

2π

{
[ 13α sin(3ξ+)+ (1− α) sin(ξ+)]̂x

+ [− 1
3α cos(3ξ+)− (1− α) cos(ξ+)]̂y

− 2
√
α − α2 cos(ξ+) ẑ

}
(4.82)

and
b(σ−) = L

2π [sin(ξ−)̂x− cos(ξ−)(cosψ ŷ + sinψ ẑ)] (4.83)

where α = cos2(φ/2). Setting ψ = 0 in 4.83 gives the Kibble–Turok solutions
[KT82], which were the earliest of the 1–3/1 harmonic loop solutions to be
examined in any detail.

The Kibble–Turok solutions form a continuous one-parameter family of
loops that ranges from the doubled rotating rod (α = 0) to the planar 3/1
harmonic string (α = 1). However, all solutions with 0 < α < 1 are non-planar
and are free of self-intersections. The local Lorentz factor of the solutions is:

λ = 21/2[1− α cos(4πτ/L + 8πσ/L)− (1− α) cos(4πσ/L)]−1/2 (4.84)

and so if 0 < α < 1 the solutions support just two, simultaneous, cusps (of the
normal type) per oscillation period, at (τ, σ ) = (0, 0) and (0, L/2). Figures 4.22
and 4.23 give two views of the Kibble–Turok solution with α = 0.5.

In a similar manner, the full two-parameter family of Turok solutions
described by the mode functions (4.82) and (4.83) forms a bridge between the
1-harmonic solutions of section 4.4.1 and the general (non-planar) 3/1 harmonic
strings. All Turok solutions with 0 < α < 1 support either two, four or six cusps,
with two of the cusps always occurring at (τ, σ ) = (0, 0) and (0, L/2). Solutions
with four cusps occur only when cos(ψ − φ) = ±1, with the two extra cusps
appearing either at τ = 0 or at τ = L/4. Otherwise, the parameter space is
evenly divided between the two- and six-cusp solutions, as shown in figure 4.24.
2 The parameter φ used by Chen et al (CDH) is the same as the parameter I call ψ . However, the
two remaining CDH parameters θ and η bear no simple relationship to the parameters φ and θ that
appear in (4.79). The expression CDH derive for a′ can be constructed from (4.78) by setting θ1
equal to tan−1(− sin θ sinη

cos θ+cos η ), 2θ2 − θ1 to tan−1( cos θ cos η
cos θ−cos η ) and cos φ2 to cos θ cos η, then translating

ξ+ by 3
2π and rotating the entire 3-vector by an angle θ about the y-axis. The equally complicated

transformation from the CDH parameters to the parameter set used by DeLaney et al can be found in
[DES90].
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Figure 4.22. The Kibble–Turok string with α = 0.5 in the x–y projection.

Figure 4.23. The same string in the y–z projection.

From (4.81), the angular momentum of the Turok solutions is:

J = µL
2

8π

{[
−2(1− α)

√
α − α2 − sinψ

]
ŷ+ ( 43α2 − 2α + 1+ cosψ)̂z

}
.

(4.85)
The subset of the parameter space that corresponds to self-intersecting solutions
has been discussed fully by Chen et al [CDH88].

Finally, mention should be made of the role played by the Turok solutions
in estimates of the likelihood that a cosmic string will collapse to form a black
hole. According to the ‘hoop conjecture’ (see [MTW73, pp 867–8]), an event
horizon will form around a string loop if, at any moment, in the string’s evolution
it shrinks to a size small enough for it to fit inside a sphere with radius equal
to the string’s Schwarzschild radius RS = 2µL. It is evident from (4.82) and
(4.83) that all the Turok solutions are reflection-symmetric about the origin, as
r(τ, σ + L/2) = −r(τ, σ ), and so the radius Rmin of the smallest sphere that can
enclose the string is found by maximizing |r(τ, σ )| over σ with τ fixed and then
minimizing over τ .
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Figure 4.24. Cusp structure of the Turok solutions.

This particular problem was first examined in 1991 by Alexander Polnarev
and Robert Zembowicz [PZ91], who claimed that the minimum radius occurs in
all cases when τ = L/4, and that

(2πRmin/L)
2 =

(√
α − α2 −

√
β − β2

)2
+ ( 13α − β)2 (4.86)

where β = sin2(ψ/2). A more recent analysis by Hansen et al [HCL00]
indicates that (4.86) gives the correct formula for Rmin only on a subset of the
α–β parameter space. A full specification of Rmin as a function of α and β
is somewhat complicated but over much of the parameter space (including, in
particular, a neighbourhood of the collapsing circular loop at α = β = 0) the
minimum radius occurs at either τ = 0 or τ = L/4 and according to Hansen et al
is given by

(2πRmin/L)
2 = max

{
4α2/9,

(√
α − α2 −

√
β − β2

)2
+ ( 13α − β)2

}
.

(4.87)
However, formula (4.87) applies only if the parameter sinψ appearing in

(4.83) is positive, as in transforming from ψ to β Polnarev and Zembowicz have
effectively lost that half of the parameter space in which sinψ < 0. If sinψ is
negative, the corresponding expression for the minimum radius (occurring again
at τ = L/4) is:

(2πRmin/L)
2 =

(√
α − α2 +

√
β − β2

)2
+ ( 13α − β)2 (4.88)

which is always greater than or equal to 4α2/9 for α and β in [0, 1].
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A loop belonging to the Turok family will pass inside its Schwarzschild
radius at least once per oscillation period if

(2πRmin/L)
2 ≤ 16π2µ2. (4.89)

For µ� 1, Hansen et al [HCL00] have shown that if sinψ > 0 the subset of the
α–β parameter space satisfying this constraint has a total area of about 2000µ5/2

to leading order in µ, whereas if sinψ < 0 it is easily seen that the relevant subset
has a total area of about 4000µ4, again to leading order inµ. Thus, the estimate of
2000µ5/2 that Hansen et al offer for the probability that a randomly-chosen Turok
solution will collapse to form a black hole should strictly speaking be halved (to
1000µ5/2 ≈ 10−12 if µ ≈ 10−6) but it relies on such a naive assumption about
the appropriate probability measure on the α–β parameter space that its value is
little more than heuristic anyway.

In connection with this result it should be mentioned that Robert Caldwell
and Paul Casper [CC96] have examined an ensemble of 25 576 string loops
generated by evolving a set of parent loops through successive fragmentation
events until only stable daughter loops remain. They estimate that the fraction
f of these loops that pass inside their Schwarzschild radius 2µL at least once
during an oscillation period is:

f = 104.9±0.2µ4.1±0.1 (4.90)

which (although about 20 times larger) has a similar dependence on µ as the
fraction of Turok solutions with sinψ < 0 that pass inside RS. The corresponding
probability of collapse for loops with µ ≈ 10−6 is, therefore, f ≈ 10−20, which
is considerably smaller than the estimate based on the full set of Turok loops.

4.4.4 Loops with three or more harmonics

The general method for constructing mode functions containing three or more
harmonics should be clear from the preceding sections. The full family of 1–2–
3/1–2–3 harmonic loops, for example, is described by mode functions with the
same basic form as the 1–3 mode functions (4.79) and (4.80), save that the ẑ
and ŵ components are second-order rather than first-order harmonics. Because
the family is no longer invariant under rotations of b about the z-axis, the
parameter space in this case is six-dimensional. Other families of multi-harmonic
loops are just as complicated and, needless to say, none has yet been fully
explored. However, two interesting sub-families of multi-harmonic solutions—
discovered in circumstances that could perhaps be described as serendipitous—
have been examined in connection with studies of gravitational radiation from
cosmic strings.

The first of these is a modification of the Turok family (4.82)–(4.83) and
was published by Tanmay Vachaspati and Alexander Vilenkin [VV85] in 1985.
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Its construction relies on the identity

[−α cos(3ξ+)+ (1− α) cos(ξ+)]2 + [α sin(3ξ+)+ (1− α) sin(ξ+)]2
= 1− 4(α − α2) cos2(2ξ+) (4.91)

which indicates that the 3-harmonic mode function

a(σ+) = L

2π

{
[− 1

3α sin(3ξ+)+ (1− α) sin(ξ+)]̂x
+ [− 1

3α cos(3ξ+)− (1− α) cos(ξ+)]̂y
+

√
α − α2 sin(2ξ+)̂z

}
(4.92)

satisfies the gauge constraint |a′| = 1 as required. If the mode function (4.92) is
combined with the standard 1-harmonic mode function

b(σ−) = L

2π
[sin(ξ− )̂x− cos(ξ−)(cosψ ŷ + sinψ ẑ)] (4.93)

then the result is the two-parameter family of Vachaspati–Vilenkin solutions.
Like the Turok solutions, the Vachaspati–Vilenkin solutions form a

continuous link between the non-planar 1-harmonic loops (α = 0) and the non-
planar 3/− 1 harmonic loops (α = 1). The total angular momentum

J = µL
2

8π
[− sinψ ŷ + ( 43α2 − 2α + 1+ cosψ)̂z] (4.94)

of the Vachaspati–Vilenkin solutions differs from the corresponding formula
(4.85) for the Turok solutions only by the quantity µL2(1− α)√α − α2ŷ/(4π).

The cusp structure of the Vachaspati–Vilenkin solutions is somewhat more
complicated than for the Turok solutions. In general, if 0 < α < 1 the solutions
support either two, four or six cusps, with the parameter space partitioned as
shown in figure 4.25, where the parameter φ is defined as before by α =
cos2(φ/2). However, if cos(ψ + φ) = ±1 or cos(ψ − φ) = ±1 the solution
typically supports either three or five cusps. Solutions with ψ = 0 or ψ = π
support four cusps, appearing at τ = L/8 and 3L/8 or τ = 0 respectively.

The time development of the Vachaspati–Vilenkin solution with α = 0.5 and
ψ = 0 is illustrated in figures 4.26 and 4.27. The parameters have been chosen so
that a direct comparisonwith the correspondingKibble–Turok solution, examined
in the previous section, is possible. The four cusps occur, pairwise and equally
spaced around the string, at τ = L/8 and τ = 3L/8.

The second family of multi-harmonic solutions is due to David Garfinkle and
Tanmay Vachaspati [GV87a], and was discovered during a search for solutions
free of both cusps and kinks. The mode functions describing the Garfinkle–
Vachaspati solutions contain four different harmonics and have the form:

a(σ+) = −L
2π(p2 + 2)(2p2 + 1)

{[(p2 + 1)2 sin(2ξ+)+ 1
4 p

2 sin(4ξ+)]̂x



Harmonic loop solutions 129

Figure 4.25. Cusp structure of the Vachaspati–Vilenkin solutions.

Figure 4.26. The Vachaspati–Vilenkin string with α = 0.5 in the x–y projection.

+ 2
√
2p[(p2 + 2) cos ξ+ + 1

3 cos(3ξ+)]̂y
+ [(p4 + 2p2 − 1) cos(2ξ+)+ 1

4 p
2 cos(4ξ+)]̂z (4.95)

and

b(σ−) = L

2π(p2 + 2)(2p2 + 1)
{[(p2 + 1)2 sin(2ξ−)+ 1

4 p
2 sin(4ξ−)]̂x

+ [(p4 + 2p2 − 1) cos(2ξ−)+ 1
4 p

2 cos(4ξ−)]̂y
+ 2
√
2p[(p2 + 2) cos ξ− + 1

3 cos(3ξ−)]̂z (4.96)

where p is a non-negative constant3. A method for generating these mode
functions using rotation matrices is discussed in [BD89].

3 Negative values of p can be ignored because reversing the sign of p is equivalent to replacing σ
everywhere with π − σ and then rotating the coordinate system by an angle π about the vector ŷ− ẑ.
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Figure 4.27. The same string in the y–z projection.

When p = 0 and in the limit as p→∞ the Garfinkle–Vachaspati solutions
degenerate into a standard 1-harmonic solution with angle ψ = 1

2π between the
mode planes. The solutions typically support eight cusps per period but for a
range of values of p between about 0.28 and 1.38 the loops are, in fact, cusp-free.
The net angular momentum of the solutions is:

J = µL
2

8π

−2+ 33
4 p

4 + 8p6 + 2p8

(p2 + 2)2(2p2 + 1)2
(̂y− ẑ) (4.97)

where the rational function of p preceding ŷ − ẑ increases monotonically from
− 1

2 at p = 0 to 1
2 in the limit as p → ∞. The net angular momentum vanishes

when p ≈ 0.6407.
Figures 4.28 and 4.29 show the evolution of the p = 1 solution over the

course of an oscillation period. In the first figure the loop is seen projected onto

the plane orthogonal to the angular momentum vector J = 65µL2

2592π (̂y − ẑ), while
the second figure shows the projection onto the plane containing x̂ and J, which
points towards the top of the page. The solution is, of course, cusp-free, although
the maximum local Lorentz factor, λ ≈ 4.6, is still quite substantial.

4.5 Stationary rotating solutions

It was seen in section 4.4.2 that string solutions describing stationary rotating
loops are easily generated by superposing left- and right-moving single-harmonic
modes. In 1992 Franz Embacher [Emb92] showed that all stationary rotating
planar string loops are members of the class of p/q harmonic solutions defined
by (4.61)–(4.62), and also attempted to give a completely general characterization
of the family of stationary rotating solutions, whether closed or not.
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Figure 4.28. The Garfinkle–Vachaspati string with p = 1 projected along J.

Figure 4.29. The same string projected onto the plane of x̂ and J.

In Embacher’s approach, the axis of rotation of the string is assumed without
loss of generality to lie in the z-direction. The position vector of the string is then

r(τ, ζ ) =
[ cosωτ sinωτ 0
− sinωτ cosωτ 0

0 0 1

][ x̄(ζ )
ȳ(ζ )
z̄(ζ )

]
(4.98)

for some choice of pattern speedω and functions x̄ , ȳ and z̄ of a coordinate ζ(τ, σ )
that for the moment remains unspecified. As a functional of τ and ζ the string
action (2.10) is

I = −µ
∫
[(r,τ ·r,ζ )2 + r,2ζ (1− r,2τ )]1/2 dζ dτ (4.99)
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and if (4.98) is substituted into (4.99) the action can be reduced to the form∫
� dζ =

∫
[x ′2+ y ′2+ z̄′2−ω2(xx ′ + yy ′)2−ω2(x2+ ȳ2)z̄′2]1/2 dζ (4.100)

where a prime denotes d/dζ .
As z̄ is cyclic, the corresponding Euler–Lagrange equation integrates

immediately to give

z̄′ 1− ω
2(x2 + y2)
�

= K (4.101)

where K is a constant. If K = 0 then either the solution is planar or
ω2(x2 + y2) = 1; whereas if K �= 0 the solution is non-planar. The possibility
that ω2(x2 + ȳ2) = 1, which Embacher missed, will be considered separately at
the end of this section.

If ω2(x2 + y2) �= 1 equation (4.101) suggests the gauge choice

� = 1− ω2(x2 + y2) (4.102)

from which it follows that z̄ = K ζ (modulo translations in z). With the
abbreviation r̄ = [x, y], the two remaining Euler–Lagrange equations read:

d

dζ

[
r̄′ − ω2(r̄ · r̄′)r̄

�

]
+ ω

2K 2r̄+ ω2(r̄ · r̄′)r̄′
�

= 0. (4.103)

Taking the dot product with r̄ and using the fact that r̄ · [r̄′ −ω2(r̄ · r̄′)r̄] = �r̄ · r̄′
gives the equation

d

dζ
(r · r′)+ ω

2K 2r2 + 2ω2(r · r′)2 − r′2

�
= 0. (4.104)

Furthermore, the square of (4.102) can be rearranged to read:

ω2K 2r̄2 + ω2(r̄ · r̄′)2 − r̄′2 = K 2 − (1− ω2r̄2)2 (4.105)

and so in terms of � = 1− ω2r̄2 equation (4.104) becomes

1
2��

′′ + ω2(�2 − K 2)− 1
4�

′2 = 0. (4.106)

An immediate first integral of this equation is:

�
′2 = −4ω2(�2 + γ�+ K 2) (4.107)

where γ is an arbitrary constant. Note that �′2 will be non-negative and �′ real
only if γ 2 ≥ 4K 2.

Integrating a second time gives

� ≡ 1− ω2r̄2 = A cos2 ωζ + B (4.108)
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where

A = ±(γ 2 − 4K 2)1/2 and B = − 1
2γ ∓ 1

2 (γ
2 − 4K 2)1/2 (4.109)

and an additive integration constant has been absorbed into ζ .
Finally, substitution of (4.108) into the Euler–Lagrange equations (4.103)

results in a linear second-order equation for r̄:

(A cos2 ωζ + B)r̄′′ + (2A sinωζ cosωζ)r̄′

+ [A(K 2 − γ ) cos2 ωζ + B(K 2 − A)]r̄ = 0 (4.110)

whose solution (modulo rotations in the plane) is

r̄ = (B + 1)1/2ω−1
[
k cosωζ cos νωζ + sinωζ sin νωζ
−k cosωζ sin νωζ + sinωζ cos νωζ

]
(4.111)

where

ν2 = 1+ K 2 − γ and k = ν−1(A + B + 1). (4.112)

Note here that the normalization constant (B + 1)1/2ω−1 in (4.111) is fixed by
the integral constraint (4.108), and that the solution applies only if γ < 1 + K 2.
The possibility of analytically continuing the solution to imaginary values of ν
by converting cos νωζ and sin νωζ into the corresponding hyperbolic functions
is precluded by (4.108), which ensures that |r̄| is bounded.

The resulting solution to the string equations of motion—up to an arbitrary
boost, rotation and/or translation—is, therefore,

r(τ, ζ ) =
[
(B + 1)1/2ω−1[k cosωζ cos{ω(νζ + τ)} + sinωζ sin{ω(νζ + τ)}]
(B + 1)1/2ω−1[−k cosωζ sin{ω(νζ + τ)} + sinωζ cos{ω(νζ + τ)}]

K ζ

]
.

(4.113)
The solution can be rewritten in aligned standard gauge coordinates (τ, σ ) by
defining

ζ = (ν2 − 1)−1(σ − ντ). (4.114)

The mode functions a and b then have the form

a(σ+) = f+(σ+) and b(σ−) = f−(σ−) (4.115)

where σ± = τ ± σ and

f±(σ±) =


(B + 1)1/2ω−1(k ± 1) cos

(
ωσ±
ν ± 1

)
∓(B + 1)1/2ω−1(k ± 1) sin

(
ωσ±
ν ± 1

)
−K σ±

ν ± 1

 . (4.116)
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It was mentioned earlier that the trajectory is non-planar if K �= 0 and, in
fact, the solution has the shape of a helicoid circling the z-axis in this case. Since
the local Lorentz factor of the string is

λ = |ν2 − 1|[ 14 (B + 1)(α2 + β2 − 2αβ cos θ)+ K 2ν2]−1/2 (4.117)

where α = (k + 1)(ν − 1), β = (k − 1)(ν + 1) and θ = 2ωζ , it is evident that
the non-planar solutions are cusp-free.

In the planar limit, ν2 = 1 − γ and either (A, B, k) = (−γ, 0, ν) or
(A, B, k) = (γ,−γ, ν−1). As is evident from (4.108), the lagrangian reduces
to � = −γ cos2 ωζ in the first case and to � = −γ sin2 ωζ in the second case.
The choice of parameters, therefore, corresponds not to distinct sets of solutions
but merely to a translation in the zero point of ζ . If attention is restricted to the
case (A, B, k) = (−γ, 0, ν) then the local Lorentz factor is

λ = 21/2(1− cos θ)−1/2 (4.118)

and permanent co-rotating cusps occur on the string wherever ωζ ≡ (ν2 −
1)−1ω(σ − ντ) is an integer multiple of π .

In view of the mode function decomposition (4.116) it is clear that the
trajectory will form a closed loop only if K = 0 and ν−1

ν+1 is rational. If ν−1
ν+1 = p

q
with p and q relatively prime then the solution is a member of the p/q harmonic
class (4.61)–(4.62) with û = x̂ and v̂ = ŷ. In particular, the invariant length is
L = 2π |p(ν + 1)|/ω and the number of the cusps is |p + q|.

Turning now to the outstanding case ω2(x2 + y2) = 1, it is evident that a
gauge choice consistent with this relation is

x(ζ ) = ω−1 cos κζ and y(ζ ) = ω−1 sin κζ (4.119)

where κ is some constant. The corresponding position vector of the string is

r(τ, ζ ) = [ω−1 cos(ωτ − κζ ), −ω−1 sin(ωτ − κζ ), z̄(ζ ) ] (4.120)

which, being a solution to the flat-space equations of motion, must have the form
1
2a(σ+)+ 1

2b(σ−). This, in turn, is possible only if (
1
2ω− κζ+)( 12ω− κζ−) = 0,

as can be seen by setting x+− = y+− = 0. Assume without loss of generality
that κζ+ = 1

2ω. Then

ωτ−κζ = 1
2ωσ−−κζ̄ (σ−) and z̄(ζ ) = z̄( 12κ−1ωσ++ ζ̄ (σ−)) (4.121)

for some function ζ̄ .
The requirement that z̄ be a sum of functions of σ+ and σ− entails that either

z̄ is linear or ζ̄ is constant. In either case, the gauge condition a′2 = 1 implies
that z̄2+ = 1

4 , while the possibility that ζ̄
′ �= 0 turns out to be inconsistent with the

constraint b′2 = 1. The most general solution with ω2(x2+ y2) = 1 is, therefore,

r(τ, σ ) = [ω−1 cos( 12ωσ− + ψ), −ω−1 sin( 12ωσ− + ψ), z(σ+) ] (4.122)
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where ψ is an arbitrary phase factor, and z′2 = 1
4 .

At first glance, it would appear that the only admissible choice for the z-
component is z(σ+) = z0 + 1

2σ+, with z0 a constant, and so (4.122) does no
more than recover a particular family of travelling-wave solutions. However, the
constraint z′2 = 1

4 can also be satisfied if z is only piecewise linear, with z′
jumping from 1

2 to − 1
2 (or vice versa) any number of times. Each jump would, of

course, correspond to a kink on the string, with each kink tracing out a horizontal
circle of radius ω−1 with circular frequency equal to the pattern speed ω.

Furthermore, if z(σ+) is chosen to be a periodic function with period equal
to the fundamental period L = 4π/ω of the circular mode then the string will
form a closed loop. Solutions of this type are the only possible rigidly-rotating
non-planar loops in flat space. Indeed, the simplest solution of this type, which
supports two evenly-spaced kinks and has

z(σ+) = z0 +
{ 1

2σ+ if 0 ≤ σ+ < 1
2 L

1
2 (L − σ+) if 1

2 L ≤ σ+ < L
(4.123)

is remarkable in that it radiates gravitational energy at the lowest rate known for
any string loop (and so presumably is the most stable loop known). It will be
examined in more detail in chapter 6.

4.6 Three toy solutions

4.6.1 The teardrop string

I will end this brief survey by considering three sample solutions that make use of
the initial-value formulation of section 3.4. Recall that if the string is initially at
rest with parametric position vector r0(θ) then the spacelike coordinate σ in the
aligned standard gauge is just the arc length along the curve. For a string confined
to the x–y plane, it is often convenient to identify the parameter θ with the polar
angle, so that

r0(θ) = r0(θ)(cos θ x̂+ sin θ ŷ) (4.124)

for some function r0, and, therefore,

σ(θ) =
∫ √

r20 (θ)+ r ′20 (θ) dθ. (4.125)

One simple class of closed curves in the plane admitting an explicit formula
for σ(θ) is described by the family of second-order polynomials

r0(θ) = A(θ − 1
2θ

2) (4.126)

where A is a positive constant and, to close the loop, θ ranges from 0 to 2. The
corresponding spacelike gauge coordinate

σ = A(θ − 1
2θ

2 + 1
6θ

3) (4.127)
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Figure 4.30. The teardrop string.

ranges from 0 to 4A/3, and so A = 3L/4, with L the invariant length as usual.
Solving for θ in terms of σ on the domain [0, L) gives

θ(σ ) =
[
−2+ 4σ/L +

√
5− 16σ/L + 16(σ/L)2

]1/3
−
[
−2+ 4σ/L +

√
5− 16σ/L + 16(σ/L)2

]−1/3
+ 1 (4.128)

and the full equation for the time development of the string is

r(τ, σ ) = 3L
8

[
(θ+ − 1

2θ
2+) cos θ+ + (θ− − 1

2θ
2−) cos θ−

(θ+ − 1
2θ

2+) sin θ+ + (θ− − 1
2θ

2−) sin θ−

]
(4.129)

with θ± = θ(ζ±), where ζ± denotes (σ ± τ )/L (modulo 1).
The evolution of the solution is illustrated for 0 ≤ τ < L/2 in figure 4.30.

Initially the string loop has the shape of a ‘teardrop’, with a coincident pair of
kinks forming the apex. The kinks propagate left and right around the string as
the entire configuration begins to shrink. The local Lorentz factor of the solution
can be expressed in the form

λ = (U2 + V 2)1/2/|U cosV − V sin V | (4.130)

where

U = 1
2 [1+ 1

4 (θ++θ−−2)2− 1
4 (θ+−θ−)2] and V = 1

2 (θ+−θ−) (4.131)

and so the loop supports semi-permanent cusps with the implicitly defined
trajectories U = V tan V .

The kinks themselves follow the curves θ− = 0 and θ+ = 0, and it is an easy
matter to show that a cusp first appears at the location of each kink when θ+ or θ−
is about 0.808, which corresponds to τ/L ≈ 0.214. The kinks and their daughter



Three toy solutions 137

Figure 4.31. World-sheet diagram for the teardrop string.

cusps, of course, propagate at light speed relative to the background spacetime
but the cusps rapidly move ahead of the kinks on the world sheet, as can be seen
from figure 4.31.

In this diagram, which shows the structure of the world sheet in terms of
the standard-gauge coordinates σ and τ , the 45◦ lines represent the trajectories of
the kinks and the curved lines trace out the paths of the cusps. It is evident not
only that the cusps outrun the kinks but also that a second pair of semi-permanent
cusps appears spontaneously at σ = L/2 shortly after the emission of the original
pair. The creation of the second cusp pair corresponds to a double root in the
equation U = V tan V at (θ+, θ−) ≈ (1.556, 0.444), with gauge time coordinate
τ/L ≈ 0.230.

The shape of the loop in the last few moments before it shrinks to its
minimum size at τ = L/4 is shown in figure 4.32. In the first three frames
the loop is still cusp-free, as the kinks each emit their daughter cusp (and a self-
intersection) between frame 3 and frame 4. The second pair of cusps (and a third
self-intersection) appears at the point furthest from the kinks between frame 5 and
frame 6. At τ = L/4 the loop degenerates into a three-pointed star, as shown in
the last frame of figure 4.32. The points of the star consist of a pair of kinks (at the
bottom left) and two pairs of cusps, with each pair coincident in the background
spacetime but not in the τ–σ parameter space. The loop then re-expands, with the
original pair of cusps colliding and annihilating at τ/L ≈ 0.270, and the second
pair being absorbed by the kinks at τ/L ≈ 0.286. The original teardrop shape is
restored at τ = L/2.

4.6.2 The cardioid string

As a second simple application of the initial-value formulation, consider a string
loop which is initially static and in the shape of a cardioid with the parametric
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Figure 4.32. The teardrop string for 0.195 ≤ τ/L ≤ 0.25.

equation
r0(θ) = A(1− cos θ) (4.132)

where A is a positive constant and θ ranges over [0, 2π). From (4.125) the
transformation from θ to the spacelike coordinate σ is given by

σ(θ) = 8A sin2(θ/4) (4.133)

and so the invariant length of the loop is L = 8A.
In terms of σ the initial configuration has the form

r0(θ(σ )) = L{(ζ − ζ 2)[1− 8(ζ − ζ 2)]̂x+ 4(1− 2ζ )(ζ − ζ 2)3/2̂y} (4.134)

with ζ = σ/L, and so the equation for the full solution is

r(τ, σ ) = L

[
(ζ+ − ζ 2+)[1− 8(ζ+ − ζ 2+)] + (ζ− − ζ 2−)[1− 8(ζ− − ζ 2−)]

4(1− 2ζ+)(ζ+ − ζ 2+)3/2 + 4(1− 2ζ−)(ζ− − ζ 2−)3/2
]

(4.135)
where ζ± = (σ ± τ )/L (modulo 1) as before.

The time development of the solution over a single period of oscillation is
shown in figure 4.33. The cleft in the cardioid at τ = 0 is, of course, not a cusp
but the superposition of two kinks, which subsequently propagate left and right
around the string. The local Lorentz factor of the string is

λ = 21/2[1− (1− 2ζ+)(1− 16+)(1− 2ζ−)(1− 16−)
+ 41/2

+ (3− 16+)1/2
− (3− 16−)]−1/2 (4.136)

where± = ζ± − ζ 2±, and so, in particular, the Lorentz factor just forward of the
kink travelling along the path τ = σ (where ζ+ = 2τ/L and ζ− = 0) is

λ = (1− 2τ/L)−1/2|1− 8τ/L|−1 (0 ≤ τ < 1
2 L). (4.137)
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Figure 4.33. The cardioid string.

Figure 4.34. The cardioid string for 0.223 ≤ τ/L ≤ 0.25.

Thus a cusp appears at the location of the kink when τ = L/8. The same
is true of the second kink and as both cusps propagate around the world sheet
faster than their progenitor kinks two characteristic ‘fins’ pointing in the direction
of propagation develop on the loop, with a kink forming the tip of each fin and
a cusp marking the base of the fin. The fins can only just be discerned in the
τ = 3L/16 frame of figure 4.33 but are shown clearly in figure 4.34, which
contains snapshots of the loop during the last few moments before it contracts to
its minimum size at τ = L/4.

The trajectories of the cusps can be reconstructed by setting the denominator
in the expression (4.136) for the local Lorentz factor to zero, isolating the term
containing1/2

± and then squaring both sides. This gives the following necessary
(but not sufficient) condition for the existence of a cusp:

(ζ+ + ζ− − 1)[1+ 8(ζ+ + ζ−)− 16ζ+ζ− + 16(ζ 2+ + ζ 2−)] = 0. (4.138)

It is easily checked that the first term here is spurious, while the second term
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Figure 4.35. World-sheet diagram for the cardioid string.

defines a series of ellipses in τ–σ space, only segments of which correspond to
the cusp trajectories. For τ in [0, 14 L] the equation of the relevant segment is

16(σ/L)2 − 16σ/L + 48(τ/L)2 + 1 = 0 ( 18 L ≤ τ ≤ 1
4 L). (4.139)

Figure 4.35 shows the world-sheet diagram for the cardioid string. As before,
the 45◦ lines mark the kinks, while the curved lines trace the paths of the cusps.
As was noted previously, both kinks emit a cusp at τ = L/8. The cusps diverge
from the kinks and propagate around the string at light speed, until they meet
and annihilate at σ = L/2 when τ = L/4. At the same instant, two new
cusps emerge at σ = 0 and propagate backwards around the loop until they are
absorbed by the kinks at τ = 3L/8. The kinks continue their motion and recross
at τ = L/2, at which time the initial stationary configuration is restored. One
surprising feature of the solution, evident from (4.137), is that the local speed of
the string immediately ahead of the two kinks approaches the speed of light just
before the kinks cross.

The most eventful phase of the loop’s evolution occurs near the mid-point
τ = L/4 of the oscillation, when the string degenerates into the ‘cigar’ shape
seen in the last frame of figure 4.31. Prior to this moment, the insides of the
fins cross to create two self-intersections which move left and right along the
string, as shown in the second-last frame of figure 4.34. The first appearance of
the self-intersections occurs when y(τ, σ ) and y(τ, σ ),σ are simultaneously zero,
an event which numerical solution of the two equations places at σ/L ≈ 0.293
and σ/L ≈ 0.707 when τ/L ≈ 0.244. (This occurs between frames 6 and 7 in
figure 4.34.)

At τ = L/4 the left-hand self-intersection meets the two kinks, while the
right-hand self-intersection simultaneously encompasses the annihilating pair of
cusps at σ = L/2 and the newly-created cusp pair at σ = 0. Thus the left-
hand end of the cigar is formed by the two kinks, coincident in the background
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spacetime (but not in the τ–σ parameter space) and the right-hand end by the
transfer of the cusps from σ = L/2 to σ = 0. The cigar itself is traced out
twice by the string as σ ranges from 0 to L. For τ > L/4 the process outlined
earlier reverses, with the self-intersections travelling back towards the middle of
the string, and colliding and disappearing at τ/L ≈ 0.256.

4.6.3 The figure-of-eight string

As was mentioned in section 4.4.3, it is not possible—in the standard gauge—to
construct a mode function that contains first- and second-order harmonics only.
It is, therefore, illuminating to study the evolution of a string loop that is initially
stationary and traces out a curve r0(θ) generated from only first- and second-order
harmonics in the parameter θ . One candidate curve of this type is

r0(θ) = A(cos θ x̂+ u sin θ ŷ+ v sin 2θ ẑ) (4.140)

where A, u and v are constants, and θ ranges over [0, 2π).
If v is chosen to have the form

v = 1− u2
4
√
2(1+ u2)1/2 (4.141)

then |r′0|2 is a degenerate quadratic in cos2 θ and the standard-gauge coordinate σ
satisfies the equation

dσ

dθ
= |r′0| =

A

2
√
2(1+ u2)1/2 [u

2 + 3+ 2(u2 − 1) cos2 θ ]. (4.142)

Thus the invariant length of the loop is

L =
∫ 2π

0

dσ

dθ
dθ = √2Aπ(u2 + 1)1/2. (4.143)

Eliminating A in favour of L and u in favour of a new parameter w =√
2π/(u2 + 1)1/2 gives

r0(θ(σ )) = L

2π

[
w cos θ x̂+

√
2− w2 sin θ ŷ+ 1

4 (1−w2) sin 2θ ẑ
]

(4.144)

where θ is related to σ through the equation

σ(θ) = L

2π
[θ + 1

4 (1−w2) sin 2θ ]. (4.145)

Although (4.144) and (4.145) are well defined for all w in [0,√2], it is evident
that the transformation θ → θ + 1

2π is equivalent to replacingw everywhere with



142 A bestiary of exact solutions

Figure 4.36. The figure-of-eight string.

√
2−w2 and so only the range 0 ≤ w ≤ 1 is relevant. The full time evolution of

the solution is given by

r(τ, σ ) = L

4π

[
w(cos θ+ + cos θ−)̂x+

√
2−w2(sin θ+ + sin θ−)̂y

+ 1
4 (1− w2)(sin 2θ+ + sin 2θ−)̂z

]
(4.146)

where θ± = θ(σ ± τ ), with θ the unique inverse of (4.145).
All solutions with 0 < w < 1 are non-planar and support two (ordinary)

cusps per oscillation period, appearing at the points (θ+, θ−) = ( 54π,
1
4π) and

( 74π,
3
4π), which both have gauge time coordinate τ = L/4. The w = 1 solution

is simply the collapsing circular loop examined in section 4.2.1. Perhaps the most
interesting member of the family is the w = 0 solution, which is planar and
initially traces out the shape of a ‘figure of eight’. The evolution of this loop
is illustrated in figure 4.36. The segments of the string near the central cross-
piece are very nearly straight, and experience little acceleration throughout the
oscillation period. The outer segments of the loop, by contrast, are approximately
circular, and quickly begin to collapse inwards at high speed.

The local Lorentz factor of the w = 0 solution is

λ = (1+ 2 cos2 θ+)1/2(1+ 2 cos2 θ−)1/2/|1+ 2 cos θ+ cos θ−| (4.147)

and so the loop supports two pairs of semi-permanent cusps with trajectories
cos θ+ cos θ− = − 1

2 . Both pairs of cusps appear at τ/L = 1
8π (π − 1) ≈ 0.0852,

which is the moment the collapsing ends of the loop attain light speed4. A self-
intersection is also created with each cusp pair, leading to the formation of a
characteristic swallow-tail caustic at the two extreme ends of the string, as can
4 In terms of (θ+, θ−) the cusp pairs first appear at ( 34π,

1
4π) and (

7
4π,

5
4π), which correspond to

σ = L/4 and σ = 3L/4 respectively.
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be seen in the third frame of figure 4.36. The cusp pairs separate and travel in
opposite directions around the loop while the self-intersections migrate towards
the centre of the loop and annihilate at τ/L = 1

8π (π + 1) ≈ 0.1648 (which
occurs just before frame 4). The loop then continues to collapse and ultimately
degenerates into a horizontal rod of length L

8π at τ = L/4, each end of the rod
being marked by a pair of coincident cusps. The loop subsequently re-expands
and returns to its initial configuration at τ = L/2, with a pair of self-intersections
appearing at the origin at τ/L ≈ 0.3352 and the two original cusp pairs merging
and annihilating the self-intersections at τ/L ≈ 0.4148.



Chapter 5

String dynamics in non-flat backgrounds

In contrast to the plethora of known exact solutions to the string equation
of motion in Minkowski spacetime, the dynamics of cosmic strings in other
background metrics is relatively unexplored. In this chapter I examine the work
that has been done on string dynamics in four standard non-flat backgrounds: the
Robertson–Walker, Schwarzschild, Kerr and plane-fronted (pp)-wave spacetimes.
In all cases it is most convenient to work in standard gauge coordinates τ and σ ,
in terms of which the equation of motion Xµ;ττ = Xµ;σσ reads explicitly:

Xµ,ττ +�µκλXκτ Xλτ = Xµ,σσ +�µκλXκσ Xλσ (5.1)

where the Christoffel components �µκλ are known functions of the position vector
Xµ. The equation of motion is therefore a system of quasi-linear second-order
hyperbolic partial differential equations (PDEs). As was seen in section 2.2, two
first integrals of the equation are provided by the gauge conditions:

X2
τ + X2

σ = 0 and Xτ · Xσ = 0 (5.2)

and so (5.1) effectively comprises two linked second-order PDEs. It should not
come as a surprise that very few exact solutions are known and that much of the
work done in this area to date has focused on circular or static solutions.

5.1 Strings in Robertson–Walker spacetimes

From the viewpoint of classical cosmology, the most important non-flat
background is the class of Robertson–Walker spacetimes, which have the general
line element

ds2 = a2(η)
(
dη2 − dr2

1− kr2 − r
2dθ2 − r2 sin2 θ dφ2

)
(5.3)

where k = 0 or ±1 and r , θ and φ are standard spherical polar coordinates.
Since the η = constant spacelike slices of Robertson–Walker spacetimes are

144
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maximally symmetric, they possess six Killing vectors, any of which could be
used to construct a conserved world-sheet integral along the lines of section 2.4.

For the purposes of generating the string equation of motion, only two of the
Killing vectors are needed. The most convenient choices are:

k(1)µ = a2(1− kr2)−1/2 cos θδrµ − a2(1− kr2)1/2r sin θδθµ (5.4)

and
k(2)µ = a2r2 sin2 θ δφµ (5.5)

With Xµ = (η, r, θ, φ) the corresponding conservation equations (2.43) then
read:

[a2(1− kr2)−1/2 cos θr,τ ],τ −[a2(1− kr2)1/2r sin θθ,τ ],τ
= [a2(1− kr2)−1/2 cos θr,σ ],σ −[a2(1− kr2)1/2r sin θθ,σ ],σ (5.6)

and
(a2r2 sin2 θφ,τ ),τ = (a2r2 sin2 θφ,σ ),σ (5.7)

In addition, the gauge constraints (5.2) have the explicit form

(η,τ )
2 + (η,σ )2 − (1− kr2)−1[(r,τ )2 + (r,σ )2]
= r2[(θ,τ )2 + (θ,σ )2] + r2 sin2 θ [(φ,τ )2 + (φ,σ )2] (5.8)

and
η,τ η,σ = (1− kr2)−1r,τ r,σ +r2θ,τ θ,σ +r2 sin2 θφ,τ φ,σ . (5.9)

5.1.1 Straight string solutions

No general solution to equations (5.6)–(5.9) is, at present, known. However, it is
relatively easy to integrate the equations if the string’s trajectory has a high degree
of symmetry. The simplest case occurs when the string is static and straight.
Then it is always possible to transform the spatial coordinates in (5.3) so that
the projection of the world sheet onto the surfaces of constant η is a straight line
through r = 0. Thus θ and φ are constant, and with the gauge choice τ = η the
constraint (5.9) reduces to r,τ = 0. Equation (5.8), which is now a first integral of
(5.7), reads:

(1− kr2)−1(r,σ )2 = 1 (5.10)

and so
r = |σ | sin |σ | or sinh |σ | (5.11)

depending on whether k is 0, 1 or −1 respectively. That is, the world-sheet
parameter σ is just the proper conformal distance on the 3-surfaces of constant
η.

Perturbations of this simple straight-line geometry were first considered by
Alexander Vilenkin [Vil81a] in 1981. If θ and φ are assumed to have the form

θ = θ0 + ε θ1(τ, σ ) and φ = φ0 + ε φ1(τ, σ ) (5.12)
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where θ0 and φ0 are constants and ε is a small parameter, then to first order in ε
the constraint equations (5.8) and (5.9) read:

(η,τ )
2 + (η,σ )2 = (s,τ )2 + (s,σ )2 and η,τ η,σ = s,τ s,σ (5.13)

with

s(r) =
∫ r

0
(1− ku2)−1/2 du. (5.14)

equal to r , sin−1 r or sinh−1 r .
If the gauge choice τ = η and |σ | = s is retained, then to linear order in ε

the equations (5.6) and (5.7) reduce to the PDEs

θ1,ττ +2ȧ

a
θ1,τ = θ1,σσ +2r−1r,σ θ1,σ (5.15)

and

φ1,ττ +2ȧ

a
φ1,τ = φ1,σσ +2r−1r,σ φ1,σ (5.16)

where ȧ denotes da/dη.
To help solve these equations, first rotate the coordinates so that the

unperturbed string lies in the equatorial plane (i.e. θ0 = π/2) along the line
sin φ0 = 0. Then in terms of the Cartesian coordinates z = εrθ1 and y = εrφ1
normal to the unperturbed trajectory, equations (5.15) and (5.16) read:

z,ττ +2ȧ

a
z,τ = z,σσ +kz and y,ττ +2ȧ

a
y,τ = y,σσ +ky. (5.17)

To proceed further, it is necessary to prescribe an explicit form for the
conformal factor a. The two most common choices are a(η) = Aη and
a(η) = Aη2 (with A a constant), which correspond to the early behaviour of
radiation-dominated and matter-dominated Friedmann universes, respectively. If
a is assumed to have a general power-law dependence on η:

a(η) = Aηq (5.18)

then the equation for z becomes

z,ττ +2qτ−1z,τ = z,σσ +kz (5.19)

with a similar equation for y.
Hence, the linear modes of the string are generally of the form

y, z ∝ τ−(q− 1
2 ) J±(q− 1

2 )
[(ω2 − k)1/2τ ]eiωσ (5.20)

where Jν is a Bessel function of the first kind, and ω is the mode frequency. For
modes with ω2 < k the Bessel functions Jν in (5.20) should be replaced with the
corresponding modified functions Iν . Note that if the universe is closed (k = 1)
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then σ ranges over (−π, π], and so to ensure that the string is continuous ω must
be an integer. Thus the only possible mode with ω2 < k is a uniform translation of
the string (ω = 0) in a closed universe. In the degenerate case ω2− k = 0 (which
occurs only if ω = k = 0 or ω = k = 1) the mode functions are proportional to
eiωσ and τ 1−2qeiωσ (or ln τeiωσ if q = 1

2 ).
In the particular case of a radiation-dominated Friedmann universe (q = 1),

the oscillatory modes are simply

τ−1 sin[(ω2 − k)1/2τ ]eiωσ and τ−1 cos[(ω2 − k)1/2τ ]eiωσ . (5.21)

Vilenkin [Vil81a] has argued that, when they form, cosmic strings are likely to be
at rest with respect to the surroundingmatter. Thus for τ small it is to be expected
that z,τ and y,τ are both close to zero. This condition rules out modes of the
second type in equation (5.21), and leaves only modes of the form

τ−1 sin[(ω2 − k)1/2τ ]eiωσ . (5.22)

Now, for modes with frequencies satisfying ωτ � 1 the time derivatives z,τ
and y,τ are of order ωτ and remain small, so the physical amplitudes ay and az of
the perturbations increase linearly with a ∝ τ ≡ η. This means that perturbations
with wavelengths 2πa/ω larger than the horizon size aη/2 are amplified in
tandem with the general expansion of the universe. However, for high-frequency
modes with ωτ � 1 the physical amplitudes ay and az remain bounded and
oscillatory, just as they would in a non-expanding universe. Similar conclusions
apply in all other cases where the exponent q is positive, as Jν(x) ∼ xν for x
small and falls off as x−1/2 for x large, so that bounded perturbations of the form
(5.20) remain constant for small τ and fall off as a−1 ∝ τ−q at late times.

5.1.2 Ring solutions

A second class of trajectories that can be handled relatively easily are ring
solutions. These are planar solutions whose projections onto surfaces of constant
η are circles centred on r = 0. The coordinates r and η are, therefore, functions
of τ only. If the ring lies in the plane sin φ = 0 then from the gauge condition
(5.9) θ,τ = 0. Equation (5.8) consequently reduces to

r−2(η,τ )2 − (1− kr2)−1r−2(r,τ )2 = (θ,σ )2 (5.23)

which is possible only if θ,σ is constant. With the gauge choice σ = θ , equations
(5.6) and (5.8) now read:

r,ττ +2ȧ

a
η,τ r,τ +(1− kr2)−1kr(r,τ )2 + (1− kr2)r = 0 (5.24)

and
(η,τ )

2 = (1− kr2)−1(r,τ )2 + r2. (5.25)
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Equations (5.24) and (5.25) have been integrated numerically in the case of
a spatially-flat universe (k = 0) by Hector de Vega and Inigo Egusquiza [dVE94]
for a variety of conformal functions a with the power-law form (5.18). However,
solutions of this type give r only as an implicit function of the conformal time η.
A more direct method is to use (5.25) and its derivative to replace τ with η as the
independent variable in (5.24). The resulting equation is

(1− kr2)r̈ + krṙ2
1− ṙ2 − kr2 + 2ȧ

a
ṙ + r−1(1− kr2) = 0 (5.26)

where an overdot again denotes d/dη. The corresponding equation in the flat case
k = 0,

(1− ṙ2)−1r̈ + 2ȧ

a
ṙ + r−1 = 0 (5.27)

was first derived by Vilenkin [Vil81a].
With a(η) = Aηq equation (5.26) can be rewritten as

r̈ = −(1− kr2)−1[krṙ2 + 2qη−1(1− ṙ2 − kr2)ṙ ] − (1− ṙ2 − kr2)r−1 (5.28)

For small values of η, this equation admits an analytic solution of the form

r(η) = r0 + ṙ0η + 1
2 r̈0η

2 + · · · (5.29)

provided that ṙ0 = 0 or ṙ20 + kr20 = 1. The second possibility corresponds to
luminal motion of the string and is unlikely to be of physical importance. If
ṙ0 = 0 then the initial acceleration of the loop is

r̈0 = −(2q + 1)−1r−10 (1− kr20 ). (5.30)

Thus, once the values of k and q have been prescribed, the analytic solutions
of (5.28) are characterized by a single parameter, namely the initial radius r0.
Furthermore, if the spatial geometry is flat (k = 0) then the solution is scale-free,
in the sense that if r(η) is a solution then so is

r̄(η) = λr(λ−1η) (5.31)

for any non-zero constant λ1. That is, the timescale for the collapse of any loop is
proportional to its initial radius.

The shapes of the template solutions r(η) for a radiation-dominated (q = 1)
and a matter-dominated (q = 2) Friedmann universe with k = 0 are plotted
in figure 5.1. The initial radius is r0 = 1 in both cases. It is evident that the
loop collapses more quickly in a radiation-dominated universe than in a matter-
dominated universe. Figure 5.2 plots the physical radius ar of the ring, which
is proportional to ηqr(η), against the cosmological time t = ∫

a dη, which is

1 This feature was first noted by de Vega and Egusquiza [dVE94].
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Figure 5.1. Coordinate radius r for ring solutions in two spatially-flat Friedmann
universes.

Figure 5.2. Physical radius ar for ring solutions in two spatially-flat Friedmann universes.

proportional to (q + 1)−1ηq+1. Note that for small values of η the conformal
speed ṙ remains close to zero and the loop participates in the general expansion
of the universe. Eventually, however, the qη−1 term in (5.28) ceases to dominate
the dynamics of the loop, which then collapses at relativistic speed in a manner
similar to the circular loop solutions of section 4.2.1. The transition between the
regime of conformal expansion and the regime of relativistic collapse occurs when
η ≈ r0.

Following de Vega and Egusquiza [dVE94], it is, in principle, possible
to continue integrating the equations of motion through the point of collapse,
allowing the loop to re-expand. The solution then oscillates with a period that
falls off as η−q and a physical amplitude that tends asymptotically to a fixed
fraction of r0. However, there are good reasons for believing that a collapsing
circular loop of cosmic string would form a black hole rather than re-expand (see
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Figure 5.3. Physical radius for ring solutions in a closed radiation-dominated Friedmann
universe.

section 10.2), so the oscillating solutions are likely to be of little physical interest.

If k �= 0, the non-trivial spatial geometry of the Robertson–Walker
spacetimes for r ∼ 1 and greater makes the dynamics of large rings more
complicated. Some sample solutions in the cases k = 1 and k = −1 are
shown in figures 5.3 and 5.4 for a radiation-dominated Friedmann universe. The
dependent variable in the two diagrams is not the radial coordinate r but rather
the physical conformal radius sin−1(r) and sinh−1(r) respectively. Note that in a
closed universe (k = 1) the spatial curvature delays the collapse of large strings;
in fact, a string loop with maximal radius, r0 = 1, will, in principle, remain at
r = 1 forever, although it is unstable to small perturbations. In the case of an
open, hyperbolic universe (k = −1) the spatial curvature hastens the collapse of
large strings. The results for a matter-dominated universe are similar.

De Vega and Egusquiza [dVE94] have integrated the ring equations of
motion for a variety of Robertson–Walker metrics other than the standard
Friedmann universes considered here. The backgrounds they have examined
include the case q = −3/4; Myers’ spacetime [Mye87], which is characterized
by the expansion law a(η) = eη; and Mueller’s spacetime [Mue90].

Another background of cosmological interest is the de Sitter spacetime
(k = 0, q = −1), which describes an exponentially inflating universe. Here,
the evolution equations (5.6)–(5.9) are known to be integrable [dVS93], with the
resulting conserved quantity in the case of the ring equations (5.24) and (5.25)
being

C = η−1η,τ −η−2r r,τ . (5.32)

All the ring solutions with r non-zero and analytic at η = 0 converge
asymptotically to r ≈ η for large η. However, since a(η) = Aη−1 the relationship
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Figure 5.4. Physical radius for ring solutions in a hyperbolic radiation-dominated
Friedmann universe.

between the conformal time η and the cosmological time t in this case is

η = e−t/A (5.33)

and so the onset of inflation corresponds to η large—when the physical radius ar
of all the ring solutions is approximately equal to the scaling constant A—while
the inflationary epoch ends when η is close to zero, with ar ∼ et/A.

Furthermore, the de Sitter universe is unique among the Robertson–Walker
spacetimes with a power-law scaling of the form (5.18) in that the ring equation
(5.27) can be written as an autonomous equation for the physical radius R = ar as
a function of the cosmological time t . In terms of the scaled variables R̄ = R/A
and t̄ = t/A this equation reads simply:

R̄,t̄ t̄ −R̄,t̄ +[2(R̄,t̄ −R̄)+ R̄−1][1− (R̄,t̄ −R̄)2] = 0. (5.34)

Equation (5.34) has an unstable solution R̄ = 1/
√
2 which divides the ring

solutions into two distinct classes. Each ring solution can be characterized by
the value R̄0 of R̄ at which R̄,t̄ = 0. If R̄0 < 1/

√
2 then the solution expands

and recollapses in a finite proper time as illustrated by the three lower curves
in figure 5.5 (which have R̄0 = 0.3, 0.5 and 0.7 respectively). However, if
1/
√
2 < R̄0 < 1 then the ring is eternal, with R asymptoting to A from below

as t → −∞ and inflating away like et/A as t → ∞. (These are the solutions
with r ≈ η for large η mentioned previously.) The upper curve in figure 5.5 is
the solution for R̄0 = 0.9. Note that the zero point chosen for t in this diagram
is the moment when R̄ = R̄0. The solution R̄ = 1 is unstable and luminal, while
solutions with R̄0 > 1 are tachyonic.
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Figure 5.5. Template ring solutions in the de Sitter universe.

5.2 Strings near a Schwarzschild black hole

Another background spacetime that has been studied extensively in the context
of string dynamics is the exterior Schwarzschild metric, which in standard
Schwarzschild coordinates has the form

ds2 =
(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1
dr2 − r2 dθ2 − r2 sin2 θ dφ2 (5.35)

where m is the mass of the source.
The line element (5.35) has four obvious Killing vectors:

k(1)µ =
(
1− 2m

r

)
δtµ (5.36)

k(2)µ = r2 sin2 θδφµ (5.37)

k(3)µ = r2(sin φδθµ + sin θ cos θ cosφδφµ) (5.38)

and
k(4)µ = r2(cosφδθµ − sin θ cos θ sin φδφµ) (5.39)

corresponding to time translations and infinitesimal spatial rotations.
For computational purposes, the most convenient set of evolution equations

for an arbitrary string world sheet Xµ(τ, σ ) are the conservation equations
generated by (5.36) and (5.37):[(

1− 2m

r

)
t,τ

]
,τ =

[(
1− 2m

r

)
t,σ

]
,σ (5.40)

and
(r2 sin2 θφ,τ ),τ = (r2 sin2 θφ,σ ),σ (5.41)
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plus the gauge constraint(
1− 2m

r

)
[(t,τ )2 + (t,σ )2] −

(
1− 2m

r

)−1
[(r,τ )2 + (r,σ )2]

= r2[(θ,τ )2 + (θ,σ )2] + r2 sin2 θ [(φ,τ )2 + (φ,σ )2] (5.42)

and the conservation equation

sin φ(k(3) · X A),A + cosφ(k(4) · X A),A = 0 (5.43)

which reads simply as

(r2 θ,τ ),τ −r2 sin θ cos θ(φ,τ )2 = (r2θ,σ ),σ −r2 sin θ cos θ(φ,σ )2. (5.44)

5.2.1 Ring solutions

One simple class of solutions, describing the collapse of a circular ring, can be
generated by making the gauge choice σ = φ and assuming that t , r and θ are
functions of the gauge time τ only. The non-trivial equations of motion (5.40),
(5.42) and (5.44) then read: [(

1− 2m

r

)
t,τ

]
,τ = 0 (5.45)(

1− 2m

r

)
(t,τ )

2 =
(
1− 2m

r

)−1
(r,τ )

2 + r2(θ,τ )2 + r2 sin2 θ (5.46)

and
(r2θ,τ ),τ +r2 sin θ cos θ = 0. (5.47)

The first of these equations can be once integrated to give(
1− 2m

r

)
t,τ = K (5.48)

where, in view of the discussion on conservation laws in section 2.4, the conserved
energy E of a ring with mass per unit length µ is equal to 2πµK .

Substitution of (5.48) into the constraint equation (5.46) produces a quadratic
invariant

K 2 = (r,τ )2 + r(r − 2m)[(θ,τ )2 + sin2 θ ] (5.49)

which when differentiated and combined with (5.47) gives the radial acceleration
equation

r,ττ −(r − 3m)(θ,τ )2 + (r − m) sin2 θ = 0. (5.50)

This equation was first derived by de Vega and Egusquiza [dVE94]. One feature
of (5.49) and (5.50) that should be noted is that once the ring has fallen inside the
sphere r = 3m collapse into the Schwarzschild singularity at r = 0 is inevitable
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(although the ring itself may collapse to a point before it reaches r = 0), as r,ττ
is negative when m < r < 3m and r,τ cannot vanish if 0 < r < 2m. The surface
r = 3m is therefore an effective horizon for all ring solutions2.

Another quantity of interest is the proper time s(τ ) in the rest frame of the
ring, which is determined by the equation

ds2 =
(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1
dr2 − r2 dθ2. (5.51)

In view of (5.46), therefore,
s,τ = r | sin θ |. (5.52)

The zero point of s will here be chosen to coincide with the instant at which the
radial coordinate r attains its maximum value r0. Then according to (5.49),

K 2 = r0(r0 − 2m)(ω20 + sin2 θ0) (5.53)

where ω0 is the value of θ,τ at s = 0. The dependence of r and θ on the proper
time s can be found by integrating equations (5.49), (5.50) and (5.52) forward
from s = 0.

In the case where the ring collapses inward along the equatorial plane
θ = π/2 the equations of motion can be solved exactly, to give

r(τ ) = m + (r0 − m) cos τ (5.54)

and
s(τ ) = mτ + (r0 − m) sin τ. (5.55)

Note that the ring crosses the Schwarzschild horizon (at r = 2m) when

τ = cos−1[m/(r0 − m)] (5.56)

and falls into the singularity at r = 0 when

τ = π − cos−1[m/(r0 − m)]. (5.57)

If r0 � m these two events occur after a proper time s ≈ s∗ − 3
2m

2/r0 and
s ≈ s∗ + 1

2m
2/r0 respectively, where

s∗ = r0 +
(π
2
− 1

)
m. (5.58)

Thus the time taken for the ring to fall from the horizon to the singularity is only
2m2/r0 � 2m in this limit. However, if r0 = 2m then the infall time is s = mπ .
The variation of r with s is shown for a selection of equatorial ring trajectories
with r0 ranging from 2m to 16m in figure 5.6.
2 By way of comparison, the effective horizon for freely-moving particles is r = 3

√
3m.
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Figure 5.6. Radius versus proper time for equatorial ring solutions in the Schwarzschild
metric.

If θ �= π/2 the string describes a circle outside the equatorial plane but
centred on the polar axis through the black hole. In this case the dynamics of the
ring is complicated by the competition between the tension in the string, which
induces a collapse towards the polar axis (θ = 0 or π) and the inward radial
acceleration due to the gravitational field of the hole. A variety of outcomes are
possible, depending on the initial conditions on the trajectory.

Figure 5.7 shows r as a function of the proper time s for 11 solutions with
r0 = 10m, θ0 = π/4 and ω0 ranging from 0 to 1. When ω0 = 0, 0.1, 0.2 or
0.3 the ring rapidly collapses onto the polar axis after relatively little radial infall.
If ω0 = 0.4, 0.5 or 0.6 the ring remains open long enough to cross the black
hole horizon and fall into the Schwarzschild singularity, while the solution with
ω0 = 0.7 crosses the horizon but collapses to a point on the axis before reaching
the singularity. In the remaining solutions, where ω0 = 0.8, 0.9 and 1, the ring
falls across the equatorial plane and subsequently collapses to a point outside the
south pole of the hole.

In order to visualize the geometry of the infall trajectories, it is instructive
to write the line element on the spacelike hypersurfaces t = constant in the
conformally-flat form

ds2 = −
(
1+ m

2R

)4
(dR2 + R2 dθ2 + R2 sin2 θ dφ2) (5.59)

where
R = 1

2 (r − m)+ 1
2

√
r2 − 2mr . (5.60)

This transformation, which is well defined only for r > 2m, allows the trajectories
to be expressed in terms of the horizontal and vertical coordinates

ρ = R sin θ and z = R cos θ (5.61)
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Figure 5.7. Radius versus proper time for non-equatorial ring solutions collapsing from
r0 = 10m, θ0 = π/4.

Figure 5.8. Trajectories of non-equatorial ring solutions collapsing from r0 = 10m,
θ0 = π/4.

respectively. Figure 5.8 plots z against ρ for the 11 solutions examined in
figure 5.7.

As with the ring solutions in Robertson–Walker backgrounds, it is, in
principle, possible to integrate the equations of motion through the point of
collapse and so allow the ring to expand and recollapse any number of times. De
Vega and Sanchez [dVE94] have done this for a range of ring solutions similar
to the ones considered here. The resulting behaviour is surprisingly rich: in one
solution the ring starts in the northern hemisphere, collapses on the south polar
axis, re-expands and passes back over the hole to recollapse on the north polar
axis with an oscillation amplitude larger than its initial amplitude. De Vega and
Sanchez interpret this as a scattering-induced ‘transmutation’ of the string which
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converts some of its bulk kinetic energy into oscillatory motion.
More recently, Andrei Frolov and Arne Larsen [FL99] have subjected the

problem of the collapse and re-expansion of a circular string along the polar axis
of a non-rotating black hole to a more detailed analysis. They divide the final state
of the string into three classes: capture by the black hole, escape forward (from
the northern hemisphere to the south pole) and escape with ‘backscatter’ (from the
northern hemisphere back to the north pole). It turns out that all trajectories with
K ≤ 4.37m end in capture, but that at higher energies the constant-K surfaces
in the four-dimensional phase space generated by the initial values of r , r,τ , θ
and θ,τ can show a complicated fractal structure. For 4.37m ≤ K ≤ 5.67m
the boundaries between the regions of capture and the regions of escape remain
regular but for K ≥ 5.67m the fractal dimension of the region boundaries
on the two-dimensional slice of phase space defined by the initial condition
(r cos θ),τ = 0 rapidly rises from 1 to 1.6, and then more slowly to about 1.84, as
K increases to 103m.

This fractal structure is of theoretical interest because, in the words of Frolov
and Larsen [FL99], ‘the system . . . represents the simplest and most symmetric
example of string dynamics in black hole spacetimes and therefore suggests quite
generally that string dynamics in black hole spacetimes is chaotic’. Nonetheless,
collapse and re-expansion solutions of this type are unlikely to be physical, for
the reasons outlined in section 5.1.

5.2.2 Static equilibrium solutions

Another class of string solutions in a Schwarzschild background that can be
constructed relatively easily are static equilibrium configurations. These describe
infinite (open) strings in which the tension at each point exactly counters the
gravitational attraction of the central mass, so that the string remains at rest with
respect to the spatial coordinates. To generate a solution of this type, it is simplest
to let t = τ and r , θ and φ be functions of σ only. The first of the equations of
motion (5.40)–(5.44) is then satisfied identically, while the other three read:

(r2 sin2 θφ,σ ),σ = 0 (5.62)

1− 2m

r
=
(
1− 2m

r

)−1
(r,σ )

2 + r2(θ,σ )2 + r2 sin2 θ(φ,σ )2 (5.63)

and
(r2θ,σ ),σ = r2 sin θ cos θ(φ,σ )2. (5.64)

Note that if it were not for the presence of the term 2m/r on the left-hand side
of (5.63), these would just be the equations of a subfamily of spacelike geodesics
in the Schwarzschild metric. Furthermore, from equations (5.62) and (5.64) it is
clear that the static equilibrium solutions are planar, and so it is possible without
loss of generality to restrict attention to the equatorial plane. The equilibrium
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equations then read:
φ,σ = J/r2 (5.65)

and

(r,σ )
2 =

(
1− 2m

r

)2
− J 2

(
1− 2m

r

)
/r2 (5.66)

where J is a constant.
In fact, if r0 denotes the minimum value of r then J 2 = r20 − 2mr0, and on

eliminating σ in favour of φ as the parametric variable the equilibrium conditions
reduce to a single equation:(

dr

dφ

)2
= (r2 − 2mr)

(
r2 − 2mr

r20 − 2mr0
− 1

)
(5.67)

with formal solution

φ−φ0 = (r0−m)−1(r20−2mr0)1/2{K [m/(r0−m)]−F[u,m/(r0−m)]} (5.68)

where u = sin−1[(r0 − m)/(r − m)],

F(u, k) =
∫ u

0
(1− k2 sin2 w)−1/2 dw (5.69)

is the elliptical integral of the first kind, and K (k) = F(π/2, k) is the
corresponding complete integral.

In particular, the net angular deviation φ of the string from a straight line
is

φ ≡ π − 2 lim
r→∞(φ − φ0) = π − 2(r̄ − 1)−1(r̄2 − 2r̄)1/2K [(r̄ − 1)−1] (5.70)

where r̄ = r0/m. In the limit as the periastron point at r = r0 approaches the
black hole horizon, the angular deviation φ tends to π and the two branches of
the static equilibrium solution collapse to a single radial line emanating from the
horizon.

To better illustrate the distortion in the shape of the string induced by
the presence of the central mass, figure 5.9 plots six sample static equilibrium
solutions, with r0/m equal to 8, 6, 4, 3, 2.5 and 2.1, in terms of the conformally-
flat Cartesian coordinates x = R cosφ and y = R sin φ, where R was defined
previously in equation (5.60). In figure 5.10, the net angular deviation φ in the
string is plotted against r̄ = r0/m, with r̄ ranging from 2 to 6. Note that for r̄
close to 2,

φ ≈ π +√2ε1/2 ln ε (5.71)

with ε = r̄ − 2, whereas, for large values of r̄ ,

φ ≈ π
4
m2/r20 . (5.72)



Scattering and capture of a straight string by a Schwarzschild hole 159

Figure 5.9. Six static equilibrium solutions in the Schwarzschild metric.

Figure 5.10. Angular deviationφ of a static string as a function of the periastron distance
r0.

5.3 Scattering and capture of a straight string by a
Schwarzschild hole

Another class of string solutions in a Schwarzschild background that has received
some attention recently describes the dynamical response of an infinite string,
initially straight, as it passes by a non-rotating compact mass or black hole.
The fully relativistic version of this problem can only be addressed numerically,
and was first examined by Steven Lonsdale and Ian Moss in 1988 [LM88].
Unfortunately, Lonsdale and Moss gave very little mathematical detail of their
calculations and more recent treatments of the problem by Jean-Pierre de Villiers
and Valeri Frolov [VF98b, VF98a] and Don Page [Pag98] suggest substantially
different conclusions.
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The most convenient choice of coordinates for the Schwarzschild metric in
this case is the isotropic form, which has the line element

ds2 = (1+ 1
2ψ)

−2(1− 1
2ψ)

2 dt2 − (1+ 1
2ψ)

4(dx2 + dy2 + dz2) (5.73)

where ψ = m/R is the equivalent Newtonian potential, and the conformal radial
coordinate R = (x2 + y2 + z2)1/2 was introduced in (5.60). In the absence of
a central mass, a straight string oriented parallel to the z-axis and travelling with
uniform speed v in the x-direction has the standard-gauge trajectory

Xµ0 (σ, τ ) ≡ [t0, x0, y0, z0] = [γ τ, γ vτ, b, σ ] (5.74)

where γ = (1− v2)−1/2 is the Lorentz factor and b > 0 the impact parameter of
the string. In what follows, this flat-space trajectory will be imposed as the initial
condition in the limit as τ →−∞.

Broadly speaking, there are two possible fates in store for the string as
it passes the central mass: either it remains entirely outside the black hole’s
event horizon at R = 1

2m and eventually recedes to infinity in an excited state,
carrying off some of the hole’s gravitational energy in the form of outward-
moving oscillatory modes; or its near-equatorial section crosses the event horizon
and is presumably crushed by the central singularity. De Villiers and Frolov
[VF98b] refer to these two possibilities as scattering and capture respectively.
The boundary between the two defines a critical curve in the two-dimensional
parameter space generated by the speed v and impact parameter b of the initial
trajectory.

It is possible to gain some analytic insight into the dynamical response of the
string, and, in particular, the form of the critical curve, by expanding the string’s
trajectory in powers of the central mass m:

Xµ(σ, τ ) = Xµ0 + Xµ1 + Xµ2 + · · · (5.75)

with Xµk proportional to mk . To linear order in m the equation of motion (5.1)
then reads:

Xµ1 ,ττ −Xµ1 ,σσ = 1�
µ
κλ(X0)(X

κ
0 ,σ X

λ
0 ,σ −Xκ0 ,τ Xλ0 ,τ ) (5.76)

where 1�
µ
κλ is the Christoffel symbol truncated at linear order in the potential ψ ,

so that

1�
µ
κλ(X0)(X

κ
0 ,σ X

λ
0 ,σ −Xκ0 ,τ Xλ0 ,τ ) = 2γ 2[vψ,x , 0, v2ψ,y , ψ,z ] (5.77)

with the right-hand expressions understood to be evaluated on the unperturbed
trajectory (x, y, z) = (γ vτ, b, σ ).

In order to recover the unperturbed trajectory in the limit as τ → −∞, it
is necessary to prescribe the initial data so that x1, y1 and z1 are all zero in this
limit. It turns out that t1 diverges logarithmically in |τ | as τ → −∞, and so it is
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Figure 5.11. The perturbation t1 as a function of τ and σ .

not possible to impose a similar condition on t1. However, if t1 is chosen to be
zero at the moment of time symmetry τ = 0 then t1 remains everywhere small in
comparison with γ τ .

The resulting expression for the first-order perturbation in t is

t1 = − mγ 3v2
∫ τ

0
τ ′ dτ ′

∫ σ+(τ−τ ′)

σ−(τ−τ ′)
(γ 2v2τ ′2 + b2 + σ ′2)−3/2 dσ ′

= m{ln[γ v2τ − γ−1σ + α(σ, τ )] + ln[γ v2τ + γ−1σ + α(σ, τ )]}
+ 1

2mγ [ln(β+ − σ+)− ln(β+ + σ+)+ ln(β− − σ−)− ln(β− + σ−)]
− m[ln(β+ − γ−1σ+)+ ln(β− − γ−1σ−)] (5.78)

where α(σ, τ ) = √
γ 2v2τ 2 + b2 + σ 2 and β± =

√
b2 + σ 2±, with σ± = τ ± σ as

before. The evolution of t1 in the case v = 0.5 is shown in figure 5.11.
It is evident from the second component of the equation of motion that

x1 = 0, and so the perturbation of the trajectory in the direction of motion is
zero to linear order in m. The perturbation y1 in the direction of the black hole is
given by

y1 = − mγ 2v2b
∫ τ

−∞
dτ ′

∫ σ+(τ−τ ′)

σ−(τ−τ ′)
(γ 2v2τ ′2 + b2 + σ ′2)−3/2 dσ ′

= − mγ v
{
tan−1

[
b2 + γ 2v2τσ+
bγ vα(σ, τ )

]
+ tan−1(vσ+/b)

}

− mγ v
{
tan−1

[
b2 + γ 2v2τσ−
bγ vα(σ, τ )

]
+ tan−1(vσ−/b)

}
(5.79)

and is plotted in the case v = 0.5 in figure 5.12.
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Figure 5.12. The perturbation y1 as a function of τ and σ .

Figure 5.13. The perturbation z1 as a function of τ and σ .

Finally, the longitudinal perturbation z1, which essentially measures how the
gauge parameter σ is changing at different values of z, is given by

z1 = − mγ 2
∫ τ

−∞
dτ ′

∫ σ+(τ−τ ′)

σ−(τ−τ ′)
(γ 2v2τ ′2 + b2 + σ ′2)−3/2σ ′ dσ ′

= mγ {ln[γ v2τ − γ−1σ + α(σ, τ )] − ln[γ v2τ + γ−1σ + α(σ, τ )]}
− mγ [ln(b2 + v2σ 2+)− ln(b2 + v2σ 2−)] (5.80)

and is plotted in the case v = 0.5 in figure 5.13.
In the late-time limit all the non-zero perturbations t1, y1 and z1 develop a

pair of left- and right-moving kinks which propagate outwards at the speed of
light. For the purposes of understanding the dynamics of the string, the most
important of the perturbations is y1, which in the limit as τ →∞ has the form

y1 ≈ −2mγ v{tan−1[v(τ + σ)/b] + tan−1[v(τ − σ)/b]}. (5.81)
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Thus the kinks have an amplitude y = −2πmγ v, which is equal to the
net deviation of the string in the y-direction to linear order in m, and have a
spatial width of order b/v. The energy E carried away by the kinks can be
approximated to leading order in m as

E = 1
2µ lim

τ→∞

∫ ∞

−∞
[(∂y1/∂σ)2 + (∂y1/∂τ)2] dσ

= 4πµm2γ 2v3/b (5.82)

where µ is the mass per unit length of the string.
Another feature of interest is the equation of the critical curve b(v) dividing

the scattering trajectories from those that are captured by the central mass. As is
evident from figure 5.12, the point on the string that passes closest to the central
mass in the linear approximation is the midpoint of the string at σ = 0. To linear
order in m, the distance R0 of this point from the central mass is given by

R20(τ ) = γ 2v2τ 2 + [b + y1(0, τ )]2

≈ γ 2v2τ 2 + b2 − 4mbγ v

[
tan−1

(√
τ 2/b2 + γ−2v−2

)
+ tan−1(vτ/b)

]
.

(5.83)

The value τmin of τ which minimizes this expression satisfies the equation

0 = 2γ 2v2τmin − 4mb2γ v2

b2 + v2τ 2min

1+ τminb√
τ 2min + b2γ−2v−2

 . (5.84)

At this level of approximation τmin = 2mγ−1 + O(m2), with

R20(2mγ
−1) = b2 − 4bmγ v tan−1(γ−1v−1)+ O(m2). (5.85)

The critical value of b can now be calculated by setting R20(2mγ
−1) equal to

m2/4, the square of the radius of the black hole’s event horizon. To linear order
in m, therefore, the critical value of b is

b1(v) =
[
2γ v tan−1(γ−1v−1)+ 1

2

√
1+ 16γ 2v2{tan−1(γ−1v−1)}2

]
m (5.86)

where the subscript 1 indicates the level of approximation.
The graph of b1/m against v is shown in figure 5.14. Note that in the low-

velocity limit v → 0 the critical impact parameter b1 approaches 1
2m, whereas

in the ultra-relativistic limit v → 1 it tends to (2 + 1
2

√
17)m ≈ 4.062m. The

first of these limits can be understood by referring back to the static equilibrium
solutions examined in section 5.2.2. There it was seen that for small values of
m the bending angle φ of the string is of order m2. Thus in the static limit the
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Figure 5.14. The first-order approximation b1 to the critical curve.

string does not bend at all to linear order in m, and the string propagates past the
central mass with a constant impact parameter. (This can also be seen directly
from the general expression (5.79) for y1.)

However, it is clear on physical grounds that a string with a small initial
velocity will eventually fall into the central mass unless its impact parameter is
very large. In fact, as has been argued by Don Page [Pag98], the bending angle
of a string moving at a low speed v should be of order φ ∼ v/c (where c is the
speed of light), as longitudinal disturbances will move with velocity c whereas the
radial motion of the string is of order v. Given that φ is known to be of order
m2 in this limit, it must on dimensional grounds be proportional to m2/b2, and so
the critical value of b should be of order m/v1/2. Thus the linear approximation
is extremely poor in the low-velocity limit.

Similarly, in the ultra-relativistic limit it is to be expected that, because
perturbations in the string can propagate no faster than the speed of light, the
elements of the string are essentially decoupled from one another and should
behave like ultra-relativistic particles. The critical impact parameter for a freely-
moving ultra-relativistic particle in the Schwarzschild metric is known to be
3
√
3m ≈ 5.196m, and so the linear approximation is accurate to no better than

about 20% in this limit as well.
A more reliable approximation to the critical curve can be generated by

solving the string equation of motion (5.1) to order m2. Once the second-order
perturbations x2(σ, τ ) and y2(σ, τ ) are known, the distance R0 of the midpoint of
the string from the central mass is given to order m2 by

R20(τ ) = [γ vτ + x2(0, τ )]2 + [b + y1(0, τ )+ y2(0, τ )]2. (5.87)

Since the time τmin of closest approach is of order m and x2 and y2 are of order
m2,

R20(τmin) = γ 2v2τ 2min + b2 − 4mbγ v

[
tan−1

(√
τ 2min/b

2 + γ−2v−2
)
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+ tan−1(vτmin/b)

]
+ 2by2(0, 0)+ O(m3) (5.88)

from which it is evident that τmin = 2mγ−1 + O(m2) as before. So the distance
of closest approach is given by

R20(2mγ
−1) = b2 − 4bmγ v tan−1(γ−1v−1)+ 4γ 2v2[tan−1(γ−1v−1)]2m2

− 4v2m2 + 2by2(0, 0)+ O(m3) (5.89)

and can be calculated exactly to order m2 from a knowledge of y2(0, 0) alone.
Now, the equation for the perturbation y2 reads:

y2,ττ −y2,σσ = 2�
y
κλ(X0)(X

κ
0 ,σ X

λ
0 ,σ −Xκ0 ,τ Xλ0 ,τ )

+ 2 1�
y
κλ(X0)(X

κ
1 ,σ X

λ
0 ,σ −Xκ1 ,τ Xλ0 ,τ )

+1 �
y
κλ,ν (X0)X

ν
1(X

κ
0 ,σ X

λ
0 ,σ −Xκ0 ,τ Xλ0 ,τ ) (5.90)

where 2�
µ
κλ is the contribution to the Christoffel symbol quadratic in the potential

ψ , and gives

2�
y
κλ(X0)(X

κ
0 ,σ X

λ
0 ,σ −Xκ0 ,τ Xλ0 ,τ ) = − 1

2γ
2(7+ 2v2)ψψ,y . (5.91)

Also, after some algebraic manipulation it can be seen that

1�
y
κλ,ν (X0)X

ν
1(X

κ
0 ,σ X

λ
0 ,σ −Xκ0 ,τ Xλ0 ,τ ) = 2γ 2v2(ψ,yy y1 + ψ,yz z1) (5.92)

and

21�
y
κλ(X0)(X

κ
1 ,σ X

λ
0 ,σ −Xκ1 ,τ Xλ0 ,τ )

= 2[(γ t1,τ −z1,σ )ψ,y −γ vy1,τ ψ,x +y1,σ ψ,z ] (5.93)

where the first term on the right can be simplified by invoking the identity
γ t1,τ −z1,σ = 2γ 2ψ , which follows by expanding the gauge constraint X2

τ +
X2
σ = 0 to linear order in m.

Integration of (5.90), therefore, gives

y2(0, 0) =
∫ 0

−∞
dτ

∫ −τ

τ

[ 14ψψ,y +γ 2v2(ψ,yy y1 + ψ,yz z1)
− γ vy1,τ ψ,x +y1,σ ψ,z ] dσ (5.94)

where as previously ψ and its derivatives are evaluated on the unperturbed
trajectory (x, y, z) = (γ vτ, b, σ ). In view of the rather forbidding expressions
(5.79) and (5.80) for the perturbations y1 and z1 an exact expression for y2(0, 0)
might seem unlikely. However, after a considerable amount of mathematical
reduction it turns out that

y2(0, 0) = m2b−1γ v
[
sin−1(1− 2γ−2)− π

2

]
+ 4m2b−1γ 2v2 ln

(
γ 2

γ 2 − 1

)
− 1

4m
2b−1γ−1v−1(1+ 8γ 2v2) tan−1(γ−1v−1). (5.95)
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The critical value b2 of the impact parameter can now be found by setting the
formula for R20(2mγ

−1) in (5.89) equal to the square m2/4 of the horizon radius
and solving for b, to give

b2(v) =
[
2γ v tan−1(γ−1v−1)+ 1

2

√
F(v)

]
m (5.96)

where

F(v) = 1+ 16v2 − 8γ v
[
sin−1(1− 2γ−2)− π

2

]
− 32γ 2v2 ln

(
γ 2

γ 2 − 1

)
+ 2γ−1v−1(1+ 8γ 2v2) tan−1(γ−1v−1). (5.97)

Note here that b2 ≈ 1√
2
m/v1/2 in the low-velocity limit, in line with the

expectations mentioned earlier; whereas in the ultra-relativistic limit (v → 1)
the value of b2 tends to (2 + 1

2

√
17)m and thus gives no improvement over the

first-order approximation b1.
De Villiers and Frolov [VF99] have integrated the full string equations of

motion (5.1) for a wide range of initial velocities v and impact parameters b, and
have constructed a numerical approximation to the critical curve b = bcrit(v), as
shown by the open circles in figure 5.15. Their results confirm that bcrit ∼ m/v1/2
for v close to 0 and that bcrit → 3

√
3m as v → 1. The well-defined minimum

of about 3.2 in bcrit, which occurs at v ≈ 0.25, is due to the action of the
string tension, which is almost inoperative at high velocities but lends the string
sufficient rigidity at moderate velocities to allow it to escape the black hole’s
clutches down to relatively small impact parameters3.

As can be seen from figure 5.15, the second-order expansion b2 predicts
the general shape of the critical curve quite well but consistently underestimates
the values of bcrit by 10–20%. Page [Pag98] has predicted that bcrit should be
a discontinuous function of v, particularly for ultra-relativistic string velocities,
as he expects the string in this limit to wrap itself around the black hole a large
number of times before being captured. However, de Villiers and Frolov [VF99]
have seen no evidence in their numerical simulations of multiple wrappings of the
string for their range of initial velocities, which extends up to v = 0.995.

Both Page [Pag98] and de Villiers and Frolov [VF98a] make use of a
somewhat cruder approximation than b2 to estimate the critical impact parameter
at order m2 in the string trajectory. They do this by calculating the distance of the
string plane from the equatorial plane at late times

y∞ = b + lim
τ→∞[y1(σ, τ )+ y2(σ, τ )] (5.98)

and then setting it equal to the black hole radius m/2. Since

lim
τ→∞ y1(σ, τ ) = −2πmγ v (5.99)

3 By contrast, the earliest published analysis of string scattering by a Schwarzschild hole, due to
Lonsdale and Moss [LM88], claimed that bcrit was a monotonically decreasing function of v and that
bcrit ∼ v−1 for small v.
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Figure 5.15. Two second-order approximations b2 and b(2) for the critical curve plotted
against the numerical results of de Villiers and Frolov.

and

lim
τ→∞ y2(σ, τ ) =

∫ ∞

−∞
dτ

∫ −∞

−∞
[ 14ψψ,y +γ 2v2(ψ,yy y1 + ψ,yz z1)

− γ vy1,τ ψ,x +y1,σ ψ,z ] dσ
= − π

4
m2b−1γ−1v−1(1+ 16γ 2v2) (5.100)

this procedure leads to the approximate critical curve:

b(2) =
[
1
4 + πγ v + 1

4

√
4πγ−1v−1 + 1+ 72πγ v + 16π2γ 2v2

]
m. (5.101)

The dependence of b(2) on v is also shown in figure 5.15. Note that for small
values of v the value of b(2) diverges as (π/4)1/2mv−1/2, which is consistent with
the numerical results, but that b(2) also diverges (as 2πγ ) in the ultra-relativistic
limit.

5.4 Ring solutions in the Kerr metric

A natural extension of the analysis of the previous sections is to consider the
motion of a cosmic string in the gravitational field of a rotating black hole. The
relevant background spacetime is then the Kerr metric, which in Boyer–Lindquist
coordinates (t , r , θ , φ) has the line element

ds2 = gtt dt2 + 2gtφ dt dφ + gφφ dφ2 + grr dr2 + gθθ dθ2
= ρ−2[(r2 − 2mr + a2 cos2 θ) dt2 + 4mar sin2 θ dt dφ −�2 sin2 θ dφ2]
−−1ρ2 dr2 − ρ2 dθ2 (5.102)
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where
ρ2 = r2 + a2 cos2 θ  = r2 − 2mr + a2 (5.103)

and
�2 = (r2 + a2)2 − a2 sin2 θ (5.104)

and m and ma are the mass and angular momentum of the source, respectively.
The zeroes of the function correspond to the outer and inner event horizons of
the black hole, while the surface r2 − 2mr + a2 cos2 θ = 0 is the static limit of
the hole (the boundary of the ergosphere): the minimum radius at which a test
particle can remain at rest with respect to the angular coordinate φ.

The complexity of the Kerr metric makes it a daunting task to write down,
let alone solve, the general string equations of motion but one case that is known
to be exactly solvable is the collapse of a circular ring centred on the rotation axis
of the hole. This particular problem is made tractable by the fact that the Kerr
metric possesses two simple Killing vectors, one timelike

k(1)µ = gttδtµ + gtφδφµ (5.105)

and one rotational
k(2)µ = −(gφφδφµ + gtφδtµ). (5.106)

The corresponding conservation equations read:

(gtt t,τ +gtφφ,τ ),τ = (gtt t,σ +gtφφ,σ ),σ (5.107)

and
−(gφφφ,τ +gtφt,τ ),τ = −(gφφφ,σ +gtφt,σ ),σ . (5.108)

In addition, the gauge constraints (5.2) have the form:

gtt [(t,τ )2 + (t,σ )2] + 2gtφ(t,τ φ,τ +t,σ φ,σ )+ gφφ[(φ,τ )2 + (φ,σ )2]
= −grr [(r,τ )2 + (r,σ )2] − gθθ [(θ,τ )2 + (θ,σ )2] (5.109)

and

gtt t,τ t,σ +gtφ(t,τ φ,σ +t,σ φ,τ )+ gφφφ,τ φ,σ +grrr,τ r,σ +gθθθ,τ θ,σ = 0.
(5.110)

For a solution with circular geometry centred on the rotation axis, it is always
possible to choose the gauge coordinates so that r and θ are functions of τ alone
but because of the rotational frame-dragging induced by the spin of the black hole
it is not necessarily true that t and φ will separately be functions of τ and σ only.
However, the symmetry of the solution ensures that each element of the string
will fall along a path of zero angular momentum, so that

−(gφφφ,τ +gtφt,τ ) = 0. (5.111)
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This condition allows equation (5.108) to be integrated once, giving

−(gφφφ,σ +gtφt,σ ) = F(τ ) (5.112)

for some function F . Using equations (5.111) and (5.112) to eliminate φ,τ and
φ,σ from the second of the gauge constraint equations (5.110) then gives

(gtt − g2tφ/gφφ)t,τ t,σ = 0 (5.113)

and so t,σ = 0. By choosing F(τ ) = −gφφ , it is always possible to set φ,σ = 1,
but it should be noted that φ,τ �= 0 in general.

As in the Schwarzschild case, the energy conservation equation (5.107) can
now be integrated to give

gtt t,τ +gtφφ,τ ≡ (gtt − g2tφ/gφφ)t,τ = K (5.114)

where 2πµK is the total energy of the string. This reduces the first of the gauge
constraints, equation (5.109), to

(gtt − g2tφ/gφφ)−1K 2 + gφφ + grr (r,τ )2 + gθθ (θ,τ )2 = 0. (5.115)

Explicitly in terms of r and θ this equation reads:

(r,τ )
2 +(θ,τ )2 = [(r2 + a2)2 − a2 sin2 θ ]ρ−4(K 2 − sin2 θ). (5.116)

To close the equations of motion it is necessary to invoke a further equation
for either r,τ or θ,τ . The Kerr metric is known to possess an additional symmetry,
reflected in the existence of a Killing–Staeckel tensor which generates a further
non-trivial constant of motion, that allows the geodesic equation ẋµDµ ẋν = 0 to
be separated completely [Car77]. Unfortunately, this Killing–Staeckel tensor has
only limited value when integrating the cosmic string equations of motion, and it
is more convenient to use the θ component of the string equation (5.1) directly,
which eventually reduces to the form

(ρ2θ,τ ),τ +a2 sin θ cos θρ−2K 2

= sin θ cos θ [a2 sin2 θ(− 2mr)ρ−2 − (r2 + a2)] (5.117)

and is the generalization to the Kerr metric of equation (5.47).
An alternative form of the equation of motion can be generated by

differentiating equation (5.116) and then using (5.117) to eliminate the terms
involving θ,ττ . After a considerable amount of algebraic manipulation, this gives
the following generalization of the radial acceleration equation (5.50):

2ρ−2a2 sin θ cos θr,τ θ,τ
= −�−2(r2 + a2)[r3 − 3mr2 + a2(r + m)](θ,τ )2r,ττ
+ �−2ρ−2a2[r3 + 3mr2 + a2 cos2 θ(r − m)](r,τ )2 sin2 θ
+ (r − m) sin2 θ + ρ−4a2(r − m)(r2 + 2mr + a2 cos2 θ) sin4 θ.

(5.118)
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In particular, at any point where r,τ = 0,

r,ττ = − (r − m) sin2 θ − ρ−4a2(r − m)(r2 + 2mr + a2 cos2 θ) sin4 θ
+�−2(r2 + a2)[r3 − 3mr2 + a2(r + m)](θ,τ )2 (5.119)

and since the outer event horizon of a non-extreme Kerr black hole lies outside
r = m the effective horizon for circular string solutions occurs when

r3 − 3mr2 + a2(r + m) = 0. (5.120)

That is, the string will inevitably be captured by the hole if it falls inside the
surface r = r∗, where

r∗ = m[1+ 2p1/6 cos(q/3)] (5.121)

with
p = 1− j2 + 1

3 j
4 − 1

27 j
6 (5.122)

and
q = tan−1[ j (1− 2

3 j
2 − 1

27 j
4)1/2/(1− j2)] (5.123)

where j = a/m. In the non-rotating limit j = 0, the standard Schwarzschild
result r∗ = 3m is recovered; whereas in the extreme Kerr limit j → 1 the radius
r∗ of the effective horizon tends to (1+√2)m ≈ 2.414m. For intervening values
of j , the effective horizon radius r∗ is a monotonically-decreasing function of j .

Other than this (comparatively minor) shrinkage of the effective horizon, the
dynamics of ring solutions aligned perpendicular to the spin axis of a Kerr hole is
little different from the dynamics of ring solutions outside a Schwarzschild hole.

5.5 Static equilibrium configurations in the Kerr metric

It was seen previously that the Schwarzschild metric admits a simple family of
static solutions to the string equation of motion (5.1). It should perhaps not come
as a surprise that similar families of solutions exist in any stationary background
spacetime, including, of course, the Kerr metric. What is more surprising is
that the equations governing static string configurations in the Kerr metric are
completely separable and therefore exactly integrable [FSZH89]. Brandon Carter
and Valeri Frolov in 1989 described this particular result as ‘the latest addition
to the long list of what Chandrasekhar . . . has referred to as the “miraculous”
properties of the Kerr solution, of which the earliest . . . was the separability of the
simple geodesic Hamilton-Jacobi equation’ [CF89].

For present purposes, the line element of a general stationary spacetime will
be expressed in the form

ds2 = gtt dt2 + 2gta dt dxa + gab dxa dxb (5.124)
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where the indices a, b range from 1 to 3, and the metric components are all
independent of the timelike coordinate t . In such a case, static equilibrium
solutions of the string equation of motion are most naturally constructed by setting

xa = xa(σ ) t,τ = 1 and t,σ = −gtaxa,σ /gtt . (5.125)

The gauge conditions (5.2) then reduce to the single constraint

(gtt gab − gtagtb)xa,σ xb,σ = −g2t t (5.126)

while the timelike and spacelike components of the equation of motion (5.1) read:

−gtbxb,σσ +(gtt�tbc − �tbc + gbc�tt t − 2gtb�ttc + 2gtb�t tc/gtt)xb,σ xc,σ = 0
(5.127)

and

gtt gabx
b,σσ +(gtt�abc − 2gtc�abt + gbc�at t)xb,σ xc,σ = 0 (5.128)

respectively. Note here that equation (5.127) is just the projection of (5.128) in
the direction of gtb.

In principle, all static string solutions can now be generated by introducing
explicit expressions for the metric and Christoffel components and integrating the
three components of (5.128). However, as was evident in the previous section, the
algebra involved in manipulating the Christoffel symbols and related expressions
in the Kerr metric is often prohibitive. A much more elegant technique for dealing
with equation (5.128) has been developed by Frolov et al [FSZH89].

This takes as its starting point the Nambu action (2.10), which in a standard
gauge reads:

I = −µ
∫
[(gµνxµ,τ xν,σ )2 − (gκλxκ,τ xλ,τ )(gµνxµ,σ xν,σ )]1/2 dσ dτ.

(5.129)
If it is assumed that t ≡ x0 = τ and xa = xa(σ ) then in a stationary background
the Nambu action reduces to the one-dimensional action:

I = −µτ
∫
(gtagtbx

a,σ x
b,σ −gtt gabxa,σ xb,σ )1/2 dσ (5.130)

so the static solutions xa = xa(σ ) are effectively the geodesics of a 3-surface S
with the metric

hab = gtagtb − gttgab. (5.131)

Now, the gauge choice that led to the reduced action (5.130) is not the same
as that appearing in the full equation (5.128), and so, in particular, the spacelike
gauge coordinate σ needs to be given different labels to distinguish the two cases.
Henceforth I will refer to the reduced-action spacelike gauge coordinate as σ̄ . If
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hab is positive definite and σ̄ is normalized so that it correspondswith the measure
of proper distance on the 3-surface S then

(gta gtb − gtt gab)xa,σ̄ xb,σ̄ = 1. (5.132)

Comparison with the gauge constraint (5.126) indicates that the relationship
between σ and σ̄ is:

dσ̄ = gtt dσ. (5.133)

Furthermore, the geodesic equation on S

habx
b,σ̄ σ̄ +�̄abcxb,σ̄ xc,σ̄ = 0 (5.134)

can be reconstructed by adding (5.128) to gta times (5.127), so the two
descriptions are entirely equivalent.

In the Kerr metric, the non-zero components of the 3-metric hab are:

hrr = −1(− a2 sin2 θ) (5.135)

hθθ = − a2 sin2 θ (5.136)

and
hφφ =  sin2 θ (5.137)

with = r2−2mr+a2 as before. Although hab is diagonal, it has a complicated
causal structure. Outside the boundary of the ergosphere (where  = a2 sin2 θ )
the coordinates r , θ and φ are all spacelike but between the ergosphere boundary
and the outer event horizon (i.e. for 0 <  < a2 sin2 θ ) both r and θ are timelike.
Further signature changes occur inside the outer event horizon.

To allow for the possibility of solutions with habxa,σ̄ xb,σ̄ < 0 inside the
ergosphere, the normalization condition (5.132) needs to be generalized to read:

habx
a,σ̄ x

b,σ̄ = κ (5.138)

where κ = 0 or ±1. At a physical level, solutions with κ = 0 or κ =
−1 correspond to static strings with zero or negative gravitational energy,
respectively. They are string analogues of the familiar zero- and negative-energy
orbits available to trapped massive particles inside the Kerr ergosphere.

Since hab,φ = 0, the geodesic equation has an immediate first integral:

φ,σ̄ = J

 sin2 θ
(5.139)

where J is a constant. Substituting this into the normalization condition (5.138)
then gives a second integral of the motion:

(− a2 sin2 θ)[(r,σ̄ )2 +(θ,σ̄ )2] = κ− J 2

sin2 θ
. (5.140)
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One of the remarkable features of the Kerr metric alluded to earlier is that
the geodesic equation describing static string equilibria possesses a third integral
of the motion, which is reflected in the existence of a Killing–Staeckel tensor for
the 3-metric hab [FSZH89]. A Killing–Staeckel tensor is a tensor field ξab with
the property that ∇(aξbc) = 0, where the round brackets indicate symmetrization
over all three indices. Given any Killing–Staeckel tensor ξab the quadratic form
ξabxa,σ̄ xb,σ̄ is a constant of the corresponding geodesic equations. In the case of
the 3-metric (5.135)–(5.137), the required Killing–Staeckel tensor has the mixed
components:

ξab = diag(a2 sin2 θ,,+ a2 sin2 θ) (5.141)

and so the third integral of the motion reads:

(− a2 sin2 θ)[a2 sin2 θ(r,σ̄ )2 +2(θ,σ̄ )
2] = q− (+ a2 sin2 θ) J 2

sin2 θ
(5.142)

where q is a constant.
Solving equations (5.140) and (5.142) simultaneously for r,σ̄ and θ,σ̄ then

gives
(r,σ̄ )

2 = (− a2 sin2 θ)−2�(r) (5.143)

and
(θ,σ̄ )

2 = (− a2 sin2 θ)−2�(θ) (5.144)

where
�(r) = κ2 − q+ a2 J 2 (5.145)

and
�(θ) = q − κa2 sin2 θ − J 2/ sin2 θ. (5.146)

It is evident from (5.143) and (5.144) that the equation for r(θ) separates
completely:

�−1/2dr = ±�−1/2 dθ. (5.147)

Furthermore, the equation for φ also separates, as (5.139) can be rewritten as

φ,σ̄ ≡ J

[
1

sin2 θ(− a2 sin2 θ) −
a2

(− a2 sin2 θ)

]

= J

[ ±θ,σ̄
sin2 θ�1/2

− ±r,σ̄
�1/2

]
(5.148)

The full solution is therefore expressible, in principle, in terms of elliptic integrals.
One simple family of solutions, again due to Frolov et al [FSZH89], is found

by fixing the value θ0 of the co-latitude angle θ and setting κ = 1, J 2 = a2 sin4 θ0
and q = 2a2 sin2 θ0. Then �(θ0) = �′(θ0) = 0 and the geodesic equation for θ
is automatically satisfied when the string lies wholly within the cone-like surface
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θ = θ0. Furthermore, �(r) = ( − a2 sin2 θ0)2 and thus (5.143) gives r = ±σ ,
while (5.139) reduces to

dφ

dr
= ± a

r2 − 2mr + a2 . (5.149)

Hence, if 0 < a2 < m2,

φ(r) = φ0 ± 1
2a(m

2 − a2)−1/2 ln
(
r − r−
r − r+

)
(5.150)

where φ0 is the asymptotic value of φ in the limit as r → ∞, and r± =
m ± (m2 − a2)1/2 are the radii of the outer and inner event horizons. The string,
therefore, spirals in towards the outer event horizon at r = r+ but never quite
reaches it. In the extreme Kerr metric (for which a2 = m2) the string traces out
the Archimedean spiral φ(r) = φ0 ± m/(r − m).

In general, any solution with θ = θ0 must have positive energy, as it is not
possible to choose J so that �′(θ0) = 0 when κ ≤ 0. The only exceptions
occur in the equatorial plane. It is evident from (5.146) that if sin θ0 = 1 then
�(θ0) = �′(θ0) = 0 whenever q = κa2 + J 2 but there is no further constraint
on the value of J 2/a2. Thus, equatorial solutions possess an extra degree of
freedom that is otherwise absent when θ0 �= π/2, and, in principle, can have zero
or negative energies in the ergosphere.

In the case of a static equilibrium configuration confined to the equatorial
plane, the functional form of � is:

�(r) = (− a2)(κ− J 2) (5.151)

and so (5.139) and (5.143) can be combined to give

dφ

dr
= ±−1

(
r2 − 2mr

κ/J 2 − 1

)1/2
. (5.152)

Here,  = r2 − 2mr + a2 is positive everywhere outside the outer event
horizon, while r2 − 2mr is positive outside the ergosphere boundary (at r = 2m)
and negative inside it. If κ �= 0 the remaining term, κ/J 2 − 1, has zeroes at
r = m ± (m2 − a2 + J 2/κ)1/2. Only if κ = 1 does the larger zero lie outside the
outer event horizon, and then it lies outside the ergosphere boundary if J 2 > a2

and inside the ergosphere if J 2 < a2. In what follows, I will refer to the larger
zero as rturn. In all cases the smaller zero (if real and positive) is located inside
the horizon.

The possible static equilibrium solutions in the equatorial plane can therefore
be classified as follows (refer to figure 5.16 for illustrative examples). If κ = 1
and J 2 < a2 solutions exist with r ≥ 2m and with r+ < r ≤ rturn. In
solutions with r ≥ 2m, dφ/dr goes to zero like (r − 2m)1/2 near r = 2m, and so
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r − 2m scales as (φ − φe)2/3, where φe is the value of φ where the string touches
the ergosphere boundary. The solution, therefore, has a cusplike feature on the
ergosphere boundary but quickly asymptotes to a pair of radial lines, with the
angle between the asymptotes increasing monotonically from 0 to b ln(r+/r−) as
|J | varies from 0 to |a|, where b = |a|(m2 − a2)−1/2. (The maximum separation
angle b ln(r+/r−) is zero when a = 0, and peaks at 2 radians in the extreme Kerr
limit |a| = m.)

The second type of solution, which is confined to the ergosphere, passes
smoothly through its point of maximum radius at r = rturn and spirals an infinite
number of times in towards the outer event horizon, in both the clockwise and anti-
clockwise directions. In the limit as |J | → 0 the ergosphere solution vanishes,
while the outer solution degenerates into a doubled straight line terminating at
r = 2m. Solutions with J 2 < a2 have no analogues in the Schwarzschild case.

If κ = 1 and J 2 = a2, then the solution is just the equatorial member of the
family of cone-embedded equilibria (5.150) examined earlier. Here, rturn = 2m
and there is no singularity or turning point in dφ/dr at the ergosphere boundary.
The string, therefore, passes smoothly through the ergosphere boundary and (if
a �= 0) spirals around the outer event horizon. In the Schwarzschild case, the
corresponding solution is a straight string which terminates at the horizon.

If κ = 1 and J 2 > a2, there are again separate inner and outer solutions.
The outer solution has a smooth radial turning point at r = rturn and asymptotes
to a pair of radial lines. The minimum radius rturn ranges from 2m to∞ and the
separation angle of the asymptotes increases monotonically from b ln(r+/r−) to
π− as |J | increases without bound. The ergosphere solution spirals around the
outer event horizon (in both directions) in the usual manner but has a cusplike
feature at the ergosphere boundary.

The case κ = 0 is mathematically equivalent to the limit |J | → ∞. There is
no solution outside the ergosphere, while the inner solution spirals inwards from
a cusplike feature at the ergosphere boundary. This is one of the few cases where
the analytic expression for φ is reasonably tractable. If a2 < m2 then

±[φ(r)− φe] = cos−1
( r
m
− 1

)
+ j

(1− j2)1/2
ln

∣∣∣∣ (1+ j )(r−m)+(m−√2mr−r2)
√

1− j2
(1+ j )(r−m)−(m−

√
2mr−r2)

√
1− j2

∣∣∣∣1/2
− j

(1− j2)1/2
ln

∣∣∣∣ (1− j )(r−m)+(m−√2mr−r2)
√

1− j2
(1− j )(r−m)−(m−

√
2mr−r2)

√
1− j2

∣∣∣∣1/2
(5.153)

with j = a/m, while in the extreme Kerr metric

±[φ(r)− φe] = cos−1
( r
m
− 1

)
− (2mr − r

2)1/2

r − m . (5.154)

Finally, if κ = −1 there is again no solution outside the ergosphere, while
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Figure 5.16. Five examples of static equilibrium solutions in the extreme Kerr metric.

the ergosphere solution is qualitatively similar to the corresponding solution for
κ = 0. The similarity between the κ = −1 and κ = 0 solutions is most
pronounced at large values of |J | but as |J | decreases the cusplike feature at the
ergsophere boundary sharpens in the κ = −1 solution, and the spirals become
more tightly bound. In the limit as |J | → 0 the solution degenerates into a
doubled straight line stretching from the outer event horizon to the ergosphere
boundary.

Figure 5.16 illustrates the sequence of equilibrium solutions described earlier
in the case of the extreme Kerr metric (a = m). The solutions are plotted for five
separate combinations of the parameters κ and J , with r the polar radius and
φ the polar angle. In each frame the ergosphere boundary is shown as a dotted
circle at r = 2m, while the outer event horizon at r = r+ = m is the limit
set of the spirals. The extreme Kerr metric has been chosen because it has the
largest possible ergosphere and so the salient features of the solutions can be seen
most clearly. At smaller values of the spin parameter |a| the distance between
the ergosphere boundary and the outer event horizon contracts, and the spirals
become more tightly bound; and, of course, the spirals disappear altogether in the
limit as |a| → 0.

Although the analysis here has been concerned almost exclusively with the
Kerr metric, it is easily extended to other stationary background spacetimes with
similar separability properties. Published examples include studies of string
equilibria in the Kerr–Newman metric (which describes a charged rotating black
hole) [FSZH89], the Kerr–de Sitter metric (which couples a Kerr black hole to
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a cosmological constant) [CF89], and the NUT–Kerr–Newman spacetime (which
describes a Kerr–Newman black hole immersed in an anisotropic cosmological
background) [AB93]. In all cases the equilibrium solutions are qualitatively
similar to the Kerr equilibria.

5.6 Strings in plane-fronted-wave spacetimes

A final example of a background metric in which string dynamics has
been systematically examined is the general plane-fronted-wave (or pp-wave)
spacetime, which has the line element:

ds2 = du dv − dx2 − dy2 + F(u, x, y) du2 (5.155)

where F is an arbitrary twice-differentiable function of its arguments. The
coordinate v is null, and if F ≡ 0 the line element reduces to the standard
Minkowski form with u = t−z and v = t+z. When F �= 0 the metric describes a
train of gravitational waves with wavefronts parallel to the x–y plane propagating
up the z-axis. It can be shown that the pp-wave spacetime is a solution to the
vacuum Einstein equations if and only if F,xx +F,yy = 0 but this constraint will
not be imposed here.

Since the only non-zero components of the Christoffel symbol (modulo
symmetries) are

�xuu = 1
2 F,x �

y
uu = 1

2 F,y and �vuµ = F,µ (5.156)

the null vector field kµ = Dµu is covariantly constant (that is, Dλkµ = 0), and,
in particular, kµ is a Killing field. With Xµ = (u, v, x, y) denoting the position
vector of a general string, the corresponding conservation equation (2.43) reads:

u,ττ = u,σσ (5.157)

and so the null coordinate u can be expressed as a sum of left- and right-moving
modes.

Provided that u does contain modes of both types, the residual gauge
freedom can be removed by setting τ = u, in the same way that τ can be aligned
with t in Minkowski spacetime (see section 3.1). The gauge choice τ = u,
which was first suggested by Gary Horowitz and Alan Steif [HS90], effectively
extends the GGRT gauge of section 3.2 from the Minkowski metric to the pp-
wave spacetime, and shares all the drawbacks of the GGRT gauge. In particular,
as will be seen shortly, it misses a simple family of travelling-wave solutions.

With r = [x, y] and ∇ = ∂/∂r, the remaining components of the equation
of motion in the GGRT gauge become

v,ττ −v,σσ +F,u +2r,τ ·∇F = 0 (5.158)
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and
r,ττ −r,σσ + 1

2∇F = 0. (5.159)

Two immediate first integrals are the gauge constraints X2
τ + X2

σ = 0 and
Xτ · Xσ = 0, which read:

v,τ = r,2τ +r,2σ −F and v,σ = 2r,τ ·r,σ (5.160)

respectively. Since F is a function of τ and r only, (5.159) is a closed
inhomogeneous wave equation which is typically nonlinear in r. Once r(τ, σ )
is known, equations (5.160) can be integrated directly to give v.

To proceed any further, it is necessary to first give a tighter prescription for
the function F . Since F can always be removed by a coordinate transformation
if it is linear in r, the simplest non-trivial assumption is that F is a quadratic
functional of x and y, so that

F(u, r) = f (u)rMrT (5.161)

whereM is a constant 2×2 symmetric matrix. The correspondingmetric is called
an exact plane-wave spacetime, and is a solution of the vacuumEinstein equations
if TrM = 0.

The wave equation (5.159) for r can now be written as a pair of decoupled
linear equations:

(ek · r),ττ −(ek · r),σσ +λk f (τ )ek · r = 0 (k = 1, 2) (5.162)

where e1 and e2 are orthonormal eigenvectors of M, and λ1 and λ2 are the
corresponding eigenvalues. If ek · r is further decomposed as a sum of harmonic
modes in σ :

ek · r =
∑
ω

R(ω)k (τ )e
iωσ (5.163)

then each of the mode functions R(ω)k satisfies the time-dependent oscillator
equation [HS90]:

R(ω)′′k + [ω2 + λk f (τ )]R(ω)k = 0. (5.164)

One simple situation in which (5.164) is tractable occurs when the
gravitational wavefront is impulsive, so that f (u) = f0δ(u) for some constant
f0. Then, for modes with ω �= 0,

R(ω)k (τ ) = Ak(ω) cos(ωτ)+ [Bk(ω)− ω−1 f0λk Ak(ω)H (τ )] sin(ωτ) (5.165)

where Ak and Bk are arbitrary functions, and H is the Heaviside step function.
The corresponding zero-mode solutions are

R(0)k = Ak + [Bk − f0λk AkH (τ )]τ. (5.166)
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In general, whatever the form of the mode functions, the equations (5.160)
for v can be integrated to give:

v(τ, σ ) = 2
2∑
k=1

∑
ω, �=−ω

 

ω + R(ω)′k (τ )R( )k (τ )ei(ω+ )σ

− 2iσ
2∑
k=1

∑
ω �=0

ωR(ω)′k (τ )R(−ω)k (τ )+
2∑
k=1

R(0)′k (τ )R(0)k (τ ).

(5.167)

Note however that if the wavefront is impulsive then the presence of F on
the right-hand side of the source equation for v,τ in (5.160) ensures that v is a
discontinuous function of τ . This should come as no surprise, as the geodesics
of the impulsive exact pp-wave spacetime are also known to be discontinuous
[HS90], and the physical status of the spacetime is accordingly very uncertain.

In view of the geometry of the pp-wave spacetimes, it is natural to ask
whether solutions exist which describe travelling waves propagating along a string
in tandem with the plane-fronted gravitational waves. In a solution of this type
the null coordinate u must be a function of σ− (or σ+) alone, and the GGRT
gauge choice τ = u is unavailable. With u a function of σ− the light-cone gauge
conditions read:

X2+ = −|r,+ |2 = 0 and X2− = Fu′2 + u′v,− −|r,− |2 = 0 (5.168)

and so r and v,− are also functions of σ− only.
The remaining component of the equation of motion, v,+− = 0, imposes no

further constraints. Thus v is a sum of separate functions of σ+ and σ−, and for
ease of comparison with the travelling-wave solutions of section 4.1.2 the gauge
coordinates can be fixed so that

v(σ+, σ−) = σ+ + z−(σ−) and u(σ−) = σ− − z−(σ−) (5.169)

for some function z−. The second of the gauge conditions (5.168) then indicates
that

z′−(σ−) =
1− 2F

2(1− F) ±
1

2(1− F)
√
1− 4(1− F)|r′|2. (5.170)

It is, therefore, evident that—like travelling waves in Minkowski spacetime—a
travelling wave co-moving with a pp-wave can be either shallow or steep, and if
F < 1 its planar projection r(σ−)must satisfy the constraint |r′| ≤ 1

2 (1− F)−1/2.
However, because F is a functional of u and so of z−, integrating (5.170) is,

in general, very problematic. A more convenient gauge choice is u = σ−, which
allows the second of the gauge conditions (5.168) to be integrated directly to give

v(σ+, σ−) = σ+ +
∫ σ−

0
[|r′(u)|2 − F(u, r(u))] du. (5.171)
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In this gauge the planar projection r(σ−) of the travelling wave can be any
arbitrary differentiable curve. The corresponding string, of course, has a fixed
pattern shape which propagates normal to the gravitational wavefronts at the
speed of light, and since the element of proper distance induced on the world
sheet is ds2 = dσ+ dσ− the world sheet is geometrically flat. The presence of
the gravitational waves has no material effect on the travelling wave because
the Riemann tidal force RκλµνXκσ X

λ
τ X

µ
σ Xντ on small segments of the string is

identically zero, a feature not shared by disturbances propagating with any other
speed or in any other direction.



Chapter 6

Cosmic strings in the weak-field
approximation

A cosmic string, like any other concentration of mass and energy, acts as the
source of a gravitational field. Because cosmic strings are extended objects, this
gravitational field will affect not only the motion of nearby particles but also the
trajectory of the string itself, and so calculating the gravitational field of even an
isolated cosmic string in otherwise empty space can pose a complicated nonlinear
problem. Nonetheless the gravitational field should not simply be ignored, as
there are indications that it can have important effects on the dynamics and
energetics of strings. For example, gravitational radiation is thought to be the
dominant energy-loss mechanism for loops [Vil85], while it has been suggested
that the radiation of momentum from an asymmetric loop could accelerate the
loop to relativistic bulk velocities, giving rise to a so-called ‘gravitational rocket
effect’ [VV85].

As was seen in section 2.4, the two-dimensional relativistic sheet that traces
out the history of a zero-thickness string is characterized by a distributional stress–
energy tensor of the form

Tµν(x) = µg− 1
2

∫
γ

1
2 γ AB Xµ,A X

ν ,B δ
4(x − X) d2ζ (6.1)

where xµ = Xµ(ζ A) is the parametric equation of the world sheet and γAB =
gµνXµ,A Xν,B is the induced 2-metric. It is the localized nature of Tµν that is the
most useful feature of the wire approximation, as it reduces the problem to one of
solving only the vacuum Einstein equations outside the world sheet. Nonetheless,
self-consistent solutions in which the world sheet satisfies the equation of motion
imposed by its own gravitational field are still difficult to generate, and have
to date been found only in cases with special symmetries. A common device
is, therefore, to fix the trajectory of the world sheet in advance—usually by
prescribing a solution to the flat-space equation of motion—and then calculate
the resulting gravitational field.

181
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The exact spacetimemetric generated by an infinite straight string in the wire
approximation will be examined in detail in chapter 7. One of its most striking
features is that it is flat everywhere except on the world sheet of the string. This
result should not be interpreted as implying that a straight cosmic string has no
detectable gravitational field at all, as the presence of the string induces non-tidal
spacetime distortions which can focus geodesics and cause gravitational lensing
of the light from distant objects. In addition, any gravitating body passing close to
a straight string would experience a self-gravitational acceleration of orderµm/r2

in the direction of the string, where m is the mass of the body and r the distance
to the string (see section 7.6).

At a physical level, the absence of a gravitational field outside an isolated
straight cosmic string is due to the invariance of the corresponding stress–energy
tensor with respect to boosts along the string, a feature that is explored in more
detail in section 7.2. By the same token, it is to be expected that a non-straight
string would break this boost-invariance and generate a non-trivial exterior field.
This is indeed what happens, although if the mass per unit lengthµ of the string is
very much smaller than 1 (in Planck units) the exterior metric remains very nearly
Minkowskian unless the local curvature of the world sheet is large. This fact
makes the weak-field approximation an ideal tool for modelling the gravitational
field outside realistic string configurations.

6.1 The weak-field formalism

In the weak-field approximation, the metric tensor

gµν = ηµν + hµν (6.2)

is assumed to deviate from the Minkowski tensor ηµν = diag(1,−1,−1,−1) by
a perturbation hµν whose components are small in absolute value compared to 1.
To linear order in hµν the Ricci tensor is

Rµν ≈ 1
2 (�hµν + h,µν −hλµ,νλ−hλν ,µλ ) (6.3)

where, as previously,� ≡ ∂2t −∇2 is the flat-space d’Alembertian, h denotes hλλ,
and all indices are raised and lowered using ηµν .

If hµν is constrained to satisfy the harmonic gauge conditions hλµ,λ= 1
2h,µ

then
Rµν ≈ 1

2�hµν (6.4)

and the Einstein equation Gµν ≡ Rµν − 1
2gµνR = −8πTµν becomes, to leading

order,
�hµν = −16π(Tµν − 1

2ηµνT ) (6.5)

where Tµν is the stress–energy tensor of the source, evaluated with gµν = ηµν .
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The standard retarded solution to equation (6.5) is

hµν(t, x) = −4
∫
Sµν(t ′, x′)
|x− x′| d3x ′ (6.6)

where Sµν = Tµν− 1
2ηµνT and t ′ denotes the retarded time t−|x−x′|. In physical

terms, the source points [t ′, x′] in the integral on the right of (6.6) range over all
points on the past light cone of the field point [t, x] at which Sµν is non-zero.

In the case of a cosmic string, the equation of the source (the world sheet)
can be expressed in the form x ′µ = Xµ(τ, σ ) = [τ, r(τ, σ )], in keeping with the
notation of section 3.3 for the aligned standard gauge in Minkowski spacetime.
The stress–energy tensor (6.1) of the world sheet then reduces to

Tµν(t
′, x′) = µ

∫
(VµVν − NµNν ) δ(3)(x′ − r(t ′, σ )) dσ (6.7)

where V µ = [1, rτ ], Nµ = [0, rσ ], and it is understood that the retarded time t ′
and the parametric time τ are identical. Thus, the source term in (6.6) becomes

Sµν(t
′, x′) = µ

∫
�µν(t

′, σ ) δ(3)(x′ − r(t ′, σ )) dσ (6.8)

where
�µν = V µVν − NµNν − 1

2ηµν(V
2 − N2). (6.9)

When (6.8) is substituted into the equation (6.6) for hµν the integration over
d3x ′ can be performed by first transforming from x′ to x′′ = x′ − r(t ′, σ ). The
Jacobian of this transformation is:

|∂x′/∂x′′| = |∂x′′/∂x′|−1 = |1− n′ · rτ (t ′, σ )|−1 (6.10)

where n′ = (x − x′)/|x − x′| and so the solution to the weak-field equations
becomes

hµν(t, x) = −4µ
∫

�µν(τ, σ )

|x− r(τ, σ )| [1− n · rτ (τ, σ )]−1 dσ (6.11)

where n = (x − r(τ, σ ))/|x − r(τ, σ )| denotes the unit vector in the direction
from the source point r to the field point x (see figure 6.1) and the parametric time
τ is given implicitly by

τ = t − |x− r(τ, σ )|. (6.12)

Equation (6.11), which expresses the gravitational field explicitly in terms of a
line integral over the world sheet, was first derived by Neil Turok in 1984 [Tur84].

Turok has named the term (1 − n · rτ )−1 in (6.11) the beaming factor. It
diverges if the world sheet contains a cusp (where |rτ | = 1) and the field point x
lies on the future light cone of the cusp in the direction of rτ . Thus, at the level of
the weak-field approximation, a cusp emits a thin beam of gravitational energy in
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Figure 6.1. Source and field points in weak-field calculations.

the direction of its own motion, much as a transonic aircraft emits a sonic boom.
A more detailed treatment of the weak-field gravitational effects near a cusp will
be given in section 6.2. Equation (6.11) also predicts non-trivial gravitational
effects in the neighbourhood of a kink, as will be discussed in section 6.3.

Another notable feature of equation (6.11) is that if the source is a periodic
loop then its time-averaged gravitational field is a Newtonian one to first order
[Tur84]. To see this, suppose that the motion of the string is periodic with period
T . Then the time average of hµν over one oscillation is

〈hµν 〉(x) = −4µ

T

∫ T

0

∫ L

0

�µν(τ, σ )

|x− r(τ, σ )| [1− n · rτ (τ, σ )]−1 dσ dt (6.13)

where, in view of (6.12), dt = (1 − n · rτ ) dτ . Also, the retarded time τ clearly
changes by an amount T as t varies from 0 to T . Hence, the time-averaged metric
perturbation is

〈hµν 〉(x) = −4µ

T

∫ T

0

∫ L

0

�µν(τ, σ )

|x− r(τ, σ )| dσ dτ. (6.14)

In the weak-field approximation a non-relativistic particle experiences a
gravitational acceleration with spatial components

ai = ∂

∂ t
hit − 1

2

∂

∂xi
htt . (6.15)

In view of the periodicity of the metric perturbations hµν , the first term on the
right of this expression vanishes after time-averaging, and the time-averaged
acceleration becomes

〈ai 〉 = −1

2

∂

∂xi
〈htt 〉 = 2µ

T

∂

∂xi

∫ T

0

∫ L

0

�t t(τ, σ )

|x− r(τ, σ )| dσ dτ (6.16)
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where, for a Nambu–Goto string, �t t = r2τ . Thus, the time-averaged acceleration
at a fixed point in space is the same as that produced by a mass distribution
confined to the surface r = r(τ, σ ) traced out by the string, with local surface
density 2µr2τ . It was seen in section 3.3 that the period mean of r2τ is equal to

1
2 in

the string’s centre-of-momentum frame. The total mass of this surface is therefore
just the mass µL of the string, and, in particular, the time-averaged gravitational
force exerted by a string loop on a distant particle is the same as that due to a point
particle with mass µL located at the loop’s centre of mass.

The effect of the linearized gravitational field (6.11) on the motion of
particles close to a string loop has been examined in numerical simulations run
by Tanmay Vachaspati [Vac87]. Vachaspati numerically integrated the equations
of motion corresponding to the acceleration vector (6.15) for a distribution of test
particles around a string with the trajectory

r(τ, σ ) = L

4π
[− sin(2πσ−/L), 12 sin(4πσ+/L), cos(2πσ−/L)

+ 1
2 cos(4πσ+/L)] (6.17)

where σ± = τ ± σ as before. This trajectory is a member of the family of non-
planar p/q harmonic solutions described in section 4.4.2, with p = 2, q = 1 and
ψ = π/2 (although the coordinate frame has been rotated 90◦ about the y-axis).
It is non-intersecting, has period L/2 and supports two cusps which appear on the
equatorial plane, one at r = L

4π [−1, 12 , 0] at τ = 3L/16 and the second at the
diametrically opposite point at τ = 5L/16. The first cusp moves in the negative
z-direction, and the second in the positive z-direction.

Vachaspati discovered three interesting features of the linearized field of this
loop. The first is that there is a weak gravitational attraction to the surface traced
out by the world sheet, which is not surprising. The second feature, which is
more specific to cosmic strings, is a powerful repulsive gravitational force on
those test particles which happen to pass immediately in front of the cusps. The
third feature, which became evident towards the end of Vachaspati’s simulation,
is that there is an accumulation of test particles immediately behind the points
where the cusps appear. The cusps therefore generate a highly anisotropic field,
consisting of an intense but narrow repulsive beam in the forward direction and a
strong attractive force (relative to other parts of the world sheet) elsewhere.

6.2 Cusps in the weak-field approximation

The behaviour of the metric perturbation hµν near a generic cusp is essentially
no different from that observed by Vachaspati in his numerical simulation. To
see this, suppose without loss of generality that the cusp lies at τ = σ = 0.
The position vector r = 1

2 (a + b) of the source points near the cusp then has the
parametric form:

r(τ, σ ) ≈ rc + vcτ + 1
4 (a

′′
cσ

2+ + b′′cσ 2−)+ 1
12 (a

′′′
c σ

3+ + b′′′c σ 3−) (6.18)
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where, as in section 3.6, rc is the position of the cusp, vc is its velocity rτ , and a′′c
and b′′c are the values of a′′ and b′′ at the cusp, and so forth. Recall that in view
of the gauge conditions |a′| = |b′| = 1 the unit vector vc is orthogonal to both a′′c
and b′′c , while vc · a′′′c = −|a′′c |2 and vc · b′′′c = −|b′′c |2.

Near the cusp, �µν ≈ qµqν , where qµ = [1, vc] is null. The beam
of the cusp is the set of field points xµ = [t, x] with t = |x − rc| and
n ≡ (x− rc)/|x− rc| equal to vc. Consider a field point just outside the beam,
with

t = |x− rc| + ε and x− rc = |x− rc|(vc + δn) (6.19)

where ε is small, δn is orthogonal to vc and |δn| is of order ε. Then the
coordinates τ and σ of the source points near the cusp are both of order ε1/3

and the equation (6.237) for τ reads, to leading order in ε,

|a′′c |2σ 3+ + |b′′c |2σ 3− ≈ 12ε (6.20)

while the beaming factor has the form

1− n · rτ ≈ 1
4 [|a′′c |2σ 2+ + |b′′c |2σ 2−]. (6.21)

In both equations, it is understood that σ+ and σ− are restricted to values for
which τ ≤ t .

The metric perturbation hµν in this case is most conveniently expressed in
terms of the rescaled coordinates

σ̄± = 12−1/3|ε|−1/3R−2/3c σ± (6.22)

where
Rc = (|a′′c |2 + |b′′c |2)−1/2 (6.23)

is one of the cusp radii introduced in section 3.6, and is typically of the same order
as the length L of the loop. Equation (6.11) then reads

hµν(t, x) ≈ −
(
1024

3

)1/3
µqµqν |x−rc|−1|ε|−1/3R4/3c

∫
dσ̄

σ̄ 2+ sin2 χ + σ̄ 2− cos2 χ
(6.24)

where the cusp angle χ ∈ [0, π/2] is defined by sin χ = |a′′c |Rc, and σ̄+ and σ̄−
are implicit functions of σ̄ = 1

2 (σ̄+ − σ̄−) through the equation
σ̄ 3+ sin2 χ + σ̄ 3− cos2 χ = 1. (6.25)

Provided that χ is not equal to 0 or π/2 (that is, neither |a′′c | nor |b′′c | is zero),
the integral on the right of (6.24) is finite, irrespective of the limits of integration.
It, therefore, follows that

hµν(t, x) ∼ −µqµqν R4/3c r−1|t − r |−1/3 (6.26)
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where r = |x − rc| is the distance of the field point from the cusp. Since qt = 1
and qr = −1 it is evident from (6.15) that a non-relativistic test particle that
passes through the beam of the cusp will experience a radial acceleration of the
form

r̈ ∼ −µ
6
R4/3c r−1(t − r)−1|t − r |−1/3 (6.27)

to leading order in (t − r)−1.
Thus r̈ is positive before the particle enters the beam (for t < r ) but reverses

sign as soon as the particle leaves the beam (that is, for t > r ). Although
the radial acceleration is strictly antisymmetric about t = r to this level of
approximation, the fact that the particle is first driven outwards means that it
ultimately experiences a weaker inward force, and so the net effect of the beam is
to expel the particle. In fact, if the acceleration (6.27) is integrated from t = 0 to
t = r then the net change in r during the initial, repulsive phase is of order

r ∼ µr−1/3R4/3c (6.28)

and so can be relatively large for particles close to the cusp.
The leading-order expression (6.26) for the potential hµν near the beam was

first derived by Vachaspati [Vac87], and for an asymmetric loop suggests that the
beaming of gravitational radiation from cusps would quickly accelerate the loop
to relativistic velocities, a topic I will return to in section 6.11. At the level of
the weak-field approximation gravitational beaming from cusps also accounts for
a large fraction of the total gravitational energy radiated by loops, as will be seen
later.

In addition to gravitational beaming, the weak-field approximation also
predicts that a cusp exerts a strong attractive force at points on its forward light
cone in directions away from its beam. In this case r = |x − rc| and t ≥ 0 are
both small but n · vc < 0. If r and t are both of order ε, then τ is of order ε and σ
of order ε1/2, so that equation (6.237) becomes

2(rn · vc − t)τ ≈ r2 − t2 − 1
2rn · (a′′c + b′′c )σ 2 + 1

16 |a′′c + b′′c |2σ 4 (6.29)

while |x− r| ≡ t − τ . Hence, to leading order in ε the metric perturbation is

hµν(t, x) ≈ −8µqµqν t − rn · vc
1− n · vc

∫
dσ

F(t, x, σ )
(6.30)

where

F(t, x, σ ) = t2 + r2 − 2n · vcr t − 1
2rn · (a′′c + b′′c )σ 2 + 1

16 |a′′c + b′′c |2σ 4 (6.31)

and the integral ranges over all values of σ for which τ ≤ t or, equivalently, for
which F is positive.

It is easily seen that F is positive definite if t ≥ 0 and n · vc < 0, so on
defining the rescaled coordinate

σ̄ = 1
2 

−1/2ρ−1/2c σ (6.32)
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with

 = (t2 + r2 − 2n · vcr t)1/2 and ρc = |a′′c + b′′c |−1 (6.33)

the metric perturbation becomes

hµν(t, x) ≈ −16µqµqν t − rn · vc1− n · vc  
−3/2ρ1/2c

∫
dσ̄

1− 2 cosβσ̄ 2 + σ̄ 4 (6.34)

where
cosβ =  −1r |a′′c + b′′c |−1n · (a′′c + b′′c ). (6.35)

Since the integral converges and t and r are both of order ε, the divergence
in hµν behind the cusp has the form

hµν(t, x) ∼ −µqµqνε−1/2ρ1/2c (6.36)

where the characteristic cusp dimension ρc ≥ Rc for this regime was examined
in some detail in section 3.6, and is again typically of order L. Note that on the
spacelike section t = 0 the variable is simply r , and the limiting behaviour of
hµν is found by replacing ε in (6.36) with r . The potential, therefore, diverges as
r−1/2, and the cusp exerts an attractive force which falls off as r−3/2. The weak-
field approximation therefore breaks down not only near the beam but also inside
a radius r ∼ µ2ρc about the cusp (which would be of the order of 108 cm for a
GUT string loop the size of a star cluster).

The result embodied in equation (6.36) can also be derived in a more
heuristic fashion, as follows. If r denotes any point on the string near the cusp
with τ = 0 then

|r− rc| ≈ 1
4ρ
−1
c σ

2. (6.37)

Since µ is the rest mass per unit length of the string, and σ in the aligned standard
gauge is a measure of the proper length of the string, the mass Mr inside a radius
|r− rc| = r is

Mr ∼ 2µ|σ | ∼ 4µ(rρc)1/2 (6.38)

and hence
Mr/r ∼ 4µ(ρc/r)1/2 (6.39)

as predicted by (6.36).
Furthermore, the mass Mc inside the strong-field region r ≤ µ2ρc is

Mc ∼ 4µ2ρc ∼ 4µM (6.40)

where M = µL ∼ µρc is the total mass of the string. Thus for a GUT string
(that is, for µ ∼ 10−6) about 10−6–10−5 of the total mass of the string would
be contained in the near-cusp region. Since the total mass of a string loop with
length of order of the current horizon radius would be comparable to the mass of
a cluster of galaxies, the cusp mass Mc is not necessarily negligible.
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The breakdown of the weak-field approximation near a cusp probably
indicates that something more complex than mere gravitational beaming occurs
there. On the face of it, there would seem to be two alternative fates for a cusp on
a cosmic string: either higher-order corrections to the Nambu–Goto action (2.10)
suppress the formation of a full cusp, with the result that the gravitational field
of the string departs only minimally from the weak-field approximation; or the
cusp is unstable to strong-field effects, and fundamentally new features appear
(including perhaps the collapse of the cusp to form a black hole).

Unfortunately, neither alternative can at present be ruled out, although
the perturbative analysis of the Nielsen–Olesen vortex outlined at the end of
section 1.5 strongly suggests that higher-order corrections do not in general
suppress cusp formation. However, if field-theoretic effectswere to act to limit the
local Lorentz factor of the string to a maximum value λ then an analysis similar to
that which led to equation (6.39) indicates that the potential at a distance r from
a source point with Lorentz factor λ would be:

M/r ∼ µ(ρc/r)1/2[1− λ−1(ρc/r)1/2]. (6.41)

According to (6.41), the weak-field approximation would still break down when
r ∼ µ2ρc, provided that λ is larger than µ−1 ∼ 106.

6.3 Kinks in the weak-field approximation

At the level of the weak-field approximation kinks exhibit a beaming effect similar
to that of a cusp, although the divergences are not as severe. Recall that a
kink is a discontinuity in the spatial tangent vector rσ which propagates around
the string at the speed of light. Here, following David Garfinkle and Tanmay
Vachaspati [GV88], I will consider a cuspless loop supporting a single kink which
corresponds to a discontinuity in the mode function b at τ = σ .

If xµ = [t, x] is a general field point, the kink crosses the past light cone of
xµ at τ = σ = σk, where σk is the root of the equation

σk = t − |x− r(σk, σk)|. (6.42)

The metric perturbation hµν is then given by

hµν(t, x) = −4µ
[∫ σ−k

0

�µν(τ, σ )

|x− r|(1− n · rτ ) dσ +
∫ L

σ+k

�µν(τ, σ )

|x− r|(1− n · rτ ) dσ
]
.

(6.43)
Because the loop is cuspless, the integrand here is piecewise smooth for field
points off the string, and so hµν is continuous. However, the spacetime derivatives
of hµν—which appear in the geodesic equation (6.15)—need not be finite.

In calculating the derivatives hµν,λ it is evident that differentiating the
integrand in (6.43) will, at worst, produce terms that are piecewise smooth. Thus,
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any singularity will stem from the spacetime derivatives of the integration limit
σk. In fact, differentiation of (6.42) gives

σk,λ= (1− n · vk)−1kλ (6.44)

where n is the unit vector from the kink source point rk = r(σk, σk) to the field
point x, cµ = [1,n] and

vk = ∂rk
∂σk

≡ a′(2σk) (6.45)

is the phase velocity of the kink, which in view of the gauge condition |a′| = 1 is
a unit vector (as was previously seen in section 2.7).

Hence, the divergent part of hµν,λ has the form

hµν,λ∼ −4µ(1− n · vk)−1|x− rk|−1µνcλ (6.46)

where

µν =
[
�µν(τ, σ )

(1− n · rτ )
]τ=σ=σ−k
τ=σ=σ+k

. (6.47)

The presence of the factor (1 − n · vk)−1 in hµν,λ indicates that the kink, like a
cusp, emits a beam of gravitational radiation in the direction of its motion, as the
acceleration on a test particle in the future light cone of any point on the locus of
the kink with n = vk is instantaneously infinite. However, because the divergence
appears in hµν,λ rather than hµν itself, the net effect of the beam on the motion
of nearby particles is substantially weaker.

To obtain an estimate of the strength of the beam, let the source point be the
point τ = σ = 0 on the kink, and consider a field point xµ just outside the beam
of this point, with

t = |x− rk| + ε and x− rk = |x− rk|(vk + δn) (6.48)

where δn is orthogonal to vk and |δn| is again of order ε. Then the trajectory of
the kink intersects the past light cone of xµ at a point τ = σ = σk with σk of
order ε1/3. In fact, from the kink equation (6.42)

2|a′′k|2σ 3k ≈ 3ε (6.49)

while
1− n · vk ≈ |a′′k|2σ 2k . (6.50)

Hence, the divergent part of hµν,λ becomes

hµν,λ∼ −( 2569 )1/3µr−1(t − r)−2/3R2/3k µνcλ (6.51)

where r = |x − rk| and Rk = |a′′k|−1 is a characteristic length scale associated
with the kink point τ = σ = 0, and is typically of order L.



Radiation of gravitational energy from a loop 191

The acceleration ai experienced by a non-relativistic particle which passes
through the beam, therefore, has the form

ai ∼ −( 2569 )1/3µr−1(t − r)−2/3R2/3k (it − 1
2t t ci ). (6.52)

Here, the componentsit and t t depend on the difference in the local velocity
rτ of the string on the two sides of the kink, which bears no direct relation to
vk. Hence, the acceleration vector ai is, in general, not radial. Even the radial
acceleration

r̈ ∼ −(32/9)1/3µr−1(t − r)−2/3R2/3k (rt + 1
2t t ) (6.53)

need not be initially outwards but it does change sign as the particle emerges from
the beam.

As in the cusp case, it is possible to integrate r̈ from t = 0 to t = r to get an
order-of-magnitude estimate of the effect of the initial acceleration regime. The
resulting change in the radial distance r is

|r | ∼ µr1/3R2/3k (6.54)

which for particles close to the kink is considerably smaller than the
corresponding radial displacementr ∼ µr−1/3R4/3c caused by the beam from a
cusp.

Any string loop with one or more kinks has the potential to support
microcusps (see section 3.6). The analysis of the gravitational field near a
microcusp is no different from the treatment given in the previous section of the
gravitational field near an ordinary cusp, save that the scale factors ρc and Rc are
extremely small in comparison with L at a microcusp. It is, therefore, unlikely
that the gravitational effects generated by a microcusp would be strong enough to
be distinguished from the background field of the string.

6.4 Radiation of gravitational energy from a loop

Another property of the gravitational field of a string loop that has potentially
important observational consequences is the rate at which the energy of the loop
is radiated away. At a point x in the wave zone, where r = |x| is much larger than
the characteristic size L of the loop, the power radiated per unit solid angle ! is
given by

dP

d!
= r2

3∑
j=1

n j� j t (6.55)

where n = x/r as previously, and

�
µν = − 1

8π
〈Rµν − 1

2η
µν R〉 (6.56)
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is the gravitational stress–energy pseudo-tensor which needs to be inserted into
the Einstein equation to balance the Ricci tensor Rµν when the latter is evaluated
to quadratic order in the metric perturbation hµν . (Recall that in the weak-field
approximation Rµν = 0 in vacuum to linear order only.) The angled brackets
indicate that the stress–energy pseudo-tensor�µν is a coarse-grained average over
many wavelengths of the radiation field.

If the source of the gravitational field is periodic with period T then its
stress–energy tensor can be expressed as a harmonic series:

Tµν(t, x) =
∞∑

m=−∞
Tµν(ωm , x)e−iωmt (6.57)

where ωm = 2πm/T and

Tµν(ωm , x) = T−1
∫ T

0
Tµν(t, x)eiωmt dt . (6.58)

For r = |x| � |x′| the source term on the right of equation (6.6) now
becomes

Sµν(t
′, x′) =

∞∑
m=−∞

[Tµν(ωm , x′)− 1
2ηµνT (ωm , x

′)]e−iωmteiωm |x−x′|

≈
∞∑

m=−∞
[Tµν(ωm , x′)− 1

2ηµνT (ωm , x
′)]eiωm(r−t)e−iωmn·x′ (6.59)

and so

hµν(t, x) ≈
∞∑

m=−∞
Eµν(ωm , x)e−iωmcλx

λ

(6.60)

where cµ = [1,n] and

Eµν(ωm , x) = −4r−1
∫
[Tµν(ωm , x′)− 1

2ηµνT (ωm , x
′)]e−iωmn·x′ d3x ′. (6.61)

If the expression (6.60) for hµν is used to calculate the second-order Ricci
tensor then, since all spatial derivatives of Eµν are of order r−2 and can be
neglected in the wave zone,

Rµν = − 1
2

∞∑
m=1

ω2m(E
κλE∗κλ − 1

2 EE
∗)cµcν (6.62)

(where E = Eλλ ) plus cross terms proportional to e−iωm+ncλxλ with m + n �= 0.
On averaging Rµν over a spacetime region with dimensions large compared to
the characteristic wavelength of the gravitational radiation, these additional terms



Radiation of gravitational energy from a loop 193

disappear. The expression (6.55) for the power radiated per unit solid angle,
therefore, becomes:

dP

d!
=

∞∑
m=1

r2ω2m
16π

(EµνE∗µν − 1
2 EE

∗) =
∞∑
m=1

ω2m

π
[T̄µν T̄ ∗µν − 1

2 |T̄µµ |2] (6.63)

where

T̄µν≡
∫
Tµν(ωm , x′)e−iωmn·x

′
d3x ′. (6.64)

In the case of the string stress–energy tensor (6.7),

T̄µν = µ
T

∫
d3x ′

∫ T

0
dτ

∫ L

0
dσ (V µV ν − NµNν )eiωm(τ−n·x′)δ(3)(x′ − r(τ, σ ))

= µ
T

∫ T

0
dτ

∫ L

0
dσ (V µV ν − NµNν )eiωm(τ−n·r) (6.65)

where Vµ = [1, rτ ] and Nµ = [0, rσ ] as before.
It was seen in chapter 3 that the trajectory of a string loop with invariant

length L obeying the Nambu–Goto equations of motion is periodic with period
L/2 in the centre-of-momentum frame, so T = L/2 and ωm = 4πm/L. Since
the general solution to the equations of motion is r(τ, σ ) = 1

2 [a(σ+) + b(σ−)]
where a and b are periodic functions with period L, the domain [0, T ] × [0, L]
in τ–σ space can be mapped to [0, L] × [0, L] in σ+–σ− space (as shown in
figure 6.2). This allows the Fourier components (6.65) of Tµν to be recast in the
form

T̄µν = µ
L

∫ L

0
eiωm(σ+−n·a)/2 dσ+

∫ L

0
eiωm(σ−−n·b)/2 dσ− a′(µb′ν) (6.66)

where a′µ(σ+) = [1, a′] and b′ν(σ−) = [1,b′] and the round brackets in a′(µb′ν)
denote symmetrization.

One interesting feature of this formula is that the radiated power is
proportional to the square of the mass per unit length µ (as would be expected)
but is independent of the length L of the string. This is a generic property of far-
zone gravitational radiation from a loop which obeys the Nambu–Goto equations
of motion, as the total energy of the loop is proportional L but the frequency of
oscillation is proportional to L−1.

To see this explicitly, note that because of the gauge conditions |a′|2 =
|b′|2 = 1, the vectors a and b in the centre-of-momentum frame have the general
form

a(σ+) = L

2π
a(2πσ+/L) and b(σ−) = L

2π
b(2πσ−/L) (6.67)

where a and b are periodic functions with period 2π , and satisfy the identity
|a′| = |b′| = 1. If σ± is replacedwith ξ± = 2πσ±/L as the variable of integration
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Figure 6.2. The fundamental domain in standard and light-cone coordinates.

in (6.66), then

T̄µν = µL

4π2

∫ 2π

0
eim(ξ+−n·a) dξ+

∫ 2π

0
eim(ξ−−n·b) dξ− a′(µb′ν) (6.68)

where now a′µ = [1, a′] and b′ν = [1,b′]. Since the expression (6.63) for the
radiated power is quadratic in both T̄µν and ωm = 4πm/L, it has no dependence
on L.

Note also that (6.68) can be expressed in the more compact form T̄µν =
µLA(µBν), where

Aµ = 1

2π

∫ 2π

0
eim[ξ+−n·a(ξ+)]a′µ(ξ+) dξ+ (6.69)

and

Bµ = 1

2π

∫ 2π

0
eim[ξ−−n·b(ξ−)]b′µ(ξ−) dξ−. (6.70)

The radiated power per unit solid angle (6.63), therefore, reduces to

dP

d!
= 8πµ2

∞∑
m=1

m2[(AµA∗µ)(BνB∗ν )+ |AµB∗µ|2 − |AµBµ|2]. (6.71)

Furthermore, integration of (6.69) by parts yields the identity

1

2π

∫ 2π

0
eim[ξ+−n·a(ξ+)]n · a′ dξ+ = 1

2π

∫ 2π

0
eim[ξ+−n·a(ξ+)] dξ+ ≡ At (6.72)

and consequently Aµ has only three independent components. Let k1, k2 and k3
be the unit vectors in the directions of the spatial (x , y and z) coordinate axes. If
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k3 is chosen to be n then A3 = At , and similarly B3 = Bt . Substituting these
identities into equation (6.71) generates the simple result

dP

d!
= 8πµ2

∞∑
m=1

m2[|A1mB1
m − A2mB2

m |2 + |A1mB2
m + A2mB1

m |2] (6.73)

where the subscript m has been added to A j and B j to indicate that they depend
explicitly on the wavenumber. Equation (6.73) is a restatement of the well-known
result that only motion transverse to the line-of-sight contributes to the radiated
energy.

Garfinkle and Vachaspati [GV87a] have used (6.73) to show that the power
radiated per unit solid angle from a string loop is, in all cases, finite unless the
unit vector n to the field point lies in the beaming direction of a cusp. To see this,
it is necessary to consider only one of the terms in (6.73), for example

A1m =
1

2π

∫ 2π

0
eim(ξ+−n·a)k1 · a′ dξ+. (6.74)

If ξ+ is replaced by u = ξ+ − n · [a(ξ+)− a(0)] then, since a change of 2π in ξ+
corresponds to a change of 2π in u,

A1m =
1

2π
e−imn·a(0)

∫ 2π

0
eimu F(u) du (6.75)

where F = (1− n · a′)−1k1 · a′.
Now, if the unit vector n to the field point is not equal to a′ at any point

on the loop trajectory, and a′ is k times piecewise differentiable, then at worst
F (k+1) contains one or more integrable singularities, and integrating (6.75) by
parts k+1 times demonstrates that A1m goes to zero at least as rapidly as m−(k+1).
In particular, if there is a kink in the a mode at u = uk then a′ is only piecewise
continuous, and integrating (6.75) by parts once gives

A1m =
1

2πmi
e−imn·a(0)

[
eimukF −

∫ 2π

0
eimuF ′(u) du

]
(6.76)

where F is the change in F across the kink, and so A1m falls off as m−1.
However, if n is equal to a′ at some point on the loop (say ξ+ = 0) and the

mode function a is at least three times differentiable at ξ+ = 0 then, in a similar
fashion to the near-cusp analysis of section 6.2,

a(ξ+) ≈ a(0)+ nξ+ + 1
2a
′′
0ξ

2+ + 1
6a
′′′
0 ξ

3+ (6.77)

where n · a′′0 = 0, n · a′′′0 = −|a′′0|2 and k1 · n = 0. Hence,

u ≈ 1
6 |a′′0 |2ξ3+ and F ≈ 2|a′′0 |−2k1 · a′′0ξ−1+ . (6.78)
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On defining w = mu, the integral across the discontinuity at ξ+ = 0 in (6.75)
gives

A1m ≈
1

2π
e−imn·a(0)(4/3)1/3m−2/3|a′′0|−4/3k1 · a′′0

∫
eiww−1/3 dw (6.79)

and since the singularity is integrable, A1m falls off as m−2/3.
The expression (6.73) for the power per unit solid angle is quadratic in both

A jm and B jm . It has been shown that A jm goes to zero at least as rapidly as m−1 if
the vector n does not coincide with one of the beaming directions of the a mode,
and like m−2/3 if it does. A similar statement applies to B jm . Broadly speaking,
then, there are three possibilities for the high-frequency contributions to dP/d!:

(i) If n is beamed by neither mode then at worst dP/d! ∼∑
m−2 and the sum

converges.
(ii) If n is beamed by one of the modes but not both then at worst dP/d! ∼∑

m−4/3 and the sum again converges.
(iii) If n is beamed by both modes then dP/d! ∼ ∑

m−2/3 and the sum
diverges.

Thus it is only in the third case that the power radiated per unit solid angle in the
direction of the field point is infinite. In this case n is beamed by both modes and
so there is a point on each mode where a′ = b

′ = n. In other words dP/d!
diverges if and only if n is in the beaming direction of a cusp.

Some explicit calculations of the power radiated by a selection of kinked
or cusped loops are examined in the following section, and the results are, in all
cases, consistent with the analysis presented here. It should be noted that although
dP/d! is always infinite in the beaming direction of a cusp (as expected), the total
integrated power P is generally finite, except in certain pathological cases.

6.5 Calculations of radiated power

The importance of being able to estimate the power loss from a generic
cosmic string loop is twofold, in that it gives a characteristic radiative lifetime
for the network of loops that may have formed in the early Universe, and
also an indication of the amplitude and frequency distribution of the radiative
cosmological background that would have been produced by this network. It is
not surprising, therefore, that a number of authors have published calculations of
the power radiated by various families of loops.

Here I will examine three standard studies involving the following
trajectories:

(i) the degenerate kinked cuspless loop of section 4.2.3, which has the mode
functions

a(σ+) =
{
(σ+ − 1

4 L )̂a 0 ≤ σ+ ≤ 1
2 L

( 34 L − σ+)̂a 1
2 L ≤ σ+ ≤ L

(6.80)
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and

b(σ−) =
{
(σ− − 1

4 L )̂b 0 ≤ σ− ≤ 1
2 L

( 34 L − σ−)̂b 1
2 L ≤ σ− ≤ L

(6.81)

where â and b̂ are constant unit vectors, and has been treated in the weak-
field approximation by David Garfinkle and Tanmay Vachaspati [GV87a];

(ii) the 3-harmonic Vachaspati–Vilenkin solutions introduced in section 4.4.3,
for which

a(σ+) = L

2π

[
(1− α) sin ξ+,−(1− α) cos ξ+,

√
α − α2 sin(2ξ+)

]
+ L

2π
[− 1

3α sin(3ξ+),− 1
3α cos(3ξ+), 0] (6.82)

and

b(σ−) = L

2π
[sin ξ−,− cosψ cos ξ−,− sinψ cos ξ−] (6.83)

(where 0 ≤ α < 1, 0 ≤ ψ ≤ π and ξ± = 2πσ±/L), which have been
studied analytically in the case α = 0 and numerically for other values of
α by Tanmay Vachaspati and Alexander Vilenkin [VV85] and Ruth Durrer
[Dur89]; and

(iii) the family of p/q harmonic solutions discussed in section 4.4.2, which have

a(σ+) = L

2πp
[cos(pξ+), sin(pξ+), 0] (6.84)

and

b(σ−) = L

2πq
[cos(qξ−), cosψ sin(qξ−), sinψ sin(qξ−)] (6.85)

where ψ is a constant and p and q are positive integers, and have been
analysed principally by Conrad Burden [Bur85].

I will also briefly mention other numerical estimates of radiated power
involving trajectories for which there is no comparable analytic development.

6.5.1 Power from cuspless loops

The degenerate kinked cuspless loop is the easiest to examine analytically. If
n1 = â · n and n2 = b̂ · n then

T̄µν = 16µ

L

(−1)m cos[mπ(n1 − n2)/2] − cos[mπ(n1 + n2)/2]
ω2m(1− n21)(1− n22)

Mµν (6.86)

for m �= 0, where

Mµν =
(

2n1n2 n2̂a+ n1b̂
n2̂a+ n1b̂ â⊗ b̂+b̂⊗ â

)
. (6.87)
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Since MµνMµν − 1
2 (M

µ
µ )

2 = 2(1− n21)(1− n22) it follows that
dP

d!
= 32µ2

π3

∞∑
m=1

[1− (−1)m cos(mπn1)][1− (−1)m cos(mπn2)]
m2(1− n21)(1− n22)

. (6.88)

The series can summed explicitly by invoking the identity
∞∑
m=1

cos(mu) cos(mv)

m2
= 1

8
[(|u + v| − π)2 + (|u − v| − π)2] − π

2

12
(6.89)

for any u, v in [−π, π], giving
dP

d!
= 16µ2

π

1− 1
2 (|n1 + n2| + |n1 − n2|)
(1− n21)(1− n22)

. (6.90)

Note here that as n1 → 1, the right-hand side of (6.90) tends to 8µ2π−1(1−
n22)

−1 and so the power radiated per solid angle remains finite in all directions.
Furthermore, the angular integration can be performed to give an explicit formula
for the total power of the loop. If the coordinates are aligned so that â =
[cos(ψ/2), sin(ψ/2), 0] and b̂ = [cos(ψ/2),− sin(ψ/2), 0], where cosψ = â·̂b,
then

P = 128µ2

π

∫ π/2

0
dφ

∫ π/2

0
dθ

× 1− cos(φ − ψ/2) sin θ
[1− cos2(φ − ψ/2) sin2 θ ][1− cos2(φ + ψ/2) sin2 θ ] sin θ

= 32µ2

sin2 ψ
{(1+ cosψ) ln[2/(1+ cosψ)] + (1− cosψ) ln[2/(1− cosψ)]}.

(6.91)

The integrated power P is, of course, finite except in the limits ψ → 0 and π
(when the loop is effectively a line segment with permanent cusps), in which case
it diverges logarithmically in sinψ (see figure 6.3). The minimum value of the
radiative efficiency γ 0 ≡ P/µ2 is 64(ln 2) ≈ 44.4, and occurs when ψ = π/2.

Garfinkle and Vachaspati [GV87a] have published numerical estimates of the
radiated power from two other families of cuspless loops, namely the 4-harmonic
Garfinkle–Vachaspati solutions described by (4.95) and (4.96) in the specific case
p = 1 (which is illustrated in figures 4.28 and 4.29), and a five-parameter family
which is similar to the balloon strings of section 4.3, save that the mode functions
are broken near the north pole in exactly the same manner as near the south pole,
and the planes of the two mode functions need not be orthogonal. In the first
case Garfinkle and Vachaspati find that γ 0 ≈ 65 and in the second case that γ 0

is ‘of the order of 100’ (although unfortunately no parameter values are quoted
in connection with this result). Later work by Bruce Allen and Paul Casper
[AC94], using an improved numerical algorithm to be described in section 6.9,
has confirmed the order of magnitude of this second estimate.
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Figure 6.3. Radiated power P from a degenerate kinked cuspless loop as a function of the
angle ψ .

6.5.2 Power from the Vachaspati–Vilenkin loops

The radiated power can also be evaluated explicitly for the Vachaspati–Vilenkin
solutions of case (ii) in the 1-harmonic limit α = 0, for which

a(ξ+) = [sin ξ+,− cos ξ+, 0] (6.92)

and
b(ξ−) = [sin ξ−,− cosψ cos ξ−,− sinψ cos ξ−]. (6.93)

For 0 < ψ < π these functions describe a loop in the shape of a doubled
straight line parallel to [0, cosψ + 1, sinψ] at time τ = 0, which evolves to form
an ellipse with axes in the directions of [1, 0, 0] and [0, cosψ − 1, sinψ] at time
τ = L/4. In the degenerate cases ψ = 0 and ψ = π the trajectory describes a
doubled rotating rod (section 4.2.2) and a collapsing circular loop (section 4.2.1),
respectively.

If the coordinate system is rotated so that the ellipse lies in the x–z plane
then

a(ξ+) = [sin(ψ/2) sin ξ+,− cos(ψ/2) sin ξ+,− cos ξ+] (6.94)

and
b(ξ−) = [sin(ψ/2) sin ξ−, cos(ψ/2) sin ξ−, cos ξ−] (6.95)

and the doubled line which forms at τ = 0 now lies along the y-axis, with cusps
at y = ± cos(ψ/2) moving in the negative and positive z-directions respectively.

In this case, the Fourier transforms Aµ and Bµ defined by (6.69) and (6.70)
can be evaluated by invoking the identity

1

2π

∫ 2π

0
ei(pξ−u sinξ−v cos ξ) dξ =

(
u − iv

w

)p
Jp(w) (6.96)
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for p ∈ �, where w = (u2 + v2)1/2 �= 0 and Jp is the Bessel function of order p.
If the unit vector to the field point is n = [cosφ sin θ, sinφ sin θ, cos θ ] then

Aµ = [F+m ,Am ] and Bµ = [F−m ,Bm ] (6.97)

where

Am = 1
2 [i sin(ψ/2),−i cos(ψ/2), 1]F+m+1
+ 1

2 [−i sin(ψ/2), i cos(ψ/2), 1]F+m−1 (6.98)

Bm = 1
2 [i sin(ψ/2), i cos(ψ/2),−1]F−m+1
+ 1

2 [−i sin(ψ/2),−i cos(ψ/2),−1]F−m−1 (6.99)

and F±k = βk± Jk(mr±), with

β± = ± cos θ − i sin(ψ/2∓ φ) sin θ
r±

(6.100)

and
r± = [1− cos2(ψ/2∓ φ) sin2 θ ]1/2. (6.101)

Substituting T̄µν into (6.63) gives the following formula for the power
radiated per unit solid angle:

dP

d!
≡

∞∑
m=1

dPm
d!

= 8πµ2
∞∑
m=1

m2[(J+′m J−′m + λ+λ− J+m J−m )2 + (λ+ J+m J−′m + λ− J−m J+′m )2]

(6.102)

where now J±m denotes Jm(mr±), λ± = (r−2± − 1)1/2 and Jm±1(mr) has
everywhere been replaced by r−1 Jm ∓ J ′m .

This expression for the radiated power simplifies somewhat for field points
on the equatorial plane or the x–z and y–z planes, where the distinction between
r+ and r− disappears. In particular, when the field point is aligned with the ±z-
axis then r+ = r− = 1 and

dP

d!
= 8πµ2

∞∑
m=1

m2[J ′m(m)]4. (6.103)

The same is true in the degenerate case ψ = 0 (the doubled rotating rod) for any
field point in the plane of rotation of the rod and in the case ψ = π (the circular
loop) for any point in the plane of the loop. At a physical level, r+ = r− = 1 if
and only if the field point lies in the beaming direction of a cusp.
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Now, for large m, the asymptotic form of J ′m(m) is 0.41m−2/3 and so the
sum on the right of (6.103) diverges. Thus the power radiated per unit solid angle
is singular in the beaming directions of the cusps, as anticipated. However, for r
close to 1,

Jm(mr) ∼ 0.45m−1/3 and J ′m(mr) ∼ 0.41m−2/3 (6.104)

only when m � mcrit = 3[2(1− r)]−3/2, while Jm(mr) and J ′m(mr) both fall off
like exp(−m/mcrit) for m � mcrit. For field points near the z-axis (sin θ � 1),

λ± ∼ 2(1− r±) ∼ sin2 θ [κ1 cosφ ± κ2 sin φ]2 (6.105)

where κ1 = cos(ψ/2) and κ2 = sin(ψ/2).
Hence the power radiated per unit solid angle (6.102) can be approximated

by truncating the sums at m = mmax, where

mmax = 3 sin−3 θ [κ1| cosφ| + κ2| sinφ|]−3. (6.106)

This gives

dP

d!
∼ µ2[m1/3

max + (λ2+ + 4λ+λ− + λ2−)mmax + λ2+λ2−m5/3
max]

∼ µ2m1/3
max ∼ µ2[κ1| cosφ| + κ2| sinφ|]−1 1

sin θ
. (6.107)

Since the function 1/ sin θ is integrable on the unit sphere, the total power
P radiated by the loop is finite unless either κ1 or κ2 is zero. In the latter
circumstance (the degenerate cases ψ = 0 or π) the total power P diverges
because dP/d! is singular on the circles sin φ = 0 or cosφ = 0 rather than
at isolated points. A more detailed examination of the weak-field radiation from
a collapsing circular loop is given in section 6.10.

A final feature of the 1-harmonic limit is that for a fixed wavenumber m,
the power radiated per unit solid angle has peaks (centred on the two beaming
directions θ = 0 and θ = π) with angular radii θx ∼ m−1/3κ−11 and
θy ∼ m−1/3κ−12 in the directions of the circles sin φ = 0 and cosφ = 0
respectively, as is evident from (6.106). Since the power Pm radiated in the mth
harmonic has an angular density

dPm
d!

∼ µ2m−2/3 (6.108)

near the beaming directions, the integrated power scales as

Pn ∼ µ2m−2/3θxθy ∼ µ2(sinψ)−1m−4/3. (6.109)

This estimate can be used to accelerate the convergence of the series P =∑
Pm ,

although it should be noted that it applies only whenθx andθy are both small
or, equivalently, when m � (sinψ)−3.
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Vachaspati and Vilenkin [VV85] have numerically integrated the total power
P radiated by the Vachaspati–Vilenkin solutions for α = 0 and 0.5. In both cases
P = γ 0µ2 with a coefficient of radiative efficiency γ 0 ∼ 50 when ψ = π/2.
(Note that the parameter φ used by Vachaspati and Vilenkin is just π − ψ .) With
α = 0, the efficiency γ 0 increases to about 100 at ψ = π/4 and about 60 at
ψ = 3π/4, and, of course, diverges at ψ = 0 and π . With α = 0.5, the value of
γ 0 remains fairly constant at about 50, although numerical accuracy is poor near
ψ = 0 and π . Durrer [Dur89] has obtained similar results for the case α = 0.5
over the range π/4 ≤ ψ < 3π/4, although when α = 0 her estimates for γ 0

are 10–30% smaller than Vachaspati and Vilenkin’s. Durrer has also considered
the case α = 0.8, and finds that γ 0 increases from 48.1 at ψ = π/4 to 75.1 at
ψ = 3π/4. Vachaspati and Vilenkin’s estimates of γ 0 in the 1-harmonic case
α = 0 have been independently confirmed by Burden [Bur85] and Allen and
Casper [AC94].

However, Allen and Casper [AC94] have carefully reanalysed the radiative
efficiencies from a sequence of Vachaspati–Vilenkin loops with α = 0.5, using
both the standard Fourier decomposition method (combined with a fast Fourier
transform) and the piecewise-linear approximation algorithm to be described in
section 6.9, and conclude that γ 0 is, in this case, always greater than about 75.
For example, when ψ = π/2 Allen and Casper calculate the value of γ 0 to
be 97.2 ± 0.2, in contrast to Vachaspati and Vilenkin’s quoted value of 54.0
and Durrer’s of 56.9. There seems to be little doubt that Allen and Casper’s
rigorous analysis is the more reliable and that the source of the errors in the
earlier published values of γ 0 lies in mistaken estimates of the contribution of
the tail of the series

∑
Pm , which Vachaspati and Vilenkin truncate at m = 30

(and Durrer at m = 50). Vachaspati and Vilenkin claim, on the basis of their
numerical results, that Pm falls off as m−3 for large m, whereas Allen and Casper
find (more plausibly) that Pm ∼ m−1.25 form between 100 and 300. Durrer seems
to have included no correction for the tail contribution in her estimates at all.

Finally, mention should be made of the one published estimate of the
radiative efficiency from a non-trivial member of the Turok class of 1–3/1
harmonic solutions, which are described by the mode functions (4.82) and (4.83).
Vachaspati and Vilenkin [VV85] have considered the case α = 0.5 and ψ = π ,
and conclude that γ 0 lies between 32.4 and 64.4. The lower bound is the value
of

∑
Pm truncated at m = 30, without any correction for the contribution of the

tail, while the upper bound includes a tail correction estimated on the basis of a
numerical fit of the form Pm ∼ m−1.17 for large m.

6.5.3 Power from the p/q harmonic solutions

Burden’s analysis of the power per unit solid angle radiated by the p/q harmonic
solutions in [Bur85] is very similar to the above treatment of the 1-harmonic
solutions (which, of course, are just p/q harmonic solutions with p = q = 1).
As was seen in section 4.4.2, the parametrization of the p/q harmonic solutions



Calculations of radiated power 203

can always be adjusted so that p and q are relatively prime and the loops are self-
intersecting unless either p or q is 1. However, in contrast to the conventions of
section 4.4.2, where p and q can be either positive or negative and ψ ranges over
[0, π), it will here be more convenient to constrain p and q to be positive and
allow ψ to range over [0, 2π). The solutions of section 4.4.2 with pq < 0 are
then mapped onto the interval [π, 2π).

To facilitate comparison with the 1-harmonic solutions it is also convenient
to rotate the coordinate axes so that the p/q mode functions take the form:

a(ξ+) = p−1[sin(ψ/2) sin(pξ+), cos(ψ/2) sin(pξ+), cos(pξ+)] (6.110)

and

b(ξ−) = q−1[− sin(ψ/2) sin(qξ−), cos(ψ/2) sin(qξ−), cos(qξ−)]. (6.111)

All members of the family with 0 < ψ < π or π < ψ < 2π then support cusps
with beaming directions aligned with the±z-axes. In the degenerate planar cases
ψ = 0 and π the cusps are permanent and their beam directions fill out the y–z
and x–z planes respectively1.

The most important difference between the 1-harmonic case and the more
general case is that the power radiated at a frequency ωm = 4πm/L is zero
unless m is an integer multiple of pq . At a physical level this is not surprising, as
the trajectory of a p/q harmonic solution is periodic in the light-cone coordinates
σ+ and σ− with periods L/p and L/q respectively. Mathematically, the result
follows from the fact that the components of the Fourier transforms Aµ and Bν

defined by (6.69) and (6.70) are all of the form

I = 1

2π

∫ 2π

0
ei[(m+ j )ξ−u sin(cξ)−v cos(cξ)] dξ (6.112)

with c = p or q and j = 0 or ±c. If m + j is an integer multiple kc of c then
I = ( u−iv

w
)k Jk(w) where w = (u2 + v2)1/2 but I = 0 otherwise. So at least

one of the transforms Aµ and Bν will vanish unless m = n|pq| for some positive
integer n.

In view of this property, the power radiated per unit solid angle by the p/q
harmonic solutions turns out to be

dP

d!
= 8π(pq)2µ2

∞∑
n=1

n2[(J+′n J−′n +λ+λ− J+n J−n )2+ (λ+ J+n J−′n +λ− J−n J+′n )2]
(6.113)

where λ± = (r−2± − 1)1/2 as before, and now

J+n = Jnp(npr+) and J−n = Jnq(nqr−) (6.114)
1 Unfortunately, the gauge choices made for the p/q harmonic solutions and the Vachaspati–Vilenkin
solutions with α = 0 are slightly different, with the result that the expressions for the mode functions
given in this section do not agree exactly when p = q = 1. However, the p/q solutions are easily
converted to the Vachaspati–Vilenkin form by replacing τ with τ − π/2 and σ with π/2− σ .
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with
r± = [1− cos2(ψ/2 ∓ φ) sin2 θ ]1/2 (6.115)

again defined in terms of the field direction n = [cosφ sin θ, sinφ sin θ, cos θ ]. In
line with the previous results, dP/d! is finite everywhere except in the beaming
directions, and the total power P is finite except in the degenerate cases ψ = 0
and π . Also, the power Pn in the nth harmonic scales as µ2n−4/3.

Numerical calculations of the total power P made by Burden in the cases
q = 1 and p = 1, 2, 3 and 5 indicate that the coefficient of radiative efficiency γ 0

remains in the range 50–120 for ψ between 4π/3 and 5π/3, with γ 0 increasing
monotonically with p. For q = 1, p = 15 and ψ = 3π/2, the radiative efficiency
increases to γ 0 ∼ 150. The cases q = 1 and p = 3 and 5 have also been
examined by Jean Quashnock and David Spergel [QS90] and Allen and Casper
[AC94], with good agreement with Burden in both instances. (In fact, all the
quoted values of γ 0 agree to within 8%.)

Although the loop solutions examined in this section are all extremely
idealized, it is encouraging to note that the radiative efficiencies inferred from
more realistic simulations of the primordial cosmic string network lie in the
same general range. For example, Bruce Allen and Paul Shellard [AS92] have
numerically evolved a network of both long strings and string loops in an
expanding Robertson–Walker metric and calculated that the mean value of γ 0

over the ensemble of loops remained in the approximate range 65–70 over a
simulation time corresponding to an expansion of the horizon size by a factor
of more than 60. Furthermore, as will be seen later, there are good theoretical
reasons for believing that γ 0 can never fall below a minimum value γ 0min ≈ 39.

6.6 Power radiated by a helical string

The weak-field formalism can also be adapted to give an estimate of the power
per unit length radiated by an infinite string. The case of a helical string of the
type described in section 4.1.4 has been treated in detail by Maria Sakellariadou
[Sak90]. The trajectory of a helical string has the form Xµ = [τ, 12 (a+ b)], with

a(σ+) = [R cos(kσ+), R sin(kσ+), σ+ sin α] (6.116)

and
b(σ−) = [R cos(kσ−),−R sin(kσ−),−σ− sin α] (6.117)

where k = R−1 cosα and α is the pitch angle of the helix at maximum extension.
The trajectory is periodic in t ≡ τ with period 2πk−1, and is also periodic in z
with period 2πk−1 sin α. In the limit α → π/2 the trajectory degenerates into a
straight line along the z-axis.

The wave zone in this case consists of field points x = [x, y, z] for which
ρ � R, where ρ is the cylindrical radius (x2+ y2)1/2. The power radiated by the
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string per unit longitudinal angle φ and unit length in the z-direction is

dP

dφ dz
= ρ

2∑
i=1

q̂ i�it (6.118)

where q̂ = q/ρ for q = [x, y, 0], and �µν is the gravitational stress–energy
pseudo-tensor given by (6.56).

Because of the periodicity of the trajectory in z, the stress–energy tensor of
the string can be decomposed as a Fourier series in both t and z:

Tµν(t, x) =
∞∑

m,n=−∞
Tµν(κn, ωm ,q)eiκn z−iωmt (6.119)

where ωm = mk, κn = nk/ sinα and

Tµν(κn, ωm , x) = k2

4π2 sin α

∫ 2πk−1

0
dt
∫ 2πk−1 sinα

0
dz Tµν(t, x)eiωmt−iκnz .

(6.120)
The solution (6.6) for the metric perturbation hµν then becomes

hµν(t, x) = − 4
∞∑

m,n=−∞

∫
Sµν(κn, ωm ,q′)

|x− x′| eiκnz
′+iωm |x−x′|e−iωmt dz′ d2q ′

= − 4iπ
∞∑

m,n=−∞
eiκnz−iωmt

∫
Sµν(κn, ωm ,q′)Fmn(q,q′) d2q ′

(6.121)

where
Fmn(q,q′) = H (1)0 [(ω2m − κ2n )1/2|q− q′|] (6.122)

and H (1)0 is the Hankel function of order 0.
For values of ρ = |q| large compared to |q′| ≤ R,

Fmn(q,q′) ≈ (2/π)1/2e−iπ/4 e
i(ω2m−κ2n )1/2(ρ−q̂·q′)

(ω2m − κ2n )1/4ρ1/2
(6.123)

provided that ω2m > κ
2
n . If ω

2
m < κ

2
n then Fmn falls off exponentially with ρ and

can be ignored. Hence, the asymptotic form of the metric perturbation is

hµν(t, x) ≈ − 4(2π)1/2eiπ/4
∑
ω2m>κ

2
n

eiκnz−iωmt+i(ω2m−κ2n )1/2ρ

(ω2m − κ2n )1/4ρ1/2

×
∫
Sµν(κn, ωm ,q′)e−i(ω

2
m−κ2n )1/2q̂·q′ d2q ′. (6.124)
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The important feature of this expression is that hµν has the generic form

hµν(t, x) ≈
∑
ω2m>κ

2
n

Eµν(κn, ωm ,q)e−icλx
λ

(6.125)

where
cµ = [ωm , (ω2m − κ2n )1/2q̂, κn] (6.126)

is null, and Eµν can be read off from (6.124).
After averaging over a spacetime region with dimensions large compared

with the characteristic wavelength of the gravitational field the second-order Ricci
tensor takes the form

Rµν = 1
2

∞∑
m=1

∑
κn<ωm

(EκλE∗κλ − 1
2 EE

∗)cµcν (6.127)

and the power radiated per unit φ and z is

dP

dφ dz
=

∞∑
m=1

∑
κn<ωm

ρωm(ω
2
m − κ2n )1/2
16π

(EκλE∗κλ − 1
2 EE

∗)

= 2
∞∑
m=1

∑
κn<ωm

ωm(T̄
µν T̄ ∗µν − 1

2 |T̄µµ |2) (6.128)

where

T̄µν ≡
∫
Tµν(κn, ωm ,q′)e−i(ω

2
m−κ2n )1/2q̂·q′ d2q ′

= µk2

4π2 sinα

∫ 2π/k

0
dτ

∫ 2π/k

0
dσ (VµV ν − NµNν )eiωmτ−iκnz−i(ω2m−κ2n )1/2q̂·r.

(6.129)

This integral can be simplified by transforming to reduced light-cone
coordinates ξ± = k(τ ± σ). For this purpose it is convenient to integrate τ over
two complete periods 2πk−1, as then ξ+ and ξ− both range over [0, 4π]. After
inserting the trajectory r specific to the helical string (6.129) can be expressed in
the form

T̄µν = µ

sin α
A(µBν) (6.130)

where

Aµ = 1

4π

∫ 4π

0
ei(m−n)ξ+/2−iβmn cosα[cosφ sin(ξ+)−sinφ cos(ξ+)]/2[1, a′] dξ+

(6.131)
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and

Bν = 1

4π

∫ 4π

0
ei(m+n)ξ−/2−iβmn cosα[cosφ sin(ξ−)+sinφ cos(ξ−)]/2[1,b′] dξ−

(6.132)
with βmn = (m2 − n2/ sin2 α)1/2,

a′ = [− cosα sin ξ+, cosα cos ξ+, sin α] (6.133)

and b′ given by the corresponding expression with ξ− in place of ξ+.
In view of the earlier discussion of the Fourier integrals associated with the

p/q harmonic solutions, it is clear that the integrals Aµ and Bν appearing here
will both vanish unless m + n is an even integer. After a calculation similar to
that given for the 1-harmonic solutions in the previous section the radiated power
turns out to be

dP

dφ dz
= µ

2k cos4 α

sin2 α

∞∑
m=1

m
′∑

0≤n<m sinα

[(J ′2a +γa J 2a )(J ′2b +γb J 2b )−4γ̂ Ja Jb J ′a J ′b]
(6.134)

with a = (m − n)/2 and b = (m + n)/2, and

γc = 4c2

β2mn cos
2 α
− 1 γ̂ =

(
4ab

β2mn
− 2

)
sec2 α+ 1 Jc = Jc(

1
2βmn cosα).

(6.135)
The prime on the second summation sign in (6.134) indicates that only values of
n for which m + n is even should be included in the summation (and so strictly
speaking the outer summation should begin at m = 2, as the modes with m = 1
make no contribution).

Since the right-hand side of (6.134) has no dependence on the longitudinal
angle φ the total power radiated per unit length in the z-direction, dP/dz, is found
by multiplying (6.134) by 2π . Also Jc ∼ cosc α for α close to π/2, and all
the Bessel functions appearing in (6.134) have a, b ≥ 1, so in the limit as the
trajectory tends to a static straight line the power falls off as cos4 α. In the opposite
limit, α → 0, the winding number of the helix (the number of turns of the string
per unit length in the z-direction) diverges, and the world sheet approaches that of
a cylinder composed of a continuous sheet of collapsing circular strings centred
on the z-axis. Since the restriction on the range of n ensures that the βmn remain
real and bounded as α tends to 0, the power per unit length in this limit diverges
as α−2. Sakellariadou [Sak90] has numerically evaluated the double summation
in (6.134) and shown that it remains of order unity for all values of α.

The expression (6.134) can be broken naturally into two parts, one containing
all the modes with even values ofm and the other containing all the odd modes. In
each part, the power radiated per mode turns out to be a monotonically decreasing
function of the mode number m, but the power in each even mode (m = 2 j ) is in
all cases greater than the power in the preceding odd mode (m = 2 j−1), with the
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difference between the even and odd modes increasing as α increases. In the limit
as α→ π/2 almost all the power is emitted by the lowest even mode (m = 2).

6.7 Radiation from long strings

Sakellariadou’s analysis of the gravitational radiation from a helical string has
been extended to arbitrary periodic disturbances of an infinite straight string by
Mark Hindmarsh [Hin90]. Without loss of generality, the spacelike cross sections
of the string can be assumed to have infinite range in the z-direction. If the string’s
trajectory r(τ, σ ) is periodic in τ ≡ t with a period 2πk−1 for some constant k
then the spacelike cross sections of r will be periodic in σ with the same period,
save for a shift proportional to σ in the z-direction. For causal disturbances, the
pattern length in the z-direction can be no greater than the period 2πk−1 and so
will be written as 2πk−1 sin α for some α in (0, π/2).

This allows the notation of the previous section to be retained unchanged
and, in particular, the Fourier transforms Aµ and Bν appearing in the symmetrized
product (6.130) now take the generalized forms

Aµ = k

4π

∫ 4π/k

0
eiωmσ+/2−ic·a(σ+)/2[1, a′(σ+)] dσ+ (6.136)

and

Bν = k

4π

∫ 4π/k

0
eiωmσ−/2−ic·b(σ−)/2[1,b′(σ−)] dσ− (6.137)

with c = [(ω2m − κ2n )1/2q̂, κn], ωm = mk and κn = nk/ sin α. The expression
(6.128) for the power radiated per unit φ and z can then be written in the reduced
form

dP

dφ dz
= µ2

sin2 α

∞∑
m=1

∑
κn<ωm

ωm(|AµA∗µ||BνB∗ν |+ |AµB∗µ|2−|AµBµ|2). (6.138)

For weak excitations of the string the transverse mode functions a′⊥ =
[a′x , a′y, 0] and b′⊥ = [b′x, b′y, 0] are small compared to the corresponding
longitudinal mode functions a′z and b′z . To second order in the transverse
excitations the gauge conditions |a′|2 = |b′|2 = 1 therefore read:

a′z ≈ 1− 1
2 |a′⊥|2 and b′z ≈ −1+ 1

2 |b′⊥|2 (6.139)

and, in particular, (since az ≈ σ+ and bz ≈ −σ− to leading order) it follows that
sin α ≈ 1.

Furthermore,

eiωmσ+/2−ic·a(σ+)/2 ≈ ei(ωm−κn )σ+/2[1− 1
2 i(ω

2
m − κ2n )1/2q̂ · a⊥] (6.140)
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and so if Aµ is decomposed in the form [At ,A⊥, Az] then Az ≈ At where

At = k

4π

∫ 4π/k

0
eiωmσ+/2−ic·a(σ+)/2 dσ+

≈ − ik

8π
(ω2m − κ2n )1/2

∫ 4π/k

0
ei(ωm−κn)σ+/2q̂ · a⊥ dσ+. (6.141)

Similarly, after integrating by parts once,

q̂ ·A⊥ ≈ k

4π

∫ 4π/k

0
ei(ωm−κn)σ+/2q̂ · a′⊥ dσ+

= − ik

8π
(ωm − κn)

∫ 4π/k

0
ei(ωm−κn )σ+/2q̂ · a⊥ dσ+. (6.142)

and hence

At ≈
(
ωm + κn
ωm − κn

)1/2
q̂ · A⊥. (6.143)

The corresponding calculations for the b mode give Bz ≈ −Bt and

Bt ≈
(
ωm − κn
ωm + κn

)1/2
q̂ · B⊥. (6.144)

Thus the terms appearing in the expression (6.138) for the radiated power reduce
to

|AµA∗µ| ≈ |A⊥|2 |BνB∗ν | ≈ |B⊥|2 (6.145)

and
AµBµ ≈ 2(̂q ·A⊥)(̂q · B⊥)− A⊥ · B⊥ (6.146)

(with an analogous identity for AµB∗µ).
An important consequence of these relations is that a long string will not

radiate gravitationally (to leading order in the transverse excitations at least)
unless both A⊥ and B⊥ are non-zero or, equivalently, unless the string supports
transverse modes propagating in both directions. This result is in accord with
the behaviour of travelling-wave solutions, which are distinguished by the feature
that either a′⊥ or b′⊥ is zero and are known to be self-consistent solutions of the
full Einstein equations (see section 9.1) whatever the shape of the non-zero mode.
Since the wave pattern in a travelling-wave solution propagates without distortion
or dissipation it is clearly non-radiative, although the string still exerts a non-
trivial gravitational field.

The expression (6.138) for the radiated power can be simplified further by
integrating over the azimuthal angle φ. In view of the identity∫ 2π

0
(̂q ·A)(̂q · B) dφ = πA · B (6.147)
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the power radiated per unit length of the string becomes

dP

dz
≈ 2πµ2k

∞∑
m=1

∑
0≤n<m

m(|A⊥|2|B⊥|2 + |A⊥ · B⊥|2 − |A⊥ · B∗⊥|2) (6.148)

where

A⊥ ≈ k

4π

∫ 4π/k

0
ei(m−n)kσ+/2a′⊥ dσ+ (6.149)

and

B⊥ ≈ k

4π

∫ 4π/k

0
ei(m+n)kσ−/2b′⊥ dσ−. (6.150)

Although the range of integration in (6.149) and (6.150) has for reasons
mentioned in section 6.6 been fixed at [0, 4π/k], the functions a′⊥ and b′⊥
separately have periods 2π/k. The Fourier transforms A⊥ and B⊥ are thus both
zero unless m + n is an even integer, just as was the case for the helical string. It
is therefore natural to replace m and n with a = (m − n)/2 and b = (m + n)/2,
and to identify the corresponding Fourier modes as Aa⊥ and Bb⊥.

Now any individual Fourier mode, Aa⊥ say, can always be chosen to be real
by suitably rezeroing σ+, for if Aa⊥ = eiθ |Aa⊥| the phase factor θ will disappear
after replacing σ+ with σ̃+ = σ+ − θ/(ka). The contribution of Aa⊥ to the total
radiated power per unit length (6.148) is then:

dPa
dz

≈ 2πµ2k|Aa⊥|2
∞∑
b=1
(a + b)|Bb⊥|2. (6.151)

Also, it was seen in section 3.3 that the energy of a segment of string with
parametric lengthσ is E = µσ . In view of the approximations (6.139) and
the fact that

dσ

dz
= 2(a′z − b′z)−1 (6.152)

it follows that the total energy of a string segment with fundamental length 2π/k
in the z-direction is

E ≈ µ
∫ 2π/k

0
[1+ 1

4 |a′⊥|2 + 1
4 |b′⊥|2] dz

= 2πµk−1
[
1+ 1

2

∞∑
a=1

|Aa⊥|2 + 1
2

∞∑
b=1

|Bb⊥|2
]

(6.153)

as dz = dσ+ = −dσ− on surfaces of constant t .
Thus the averaged energy per unit length in the z-direction is

µ̄ ≈ µ
[
1+ 1

2

∞∑
a=1

|Aa⊥|2 + 1
2

∞∑
b=1

|Bb⊥|2
]

(6.154)
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and so it is possible, at this level of approximation, to associate an energy per unit
length with each of the Fourier modes.

If it is assumed that the partial power Pa radiated by the Fourier mode Aa⊥ is
extracted solely from the energy associated with that mode then equation (6.151)
can be rewritten in the form

d

dt
|Aa⊥|2 ≈ −4πµk|Aa⊥|2(a + b)

∞∑
b=1
|Bb⊥|2 (6.155)

where b is an average wavenumber for the b modes, defined by

b =
∞∑
b=1

b|Bb⊥|2
/ ∞∑

b=1
|Bb⊥|2. (6.156)

Now, a number of simulations of realistic string networks [BB88, BB89,
AS90] indicate that the average energy per unit length is typically of order
µ̄ ∼ 2µ, and so

∑∞
b=1 |Bb⊥|2 ∼ 1. For high-frequencymodes with a � b (6.155),

therefore, predicts exponential decay of the mode energy with a characteristic
decay time t ∼ (4πµka)−1. The corresponding fundamental wavelength is
r = 2π/(ka), and so it follows that gravitational radiation will suppress high-
frequency structure with a characteristic dimension r after a time

t ∼ r/(8π2µ). (6.157)

Of course, the validity of this approximation depends critically on the
assumption that the partial power Pa is extracted solely from the energy of the
corresponding Fourier mode Aa⊥, but calculations incorporating the full back-
reaction effects of linearized gravity, to be discussed later in section 6.11, suggest
that (6.157) is indeed a reasonable order-of-magnitude estimate of the efficiency
of radiative dampening.

6.8 Radiation of linear and angular momentum

6.8.1 Linear momentum

Althoughmost analytic and numerical studies of the asymptotic gravitational field
due to a cosmic string to date have focused on estimates of the radiated power,
important information about the dynamics of a string can also be extracted from
the rate at which the string radiates linear and angular momentum.

Calculating the flux of linear momentum is comparatively straightforward. A
pulse of gravitational radiation with energy E also carries a momentum p = En,
where n is the unit vector in the direction of propagation, and so the total flux of
momentum from a string loop is

dp
dt
=
∫

dP

d!
n d! (6.158)
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where dP/d! is the power loss per unit solid angle (6.63). Except in cases
where it is clear from the symmetry of the string’s trajectory that the total
momentum flux is identically zero, the string typically emits a non-zero net flux
and consequently accelerates in the opposite direction. This is the origin of the
‘gravitational rocket effect’.

Of the trajectories examined in section 6.5 the kinked cuspless loop and
the Turok solutions possess mirror symmetry and so do not radiate a net flux
of momentum. The same is true of Burden’s p/q harmonic solutions if p and
q are both odd. However, the Vachaspati–Vilenkin solutions described by the
mode functions (6.82) and (6.83) are asymmetric if α �= 0 or 1, and Vachaspati
and Vilenkin [VV85] have calculated the momentum flux radiated by the loops
with the parameter values α = 0.5 and ψ = π/4, π/2 and 3π/4. They
find that |dP/dt| = γPµ

2 with the coefficient γP ranging from 5 to 12 (and,
as was seen earlier, a radiative efficiency γ 0 in all three cases of the order of
50).

Vachaspati and Vilenkin go on to argue that the gravitational back-reaction
on the loop will ultimately accelerate it to a speed of the order of |dP/dt|t/M
(where M is the mass and t the radiative lifetime of the loop) or, equivalently,
γP/γ

0. For the three trajectories they examined the inferred back-reaction speed
γP/γ

0 lies between about 10% and 20% of the speed of light. However, this
conclusion depends critically on the assumption that the torque on the loop
induced by the radiation of angular momentum does not significantly rotate the
direction of recoil. The validity of this assumption will be examined in more
detail in section 6.11.

Durrer [Dur89] has also attempted to calculate the coefficient γP for a
selection of Vachaspati–Vilenkin solutions with both α = 0.5 and α = 0.8. Her
estimates in the case α = 0.5 are comparable to Vachaspati and Vilenkin’s for
ψ = π/4 and 3π/4 but differ substantially whenψ = π/2 (Durrer has γP = 2.35
whereas Vachaspati and Vilenkin have γP = 12.0). In the case α = 0.8, with
ψ = π/4, π/2 and 3π/4 again, Durrer finds that the value of γP ranges from
about 0.8 to 2.3. However, Allen et al [ACO95] have recalculated γP using the
piecewise-linear numerical algorithm of section 6.9 in the cases α = 0.5 and
α = 0.8, and conclude that the value of γP has a considerably larger range and
wider variability than either Durrer’s or Vachaspati and Vilenkin’s results would
suggest. In both cases Allen et al find that the maximum value of γP is about
20± 1 (at ψ = π/2 when α = 0.5 and at ψ = 2π/3 when α = 0.8), but that γP
fluctuates dramatically before falling off to 0 as ψ → 0 or π . The acceleration
factor γP/γ 0 is, therefore, about 20% in the case α = 0.5, ψ = π/2, but is
negligibly small near ψ = 0 and π .

A further study by Casper and Allen [CA94] of an ensemble of 11 625 string
loops—generated by evolving a large set of parent loops forward in time (in the
absence of radiative effects) until only non-intersecting daughter loops remain—
has found that most of the daughter loops radiate an insignificant fraction of their
total linear momentum. The inferred back-reaction speed γP/γ 0 is, in most cases,
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smaller than about 10% of the speed of light, whereas the bulk speed |V| of the
loops is typically much larger.

6.8.2 Angular momentum

The net flux of angular momentum from a cosmic string can be evaluated using
a procedure similar to that outlined in section 6.4 for the radiated power. In the
wave zone, the rate at which the gravitational field carries off angular momentum
J can be represented as a surface integral

PaJ =
∫
∂�

r3
3∑

j,k,m=1
εa jkn j nm�mk d! (6.159)

where � is a sphere of radius r (much greater than the characteristic source size
L), n = x/r is the unit vector to the field point as before, �µν is the gravitational
stress–energy pseudo-tensor defined by (6.56), and εa jk is the three-dimensional
Levi-Cività symbol.

To calculate PaJ for a periodic source, the metric perturbation hµν is again
decomposed as a harmonic series

hµν(t, x) =
∞∑

p=−∞
Eµν(ωp, x)e−iωpcλx

λ

(6.160)

where ωp = 2πp/T and cµ = [1,n], and

Eµν(ωp, x) = −4
∫
|x− x′|−1Sµν(ωp, x′)eiωp(|x−x′|−r) d3x ′ (6.161)

with Sµν(ωp, x′) the Fourier transform of the source function Sµν(t ′, x′) defined
by (6.8). The principal difference between the present case and the analysis of
section 6.4 is that whereas it was necessary only to evaluate hµν and its derivatives
to first order in r−1 (and so �µν to order r−2) when calculating the radiated
power, the sum appearing in the angular momentum flux integral (6.159) vanishes
identically to this order. It is, therefore, necessary here to calculate �µν to order
r−3, which complicates the analysis considerably.

In terms of Eµν the first and second derivatives of the metric perturbation
read:

hµν,λ=
∞∑

p=−∞
(Eµν,λ−iωpkλEµν)e−iωpcσ xσ (6.162)

and

hµν,κλ =
∞∑

p=−∞
[Eµν,κλ−iωp(cλEµν,κ +cκEµν,λ )

− ω2pcκcλEµν − iωpcκ ,λ Eµν]e−iωpcσ xσ (6.163)
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where each derivative of Eµν introduces an extra multiplicative factor of r−1.
Since �µν is a quadratic functional of hµν and its derivatives, and Eµν is itself
of order r−1, any term in �µν containing a second derivative or a product of first
derivatives of Eµν makes no contribution to order r−3 and can be discarded.

Also, the harmonic gauge conditions hλµ,λ= 1
2h,µ imply that

cλE
λ
µ = 1

2cµE + iω−1p ( 12 E,µ−Eλµ,λ ) (6.164)

while

cκ ,λ= −r−1
3∑

r,s=1
Prsδrκδ

s
λ (6.165)

where Prs ≡ δrs − nrns is the three-dimensional projection operator on the
surface normal to the line of sight.

To leading order in r−1,

Eµν ≈ −4r−1(T̄µν − 1
2ηµν T̄ ) (6.166)

and

Eµν,λ≈ 4r−2
3∑
r=1

nrδrλ(T̄µν − 1
2ηµν T̄ )+ 4r−2iωp

3∑
r,s=1

Prsδrλ(T̄
s
µν − 1

2ηµν T̄
s)

(6.167)
where the Fourier transform

T̄µν = T−1
∫ T

0

∫
Tµν(ωp, x′)eiωp(t

′−n·x′) d3x ′ dt ′ (6.168)

was defined previously (albeit in two steps) in section 6.4, and now

T̄ sµν = T−1
∫ T

0

∫
Tµν(ωp, x′)x ′seiωp(t

′−n·x′) d3x ′ dt ′. (6.169)

The symbols T̄ and T̄ s denote the traces T̄µµ and T̄µsµ of T̄µν and T̄ sµν
respectively. Also, in view of the conservation equation T λµ ,λ= 0,

0 =
∫
T λµ ,λ x

jeiωpcσ x
σ

d4x = −
∫
T λµ (x

jeiωpcσ x
σ

),λ d4x (6.170)

and so
cλT̄ sλµ = iω−1p T̄ sµ. (6.171)

Combining all these identities together and performing a coarse-grained
averaging of �mk to eliminate any interference between modes of different
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frequencies gives, after considerable manipulation,

r3
3∑

j,k,m=1
εa jkn j nm�mk

= 1

4π

∞∑
p=−∞

ω2pε
a jkn j (T̄ ∗T̄ k − 2T̄ ∗λµT̄ kλµ + 4Prs T̄ λk T̄ ∗rsλ

− 4Prs T̄ ∗rλT̄ ksλ )+ 3
π
i

∞∑
p=−∞

ωpε
a jkn j nm T̄ ∗mλ T̄ kλ. (6.172)

where summation over repeated superscripts in the right-hand expressions is
understood.

As a final simplification, the timelike components of T̄µν and T̄ sµν can be
eliminated in favour of their spacelike components by invoking the equations

T̄ 0µ =
3∑
r=1

nr T̄ rµ and T̄ 0µs =
3∑
r=1

nr T̄ rµs + iω−1p T̄µs (6.173)

which follow directly from (6.171) and the identity cλT̄λµ = 0. The flux of
angular momentum at infinity then satisfies

dPaJ
d!

= 1

4π

∞∑
p=−∞

ω2pε
a jkn j Prs P pq (T̄ ∗rs T̄ pqk − 2T̄ ∗pr T̄ qsk

− 4T̄ pk T̄ ∗qrs + 4T̄ ∗pr T̄ kqs)

− 3

2π
i

∞∑
p=−∞

ωpε
a jkn j nm Prs (2T̄ ∗mr T̄ ks + T̄ ∗rs T̄ mk). (6.174)

This expression for the angular momentum flux from a periodic source was
first derived by Ruth Durrer [Dur89]. However, it should be noted that Durrer’s
analysis proceeds from a slightly different initial point, as she calculates �µν

on the basis of the weak-field limit of the Landau–Lifshitz gravitational stress–
energy tensor [LL62] rather than from equation (6.56). The final results are,
nonetheless, the same.

Now, it was shown in section 6.4 that for a string source with fundamental
period T = L/2 and mode functions a(σ+) and b(σ−) the spacelike components
of T̄µν have the form

T̄ j k = 1
2µL(A

j Bk + Ak B j ) (6.175)

where

A j = 1

2π

∫ 2π

0
eip(ξ+−n·a)a′ j dξ+ (6.176)
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and a similar definition applies to B j .
Furthermore, the spacelike components of the moment tensor T̄µνs are

T̄ j ks = 1

8π
µL2(A js Bk + Aks B j + A j Bks + AkB js) (6.177)

where

A js = 1

2π

∫ 2π

0
eip(ξ+−n·a)a′ j as dξ+ (6.178)

and there is an analogous definition for B js .
If the spatial coordinates are again chosen so that k3 = n then (after adding

the mode number p as a subscript on the various moment functions) the two non-
trivial components of the angular momentum flux per unit solid angle (6.174)
become:

dPaJ
d!

= − 3iµ2L
∞∑
p=1

p(A∗p × Ap)a(|B1
p|2 + |B2

p|2)

+ 2µ2L
∞∑
p=1

p2 Re[A+p Â∗ap + A−p A∗ap + (A1ap A∗2p − A2ap A∗1p )]

× (|B1
p|2 + |B2

p|2)

− 4µ2L
∞∑
p=1

p2 Im[A+p A∗ap − A−p Â∗ap + (A1ap A∗1p + A2ap A∗2p )]

× Im(B1
p B

2∗
p )

+ 12µ2L
∞∑
p=1

pRe(Aap A
∗3
p ) Im(B

1
p B

∗2
p )+ conj. (6.179)

for a = 1 and 2, where

A+p = A11p + A22p and A−p = A12p − A21p (6.180)

the components of Ârp are

Â1p = A2p and Â2p = −A1p (6.181)

and ‘conj.’ denotes the same terms repeated with A and B everywhere
interchanged. The component of the angular momentum flux in the direction
of n is, of course, zero.

It was shown in section 6.4 that Arp goes to zero at least as rapidly as p−1 if
the vector n does not coincide with one of the beaming directions of the a mode,
and like p−2/3 if it does. Similar statements apply to Brp, A

rs
p and Brsp , as the

inclusion of a continuous vector function as in the moment integral (6.178) does
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not alter the singularity in the integrand when n lies in a beaming direction. Just
like the energy flux, therefore, the angular momentum flux per unit solid angle
diverges in the beaming direction of a cusp but is finite elsewhere.

Durrer [Dur89] has examined the properties of the angular momentum flux
from a number of simple string configurations. In particular, she has shown that if
the mode functions a and b satisfy the relation a(ξ) = b(−ξ) for all ξ in [0, 2π]
then the net flux of angular momentum from the string is zero. This condition on
the mode functions might seem somewhat restrictive but, in fact, it is satisfied by
any configuration which is initially stationary, as is evident from the discussion
of the initial-value problem in section 3.4. Since the angular momentum of any
segment of a stationary string configuration is zero, it is not surprising that the net
flux of radiated angular momentum is also zero.

Durrer’s result can be proved by noting that the contributions (6.179) to the
total angular momentumflux PaJ from each pair of antipodal points cancel exactly.
To see this, let k1, k2 and k3 define the coordinate axes at a field point n, and
choose a second set of coordinate axes at the antipodal point −n so that k̄1 = k1,
k̄2 = −k2 and k̄3 = −k3. Then if a(ξ) = b(−ξ) the definitions (6.176) and
(6.178) imply that

Brp(n) = [−A∗1p (−n), A∗2p (−n), A∗3p (−n)] (6.182)

and [
B11
p (n) B12

p (n)
B21
p (n) B22

p (n)

]
=
[−A∗11p (−n) A∗12p (−n)
A∗21p (−n) −A∗22p (−n)

]
. (6.183)

The corresponding relationships with n and −n interchanged also hold. If the
a = 1 component of dPaJ /d! is now evaluated at both n and−n it is readily seen
that the two expressions cancel. The analogous result for the a = 2 component
follows if the coordinate axes at −n are chosen so that k̄1 = −k1, k̄2 = k2 and
k̄3 = −k3.

Another family of trajectories with zero net angular momentum and no flux
of radiated angularmomentum are the degenerate kinked cuspless loops examined
in section 6.5. Here, a′ is parallel to a (and b′ parallel to b) everywhere except
at the kinks, where a′ (and b′) has a step-function discontinuity. Hence, the
expression (3.45) for the loop’s angular momentum J is automatically zero.

As in the previous example, the fact that the total angular momentum flux
PaJ vanishes follows from the cancellation of the contributions of each pair of
antipodal points. If the axes at the point−n are chosen so that k̄1 = k1, k̄2 = −k2
and k̄3 = −k3 then a straightforward calculation shows that

Arp(−n) = [−A∗1p (n), A∗2p (n), A∗3p (n)] (6.184)

and [
A11p (−n) A12p (−n)
A21p (−n) A22p (−n)

]
=
[−A∗11p (n) A∗12p (n)
A∗21p (n) −A∗22p (n)

]
(6.185)
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with similar identities applying to Brp and B
rs
p . The contributions of n and −n to

the a = 1 component of PaJ , therefore, cancel as before. A comparable argument
disposes of the a = 2 component.

Durrer [Dur89] has also calculated the flux of angular momentum from the
3-harmonic Vachaspati–Vilenkin solutions discussed in sections 6.5 and 6.8.1.
The net angular momentum of these solutions is

J = µL
2

8π
[0,− sinψ, 1 + cosψ + 2

3α
2 − 2α]. (6.186)

In the case α = 0 the integrals which appear in the expression (6.179) for the
flux per unit solid angle can be evaluated explicitly in terms of Bessel functions
but in all other cases the integrals need to be calculated numerically. Durrer has
examined the angular momentum flux for α = 0, 0.5 and 0.8 and a wide range of
values of ψ . She finds that |PJ| = γJµL2 with an efficiency parameter γJ which
ranges between 3 and 6.

More surprisingly, Durrer’s results also indicate that the angular momentum
flux PJ is in all cases aligned with J (to within the limits of numerical accuracy).
In the case α = 0 this feature is relatively easy to explain, as the angular
momentum flux should be dominated by the contributions of the two cusps at
τ = 0, σ = 0 and L/2. These cusps occur symmetrically about the centre-of-
momentum of the loop, at the points

rc = ∓ L

4π
[0, 1+ cosψ, sinψ] (6.187)

while their velocities are vc = ±[1, 0, 0]. Hence, both cusps should radiate
angular momentum with helicity

rc × vc = L

4π
[0,− sinψ, 1+ cosψ] (6.188)

which is in the same direction as J.
This argument does not account quite so neatly for the correlation when

α �= 0 but it does suggest that the cusp helicities might play an important role
in determining the direction of PJ. For example, if α = 0.5 and ψ = π/2 then
the trajectory supports four cusps, at (τ/L, σ/L) = (0, 14 ), (

1
4 ,

1
2 ), (

1
8 ,

7
8 ) and

( 38 ,
1
8 ). The first two cusps have helicities aligned with the negative y-axis, while

the helicities of the last two cusps are:

rc × vc = L

2π
[∓ 1

3 ,− 1
2 , 0] (6.189)

and, moreover, these cusps have identical structure. It is, therefore, to be expected
that the net angular momentum flux from the four cusps would be anti-parallel to
the y-axis.
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By comparison, the total angular momentum of the loop is

J = µL
2

48π
[0,−6, 1]. (6.190)

If the angular momentum flux were directed along the cusps’ overall helicity
axis (rather than J) then the cosine of the angle between J and PJ would be
approximately 0.986. The difference between this number and 1 is of the same
order as the numerical accuracy of Durrer’s calculations.

6.9 Radiative efficiencies from piecewise-linear loops

6.9.1 The piecewise-linear approximation

The standard Fourier decomposition method for calculating the radiative
efficiencies γ 0 and γP of a string loop, described in sections 6.4 and 6.8.1, suffers
from the weakness that the rate of convergence of the sum over the wavenumbers
m is either unknown or, in the rare cases where it can be determined analytically,
very slow. By way of improvement, Allen and Casper [AC94] have developed—
andAllen et al [ACO95] have elaborated—an algorithm that can relatively rapidly
estimate γ 0 and γP to high accuracy by approximating the mode functions a(σ+)
and b(σ−) as piecewise-linear functions of the gauge coordinates. Because
the resulting series can, in all cases, be evaluated explicitly, the error in the
approximation stems not from the truncation of a slowly-converging series but
from the necessarily finite number of linear segments used to represent the mode
functions.

All relevant information about the net power and momentum flux radiated
by a string loop can be extracted from the 4-vector of radiative efficiencies

γ µ ≡ [γ 0, γ j ] = µ−2
∫

dP

d!
[1,n] d! (6.191)

where n is again the unit vector in the direction of integration and dP/d! is given
by the infinite series (6.63). Note that the overall momentum coefficient γP is just
the norm of the 3-vector γ j .

If the expression (6.66) for the Fourier components T̄µν of the string’s
stress–energy tensor is inserted into (6.63) then

µ−2 dP
d!

=
∞∑

m=−∞

ω2m

4πL2

∫ L

0
du

∫ L

0
dv

∫ L

0
dũ

∫ L

0
dṽ �(u, v, ũ, ṽ)eiωm(τ−n·r)

(6.192)
where ωm = 4πm/L as before,τ = 1

2 (u+ v− ũ − ṽ), r = 1
2 (a+ b− ã− b̃)

and

�(u, v, ũ, ṽ) = (1− a′ · ã′)(1− b′ · b̃′)+ (1− a′ · b̃′)(1− ã′ · b′)
− (1− a′ · b′)(1− ã′ · b̃′) (6.193)
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with a ≡ a(u), b ≡ b(v), ã ≡ a(ũ) and b̃ ≡ b(ṽ). The manifest symmetry of
�(u, v, ũ, ṽ) under the interchange (u, v) ↔ (ũ, ṽ) allows the sum in (6.192) to
range over (−∞,∞) rather than from 1 to∞ as previously.

Evaluation of the 4-vector γ µ, therefore, involves angular integrals of
the form

∫ [1,n]eiωm(τ−n·r) d!. Now, in view of the identity
∫
ein·k d! =

4π sin(|k|)/|k|, it follows that∫
eiωm(τ−n·r) d! = 4π

ωm |r|e
iωmτ sin(ωm |r|) (6.194)

and so

∞∑
m=−∞

ωm

∫
eiωm(τ−n·r) d!

= 2π

i|r|
∞∑

m=−∞
[eiωm(τ+|r|) − eiωm(τ−|r|)]

= 4π2

i|r| {δp[4π(τ + |r|)/L] − δp[4π(τ − |r|)/L]} (6.195)

as
∑∞
m=−∞ eimx = 2πδp(x), where δp(x) ≡ ∑∞

n=−∞ δ(x + 2πn) is the 2π-
periodic delta-function.

On rescaling the delta functions by a factor of 4π/L, this relation reads:

∞∑
m=−∞

ωm

∫
eiωm(τ−n·r) d!

= πL

i|r|
∞∑

n=−∞

[
δ

(
τ + |r| + L

2
n

)
− δ

(
τ − |r| + L

2
n

)]

= 2π iL
∞∑

n=−∞
sgn

(
τ + L

2
n

)
δ

[(
τ + L

2
n

)2
− |r|2

]
(6.196)

where the second line follows from the identity δ(x2 − y2) = 1
|x |+|y|δ(|x | − |y|).

Of course it is not the sum on the left of (6.196) that needs to be evaluated in
calculating γ µ but rather the 4-vector quantity

Iµ(u, v, ū, v̄) =
∞∑

m=−∞

ω2m

4πL2

∫
eiωm(τ−n·r)[1,n] d!. (6.197)

However, if it is possible to find a 4-vector operator Dµ = Uµ∂u + Vµ∂v −
Ũµ∂ũ− Ṽ µ∂ṽ (whereUµ, V µ, Ũµ and Ṽ µ are all functions of u, v, ũ and ṽ) with
the property that

Dµeiωm(τ−n·r) = iωm [1,n]eiωm(τ−n·r) (6.198)
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then

Iµ(u, v, ũ, ṽ) = Dµ
∞∑

m=−∞

ωm

4π iL2

∫
eiωm(τ−n·r) d!

= 1

2
Dµ

∞∑
n=−∞

sgn

(
τ + L

2
n

)
δ

[(
τ + L

2
n

)2
− |r|2

]
.

(6.199)

The operator equation (6.198) defining Dµ decomposes into 16 linear
equations for the 16 independent components of Uµ, V µ, Ũµ and Ṽµ, namely

D0τ = 1 D0r = 0 D jτ = 0 and D j (r)k = −δ j k .
(6.200)

The solution to these equations is:

Uµ = [b′ · (ã′ × b̃′), ã′ × b̃′ + b′ × (ã′ − b̃′)]/Q (6.201)

and
V µ = −[a′ · (ã′ × b̄′), ã′ × b̃′ + a′ × (ã′ − b̃′)]/Q (6.202)

with
Q = 2[(b′ − a′) · (ã′ × b̃′)+ (b̃′ − ã′) · (a′ × b′)] (6.203)

while, in view of the obvious symmetries, Ũµ(u, v, ũ, ṽ) = Uµ(ũ, ṽ, u, v) and
Ṽ µ(u, v, ũ, ṽ) = V µ(ũ, ṽ, u, v).

Collecting together the results (6.199) and (6.192) gives

γ µ = 1

2L

∫ L

0
du

∫ L

0
dv

∫ L

0
dũ

∫ L

0
dṽ �Dµ

×
∞∑

n=−∞
sgn

(
τ + L

2
n

)
δ

[(
τ + L

2
n

)2
− |r|2

]
. (6.204)

Furthermore, since � andr are invariant under the transformation ṽ→ ṽ− nL
whereasτ → τ+ 1

2 Ln, the summation over n can be absorbed into the integral
over ṽ, giving

γ µ = 1

2L

∫ L

0
du

∫ L

0
dv

∫ L

0
dũ

∫ ∞

−∞
dṽ �Dµ{sgn(τ)δ[(τ)2 − |r|2]}.

(6.205)
(Of course, the summation could just as easily be absorbed into the integral over
v instead.) Further symmetry considerations can be invoked to show that the
integrand in (6.205) has support on only a compact interval in ṽ-space.

The value of the formula (6.205) lies in the fact that, if the mode functions
a and b are assumed to be piecewise-linear functions of their arguments, then
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the integral on the right of (6.205) can be evaluated explicitly. At a geometric
level, such a piecewise-linear approximation involves replacing each of the curves
traced out by a′ and b′ on the surface of the Kibble–Turok sphere with a series of
points equally spaced in gauge space.

To be specific, if the mode function a is approximated by a function â
consisting of Na linear segments then

â′(σ+) = a′j if u j < σ+ < u j+1 (6.206)

where u j ≡ j L/Na and a′j ≡ a′(u j ). If a j ≡ a(u j ) then the mode function itself
has the piecewise-linear form

â(σ+) = a j + (σ+ − u j )a′j if u j ≤ σ+ < u j+1. (6.207)

Similarly, if b is approximated by a function b̂ consisting of Nb linear
segments then

b̂′(σ−) = b′k if vk < σ− < vk+1 (6.208)

while
b̂(σ−) = bk + (σ− − vk)b′k if vk ≤ σ− < vk+1 (6.209)

where vk ≡ kL/Nb, b′k ≡ b′(vk) and bk ≡ b(vk).
The domain of integration can, therefore, be broken up into a collection of

rectangular 4-cells, each identified by the vector of indices ( j, k,m, n) if u ∈ I j ,
v ∈ Jk , ũ ∈ Im and ṽ ∈ Jn , where I j = (u j , u j+1) and Jk = (vk, vk+1). Since
the functions� , U , V , Ũ and Ṽ are all constant, and (τ)2 − |r|2 is a second-
degree polynomial in u, v, ũ and ṽ (although not involving u2, v2, ũ2 or ṽ2), on
each 4-cell, the integral (6.205) reduces to the sum over j , k, m and n of four pairs
of triple integrals of the form

� j kmnFjkmn

∫ x

0
dx

∫ y

0
dy

∫ z

0
dz H [C± (x + y− z)]δ[p(x, y, z)] (6.210)

where � j kmn is the value of � on the 4-cell ( j, k,m, n), Fjkmn is Ujkmn , Vjkmn ,
−Ujkmn or −Vjkmn , the limits x , y and z on the integrals are each a cell
length L/Na or L/Nb, H is the Heaviside step function, the constant C is a
linear combination of the boundary values on the intervals I j , Jk , Im and Jn ,
and p(x, y, z) is, in general, a second-degree polynomial in x , y and z that does
not contains terms in x2, y2 or z2.

Evaluation of these integrals is a straightforward task, although there are a
number of different subcases that need to be considered, as is discussed fully in
[AC94]. A simple example will be given shortly. The calculated values that Allen
and Casper [AC94] obtain for the radiative efficiency γ 0 and Allen et al [ACO95]
obtain for the momentum coefficient γP of various benchmark loops have already
been mentioned in sections 6.5 and 6.8.1. In the case of the Vachaspati–Vilenkin
solution in the 1-harmonic limit α = 0, Allen and Casper estimate that the
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dependence of the calculated value γN of γ 0 on the total number of segments
N = Na + Nb over the range 60 ≤ N ≤ 256 is

γN ≈ 64.49+ 97.13N−1 (6.211)

when ψ = 69◦ and
γN ≈ 52.01+ 181.64N−1 (6.212)

when ψ = 141◦. Allen et al [ACO94] conjecture that γ 0 − γN is, in general,
of order N−1, except when one or both of the mode functions is itself piecewise
linear and the rate of convergence is naturally much faster.

6.9.2 A minimum radiative efficiency?

In [ACO94] Allen, Casper and Ottewill also calculate explicit values of γ 0 for
a large class of piecewise-linear loops with a consisting of two anti-parallel
segments of length 1

2 L aligned along the z-axis, so that

a(σ+) =
{
σ+ẑ if 0 ≤ σ+ < 1

2 L
(L − σ+ )̂z if 1

2 L ≤ σ+ < L
(6.213)

and b tracing out various figures in the x–y plane including regular polygons,
isosceles triangles and connected N-grams. In particular, the value γN of γ 0 for
the N-sided regular polygon converges like N−2 to γ∞ ≈ 39.0025 as N → ∞
(and the polygon becomes a circle).

In general, when a has the form (6.213) and b is confined to the x–y
plane, then � = 2(1 − b′ · b̃′) if (u, ũ) lies in R1 ≡ [0, 12 L) × [ 12 L, L) or
R2 ≡ [ 12 L, L)× [0, 12 L), and is zero otherwise. Also, D0 = ∂u − ∂ũ on R1 ∪ R2,
so the timelike component of (6.205) becomes

γ 0 = 1

2L

∫ L

0
dv

∫ ∞

−∞
dṽ �

∫ ∫
R̄1∪R̄2

du dũ (∂u−∂ũ){sgn(τ)δ[(τ)2−|r|2]}
(6.214)

where r = 1
2 [±(u + ũ − L )̂z + b(v) − b(ṽ)]. Here, the exchange u ↔ ũ

transforms ∂ũ to ∂u but leaves the region R̄1 ∪ R̄2 invariant. As was mentioned
following (6.205), the limits of integration for v and ṽ can be interchanged at
will. If this is done in the term proportional to ∂ũ in (6.214) then the simultaneous
exchange u ↔ ũ and v ↔ ṽ leaves |r|2 and the domain of integration
unchanged, but transforms τ = 1

2 (u − ũ + v − ṽ) to −τ . Thus the operator
∂u − ∂ũ in (6.214) can be replaced with 2∂u .

A second interchange of the form (u, ũ)→ (L− u, L− ũ) and v ↔ ṽ maps
R̄2 to R̄1 and transforms ∂u to −∂u and τ = −τ , and so reduces (6.214) to

γ 0 = 4L−1
∫ L

0
dv

∫ ∞

−∞
dṽ (1− b′ · b̃′)W (v, ṽ) (6.215)
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where

W (v, ṽ) =
∫ ∫

R̄1
dũ∂u{sgn(τ)δ[(τ)2 − |r|2]}

=
∫ L

L/2
dũ {sgn(τ)δ[(τ)2 − |r|2]}|u=L/2u=0 . (6.216)

One last series of replacements ũ → 3
2 L − ũ, ṽ → v and v → ṽ + L maps

τ |u=0 to −τ |u=L/2 and |r|2|u=0 to |r|2|u=L/2. So the contributions of the
two endpoints in (6.216) are equal and (with u′ = ũ − 1

2 L at the vertex u = L/2)

W (v, ṽ) =
∫ L/2

0
du′ sgn(−u′ + v − ṽ)

× δ[− 1
2u
′(v − ṽ)+ 1

4 (v − ṽ)2 − 1
4 |b− b̃|2]

= 2 sgn(−q + v − ṽ)H (q)H ( 12L − q)/|v − ṽ| (6.217)

where q = 1
2 [(v − ṽ)2 − |b− b̃|2]/(v − ṽ).

Now,
−q + v − ṽ ≡ 1

2 [(v − ṽ)2 + |b− b̃|2]/(v − ṽ) (6.218)

and so sgn(−q + v− ṽ) = sgn(v− ṽ). Also, since b′ is a unit vector, the triangle
inequality indicates that |v − ṽ| ≥ |b− b̃|, and so H (q) = H (v − ṽ) and v − ṽ
must be positive. Furthermore, because b is a periodic function with period L, it
follows that v− ṽ− L ≥ |b− b̃| whenever v− ṽ ≥ L. So it must be the case that
v − ṽ ≤ L, as

1
2 L − q ≡ 1

2 [{L − (v − ṽ)}(v − ṽ)+ |b− b̃|2]/(v − ṽ) (6.219)

is negative otherwise.
Collecting these results together gives

W (v, ṽ) = 2H (v − ṽ)H [L − (v − ṽ)]/(v − ṽ) (6.220)

and so

γ 0 = 16L−1
∫ L

0
dv

∫ v

v−L
dṽ [1− b′(v) · b′(ṽ)]/(v − ṽ)

= 16L−1
∫ L

0
dv

∫ L

0
dv̄ v̄−1[1− b′(v) · b′(v − v̄)]. (6.221)

It is a straightforward matter to use (6.221) to calculate γ 0 for any string
loop in the class under consideration, whether b is a smooth or piecewise linear
function. In general, if b′ has the Fourier decomposition

b′(v) =
∞∑

n=−∞
(xn x̂+ yn ŷ)e2nπ iv/L (6.222)
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then because b′ is real and b(L) = b(0) the coefficients x0 and y0 are both zero,
while x−n = x∗n and y−n = y∗n . So

γ 0 = 16L−1
∫ L

0
dv̄ v̄−1

∫ L

0
dv

[
1−

∑
m,n

(xmxn + ym yn)e2(n+m)π iv/Le−2mπ iv̄/L
]

= 16
∑
n

(|xn|2 + |yn|2)
∫ L

0
dv̄ v̄−1(1− e2nπ iv̄/L) (6.223)

where the last line follows from the constraint 2
∑∞
n=1(|xn|2+|yn|2) = 1, which,

in turn, stems from the gauge condition |b′|2 = 1.
Hence,

γ 0 = 32
∞∑
n=1
(|xn|2 + |yn|2)

∫ L

0
dv̄ v̄−1[1− cos(2πnv̄/L)]

=
∞∑
n=1

2λn(|xn|2 + |yn|2) (6.224)

where λn = 16
∫ 2πn
0 w−1 dw (1 − cosw). The sequence {λn}∞n=1 is obviously

positive and increasing, with λ1 ≈ 39.0025, λ2 ≈ 49.8297, λ3 ≈ 56.2636 and
so forth. The minimum possible value of the radiative efficiency γ 0 for this class
of loops is, therefore, γ 0min ≈ 39.0025, and occurs when |x1|2 + |y1|2 = 1

2 and
xn = yn = 0 for n ≥ 2. The only loop solutions consistent with the gauge
condition |b′|2 = 1 then have |x1| = |y1| = 1

2 , with the phase angle between x1
and y1 equal to 1

2π . That is, b
′ traces out an equatorial circle on the Kibble–Turok

sphere, and if x1 = 1
2 and y1 = 1

2 i the mode function b takes on the simple form

b(σ−) = L

2π
[cos(2πσ−/L )̂x+ sin(2πσ−/L )̂y]. (6.225)

The evolution of the corresponding loop is illustrated in figure 6.4, which
shows the y–z projection of the loop at times τ = 0, L/16, L/8 and 3L/16 (top
row) and τ = L/4, 5L/16, 3L/8 and 7L/16 (bottom row). The projections of
the loop onto the x–y plane are just circles of radius L/(4π). The loop is, in
fact, rotating rigidly with a pattern speed ω = 4π/L and angular momentum
J = 1

4π µL
2̂z, with the kinks visible at the top and bottom of the projections in

figure 6.4 tracing out circles in the planes z = 0 and z = L/4 (and all other points
tracing out identical circles with varying phase lags). It is, therefore, an example
of the class of rigidly-rotating, non-planar kinked loops mentioned in section 4.5
as exceptions to Embacher’s general analysis of stationary string solutions.

Because all points on this particular loop are travelling with the same
constant speed |rτ |, and the period mean of r2τ for any string loop is 1

2 , the

instantaneous speed of each segment of the loop is |rτ | = 1/
√
2. Following
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Figure 6.4. The y–z projection of the Allen–Casper–Ottewill loop with minimum radiative
efficiency.

Casper and Allen [CA94], it is possible for any Nambu–Goto string loop to define
the mean deviation s of the local squared loop velocity from 1

2 through the formula

s2 = L−2
∫ L

0

∫ L

0
(r2τ− 1

2 )
2 dσ+ dσ− = 1

4 L
−2

∫ L

0

∫ L

0
[a′(σ+)·b′(σ−)]2 dσ+ dσ−.

(6.226)
Clearly s2 is non-negative, and lies in the range [0, 14 ] (as a′ and b′ are unit
vectors). It is also evident that s2 = 0 if and only if a′ and b′ are orthogonal
for all values of σ+ and σ−.

Casper and Allen [CA94] have plotted the radiative efficiency γ 0 against
s2 (both evaluated in the loop’s centre-of-momentum frame) for the 11 625 non-
intersecting daughter loops generated as part of the numerical study of radiation
rates described in section 6.8.1. They found that for each value of s2 there was a
well-defined minimum radiative efficiency γ ∗(s2), with γ ∗ increasing monoton-
ically with s2, from a value of about 40 at s2 = 0 to about 50 at s2 = 0.15 and
about 100 at s2 = 0.25. In fact, only six of the 11 625 loops studied had radiative
efficiencies γ 0 less than 42 (and none at all had γ 0 < 40). All six of these loops,
when examined more closely, were seen to have the same general shape as the
loop shown in figure 6.4, whose radiative efficiency γ 0 ≈ 39.0025 is the lowest
known of any string loop. A second study by Casper and Allen involving another
12 830 loops yielded similar results. There thus seems to be a strict lower bound
γ 0min ≈ 39.0025 to the radiative efficiency of all possible cosmic string loops.

6.10 The field of a collapsing circular loop

It is evident from the analysis of the 1-harmonic solutions in section 6.4 that
the weak-field formalism breaks down when applied to a string in the shape of
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an oscillating circular loop. The total power radiated by a loop of this type is
infinite, because the string periodically collapses to a singular point at which all
parts of the string are instantaneously moving at the speed of light and hence
combine to beam a circular pulse of gravitational radiation out along the plane of
the loop. However, as will be seen in section 10.2, there are reasons for believing
that a circular loop would collapse to form a black hole rather than collapse and
re-expand indefinitely, and furthermore in collapsing would radiate only a finite
fraction of its own rest energy in the form of gravitational waves.

David Garfinkle and Comer Duncan [GD94] have attempted to model this
situation by calculating the linearized gravitational field produced by a circular
loop of cosmic string which is held at rest until a particular time t0, after which
it is released to collapse freely to a point. The weak-field formalism again
breaks down near the moment of collapse but the metric perturbation hµν and
the radiated power per unit solid angle remain finite outside the future light cone
of the collapse.

The string loop in this case has the trajectory Xµ = [τ, r], with

r(τ, σ ) = L

2π
sin(2πτ/L)[cos(2πσ/L), sin(2πσ/L), 0] (6.227)

where τ is restricted to the range [−L/4, 0]. The loop is released at t = −L/4
and collapses to a point at t = 0.

In the harmonic gauge the metric perturbation hµν satisfies the usual
inhomogeneous wave equation (6.5):

�hµν = −16πSµν (6.228)

but to ensure a unique solution in this case it is necessary to specify hµν and
∂hµν/∂ t on the initial surface t = −L/4. Since the loop is assumed to be static
until the moment of release, the natural choice of initial data is for ∂hµν/∂ t to be
zero and hµν to satisfy the Poisson equation ∇2hµν = 16π�µν , where

�µν(x) = Sµν(t, x)|t=−L/4. (6.229)

The analogue of the retarded solution (6.6) is then

hµν(t, x) = −4
∫
Sµν(t ′, x′)
|x− x′| d3x ′ − 4

∫
�3−V

�µν(x′)
|x− x′| d

3x ′ (6.230)

where V is the interior of the intersection of the past light cone of the field point
xµ = [t, x] with the initial surface (that is, a spherical ball in �3 with radius
t + L/4 centred on x) and the retarded time t ′ = t − |x− x′| in the first integral,
which ranges over the past light cone of xµ, is constrained to be greater than
−L/4.

The geometry of the solution is sketched in figure 6.5, which shows the
projection of the spacetime onto the t ′–r ′ plane, where r ′ ≡ |x′|. The set V is



228 Cosmic strings in the weak-field approximation

Figure 6.5. Equatorial projection of the domains of dependence for a collapsing circular
loop.

represented by the line segment indicated, while the domain of the first integral
in (6.230) projects onto the triangle bounded by V and the past light cone of the
field point [t, r ].

Because the gravitational field of the loop has a non-trivial time dependence,
the wave zone for this problem is the set of field points with t and r ≡ |x| � L
but u ≡ t − r finite. If n here denotes the unit vector x/r , then in the wave zone

|x− x′| ∼ r − n · x′ and t ′ ∼ u + n · x′ (6.231)

for any point x′ on the world sheet of the loop, while the boundary of V near the
source is effectively a plane surface at a normal distance |u+L/4| from the origin.

If the coordinates of the field point x are varied with u kept fixed the resulting
change in |x − x′|−1 ∼ r−1 will be of order r−2n · δx and the change in t ′ of
order r−1(x′ − n · x′n) · δx. Also the boundary of V near the source will be
rotated by an angle of order r−1|n × δx| about a line through its point of closest
approach to the origin, and the fractional change in the volume common to both
V and the source region will similarly be of order r−1|n×δx|. The corresponding
change in hµν will, therefore, be of order r−1|δx|hµν , and to leading order in
r−1the only derivatives of hµν which contribute to the gravitational stress–energy
pseudo-tensor �µν defined by (6.56) are the derivatives with respect to u.

In fact, in the harmonic gauge,

�
rt ≈ 1

32π
〈−h jk,u hkj ,u −2h jkhkj ,uu 〉 (6.232)

where the indices j and k range over the angular coordinates θ and φ of the unit
vector n = [cosφ sin θ, sin φ sin θ, cos θ ] only. The process of coarse-grained
time-averaging entails integrating the second term in (6.232) by parts, and so the
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power radiated per unit solid angle is

dP

d!
≡ r2�rt ≈ r2

32π
(h jk,u h

k
j ,u ). (6.233)

Also, because the loop is axisymmetric the metric cross-term hθφ is zero, while

the harmonic gauge condition huu,u = 1
2h,u implies that hθθ ,u = −hφφ,u to leading

order in r−1. Hence,

dP

d!
≈ r2

16π
(hφφ,u )

2 = 1

16π

(
hφφ,u

r sin2 θ

)2
. (6.234)

If the source term Sµν specific to a cosmic string given by (6.8) is inserted
into (6.230) then

hµν(t, x) = −4µ
∫
β−1�µν(t ′, σ ) dσ − 4µ

∫
�µν(−L/4, σ )

|x− r| dσ (6.235)

where it is understood that t ′ > −L/4 in the first integral and r ∈ �3 − V in the
second integral, and

β(t, x; t ′, r) = |x− r| − (x− r) · rτ (6.236)

is a beaming factor.
In view of the equation (6.227) for r, the retarded time t ′ for the collapsing

loop in the wave zone is given implicitly by the equation

t ′ ≈ u + L

2π
sin θ sin(2π t ′/L) cos ξ (6.237)

where ξ = 2πσ/L − φ, while
β ≈ r [1− sin θ cos(2π t ′/L) cos ξ ] and |x− r| ≈ r. (6.238)

Also, from (6.9) �φφ = r2 sin2 θ sin2 ξ for all values of t ′, and the source point r
in the second integral in (6.235) will be in �3 − V if

u + L/4 ≤ L

2π
sin θ cos ξ. (6.239)

If σ is now replaced by ξ as the variable of integration, (6.235) gives

hφφ(t, x)

r sin2 θ
≈ −2Lµ

π

∫ ξ2

ξ1

sin2 ξ

1− sin θ cos(2π t ′/L) cos ξ dξ −
2Lµ

π

∫ ξ1

ξ2−2π
sin2 ξ dξ

(6.240)
where ξ1,2 ∈ (0, 2π) are the ordered roots of the equation

u + L/4 = L

2π
sin θ cos ξ1,2 if |u + L/4| < L

2π
sin θ (6.241)
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and

ξ1 = 0 ξ2 = 2π if |u + L/4| ≥ L

2π
sin θ. (6.242)

Note from (6.237) that in the first case ξ = ξ1,2 corresponds to t ′ = −L/4,
and so the partial derivatives of hφφ with respect to both ξ1 and ξ2 are (by direct
calculation) identically zero. The only contribution to hφφ,u , therefore, comes
from the dependence of the first integrand on t ′ which, in turn, is a function of u
and ξ through equation (6.237). Hence,

hφφ,u

r sin2 θ
≈ 4µ

∫ ξ2

ξ1

sin θ sin(2π t ′/L) sin2 ξ cos ξ
[1− sin θ cos(2π t ′/L) cos ξ ]3 dξ. (6.243)

For computational purposes, it is more convenient to express this function as
an integral over the rescaled time χ = 2π t ′/L. This gives a total power per unit
solid angle

dP

d!
≈ 4µ2

π
K 2 (6.244)

where

K (u, θ) =
∫
(2πu/L − χ)

√
sin2 θ sin2 χ − (2πu/L − χ)2

sin2 θ [sinχ + (2πu/L − χ) cosχ]2 dχ (6.245)

and the range of χ is such that χ ∈ [− 1
2π, 0] and the argument of the square root

is non-negative.
Garfinkle and Duncan [GD94] have evaluated K numerically for a range of

latitudes θ and u in the interval [−L/4, 0]. Recall that any gravitational radiation
produced at the moment of collapse will propagate along the radial geodesics
u = 0 (which are shown in equatorial projection in figure 6.5). It is not surprising
then that Garfinkle and Duncan find that most of the power is emitted immediately
before u = 0, and that dP/d! diverges as u → 0 on the equatorial plane.

To examine the late-time behaviour of K in more detail, suppose that
2πu/L = −ε with ε � 1, and transform to the scaled variables χ̄ ≡ −ε−1/3χ
and θ̄ = ε−1/3( 12π − θ). Then, to leading order in ε,

K (u, θ) ∼ ε−2/3 K̄ (θ̄ ) (6.246)

where

K̄ (θ̄) =
∫ χ̄+

0

χ̄
√
2χ̄ − χ̄2θ̄2 − χ̄4/3

(1+ χ̄4/3)2
dχ̄ (6.247)

and χ̄+ is the positive root of the expression under the square root.
Since the element of solid angle is d! ∼ ε1/3 dθ̄ dφ, the total power P

radiated by the loop for small values of u is

P ≈ 4µ2

π
ε−1

∫
K̄ 2(θ̄ ) dθ̄ dφ = 8µ2ε−1

∫ ∞

−∞
K̄ 2(θ̄ ) dθ̄ ≈ 7.86µ2ε−1 (6.248)
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and so the energy E = ∫
P dt lost by the loop diverges logarithmically in |u|.

Garfinkle and Duncan have calculated that when the loop collapses to 10 times
its Schwarzschild radius µL the fraction of its initial rest energy that has been
radiated away is approximately |1.25µ ln(80µ)|, or about 10−5 for a GUT string
with µ ∼ 10−6.

6.11 The back-reaction problem

6.11.1 General features of the problem

Because strings are extended objects, a self-consistent treatment of the
gravitational field of a string needs to correct for the dynamical effects at each
point on the string of the gravitational force due to other segments of the string.
At the level of the weak-field approximation it is straightforward enough to write
down the equations governing the motion of a string in its own back-reaction
field, although solving these equations can pose a computational problem of some
complexity.

It was seen in section 2.3 that the string trajectory xµ = Xµ(τ, σ ) in the
standard gauge in a general background spacetime satisfies the equation of motion

Xµ;ττ = Xµ;σσ (6.249)

where ‘; τ ’ is shorthand for the projected covariant derivative Xντ Dν , and a similar
remark applies to ‘; σ ’. In the weak-field approximation, this equation of motion
reads:

Xµ,ττ −Xµ,σσ = −(hµκ ,λ− 1
2η
µνhκλ,ν )(V

κV λ − Nκ Nλ) (6.250)

where the metric perturbation hµν is given by equation (6.11), and V µ = Xµτ and
Nµ = Xµσ . For the moment the equation for hµν will be written as

hµν(t, x) = −4µ
∫
[|x− r| − (x− r) · rτ ]−1�µν dσ (6.251)

where �µν (defined in (6.9)), r and rτ are all functions of σ and the retarded
time τ , which, in turn, is an implicit function of t , x and σ through the equation
τ = t − |x− r(τ, σ )|.

Equations (6.250) and (6.251) together constitute the weak-field back-
reaction problem for a cosmic string. These two equations are linked by the
fact that the field point xµ = [t, x] in (6.251) is the point Xµ on the string at
which (6.250) is locally being integrated. The problem is, therefore, a highly
nonlinear one, and it seems unlikely that any exact solutions will ever be found—
apart from the few exact fully relativistic solutions that are already known (such
as the travelling-wave solutions of section 9.1).

An alternative, computer-based approach to the back-reaction problem is to
start with an exact solution of the Nambu–Goto equations of motion, calculate
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the spacetime derivatives of the corresponding metric perturbation hµν at each
point on the string from (6.251), insert these into the right-hand side of the
equation of motion (6.250) and then integrate the equation of motion over a single
period of the string to give a new periodic trajectory Xµ. The entire procedure
can then be iterated indefinitely, leading hopefully to an accurate picture of the
secular evolution of the string’s trajectory under the action of its own gravitational
field. This is the approach adopted by Jean Quashnock and David Spergel in a
pioneering paper on the back-reaction problem published in 1990 [QS90].

It turns out that the problem is somewhat simpler to analyse in the light-
cone gauge than in the standard gauge. In terms of the light-cone coordinates
σ± = τ ± σ the back-reaction equation (6.250) reads:

Xµ,+− = 1
4α
µ(σ+, σ−) (6.252)

where
αµ = −2(hµκ ,λ+hµλ ,κ −ηµνhκλ,ν )Xκ+Xλ− (6.253)

is the local acceleration 4-vector of the string.
If the initial state of the string is prescribed to be a Nambu–Goto solution

with parametric period T = L/2 then, in principle, the acceleration vector αµ can
be evaluated at each point (σ+, σ−) in the fundamental domain [0, L] × [0, L] on
the world sheet. The changes in the null tangent vectors Xµ+ and Xµ− as a result of
gravitational back-reaction over the course of a single period are then

δXµ+(σ+) = 1
4

∫ L

0
αµ(σ+, σ−) dσ−

δXµ−(σ−) = 1
4

∫ L

0
αµ(σ+, σ−) dσ+

(6.254)

and a new, perturbed trajectory can be generated from the new tangent vectors
Xµ+ + δXµ+ and Xµ− + δXµ−.

Note that δXµ+ and δXµ− are both periodic with period L (as αµ is periodic
on the fundamental domain), and that the perturbed solution remains spatially
closed, as∫ L

0
δXµ,σ dσ =

∫ L

0
δXµ+ dσ+ −

∫ L

0
δXµ− dσ− = 0. (6.255)

Also,

X+ · δX+ = − 1
2

∫ L

0
(hµκ ,λ+hµλ,κ −hκλ,µ ) Xκ+Xλ−Xµ+ dσ−

= − 1
2 X

κ+X
µ
+[hµκ ]σ−=Lσ−=0 = 0 (6.256)

and so (given that X− · δX− = 0 as well) the light-cone gauge conditions
X2+ = X2− = 0 are preserved to linear order in the perturbations δXµ+ and δXµ−,
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which for a GUT string would be of order µ ∼ 10−6. Thus the new solution
remains, to leading order, a Nambu–Goto solution in light-cone coordinates with
period L.

However, the original coordinates σ± will not, in general, define an aligned
gauge for the perturbed solution, as

t,τ = 1+ δX0+ + δX0− �= 1. (6.257)

At a physical level the misalignment occurs because as the string radiates energy
its invariant length falls below Lmin and its fundamental period (in t) shrinks,
causing a secular decrease in t,τ . In order to facilitate comparison between
successive stages in the evolution of a given radiating solution, Quashnock and
Spergel choose to realign the gauge coordinates σ+ and σ−, in the manner
described in section 3.1, at the end of each period. Specifically, the realigned
gauge coordinates σ̄+ and σ̄− become:

σ̄+ = σ+ + 2
∫ σ+

0
δX0+(u) du and σ̄− = σ− + 2

∫ σ−

0
δX0−(v) dv

(6.258)
and the parametric period changes from L to L + δL, where

δL = 1
2

∫ L

0

∫ L

0
α0 dσ+ dσ−. (6.259)

One of the advantages of Quashnock and Spergel’s approach is that the total
energy and momentum lost by the string during the course of a single period can
be calculated directly from a knowledge of αµ. The 4-momentum of the string as
measured on any constant-t hypersurface is:

Pµ =
∫
Tµ0 d3x (6.260)

where

Tµν = µ
∫
(Xµ+Xv− + Xµ−Xv+)δ4(x − X) dσ+ dσ− (6.261)

is the standard string stress–energy tensor (6.1) in light-cone coordinates.
In view of Gauss’s theorem, the time derivative of Pµ is

Pµ,0=
∫
Tµ0,0 d3x =

∫
Tµν,ν d3x (6.262)

and so the change in Pµ over a single period T = L/2 is

δPµ =
∫ T

0
dt
∫
Tµν,ν d3x = −

∫ T

0
dt
∫
(�µλνT

λν + �νλνTµλ) d3x (6.263)
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where the right-hand expression follows from the stress–energy conservation
equation Tµν ;ν = 0. Substitution of (6.261) into this expression gives

δPµ = − 2µ
∫ L

0

∫ L

0
�µλνX

λ+Xv− dσ+ dσ−

− µ
∫ L

0

∫ L

0
�νλν(X

µ
+Xλ− + Xµ−Xλ+) dσ+ dσ−. (6.264)

In the weak-field approximation �µλν = 1
2 (h

µ
λ ,ν +hµν ,λ−ηµκhλν,κ ) and,

in particular, �νλν = 1
2h
ν
ν,λ. The second term on the right of (6.264) vanishes

because hνν is periodic on the fundamental domain. Thus in view of (6.253) the
change in Pµ over a single period is

δPµ = 1
2µ

∫ L

0

∫ L

0
αµ dσ+ dσ−. (6.265)

Equation (6.265) allows the changes in the string’s energy and momentum in
passing from one perturbation solution to the next to be tracked with relative ease.

Quashnock and Spergel [QS90] have also shown, after a lengthy calculation,
that the loss of energy δP0 ≡ µδL over a single period exactly balances the
energy flux T P at infinity calculated on the basis of the weak-field formalism
outlined in section 6.4. To be specific, they show that δP0 = −δE , where

δE = 2
∫ ∞

0
ω2 dω

∫
d! (τµντ ∗µν − 1

2 |τµµ |2) (6.266)

is the energy flux T P expanded as a functional of the Fourier transform

τµν = 1

2π

∫ ∞

−∞
dt ′

∫
d3x ′ Tµν(t ′, x′)eiω(t ′−n·x′) (6.267)

of the stress–energy tensor. Since the integral (6.266) and the corresponding
series for T P generated by (6.63) are identical when the source is periodic, the
radiative flux calculations examined earlier and the back-reaction calculations to
be described later treat complementary aspects of the same problem.

6.11.2 Self-acceleration of a cosmic string

All that remains to complete the specification of the back-reaction formalism is
to explain how the acceleration term αµ is evaluated. In view of (6.253), αµ is a
linear combination of the spacetime derivatives of the metric perturbations hµν ,
which are, in turn, given by the world-sheet line integral (6.251). Suppose for the
moment that the field point [t, x] at which hµν is evaluated lies at τ = σ = 0.
The integration contour � = {τ = t − |x − r(τ, σ )|} in (6.251), which is the
intersection of the backwards light cone of the field point [t, x] with the world
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Figure 6.6. The two branches of the projection of the backwards light cone at
(τ, σ ) = (0, 0).

sheet T, and will then have the general shape indicated in figure 6.6 (although it
need not be symmetric about σ = 0). Note, in particular, that the two branches of
� are asymptotically null (and thus intersect at a right angle) at the field point.

As previously mentioned, at each step in the iterative evolution of a radiating
string the trajectory will satisfy the Nambu–Goto equations to order µ. So
provided that the field point is not a cusp or a kink the retarded time τ for source
points close to the field point is given by τ ≈ −|σ |, while

x− r ≈ |σ | ×
{
a′0 if σ < 0
b′0 if σ > 0

(6.268)

where a′0 and b
′
0 are the derivatives of the mode functions a and b at τ = σ = 0.

Thus the beaming factor in (6.251) has the small-distance dependence

|x− r| − (x− r) · rτ ≈ λ−2|σ | (6.269)

where λ = [ 12 (1 − a′0 · b′0)]−1/2 is the local Lorentz factor of the string. The
contribution of the points near [t, x] to hµν , therefore, has the approximate form

hµν ≈ −4µλ2�µν
∫

dσ

|σ | (6.270)

where �µν is evaluated at τ = σ = 0.
On the face of it, then, the metric perturbation hµν contains a logarithmic

divergence, and the self-energy of each of the points on the string is infinite.
However, this divergence is pure gauge and vanishes when the spacetime
derivatives hµν,κ are calculated. As previously, the short-distance behaviour of
the integrands from which αµ is constructed is most conveniently studied in the
light-cone gauge rather than the standard gauge. For source points near the field
point [t, x] the integration contour � in figure 6.6 divides naturally into two parts:
the segment �− to the left of the field point, where σ < 0, σ+ < 0 and σ− ≈ 0;
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and the segment �+ to the right of the field point, where σ > 0, σ− < 0 and
σ+ ≈ 0.

For source points on �− the most convenient choice of integration variable
is σ+. Since the Jacobian of the transformation from σ to σ+ on � is given by

[|x− r| − (x− r) · rτ ]−1 dσ = [|x− r| − 2(x− r) · r−]−1 dσ+ (6.271)

it follows that the contribution of �− to hµν,κ is

h−µν,κ = −4µ
∫
�−

∂

∂xκ
{[|x− r| − 2(x− r) · r−]−1�µν} dσ+ (6.272)

where, now, �µν = 2(V+µ V−ν + V−µ V+ν − ηµνV+ · V−), with V±µ = ∂Xµ/∂σ±.
Also, taking the spacetime derivatives of the equation τ = t − |x− r| for �

with σ+ fixed gives
σ−,κ = (X · V−)−1Xκ (6.273)

where Xκ = [t − τ, x − r] is the separation of the source point from the field
point and

X · V− = 1
2 (t − τ )− (x− r) · r−. (6.274)

Hence,

∂

∂xκ
{[|x− r| − 2(x− r) · r−]−1�µν}

= 1
2 (X · V−)−1Xκ

∂

∂σ−
[(X · V−)−1�µν] − 1

2 (X · V−)−2V−κ �µν
(6.275)

where V−κ = [ 12 ,−r−], and the partial derivative ∂/∂σ− is understood to be taken
off-shell (that is, with t , x and σ+ constant).

In view of the fact that (∂/∂σ−)Xκ = −V−κ , therefore,

h−µν,κ = −2µ
∫
�−
(X · V−)−1 ∂

∂σ−
[(X · V−)−1�µνXκ ] dσ+ (6.276)

and so the contribution of �− to the acceleration vector αµ in the weak-field
approximation is

α−µ = 4µ
∫
�−
(X · V−)−1 ∂

∂σ−
[Qµ(+−) + Qµ(−+) − Rµ] dσ+ (6.277)

where
Qµ(+−) = (X · V−)−1�µκ V+κ0 X · V−0
Qµ(−+) = (X · V−)−1�µκ V−κ0 X · V+0

(6.278)

and
Rµ = (X · V−)−1�κλV+κ0 V−λ0 Xµ (6.279)
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and V±κ0 are the limiting values of V±κ at the field point σ+ = σ− = 0.
An immediate consequence of (6.277) is that a long string in the shape of a

travelling wave experiences no self-acceleration. It has already been mentioned
that travelling-wave solutions are known to satisfy the full Einstein equations and
so it should come as no surprise that αµ is identically zero for a travelling wave.
The defining feature of a travelling-wave solution is that either V+µ or V−µ is a
constant vector. In the first case V+µ = V+µ0 everywhere, and so �µκ V

+κ
0 ≡ 0.

If the origin of the spatial coordinates is chosen so that x = 0, the equation
for the integration curve � becomes

σ+ + σ− = −|a′0σ+ + b(σ−)| (6.280)

where a′0 is a constant unit vector and b(0) = 0. The curve �− is, therefore,

simply the null segment σ− = 0, and V−µ = V−µ0 at all points on �−. It follows
that �µκ V

−κ
0 ≡ 0 as well, and so α−µ is identically zero. However, if V−µ is

constant then �µκ V
−κ
0 ≡ 0, and the only terms in (6.277) which depend on σ−

are X · V− and X · V−0 , whose σ− derivatives are both −(V−0 )2 = 0. Thus
α−µ vanishes again. By symmetry, the contribution to αµ of �+ also vanishes,
irrespective of whether V+µ or V−µ is constant.

In the case of a more general string configuration,Xκ can be expanded in
the standard form

Xκ ≈ − 1
2 [σ+ + σ−, a′0σ+ + b′0σ− + 1

2 (a
′′
0σ

2+ + b′′0σ 2−)+ 1
6 (a

′′′
0 σ

3+ + b′′′0 σ 3−)].
(6.281)

and so the beaming factor in (6.277) becomes

X · V− ≈ − 1
4 (2λ

−2σ+ − a′0 · b′′0σ+σ− − 1
2a
′
0 · b′′′0 σ+σ 2− − 1

2b
′
0 · a′′0σ 2+

− 1
6b
′
0 · a′′′0 σ 3+ + 1

6 |b′′0|2σ 3− − 1
2a
′′
0 · b′′0σ 2+σ−). (6.282)

Also, the equation (X)2 = 0 for the integration contour � reads:

0 ≈ λ−2σ+σ− − 1
4 (b

′
0 · a′′0σ+ + a′0 · b′′0 σ−)σ+σ− + 1

48 (|a′′0|2σ+4 + |b′′0|2σ 4−)
− 1

4 (
1
3b
′
0 · a′′′0 σ+2 + 1

2a
′′
0 · b′′0σ+σ− + 1

3a
′
0 · b′′′0 σ 2−)σ+σ− (6.283)

and so to leading order in σ+ the segment �− has the equation

σ− ≈ − 1
48 |a′′0|2σ 3+. (6.284)

Expanding the integrands in (6.277) in σ+ and σ− is a tedious process best
performedwith a computer algebra system and, in general, it is necessary to retain
all terms up to and including a(4)0 and b(4)0 . Once σ− has been eliminated in favour
of σ+ through (6.284), it turns out that, to second order in σ+,

∂

∂σ−
Rµ ≈ 1

8 {λ2(a′0 · b′′0)(b′0 · a′′0)+ 2a′′0 · b′′0}[1, a′0]σ+
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+ 1
32 {λ2(a′0 · b′′0)(b′0 · a′′0)+ 2a′′0 · b′′0}

× {λ2(b′0 · a′′0)[1, a′0] + 2[0, a′′0]}σ 2+
+ 1

16 {2b′′0 · a′′′0 + λ2(a′0 · b′′0)(b′0 · a′′′0 )}[1, a′0]σ 2+ (6.285)

∂

∂σ−
Qµ(+−) ≈

∂

∂σ−
Rµ + 1

16 |a′′0|2{λ2(a′0 · b′′0)[1,b′0] + 2[0,b′′0]}σ 2+ (6.286)

and
∂

∂σ−
Qµ(−+) ≈ 1

96 |a′′0|2{λ2(a′0 · b′′0)[1,b′0] + 2[0,b′′0]}σ 2+. (6.287)

Since (X · V−)−1 ≈ −2λ2σ−1+ to leading order, the contribution of �−
to the self-acceleration of the string, for source points near to the field point, is
[QS90]:

α−µ ≈ − 7
12µλ

2|a′′0|2{λ2(a′0 · b′′0)[1,b′0] + 2[0,b′′0]}
∫
�−
σ+ dσ+ (6.288)

and is clearly free of short-distance divergences. The contribution of �+ is found
by replacing σ+ with σ− in this expression and interchanging a′0 with b′0 (and a

′′
0

with b′′0) throughout.
The one obvious case in which this analysis breaks down occurs when the

field point is located at a cusp, as then the local Lorentz factor λ is undefined. At
a cusp, the separation vectorXκ has the standard expansion

Xκ ≈ − 1
2 [σ++σ−, vc(σ++σ−)+ 1

2 (a
′′
cσ+2+b′′cσ−2)+ 1

6 (a
′′′
c σ+3+b′′′c σ−3)]

(6.289)
where vc is a unit vector orthogonal to both a′′c and b′′c , while vc · a′′′c = −|a′′c |2
and vc · b′′′c = −|b′′c |2. The integration contour � in this case has the same basic
form as in figure 6.6, except that the angle between the two branches of � at the
field point is, in general, greater than π/2.

In fact the equation (X)2 = 0 for � reads:

0 ≈ 1
48 |a′′c |2(σ+ + 4σ−)σ 3+ + 1

48 |b′′c |2(σ− + 4σ+)σ 3− − 1
8 (a

′′
c · b′′c )σ 2+σ 2− (6.290)

and so σ− ≈ kσ+ where k is a root of the quartic equation

f (k) ≡ |a′′c |2(1+ 4k)− 6(a′′c · b′′c )k2 + |b′′c |2(4k3 + k4) = 0. (6.291)

On �−, where τ and σ are both negative, k must lie in (−1, 1). Since f (0) =
|a′′c |2 and f (−1) = −3|a′′c + b′′c |2 there is a least one root in [−1, 0]. It is easily
seen that none of the roots is positive, and that the root in [−1, 0] is unique
(save for multiplicities when k = −1 or 0). For present purposes the extreme
cases k = 0 (which occurs, for example, at a cusp on a travelling wave) and
k = −1 (which occurs only when b′′c = −a′′c , so that the cusp is degenerate and
the bridging vector sc = 1

2 (a
′′′
c − b′′′c ) is orthogonal to the cusp velocity vc) will

be ignored.
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The fact that σ− is proportional to σ+ near the field point simplifies the
calculation of the short-distance divergence in α−µ considerably. The beaming
factor

X · V− ≈ −[ 124 |a′′c |2σ 3+ + 1
24 |b′′c |2(σ− + 3σ+)σ 2− − 1

8 (a
′′
c · b′′c )σ 2+σ−] (6.292)

is of order σ 3+, and so

∂

∂σ−
Qµ(+−) ≡

∂

∂σ−
Qµ(−+)

≈ 1
4 (a

′′
c · b′′c ){|a′′c |4 + |a′′c |2|b′′c |2(2k3 − 3k2)

+ |b′′c |4(k6 + 6k5)− 9(a′′c · b′′c )|b′′c |2k4}
× {[|a′′c |2 + |b′′c |2(3k2 + k3)− 3(a′′c · b′′c )k]2}−1
× [1, vc]σ+ (6.293)

while

∂

∂σ−
Rµ ≈ 3

4
|a′′c |2|b′′c |2

|a′′c |2(2+ 3k)− (a′′c · b′′c )(3k + 6k2)+ 2|b′′c |2k3
[|a′′c |2 + |b′′c |2(3k2 + k3)− 3(a′′c · b′′c )k]2

× [1, vc]σ+. (6.294)

Thus, for source points in the neighbourhood of a field point located at
a cusp, the expression (6.277) for α−µ contains a short-distance divergence of
the form

∫
�− σ

−2+ dσ+ which is proportional to the cusp 4-velocity [1, vc]. A
similar statement is true of α+µ. Although the nature of the gravitational beaming
from a cusp (discussed in section 6.2) suggests very strongly that the divergent
contribution to the cusp’s self-acceleration should be directed anti-parallel to vc,
the multiplicative factor appearing outside [1, vc] in α−µ turns out to be neither
negative nor positive definite.

In fact, if the available two-dimensional parameter space is described in
terms of the cusp angles χ and ψ , where

tanχ = |a′′c |/|b′′c | and cosψ = a′′c · b′′c/(|a′′c ||b′′c |) (6.295)

then to leading order

α−µ ≈ 32k
(k10 + 4k9)ρ6 − (6k7 + 3k6)ρ4 + (12k4 + 18k3)ρ2 − 8k − 2

[(k4 + 2k3)ρ2 − 2k − 1]3
× [1, vc]

∫
σ−2+ dσ+ (6.296)

with ρ = cotχ and k the root of the quartic equation 1 + 4k − 6k2ρ cosψ +
(4k3 + k4)ρ2 = 0 lying in (−1, 0).

The corresponding equation for α+µ is found by reading ρ as tanχ and
replacing σ+ with σ−. (Note that the quartic equation for k generally has two real
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Figure 6.7. Orientations of the divergent contributions to the self-acceleration near a cusp.

roots, one in (−1, 0) and one less than −1. Under the transformation ρ → ρ−1
the new roots are just the reciprocals of the old ones, k → k−1. So the value of k
used when calculating α+µ is just the reciprocal of the root in (−∞,−1) of the
original quartic.)

Figure 6.7 divides the χ–ψ parameter space into four regions determined
by the orientations of the short-distance divergences in α−µ and α+µ. In region
I α−µ is parallel to [1, vc] but α+µ is anti-parallel to [1, vc]; in region II the
reverse is true; in region III both α−µ and α+µ are anti-parallel to [1, vc]; and in
region IV both are parallel to [1, vc]. It therefore seems possible, in principle, for
gravitational back-reaction to accelerate a cusp forwards rather than backwards,
although only in cases where the angle between a′′c and b′′c is greater than π/2
(that is, in regions I, II and IV).

6.11.3 Back-reaction and cusp displacement

Of course, a cusp is not a physical point on the string but a structural feature
of the string’s trajectory. Once the perturbed mode functions δXµ+ and δXµ−
have been calculated the effect of the perturbation on the position of a cusp
can be determined directly. Suppose as before that the cusp initially appears
at (σ+, σ−) = (0, 0), with Xµ+(0) = Xµ−(0) = 1

2 [1, vc]. After a single period
of oscillation the cusp will typically appear at a new gauge position (σ+, σ−) =
(δσ+, δσ−), where δσ+ and δσ− are small compared to the parametric period L.

In view of the realignment conditions (6.258) the new aligned gauge
coordinates are

σ̄+ ≈ [1+ 2δX0+(0)]σ+ and σ̄− ≈ [1+ 2δX0−(0)]σ− (6.297)

in the neighbourhood of (σ+, σ−) = (0, 0). The equation Xµ++δXµ+ = Xµ−+δXµ−



The back-reaction problem 241

for a cusp (in the barred gauge, of course), therefore, reduces to

−vcδX0+(0)+ 1
2a
′′
cδσ+ + δr+(0) ≈ −vcδX0−(0)+ 1

2b
′′
cδσ− + δr−(0) (6.298)

where δr denotes the spacelike components of δXµ.
Given that δX0±(0) = vc · δr±(0) by virtue of (6.256), and a′′c and b′′c are

orthogonal to vc, this equation can be solved by projection to give

1
2δσ+ = � · [|b′′c |2a′′c − (a′′c · b′′c )b′′c ]/|a′′c × b′′c |2 (6.299)

and
1
2δσ− = � · [|a′′c |2b′′c − (a′′c · b′′c )a′′c ]/|a′′c × b′′c |2 (6.300)

where � = δr−(0)− δr+(0). Thus, the spatial position of the perturbed cusp will
be

(r+ δr)|(δσ+,δσ−) ≈ rc + δr(0, 0)+ vcδτ (6.301)

where δτ = 1
2 (δσ+ + δσ−) and rc = r(0, 0) is its unperturbed position.

If, for the sake of computational convenience, the perturbation δXµ is
generated by integrating away from the point (σ+, σ−) = (0, 0) then

δXµ(σ+, σ−) = 1
4

∫ σ+

0

∫ L

0
αµ(u, σ−) dσ− du + 1

4

∫ σ−

0

∫ L

0
αµ(σ+, v) dσ+ dv

(6.302)
and, in particular, δr(0, 0) = 0. However, a valid comparison of the positions
of the cusp before and after the perturbation is possible only after subtracting the
centre-of-mass of the loop in the two cases.

Initially, the centre-of-mass of the loop has the trajectory

r̄(t) = r̄0 + tV (6.303)

where t is the time since the beginning of the oscillation, V is the initial bulk
3-velocity of the loop and

r̄0 = L−1
∫ L

0
r|τ=0 dσ (6.304)

is the centre-of-mass along the constant-time slice t = 0 corresponding to the
unperturbed position of the cusp.

In order to calculate the centre-of-mass along the constant-time slice of the
perturbed position of the cusp it is necessary to first convert to the realigned
coordinates (σ̄+, σ̄−) and then find themean value of r+δr along the slice τ̄ = δτ ,
which in terms of the original standard gauge coordinates has the parametric form
τ (σ ) ≈ δτ − δX0|τ=0, with dσ̄ ≈ (1+ X0,τ |τ=0) dσ .

To leading order in the perturbation the result is:

r+ δr|τ̄=δτ = r̄0 + δr0 + Vδτ − δL
L
r̄0 + L−1

∫ L

0
[rδX0,τ −r,τ δX0]|τ=0 dσ

(6.305)
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where δL is given by (6.259) and

δr0 = L−1
∫ L

0
δr|τ=0 dσ. (6.306)

Thus the displacement of the perturbed position of the cusp from the perturbed
centre-of-mass is

(r+ δr)|(δσ+,δσ−) − r+ δr|τ̄=δτ = rc − r̄0 + δrc (6.307)

where

δrc ≈ vcδτ −Vδτ − δr0+ δL
L
r̄0− L−1

∫ L

0
[rδX0,τ −r,τ δX0]|τ=0 dσ. (6.308)

Here, the first two contributions to δrc represent the drift of the cusp
and the centre-of-mass, respectively, over the delay time δτ , and the last three
terms reflect displacements due to the non-local effects of the perturbation.
Unfortunately, there is no direct relationship between the last three terms and the
two drift terms, so the naive expectation that (in the centre-of-momentum frame)
cusps will simply precess about the loop under the action of their self-acceleration
has only limited theoretical support. However, as will be seen in the next section,
the two features of cusp displacement most evident in numerical simulations are
precession due to the first (cusp drift) term and self-similar shrinkage of the loop,
which is included in the last three terms.

6.11.4 Numerical results

Quashnock and Spergel [QS90] have used the back-reaction formalism outlined
here to numerically simulate the evolution of three classes of radiating string
loops. The time-step between successive perturbation solutions was chosen to
represent the cumulative effect of 10−3/µ oscillations (of period L/2) of the loop,
and at each step the acceleration vector αµ was evaluated at a grid of equally-
spaced points on the fundamental domain [0, L] × [0, L]. In the faster version of
their code Quashnock and Spergel approximated the world sheet as a piecewise-
plane surface.

In the first series of simulations, the loop was initially configured to be one
of the p/q harmonic solutions described by equations (6.84) and (6.85), with
ψ = π/2, p = 1 and q = 3 or 5. The 1/3 harmonic string supports two
cusps over its fundamental period T = L/6, at (τ, σ ) = (0,±L/4). The
cusps lie at rc = ± L

2π [0, 12 , 16 ], and have velocities vc = ∓[1, 0, 0] . The 1/5
harmonic string also supports two cusps over its fundamental period T = L/10,
at (τ, σ ) = (L/20, L/5) and (τ, σ ) = (L/20,−3L/10). In this case the cusps lie
at rc = ± L

2π [0, 12 , 1
10 ], and have velocities vc = ∓[1, 0, 0].

The two loops at the moment of cusp formation are shown in figures 6.8 and
6.9. In both cases the cusp velocities are directed anticlockwise and the cusps lie
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Figure 6.8. The 1/3 harmonic loop at the moment of cusp formation.

Figure 6.9. The 1/5 harmonic loop at the moment of cusp formation.

in region III of figure 6.7, so that the divergent component of the self-acceleration
of each cusp is anti-parallel to its velocity.

Quashnock and Spergel found that both loops evolved in an essentially self-
similar manner, with the loop patterns shrinking in response to the radiative
energy loss and consequent reduction in the invariant length L, and the cusps
slowly precessing around the loops. Unfortunately, it is not clear from the
presentation of their results whether the precession was in the same direction as, or
counter to, the velocities of the cusps. The authors state (in reference to one of the
cusps on the 1/3 loop) that ‘the cusp survives the back reaction, but is deformed
and delayed’; and the accompanying figures support the claim of a ‘delay’ (that
is, precession in the same direction as vc) in the case q = 3. However, later
diagrams depicting an asymmetric Vachaspati–Vilenkin solution clearly indicate
an inversion of the horizontal (x)-axis. If the x-axis is similarly inverted in the
earlier figures, then the precession is counter to vc, as would be expected if the
cusp drift term in (6.308) with a parametric shrinkage δτ < 0 were dominant.
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Figure 6.10. The α = 1
2 , ψ = 1

2π Vachaspati–Vilenkin loop at a moment of cusp
formation.

In any case, the cusps were not destroyed by back-reaction effects, as the
topological arguments of section 3.6 anticipated. The energy loss δP0 at each step
in the simulations was effectively constant, a result consistent with the prediction
of section 6.4 that the radiative power is independent of the loop size L. The
radiative efficiency γ 0 of the 1/5 loop was found to lie between 90 and 100 over
the 10 steps of the simulation.

In their second series of simulations, Quashnock and Spergel tracked the
evolution of three Vachaspati–Vilenkin solutions of the form (6.82) and (6.83),
with the parameter choices (α,ψ) = ( 14 , π/2), ( 14 , 3π/4) and ( 12 , π/2). In each
case the loop supported a total of four cusps distributed non-symmetrically about
its centre-of-momentum, and Quashnock and Spergel examined the solutions
primarily to test the effectiveness of cusps in boosting an asymmetric loop to
relativistic velocities (the ‘gravitational rocket effect’). They found that all three
solutions were rapidly accelerated to speeds between about 6% and 14% of the
speed of light, much as predicted by Vachaspati and Vilenkin (see section 6.8.1).

The solution with α = 1
2 and ψ = π/2 was discussed briefly at the end of

section 6.8.2. Its cusps occur at (τ/L, σ/L) = (0, 14 ), ( 14 , 12 ), ( 18 , 78 ) and ( 38 , 18 ),
with velocities vc = [0, 0,−1] in the first two cases, and vc = [0, 0, 1] in the
other two. The second cusp, at (τ/L, σ/L) = ( 14 , 12 ), is the furthest from the loop
and presumably exerts the greatest torque (although the net torque of the cusps is
directed along the y-axis irrespective of the strength of the individual cusps: see
section 6.8.2). The loop is depicted, at the moment of formation of this cusp, in
figure 6.10.

Quashnock and Spergel found that the rocket effect accelerated this
particular loop to a maximum velocity of about 9% of the speed of light in
the negative z-direction, plus smaller components in the x- and y-directions.
Given that there is no obvious asymmetry in the cusp velocities, the magnitude
and direction of the acceleration is somewhat of a mystery. However, if A−
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denotes the scaling factor outside [1, vc]
∫
σ−2+ dσ+ in the formula (6.296) for

the divergent component of the self-acceleration α−µ, and A+ the corresponding
factor for α+µ, then the cusps at (τ/L, σ/L) = ( 18 , 78 ) and ( 38 , 18 ), which have
vc = [0, 0, 1], lie in region III of figure 6.7 with (A+, A−) = (−23.0,−4.9).
The cusp at (τ/L, σ/L) = ( 14 ,

1
2 ) also lies in region III with (A+, A−) =

(−13.9,−11.7), but the remaining cusp, at (τ/L, σ/L) = (0, 14 ) has (A+, A−) =
(−155.7, 83.4) and lies in region I. Thus the self-acceleration of the first pair
of cusps is consistently directed in the negative z-direction, whereas the self-
acceleration of the second pair has contributions in both directions, although this
may be a fortuitous coincidence.

Further acceleration of the asymmetric loops beyond about 10–15% of the
speed of light seems to have limited by two factors. The first was the precession
of the cusps, which had the effect of rotating the beaming directions of the cusps
away from the original boost axis. The cusp precession apparently developed in
the same direction as the cusp velocities, as was earlier seen to be the case with the
1/3 and 1/5 harmonic solutions. However, the published diagrams corresponding
to the top frame of figure 6.10 show the cusp to the right rather than the left, and
so there is good reason to suspect an inversion of the x-axis (which would reverse
the precession).

The second factor inhibiting acceleration was the suppression of the
asymmetric structure by the preferential radiation of energy from the higher-
order harmonics of the a mode. Thus as the loops evolved they not only shrank
in response to the overall energy loss, but began increasingly to resemble the
corresponding 1-harmonic solutions (which have α = 0).

The last of Quashnock and Spergel’s back-reaction simulations involved a
family of kinked loops constructed by superimposing a sawtooth wave with N
equally-spaced kinks on an initially circular string. The resulting configurations
resembled cog wheels with N/2 teeth, although unfortunately the authors did
not provide sufficient information to allow an explicit reconstruction of the
unperturbed trajectories. Quashnock and Spergel followed the evolution of three
trajectories, with N = 8, 16 and 32 kinks. In each case the loop slowly shrank in
size, with the kink amplitudes decaying more rapidly than the radius of the loop.

Due to the decay of the kinks the ratio of the loop’s energy to its mean
radius decreased from iteration to iteration, and the decay time t for the kinks
was defined to be the time taken for this ratio to fall halfway to its asymptotic
value. On the basis of the results for the three test loops, Quashnock and Spergel
estimated that for kinks with a characteristic size r = 2πR/N (where R is the
initial radius of the loop)

t ∼ r/(50µ). (6.309)

This result is gratifyingly close to the estimatet ∼ r/(8π2µ) for the decay time
of kinks obtained from purely theoretical considerations at the end of section 6.7.



Chapter 7

The gravitational field of an infinite straight
string

7.1 The metric due to an infinite straight string

The metric due to an infinite straight cosmic string in vacuo is, in its distributional
form, arguably the simplest non-empty solution of the Einstein field equations.
The weak-field version (which is virtually identical to the full solution) was
first derived by Alexander Vilenkin in 1981 [Vil81b]. The full metric was
independently discovered in 1985 by J Richard Gott [Got85] andWilliam Hiscock
[His85], who matched a vacuum exterior solution to a simple interior solution
containing fluid with the equation of state T tt = T zz = ε0 (a constant) and then let
the radius of the interior solution go to zero. Gott’s work followed directly from
a study of the gravitational field of point particles in 2+ 1 dimensions [GA84]. A
more general class of interior solutions was subsequently constructed by Bernard
Linet [Lin85].

The Gott–Hiscock solution is constructed by first assuming a static,
cylindrically-symmetric line element with the general form:

ds2 = e2χ dt2 − e2ψ(dr2 + dz2)− e2ω dφ2 (7.1)

where χ , ψ and ω are functions of r alone, and r and φ are standard polar
coordinates on �2 . The metric has Killing fields ∂t , ∂z and ∂φ .

The non-zero components of the Einstein tensor Gµν = Rµν − 1
2 Rδ

µ
ν are:

Gtt = [ψ ′′ + ω′′ + (ω′)2]e−2ψ (7.2)

Gzz = [χ ′′ + (χ ′)2 + ω′′ + (ω′)2 + χ ′ω′ − ψ ′χ ′ − ψ ′ω′]e−2ψ (7.3)

Grr = (ψ ′χ ′ + ψ ′ω′ + χ ′ω′)e−2ψ (7.4)

and
Gφφ = [χ ′′ + (χ ′)2 + ψ ′′]e−2ψ. (7.5)

246
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The metric is generated by solving the Einstein equations Gµν = −8πTµν . In
the wire approximation, the world sheet of the string is the 2-surface r = 0. If the
world-sheet parameters ζ 0 and ζ 1 are identified with the spacetime coordinates t
and z respectively, then the distributional stress–energy tensor (6.1) has only two
non-zero components:

T tt = T zz = µe−χ−2ψ−ωδ(2)(r) (7.6)

where δ(2)(r) is the standard unit distribution with support localized at the origin
in �2 . It is, therefore, natural to postulate that the interior solution has a stress–
energy tensor of the form

T tt = T zz ≡ ε T rr = T φφ = 0 (7.7)

where the energy density and longitudinal tension ε is a function of r only.
The identities T νµ;ν = 0 then give rise to the conservation equation:

δµr T
ν
µ;ν = −(χ ′ + ψ ′)ε = 0. (7.8)

which, in turn, implies that χ ′′ + ψ ′′ = 0 and hence, since Gφφ = 0, that χ ′ and
ψ ′ separately vanish. The functions χ and ψ are therefore constants and can be
set to zero by suitably rescaling t , z and r , so that

ds2 = dt2 − dz2 − dr2 − e2ω dφ2. (7.9)

The Einstein equations then reduce to the single equation

ω′′ + (ω′)2 = −8πε (7.10)

or, equivalently,
(eω)′′ + 8πεeω = 0. (7.11)

Equation (7.11) can be used to solve for the metric function ω once ε has
been prescribed as a function of r or, alternatively, to solve for ε if ω is given.
The only constraints are that ε should be positive and that the solution should be
regular on the axis r = 0, so that eω ∼ r for small r . Gott [Got85] and Hiscock
[His85] both assumed ε to be a constant ε0, in which case

eω = r∗ sin(r/r∗) (7.12)

where r∗ = (8πε0)−1/2. The more general situation where ε is varying has been
discussed by Linet [Lin85].

The exterior metric is a solution of the vacuum Einstein equations Gµν = 0
and is most easily derived by rearranging the equations in the form

eχ+2ψ+ω( 12G − Gtt ) = (χ ′eχ+ω)′ = 0 (7.13)

eχ+2ψ+ω( 12G − Gzz) = (ψ ′eχ+ω)′ = 0 (7.14)

eχ+2ψ+ω( 12G − Gφφ) = (ω′eχ+ω)′ = 0 (7.15)
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and
e2ψGrr = ψ ′χ ′ + ψ ′ω′ + χ ′ω′ = 0. (7.16)

The general solution to this system of equations is:

χ = m ln |r + K | + C1 (7.17)

ψ = m(m − 1) ln |r + K | + C2 (7.18)

and
ω = (1− m) ln |r + K | + C3 (7.19)

where m, K , C1, C2 and C3 are all integration constants. After eliminating K by
re-zeroing the radial coordinate r , the line element becomes

ds2 = r2mc2 dt2 − r2m(m−1)b2(dz2 + dr2)− r2(1−m)a20 dφ2 (7.20)

where a0, b and c are constants. Equation (7.20) describes the most general static,
cylindrically-symmetric vacuum line element, and was first discovered by Tullio
Levi-Cività in 1917. It is always possible to set b and c to 1 by suitably rescaling
t , z and r , but for present purposes it is more convenient to retain them as arbitrary
integration constants.

The interior and exterior solutions can be matched at any nominated value
r0 of r in the interior solution. Since the coordinates r appearing in the two
line elements (7.9) and (7.20) will typically have different scalings, the boundary
radius in the exterior solution will be denoted R0. The boundary 3-surface is
spanned by the orthonormal triad

{tµ(i)} = {e−χδµt , e−ψδµz , e−ωδµφ } (7.21)

and has unit normal
nµ = eψδrµ. (7.22)

The extrinsic curvature of the surface is, therefore,

Kij = −tµ(i)tν( j )nµ;ν = e−ψ diag(χ ′,−ψ ′,−ω′). (7.23)

The two solutions can be matched without inducing a boundary layer on
the surface by requiring that both Kij and the metric intrinsic to the surface be
continuous. This, in turn, means that eχ , eψ , eω, χ ′, ψ ′ and ω′ must be continuous
across the surface. Since χ and ψ are constants in the interior solution, the
continuity of χ ′ and ψ ′ requires that m/R0 = m(m − 1)/R0 = 0, and so m = 0.
Similarly, the continuity of eχ and eψ implies that b = c = 1.

Now, integration of the Einstein equation (7.11) across the interior solution
gives

[ω′eω]r00 = −8π
∫ r0

0
εeω dr (7.24)
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where eω ∼ r for small r and so ω′eω → 1 as r → 0. Since ω′eω = a0 in the
exterior solution, matching ω′eω across the boundary gives

a0 = 1− 8π
∫ r0

0
εeω dr. (7.25)

This last identity can be expressed in a more compact form by noting that
the total mass per unit length µ on each surface of constant t and z in the interior
solution is:

µ =
∫ 2π

0

∫ r0

0
εeω dr dφ = 2π

∫ r0

0
εeω dr (7.26)

and so
a0 = 1− 4µ. (7.27)

Also, the function eω will itself be continuous if R0 = 1/ω′(r0).
In the particular case of the Gott [Got85] and Hiscock [His85] ε = ε0 interior

solution given by (7.9) and (7.12), R0 = sec(r0/r∗) and µ = 2πε0r2∗ [1 −
cos(r0/r∗)]. The exterior boundary radius R0 will, therefore, be positive if
r0 < πr∗/2, in which case µ < 2πε0r2∗ = 1

4 and 0 < a0 < 1.
In summary, the exterior solution is simply

ds2 = dt2 − dz2 − dr2 − (1− 4µ)2r2 dφ2 for r ≥ R0 (7.28)

and there is a large class of interior solutions with the simple equation of state
T tt = T zz = ε that can be matched to (7.28) at r = R0.

Themetric outside a straight zero-thickness string is now generated by letting
the boundary radius R0 go to zero while keeping the mass per unit length µ
constant, so that the range of the line element (7.28) extends to r = 0. The
resulting spacetime is empty and flat everywhere except on the 2-surface r = 0,
where the metric is singular. Strictly speaking, the surface r = 0 is, therefore,
a singular boundary and is not part of the spacetime at all. However, it is still
possible to associate with the metric a distributional stress–energy tensor of the
form (7.6), in a sense that will be defined more formally in section 7.5.

It should also be noted that the parameter µ appearing in this derivation
plays two essentially independent roles: one as a measure of the strength of the
gravitational field in the exterior metric (7.28) and a second one as the integrated
mass per unit length of the interior solution as defined by equation (7.26). The
identity of these two quantities is a non-trivial consequence of the simple equation
of state T tt = T zz = ε and T rr = T φφ = 0 assumed for the interior fluid. As
will be seen in section 7.4, it is possible to endow the interior solution with an
equation of state more general than that considered by Gott, Hiscock and Linet
[Got85, His85, Lin85] while preserving the form (7.28) of the exterior metric.
The mass per unit length in the interior solution is then typically not equal to the
metric parameter 1

4 (1 − a0). For this reason the symbol µ will be reserved for
the quantity 1

4 (1− a0), and—since it reflects a geometric property of the exterior
metric only—will be referred to as the gravitational mass per unit length of the
spacetime.
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Figure 7.1. The constant t , z slices of the conical spacetime (7.28).

7.2 Properties of the straight-string metric

The line element (7.28) has a very simple geometric interpretation. If the angular
coordinate φ is replaced by θ = (1− 4µ)φ then (7.28) reduces to the Minkowski
line element

ds2 = dt2 − dz2 − dr2 − r2 dθ2 (7.29)

with the exception that θ ranges from 0 to 2π(1− 4µ) rather than from 0 to 2π .
The metric, therefore, describes Minkowski spacetime with a wedge of angular
extent θ = 8πµ removed from each of the surfaces of constant t and z, as
shown in figure 7.1. The apex of each wedge lies on the axial plane r = 0, and
the sides of the wedge are ‘glued’ together, forming what is sometimes referred
to as conical spacetime.

The fact that the metric (7.28) is locally Minkowskian implies that the
Riemann tensor is zero everywhere outside the axial plane, and therefore that
a test particle moving through the metric would experience no tidal forces. In
particular, such a particle would not be accelerated towards the string. This
curious feature is due to the special nature of the equation of state T tt = T zz ,
which—as was first noted by Vilenkin [Vil81b]—is invariant under boosts along
the z-axis. A local observer should, therefore, be unable to distinguish a preferred
velocity in the z-direction; whereas any gravitational force in the radial direction
would destroy this symmetry. When combined with the other symmetries of the
metric, this property forbids gravitational acceleration in any direction.

An alternative version of the metric which is more useful for studying the
structure of the singularity on the axial plane r = 0 can be found by replacing r
and φ with the new coordinates

x = ρ(r) cosφ and y = ρ(r) sin φ (7.30)

where
ρ(r) ≡ (x2 + y2)1/2 = [(1− 4µ)r ]1/(1−4µ). (7.31)



Properties of the straight-string metric 251

The line element (7.28) then becomes

ds2 = dt2 − ρ−8µ(dx2 + dy2)− dz2 (7.32)

which is often referred to as the isotropic form of the straight-string metric.
An even more compact version of this line element can be constructed by

introducing the complex coordinate w = x + iy. In terms of w and its conjugate
w∗ the line element is

ds2 = dt2 − dz2 − (ww∗)−4µ dw dw∗ (7.33)

which demonstrates explicitly that the metric is locally flat, as it reduces to
the Minkowski line element under a complex transformation w → W (w) =
(1− 4µ)−1w1−4µ which is analytic everywhere except at w = 0.

The simple geometry of the straight-string metric (7.28) allows the geodesics
to be easily constructed. In the locally-Minkowskian coordinate system (t, r, z, θ)
the geodesics are straight lines, and so in the original (t, r, z, φ) coordinates have
the parametric form

t (s) = γp s + tp (7.34)

r(s) = rp[1+ (1− 4µ)2ω2ps
2]1/2 (7.35)

z(s) = Vps + z p (7.36)

and
φ(s) = φp + (1− 4µ)−1 tan−1[(1− 4µ)ωps] (7.37)

where a subscripted p denotes the value of the variable at the point of closest
approach to the string, which has been chosen as the zero point for the proper
time s, while γ is shorthand for dt/ds, ω for dφ/ds and V for dz/ds.

In isotropic coordinates, the projection of the geodesic onto the x–y plane
traces out the curve

x(s) = ρ(s) cos θp and y(s) = ρ(s) sin θp (7.38)

where
ρ(s) = ρp[1+ (1− 4µ)2ω2ps

2]1/(2−8µ). (7.39)

One of the few ways that an observer would be able to detect the presence
of an infinite straight cosmic string is through gravitational lensing. Consider
two geodesics originating from the same azimuthal direction φ = φ0 and passing
symmetrically on opposite sides of the string. The angular coordinates of the two
geodesics then satisfy

φ+(s) = φ0 + (1− 4µ)−1
{
tan−1[(1− 4µ)ωps] + π

2

}
(7.40)

and
φ−(s) = φ0 − (1− 4µ)−1

{
tan−1[(1− 4µ)ωps] + π

2

}
. (7.41)
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Figure 7.2. Gravitational lensing of the light from a distant quasar by an intervening string.

In particular, the asymptotic directions of the two geodesics in the limit as
s →∞ are not the same, as

φ+ → φ0 + π

1− 4µ
(7.42)

while
φ− → φ0 − π

1− 4µ
. (7.43)

The angular difference between the geodesics after the transit is, therefore,

φ = 2π

1− 4µ
− 2π = 8πµ

1− 4µ
(7.44)

which when measured as a physical angle is just the angle deficitθ = 8πµ.
An observer situated at a sufficiently large distance from a straight cosmic

string would see two images of any point source lying behind the string, as
illustrated in figure 7.2. If the line of sight from the observer to the source is
perpendicular to the string, the angular separation between the two images is 8πµ.
For GUT strings (which have µ ≈ 10−6), this corresponds to a separation of the
order of 1 arcsecond, which is detectable with a modern telescope.

Incidentally, Mark Hindmarsh and Andrew Wray [HW90] have shown, by
detailed analysis of the geodesics in a general Levi-Civita spacetime (7.20), that
gravitational lensing with a well-defined angular separation between the images
is possible only in the specialized string case m = 0.

7.3 The Geroch–Traschen critique

The claim that the conical metric (7.28) would adequately represent the
gravitational field outside a realistic cosmic string is founded on the critical
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assumption that it is possible to give a meaningful distributional interpretation
to the stress–energy content of the singular boundary at r = 0. This assumption
was first systematically questioned on a number of grounds by Robert Geroch
and Jennie Traschen [GT87] in 1987. Their concerns were wide-ranging but it is
possible to group them into four main categories:

(1) The absence of a suitable distributional formalism in general relativity.
Since the Einstein equations are nonlinear in the metric tensor gµν and its
first and second derivatives, it is not, in general, meaningful to treat them
as equations on distributions (that is, continuous linear functionals). In
particular, the Riemann tensor

Rκλµν = 1
2 (gκµ,λν +gλν,κµ−gκν,λµ−gλµ,κν )+ gρσ (�ρκµ�σλν − �ρκν�σλµ)

(7.45)
is quadratic in the Christoffel symbol �ρκµ and so may not be expressible as
a distribution if the Christoffel symbol is itself a singular distribution. In
order to ensure that each of the terms on the right-hand side of (7.45) is
separately no worse than distributional, Geroch and Traschen defined a class
of what they called regular metrics, which are characterized by the following
properties:

(i) the inverse metric tensor gµν exists everywhere;
(ii) both gµν and gµν are locally bounded; and
(iii) the weak derivative of gµν (the distributional analogue of gµν,λ) is

locally square integrable.

One objection levelled by Geroch and Traschen against the use of the
distributional approximation to model cosmic strings is that the isotropic
form (7.32) of the metric is not regular, as the weak first derivative of gµν
is not locally square integrable. In fact, it can be shown that any metric
with distributional curvature concentrated on a submanifold of co-dimension
2, like the world sheet of a zero-thickness cosmic string, must be non-
regular. The problem of whether a suitable distributional formalism can
be constructed for non-regular metrics remains an open one, and will be
discussed in more detail in sections 7.5 and 10.4.4.

(2) The uncertain physical interpretation of distributional solutions. Geroch and
Traschen rightly stressed that a given distributional string solution is nothing
more than a mathematical curiosity unless it can be shown to be the zero-
thickness limit of a family of solutions containing energy and matter fields
that are physically reasonable and in some sense smooth. Unfortunately,
imposing this as a general requirement would destroy much of the rationale
behind the distributional approximation,which is to avoid having to solve the
full Einstein–Yang–Mills–Higgs field equations. In the case of the Nielsen–
Olesen vortex string [NO73], which is the canonical Abelian Higgs model
for an infinite straight string (see section 1.3), David Garfinkle [Gar85] has
shown that the metric at large distances tends asymptotically to the conical
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line element (7.28), which would therefore be recovered in the limit as
the core radius of the string goes to zero. It is usually taken for granted
that limiting sequences of smooth solutions exist for more complicated
distributional string metrics but so far this has been demonstrated only
in a few special cases, most notably the travelling-wave solutions (see
section 9.1).

(3) The possibility that the large-scale structure of the conical metric is unstable
to perturbations in the equation of state. As was seen in section 7.1, the most
general static vacuum metric with cylindrical symmetry has the Levi-Cività
form (7.20), which is flat (both asymptotically and locally) only in the special
case m = 0. One way of singling out the choicem = 0 is to match the metric
to an interior solution with the canonical equation of state T tt = T zz = ε and
T rr = T φφ = 0. However, there is a multitude of other equations of state that
could plausibly be prescribed for the interior solution and those that match
smoothly onto an exterior spacetime with m = 0 form a subset of measure
zero. This suggests that a tiny change in the equation of state of the putative
interior fluid could, in principle, lead to a completely different (that is, non-
flat) large-scale structure. Geroch and Traschen regarded this as a potentially
serious problem for the theory of cosmic strings, attributable ultimately
to the simplifying assumption that straight strings have infinite length and
therefore infinite mass–energy. Geroch and Traschen also suggested that a
similar breakdown might occur outside a curved string or in the presence of
another gravitating object, as the symmetry in Tµν would then be destroyed.
The particulars of this argument, and its resolution, will be examined in
sections 7.4.

(4) The lack of any clear relationship between the mass per unit length of a
cosmic string and its near gravitational field. It was mentioned earlier that
the simple correspondence between the gravitational mass per unit length µ
(or, equivalently, the angle deficit θ = 8πµ) in the exterior metric (7.28)
and the mass per unit length of the interior solution (7.9) is a consequence
of the specific equation of state assumed for the interior fluid. Given any
other equation of state consistent with the m = 0 subfamily of the Levi-
Cività metrics (7.20), it turns out the mass per unit length in the fluid is
strictly smaller than the value that would be inferred from the geometry of
the exterior solution (see section 7.4). This feature is simply a reflection of
the self-gravity of the fluid, and has been explored most extensively in the
case of the Nielsen–Olesen vortex by Garfinkle and Laguna [GL89]. Geroch
and Traschen expressed some disquiet at the absence of a direct relationship
between the angle deficit and mass–energy content of a straight string, but
it should be borne in mind that a similar indeterminacy exists in relation to
the gravitational field of a static fluid sphere, where the active mass defining
the exterior (Schwarzschild) solution is not, in general, equal to the physical
mass of the sphere. More problematic perhaps is Geroch and Traschen’s
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concern that an analogous relationship between source and field is not
possible even, in principle, in the case of a curved string, as the rotational
and translational Killing vectors used respectively to define the angle deficit
and mass-energy of a straight string are no longer available. Analysis of
the near gravitational field outside a general curved string suggests a way
of circumventing this problem, which will be considered in more detail in
section 10.4.1.

Of the four concerns listed here, all but the second would cast considerable
doubt on the suitability of the wire approximation if substantiated. However, the
concerns were posed by Geroch and Traschen as open questions only, and the
following sections will show that all have simple resolutions in the case of an
infinite straight string. It is not at present possible to make similar statements
about the value of the wire approximation in more complicated situations where
curvature of the string or the presence of another gravitating object destroys the
high degree of symmetry evident in the straight-string metric (7.28) but such
doubts as persist are due primarily to the fact that very few exact non-straight
solutions are available for analysis. So far no compelling reason has been found
for believing that the wire approximation creates insuperable problems of either
a physical or a mathematical nature, regardless of the string geometry. This lends
qualified support to the claim that the distributional stress–energy tensor (6.1)
defines a class of solutions to the Einstein equations which is rich and physically
interesting, whatever the final verdict on the existence of cosmic strings in the
Universe at large.

7.4 Is the straight-string metric unstable to changes in the
equation of state?

To examine in detail the possibility that the large-scale geometry outside an
infinite straight string could be sensitive to changes in the equation of state of the
putative source fluid, recall from section 7.1 that if the general static line element
with cylindrical symmetry is written in the form (7.1) then the components of the
Einstein tensor satisfy the identities

[χ ′(eχ+ω)]′ = 1
2 (−Gtt + Grr + Gzz + Gφφ)eχ+2ψ+ω (7.46)

[ψ ′(eχ+ω)]′ = 1
2 (G

t
t + Grr − Gzz + Gφφ)eχ+2ψ+ω (7.47)

[ω′(eχ+ω)]′ = 1
2 (G

t
t + Grr + Gzz − Gφφ)eχ+2ψ+ω (7.48)

and
Grr = (χ ′ψ ′ + χ ′ω′ + ψ ′ω′)e−2ψ. (7.49)

As was done in the case of the restricted equation of state considered by Gott
and Hiscock, I will divide the metric into an interior solution with a non-zero
stress–energy tensor and a vacuum exterior solution. The exterior line element
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then has the Levi-Cività form (7.20). In particular, the continuity of the three
metric functions χ , ψ and ω across the boundary between the two solutions
requires that

a0R
1−m
0 = eω0 bRm(m−1)0 = eψ0 and cRm0 = eχ0 (7.50)

where r = R0 is the equation of the boundary in the exterior solution, and a
subscripted zero denotes the value of the corresponding metric function on the
boundary of the interior solution.

Similarly, the matching of the extrinsic curvature tensor on the two sides of
the boundary gives the conditions

b−1mR−(m
2−m+1)

0 = e−ψ0χ ′0 (7.51)

b−1m(m − 1)R−(m
2−m+1)

0 = e−ψ0ψ ′0 (7.52)

and
b−1(1− m)R−(m2−m+1)

0 = e−ψ0ω′0 (7.53)

where χ ′0 denotes the boundary value of the radial derivative of χ , and similar
remarks apply to the other metric functions.

The continuity of the normal derivatives across the boundary, combined with
the fact that Grr vanishes in the exterior solution, implies that χ ′0ψ ′0 + χ ′0ω′0 +
ψ ′0ω′0 = 0. (In physical terms, this means that the radial pressure T rr must be zero
on the boundary of the cylinder.) The constants b and c fix the relative scalings of
t , r and z. Solving for the remaining three constants gives

m = (χ ′0+ω′0)−1χ ′0 R0 = (χ ′0+ω′0)−1 and a0 = Rm−10 eω0 . (7.54)

The scaling of the interior metric can be fixed by requiring that eχ = 1 and
eψ = 1 at r = 0. The cylinder is then regular on the axis if eω ∼ r for small
values of r , and the functions χ ′ and ψ ′ remain bounded as r → 0. In view of the
Einstein equations Gµν = −8πTµν , equations (7.46)–(7.48) can then be integrated
from the axis out to the boundary to give

χ ′0 = 2e−ψ0−ω0(Stt − Srr − Szz − Sφφ ) (7.55)

ψ ′0 = 2e−ψ0−ω0(−Stt − Srr + Szz − Sφφ ) (7.56)

and
ω′0 = 2e−ψ0−ω0(−Stt − Srr − Szz + Sφφ + 1

2 ) (7.57)

where

Sµν = 2π
∫ r0

0
Tµν e

χ+2ψ+ω dr (7.58)

is the total integrated stress–energy of the cylinder per unit t and z.
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Comparison of equations (7.54) with (7.55)–(7.57) indicates that

m = 2
(Stt − Szz )− (Srr + Sφφ )

1− 4Szz − 4Srr
(7.59)

and
R0 = eψ0+ω0(1− 4Stt − 4Srr )

−1 (7.60)

while the hydrostatic boundary condition χ ′0ψ ′0+χ ′0ω′0+ψ ′0ω′0 = 0 is equivalent
to the equation

(Srr + Sφφ )(2Stt + 2Szz + 3Srr − Sφφ − 1)− (Stt − Szz )2 = 0. (7.61)

In view of (7.59), the exterior solution reduces to the Gott–Hiscock metric (7.28)
if

Stt = Szz + Srr + Sφφ (7.62)

as then m = 0.
Recall that the solutions considered by Gott [Got85], Hiscock [His85] and

Linet [Lin85] are all characterized by the equation of state

T rr = T φφ = 0 T tt = T zz > 0 (7.63)

which clearly implies (7.62), and, therefore, thatm = 0. By contrast, the Nielsen–
Olesen vortex described in chapter 1 has the equation of state T tt = T zz , but there
is no direct relationship between T rr and T φφ . David Garfinkle [Gar85] has written
down the field equations for the line element (7.1) in the more realistic case
of a coupled Higgs and Yang–Mills source, and has integrated these equations
numerically to develop a fully general relativistic version of the Nielsen–Olesen
vortex solution1.

If Garfinkle’s solution were to be truncated at a finite radius (with T rr
adjusted so that it goes to zero at the boundary) then from equations (7.55) and
(7.56) χ ′0 = ψ ′0. Equations (7.51) and (7.52) then indicate that m(m − 1) = m
and so m could, in principle, be either 0 or 2. (This result was first obtained by
Vilenkin [Vil81b] in 1981.) In fact, as Garfinkle has shown, the vortex solution
does tend asymptotically to the bare straight-string metric (7.28).

However, it is evident from (7.59) that the class of interior stress–energy
tensors consistent with a flat exterior solution (that is, with the choice m = 0)
forms a set of measure zero in the parameter space spanned by the integrated
stress–energy components Stt , S

z
z , S

r
r and S

φ
φ . On the face of it, therefore, it would

seem that Geroch and Traschen are justified in claiming that a small change in
the structure of the interior solution—provided that it was consistent with the

1 A more general family of solutions describing cylindrically symmetric Einstein–Higgs–Yang–Mills
strings has been constructed by Dyer and Marleau [DM95], under less stringent assumptions about the
regularity of the solution on the symmetry axis.



258 The gravitational field of an infinite straight string

hydrostatic constraint (7.61)—could conceivably lead to an exterior solution with
m �= 0.

What undermines this claim is the fact that the tensor Sµν has no real physical
significance: it is the total stress–energy inside a section of the cylinder of unit
coordinate length in the t- and z-directions. It might seem like a trivial matter to
posit a small change in the components of Sµν and so perturb the exterior metric
away from the canonical value m = 0 but in all cases such a change will have
drastic consequences for the overall energy and tension of the cylinder.

To see this, note from (7.2) that the energy per unit proper length of the
cylinder is

〈T tt 〉 = 2π
∫ r0

0
eψ+ωT tt dr = − 1

4

∫ r0

0
(ψ ′′ + ω′′ + ω′2)eω−ψ dr. (7.64)

If the first two terms in brackets on the right are integrated by parts and the
appropriate boundary conditions imposed at r = 0 and r = r0 then

〈T tt 〉 = − 1
4 [eω−ψ(ψ ′ + ω′)]r00 − 1

4

∫ r0

0
eω−ψψ ′2 dr

= 1
4 [1− a0b−1(1− m)2R−m

2

0 ] − 1
4

∫ r0

0
eω−χψ ′2 dr. (7.65)

Similarly, the net tension of the cylinder is

〈T zz 〉 = 2π
∫ r0

0
eψ+ωT zz dr = − 1

4

∫ r0

0
[eω−ψ(χ ′ + ω′)]′ dr − 1

4

∫ r0

0
eω−χχ ′2 dr

= 1
4 (1− ab−1R−m

2

0 )− 1
4

∫ r0

0
eω−χχ ′2 dr. (7.66)

Note here that both the energy per unit proper length and the tension are bounded
above by quantities which depend only on the properties of the exterior metric:

〈T tt 〉 ≤ 1
4 [1− a0b−1(1− m)2R−m

2

0 ] and 〈T zz 〉 ≤ 1
4 (1− a0b−1R−m

2

0 ).

(7.67)
Consider now a continuous family of exterior metrics with the same values

of a0, b, c and m but different boundary radii R0. As R0 tends to zero, the net
tension 〈T zz 〉 inevitably diverges to −∞ unless m = 0 (as a0b−1 is by assumption
positive). The same is true of the energy per unit length 〈T tt 〉, except in the special
case m = 1. However, the circumference 2πa0R

1−m
0 of the interior solution

remains bounded as R0 → 0 if m = 1, and so this case (which is conjugate to the
case m = 0 in the sense that the roles of t and φ are interchanged) supports no
zero-thickness limit at all.

These observations lead to the following important conclusion: Of all the
Levi-Cività metrics (7.4), only the Gott–Hiscock spacetime (m = 0) can represent
the zero-thickness limit of a family of static cylinders with bounded tension and
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energy per unit length. Moreover, if the weak energy condition T tt ≥ 0 is imposed
on the material composing the cylinder, the boundary radius R0 cannot be smaller
than a minimum value Rmin = [a0b−1(1 − m)2]1/m2

. This leads to a non-trivial
lower bound on the circumference of the interior solution for every member of the
family of Levi-Cività metrics (7.4) except those with m = 0 and a0b−1 < 1.

In the case m = 0, the equations for the energy per unit length and the
tension read:

〈T tt 〉 = µ− 1
4

∫ r0

0
eω−ψψ ′2 dr and 〈T zz 〉 = µ− 1

4

∫ r0

0
eω−ψχ ′2 dr

(7.68)
where µ = 1

4 (1 − a0b−1). Thus, the simple relationship 〈T tt 〉 = 〈T zz 〉 = µ,
which is characteristic of Linet’s solutions [Lin85], holds only if both χ ′ and ψ ′
are everywhere zero. This, in turn, is true only if T tt = T zz and T rr = T φφ = 0
everywhere (see (7.2)–(7.5)), a result first discovered by Werner Israel [Isr77].
Otherwise, µ is strictly greater than 〈T tt 〉 and 〈T zz 〉. The deviation of µ from the
energy per unit length in the case of the Nielsen–Olesen vortex string has been
calculated as a function of the gauge-to-scalar mass ratio for the constituent fields
by David Garfinkle and Pablo Laguna [GL89].

To summarize, the straight-stringmetric (7.28) is the only possible spacetime
exterior to a family of static cylinders with bounded energy per unit length in
the limit of zero thickness. This result goes some way towards establishing that
m = 0 is the only physically viable choice for the metric outside a bare straight
cosmic string, but does not meet objection (3) completely. A realistic cosmic
string would have a small but non-zero thickness, and there is no a priori reason
why the exterior metric should not have m �= 0, provided that the value of |m| is
small enough to avoid a negative energy per unit proper length.

However, the fully time-dependent Einstein equations for the metric exterior
to a non-static (but non-rotating) fluid cylinder have been examined in some detail
in [And99a]. There it is shown that a transition from the straight-string metric
(7.28) to another member of the Levi-Cività class (7.20) requires the injection of
an infinite amount of Thorne’s C-energy or, equivalently, an infinite amount of
physical energy per unit proper length. Thus static exterior solutions with m = 0
and m �= 0 may be close together in parameter space, but a transition from m = 0
tom �= 0 is energetically forbidden. This does not in itself imply that a given static
interior solution with m = 0 is guaranteed to be stable, but it does mean that any
instability will not have the drastic consequences for the large-scale geometry of
the solution postulated by Geroch and Traschen.

7.5 A distributional description of the straight-string metric

The singularity along the axial plane of the straight-string metric (7.28) has been
the cause of much controversy since the early 1980s. In Newtonian gravity there is
a linear relationship between source and field, embodied in the Poisson equation,
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and it is relatively easy to accommodate distributionalmatter sources concentrated
on points, lines or thin shells. Under what circumstances singular solutions of the
Einstein equations can be described analogously in terms of distributional stress–
energy sources remains an open question.

It has long been known that stress–energy sources concentrated on
hypersurfaces (that is, thin shells, reversing layers and shock waves) in
general relativity can be treated as conventional distributions [Isr66] but sources
concentrated on lower-dimensional surfaces are more problematic. In 1968
Yvonne Choquet-Bruhat [CB68] claimed that ‘except perhaps in very special
cases of spacetime symmetry’ the Ricci tensor on a given spacetimewill not admit
a satisfactory distributional interpretation unless the Christoffel components
�
µ
κλ and their pairwise products are defined almost everywhere and are locally

integrable. Stephen Hawking and George Ellis made a similar statement in The
Large-Scale Structure of Space-Time [HE73], writing that ‘[the field equations]
can be defined in a distributional sense if the metric coordinate components gab
and gab are continuous and have locally square integrable first derivatives with
respect to the local co-ordinates’.

The Geroch–Traschen definition of metric regularity, given in section 7.3,
differs only in detail from the prescriptions offered by Choquet-Bruhat and
Hawking and Ellis. All three were motivated by the concern that the Riemann
tensor can have a distributional interpretation only if all the terms on the right-
hand side of (7.45) are separately distributions. However, Geroch and Traschen
went further in demonstrating that the singularities in a regular metric must be
concentrated on a submanifold with co-dimension no greater than 1. Thus the
straight-string metric (7.28) cannot be regular, no matter what local coordinates
are used. This is clear in the case of the isotropic line element (7.32), as the
metric tensor is not locally bounded but other choices of coordinates can obscure
the result. For example, if the local coordinates are x = r cosφ and y = r sin φ
then the metric components gxx , gxy and gyy and the corresponding inverse
components are all locally bounded, but their derivatives diverge as r−1 and so
(just) fail to be square integrable [GT87].

Before proceeding, it is useful to first define a distributional tensor field. A
distribution on a manifoldM is a continuous linear functional acting on the set of
smooth functions with compact support on M. If (M, g) is a smooth spacetime
then Geroch and Traschen define the distributional action of a smooth tensor field
t to be

t̂β...δα...γ (ψ
α...γ

β...δ) =
∫
M
tβ...δα...γ ψ

α...γ
β...δ d4x (7.69)

for all smooth tensor densities ψ of weight −1 with compact support on M and
the appropriate index structure.

For reasons of simplicity I will here choose to regard the corresponding
density

√
gt as a distribution rather than the tensor field t , and take the action
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to be √̂
gt
β...δ

α...γ (ψ) =
∫
M

√
gtβ...δα...γ ψ d4x (7.70)

where ψ is any smooth scalar field with compact support. The differences
between (7.70) and (7.69) are for present purposes very minor.

In the case of a singular spacetime (M, g), it is necessary first of all to replace
Mwith an extendedmanifold M̃ constructed by adding a set of boundary points to
M. Exactly how the boundary points are generated will depend on the spacetime
but in the case of the isotropic line element (7.32) the natural choice is to take
the boundary ρ = 0 to be a two-dimensional surface with the topology of �2 . In
local coordinates xµ on M̃ a smoothing operator is any smooth function h with
compact support on M̃ normalized so that∫

M̃
h d4x = 1. (7.71)

Then for any ε > 0 the function hε(xλ) = ε−4h(xλ/ε) is also a smoothing
operator.

The singular metric tensor gµν , if locally integrable on M, can now be used
to generate a family of smooth metrics on M̃ by defining

gεµν(x) =
∫
M̃
gµν(y)hε(y − x) d4y. (7.72)

(Here, the spacetime indices on x and y have been suppressed.) Note that
gεµν → gµν pointwise on M as ε → 0. Also, because gεµν is smooth and (in the
case considered here) invertible if h ≥ 0 everywhere, the corresponding Riemann
tensor Rεκλµν and all its products and contractions with gεµν are defined at all

points on M̃.
In particular, if T (ε)µν is the stress–energy tensor induced by gεµν then it is

possible to associate with the original metric gµν a distributional stress–energy

density�
√
gTµν on M̃ if, for every test function ψ ,

lim
ε→0

�√
gεT (ε)µν (ψ) =�√gTµν (ψ) (7.73)

independently of the choice of smoothing operator h.
Now, in the case of the isotropic form (7.32) of the straight-string metric the

metric tensor is gµν = diag(1,−ρ−8µ,−ρ−8µ,−1), where ρ = (x2 + y2)1/2.
So irrespective of the choice of h the smoothed metric tensor has the general
structure gεµν = diag(1,−Fε,−Fε,−1), where from (7.72) Fε = ε−8µ f ( x

ε
,
y
ε
)

for some smooth function f , and, in particular, Fε ≈ ρ−8µ for large ρ.
The corresponding smoothed Riemann tensor has only one non-zero component
(modulo symmetries):

Rεxyxy = − 1
2 F

ε[(ln Fε),xx +(ln Fε),yy ] (7.74)
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and the smoothed stress–energy density has only two non-zero components:√
gεT (ε)tt = √

gεT (ε)zz = − 1

16π
[(ln Fε),xx +(ln Fε),yy ]. (7.75)

If ψ is any smooth function with compact support in �4 then, on any surface
of constant t and z, the mean-value theorem implies that∫

�2

√
gεT (ε)tt ψ dx dy = ψ(t, 0, 0, z)

∫
K

√
gεT (ε)tt dx dy

+
∫
K

√
gεT (ε)tt ρψ,ρ (t, ξx, ξy, z) dx dy (7.76)

where the parameter ξ is a (position-dependent) number in [0, 1], and K is any
disc centred on the origin in �2 with suppψ ⊂ K . In view of (7.75) and the fact
that limε→0 Fε = ρ−8µ is smooth on ∂K ,

lim
ε→0

∫
K

√
gεT (ε)tt dx dy = − 1

16π
lim
ε→0

∮
∂K
∇(ln Fε) · dx = µ. (7.77)

Also,
√
gεT (ε)tt = ε−2H ( x

ε
,
y
ε
) for some smooth function H , and

√
gεT (ε)tt

falls off at least as rapidly as ρ−2 for large ρ. Let C be the supremum of

|ρ2H (x, y)| on �2 . Then |√gεT (ε)tt ρ| = |ρ2
ε2
H ( x

ε
,
y
ε
)ρ−1| ≤ Cρ−1 for all

ε, and since ρ−1 is locally integrable on �2 and limε→0
√
gεT (ε)tt = 0 almost

everywhere,

lim
ε→0

∫
K

√
gεT (ε)tt ρψ,ρ (t, ξx, ξy, z) dx dy = 0 (7.78)

by virtue of the dominated convergence theorem.
The two results (7.77) and (7.78) are independent of the choice of smoothing

operator h, and so

�√gT tt (ψ) =�√gT zz (ψ) = µ
∫
�2
ψ(t, 0, 0, z) dt dz (7.79)

while all other components of the stress–energy density map to the zero
distribution. In terms of the two-dimensional Dirac distribution δ(2) this means
that

�√gTµν = µ δ(2)(x, y)(δµt δtν + δµz δzν). (7.80)

It should be noted that (7.80) holds not only in the isotropic coordinate system
(t, x, y, z) but can be shown by similar methods to hold in any coordinate system
of the form (t, x, y, z), where x = rk cosφ and y = rk sinφ for some k > 0.
This includes, in particular, the k = 1 coordinate system preferred by Geroch and
Traschen.
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The distributional identity (7.80) has been derived with differing degrees
of rigour by many authors over the years, including Sokolov and Starobinskii
[SS77], Taub [Tau80], Linet [Lin85] and, most recently, by Clarke et al [CVW96].
The zero-thickness straight-string metric (7.28) is the clearest example of a non-
regular spacetime admitting a well-defined distributional stress–energy tensor. It
is often countered that the high degree of symmetry present in the metric qualifies
it as one of Choquet-Bruhat’s ‘very special cases’, with little predictive value for
the structure of more general string-generated spacetimes. While it is true that this
derivation of (7.80) relies heavily on the simple form of the isotropic line element
(7.32), it will be seen in section 10.4.4 that a distributional stress–energy density,
in the sense defined here, can be associated with a wide class of string metrics.

7.6 The self-force on a massive particle near a straight string

Although the conical spacetime described by (7.28) is everywhere locally flat
and thus free of tidal forces, it turns out that a particle of mass m at rest in the
spacetime does experience a gravitational self-force of order m2 directed towards
the singularity at r = 0. At a heuristic level, this self-force can be attributed
to the ‘refraction’ about the conical singularity of the gravitational lines of force
centred on the particle, which thus mimic the presence of an image particle lying
directly behind the string. The phenomenon is not peculiar to the gravitational
force alone. A charged particle at rest in the spacetime experiences a repulsive
self-force [Lin86], while fluctuations of the quantum vacuum near a straight string
have a non-zero stress–energy tensor and can induce a range of interesting effects
[HK86, Dow87, DS88].

In the weak-field approximation, the gravitational field due to a particle
of mass m at rest at a distance a from a straight string is most conveniently
calculated by transforming to the Minkowski form (7.29) of the metric and fixing
the coordinates so that the particle lies at z = 0 and θ = θ0 ≡ π(1 − 4µ). Note
here that θ ranges over [0, 2θ0). The weak-field gravitational potential �(r, z, θ)
then satisfies the Poisson equation

!2� = −4πGma−1δ(r − a)δ(z)δ(θ − θ0) (7.81)

subject to the conical boundary conditions

�(z, r, 2θ0) = �(z, r, 0) and
∂

∂θ
�(z, r, 2θ0) = ∂

∂θ
�(z, r, 0) = 0.

(7.82)
The most general harmonic expansion consistent with the boundary

conditions and the obvious reflection symmetry about z = 0 is:

�(z, r, θ) =
∞∑

n=−∞
cos(nπθ/θ0)

∫ ∞

0
�nk(r) cos(kz) dk (7.83)
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where�(−n)k = �nk for all n. In view of (7.81),�nk satisfies the modified Bessel
equation

r2�′′nk + r�′nk − (k2r2 + n2π2/θ20 )�nk = 0 (7.84)

for r �= a, and so

�nk(r) =
{
Ank I|n|π/θ0(kr) for r < a
BnkK|n|π/θ0(kr) for r > a (7.85)

where Iν and Kν are modified Bessel functions of the first and second kind,
respectively, and Ank and Bnk are constants to be determined.

Requiring�nk to be continuous at r = a implies that

Ank = Cnk K|n|π/θ0(ka) and Bnk = Cnk I|n|π/θ0(ka) (7.86)

for some constant Cnk , which, in turn, indicates that the jump in �′nk at r = a is
�′nk = kCnk[K ′|n|π/θ0(ka)I|n|π/θ0(ka)− I ′|n|π/θ0(ka)K|n|π/θ0(ka)] = −Cnk/a.

(7.87)
Given the identities

δ(z) = 1

π

∫ ∞

0
cos kz dk and δ(θ − θ0) = 1

2θ0

∞∑
n=−∞

(−1)n cos(nπθ/θ0)
(7.88)

it follows that (7.81) is satisfied completely if Cnk = 2(−1)nGm/θ0.
Hence, the potential� is formally given by

�(z, r, θ) = 2Gm

θ0

∞∑
n=−∞

(−1)n cos(nπθ/θ0)

×
{ ∫∞

0 K|n|π/θ0(ka)I|n|π/θ0(kr) cos(kz) dk for r < a∫∞
0 I|n|π/θ0(ka)K|n|π/θ0(kr) cos(kz) dk for r > a.

(7.89)

Furthermore, in view of the identity∫ ∞

0
Kν(ka) Iν(kr) cos(kz) dk = 1

2(2ar)1/2

∫ ∞

η

e−νu

(cosh u − cosh η)1/2
du

(7.90)
where cosh η = (a2 + r2 + z2)/(2ar), this expression for � reduces to:

�(z, r, θ) = Gm

(2ar)1/2θ0

∫ ∞

η

∑∞
n=−∞(−1)n cos(nπθ/θ0)e−|n|πu/θ0

(cosh u − cosh η)1/2
du. (7.91)

Finally, given that

∞∑
n=−∞

w|n| cos(nx) = 1−w2

1− 2w cos x +w2 (7.92)
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it follows that

�(r, z, θ) = Gm

(2ar)1/2θ0

×
∫ ∞

η

sinh(πu/θ0)

[cosh(πu/θ0)+ cos(πθ/θ0)](cosh u − cosh η)1/2
du.

(7.93)

The gradient of� gives the gravitational acceleration induced by the particle
at any point in the spacetime. In particular, since

� ≈ Gmπ/θ0
(a2 + z2)1/2 −

2Gm/θ0
(a2 + z2)1/2+π/θ0 (ar)

π/θ0

× cos(πθ/θ0)
∫ 1

0
xπ/θ0

dx

(x − x2)1/2 + O(r
2+π/θ0) (7.94)

for small r , and π/θ0 = (1 − 4µ)−1 > 1, the string itself experiences a
gravitational acceleration

a = − Gmπ/θ0
(a2 + z2)3/2 zẑ (7.95)

which has no radial component whatsoever. This surprising result is due to
the fact, mentioned in section 5.3, that an initially straight string placed in the
gravitational field of a particle of massm will be distorted by a periastron bending
angle of the order of m2. Thus a radial component of acceleration is absent at the
level of the weak-field approximation, which retains only terms linear in m.

To generate a meaningful expression for the self-force on the particle, it is
necessary to first renormalize� by subtracting from

�(a, 0, θ0) = Gm√
2θ0a

∫ ∞

0

sinh(πu/θ0)

[cosh(πu/θ0)− 1](cosh u − 1)1/2
du (7.96)

the value that� would take at the locus of the particle in the absence of the string,
which is found by replacing θ0 with π in (7.93) and taking the limit as θ → π .
The resulting renormalized potential is

�R = Gm√
2πa

∫ ∞

0

[
sinh(πu/θ0)π/θ0
cosh(πu/θ0)− 1

− sinh u

cosh u − 1

]
du

(cosh u − 1)1/2
. (7.97)

The self-force on the particle is, therefore, F = 1
2m

∂
∂a�R r̂, where

∂

∂a
�R = − Gm

2πa2

∫ ∞

0

[
sinh(πu/θ0)π/θ0
cosh(πu/θ0)− 1

− sinh u

cosh u − 1

]
du

sinh(u/2)
. (7.98)

This formula for the gravitational self-force was first derived by Dmitri
Gal’tsov in 1990 [Gal90], although the electrostatic case, which is formally
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Figure 7.3. The scaling factor f as a function of the string’s mass per unit length µ.

identical, was analysed by Bernard Linet four years earlier [Lin86]. Following
Gal’tsov, it is instructive to write the self-force in the form

F = −Gm
2µ

a2
f (µ)r̂ (7.99)

where

f (µ) = 1

4πµ

∫ ∞

0

[
sinh(πu/θ0)π/θ0
cosh(πu/θ0)− 1

− sinh u

cosh u − 1

]
du

sinh(u/2)
. (7.100)

In particular

lim
µ→0

f (µ) = 1

π

∫ ∞

0

sinh u − u
cosh u − 1

du

sinh(u/2)
= π/4 (7.101)

while f ( 18 ) = 2. A plot of f (µ) against log10 µ is shown in figure 7.3. It should
be noted that the parameter b used by Gal’tsov in [Gal90] is just 1 − 4µ and his
function β(b) is f (µ)/2. For some reason, the values for β quoted by Gal’tsov
are all too small by between 10 and 15%. Incidentally, Linet [Lin86] estimated
the value of limµ→0 f (µ) as 2.5/π , which is only 1% too large. It seems that the
exact value of π/4 was first given by Vachaspati et al [VHR90].

The fact that the self-force F is central has given rise to the common
misapprehension that bound circular orbits exist for massive particles in the
neighbourhood of a straight cosmic string. It is true that if (7.99) were to continue
to hold for a moving particle, then circular orbits would exist with the standard
Newtonian dependence of the orbital speed

vcirc =
√
Gmµ f (µ)

a
. (7.102)
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Thus, for example, a body with m = 7 × 1022 kg (roughly equal to the mass of
the Moon) could orbit a GUT string with µ = 10−6 at a distance a = 4× 108 m
(the mean Earth–Moon distance) if vcirc ≈ 0.1 m s−1, which is about 1/10 000th
of the Moon’s actual orbital speed around the Earth.

However, the assumption that the self-force F remains central is valid only in
the slow-motion limit. A massive particle orbiting a straight string at relativistic
speeds would generate a weak-field gravitational potential substantially different
from (7.93), with non-radial corrections to the self-force F which a rough analysis
suggests would be of order ω3 lnω, where ω = vcirc/c. Whether closed bound
orbits are still possible in this situation remains an open question.

7.7 The straight-string metric in ‘asymptotically-flat’ form

The metric (7.28) due to an infinite straight cosmic string is clearly not
asymptotically flat, as the defect on the world sheet extends to spacelike infinity
along the axis r = 0. (For future reference, a spacetime which at spacelike
infinity has the same global geometry as (7.28) does at spacelike infinity will be
said to be asymptotically flat∗.) However, Jiri Bičák has constructed a coordinate
transformation, singular on the world sheet, which reduces the line element to
that of an asymptotically-flat spacetime with axial symmetry [Bi90]. The result
may be little more than a mathematical curiosity, but it does provide an alternative
insight into the geometry of the bare straight-string metric.

The line element describing a general asymptotically-flat vacuum spacetime
with axial symmetry can be written in the form:

ds2 = guu du2 + 2guρ du dρ + 2guθ du dθ − ρ2(e2α dθ2 + e−2α sin2 θ dφ2)
(7.103)

where u is a retarded time coordinate, θ and φ are polar angles along outgoing
null geodesics, and ρ is the luminosity distance [BvdBM62].

The constraint of asymptotic flatness requires that the various metric
functions appearing in (7.103) fall off appropriately for large values of ρ and,
in particular, that

guu = 1− 2Mρ−1 + O(ρ−2) (7.104)

and
α = cρ−1 + O(ρ−2). (7.105)

Here, the functions M(u, θ) and c(u, θ) are the ‘mass’ and ‘news function’ of the
metric, respectively. The asymptotic expansions for the other two metric functions
can be found by imposing the vacuum Einstein equations, which according to
[BvdBM62] give

guρ = 1− 1
2c

2ρ−2 + O(ρ−3) (7.106)

and
guθ = c,θ +2c cot θ + O(ρ−1). (7.107)
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The straight-string metric (7.28) can be rewritten in the axisymmetric form
(7.103) by first replacing (t, r, z) with an interim set of coordinates (U, R, θ)
defined via the equations

r = R sin θ z = R cos θ and t = U + R. (7.108)

The line element then becomes:

ds2 = dU2 + 2dU dR − R2 dθ2 − (1− 4µ)2R2 sin2 θ dφ2. (7.109)

Note that, because of the presence of the multiplier 1− 4µ, this expression is still
asymptotically flat∗ rather than strictly asymptotically flat.

To reduce (7.109) to the asymptotically-flat form (7.103) requires a rather
complicated transformation of coordinates which is only known in its asymptotic
form. The general structure of the transformation is:

U = uw(η, θ) R = ρx(η, θ) and θ = y(η, θ) (7.110)

where η = u/ρ.
If the constraints gρρ = gρθ = 0 are imposed, the expressions for guu , guρ

and guθ quickly reduce to

guu = w2 + 2ηww,η +2wx,η+2xw,η (7.111)

guρ = − η2ww,η +wx − ηwx,η−ηxw,η (7.112)

and
guθ = ρ(ηww,θ +wx,θ +xw,θ ) (7.113)

or, in terms of the potential� ≡ w2 + 2η−1wx ,

guu = (η�),η guρ = − 1
2η

2�,η and guθ = 1
2u�,θ . (7.114)

The functions M(u, θ) and c(u, θ) can now be calculated by assuming an
asymptotic expansion for � of the form

� = A(θ)η−1 + B(θ)+ C(θ)η + O(η2) (7.115)

and comparing the expansions of (7.114) with (7.104)–(7.107). The result is

A(θ) = 2 B(θ) = 1 and C(θ) = −M/u = c2/u2 (7.116)

where
c,θ +2c cot θ = 1

2 B,θ u ≡ 0. (7.117)

Hence,
c(u, θ) = Ku cosec2 θ (7.118)

and
M(u, θ) = −K 2u cosec4 θ (7.119)
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where K is a constant of integration.
A particular value for K is fixed by the requirement that

(1− 4µ)2x2 sin2 y = sin2 θ + O(η) (7.120)

as then gφφ ≈ −ρ2 for large values of ρ, and the transformed line element is
strictly asymptotically flat. However, in order to solve for K it is necessary to
concurrently solve the constraint equations gρρ = 0 and gρθ = 0 to leading order
in η.

Explicitly, the constraint equations read:

x2(y,η )
2 + 2xw,η−2ηw,η x,η−η2(w,η )2 = 0 (7.121)

and

xw,θ +x2y,η y,θ −ηx,η w,θ −ηw,η x,θ −η2w,η w,θ = 0 (7.122)

respectively. If w, x and y are expanded to linear order in η then the solution
which simultaneously satisfies (7.120), (7.121) and (7.122) has the limiting form

w = ψ ′ − (ψ
′′)2

2ψ ′
η + O(η2) (7.123)

x = (ψ ′)−1 + 1

2ψ ′
{(ψ ′′/ψ ′)2 − (ψ ′)2 + 1}η + O(η2) (7.124)

and
y = ψ − ψ ′′η + O(η2) (7.125)

where
ψ(θ) = 2 tan−1(| tan θ/2|1−4µ). (7.126)

At this point, the simplest way to calculate K is to substitute these formulae
into the equation for gθθ , which reads:

x2(y,θ )
2 − 2ηw,θ x,θ −η2(w,θ )2 ≈ e2cρ

−1 = 1+ 2ηK cosec2 θ + O(η2).
(7.127)

Then

K = sin2 θ

2(ψ ′)2
[(ψ ′)2 + 3(ψ ′′)2 − (ψ ′)4 − 2ψ ′ψ ′′′] ≡ −4µ(1− 2µ). (7.128)

and the news and mass functions for the bare straight-string metric are

c(u, θ) = −4µ(1− 2µ)u cosec2 θ (7.129)

and
M(u, θ) = −16µ2(1− 2µ)2u cosec4 θ. (7.130)
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Note that, even to leading order in η, the coordinate transformation from
(U, r , θ) to (u, ρ, θ) is singular on the axis, as ψ ∼ 2(θ/2)1−4µ for small θ , and
so the Jacobian determinant of the transformation is

|J (U, r, θ; u, ρ, θ)| = ψ ′ + (ψ ′′)2/ψ ′ + O(η)
≈ 24µ16µ2(1− 4µ)θ−2−4µ. (7.131)

This is, of course, unavoidable, given that the mass and news functions (7.118)
and (7.119) are both singular on the axis.



Chapter 8

Multiple straight strings and closed timelike
curves

8.1 Straight strings and 2 + 1 gravity

Because of its invariance under boosts in the z-direction, the metric (7.28) due
to an infinite straight string in vacuum is closely connected with the gravitational
field of an isolated point mass in 2 + 1 dimensions. In fact, if the z coordinate is
suppressed, the resulting line element

ds2 = dt2 − dr2 − (1− 4µ)2r2 dφ2 (8.1)

completely characterizes a (spinless) point source of mass µ in 2 + 1 gravity
[Sta63, DJtH84, GA84].

This formal correspondencemotivates yet another explanation of the locally-
flat nature of the string metric (7.28). In 2 + 1 dimensions both the Ricci tensor
and the Riemann tensor have only six algebraically-independent components
(in contrast to the situation in 3 + 1 gravity, where the Ricci tensor has
10 algebraically-independent components and the Riemann tensor 20). Thus,
whenever the Ricci tensor vanishes the Riemann tensor automatically vanishes
as well. In other words, spacetime is locally flat in any vacuum region in 2 + 1
dimensions. This property is inherited also by the string metric (7.28).

The analogy between relativistic strings and point masses in 2+1 dimensions
is not an exact one, of course. Strings have an extra dimensional degree of
freedom, can bend and can radiate and interact with gravitational waves (which do
not exist in 2+1 gravity). The full theory of the gravitational field of a relativistic
string is, therefore, much richer than an analysis of 2+ 1 gravity would suggest.
However, 2 + 1 gravity does provide a full description of the gravitational field
due to any number of parallel straight strings (whether static or moving) in the
absence of gravitational radiation. In particular, the metric due to such a system
of multiple strings is locally flat everywhere (except on the strings themselves).

271
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The simplest extension of the single-string metric (7.28) is the metric due
to N parallel static strings, which was first derived by Patricio Letelier in 1987
[Let87]. The metric is most easily understood as a modification of the isotropic
line element (7.32)

ds2 = dt2 − dz2 − ρ−8µ(dx2 + dy2) (8.2)

which describes a single string passing through the origin in the x–y plane. If
there are N strings of mass per unit length µ, each located at x = xk , y = yk
(where the index k runs from 1 to N), then the corresponding line element is:

ds2 = dt2 − dz2 −
( N∏
k=1
ρ
−8µ
k

)
(dx2 + dy2) (8.3)

where
ρk = [(x − xk)2 + (y − yk)2]1/2. (8.4)

To see that (8.3) does indeed satisfy the vacuum Einstein equations
everywhere except at the locations of the N strings, note that a naive calculation
of the Riemann tensor gives

Rxyxy = 4µ

( N∏
k=1
ρ
−8µ
k

) N∑
j=1
∇2(ln ρ j )

= 8πµ

( N∏
k=1
ρ
−8µ
k

) N∑
j=1
δ(2)(x − x j , y − y j ) (8.5)

and all other components zero. Since
∏N
k=1 ρ

−8µ
k = √

g, a more rigorous
treatment along the lines of section 7.5 indicates that the stress–energy density
has the non-zero distributional components

�

√
gT tt =�

√
gT zz = µ

N∑
j=1
δ(2)(x − x j , y − y j ) (8.6)

as required.
The physical interpretation of the multiple string metric (8.3) is

straightforward. Each string marks the location of a conical singularity with
angle deficit θ = 8πµ; elsewhere the metric is locally flat. At large distances
from the string system,

∏N
k=1 ρ

−8µ
k ∼ ρ−8Nµ and so the combined effect of the

strings is similar to that of a single string with mass per unit length Nµ. The
spacetime is open (that is, the total angle deficit is less than 2π) if Nµ < 1/4.
Generalization to the case of N parallel static strings with differing masses per
unit length µ1, . . . , µN is accomplished by simply replacing ρ−8µk with ρ−8µkk in
the product term in the line element (8.3).
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8.2 Boosts and rotations of systems of straight strings

Spacetimes containing straight strings which are either boosted or rotated relative
to one another can be generated by making use of a construction due originally
to J Richard Gott [Got91]. Since the multiple string metric (8.3) is locally flat,
it contains three-dimensional hypersurfaces—generated by the t- and z-translates
of any geodesic in the x–y plane which does not intersect one of the strings—with
zero intrinsic and extrinsic curvature. These hypersurfaces are simply copies of
the three-dimensional Minkowski spacetime � 3 , and so there exists on them a
three-parameter isometry group of boosts and rotations. It is therefore possible
to split the metric (8.3) along one of the hypersurfaces and then boost and/or
rotate one of the fragments relative to the other before rejoining them. Since
the junction surface has zero extrinsic and extrinsic curvature, the relativistic
matching conditions are automatically satisfied, and the resulting metric is a
locally-flat solution to the Einstein equations.

This procedure can, in principle, be repeated indefinitely to produce ever
more complicated systems of straight strings in relative motion, but it is typically
harder after each iteration to find a three-dimensional flat hypersurfacewhich does
not intersect one of the strings. If only boosts orthogonal to the z-axis are used,
it is always possible to set all N strings independently into motion. The resulting
metric (with the z coordinate suppressed) then describes the motion of N point
masses in 2+ 1 gravity.

However, despite claims to the contrary (see section 8.5) no solution has yet
been found describing three or more non-parallel strings in relative motion, apart
from the simple case where the static N-string spacetime (8.3) is split along a
single flat three-dimensional hypersurface and one of the fragments is boosted
and rotated relative to the other, leaving M parallel, co-moving strings in the first
fragment and N − M parallel, co-moving strings in the other. Indeed, it remains
an open question whether three or more mutually non-parallel straight strings can
be set into motion without radiating gravitational energy.

Gal’tsov et al [GGL93] have examined the gravitational interaction of N
straight strings, with arbitrary velocities and orientations, in the weak-field
approximation and have reported that if N = 2 the flux of emitted gravitational
radiation vanishes exactly at second, post-linear order (as would be expected).
But no such cancellation is evident in the general case of three or more strings.

Gal’tsov et al have also offered a simple physical argument to explain why a
system of two non-parallel strings (or two non-parallel groups of parallel strings)
will not radiate gravitational energy. Consider two non-parallel strings S1 and S2
in relative motion. In the rest frame of S1, with S1 aligned along the z-axis and
the 3-velocity of S2 parallel to the y–z plane, the world sheets of the two strings
can be represented parametrically in the form

Xµ1 (τ, σ ) = [τ, 0, 0, σ ] (8.7)
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and

Xµ2 (τ, σ ) = [τ, b, σγ−1 sin θ + τv cos θ, σγ−1 cos θ − τv sin θ ] (8.8)

where v is the speed of S2, γ = (1 − v2)−1/2 the corresponding Lorentz factor,
θ the angle between S2 and the z-axis, and b the normal distance between the
strings.

As viewed from a second reference frame moving along the z-axis with
speed v̄, the equation for S1 becomes

X̄µ1 = [γ̄ (τ − v̄σ ), 0, 0, γ̄ (σ − v̄τ )] ≡ [τ̄ , 0, 0, σ̄ ] (8.9)

where γ̄ = (1− v̄2)−1/2, while the equation for S2 is
X̄µ2 = [κ1τ − v̄λσ, b, σγ−1 sin θ + τv cos θ, λσ − κ2τ ]

= [τ̄ , b,−1(σ̄ γ−1κ3 + τ̄ κ4 cos θ),−1(σ̄ γ−1 cos θ − τ̄ κ3κ4)] (8.10)

with κ1 = γ̄ (1 + v̄v sin θ), κ2 = γ̄ (v̄ + v sin θ), κ3 = γ̄ (v̄v + sin θ), κ4 =
γ̄ (v + v̄ sin θ), λ = γ̄ γ−1 cos θ and  = κ21 − v̄2λ2. In the case of S2, the new
aligned standard-gauge coordinates are τ̄ = κ1τ − v̄λσ and σ̄ = κ1σ − v̄λτ .

As can be seen, the trajectory of S1 is unaffected by the boost, whereas if
|v| > sin θ the spatial projections of S2 will appear to be parallel to the z-axis to
an observer with boost velocity v̄ = − sin θ/v, as then κ3 = 0 and

X̄µ2 = [τ̄ , b, τ̄ (v2 − sin2 θ)1/2 sec θ, σ̄ γ−1 sec θ ] (8.11)

so that ∂ X̄µ2 /∂σ̄ has a z-component only. However, if |v| < sin θ then to an
observer with boost velocity v̄ = −v/ sin θ the string S2 will appear to be static,
as κ4 = 0,

X̄µ2 = [τ̄ , b, σ̄ γ (sin2 θ − v2)1/2, σ̄ γ cos θ ] (8.12)

and ∂ X̄µ2 /∂τ̄ has a t-component only.
Thus, except in the marginal case |v| = sin θ , it is always possible to find

an inertial frame in which the two strings are parallel (reducing the problem to
one of point particles in 2+ 1 gravity) or are both static. In neither case will the
strings radiate gravitational energy. (And if |v| = sin θ it is still possible to find a
null reference frame in which the two strings are both parallel and static.)

8.3 The Gott construction

Returning now to Gott’s construction itself, the simplest examples of boosted
or rotated multiple string metrics can be generated by applying the construction
to a spacetime containing only two straight strings. If the strings are located at
(x, y) = (0, a) and (x, y) = (0,−a) respectively, then the line element (8.3)
becomes:

ds2 = dt2 − dz2 − [x2 + (y − a)2]−4µ[x2 + (y + a)2]−4µ(dx2 + dy2). (8.13)
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The hypersurface y = 0 is flat (both intrinsically and extrinsically), and has
Minkowski coordinates t , z and X , where

X = �(x) ≡
∫ x

0
(u2 + a2)−4µ du. (8.14)

If the spacelike coordinates z and X are replaced by a second pair of
coordinates z and X generated by rotating through an angle α/2 if y > 0 and
an angle −α/2 if y < 0, the resulting metric has the form

ds2 = dt2 − [cos2(α/2)+ F sin2(α/2)] dz2 − (F − 1) sinα sgn(y) dX dz

− [F cos2(α/2)+ sin2(α/2)] dX2 − (x2 + a2)−8µF dy2 (8.15)

where

F(x, y) = (x2 + a2)8µ[x2 + (y − a)2]−4µ[x2 + (y + a)2]−4µ (8.16)

and
x = �−1[X cos(α/2)+ sgn(y)z sin(α/2)]. (8.17)

However, if instead of a rotation in the X–z plane the hypersurface y = 0 is
mapped onto itself through a boost in the X–t plane, the metric becomes

ds2 = [cosh2(β/2)− F sinh2(β/2)] dt2 − (F − 1) sinhβ sgn(y) dX dt

− [F cosh2(β/2)− sinh2(β/2)] dX2 − (x2 + a2)−8µF dy2 − dz2

(8.18)

where F(x, y) is as defined in equation (8.16) but now

x = �−1[X cosh(β/2)+ sgn(y)t sinh(β/2)]. (8.19)

The constant β is the rapidity of the boost, so that the relative speed of the two
strings is v = tanhβ.

One of the most surprising features of the boosted two-string metric (8.18)
is that it can support closed timelike curves (CTCs). The crucial factor is the
behaviour of the function F . Its value is 1 on the hypersurface y = 0 and it
diverges in the neighbourhood of the two strings but for values of |y| � a it can
be substantially smaller than 1. The coordinate t is timelike near the hypersurface
y = 0, but its orientation can be reversed in any region where F < tanh2(β/2),
as X is then timelike.

It is, therefore, possible to construct future-directed timelike curves through
the region y > 0 which start at some point t = 0, X < 0 on the hypersurface
y = 0 and end at a second point t = 0, X > 0 on the same hypersurface.
(To accomplish this, the orientation of t needs to be reversed twice in the region
F < tanh2(β/2).) Such a curve can be made to close (while remaining timelike)
by continuing it along its mirror image in the region y < 0.
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Figure 8.1. Construction of a closed timelike curve in a boosted 2-string spacetime.

It turns out that the most efficient way of constructing CTCs is by making
them piecewise geodesic, and since the geodesic formalism is relatively unwieldy
in isotropic coordinates (see section 7.2) it is more convenient to follow Gott
[Got91] and work with Cartesian coordinates in the rest frame of one of the
strings. In figure 8.1 the locally-flat 2-surface normal to the world sheet of the
string in the fragment y > 0 is shown. As was seen in the previous chapter, it is
a Euclidean plane with a wedge of angular extent 8πµ projecting from the string
removed and the two sides of the excision identified. Let X and Y be Cartesian
coordinates on the surface, with the axis Y = 0 corresponding to the boundary
y = 0. The projections of geodesics are represented by straight lines, and the
normal distance from the junction hypersurface Y = 0 to the string is:

d =
∫ a

0
(a2 − y2)−4µ dy. (8.20)

Consider a general curve confined to the surface z = 0 which starts at the
point (t = −t0, X = −X0) on the hypersurface Y = 0, strikes the left-hand side
of the excision at time t = 0, and then continues back to Y = 0 along its mirror
image about the line X = 0, as shown. Provided that X0 ≥ d cot(4πµ), the
length r of each of the two segments of the curve is bounded below by the normal
distance rmin from (X = −X0,Y = 0) to the wedge:

r ≥ rmin = X0 cos(4πµ)+ d sin(4πµ). (8.21)

If the curve is timelike, it follows that t0 > rmin.
The second string is boosted with respect to the first by a velocity tanhβ

in the X-direction. In the rest frame of the second string, therefore, the point
(t = t0, X = X0) on the hypersurface Y = 0 has the coordinates

t ′ = t0 coshβ − X0 sinhβ (8.22)
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and
X ′ = X0 coshβ − t0 sinhβ. (8.23)

If the parameter t0 is chosen to have the value X0 tanh(β/2) then t ′ = −t0 and
X ′ = X0, and so if the curve is continued along its mirror image through the
hypersurface y = 0 it ultimately closes at the point (t ′ = t0, X ′ = −X0).

The resulting curve is timelike everywhere if

X0 tanh(β/2) > X0 cos(4πµ)+ d sin(4πµ). (8.24)

In particular, if X0 � d it is always possible to construct a CTC enclosing the
two strings provided that

tanh(β/2) > cos(4πµ). (8.25)

Representing the boosted two-string spacetime (8.18) by the Euclidean
projection in figure 8.1 has the added advantage of giving a direct physical
explanation for the existence of CTCs. From the vantage point of an observer
in front of the string, the points where the curve intersects the boundary of the
excised wedge, although identified, appear to be spacelike-separated. By boosting
in the X-direction, the observer can make any particle crossing the wedge appear
to jump backwards in time; and since rmin can always be chosen to be smaller
than X0, it is then possible to refract the particle around the second string into its
own past lightcone. The feasiblity of the technique depends on the magnitude of
the boost and the size of the wedge, as summarized by equation (8.25).

The properties of CTCs in the boosted two-string metric (8.18) have been
examined in greater detail by Amos Ori [Ori91] and Curt Cutler [Cut92]. Ori
has shown that CTCs intersect every constant-time hypersurface in the centre-of-
momentum frame of the two strings, and so the closed timelike curves are in some
sense ‘eternal’ (that is, they do not spontaneously appear in what was previously
a causal spacetime). Using a construction very similar to the one sketched earlier,
Ori has generated CTCs which cross the junction hypersurface Y = 0 at arbitrary
values of the time coordinate tcm in the centre-of-momentum frame of the two
strings (whereas the curves in figure 7.1 all cross Y = 0 at the moment of closest
approach tcm = 0). Again, a necessary and sufficient condition for the existence
of CTCs at each value of tcm is given by (8.25).

As part of a more extensive analysis, Cutler [Cut92] has demonstrated that
there exist closed null curves which are geodesic everywhere except at one point
and encircle the strings an arbitrary number of times, that the boundary of the
region containing the CTCs is a null hypersurface with topology �1 × �2 , and
that the spacetime contains complete spacelike, edgeless, achronal1 hypersurfaces
which do not intersect any of the CTCs (despite the fact that the latter extend to
spacelike infinity and to all values of tcm, as was seen earlier).

1 A set S is said to be achronal if no two points in S can be joined with a timelike curve.
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8.4 String holonomy and closed timelike curves

When Gott first published the boosted two-string spacetime in 1991 [Got91], it
caused a brief flurry of speculation. Current cosmological theories envisaged
an early Universe filled with a network of cosmic strings moving at relativistic
velocities and the possibility (however remote) that such a network might support
closed timelike curves had dramatic ramifications. Although the CTCs appearing
in Gott’s spacetime are pre-existing and eternal, this does not mean that it is not
possible to create CTCs by, for example, causing one cosmic string to break into
two fragments moving apart with a high relative velocity. In fact, the latter process
turns out to be energetically impossible, as the momentum of a single straight
string is always timelike, whereas the total momentum (to be defined shortly) of
any two-string spacetime containing CTCs is spacelike, even though both strings
are moving at subluminal speed. Nonetheless, there remains an endless number
of spacetimes containing three or more moving strings that could conceivably
support CTCs and yet have a timelike total momentum.

The early history of this particular problem is somewhat murky. In a 1984
paper Deser et al [DJtH84] claimed (without proof) that CTCs could not be
created by spinless point particles in 2 + 1 gravity—a contention apparently
contradicted by Gott’s two-string solution. In 1992, Deser et al [DJtH91] and
Carroll et al [CFG92] simultaneously pointed out that the Gott spacetime has
spacelike total momentum and, therefore, cannot be created by simply rearranging
a timelike system of strings. Deser et al also qualified their 1984 claim by
explicitly excluding spacetimes without ‘physically acceptable global structure’, a
proviso which somewhat begs the question of whether it is possible to construct a
spacelike subsystem of strings inside a spacetime with timelike total momentum.
In fact, in a closed universe (which results when the total angle deficit of the
constituent strings is greater than 2π) a spacelike subsystem can be created from
static initial conditions, but Gerard ’t Hooft [tH92] has shown that such a universe
shrinks to zero volume before any CTCs appear. The definitive proof that CTCs
cannot arise in an open string spacetime with timelike total momentumwas given
by Carroll et al in 1994 [CFGO94].

The overall effect of a system of moving parallel cosmic strings is most
compactly characterized by the system’s holonomy—that is to say, the net rotation
experienced by an orthonormal tetrad after it has been parallel transported around
a closed curve enclosing the strings. In what follows, the z-axis will always
be taken to be parallel to the strings. If in some local Lorentz frame L the
components of the tetrad are (̂t, x̂,
widehaty, ẑ) then the unimodular representation of the tetrad is:

S =
(
t̂ + ẑ x̂ − îy
x̂ + îy t̂ − ẑ

)
. (8.26)

After being parallel transported around a single string with angle deficit
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θ = 8πµ at rest relative to the frame L, the tetrad is transformed into

S′ = R†SR (8.27)

where

R(µ) =
(
e−4πµi 0

0 e4πµi

)
. (8.28)

If the string is moving with a speed tanhβ at a longitudinal angle φ in the
x–y plane of L, parallel transport around the string is equivalent to first boosting
the tetrad into the rest frame of the string, rotating by the deficit angle θ , then
boosting back to L. The net effect is to transform S into

S′ = T †ST (8.29)

where
T = BRB−1 (8.30)

with the boost matrix B given by:

B(β, φ) =
(

cosh(β/2) e−iφ sinh(β/2)
eiφ sinh(β/2) cosh(β/2)

)
. (8.31)

For a system of N strings, any path around the entire system can always be
deformed into a sequence of loops around the individual strings. Hence, parallel
transport around the system transforms S into

S′ = T †ST (8.32)

where now
T = TN TN−1 . . . T1 (Tk = Bk Rk B

−1
k ) (8.33)

for any ordering of the strings. Thus, every system of parallel strings has
associated with it a 2× 2 complex unimodular matrix T , its ‘holonomy matrix’.

The set of all possible holonomy matrices forms a group [in fact SU(1, 1)]
with general element

T =
(

eiχ cosh ζ eiψ sinh ζ
e−iψ sinh ζ e−iχ cosh ζ

)
(8.34)

where ζ , χ and ψ are real parameters, with ζ ≥ 0. Each holonomy matrix
has two real eigendirections, one of which is always the z-direction. The other
eigendirection can be either spacelike, timelike or null; the string system is then
said to have spacelike, timelike or null total momentum, respectively.

For the general matrix (8.34), the second eigendirection has tangent vector

(t, x, y, z) = (cosh ζ sinχ, sinh ζ sinψ, sinh ζ cosψ, 0) (8.35)
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and so is timelike if cosh2 ζ cos2 χ < 1 and spacelike if cosh2 ζ cos2 χ > 1.
Since Tr(T ) = 2 cosh ζ cosχ , it is not necessary to find the eigenvectors of the
holonomy matrix to classify the total momentum of the corresponding system of
strings. A system has timelike total momentum if and only if

1
2 |Tr(T )| < 1. (8.36)

A system consisting of only one string (whether static or moving) is always
timelike, as

1
2 Tr(T ) = cos(4πµ). (8.37)

However, a system containing two equal-mass strings moving in opposite
directions with speed tanh(β/2) (that is, the Gott case as viewed from the centre-
of-momentum frame) has

1
2 Tr(T ) = cos2(4πµ)− coshβ sin2(4πµ)

≡ 2 cosh2(β/2)[cos2(4πµ)− tanh2(β/2)] − 1. (8.38)

The value of the expression on the right-hand side lies between 1 and −1
if tanh2(β/2) < cos2(4πµ), and is less than −1 if tanh2(β/2) > cos2(4πµ).
In view of condition (8.25), the Gott spacetime admits closed timelike curves if
and only if the total momentum is spacelike2. In fact, it is easily seen that a
closed curve encircling any system of parallel strings can be timelike only if the
total momentum of the system is spacelike, for if the momentum is timelike it is
always possible to boost into a reference frame in which T is indistinguishable
from the holonomy matrix of a single static string.

Any conservative interaction (for example, decay, merger or scattering) that
takes place in an isolated system of strings will not affect a path enclosing the
system, and so the holonomy matrix T will be conserved. In particular, if T is
initially timelike, no CTCs will ever develop that encircle the entire system. Thus
the only way that a CTC can occur in an isolated system of strings with timelike
total momentum is if it contains a spacelike subsystem. The proof that, in fact,
this never occurs in an open universe, due to Carroll et al [CFGO94], proceeds as
follows.

The three-dimensional parameter space of holonomy matrices (8.34) can be
given a metric structure by the defining the line element

ds2 = det(dT ) = cosh2 ζ dχ2 − dζ 2 − sinh2 ζ dψ2. (8.39)

The parameter space can further be compactified by replacing ζ with

ζ ′ = 2 tan−1(eζ )− π
2

(8.40)

2 The derivation of (8.25) implicitly assumes that the mass per unit length µ < 1/8 so that cos(4πµ)
is positive. If this is not the case, the right-hand side of (8.25) should read as | cos(4πµ)| and the
equivalence of the two conditions is preserved.
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Figure 8.2. The metrized parameter space for an arbitrary system of parallel cosmic
strings.

so that the line element becomes

ds2 = sec2 ζ ′(dχ2 − dζ ′2 − sin2 ζ ′ dψ2) (8.41)

with ζ ′ in the range [0, π/2).
The conformal diagram of (8.41) is illustrated in figure 8.2, with the

coordinate ψ suppressed. The boundary between the timelike and the spacelike
matrices is the line cos2 χ = cos2 ζ ′.

Suppose now that the holonomymatrix (8.34) is modified to include an extra
string with infinitesimal mass per unit length dµ moving at a speed tanhβ with
polar angle φ. The net effect is to pre-multiply (8.34) by BRB−1, where the
matrices R and B are defined by (8.28) and (8.31), with µ replaced by dµ. It is
easily verified that the infinitesimal changes in ζ , χ and ψ are then

dζ = − 4π sinhβ sin(φ + χ + ψ) dµ (8.42)

dχ = 4π[coshβ − sinhβ tanh ζ cos(φ + χ + ψ)] dµ (8.43)

and
dψ = 4π[coshβ − sinhβ coth ζ cos(φ + χ + ψ)] dµ. (8.44)

Hence, dχ > 0 and ds2 = (4π dµ)2 > 0. Consequently, the effect of adding an
extra string to a pre-existing string system is to shift the holonomy matrix along
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some future-directed timelike path in the three-dimensional metrised parameter
space (8.41).

Suppose now that a string system with holonomy matrix Ttot has timelike
total momentum but that some subsystem with matrix Tsub is spacelike. If the
reference frame L is chosen to be the centre-of-momentum frame of the total
system, then Ttot is the holonomy matrix of a single static string with mass per
unit length µtot, and so χtot = 4πµtot and ζ ′tot = 0. Since Tsub is a product of
single-string holonomymatrices, and is spacelike, it must lie in one of the shaded
regions to the timelike future of the origin in figure 8.2 (as the origin corresponds
to the identity matrix). Also, since Ttot can be generated by pre-multiplying Tsub
with single-string holonomy matrices, it must lie to the timelike future of Tsub.
From figure 8.2, it is clear that this is possible only if χtot > π ; hence, the total
angle deficit of the system is θ = 8πµtot > 2π , and the universe must be
closed.

Thus, an open universe containing straight parallel strings—no matter
what their relative velocities—cannot support closed timelike curves if its total
momentum is timelike. However, this conclusion is not without its critics. In
particular, Gott and Matthew Headrick [HG94] have called into question the
legitimacy of defining the ‘total momentum’ of a system of point particles in
2 + 1 gravity in terms of the holonomy of the system. They point out that
in 2 + 1 dimensions only empty spacetime is asymptotically flat (provided that
negative-mass particles are excluded), and that the standard definitions of energy
and momentum in 3 + 1 gravity, which rely on asymptotic flatness, do not apply.
Furthermore, they claim that in the absence of a careful analysis of systems of
particles in 2 + 1 gravity there is no guarantee that the total holonomy matrix T
of such a system is uniquely defined.

There is much force to these objections but the logical conclusion of this
line of argument is that almost nothing is known about the physical properties of
2 + 1 spacetimes and, therefore, any configuration of particles is as acceptable
as any other. While such pessimism might be justified, it is certainly not an
argument in favour of the claim that realistic 3 + 1 systems of cosmic strings
could support closed timelike curves. If anything, it undermines the appeal of the
simplest models of string-supported CTCs by highlighting the dubious physical
status of the spacetimes in which they occur.

8.5 The Letelier–Gal’tsov spacetime

As mentioned earlier, no exact solution is knownwhich describes the gravitational
field of three or more non-parallel straight strings in relative motion. This claim
might seem to be contradicted by the existence of what appears to be a completely
general multi-string spacetime, published by Patricio Letelier and Dmitri Gal’tsov
[LG93] in 1993. The Letelier–Gal’tsov spacetime is locally flat and non-radiating,
and although not the general string spacetime a first perusal suggests it to be, it is
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nonetheless mathematically very intriguing.
The starting point for the Letelier–Gal’tsov spacetime is the line element

(8.3) corresponding to N parallel straight strings. If the strings are assumed to
have differing masses per unit length µ1, . . . , µN the line element reads:

ds2 = dt2 − dz2 −
( N∏
k=1
ρ
−8µk
k

)
(dx2 + dy2) (8.45)

where
ρk = [(x − xk)2 + (y − yk)2]1/2 (8.46)

as before.
Just as the single-string metric (7.32) can be reduced locally to the

Minkowski metric by introducing the complex coordinate w = x + iy, the local
flatness of the line element (8.45) is evident under a transformation of the form
(x, y)→ (W,W∗), where

W (x, y) =
∫ x+iy

ζ0

N∏
k=1
(ζ − ζk)−4µk dζ (8.47)

and ζk = xk + yk , with ζ0 a fixed point in the complex plane. For the line integral
in (8.47) to be well defined, the curve from ζ0 to x + iy should be chosen so that
it avoids the N poles ζ = ζk and should also be a continuous functional of x + iy.
The second condition cannot, of course, be imposed globally, as a line integral
of the form (8.47) around any closed contour enclosing one or more of the poles
ζ = ζk is, in general, non-zero. This, in turn, is due to the presence of conical
singularities at the poles: the surface of a cone can be mapped conformally to a
plane locally but not globally.

Nonetheless, the complex mapping (8.47) is analytic everywhere except at
the locations of the N strings and transforms the line element locally into the line
element of Minkowski spacetime:

ds2 = dt2 − dz2 − dW dW∗. (8.48)

The Letelier–Gal’tsov spacetime is constructed by taking this line element and
using (8.47) to re-express it in terms of x and y, with the important difference that
the positions ζk are now to be regarded as arbitrary functions of the coordinates t
and z.

The resulting line element is

ds2 = dt2−dz2−
( N∏
k=1
ρ
−8µk
k

)
[(dx+ F1 dt+G1 dz)2+ (dy+ F2 dt+G2 dz)2]

(8.49)
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where

F ≡ F1+ iF2 =
N∏
j=1
(w− ζ j )4µ j

∫ x+iy

ζ0

N∏
k=1
(ζ − ζk)−4µk

N∑
m=1

4µm ζ̇m
ζ − ζm dζ (8.50)

and

G ≡ G1+iG2 =
N∏
j=1
(w−ζ j )4µ j

∫ x+iy

ζ0

N∏
k=1
(ζ−ζk)−4µk

N∑
m=1

4µmζ ′m
ζ − ζm dζ. (8.51)

Here, an overdot denotes ∂/∂ t and a prime ∂/∂z.
The multi-string line element (8.49) is clearly isometric to Minkowski

spacetime everywhere outside the trajectories {w = ζk(t, z)}. If it is assumed that
|ζ0| → ∞, so that the value of ζ0 contributes no boundary terms to the derivatives
of W , then F and G are regular functions of w = x + iy with

lim
w→ζk

F(w) = −ζ̇k and lim
w→ζk

G(w) = −ζ ′k (8.52)

for all k. Hence, near the trajectory of the nth string the line element has the
limiting form

ds2 ≈ dt2−dz2− A2ρ−8µnn [(dx− ẋn dt−x ′n dz)2+(dy− ẏn dt− y ′n dz)2] (8.53)

where A2 =∏
k �=n |ζn − ζk|−8µk .

On defining x̄ = x − xn and ȳ = y − yn , this expression becomes

ds2 ≈ dt2 − dz2 − A2ρ−8µn (dx̄2 + dȳ)2 (8.54)

where now ρ = (x̄2 + ȳ2)1/2. Apart from the conformal factor A2 this is just the
isotropic line element (7.32) due to a single straight string.

On the face of it, then, the Letelier–Gal’tsov metric (8.49) seems capable of
describing an arbitrary number of open strings with essentially arbitrary shapes,
and in arbitrary states of relative motion. This interpretation is at odds with both
the dynamical picture of cosmic strings in flat spacetime presented in chapters 2
and 3 (as string motion in flat space is constrained by the Nambu–Goto action)
and the gravitational theory of curved strings outlined in chapters 6 and 10 (as
bent or accelerating strings should radiate). It also suggests something that was
perhaps evident from the start, namely that (8.49) is just the static parallel-string
metric (8.3) written in an obscure coordinate system.

To see this, note first that the geodesic structure of the Letelier–Gal’tsov
spacetime is fixed by the original Minkowski spacetime (8.48). Provided that
it does not pass through the trajectory of one of the strings, a curve xµ(λ) is a
geodesic if and only if t , z, W and W∗ can be expressed as linear functions of an
affine parameter. In particular, the geodesic distance between two points (x1, y1)
and (x2, y2) on the same surface of constant t and z is |W (x1, y1)−W (x2, y2)|.
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Consider now the 2-surface defined by w = ζn(t, z) + ε, where ζn is the
position function of the nth string, and ε is a non-zero constant. As t and z vary
across this surface, the corresponding changes in W are given by

dW =
( N∏
k=1
ρ
−4µk
k

)
[(ζ̇n + F) dt + (ζ ′n + G) dz)]. (8.55)

Here, to leading order in ε,

N∏
k=1
ρ
−4µk
k ≈ ε−4µn

∏
k �=n
(ζn − ζk)−4µk (8.56)

while, from the definitions of F and G,

F ≈ −ζ̇n − ε 4

1− 4µn

∑
j �=n

µ j (ζ̇n − ζ̇ j )
ζn − ζ j (8.57)

and

G ≈ −ζ ′n − ε
4

1− 4µn

∑
j �=n

µ j (ζ
′
n − ζ ′j )

ζn − ζ j . (8.58)

Thus, in the limit as ε → 0 and the 2-surface approaches the trajectory of
the nth string, the change dW goes to zero like ε1−4µ. The same is true of all the
other strings and, therefore, the geodesic distance between any two strings is the
same on each constant t , z slice, as is the geodesic distance between any string
and a general pointW in the spacetime. In other words, the strings are all straight
and parallel, no matter what choice is made for the functions {ζk}.



Chapter 9

Other exact string metrics

Numerical simulations of the dynamics of (non-gravitating) cosmic string
networks strongly suggest that realistic cosmic strings—if present at all in the
early Universe—would have had structure on all sizes down to a length scale
determined by the dissipative effects of gravitational radiation [BB91]. In
addition, it is thought that the vast bulk of the energy of the network would have
quickly been channeled into a system of small, high-velocity loops, with perhaps
one long (horizon-sized) string per horizon volume. The metric (7.28) due to
an infinite straight cosmic string in vacuum is, therefore, unlikely to be of direct
cosmological interest.

Unfortunately, it is difficult to generate exact string metrics in the absence of
the high degree of symmetry evident in the straight-string metric (7.28), even with
the simplifications afforded by the wire approximation. In particular, no exact
solution has to date been found describing a closed string loop. In this chapter I
will present a compendium of most of the known exact string metrics. These are
all of necessity highly symmetric and thus, although they provide important clues
to the gravitational effects of more general string configurations, are probably not
directly relevant to the study of realistic cosmic strings. Nonetheless, the solutions
are of considerable mathematical interest and in some cases shed unexpected light
on other areas of mathematical relativity.

9.1 Strings and travelling waves

The simplest generalization of the bare straight-string metric (7.28) is the family
of travelling-wave solutions first published by David Garfinkle [Gar90] in 1990.
The corresponding weak-field solutions were discovered by Tanmay Vachaspati
[Vac86] in 1986. Although the solutions examined here will be presented in the
wire approximation only, it should be noted that there exist exact families of
solutions of the full Einstein–Higgs–Yang–Mills field equations with the same
geometric structure [VV90, GV90], which generalize Garfinkle’s gravitating

286
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Nielsen–Olesen vortex solution [Gar85]. The travelling-wave solutions are the
only known cosmic string metrics with exact field-theoretic analogues of this type.

Following Valeri Frolov and David Garfinkle [FG90], the most direct way of
generating cosmic string travelling-wave solutions is to note that if ḡµν is a metric
tensor admitting a covariantly constant null vector field kµ then any spacetime
with a metric tensor of the form

gµν = ḡµν + Fkµkν (9.1)

where kµF,µ = 0 and D̄µF,µ = 0 (with D̄µ the covariant derivative operator
induced by ḡµν) differs from the initial spacetime only by the addition of plane-
fronted gravitational radiation propagating in the direction of kµ.

To see this explicitly, note first that because kµ is null

gµν = ḡµν − Fkµkν (9.2)

where the index on kµ can be raised or lowered interchangeably by gµν or ḡµν .
Hence, if ωµ is any vector field the covariant derivative operators generated by
gµν and ḡµν satisfy

Dµων = D̄µων −	λµνωλ (9.3)

where, in view of the constancy condition D̄µkν = 0,

	λµν = F,(µ kν)k
λ − 1

2 ḡ
λκF,κ kµkν. (9.4)

The Riemann tensor corresponding to gµν can now be generated from the
identity Rκλµνων = 2D[λDκ]ωµ and is given by

Rκλµν = R̄κλµν + 2k[λ D̄κ]F,[µ kν] (9.5)

where R̄κλµν is the Riemann tensor of the initial spacetime. In particular, the
Ricci tensor of the new spacetime is:

Rλν = R̄λν + 1
2 (D̄

µF,µ )kλkν (9.6)

and so if D̄µF,µ = 0 the two spacetimes have the same stress–energy content.
However, as is evident from (9.5), the two Riemann tensors are not, in general,
equal. The new spacetime thus differs from the old only through the addition
of gravitational radiation whose Riemann tensor has a covariantly constant null
eigenvector and is thus plane-fronted.

If plane-fronted gravitational waves are added to the bare straight-string
metric in its isotropic form (7.32) then the initial line element has the form

ds̄2 = dt2 − dz2 − ρ−8µ(dx2 + dy2) (9.7)

with ρ = (x2+ y2)1/2 and µ the mass per unit length of the string. There are two
possible choices of covariantly constant null vector field for this spacetime:

k+µ = δtµ + δzµ or k−µ = δtµ − δzµ (9.8)
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and the function F is, therefore, constrained by the conditions:

k+µF,µ≡ F,t −F,z = 0 or k−µF,µ≡ F,t +F,z = 0 (9.9)

and
D̄µF,µ≡ F,t t −F,zz −ρ8µ(F,xx +F,yy ) = 0. (9.10)

Hence, the most general solution for F is

F(t, x, y, z) =
∑
i

Mi (t ± z)Hi(x, y) (9.11)

where the Hi are linearly independent harmonic functions of x and y, and the
Mi are arbitrary twice differentiable functions of t + z (if kµ = k+µ ) or t − z (if
kµ = k−µ ). The corresponding travelling-wave line element reads:

ds2 = (1+ F) dt2 − (1− F) dz2 ± 2F dt dz − ρ−8µ(dx2 + dy2). (9.12)

As can be seen, travelling waves on cosmic strings exist in either left- or
right-moving modes, with the parity fixed by the choice of kµ. Once the mode
functions Hi and Mi have been fixed, the travelling wave propagates along the
string with a constant structure, and the spacetime (9.12) remains stationary and
non-dissipative. The nonlinearity of the Einstein equations prevents the two types
of modes from being superposed in a non-dissipative manner. Thus, although the
family of solutions (9.12) exhibits a considerable degree of parametric freedom,
it is far from being the most general vacuum spacetime outside an infinite cosmic
string.

Incidentally, this construction could equally well be applied to any non-
vacuum metric tensor ḡµν that admits a covariantly constant null vector field. A
simple example is the constant-ε0 interior solution examined in section 7.1, which
has the line element

ds2 = dt2 − dz2 − dr2 − e2ω dφ2 (9.13)

where eω = r∗ sin(r/r∗), and also admits the constant null vector fields k±µ =
δtµ ± δzµ. The corresponding travelling-wave metrics gµν = ḡµν + Fkµkν also
describe interior solutions with constant density and tension ε0 and are generated
in the same way as before, with the only difference being that F satisfies the
equation

F,t t −F,zz −e−ω(eωF,r ),r −e−2ωF,φφ = 0. (9.14)

The travelling-wave analogues of the Nielsen–Olesen vortex solutions discussed
in [VV90] and [GV90] are straightforward extensions of this type of solution.

In view of the fact that the bare straight-string spacetime (9.7) is locally flat,
and

DµF,ν = F,µν +4µρ−2(x F,x −yF,y )(δxµδxν − δyµδyν )
+ 4µρ−2(x F,x +yF,y )(δxµδyν + δyµδxν ) (9.15)
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the Riemann tensor (9.5) corresponding to a generic cosmic string travelling wave
has only three algebraically independent components (for ρ �= 0):

k∓λk∓νRxλxν = 2[F,xx +4µρ−2(x F,x −yF,y )] (9.16)

k∓λk∓νRxλyν = 2[F,xy +4µρ−2(x F,x +yF,y )] (9.17)

and
k∓λk∓νRyλyν = 2[F,yy +4µρ−2(yF,y −x F,x )]. (9.18)

In particular, if the travelling wave contains only linear harmonics in x and
y, so that

F = 2x A′′(t ± z)+ 2y B ′′(t ± z) (9.19)

where A and B are arbitrary four-times differentiable functions, then

Rκλµν = 16µρ−1k[λCκ][µkν] (9.20)

with

Cκµ = (A′′ cosφ− B ′′ sinφ)(δxκ δxµ−δyκ δyµ)+(A′′ cosφ+ B ′′ sinφ)(δxκ δyµ+δyκ δxµ)
(9.21)

where φ is the polar angle defined by ρeiφ = x + iy.
The form of the Riemann tensor (9.20) illustrates an important feature

of linear travelling waves. In a Minkowski background (µ = 0) linear
travelling waves have no tidal effects whatsoever, and it can be shown that
the corresponding metric (9.12) is just Minkowski spacetime in non-standard
coordinates [KSHM80]. In a cosmic string background, by contrast, linear
travelling waves induce a non-zero Riemann tensor. The spacetime (9.12) with
(9.19) is, therefore, entirely new and, unlike all higher harmonic solutions, has
no non-flat analogue in the limit as µ→ 0. This suggests that a linear travelling
wave is somehow intrinsic to the underlying cosmic string and that, in the words
of Frolov and Garfinkle [FG90], ‘we can regard the [linear] traveling-wave metric
as the gravitational field of the moving string’.

Support for this interpretation can be bolstered by noting that the
transformation

x = x̄ − A y = ȳ − B (9.22)

t = t̄ − x̄ A′ − ȳB ′ + 1
2

∫ t̄±z̄

0
[A′2(u)+ B ′2(u)] du (9.23)

and

z = z̄ − x̄ A′ − ȳB ′ + 1
2

∫ t̄±z̄

0
[A′2(u)+ B ′2(u)] du (9.24)

recasts the line element (9.12) with (9.19) in the form

ds2 = dt̄2 − dz̄2 + 2(ρ−8µ − 1)(A′ dx̄ + B ′ dȳ)(dt̄ ± dz̄)

− (ρ−8µ − 1)(A′2 + B ′2)(dt̄ ± dz̄)2 − ρ−8µ(dx̄2 + dȳ2) (9.25)
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where now ρ = [(x̄− A)2+(ȳ−B)2]1/2. (Note that A and B are interchangeably
functions of t ± z or t̄ ± z̄, as this is an invariant of the transformation.) Thus it
can be argued that a linear travelling-wave solution is simply the metric induced
by a non-straight string moving along the world sheet x̄ = A(t̄ ± z̄) and
ȳ = B(t̄ ± z̄).

Nonetheless, the fact that the gravitational radiation content of the linear
travelling-wave metric (9.25) occurs in the form of collective oscillations of the
entire spacetime, rather than as localized disturbances which propagate outwards
from the world sheet, argues strongly that (9.25) does not represent the response
of an otherwise empty spacetime to waves on a cosmic string. Instead it is more
natural to regard the linear travelling waves as an exotic form of plane-fronted
gravitational waves catalysed by the non-trivial holonomy of the spacetime
around a single straight string. In support of this view, the construction outlined
earlier can also be used to superimpose travelling waves on the multiple straight-
string spacetime (8.3), but all the strings then ‘oscillate’ in exactly the same
manner.

One critic of the belief that (9.25) describes a cosmic string at all is Patricio
Letelier, who claims that the linear travelling-wave solution ‘represents a “rod”
rather than a string’ [Let92]. In defence of this statement, he cites the fact that the
physical components of the Riemann tensor (9.20) diverge as ρ8µ−1 as ρ tends to
zero, and, therefore, that the linear travelling-wave spacetime describes ‘an object
more singular than a cosmic string’. As further evidence, Letelier also notes that
a freely-falling observer will measure a tidal force that diverges as s−2, where s
is the proper time to the locus of the string.

Now, while it is true that the divergence of the physical components of
the Riemann tensor (9.20) contrasts strongly with the benign nature of the
Riemann tensor outside the bare straight string (9.7), the singularity in (9.20)
remains an integrable one. If R̂ is any of the physical components of (9.20)
then the integral

∫
R̂
√
g d4x involves terms no worse than

∫
ρ−2x dx dy and∫

ρ−2y dx dy. Furthermore, as will be seen in section 10.4.4, the inclusion of
travelling waves has no effect on the distributional stress–energy density (7.80)
characteristic of the world sheet of a bare straight cosmic string. Finally, the fact
that metrics of the form (9.12) with (9.19) are the zero-thickness limits of known
exact vortex solutions of the Einstein–Higgs–Yang–Mills field equations argues
strongly in favour of the position that they do describe cosmic strings at the level
of the wire approximation.

Letelier [Let91] has also investigated a more general family of travelling-
wave string metrics of the form (9.12), in which F is not constrained to be a
harmonic function of x and y (although the coordinate system he uses makes
direct comparison with (9.12) rather complicated). The effect of relaxing this
constraint is to admit a non-zero stress–energy tensor Tµν proportional to kµkν ,
which, therefore, describes electromagnetic radiation propagating along the string
in the same direction as the travelling waves.

As a final remark, it should be noted that travelling waves containing only
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second-order harmonics have the generating function

F = (x2 − y2)P ′′(t ± z)+ 2xyQ′′(t ± z) (9.26)

where P and Q are arbitrary four-times differentiable functions. In this case the
physical components of the Riemann tensor go to zero as ρ8µ. More generally,
in terms of the proper distance r ∝ ρ1−4µ from the world sheet each nth-order
harmonic travelling wave contributes terms of order rn/(1−4µ) to the metric tensor
and terms of order r (8µ+n−2)/(1−4µ) to the physical components of the Riemann
tensor. Also, with the gauge choice τ = t and σ = z the 2-metric of the world
sheet in (9.12) has the form γAB = diag(1,−1), and so the world sheet is flat. In
chapter 10, near-field behaviour of this type will be regarded as the signature of
travelling waves in more general cosmic string spacetimes.

9.2 Strings from axisymmetric spacetimes

Another method of generating cosmic string solutions is to take an axisymmetric
spacetime, excise a wedge of fixed angular extent from around the symmetry
axis, and then glue the exposed faces together, in much the same way as the
bare straight-string metric can be conjured from Minkowski spacetime (see
section 7.2). In fact, James Vickers [Vic87, Vic90] has developed a general
formalism which can be applied to any spacetime (M, g) that admits an isometry
f λ with a fixed point set T = {xµ : f λ(xµ) = xλ}. A conical singularity can be
inserted into the spacetime by removing the fixed point set T fromM, identifying
all points xµ and yλ with yλ = f λ(xµ) in the universal covering space, and
if necessary deleting some points to restore Hausdorff topology to the resulting
spacetime (M′, g′).

Vickers [Vic87, Vic90] notes the following important properties of the
construction outlined here:

(1) The fixed point set T is a totally geodesic submanifold of M (that is,
geodesics initially tangent to T remain tangent to T).

(2) The Riemann tensor on (M′, g′) is everywhere the same as the Riemann
tensor on (M \T, g).

(3) If (M, g) is an axisymmetric spacetime with T the symmetry axis then in
a neighbourhood of any point xµ0 on T it is possible to introduce geodesic
cylindrical coordinates (t, r, θ, z), where δθµ is the rotational Killing vector,
θ has range [0, 2π), T is the set r = 0, and curves of the form t = z = 0
and θ = constant are geodesics with affine parameter r terminating at
xµ0 and orthogonal to T. If the spacetime (M′, g′) is now generated by
identifying θ and θ+2π−θ in the universal covering space (withθ some
constant) then the Riemann component Rrθrθ onM

′ supports a distributional
singularity at r = 0, in the sense that

lim
ε→0

∫ ε

0

∫ 2π−θ

0
Rrθrθr dr dθ = θ. (9.27)
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In line with the corresponding treatment of the bare straight-string metric in
section 7.2, it is possible to infer that (M′, g′) has a distributional stress–
energy density with non-zero components

�

√
gT tt =�√gT zz = µδ(2)(r) (9.28)

where µ = 1
8π θ and δ

(2)(r) is the unit distribution in �2 .
(4) Conversely, an axisymmetric spacetime (M′, g′) with distributional stress–

energy of the form (9.28) and a Riemann tensor whose components in a
parallel-propagated frame tend to well-defined limits along all curves ending
at the singularity can be completed by the addition of a singular boundary T
which is a totally geodesic submanifold ofM′ ∪ T.

Vickers chooses to call any spacetime (M′, g′) constructed in this way a
‘generalized cosmic string’, to distinguish it from the bare straight-string metric
(7.28). However, it should be noted that Vickers’ class of ‘generalized’ cosmic
strings does not encompass all metrics with cosmic string sources in the sense
of section 7.2. In particular, as was seen earlier, the linear travelling-wave
solution (9.12) with (9.19) has a Riemann tensor whose physical components are
unbounded near the singularity, and, therefore, cannot be generated by excising a
conical wedge from any non-singular spacetime (M, g).

Given the plethora of known axisymmetric solutions to the Einstein
equations, it is possible here to explore only a small sample of ‘generalized’
cosmic string metrics. The examples given here show the effect of embedding
a straight string in two of the most important astrophysical spacetimes: the
Robertson–Walker and Schwarzschild metrics. A third class of solutions, which
describe a straight string coupled to a cosmological constant, will also be
examined briefly.

9.2.1 Strings in a Robertson–Walker universe

The line element for the class of Robertson–Walker spacetimes was given in (5.3).
Because the spacelike slices are maximally symmetric, any spacelike geodesic
with η = constant delineates an axis of rotational symmetry. It is always possible
to rotate the coordinates so that this line becomes the polar axis. If a cosmic string
with mass per unit length µ is embedded along this axis then the line element
reads:

ds2 = a2(η)
[
dη2 − dR2

1− kR2 − R
2dθ2 − (1− 4µ)2r2 sin2 θ dφ2

]
(9.29)

where k = 0 or ±1 as before and R, θ and φ are standard spherical polar
coordinates. Amore detailed derivation of this line element in the flat case (k = 0)
can be found in [Gre89].

As mentioned earlier, the presence of the cosmic string does not affect the
value of the Riemann tensor away from the axis, and so the only algebraically
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independent components of the Riemann and stress–energy tensors for r sin θ �= 0
are:

Rηr ηr = Rηθ ηθ = Rηφηφ = a−4(aä − ȧ2) (9.30)

Rrθ rθ = Rrφ rφ = Rθφθφ = a−4(ȧ2 + ka2) (9.31)

and

T ηη =
3

8π
a−4(ȧ2+ka2) T rr = T θθ = T φφ =

1

8π
a−4(2aä− ȧ2+ka2) (9.32)

where an overdot denotes d/dη.
Incidentally, the closed (k = 1) Robertson–Walker spacetime has the

interesting feature that it can be recast in a simple form which allows the direct
insertion of two orthogonal cosmic strings. If k = 1 and µ = 0 the spatial cross
sections of (9.29) are 3-spheres with line element proportional to

−(d 2 + sin2 dχ2 + sin2 sin2 χ dφ2) (9.33)

where the coordinate  = sin−1 R has range [0, π). Transforming from ( , θ)
to coordinates (β,ψ) defined by

sinβ = sin sin θ and tanψ = tan cos θ (9.34)

then reduces this line element to the form

−(dβ2 + cos2 β dψ2 + sin2 β dφ2) (9.35)

where β and ψ both range from 0 to π (with the endpoints identified).
The 3-spherical line element (9.35) clearly has symmetry axes along the lines

β = 0 and β = π/2, which are the fixed points of the isometries generated by the
Killing vectors δφµ and δψµ respectively. It is, therefore, possible to embed cosmic
strings along each of these axes in a general closed Robertson–Walker spacetime
by writing

ds2 = a2(η)[dη2−dβ2−(1−4µ1)
2 cos2 β dψ2−(1−4µ2)

2 sin2 β dφ2] (9.36)

where the masses per unit length µ1 and µ2 need not be equal. The line element
(9.36) describes the simplest known non-static universe containing two cosmic
strings, although it should be recalled from chapter 7 that there is no difficulty in
embedding two (or more) straight cosmic strings in Minkowski spacetime.

Strictly speaking, the general Robertson–Walker string solution (9.29)
should not be interpreted as the metric exterior to a straight cosmic string in a
homogeneous, isotropic universe unless it can be shown to be the zero-thickness
limit of a family of non-singular spacetimes containing a cylindrical distribution
of stress–energy embedded in a cosmological background, as was seen to be the
case for a Minkowski string in section 7.4. To date, no smooth cylindrical interior
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solution has been published which matches onto (9.29) at a finite radial distance
r ≡ R sin θ = r0(η). Nor, if such solutions do exist, is it known whether the
exterior metric (9.29) would be energetically favoured over other cylindrically-
symmetric spacetimes containing cosmological fluid with the same equation of
state.

However, Ruth Gregory [Gre89] has pointed out that if the radius rS of the
string core is small compared to the Hubble radius a/ȧ then a Nielsen–Olesen
vortex can be embedded in a flat Robertson–Walker spacetime by assuming a line
element with the approximate form

ds2 = a2(η)[e2χM(ar) dη2 − e2ψM(ar)(dr2 + dz2)] − e2ωM(ar) dφ2 (9.37)

where χM(r), ψM(r) and ωM(r) are the corresponding metric functions for a
Nielsen–Olesen vortex in a flat background, which, in principle, can be read from
Garfinkle’s solution [Gar85]. If r � rS then χM(r) and ψM(r) are negligibly
small while eωM(r) ≈ (1 − 4µ)r , and Gregory’s line element (9.37) tends
asymptotically to the flat version of (9.29).

Near the string core, however, the detailed form of the line element depends
on the behaviour of χM, ψM and ωM, for which no explicit solutions are known.
However, the argument leading to (9.37) is applicable no matter what stress–
energy content is assumed for the string, so a toy model of the embedding can
be constructed by assuming a constant-density interior, which (from section 7.1)
has T tt = T zz = ε0, χ(r) = ψ(r) = 0 and eω(r) = r∗ sin(r/r∗) where
r∗ = (8πε0)−1/2.

In a dust-filled universe, a(η) = λη2 for some constant λ and the stress–
energy tensor corresponding to (9.37) has the non-zero components

T tt = ε0 + 1
3εc(η)(1+ 2r̄ cot r̄) T zz = ε0(1− 4r2/η2)− 1

6εc(η)(1− r̄ cot r̄)
(9.38)

T rr = −4ε0r2/η2 − 1
6εc(η)(1− r̄ cot r̄) and T tr = −T rt = 2ε0r/η

(9.39)

where εc(η) = 96π/(λ2η6) is the energy density of the dust, and r̄ = λη2r/r∗.
The assumption that the core radius is small compared to the Hubble radius

is equivalent to the condition rS ∼ λη2r � η, while the mass per unit length µ ∼
1
4 (1 − cos r̄) of the string will be of GUT size if r̄ � 1. Thus ε0r2/η2 � εc(η)

and the stress–energy tensor has the approximate form T tt = ε0 + εc(η), T zz = ε0
as expected. Similarly, although the constant-density interior cannot be matched
exactly to the cosmological exterior (9.29) across a boundary surface r = r0(η)
(an indication that the string radiates energy, at a rate proportional to r2S/η

2, as the
universe expands), the mismatch between the extrinsic curvatures vanishes in the
zero-thickness limit.

Bill Unruh [Unr92] and Jaime Stein-Schabes and Adrian Burd [SSB88] have
also addressed this particular problem, using slightly different approaches. Unruh
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added an ad hoc correction to the standard Robertson–Walker line element to
model the presence of a cosmic string near the axis, showed that the correction
required a string source whose equation of state deviated slightly from the naive
choice T tt = T zz , and concluded that this deviation would have negligible effect on
the external spacetime. Stein-Schabes and Burd integrated the Higgs–Yang–Mills
equations numerically to generate a vortex solution in a fixed flat Robertson–
Walker background, and similarly concluded that the stress–energy tensor of the
vortex fields was unlikely to satisfy the relation T tt = T zz .

A related but somewhat different question has been raised by Dyer et
al [DOS88], who examined whether an evacuated cylinder containing a zero-
thickness cosmic string on axis can be embedded inside a Robertson–Walker
background of the form (9.29). The purpose of such a construction was to
attempt to justify the standard vacuum calculations of the gravitational lensing
effects of a straight string, in the spirit of the ‘Swiss cheese’ model for spherical
inhomogeneities in an expanding universe.

Dyer et al argued that the bare straight-string spacetime (7.28) cannot be
embedded in a flat (k = 0) Robertson–Walker exterior, and after a much more
thorough analysis Eric Shaver and Kayll Lake came to the same conclusion
[SL89]. However—as Unruh [Unr92] has pointed out—this result is obvious, as
the conical spacetime (7.28) is invariant under boosts in the z-direction, whereas a
Robertson–Walker spacetime with an excised cylinder is not. A more interesting
question is whether a radiating vacuum cylinder containing a cosmic string can
be embedded in a Robertson–Walker background.

To examine this problem in more detail, it is convenient to rewrite the
Robertson–Walker exterior (9.29) in the cylindrical form

ds2 = a2(η)[dη2 − dr2 − K 2(r) dz2 − (1− 4µ)2S2(r) dφ2] (9.40)

where S(r) = sin r , r or sinh r and K (r) = cos r , 1 or cosh r as k = 1, 0
or −1. The transformation from (R, θ) to (r, z) is accomplished by defining
S(r) = R sin θ and T (z) = (1 − kR2)−1/2R cos θ , with T (z) = tan z, z or tanh z
when k = 1, 0 or −1. The problem is then to match the line element (9.40) to the
metric of a cylindrical radiating vacuum across some boundary surface r = r0(η).

As will be demonstrated later, in section 9.3.1, a (non-static) cylindrical
vacuum spacetime with z-reflection symmetry can always be described by a line
element of the form

ds2 = e2C−2ψ(dt2 − dr2)− e2ψ dz2 − e−2ψr2 dφ2 (9.41)

whereC andψ are functions of t and r alone, with ψ̈ = ψ ′′+r−1ψ ′, Ċ = 2rψ̇ψ ′
and C ′ = r(ψ̇2 + ψ ′2). To distinguish between the interior and exterior versions
of the radial coordinate r , the exterior coordinate will henceforth be relabelled .

The two line elements (9.40) and (9.41) will be isometric at the junction
surface =  0(η) and r = r0(t) if

(1− 4µ)aS0 = r0e−ψ0 aK0 = eψ0 (9.42)
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and
a(1−  ̇ 2

0 )
1/2 dη = eC0−ψ0(1− ṙ20 )1/2 dt (9.43)

where a subscripted 0 indicates that the correspondingmetric function is evaluated
at the boundary.

Furthermore, the extrinsic curvature tensors of the boundary surfaces will
match only if

(1− ̇ 2
0 )
−1(G  −2 ̇0G

η
 − ̇ 2

0G
η
η) = (1− ṙ20 )−1(Grr−2ṙ0G

t
r− ṙ20Gtt ) (9.44)

and

(1− ̇ 2
0 )
−1[ ̇0(G

η
η−G  )+(1+ ̇ 2

0 )G
η
 ] = (1−ṙ20 )−1[ṙ0(Gtt−Grr )+(1+ṙ20)Gtr ]

(9.45)
on the boundary [And99a], and since Gµν = 0 identically in the interior vacuum
solution, while Gη = 0, Gηη �= 0 and G  = −a−4(2aä − ȧ2 + ka2) in the
Robertson–Walker exterior, it follows that  ̇0 = 0 and the exterior spacetime
must be pressure-free (2aä − ȧ2 + ka2 = 0).

The latter condition gives rise to the standard Robertson–Walker dust
solution:

a(η) = 2λ(1− cosη), λη2 or 2λ(cosh η − 1) as k = 1, 0 or − 1 (9.46)

where λ is a scaling constant. In addition, the matching of the extrinsic curvature
tensors generates two further boundary conditions:

a−1K−10 K ′0 = eψ0−C0(1− ṙ20 )−1/2(ψ ′0 + ṙ0ψ̇0) (9.47)

and
a−1(K S)−10 (K S)

′
0 = eψ0−C0(1− ṙ20 )−1/2r−10 . (9.48)

The conversion from the exterior variables η and 0 to the interior variables
t and r0 is given implicitly by

t = (1− 4µ)(K S)′0
∫ η

0
a2(u) du and r0(t) = (1− 4µ)K0S0a

2(η)

(9.49)
and, in particular, ṙ0 = βa−1ȧ with β = 2K0S0/(K S)′0. By taking the time
derivative of eψ0 = aK0 along the boundary, then solving separately for ψ̇0, ψ ′0
and eC0 , the boundary conditions can be re-expressed in the form

eψ0 = aK0 ψ̇0 = ( 12−γ )(1− ṙ20 )−1r−10 ṙ0 ψ ′0 = (γ − 1
2 ṙ

2
0 )(1− ṙ20 )−1r−10

(9.50)
and

eC0 = (1− 4µ)−1K0[(K S)′0]−1(1− ṙ20 )−1/2 (9.51)

where γ = K ′0S0/(K S)′0. To fully specify the vacuum interior it is necessary,
therefore, to solve the wave equation ψ̈ = ψ ′′ + r−1ψ ′ plus one of the equations
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for C on 0 ≤ r ≤ r0(t), subject to the boundary conditions (9.50) and (9.51) at
r = r0.

Note that no matching interior solution is possible at early times (η � 1),
as then ṙ0 ≈ 2βη−1 and the boundary is receding superluminally (ṙ0 > 1) and
so lies outside the Hubble radius of the string. The same is true when η ≈ 2π
in the case of a closed universe (k = 1). However, the matching procedure is of
interest only when the boundary radius is small compared to the Hubble radius,
which occurs at late times η in the flat (k = 0) and open (k = −1) cases.

In the case k = −1 the late-time solution has r0 ≈ βt with β = tanh(2 0) <

1, plus eψ0 ≈ t1/2 and eC0 ≈ (1 − 4µ)−1 cosh( 0). The interior solution
satisfying these boundary conditions is

eψ(r,t) = 1√
2(1− 4µ)1/2

[t + (t2 − r2)1/2]1/2

eC(r,t) = 1√
2(1− 4µ)

[t + (t2 − r2)1/2]1/2
(t2 − r2)1/4

(9.52)

and the corresponding metric (9.41) is just a patch of the bare straight-string
spacetime (7.28) in a coordinate system tailored to the Robertson–Walker exterior.
Thus a ‘Swiss cheese’ embedding is possible in an open universe in the late-time
limit, and the interior is, in this case, non-radiating.

The flat (k = 0) case at late times has r0 ∼ t4/5, eψ0 ∼ t2/5 and eC0

asymptotically constant, with ψ ′0/ψ̇0 = −ṙ0. Unfortunately, no explicit interior
solution matching these boundary conditions has yet been found, although the
initial-value problem is well posed and a solution undoubtedly exists. Unruh
[Unr92] has attempted to generate an approximate solution by assuming that the
time derivatives of ψ are negligible in comparison with the radial derivatives. If
the known open solution (9.52) is any guide this assumption is a poor one, and
it is not surprising that Unruh’s approximate interior solution induces a non-zero
stress–energy tensor which diverges on the axis r = 0.

9.2.2 A string through a Schwarzschild black hole

The second simple example of a ‘generalized’ string metric is the Aryal–Ford–
Vilenkin solution [AFV86], which describes a cosmic string passing through a
black hole. The line element is

ds2 = (1− 2m/R) dt2− (1− 2m/R)−1 dR2 − R2 dθ2− (1− 4µ)2R2 sin2 θ dφ2

(9.53)
and can be constructed by removing a wedge of angular extent 8πµ from along
any axis of the Schwarzschild metric. When R sin θ �= 0 the Riemann tensor is, of
course, identical to that of the Schwarzschild metric, and so (modulo symmetries):

Rtr tr = Rθφθφ = 2m/R3 (9.54)
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Figure 9.1. Kruskal diagram for a cosmic string through a Schwarzschild black hole.

and
Rtθ tθ = Rtφ tφ = Rrθ rθ = Rrφ rφ = −m/R3 (9.55)

while the stress–energy tensor is zero.
To an external observer, it would appear that the string passes directly

through the hole, piercing the horizon R = 2m at the north and south poles.
However, the horizon is a null surface and the spacelike sections of the string
do not physically extend across it. As with the Schwarzschild metric, the full
geometry of the Aryal–Ford–Vilenkin solution is best appreciated by replacing t
and r with the Kruskal–Szekeres null coordinates u and v, which are defined by

2m(u2 − v2) = (R − 2m)er/(2m) (9.56)

and

t =
{
4m tanh−1(v/u) if |v| < |u|
4m tanh−1(u/v) if |v| > |u|. (9.57)

It is then apparent that the spacetime consists of four regions—one containing
a past spacelike singularity (the ‘white hole’), one containing a future spacelike
singularity (the ‘black hole’) and two asymptotically-flat∗ exterior universes—
separated by the horizons v = ±u.

Any constant-t slice of the string world sheet which starts in one of the
exterior universes will not enter the black hole or white hole regions but instead
extends to the wormhole ‘throat’ at u = v = 0. From there it can be continued
into the second exterior universe as shown in figure 9.1, which depicts the u–v
plane with either θ = 0 or θ = π . Because the minimum value of R along the
slice is 2m > 0, the northern (θ = 0) and southern (θ = π) halves of the string
are, in fact, disconnected.

However, this is not to imply that the string is undetectable inside the singular
regions. There is still a conical singularity on the axis when R < 2m, even
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though R is a timelike coordinate inside the horizon. An observer falling into the
black hole would not be able to examine both the northern and southern halves
of the string in the time left between crossing the horizon and plunging into the
singularity but he or she would, in principle, be able to measure the circumference
and radius of a small (sin θ � R/m) circle centred on the axis and deduce that
there was an angle deficit 8πµ there.

A straight string can be embedded in a similar fashion in any of the other
standard black hole solutions, namely the Kerr, Reissner–Nordström and Kerr–
Newman metrics—which describe rotating, charged and charged and rotating
black holes respectively. The only proviso is that the string must lie along the
rotation axis if the black hole is rotating.

Aryal et al [AFV86] have also constructed a solution which describes
two Schwarzschild black holes held apart by a system of cosmic strings by
generalizing a solution, due to Bach and Weyl, that dates back to 1922. The
relevant line element is

ds2 = e2χ dt2 − e−2χ [e2ψ(dr2 + dz2)+ r2 dφ2] (9.58)

where

e2χ =
(
ρ1+ + ρ1− − 2m1

ρ1+ + ρ1− + 2m1

)(
ρ2+ + ρ2− − 2m2

ρ2+ + ρ2− + 2m2

)
(9.59)

and

e2ψ = K 2

[
(ρ1+ + ρ1−)2 − 4m2

1

4ρ1+ρ1−

][
(ρ2+ + ρ2−)2 − 4m2

2

4ρ2+ρ2−

]

×
[
(m2 + d)ρ1+ + (m1 + m2 + d)ρ1− − m1ρ2−

dρ1+ + (m1 + d)ρ1− − m1ρ2+

]2
(9.60)

with ρ j± = [r2 + (z − c j±)2]1/2 for j = 1 or 2, and the constants c1− < c1+ <
c2− < c2+ satisfy the conditions

c2+ − c2− = 2m2 c2− − c1+ = 2d and c1+ − c1− = 2m1. (9.61)

The metric (9.58) is vacuum at all points away from the axis r = 0,
and describes two black holes with masses m1 and m2 located on the axis at
z = c1+ −m1 and z = c2− +m2 respectively, and so separated by a z-coordinate
distance 2d . The black holes are held in place by conical singularities along the
axial segments z > c2+, c2− > z > c1+ and z < c1−. The effective mass per unit
length µ of any of the conical segments depends only on the limiting value of the
metric function ψ on the axis:

1− 4µ = lim
r→0

e−ψ. (9.62)

Thus, on the segments z > c2+ and z < c1− joining the black hole horizons to
infinity

1− 4µext = K−1 d

m1 + d (9.63)
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while on the segment c1+ < z < c2− linking the two horizons

1− 4µint = K−1 m2 + d
m1 + m2 + d . (9.64)

Clearly µext > µint for all positive values of m1, m2 and d . In the original
Bach–Weyl solution the mass per unit length µext of the exterior segments was
assumed to be zero, and so K was fixed at d

m1+d . This forces µint to be negative,
and the interior Bach–Weyl segment is normally characterized as a ‘strut’ rather
than a string. However, all three segments will have non-negative masses per unit
length if K ≥ m2+d

m1+m2+d . In the particular case K =
m2+d

m1+m2+d the interior segment
vanishes and the two black holes are suspended from infinity, their attractive
gravitational force exactly balanced by the tension of the strings.

However, no matter what values are assumed forµext and µint, this system of
strings and black holes is manifestly unstable, as any perturbation in the distance
between the black holes will enhance or dampen their mutual attraction while the
tension in each conical segment remains constant. If the black holes have equal
mass m and their initial separation is larger than the equilibrium distance, they
will both be accelerated off to infinity by the string tension. This situation is
described by a variant of the Kinnersley–Walker metric [KW70]:

ds2 = A−2(x + y)−2[F(y) dt2− dx2/G(x)− dy2/F(y)− κ2G(x) dφ2] (9.65)

where A and κ are positive constants, and F(y) = y2 − 1 − 2mAy3 and
G(x) = 1− x2 − 2mAx3.

Here, if mA < 1/
√
27 the three roots of G are real and distinct and will be

denoted by x1 < x2 < x3. The coordinate patch {x2 < x < x3, −x2 < y < −x1}
then has F and G both positive, and covers the exterior region of one of the
black holes out to its acceleration horizon at y = −x2. The event horizon of the
black hole lies at y = −x1 while the remaining boundaries x = x2 and x = x3
correspond to segments of the symmetry axis (the axis joining the two black holes)
north and south of the event horizon.

Near the first segment, x = x2 + r2 where r is small, and the line element
(9.65) has the approximate form

ds2 ≈ A−2(x2 + y)−2[F(y) dt2 − 4 dr2/G′(x2)− dy2/F(y)− κ2G′(x2)r2 dφ2]
(9.66)

indicating that the segment has an effective mass per unit length µ given by

1− 4µ = 1
2κG

′(x2) ≡ −κx2(1+ 3mAx2). (9.67)

The mass per unit length of the second segment is given by a similar expression,
with x3 replacing x2 and an overall change in sign, but can always be set to zero
by choosing κ = −2/G′(x3).

In the flat-space limit m � A−1 the line element (9.65) reduces to Rindler
spacetime (that is, Minkowski spacetime in an accelerating reference frame) with
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a conical singularity on axis:

ds2 = z2 dt2 − dr2 − dz2 − κ2r2 dφ2 (9.68)

where r = A−1(x + y)−1(1 − x2)1/2 and z = A−1(x + y)−1(y2 − 1)1/2.
Since x1 ≈ −1/(2mA), x2 ≈ −1 − mA and x3 ≈ 1 − mA in this limit,
the event horizon corresponds to the surface {z ≈ A−1, r ≈ 2m} while
µ = 1

4 [1+ G′(x2)/G′(x3)] ≈ mA.
Thus, if the segment of length 2A−1 between the horizons were to be

replaced by a piece of the string, it would have the same mass, 2m, as the black
holes. This fact lends support to the idea that (9.65) is the metric that would result
if a straight cosmic string were to split into two through spontaneous black hole
pair production [GH95], although the quantum probability of such an event has
been shown to be infinitesimally small [HR95, EHKT95].

Achucarro et al [AGK95] have discussed in detail the possibility of
embedding a Nielsen–Olesen vortex solution in a Schwarzschild spacetime so
as to give a metric which reduces to the Aryal–Ford–Vilenkin metric (9.53) in the
zero-thickness limit. They have shown that when the core radius of the string is
much smaller than the black hole’s radius the vortex fields deviate minimally from
their flat-space analogues (as was shown in the previous section to be the case in
a flat Robertson–Walker background), although as seen by an external observer
the vortex terminates on the event horizon. Ruth Gregory and Mark Hindmarsh
[GH95] have extended this analysis to include the coupling of a Nielsen–Olesen
vortex to a pair of static or accelerating black holes, so as to obtain field-theoretic
realizations of the Bach–Weyl and Kinnersley–Walker solutions, with similar
results.

9.2.3 Strings coupled to a cosmological constant

A spacetime with a non-zero cosmological constant 	, but no other matter
content, is described by a stress–energy tensor Tµν = 1

8π	gµν . The most famous
spacetimes of this type are the homogeneous de Sitter universes, for which	 > 0
and

ds2 = 3

	2S2(η)
[dη2 − d 2 − K 2( ) dz2 − S2( ) dφ2] (9.69)

where S(η) = sin η, η or sinh η and K ( ) = sin ,  or sinh as k = 1, 0 or
−1; and the anti-de Sitter metric, which has 	 < 0 and

ds2 = 3

	2z2
(dη2 − dz2 − dr2 − r2 dφ2). (9.70)

The flat (k = 0) de Sitter universe and the anti-de Sitter metric are possibly
better known in their ‘spherical null’ form:

ds2 = [1+ 1
12	(r

2 + z2 − t2)]−2(dt2 − dr2 − dz2 − r2 dφ2) (9.71)
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in which 	 can be either positive or negative1.
In addition, Qingjun Tian [Tia86] has constructed two spacetimes with

constant	 which are neither homogeneous nor conformally flat, namely

ds2 = cos4/3(λr)(dt2 − dz2)− dr2 − λ−2 sin2(λr)/ cos2/3(λr) dφ2 (9.72)

where λ = (3	)1/2/2, 0 ≤ λr ≤ π/2 and 	 > 0, and

ds2 = cosh4/3(λr)(dt2 − dz2)− dr2 − λ−2 sinh2(λr)/ cosh2/3(λr) dφ2 (9.73)

where λ = (3|	|)1/2/2 and 	 < 0.
All of these solutions are axisymmetric, with the axis r = 0 as a fixed-point

set. It is, therefore, possible to introduce a cosmic string with mass per unit length
µ along the axis of any of these spacetimes by replacing dφ2 with (1− 4µ)2 dφ2

in the usual way. The only notable feature of these solutions is that Tian [Tia86]
has managed to find smooth interior solutions that join the string analogues of
(9.72) or (9.73) at a finite radius r = r0. Thus, apart from the bare straight-string
metric (7.28) and its travelling-wave extensions (9.12), the string analogues of
Tian’s solutions are the only well-behaved string spacetimes for which explicit
interior solutions are known.

The interior solution matching the string analogue of the first of Tian’s
solutions (9.72) at r = r0 has the form

ds2 = [A + B cos(κR)]4/3(dt2 − dz2)− dR2

− C2 sin2(λR)/[A + B cos(κR)]2/3dφ2 (9.74)

where Cλ(A + B)−1/3 = 1 to guarantee regularity on the axis R = 0, and
the metric functions and their normal derivatives will be continuous across the
junction surface R = R0 matching r = r0 if

cos(λr0) = A + B cos(κR0) λ−1(1− 4µ) sin(λr0) = C sin(λR0)

(9.75)

λ sin(λr0) = Bκ sin(κR0) and (1− 4µ) cos(λr0) = Cλ cos(λR0).
(9.76)

Thus, if λ and r0 are fixed there are five equations for the five interior parameters
A, B , C , R0 and κ .

In particular, if R0 = r0 then C = λ−1(1 − 4µ), A = (1 − 4µ)3 − B and
B = (λr0) sin(λr0)/[(κr0) sin(κr0)], where κr0 is the smallest positive root x of
the equation

(1− cos x)/(x sin x) = [(1− 4µ)3 − cos(λr0)]/[(λr0) sin(λr0)] (9.77)
1 The transformation from the k = 0 form of (9.69) to (9.71) is accomplished by letting t =
2K−1/2[1 − K (η2 − x2)]F(η, x) and x̄ = 4xF(η, x), where K = 1

3	, x = ( cos φ, sin φ, z),

x̄ = (r cos φ, r sin φ, z̄) and F(η, x) = 1+K (η2−x2)−2√Kη
[1+K (η2−x2)]2−4Kη2 , then dropping the overbar on z. The

transformation from the anti-de Sitter metric (9.70) to (9.71) is similar, with the roles of η and z (and
t and z̄) interchanged.
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provided that cos(λr0) �= (1−4µ)3. For example, ifµ� sin(λr0)[λr0−sin(λr0)]
then

κr0 ≈ λr0
{
1− 12µ

1+ cos(λr0)

sin(λr0)[λr0 − sin(λr0)]
}
. (9.78)

In this limit, because κr0 < λr0 < π/2 and A + B cos(κr0) = cos(λr0) > 0, the
interior solution will be singularity-free. However, there is a range of values of
µ and λr0 for which A + B cos(κR) = 0, and the interior solution is singular, at
some radius R < r0.

The stress–energy tensor of the interior solution has non-zero components:

T tt = T zz =
1

8π

[
λ2 + Bκ2/3

A + B cos(κR)

]
(9.79)

T RR =
1

6π

Bκλ sin(κR) cot(λR)

A + B cos(κR)
and T φφ =

1

6π

Bκ2 cos(κR)

A + B cos(κR)
.

(9.80)

A non-zero radial pressure T RR is unavoidable here, as hydrostatic equilibrium
requires that T RR = T rr on the boundary surface, and T rr = 1

8π 	 �= 0 in the
exterior solution.

The smooth interior solution matching the string analogue of the second
of Tian’s solutions (9.73) is similar to (9.74), with the trigonometric functions
replaced by the corresponding hyperbolic functions.

9.3 Strings in radiating cylindrical spacetimes

9.3.1 The cylindrical formalism

Such is the complexity of the Einstein equations that even radiating vacuum
solutions are difficult to construct unless a high degree of symmetry is assumed.
For the purposes of studying gravitational radiation one of the most convenient
and mathematically tractable devices is to impose cylindrical symmetry and the
properties of radiating cylindrical spacetimes have been extensively studied since
the 1930s. Although the resulting solutions obviously bear little geometrical
resemblance to the actual Universe, and are often dismissed as inconsequential on
this account, they are ideally suited for modelling the interaction of gravitational
waves with an infinite straight cosmic string. Indeed, the theory of cosmic strings
has provided the study of cylindrical waves with a physical context that was
previously conspicuously lacking.

The most general (non-static) line element with cylindrical symmetry has the
form [KSHM80]

ds2 = e2χ(dt2 − dr2)− e2ψ(dz + α dφ)2 − e2ω dφ2 (9.81)
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where χ , ψ , ω and α are functions of t and r only, r has range [0,∞), and φ is an
angular coordinate with range [0, 2π). In vacuum, an immediate simplification is
afforded by noting that

0 = Gtt + Grr = [(eψ+ω)′′ − (eψ+ω)··]e−2χ−ψ−ω (9.82)

where a prime denotes ∂/∂r and an overdot ∂/∂ t . It is, therefore, possible to make
the gauge choice eψ+ω = r and reduce the line element to

ds2 = e2χ(dt2 − dr2)− e2ψ(dz + α dφ)2 − e−2ψr2 dφ2. (9.83)

The vacuum field equations Grr = 0, Gtr = 0, Gφφ = 0 and Gzz − Gφφ = 0
then read, respectively,

C ′ = r(ψ̇2 + ψ ′2)+ 1
4r
−1e4ψ(α̇2 + α′2) (9.84)

Ċ = 2rψ̇ψ ′ + 1
2r
−1e4ψα̇α′ (9.85)

and

C̈ − C ′′ + ψ̇2 − ψ ′2 + 1
4r
−2e4ψ(α′2 − α̇2)

= 1
2r
−2e4ψα(α′′ − α̈ − r−1α′ + 4α′ψ ′ − 4α̇ψ̇)

= ψ̈ − r−1ψ ′ − ψ ′′ + 1
2r
−2e4ψ(α′2 − α̇2) (9.86)

where the function C = χ + ψ (known as Thorne’s C-energy [Tho65]) provides
a measure of the gravitational energy per unit length out to a radius r at a given
time t .

It is evident from the first two equations that C ′ ≥ 0 everywhere, and if
u = t + r and v = t − r are advanced and retarded radial null coordinates
then C,u ≥ 0 and C,v ≤ 0. The function C,u is a measure of the inward flux of
C-energy at any point, and C,v a measure of the outward flux.

If the radial derivative of (9.85) is subtracted from the time derivative of
(9.84) and the result inserted into (9.86), the latter breaks up into two simpler
equations [PSS85]:

ψ̈ − r−1ψ ′ − ψ ′′ = 1
2r
−2e4ψ(α̇2 − α′2) (9.87)

and
α̈ + r−1α′ − α′′ = 4(α′ψ ′ − α̇ψ̇). (9.88)

In the special case where α = 0 the metric function ψ satisfies the standard
cylindrical wave equation ψ̈ − r−1ψ ′ −ψ ′′ = 0, and the corresponding solutions
are called Einstein–Rosen metrics. More generally, the functions ψ and α
represent the two independent degrees of freedom of the gravitational field, with
ψ describing the + mode and α the × mode. Moreover, the C-energy fluxes C,u
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and C,v can then be broken up into two parts attributable separately to the + and
× gravitational modes:

C,u = C+u + C×u ≡ 2rψ,2u + 1
2r
−1e4ψα,2u (9.89)

and
C,v = C+v + C×v ≡ −2rψ,2v − 1

2r
−1e4ψα,2v . (9.90)

The cylindrical line element (9.83) will include a zero-thickness cosmic
string along the axis r = 0 if it supports a conical singularity there. Any axial
singularity will be, at worst, conical if the limits χ0(t) = limr→0 χ(r, t) and
ψ0(t) = limr→0 ψ(r, t) are well defined, and the metric component−gφφ has the
limiting form a20(t)ρ

2 where ρ ≈ eχ0r is the physical radius. The last condition
requires that

a20(t) = e−2ψ0−2χ0 + e2ψ0−2χ0 lim
r→0

α2

r2
(9.91)

also be well defined, and, in particular, that α goes to zero at least as rapidly as
r . The gravitational mass per unit length µ of the axial string is then given by
1− 4µ = a0(t). In particular, if limr→0 α

2/r2 = 0 then µ = 1
4 (1− e−C0), where

C0 is the axial value of the C-energy.
Furthermore, as is evident from (9.86), if α = 0 and ψ is regular on the

axis (which is true for almost all the solutions examined in this chapter) then
Ċ0 = 0 and µ is constant. However, this result does not extend to finite-thickness
strings embedded in an Einstein–Rosen spacetime, as the gravitational mass per
unit length of these can vary [And99a], although if the spacetime is asymptotically
flat∗ and there is no inward flux of C-energy at infinity then any change µ in µ
must be negative.

9.3.2 Separable solutions

The simplest way to generate solutions to the cylindrical wave equations (9.84) to
(9.86) is to assume that the metric functions are separable in t and r , in the sense
that χ = χ1(t) + χ2(r), ψ = ψ1(t) + ψ2(r) and α = α1(t)α2(r). A selection
of solutions of this type are briefly described here. It should be mentioned that
all are ‘generalized’ string solutions, constructible by excising an angular wedge
from along the axis of a pre-existing vacuum solution, and none has an acceptable
physical interpretation.

It is readily seen that if α = 0 then the only separable solutions are of the
form:

ds2 = e2kt+k2r2(dt2 − dr2)− a−20 e−2kt dz2 − a20e2ktr2 dφ2 (9.92)

where k and 0 < a0 < 1 are constants. The corresponding mass per unit length is
µ = 1

4 (1−a0), while the C-energy is C = 1
2k

2r2− ln a0. The bare straight-string
metric (7.28) is recoveredwhen k = 0. Although the solutions are all non-singular
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for finite values of t and r , there is a curvature singularity at timelike infinity if
k �= 0, as the Kretschmann scalar� ≡ RµνκλRµνκλ = 16k4(3−k2r2)e−4kt−2k2r2
diverges there.

Unfortunately no work to date has been done on separable solutions with
α �= 0. However, it should be remembered that the field equations (9.84) to
(9.86) are predicated on a particular gauge choice eψ+ω = r , and solutions that
are separable in one gauge are not necessarily separable in another. If the metric
functions are assumed to be separable in t and r before the gauge is chosen, the
wave equation (9.82) has a number of possible solutions which (after suitably
rescaling and rezeroing the coordinates t , r and z) can be represented in one of
the forms eψ+ω = 1, t , r , tr , sin t sin r or (p sinh t + q cosh t)(k cosh r + sinh r).
The first two forms are inconsistent with the presence of a conical singularity on
the axis (which requires that eψ+ω ∼ r for small r ), as is the last unless k = 0 but
the remaining choices can all be used to construct separable solutions containing
axial strings.

A limited version of this problem was first considered by Jaime Stein-
Schabes [SS86], who set α = 0 and attempted to construct separable solutions
describing both the exterior and interior of a finite-thickness axial string. Of the
three classes of exterior solutions he generated, two turn out to be just the bare
straight-string metric (7.28) in unusual coordinates, while the third is reducible to
the line element

ds2 = (1+ cosh t)2[dt2 − dr2 − a20 sinh2(r) dφ2] −
sinh2 t

(1+ cosh t)2
dz2 (9.93)

with a0 = 1− 4µ as before.
The Stein-Schabes line element (9.93) can be converted to the canonical form

(9.83) by making the coordinate transformation

T + R = a0 cosh(t + r) and T − R = a0 cosh(t − r). (9.94)

The metric components are somewhat complicated functions of the canonical
coordinates (T, R), and the only advantage of the transformation is that it allows
the C-energy to be computed as a function of t and r :

e2C = sinh2 t

a20 sinh(t + r) sinh(t − r)
. (9.95)

As can be seen, the C-energy diverges at the singular points of the coordinate
transformation (the null surfaces t + r = 0 and t − r = 0), and the solution
in canonical form cannnot cover the region T 2 − R2 < a20. However, the
solution has no obvious curvature singularities (the Kretschmann scalar is � =
48(1 + cosh t)−6 and the physical components of the Riemann tensor are all
bounded) and its physical interpretation remains uncertain.

The problem of constructing separable solutions (again with α = 0) has since
been reanalysed by Eric Shaver and Kayll Lake [SL89], although they devoted
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most of their efforts to fully classifying the class of interior string solutions (that
is, solutions with the non-zero stress–energy components T tt = T zz ). In addition
to the vacuum solution (9.92) generated by the gauge choice eψ+ω = r , there is a
plethora of possible exterior string metrics that are separable in other gauges.

For example, the unique separable string solution corresponding to the gauge
choice eψ+ω = tr is:

ds2 = t4(dt2 − dr2 − a20r2 dφ2)− t−2 dz2 (9.96)

and has C-energy given by e2C = a−20 t2/(t2 − r2) and Kretschmann scalar
� = 192t−12. The solution has an initial singularity, and the transformation
to canonical coordinates R = tr and T = 1

2 (t
2 + r2) is again degenerate on the

null surfaces t ± r = 0.
By contrast, the gauge choice eψ+ω = sin t sin r leads to four different types

of string solution, including the one generated from the Stein-Schabes metric
(9.93) by replacing sinh t with sin t and cosh t with cos t . All four types contain
curvature singularities that are periodic in either r or t (although this need not be
an insuperable problem: see section 9.3.3 below).

The family of separable solutions with eψ+ω = (p sinh t + q cosh t) sinh r
is even larger, containing as it does the hyperbolic analogues of the four types
of sinusoidal solutions plus a number of others. The particular choice eψ+ω =
et sinh r generates a one-parameter class of solutions with the line element

ds2 = e2(1−k)t(1+ cosh r)4k
2−2k(dt2 − dr2)− e2kt (1+ cosh r)2k dz2

− 24k
2
a20e

2(1−k)t(1+ cosh r)−2k sinh2(r) dφ2 (9.97)

for which e2C = a−20 (
1
2 + 1

2 cosh r)
4k2 and

� = − 16(2k − 1)2k2e4(k−1)t (1+ cosh r)−2(4k2−2k+1)

× [(2k2 − k − 1)(−1+ cosh r)+ 2k − 1]. (9.98)

If k = 0 or k = 1
2 the metric is flat, and if k = 1 it is non-flat but

singularity-free. However, in common with all the other solutions mentioned
in this section, it is not possible to extend the canonical version of the metric to
spacelike infinity (R2−T 2 →∞), as the transformation to canonical coordinates
is T ± R = a0et±r .

9.3.3 Strings in closed universes

In 1989 Robert Gowdy and Sandeep Chaube published a radiating string
spacetime which describes two orthogonal cosmic strings in a closed universe
[GC89]. Gowdy and Chaube assumed a line element of the general cylindrical
form (9.81), set α to zero, and effectively made the vacuum gauge choice
eψ+ω = sin t sin r . With the ranges of t and r restricted to (0, π), the spacetime
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is radially compact, and if a periodic identification is imposed on the z-coordinate
then it is most naturally characterized as a ‘closed universe’, although it must be
remembered that the closure is caused not by an overdensity of stress–energy, as
in the closed Robertson–Walker spacetimes, but rather by gravitational radiation.

In the chosen gauge, the analogue of the cylindrical wave equation (9.87) for
the metric function ψ reads:

ψ̈ + cot(t)ψ̇ − ψ ′′ − cot(r)ψ ′ = 0 (9.99)

and admits series solutions of the form

ψ(t, r) =
∞∑
n=0
[AnPn(cos t)+ BnQn(cos t)]Pn(cos r) (9.100)

where Pn and Qn are Legendre functions of the first and second kind, respectively,
and An and Bn are undetermined constants. (Here, all terms proportional to
Qn(cos r) have been omitted from ψ because Qn(x) diverges as x → ±1, and
the presence of such terms would induce a curvature singularity at r = 0.)

Once ψ has been specified, the remaining metric function χ is found by
integrating the analogues of (9.84) and (9.85), which can be rearranged to read:

(cos2 r−cos2 t)Ċ = sin r sin t[2 cos r sin tψ̇ψ ′−cos t sin r(ψ̇2+ψ ′2)]+cos t sin t
(9.101)

and

(cos2 r − cos2 t)C ′ = sin r sin t[cos r sin t (ψ̇2 + ψ ′2)− 2 cos t sin rψ̇ψ ′]
− cos r sin r (9.102)

where C = χ + ψ . Clearly, all points on the null surfaces t = r and t = π − r
(where cos2 r = cos2 t) are singular points of this system of equations, and χ will
be singular on these surfaces unless the right-hand sides of (9.101) and (9.102)
also vanish there.

For example, if ψ contains only zeroth-order Legendre functions, so that

ψ = A0 + 1
2 B0 ln

(
1+ cos t

1− cos t

)
(9.103)

then the general solution for χ is

χ = χ0 − 1
2 (B

2
0 − 1) ln(cos2 r − cos2 t)+ (B2

0 + B0) ln(sin t)− B0 ln(1+ cos t)
(9.104)

where χ0 is an integration constant.
The metric is, therefore, singular on the surfaces t = r and t = π − r

unless B0 = ±1. The choice B0 = −1 reduces the metric (after rescaling) to the
sinusoidal version of the hyperbolic Stein-Schabes solution (9.93):

ds2 = (1+ cos t)2[dt2 − dr2 − a20 sin2(r) dφ2] −
sin2 t

(1+ cos t)2
dz2 (9.105)
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while the choice B0 = 1 gives another of the separable sinusoidal solutions:

ds2 = (1+cos t)−2 sin4 t [dt2−dr2−a20 sin2(r) dφ2]−
(1+ cos t)2

sin2 t
dz2. (9.106)

With r restricted to the range (0, π), both solutions describe spacetimes
whose spacelike sections are either radially compact or (if z is recast as an
angular coordinate) topological 3-spheres. Each universe emerges from an initial
singularity at t = 0, is terminated by a second singularity at t = π and supports
conical singularities along the axes r = 0 and r = π . However, the initial and
final singularities have fundamentally different characters, as is evident from the
Kretschmann scalars of the two solutions:

� = 48(1+ cos t)−6 and � = 48(1− cos t)−6 (9.107)

respectively. In the first solution (9.105) only the final singularity is a curvature
singularity, whereas the initial singularity is conical. The reverse is true of the
second solution.

The solution developed by Gowdy and Chaube [GC89] is similar in structure
but proceeds from a slightly different decomposition of ψ . Gowdy and Chaube
first introduced a supplementary metric function λ defined by e2ψ = (1 +
cos t)(1 + cos r)e2λ. Then because ψ̂ ≡ 1

2 ln(1 + cos t) + 1
2 ln(1 + cos r) is a

particular solution of the wave equation (9.99) for ψ , the function λ also satisfies
(9.99) and can be decomposed as a series of Legendre functions as per (9.100).
However, ψ̂ cannot be expressed as a finite series of Legendre functions, and so
the long-wavelength (or small mode number n) limit is not the same for λ as it is
for ψ .

In particular, it turns out that if λ contains only zeroth-order Legendre
functions then a singularity in χ on the null surfaces t = r and t = π − r is
unavoidable. Gowdy and Chaube, therefore, chose λ to be a mixture of zeroth-
and first-order modes:

λ = B0 ln

(
1+ cos t

sin t

)
+ B1

[
cos(t) ln

(
1+ cos t

sin t

)
− 1

]
cos r. (9.108)

Equations (9.101) and (9.102) then integrate to give:

χ = χ0 + 1
2 B

2
1 (Q

2
0 sin

2 t + 2Q0 cos t − 1) sin2 r − B1(1+ 2B0)Q0 cos r

− B1Q0 cos t + (B2
0 + B0 + B2

1 − B1) ln(sin t)
+ C+ ln(cos r + cos t)+ C− ln(cos r − cos t) (9.109)

where Q0 = ln((1+ cos t)/ sin t) and

C+ = (B1−B0)[1− 1
2 (B1−B0)] and C− = 1

2 [1−(B0+B1)2]. (9.110)
The function χ will remain regular on the interior of the null surfaces t = r
and t = π − r if C+ and C− are both zero, which, in turn, requires that
(B0, B1) = ±( 12 , 12 ), (− 1

2 ,
3
2 ) or (− 3

2 ,
1
2 ).
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The resulting line elements are clearly very complicated but their limiting
forms near the singular surfaces r = 0 and r = π are relatively straightforward.
For small values of r ,

ds2 ≈ 2e2χ0−2ψ0(t)−2B1 sin2(t)(dt2 − dr2)− e2ψ0(t) dz2 − e−2ψ0(t) sin2(t)r2 dφ2
(9.111)

where

e2ψ0(t) = 2(1+ cos t)

(
1+ cos t

sin t

)2B0
e2B1[cos(t)Q0−1].

The axis r = 0, therefore, supports a conical singularity with deficit parameter
a20 = 1

2e
2B1−2χ0 .

Similarly, it turns out that Gowdy and Chaube’s inclusion of a factor of
1 + cos r in the definition of λ induces a conical singularity at r = π . For small
values of r̄ = π − r ,
ds2 ≈ 2e2χ0+2ψπ (t)−2B1(dt2−dr̄2)−e2ψπ(t)r̄2 dz2−e−2ψπ (t) sin2(t) dφ2 (9.112)

where now

e2ψπ (t) = 1
2 (1+ cos t)

(
1+ cos t

sin t

)2B0
e−2B1[cos(t)Q0−1].

At r = π , therefore, the z-dimension collapses to a point, and if the natural
interpretation of the spacetime as describing a closed universe is imposed by
treating z as an angular coordinate with period 2π , the axis r = π coincides with a
second conical singularity with the same deficit parameter a20 = 1

2e
2B1−2χ0 . Thus

the universe contains two orthogonal straight cosmic strings with equal masses
per unit length (although these can be independently varied simply by altering the
period of z and/or φ), much like the closed Robertson–Walker spacetime (9.36).

Gowdy and Chaube regarded the minimal effect of the two strings as
surprising, because ‘it seems to contradict the usual argument that long straight
strings would quickly come to dominate an initially radiation-dominateduniverse’
[GC89]. However, the closed Robertson–Walker spacetime (9.36) is a much
simpler and cosmologically more germane example supporting this claim and
in both cases the solutions, exploiting as they do the highly symmetric nature of
the underlying spacetimes, are too idealized to be relevant to the evolution of a
general string network in a closed universe.

9.3.4 Radiating strings from axisymmetric spacetimes

It has long been known that cylindrical solutions of the Einstein equations
can, in principle, be generated by applying a simple complex substitution to
known stationary axisymmetric solutions. A general stationary axisymmetric line
element can always be written in the form

ds2 = e2ψ(dt + α dφ)2 − e2χ(dr2 + dz2)− e2ω dφ2 (9.113)
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where ψ , χ , ω and α are functions of r and z alone. The substitution t → iz,
z → it and α → iα then transforms this into the general cylindrical line element
(9.81), although there is no guarantee that the metric functionsψ , χ , ω and α will
remain real once z has been replaced by it .

In 1986 Basilis Xanthopoulos [Xan86a, Xan86b] applied a similar
transformation to the Kerr metric and constructed a simple regular solution
describing the interaction of a straight cosmic string with cylindrical waves.
Recall that in Boyer–Lindquist coordinates the Kerr metric has the form

ds2 = ρ−2[(R2 − 2mR + a2 cos2 θ) dT 2 + 4maR sin2 θ dT dφ −�2 sin2 θ dφ2]
−−1ρ2 dR2 − ρ2 dθ2 (9.114)

where
ρ2 = R2 + a2 cos2 θ  = R2 − 2mR + a2 (9.115)

and
�2 = (R2 + a2)2 − a2 sin2 θ. (9.116)

If the angular coordinate θ is everywhere replaced by iθ then (because cos2 θ →
cosh2 θ and sin2 θ →− sinh2 θ ) the resulting line element has signature+2 rather
than the conventional−2, with R now playing the role of the timelike coordinate.

Without loss of generality it can be assumed that m = 1. If it is further
assumed that j ≡ a/m > 1 and the coordinates are relabelled as follows:

T → z R→ 1+ ( j2 − 1)1/2 sinh t θ → r and φ→ a0φ
(9.117)

then after reversing the signs of all the metric components the line element takes
on the manifestly cylindrical form

ds2 = ρ2(dt2−dr2)−κ2ρ−2(dz+α dφ)2−a20ρ2κ−2( j2−1) sinh2 r cosh2 t dφ2

(9.118)
where now

ρ2 = [1+ ( j2 − 1)1/2 sinh t]2 + j2 cosh2 r (9.119)

κ2 = ( j2 − 1) sinh2 t + j2 cosh2 r − 1 (9.120)

and
α = −2 ja0κ−2[1+ ( j2 − 1)1/2 sinh t] sinh2 r. (9.121)

The Xanthopoulos line element (9.118) can be further reduced to the
canonical form (9.83) by making the transformation to a new set of coordinates
(T, R) defined by

T ± R = a0( j2 − 1)1/2 sinh(t ± r) (9.122)

but the value of this change is limited. One benefit is that the C-energy can be
read off directly as

e2C = ( j
2 − 1) sinh2 t + j2 cosh2 r − 1

a20( j
2 − 1)(sinh2 t + cosh2 r)

. (9.123)
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Also, for small values of R, the line element becomes:

ds2 ≈ ρ20 (dt2 − dr2)− κ20ρ−20 (dz + βr2 dφ)2 − a20ρ20r2 dφ2 (9.124)

where ρ20 (t) and κ
2
0 (t) are the values of ρ2 and κ2 on the axis, and β(t) =

−2 ja0κ−20 [1+( j2−1)1/2 sinh t]. The solution, therefore, supports an axial string
with mass per unit length µ given by the standard formula 1− 4µ = a0.

Another regime of interest is spacelike infinity, where R � |T | or,
equivalently, r � |t|. In this limit ρ2 ≈ κ2 ≈ j2 cosh2 r ≈ j2a−20 ( j

2 − 1)−1R2
and α ≈ −2a0 j−1, and so
ds2 ≈ j2a−20 ( j

2 − 1)−1(dT 2 − dR2)− (dz − 2a0 j−1dφ)2 − R2 dφ2. (9.125)

On replacing z with Z = z − 2a0 j−1φ it is evident that the spacetime is
asymptotically flat∗, with an effective mass per unit length µeff (defined in terms
of the angle deficit on circles of radius R) given by

1− 4µeff = j−1( j2 − 1)1/2a0. (9.126)

The difference between the mass per unit length of the string and the mass
per unit length of the spacetime

µeff − µ = 1
4 j
−1[ j − ( j2 − 1)1/2]a0 (9.127)

(which incidentally is equal to 1
4 (e

−C0 − e−C∞)) is attributable to the energy of
the gravitational waves filling the spacetime.

In terms of the rescaled null coordinates u = sinh(t+r) and v = sinh(t−r)
the C-energy is:

e2C = a−20 ( j
2 − 1)−1

[
j2 − 1

2
− 1

2

uv + 1

(u2 + 1)1/2(v2 + 1)1/2

]
(9.128)

and so

C,v ≈ − 1

2(v2 + 1)[(2 j2 − 1)(v2 + 1)1/2 − v] (9.129)

for large u and there is an outward flux of C-energy at future null infinity.
(Xanthopoulos [Xan86b] mistakenly claimed that C,v falls off as u−3 for large
u and so regarded the solution as non-radiating.) Similarly,

C,u ≈ 1

2(u2 + 1)[(2 j2 − 1)(u2 + 1)1/2 + u] (9.130)

at past null infinity (v → −∞) and thus the ingoing and outgoing pulses of
C-energy have the same profiles (one being the time reverse of the other). In
particular, C,u falls off as |u|−3 as |u| → ∞ and C,v as −|v|−3 as |v| → ∞ at
past and future null infinity respectively.
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Furthermore, the energy fluxes in the individual+ and× gravitationalmodes
at future null infinity are

C+v = − 1
2 ( j

2 − 1)
[2( j2 − 1)v2 − 2 j2 − 1+ 2v( j2 − 1)(v2 + 1)1/2]2
(v2 + 1)[(v2 + 1)1/2 + v][(2 j2 − 1)(v2 + 1)1/2 − v]4

(9.131)
and

C×v = − 1
2 j

2{[(v2 + 1)1/2 − v]2[6( j2 − 1)v2 + 2 j2 − 3

+ 6v( j2 − 1)(v2 + 1)1/2]2}{(v2 + 1)[(v2 + 1)1/2 + v]
× [(2 j2 − 1)(v2 + 1)1/2 − v]4}−1. (9.132)

Hence, at early times at future null infinity (that is, when v→ −∞),
C+v ≈ − 9

16 j
−4( j2 − 1)|v|−5 and C×v ≈ − 1

4 j
−2|v|−3 (9.133)

and the × mode dominates the outgoing radiation flux, while at late times (when
v→∞),
C+v ≈ − 1

4 ( j
2 − 1)−1v−3 and C×v ≈ − 9

16( j
2 − 1)−2 j2v−5 (9.134)

and the + mode dominates. At past null infinity, of course, the asymptotic
behaviour of the two modes is the same, except in time-reversed order.

Xanthopoulos [Xan86b] describes the metric (9.118) as a ‘rotating cosmic
string’, presumably because α �= 0. However, a non-zero α is an indication
only of the presence of × mode gravitational waves, not that the axial string is
spinning. The canonical metric describing a zero-thickness cosmic string with
angular momentum per unit length J , which was first constructed by PawelMazur
[Maz86], has the form

ds2 = (dt + 4J dφ)2 − dr2 − dz2 − (1− 4µ)2r2 dφ2 (9.135)

and is stationary axisymmetric rather than cylindrically symmetric. It also
suffers from the defect that any horizontal circle centred on the axis with radius
r < 4J (1 − 4µ)−1/2 forms a closed timelike curve. The spinning string metric,
therefore, violates causality and is unlikely to be of physical importance.

Xanthopoulos [Xan87] has also extended the complex transformation
described here to the Kerr–Newman metric (which describes a spinning black
hole with electric charge), to generate a family of radiating solutions describing a
string immersed in a parallel electric field.

Furthermore, the Kerr metric (9.114) is the simplest member of a one-
parameter family of stationary axisymmetric vacuum solutions discovered by
Tomimatsu and Sato in 1972. It should not be surprising, therefore, that the
transformations used by Xanthopoulos can be applied to other Tomimatsu–Sato
solutions to generate well-behaved radiating string spacetimes.
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To see this directly, consider again the canonical cylindrical metric (9.83).
The field equation (9.88) can be formally integrated by introducing a potential
function�(t, r) with the property that

r−1e4ψα̇ = �′ and r−1e4ψα′ = �̇. (9.136)

The integrability condition for α then becomes

(re−4ψ�̇)· = (re−4ψ�′)′ (9.137)

and the two field equations (9.87) and (9.137) are just the real and imaginary
components of a single equation

Re(E)(Ë − r−1E ′ − E ′′) = Ė2 − E ′2 (9.138)

for the complex potential E = e2ψ + i�.
On defining ξ = E−1

E+1 or, equivalently, E = 1+ξ
1−ξ , the equation for E reduces

to the cylindrical Ernst equation:

(1− |ξ |2)(ξ̈ − r−1ξ ′ − ξ ′′) = 2ξ∗(ξ̇2 − ξ ′2). (9.139)

In terms of ξ , the components of E are e2ψ = 1−|ξ |2
|1−ξ |2 and i� = ξ−ξ∗

|1−ξ |2 . A
final transformation from the canonical coordinates t and r to prolate coordinates
x ∈ � and y ≥ 1 defined by t = xy and r = (x2 + 1)1/2(y2 − 1)1/2 results in the
equation

(|ξ |2− 1){[(x2+ 1)ξ,x ],x −[(y2− 1)ξ,y ],y } = 2ξ∗[(x2+ 1)ξ,2x −(y2− 1)ξ,2y ].
(9.140)

The analogue of this equation in the case of a stationary axisymmetric
spacetime is recovered by replacing x with ix . The Tomimatsu–Sato (TS) metrics
are generated from rational polynomial solutions ξ of the analogue equation. For
example, the Kerr metric (the δ = 1 TS solution) has ξ = (px − iqy)−1, where p
and q are real constants satisfying p2 + q2 = 1, while the δ = 2 solution has

ξ = 2px(x2 − 1)− 2iqy(1− y2)
p2(x4 − 1)− q2(1− y4)− 2ipqxy(x2 − y2) (9.141)

(again with p2 + q2 = 1).
The Tomimatsu–Sato solutions are asymptotically flat but all except the

Kerr metric contain naked curvature singularities. Xanthopolous and Demetrios
Papadopoulos [PX90] have transformed the δ = 2 TS metric into a non-singular
radiating string solution by making the replacements x → ix and p → ip in the
complex potential (9.141). The resulting formula for the metric function ψ is:

e2ψ = {(y2 − 1)4 + 2(y2 − 1)(x2 + y2)[2x4 + x2y2 + 3x2

+ (y2 − 1)2 + y2 + 1]p2 + (x2 + y2)4 p4}
× {[p2(x4 − 1)+ q2(1− y4)+ 2px(x2 + 1)]2
+ 4q2y2[px(x2 + y2)+ y2 − 1]2}−1 (9.142)
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where now q2 − p2 = 1.
The remainingmetric components e2χ and α can be calculated by integrating

(9.84)–(9.85) and (9.136) respectively. Papadopoulos and Xanthopoulos find that

e2χ = a−20 {[p2(x4 − 1)+ q2(1− y4)+ 2px(x2 + 1)]2
+ 4q2y2[px(x2 + y2)+ y2 − 1]2}{p4(x2 + y2)4}−1 (9.143)

(where a0 is an integration constant) and

α = − 4p−1q(y2 − 1){xp3(x2 + y2)[2x4 + y4 − x2(y2 − 1)− 3y2]
+ p2(x2 + y2)[x2(4x2 + 5− y2)+ (y2 − 1)(y2 − 2)]
+ (y2 − 1)3(px + 1)}{(y2 − 1)4 + 2(y2 − 1)(x2 + y2)[2x4 + x2y2
+ 3x2 + (y2 − 1)2 + y2 + 1]p2 + (x2 + y2)4 p4}−1. (9.144)

Near the axis of symmetry (where r = 0), x ≈ t − 1
2

t
1+t2 r

2 and y ≈
1+ 1

2
1

1+t2 r
2, and so

a20e
2χ ≈ e−2ψ ≈ p2(t2 + 1)2 + 4pt (t2 − 1)+ 8t2

p2(1+ t2)2 (9.145)

while

α ≈ −8p−3qt p(t
2 − 1)+ 2t

(t2 + 1)3
r2. (9.146)

The axis, therefore, defines a conical singularity with the usual mass per unit
length µ = 1

4 (1− a0).
Near spacelike infinity (r � |t|), however, x ≈ t/r + 1

2 t (t
2 − 1)/r3 and

y ≈ r − 1
2 (t

2 − 1)/r , and so

e2ψ ≈ 1− 8q−2r−2 a20e
2χ ≈ p−4q4 + 4p−4q2r−2 (9.147)

and
α ≈ −4p−1q−1 − 4q−1t/r. (9.148)

The metric is, therefore, asymptotically flat∗ with a constant C-energy C∞ =
a−20 p−4q4 at infinity, with the difference C∞ − C0 = a−20 p−4(p2 + q2)
again attributable to the energy of the cylindrical gravitational waves filling the
spacetime.

Examination of the expressions for e2ψ , e2χ and α confirms that the metric
components are all finite if p �= 0 and y > 1 (that is, away from the axis).
The denominators in (9.143) and (9.144) are clearly positive definite, while the
second squared term in the denominator of (9.142) can vanish only if px < 0 and
y2 = (1 − px3)/(1 + px), which condition forces the first squared term to be
positive definite. Furthermore, the determinant of the metric tensor g = −r2e4χ
is non-zero if r �= 0. Thus the solution describes an asymptotically-flat∗ radiating
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string spacetime which, like the Xanthopoulos solution, is free of curvature
singularities. Indeed, in the words of Papadopoulos and Xanthopoulos [PX90], ‘it
appears that the correct place of TS solutions is in the description of cylindrically
symmetric spacetimes, as opposed to stationary axisymmetric spacetimes. . . ’.

9.3.5 Einstein–Rosen soliton waves

The relatively simple form of the equations (9.87) and (9.88) for the metric
functions ψ and α appearing in the canonical line element (9.83) has invited the
application of a wide variety of mathematical techniques. One that has proved to
be particularly fruitful is the inverse scattering transform method, developed by
Belinsky and Zakharov in the late 1970s.

To apply the Belinsky–Zakharov method, the equations for ψ and α are first
rewritten as a 2× 2 system of nonlinear wave equations:

[r(h−1)acḣcb]· = [r(h−1)ach′cb]′ (9.149)

for the matrix components

hab =
[

e2ψ αe2ψ

αe2ψ r2e−2ψ + α2e2ψ
]
. (9.150)

The wave equations (9.149) are then used to generate a system of
Schrödinger-like equations

�̇ab − 2λ2

λ2 − r2�ab,λ= −
r

λ2 − r2 (h
−1)cd(r ḣca + λh′ca)�db (9.151)

and

�′ab −
2λr

λ2 − r2�ab,λ= −
r

λ2 − r2 (h
−1)cd(λḣca + rh′ca)�db (9.152)

for a ‘wavefunction’�ab which depends on a complex parameter λ as well as the
coordinates r and t , and satisfies the initial condition limλ→0�ab = hab.

The power of the Belinsky–Zakharov method lies in the fact that new
solutions �̄ab of (9.151) and (9.152) can be generated by applying a series
of algebraic operations to any known solution �ab. It is, therefore, possible
to construct new metric solutions hab by making a simple initial choice for
hab, solving for the corresponding wave equation �ab, then transforming �ab
algebraically and taking the limit λ→ 0.

The simplest choice of seed solution is the Minkowski metric gµν =
diag(1,−1,−1,−r2), which has hab = diag(1, r2) and �ab = diag(1, r2 +
2tλ+ λ2), although the more general Levi-Cività seed

ds2 = r2(q2−q)(dt2 − dr2)− r2q dz2 − r2(1−q)dφ2 (9.153)
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for which

�ab = diag((r2 + 2tλ+ λ2)q , (r2 + 2tλ+ λ2)1−q) (9.154)

is also commonly used2.
By extending earlier work by Cespedes and Verdaguer [CV87] on plane-

symmetric Kasner solutions, Jaume Garriga and Enric Verdaguer [GV87b] have
identified two general classes of Einstein–Rosen (α = 0) solutions containing a
total of N solitons superimposed on a Levi-Cività seed, which they describe as
‘generalized soliton solutions’.

The first class of solutions has

e2ψ = r2q
N∏
j=1

p j (t, r)
k j (9.155)

where k j are real constants and

p j (t, r) = Pj + (P2
j − 1)1/2 (9.156)

with

Pj = r−2[(t−b j )2+w2
j ]+{1+r−4[(t−b j )2+w2

j ]2−2r−2[(t−b j )2−w2
j ]}1/2

(9.157)
and b j and w j also real constants.

With the same definition of p j , the second class of solutions has

e2ψ = r2q
N∏
j=1

ek j γ j (t,r) (9.158)

where
γ j (t, r) = cos−1[2r−1(t − b j )p1/2j (1+ p j )

−1]. (9.159)

The corresponding metric functions χ can be constructed either by integrating
the field equations (9.84) and (9.85) or by direct use of the inverse scattering
formalism. In either case, the general expression for χ is too complicated to
reproduce here.

The family of one-soliton solutions belonging to the first class (9.155) with
k1 = 1 and b1 = 0 were first examined by Verdaguer and Xavier Fustero [FV86],
and with k1 �= 1 by Garriga and Verdaguer [GV87b]. The full line element is:

ds2 = a−20 r2(q
2−q−k2) pk(2k+2q−1)

(1− p)2k2Hk2
(dt2 − dr2)− r2q pk dz2 − r2(1−q) p−k dφ2

(9.160)
2 Despite appearances to the contrary, the line element (9.153) given here for the Levi-Cività solution
is isometric to the alternative form (7.20) used in chapter 7. This can be seen by replacing r in (9.153)

with r̄ = r(q−1)2 , defining m = q/(q − 1) and then dropping the overbar. The asymptotically-flat∗
subcase corresponds interchangeably to m = 0 or q = 0.



318 Other exact string metrics

where a0 is an integration constant and

H = (1− p)2 + 16w2r−2 p2(1− p)−2 (9.161)

with k ≡ k1, w ≡ w1 and p ≡ p1.
In principle, the solution contains four adjustable parameters (A, k, q and w)

but one of these can be eliminated by requiring the singularity on the symmetry
axis r = 0 to be conical. For small values of r , p ≈ 4r−2(t2 + w2) and
H ≈ 16r−4(t2 +w2)2, and so

e2χ ≈ a−20 [4(t2 +w2)]k(2q−1−2k)r2(q−k)(q−k−1)
and e2ψ ≈ [4(t2 +w2)]kr2(q−k). (9.162)

Thus e2C ≡ e2(χ+ψ) ∝ r2(q−k)2 and the solution supports a cosmic string at
r = 0, with the usual strength a0, if and only if k = q . In addition, there is a
curvature singularity at timelike infinity (|t| � r ) unless either k(2q−1−2k) ≥ 0
(if k �= q) or k = q ≤ 1.

At spacelike infinity, however, p ≈ 1+ 2|w|r−1 and H ≈ 4+ 8|w|r−1, and
so with k = q

e2χ ≈ a−20 (4w)
−2q2r2(q2−q) and e2ψ ≈ r2q . (9.163)

Apart from the scaling factor a−20 (4w)
−2q2 , therefore, the solution has the same

asymptotic structure as the Levi-Cività seed solution (9.153). In particular, the C-
energy diverges as q2 ln r , and the solution cannot be asymptotically flat∗ unless
q = 0. Of course, if q = 0 then the bare straight-string metric (7.28) is recovered.

Garriga and Verdaguer [GV87b] claim that, with v = t−r , the rate of change
of the C-energy at future null infinity in the general one-soliton solution (9.160) is
C,v ≈ − 1

2w
−1k2, and so there is a net outward flux of gravitational energy unless

k = 0. Strictly speaking, however, this expression is valid only for |v| � w. For
general values of v, it turns out that

C,v ≈ − 1
2k

2 2v(v2 +w2)1/2 + 2v2 +w2

(v2 +w2)1/2[v2 +w2 + v(v2 + w2)1/2] . (9.164)

Here, and in all other soliton solutions in this section, the corresponding rate of
change of C-energy at past null infinity, C,u , is found by multiplying C,v by −1
and replacing v everywhere with −u.

The two-soliton solutions belonging to class (9.155) with k1 = −k2 ≡ k
have the line element

ds2 = a−20 r2(q
2−q−4k2)F (p1/p2)k(2q−1)

(1− p1)2k
2
(1− p2)2k

2Hk
2

1 H
k2
2

(dt2 − dr2)

− r2q(p1/p2)k dz2 − r2(1−q)(p1/p2)−k dφ2 (9.165)
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where Hj is generated by reading p as p j and w as w j in the expression (9.161)
for H , and

F =
{[
(1+ p1 p2)r

2 − 8(t − b1)(t − b2)p1 p2
(1+ p1)(1+ p2)

]2
− 64w2

1w
2
2 p

2
1 p

2
2

(1− p1)2(1− p2)2

}2k2

.

(9.166)
These solutions were first studied with k = 1 and b1 = b2 = 0 by Fustero and
Verdaguer [FV86], and in full generality by Garriga and Verdaguer [GV87b].

For small values of r ,

e2χ ≈ a−20 r2(q
2−q)[(t21 +w2

1)/(t
2
2 +w2

2)]k(2q−1) (9.167)

and
e2ψ ≈ r2q [(t21 +w2

1)/(t
2
2 + w2

2)]k (9.168)

where t j ≡ t − b j , and so the axis supports a conical singularity if and only if
q = 0.

In addition, for large values of r the line element tends asymptotically to the
Levi-Cività seed solution (9.153), save for a constant scaling factor in e2χ (this is
easily seen to be a general feature of all soliton solutions of class (9.155)). Thus
the two-soliton solution describes a cosmic string on axis and is asymptotically
flat∗ if q = 0, in which case e2C0 = a−20 and

e2C∞ = a−20 (4w1w2)
−2k2 [(w1 + w2)

2 + (b1 − b2)2]2k2 ≥ a−20 . (9.169)

Equality holds on the right-hand side if and only if w1 = w2 and b1 = b2, in
which case the bare straight-string metric is recovered.

As in the one-soliton solutions, the rates of change C,u and C,v of C-energy
in (9.165) are finite and non-zero at past and future null infinity respectively. Also,
near timelike infinity (|t| � r ) the two-soliton line element tends asymptotically
to that of the Levi-Cività seed solution, as does the Riemann tensor. The two-
soliton solution with q = 0 is, therefore, most naturally interpreted as the
superposition of an incoming and an outgoing pulse of C-energy outside an
otherwise bare zero-thickness cosmic string.

The one-soliton solutions of the second type (9.158), which were first
analysed by Garriga and Verdaguer, have e2ψ = r2qekγ and

e2χ = a−20 r2(q
2−q)−k−k2 ek(2q−1)γ

[(t2 −w2 − r2)2 + 4w2t2]k(k+1)/4 pk(k+1)/2
(1− p)k2/2Hk(k+2)/4

(9.170)
where p, k and w are again shorthand for p1, k1 and w1, the constant b1 has
been set to zero, and γ = cos−1[2r−1t p1/2(1 + p)−1]. For small values of r ,
γ ≈ cos−1[t/(t2 + w2)1/2] ≡ γ0(t) and so

e2χ ≈ a−20 r2(q
2−q)ek(2q−1)γ0(t) and e2ψ ≈ r2qekγ0(t). (9.171)
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That is, the radial dependence of the Levi-Cività seed solution is preserved, and
there is a conical singularity on the axis if and only if q = 0.

However, near spacelike infinity γ ≈ 1
2π − t/r and

e2χ ≈ a−20 2−k2−kek(2q−1)π/2w−k2/2r2(q2−q)+k2/2 and e2ψ ≈ r2qekπ/2
(9.172)

and so the solutions are asymptotically flat∗ if and only if 2q2 + k2/2 = 0 or,
equivalently, k = q = 0 (in which case the metric once more reduces to the bare
straight-string metric). Unlike the previous family of one-soliton solutions, these
solutions are free of curvature singularities at timelike infinity for all values of k
and q . The rate of radiation of C-energy at future null infinity is

C,v ≈ − 1
8k

2 w2

(v2 + w2)1/2[v2 +w2 + v(v2 +w2)1/2] (9.173)

indicating again that there is a non-zero outward flux of gravitational radiation
there.

Although the family of one-soliton solutions of this class cannot generate
a non-trivial, asymptotically-flat∗ string spacetime, the family of two-soliton
solutions with k1 = −k2 ≡ k can. In this case, e2ψ = r2qek(γ1−γ2), while

e2χ = a−20 r2(q
2−q−k−k2)ek(2q−1)(γ1−γ2)

× G 4k(k+1)(p1 p2)k(k+1)/2

(1− p1)k
2/2(1− p2)k

2/2Hk(k+2)/41 Hk(k+2)/42

(9.174)

where

G = {[(t21 −w2
1 − r2)2 + 4w2

1t
2
1 ][(t22 −w2

2 − r2)2 + 4w2
2t

2
2 ]}k(k+1)/4

(
A−
A+

)k2/2
(9.175)

with

A± = (1+ p1 p2)(1− p21)(1− p22)r
2 − 8p1 p2[t1t2(1− p1)(1− p2)

∓ |w1w2|(1+ p1)(1+ p2). (9.176)

Garriga and Verdaguer [GV87b] have shown that these solutions are both
conical on the axis r = 0 and asymptotically flat∗ if and only if q = 0, in which
case e2C0 = a−20 as usual, while

e2C∞ = a−20 (4w1w2)
−k2/2[(w1 + w2)

2 + (b1 − b2)2]k2/2 ≥ a−20 . (9.177)

As in the first class of two-soliton solutions, the rates C,u and C,v of radiation
of C-energy at past and future null infinity are non-zero, and the line element
(and Riemann tensor) reduces to that of the Levi-Cività seed solution at timelike
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infinity. Thus the natural interpretation of the subclass of solutions with q = 0 is
again as the superposition of an incoming and an outgoing pulse of C-energy on
an otherwise bare straight-string metric.

More elaborate solutions of this type describing cosmic strings embedded in
radiating asymptotically-flat∗ spacetimes can be constructed in the obvious way,
namely by taking the metric function ψ appropriate to either a class 1 (9.155) or
class 2 (9.158) solution with q = 0 and N = 2M solitons paired in such a way
that k2 j−1 = −k2 j for all 1 ≤ j ≤ M . Formulae for the corresponding metric
functions χ can be found in [GV87b].

9.3.6 Two-mode soliton solutions

One restrictive feature of the soliton solutions considered in the previous section
is that they contain only + mode gravitational waves. In 1988 Athanasios
Economou and Dimitri Tsoubelis [ET88a, ET88b] constructed a four-parameter
solution describing a bare straight string interacting with both + and × mode
gravitational radiation by superimposing two soliton waves on a Minkowski
(q = 0) seed metric.

The corresponding metric functions are given by:

e2χ = A2|q1q2|−1(q21 − 1)−1(q22 − 1)−1|Z1| (9.178)

e2ψ = |q1q2|Z2/Z1 and α = 2|q1q2|(b2 − b1)Z3/Z2 (9.179)

where A is a real constant,

Z1 = (1+ c1c2q1q2)2(q1 − q2)2 + (c1q1 − c2q2)2(q1q2 − 1)2 (9.180)

Z2 = (1+ c1c2)2(q1 − q2)2 + (c1 − c2)2(q1q2 − 1)2 (9.181)

and

Z3 = (1+ c1c2)(c1q21 − c2q22 )− (c1 − c2)(1+ c1c2q21q22 ) (9.182)

with q j = (b j − t)r−1 + [(b j − t)2r−2 − 1]1/2 for j = 1 or 2.
Here, b1, b2, c1 and c2 are complex constants constrained by the requirement

that the metric components be real but are otherwise arbitrary. One way to
guarantee the reality of the metric components is to choose b∗2 = b1 ≡ b and
c∗2 = c1 ≡ c, in which case q∗2 = q1 as well. If b is real then α = 0 and the ×
mode gravitational waves are absent. However, if b is complex Re(b) can always
to set to zero by rezeroing t and Im(b) set to 1 by rescaling t and r . So without
loss of generality the two-mode solutions can be studied by setting b = i.

If the branch of the square root is chosen so that q j is of order r for small
values of r , the line element near the symmetry axis then becomes

ds2 ≈ 4A2K (t)(dt2−dr2)−c2I K (t)−1(dz+2c−1I dφ)2−r2c−2I K (t) dφ2 (9.183)
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where
K (t) = (t2 + 1)−1[(cIt + cR)2 + 1] (9.184)

and cR = Re(c) and cI = Im(c). This metric supports a conical singularity
on the axis, as is evident on replacing z with z̄ = z + 2c−1I φ and α with
ᾱ = α − 2c−1I = O(r2). The value of the C-energy on the axis is, therefore,
given by e2C0 = 4A2c2I ≡ a−20 . The solution is free of curvature singularities at
timelike infinity.

Near spacelike infinity, the line element has the form

ds2 ≈ A2(|c|2+1)2(dt−dr)2−
[
dz̄ +

(
4cI

|c|2 + 1
− 2

cI

)
dφ

]2
−r2 dφ2 (9.185)

with the succeeding terms in χ , ψ and α all of order r−1. Thus, as in the
Xanthopoulos solution (9.118), the solution is asymptotically flat∗ in a rotated
coordinate system with z̄ replaced by Z = z̄ + ( 4cI

|c|2+1 − 2
cI
)φ. The C-energy at

spacelike infinity satisfies e2C∞ = A2(|c|2+1)2 ≥ 4A2c2I , with equality occurring
here if and only if c = ±i, in which case the bare straight-string metric with
a20 = 1

4 A
−2 is recovered in the z̄-coordinate system.

At future null infinity, the rate of radiation of C-energy is

C,v = −1

2

(|c|2 + 1)2 − 4c2I
(v2 + 1){(|c|2 + 1)2[(v2 + 1)1/2 − v] + 4c2I [(v2 + 1)1/2 + v]}

(9.186)
which exactly matches the inward flux C,u of C-energy at past null infinity (again
found by multiplying C,v by −1 and replacing v everywhere with −u). The +
and × mode energy fluxes C+v and C×v are briefly discussed by Economou and
Tsoubelis [ET88b] but no explicit formulae have been published.

The close relationship between the two-mode soliton solution described here
and the Xanthopoulos metric (9.118) can be brought out by again transforming to
prolate coordinates x ∈ � and y ≥ 1 defined by t = xy and r = (x2+1)1/2(y2−
1)1/2, in terms of which q1 = −(y − 1)(x + i)(x2 + 1)−1/2(y2 − 1)−1/2. Then

gxx = A2
4(cR + cIx)2 + [(|c|2 + 1)y + 1− |c|2]2

x2 + 1

gyy = −A2 4(cR + cIx)
2 + [(|c|2 + 1)y + 1− |c|2]2

y2 − 1

(9.187)

e2ψ = 4c2I (x
2 + 1)+ (|c|2 + 1)2(y2 − 1)

4(cR + cIx)2 + [(|c|2 + 1)y + 1− |c|2]2 (9.188)

and

ᾱ = −4cI(|c|
2 − 1)y(x2 + 1)+ (|c|2 + 1)[cRx(y2 − 1)− cI(x2 + y2)]

4c2I (x
2 + 1)+ (|c|2 + 1)2(y2 − 1)

− 2

cI
.

(9.189)
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The Xanthopoulos metric with x = sinh T, y = cosh R and z̄ = z is
recovered (up to a constant rescaling of the coordinates T and R) by setting
cR = j−1 and cI = (1− j−2)1/2. In fact, the Economou–Tsoubelis solution with
general values of c can be generated by applying a complex transformation to a
two-parameter family of stationary axisymmetric solutions (the Kerr–Newman–
Unti–Tamburino family) which generalizes the Kerr metric.

Another simple solution which has been investigated in some detail by
Economou and Tsoubelis [ET88a] occurs when cR = 0. The metric components
in the prolate coordinate system are then

gxx = A2
4δ2x2 + [(δ2 + 1)y + 1− δ2]2

x2 + 1

gyy = −A2 4δ
2x2 + [(δ2 + 1)y + 1− δ2]2

y2 − 1

(9.190)

e2ψ = 4δ2(x2 + 1)+ (δ2 + 1)2(y2 − 1)

4δ2x2 + [(δ2 + 1)y + 1− δ2]2

ᾱ = −2 (δ
2 − 1)[2δ2x2 − (δ2 + 1)y + δ2 − 1](y − 1)

[4δ2(x2 + 1)+ (δ2 + 1)2(y2 − 1)]δ

(9.191)

with δ ≡ cI.
The corresponding C-energy (as measured in the canonical t–r coordinate

system) is given by

e2C = A2
4δ2(x2 + 1)+ (δ2 + 1)2(y2 − 1)

x2 + y2

= 1

8δ2
a−20

[
δ4 + 6δ2 + 1− (δ2 − 1)2

uv + 1

(u2 + 1)1/2(v2 + 1)1/2

]
(9.192)

where u = t + r and v = t − r . In particular, the net energy of the gravitational
field outside the string is 1

4 (e
−C0 − e−C∞) = 1

4a0(δ
2 − 1)2/(δ2 + 1)2.

The inward and outward fluxes of C-energy at past and future null infinity
are, of course, non-zero, as was previously seen from (9.186), with C,u falling
off as |u|−3 as |u| → ∞ and C,v as −|v|−3 as |v| → ∞ at past and future null
infinity respectively. The energy fluxes in the individual + and × gravitational
modes at future null infinity are

C+v = − 1
2 {(δ4 − 1)2{2(δ2 + 1)2[v2 − v(1+ v2)1/2] + δ4 − 10δ2 + 1}2}

× {(1+ v2)[(1+ v2)1/2 − v]{(δ2 + 1)2[(v2 + 1)1/2 − v]
+ 4δ2[(v2 + 1)1/2 + v]}4}−1 (9.193)

and

C×v = − 2{(δ2 − 1)2δ2[(3δ4 + 2δ2 + 3)(1+ v2)1/2 − (δ2 + 3)(3δ2 + 1)v]2}
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× {(1+ v2)[(1+ v2)1/2 − v]{(δ2 + 1)2[(v2 + 1)1/2 − v]
+ 4δ2[(v2 + 1)1/2 + v]}4}−1. (9.194)

At early times at future null infinity,

C+v ≈ −
1

4

(δ2 − 1)2

(δ2 + 1)2
|v|−3 and C×v ≈ − 9

256δ
−4(δ4 − 1)2|v|−5 (9.195)

and the + mode dominates the outgoing radiation flux, while at late times,

C+v ≈ −
9

4

δ2(δ2 − 1)2

(δ2 + 1)4
v−5 and C×v ≈ − 1

16δ
−2(δ2 − 1)2v−3 (9.196)

and the × mode dominates. (This is the opposite of the behaviour observed
earlier for the Xanthopoulos metric (9.118).) As in the Xanthopoulos solution,
the asymptotic behaviour of the two modes at past null infinity is the same but in
time-reversed order.

9.4 Snapping cosmic strings

9.4.1 Snapping strings in flat spacetimes

The last class of exact string solutions to be considered here comprises metrics
that result when a straight string (or pair of strings) spontaneously ‘snaps’, leaving
two bare ends which recede from one another at the speed of light. The situation
described here differs from the case, mentioned briefly in section 9.2.2, where a
string breaks into two after black hole pair production, as snapping strings are
bounded by null particles rather than accelerating black holes, and generate an
impulsive gravitational shock wave as they snap. The act of snapping is, strictly
speaking, not consistent with either the Einstein equations or the zero-thickness
limit of any classical field-theoretic representation of a cosmic string, and the
value of the solutions lies foremost in the structure of the shock wave that appears
in the wake of the receding ends.

The simplest solution of this type begins with Minkowski spacetime in
cylindrical coordinates:

ds2 = dt2 − dz2 − dr2 − r2 dθ2. (9.197)

Let ξ denote the complex coordinate reiθ and u and v the null coordinates t + z
and t − z respectively.

Then if 0 < a0 ≤ 1 is a constant and ε = −1, 0 or 1, the transformation to a
new set of coordinates (Z ,U, V ) defined by

u = a−10 |Z |1+a0{κ−1V − 1
4 [(1+ a0)2|Z |−2 + ε(1− a0)2]U} (9.198)

v = a−10 |Z |1−a0{κ−1V − 1
4 [(1− a0)2|Z |−2 + ε(1+ a0)2]U} (9.199)
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and
ξ = a−10 Za0[κ−1|Z |1−a0V − 1

4κ(1− a20)|Z |−1−a0U ] (9.200)

with κ = 1+ ε|Z |2, results in the locally-flat line element

ds2 = ε dU2 − dU dV − |κ−1V dZ + 1
4κ(1− a20)UZ∗−2 dZ∗|2. (9.201)

An important feature of the transformation (u, v, ξ) → (U, V , Z) is that
arg(ξ) = a0 arg(Z), and so if a0 < 1 the inverse image of the transformed
spacetime is not the whole Minkowski spacetime but rather the conical spacetime
covering 0 ≤ arg(ξ) ≤ 2πa0, with arg(ξ) = 0 and arg(ξ) = 2πa0 identified.
In other words, the transformed spacetime is isometric to the spacetime outside
a bare straight cosmic string with mass per unit length µ = 1

4 (1 − a0). The
string itself lies along the axis ξ = 0, which in the transformed coordinate system
corresponds to the surface κ−2|Z |2 = 1

4 (1− a20)U/V .
In the special case a0 = 1, the line element (9.201) reduces to

ds2 = ε dU2 − dU dV − κ−2V 2 dZ dZ∗ (9.202)

and the spacetime is isometric to the original Minkowski spacetime (with the
axis ξ = 0 mapped to Z = 0) . The parameter ε in this instance measures the
Gaussian curvature of the 2-surfaces of constantU and V , which are respectively
hyperboloidswith t2−r2 and z constant (if ε = −1), paraboloidswith t2−z2−r2
and t − z constant (if ε = 0) or spheres with z2 + r2 and t constant (if ε = 1)3.

Comparison of (9.201) with (9.202) indicates that the Minkowski metric
(a0 = 1) can be continuously matched to a string metric (a0 < 1) across the
surface U = 0 by letting

ds2 = ε dU2 − dU dV − |κ−1V dZ + 1
4κ(1− a20)H (U)UZ∗−2 dZ∗|2 (9.203)

where H is the Heaviside step function. The spacetime is then empty for U < 0
but contains a cosmic string on axis forU > 0. Since t2 − z2− r2 ≡ uv− |ξ |2 =
−U(V − εU) independently of the value of a0, the surface U = 0 corresponds
to at least some part of the spherical null surface t2 = z2 + r2 in both coordinate
patches. This null surface is smooth everywhere except where it intersects the
axis ξ = 0 in the string patch, as the string spacetime has a conical singularity
there. Furthermore, the mean extrinsic curvature κ of the surface, as defined in
[BI91], is 4κV−1 in both patches. The junction surfaceU = 0 is therefore free of
stress–energy at all points except possibly where |t| − z = r = 0.

By suitably restricting the ranges of U , V and Z in the two coordinate
patches, therefore, it seems possible, in principle, to use the metric (9.203) to
describe a straight cosmic string on the axis r = 0 which is static for t < 0 then
3 Strictly speaking, the line element (9.201) is isometric to some patch of the Minkowski or string
spacetimes for any value of ε. However, if ε is not 0 or ±1 it can always be rescaled to ±1 by making
the supplementary transformation to Ū = |ε|1/2U , V̄ = |ε|−1/2V and Z̄ = |ε|1/2Z , then dropping
the overbars.
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splits in two at t = z = 0, leaving behind a patch of Minkowski spacetime inside
an expanding spherical wave front on the null surface t = √

z2 + r2. The two
free ends of the string would presumably inherit some stress–energy content as
a result of the split, becoming ‘monopoles’, and recede from one another at the
speed of light along the null lines t − |z| = r = 0.

This construction was first developed by Reinaldo Gleiser and Jorge Pullin
[GP89] for the case ε = 0 in a slightly different coordinate system4, then with
varying degrees of generality by Peter Hogan [Hog93, Hog94] and Jiri Podolský
and Jerry Griffiths [PG00]. However, the construction is complicated by the fact
that the transformation (u, v, ξ) → (U, V , Z) is not bijective, and the image of
the null spherical surface t = √z2 + r2 includes the surface V − εU = 0 as well
as the junction surface U = 0.

This does not pose a serious problem in the case ε = 0. The interior
t >

√
z2 + r2 of the gravitational shock wave does map bijectively onto the

quarter space {(U, V , Z) : U < 0, V > 0} and the boundary V = 0 corresponds
(for U < 0) to the null line t = z > 0 and r = 0, which is the trajectory of
one of the free ends of the string. Also, the subset |z| < t <

√
z2 + r2 maps

bijectively onto the subset {(U, V , Z) : U > 0, V > b+|Z |−2U}, where b± is
shorthand for 1

4 (1 ± a0)2. The boundary U = 0 (with V > 0) is, of course,

the image of the spherical null surface t = √z2 + r2, while the other boundary
V = b+|Z |−2U is the image of the surface t = −z > 0. The remaining boundary
in the original coordinate system, t = z > 0 (which includes, in particular, the
null line t = z > 0 and r = 0), is recovered by taking suitably controlled limits
with |Z | → ∞.

Thus, theMinkowski patch defined byU < 0 and V > 0 and the string patch
defined byU > 0 and V > 1

4 (1+a)2|Z |−2U combine to give a continuousmetric

which describes the interior of the gravitational wave front t = √z2 + r2 plus its
exterior out to t = |z|, as shown schematically in figure 9.2. The spacetime can be
completed by extending the string patch (in the original coordinates) to the region
t < |z|.

The situation in the case ε = 1 is broadly similar. The set t >
√
z2 + r2

again maps bijectively onto the quarter space {(U, V , Z) : U < 0, V > 0},
while the surface V − U = 0 lies outside this quarter space and can safely be
ignored. (The boundary V = 0 corresponds to the spacelike line z = r = 0 only.)
However, the restrictions on the string patch (U > 0) are a bit more elaborate.
If |Z | > 1 then the patch {(U, V , Z) : U > 0, V > (b−|Z |−2 + b+)κU} maps
bijectively onto the upper half (z > 0) of the subset |z| < t <

√
z2 + r2, while

if 0 < |Z | < 1 the patch {(U, V , Z) : U > 0, V > (b+|Z |−2 + b−)κU} maps
bijectively onto the lower half (z < 0).

By contrast, the construction breaks down when ε = −1, as the only region
of U–V–Z space with U < 0 that maps bijectively onto t >

√
z2 + r2 is the

4 A time-symmetric version of this solution was independently discovered by Jiri Bičák and Bernhard
Schmidt [BS89].
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Figure 9.2. (a) The U–V coordinates and (b) the t–z coordinates.

set {(U, V , Z) : U < 0, V > −U , |Z | < 1}. Thus the Minkowski patch must
be bounded by the surface V = −U > 0, |Z | < 1 (which is the image of
t = √z2 + r2 with z > 0) as well as by U = 0, V > 0, |Z | < 1 (which covers
the z < 0 half of the boundary only). The simple matching proposed in (9.203)
is, therefore, incomplete if ε = −1 and needs to be replaced by a more intricate
system of coordinate patches.

Subject to the coordinate restrictions mentioned earlier, the metric (9.203)
describes a snapping cosmic string when ε = 0 or 1. One useful feature of
the construction is that the geometric effect of the shock wave can be calculated
directly. A given point (V , Z) on the junction surface U = 0 is the image of both
a point (uS, vS, ξS) in the original string spacetime, and a point (uM, vM, ξM)
in the remnant Minkowski spacetime. In particular, since a0|ξ | = κ−1|Z |V
when U = 0, the horizontal radius r of any point on the shock front satisfies
rM = a0rS < rS. That is, each spacetime point discontinuously ‘jumps’ towards
the string axis as the shock wave passes.

Similarly, since u/v = |Z |2a0 when U = 0, it follows that uM/vM =
(uS/vS)1/(2a0). In terms of r and the height z above the equatorial plane, this
relation reads:

(z2M/r
2
M + 1)1/2 + zM/rM = [(z2S/r2S + 1)1/2 + zS/rS]1/a0 (9.204)

and (since rM = a0rS) is easily solved to give ζM ≡ zM/rS as a function of
ζS ≡ zS/rS.

Figure 9.3 illustrates the dependence of ζM on ζS in the cases a0 = 0.25,
0.5 and 0.75. As can be seen, zM is, in all instances, larger than zS. Thus the
effect of the shock wave is to dilate the spacetime vertically while compressing it
horizontally.

Given that the U–V–Z coordinate systems with ε = 0 and ε = 1 cover the
same patches of the Minkowski and string spacetimes and the geometry of the
shock front is the same in both cases, it is natural to ask what difference there is
between the two transformations. The answer lies in the nature of the ‘particles’
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Figure 9.3. Scaled vertical displacements before (ζS) and after (ζM) the passage of the
shock wave.

that appear at the free ends of the string, on the null lines t − |z| = r = 0, where
the shock front fails to be smooth.

The only non-zero physical components of the Riemann tensor (modulo
symmetries) are:

RV ZU
Z∗ = (RV Z∗U Z )∗ = − 1

8g
−1/2(1− a20)V |Z |−4Z∗2[2H ′(U)+UH ′′(U)]

(9.205)
and

RV ZU
Z = RV Z∗U

Z∗ = 1
32 g

−1/2(1− a20)2κ2|Z |−4UH (U)[2H ′(U)+UH ′′(U)]
(9.206)

where the volume factor in U–V–Z coordinates is

g1/2 = 1
4κ
−2|V 2 − 1

16 (1− a20)2κ4|Z |−4U2H (U)|. (9.207)

In terms of the Dirac δ-distribution, 2H ′(U) + UH ′′(U) = δ(U) and (it is often
loosely asserted, although there is no formal justification in distribution theory)
H (U)δ(U) = 1

2δ(U).
The physical components of the Riemann tensor are, therefore, non-zero

only on the junction surface U = 0. On this surface g1/2 = 1
4κ
−2V 2 and

it would appear (as Hogan [Hog94] and Podolský and Griffiths [PG00] claim)
that the Riemann tensor has a physical singularity on the wave front at V = 0.
However, this is not a physical singularity but a coordinate singularity induced
by the vanishing volume factor g1/2. Indeed, in view of the distributional
nature of the Riemann components, what is important is not the behaviour of
the bare components themselves, but the convergence of integrals of the form∫
g1/2Rµκλν d4x on appropriate subsets of U–V –Z space.

When ε = 0, the null line t + z = r = 0 (the ‘south pole’ of the
shock front) corresponds to the limit |Z | → 0, U ∼ |Z |1+a0 → 0 and
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V ∼ |Z |a0−1 → ∞ in the string patch, and thus V |Z |−4Z∗2 and κ2|Z |−4U
diverge as |Z |a0−3. Integrating g1/2RV ZU Z∗ or g1/2RV ZU Z over the ‘south pole’
is, therefore, problematic. However, the null line t − z = r = 0 (the ‘north pole’)
corresponds to the limit V → 0 together with U →−2z in the Minkowski patch
or U → ∞ in the string patch. Thus g1/2RV ZU Z

∗
and g1/2RV ZU Z are free of

singularities over the ‘north pole’, except perhaps when z = 0. This indicates
that there is a fundamental asymmetry between the two ends of the string when
ε = 0, which, in turn, is attributable to the basic asymmetry between the z > 0
and z < 0 half-spaces under the transformation (u, v, ξ)→ (U, V , Z).

By contrast, when ε = 1 there is a manifest symmetry between the north and
south ends of the string, as the isometry z → −z in the original coordinates
corresponds to the mapping Z → W ≡ Z∗−1, and the metric (9.203) is
invariant under this additional transformation. The ‘south pole’ of the shock front
corresponds to the limit |Z | → 0, U ∼ |Z |1+a0 → 0 and V ∼ |Z |a0−1 → ∞
in the string patch, and V |Z |−4Z∗2 and κ2|Z |−4U again diverge as |Z |a0−3. An
identical statement applies to the ‘north pole’, with Z everywhere replaced by
W∗. Thus, the ε = 1 transformation is to be preferred unless there are strong
reasons for wanting to break the symmetry between the two ends of the string.

Incidentally, not only is the Riemann tensor singular on the shock front, but
so also is the Einstein tensor Gµν , which has a single non-zero mixed component:

GVU = −2RV ZU Z . (9.208)

Given that RV ZU Z = 0 everywhere except at the free ends of the string, this
fact is consistent with the interpretation that the free ends are, in some sense, null
‘particles’ with non-zero stress–energy.

9.4.2 Other spacetimes containing snapping strings

There exists an extensive, if somewhat specialized, literature on snapping strings,
and the previous discussion gives some idea of the complexities involved. One
straightforward extension of the snapping-string metric (9.203) is to add a
cosmological constant	, so that the template spacetime is either the flat de Sitter
(	 > 0) or anti-de Sitter (	 < 0) space with ‘spherical null’ line element (9.71).
Applying the transformations (9.198)–(9.200) and joining together two patches
with differing values of a0 gives a spacetime

ds2 = [1+ 1
12	U(V − εU)]−2 ds2M (9.209)

(where ds2M is the line element of (9.203)), which describes a snapping string in a
de Sitter or anti-de Sitter background. This construction was first investigated by
Hogan [Hog92].

Hogan [Hog93] and Podolský and Griffiths [PG00] have also developed a
generalization of the transformations (9.198)–(9.200) which depends on a single
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generating function h(Z) and can be used to construct a large class of metrics of
the form

ds2 = ε dU2 − dU dV − |κ−1V dZ + κ F̄(Z)H (U)U dZ∗|2 (9.210)

where F(Z) = 1
2 [(h′′′/h′)− 3

2 (h
′′/h′)2]. For U < 0 the metric (9.210) describes

a patch of Minkowski spacetime as before. Its interpretation when U > 0 is
determined by the analytic properties of the function h(Z). In the case of the
single straight-string spacetime analysed in the previous section, h(Z) = Za0

and F(Z) = 1
4 (1 − a20)Z−2. Spacetimes containing two or more strings can be

accommodated by choosing more complicated generating functions.
Podolský and Griffiths [PG00], for example, have constructed a solution

describing two orthogonal cosmic strings, which are initially at rest and snap
at their crossover point z = r = 0 at time t = 0, by taking h(Z) = [(iZa1 −
1)/(Za1 − i)]a2 , where µ1 = 1

4 (1 − a1) and µ2 = 1
4 (1 − a2) are the masses per

unit length of the two strings. The corresponding metric function F is

F(Z) = 1
4 (1− a21)Z−2 − a21(1− a22)(Z2a1 + 1)−2Z2(a1−1). (9.211)

More complicated solutions which describe snapping strings in relative
motion are also known [PG00]. Podolský and Griffiths [PG99] have shown
that the general class of metrics (9.210) is equivalent to certain impulsive limits
of type-N Robinson–Trautman solutions, and Griffiths and Docherty [GD02]
have used this fact to construct a solution containing a single straight string that
‘disintegrates’ (meaning that µ→ 0 continuously) instead of snapping.

Finally, mention should be made of an unusual solution which Sean Hayward
[Hay89b] has interpreted as a snapping string metric. It involves strings in
a Schwarzschild background, and is based on a metric due to Ulvi Yurtsever
[Yur88]:

ds2 = 2(1+ S)2 dU dV − C−2+ (1− S)2 dx2 − C2−(1+ S)2 dy2 (9.212)

where S = sin[pUH (U) + qV H (V )] and C± = cos[pUH (U) ± qV H (V )],
with p and q positive constants and H again the Heaviside step function.

The Yurtsever solution (9.212) is the metric formed by the collision of two
gravitational waves in a vacuum spacetime. It is flat in the region U, V < 0,
and supports impulsive gravitational shock waves on the null surfaces U = 0 and
V = 0. Most importantly, the region U, V > 0 is isometric to a portion of the
Schwarzschild metric (with or without a string on axis).

This can be seen by casting y as an angular coordinate with period 2πa0m
and making the substitutions

t = x R = m[1+ sin(pU + qV )]
θ = pU − qV − π/2 and φ = y/(a0m)

(9.213)

where m = (2pq)−1/2. The Yurtsever line element (9.212) then reduces to
the Aryal–Ford–Vilenkin line element (9.53) with 1 − 4µ = a0, with the patch
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pU + qV < π/2 mapping bijectively onto some subset of the black hole patch
m < R < 2m.

Here, the boundary pU + qV = π/2 corresponds to the black hole horizon
R = 2m, and by extending the solution across this boundary in the Kruskal–
Szekeres coordinate system (9.56)–(9.57) it can be joined smoothly to the white
hole and asymptotically-flat∗ exterior regions of figure 9.1. The other boundaries
of the Yurtsever patch, {0 < pU < π/2, V = 0} and {0 < qV < π/2, U = 0},
describe impulsive gravitational shock waves which propagate inside the black
hole region of figure 9.1, along the null curves {R = m(1+ cos θ), 0 < θ < π/2}
and {R = m(1−cos θ), π/2 < θ < π} respectively. The shock waves first appear
at the wormhole ‘throat’ u = v = 0 at the antipodal points θ = 0 and θ = π , then
fall inwards and eventually collide on the equatorial plane (θ = π/2) at R = m,
at the image of the Yurtsever crossover pointU = V = 0.

The spacetime interior to the shock waves is described by the Yurtsever
metric with 0 < pU < π/2 and V < 0 (in the northern hemisphere) or
0 < qV < π/2 and U < 0 (in the southern hemisphere). Beyond the collision
point U = V = 0 the spacetime is flat:

ds2 = 2 dU dV − dx2 − dy2 (9.214)

although the coordinate y is compactified with period 2πa0m. Thus the full
solution seems to describe the snapping of two (north and south) strings at the
wormhole ‘throat’ of an Aryal–Ford–Vilenkin spacetime, the propagation and
collision of the resulting shock waves and the formation of a relic compactified
flat spacetime.

Of course, the entire process takes place inside the black hole horizon and
so would be hidden from an external observer, although anyone who fell into the
black hole would cross one of the shock waves before reaching R = m. However,
the presence of the strings is inessential to the structure of the solution, as the
effect of a non-zero µ is simply to rescale the compactification radius of y. The
fact that shock waves can appear at the ‘throat’, collide and evaporate to leave
behind a compactified space even in the absence of strings suggests strongly that
the strings snap only incidentally, if at all.

Hayward has developed similar solutions describing the disappearance of
strings in a Kerr–Newman spacetime [Hay89a] and in a Bertotti–Robinson
electromagnetic universe [Hay89b].



Chapter 10

Strong-field effects of zero-thickness strings

As was seen in chapter 9, all known exact self-gravitating string solutions describe
infinite strings in a spacetime with a high degree of symmetry. Although solutions
of this type do have some heuristic value, their dynamics are, in general, not
very interesting. More valuable from the point of view of understanding the
gravitational properties of cosmic strings would be a solution with non-trivial
(that is, dissipative) time evolution of the world sheet. Especially revealing would
be a solution supporting the formation of a cusp. Unfortunately, it seems unlikely
that an exact solution of this type—analytic or numerical—will ever be developed
using current techniques.

Any exact solution showing non-trivial time evolution would almost
certainly need to possess a high degree of spatial symmetry. If the world sheet
is assumed to possess a spacelike Killing vector then (in a spacetime which is
otherwise empty) the number of candidates immediately reduces to two: the
circular loop (see section 4.2.1) and the helical breather (see section 4.1.4). Not
surprisingly, most research in this area to date has concentrated on the circular
loop. A summary of the known strong-field gravitational effects outside a circular
loop is given in sections 10.1 and 10.2.

An alternative approach to the problem of the gravitational field outside a
non-straight string has been to examine the near-field (small distance) limit of the
vacuum Einstein equations. This method, which is the subject of sections 10.3
and 10.4, is limited by the fact that it is rarely possible to demonstrate that a given
near-field solution can be matched to a physically acceptable far-field metric.
Nonetheless, one clear result of the near-field approach is that the tidal force (as
measured by the physical components of the Riemann tensor) is generally non-
zero outside a non-straight string in the wire approximation and may even diverge
in the small-distance limit [UHIM89], so that the world sheet marks the location
of a curvature singularity rather than just a conical one.

This property, which contrasts strongly with the locally-flat nature of the
bare straight-string metric (7.28), has prompted claims that divergent near-field
behaviour is the signature of a fundamentally different type of two-dimensional

332
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object [Let92], or conversely that cosmic strings cannot bend [CEV90]. However,
as was mentioned in section 9.1, the fact that the travelling-wave metrics (which
do support divergent tidal forces) are the zero-thickness limits of known exact
vortex solutions of the Einstein–Higgs–Yang–Mills field equations demonstrates
that the Riemann tensor can indeed be divergent outside a zero-thickness cosmic
string.

A second feature of the near-field expansion of the metric tensor outside
a general string world sheet T is that the extrinsic curvature of the surfaces
of constant distance r from T (which will be defined more precisely in
section 10.4.1) vanishes in the limit as r → 0. This means that it is always
possible to find a geodesically-generated 2-surface with given proper area which
stays arbitrarily close to T, and thus any nearby observer would measure T to be
flat.

This is the second sense in which it is sometimes claimed that all zero-
thickness cosmic strings are ‘straight’ [UHIM89]. The effect is similar to the
rotational frame-dragging that occurs inside the ergosphere of a Kerr black hole,
in that the world sheet ‘drags’ nearby geodesics so strongly that they are almost
parallel to the string. However, the effect would be measurable only at extremely
small distances from the world sheet, at distances which in the case of a realistic
GUT string would lie well inside the string core, where the wire approximation
breaks down.

Nonetheless, the fact that the world sheet of a zero-thickness cosmic string
is extrinsically flat begs the question of what is actually meant by a ‘non-straight’
string. As will be seen in section 10.4.3, two fundamentally different types of
gravitational disturbance are possible in the neighbourhood of a zero-thickness
string, which I have previously called ‘travelling waves’ and ‘curvature waves’
[And99b]. Disturbances of the first type are decoupled from the intrinsic scalar
curvature (2)R of the world sheet but can induce a singularity in the Riemann
tensor, while disturbances of the second type typically occur only if (2)R �= 0 but
are not generally associated with a curvature singularity.

The travelling-wave metrics of section 9.1 support travelling waves only,
whereas all other solutions discussed in chapter 9 support curvature waves only. It
is more natural to regard the travelling-wave metrics as describing the interaction
of pp gravitational waves with straight strings rather than intrinsically non-
straight strings, while all the other solutions clearly involve straight strings.
The connection between the two types of disturbance and the ‘straightness’
of the embedded string therefore remains relatively unexplored, although the
gravitational response to linearized perturbations about the constant-ε0 interior
solution defined by (7.9) plus (7.12) has recently been analysed in [NII00] and
[NI01].

Finally, in section 10.4.4 I show that the near-field expansions developed
here are consistent with the distributional stress–energy content that was argued
earlier, in chapters 6 and 7, to be one of the defining features of a zero-thickness
cosmic string.
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10.1 Spatial geometry outside a stationary loop

A weak-field treatment of the collapse of a circular loop has already been
discussed in chapter 6. In this section I will examine the structure of the spatial 3-
geometry outside a circular loop at a moment of time symmetry, closely following
an analysis of the problem published by Valeri Frolov et al in 1989 [FIU89].

If the metric due to a circular cosmic string is written in the ADM form

ds2 = N2 dt2 + gab(dxa + Na dt)(dxb + Nb dt) (10.1)

where lower-case indices run from 1 to 3 and N and Na are the lapse and shift
functions respectively, then a moment of time symmetry is a surface S of constant
t with the property that the line element (10.1) is locally invariant with respect to
time inversion through S. This means that

∂N

∂ t
= ∂gab

∂ t
= 0 and Na = 0 (10.2)

on S. At a physical level, S is the instant in time at which an initially expanding
loop reaches its maximum radius before beginning to recollapse.

When projected onto an arbitrary surface of constant t , the components of
the Einstein equation take the Gauss–Codazzi form

(3)R = 16πTµνn
µnν + KµνKµν − K 2 (10.3)

and
∇ν(Kµν − Khµν) = 8πTλνnλhµν (10.4)

where nµ = Nδtµ is the unit normal to the 3-surface,

hµν = gµν − nµnν (10.5)

is the projection operator on the surface,

Kµν = hκ(µhλν)Dκnλ (10.6)

is the surface’s extrinsic curvature, ∇µ is the covariant derivative operator on the
surface and (3)R is the Ricci scalar associated with ∇µ.

On the time-symmetric surface S the extrinsic curvature tensor

Kab = − 1
2N

−1gacgbd
(
∇cNd +∇cNc − ∂

∂ t
gcd

)
(10.7)

and its spatial derivatives are zero, and so the constraint equations (10.3) and
(10.4) reduce to

(3)R = 16πTµνn
µnν (10.8)

and
Tλνn

λhµν = 0. (10.9)
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The second of these simply states that any sources of stress–energy must be
stationary on S, while the first is the relativistic analogue of Poisson’s equation.
Equation (10.8) can, in principle, be used to construct the gravitational field
outside any momentarily stationary string configuration but for the present it will
be specialized to the case of a circular loop.

If cylindrical coordinates (r, φ, z) are chosen on S then the most general
axisymmetric line element has the form

gab dxa dxb = −e2(χ−ψ)(dr2 + dz2)− r2e−2ψ dφ2 (10.10)

where r ≥ 0, φ lies in [0, 2π) and χ and ψ are functions of r and z only. The
corresponding Ricci scalar is

(3)R = 2e2(ψ−χ)(2ψ,rr +2ρ−1ψ,r +2ψ,zz −ψ,2r −ψ,2z −χ,rr −χ,zz ) (10.11)

and so the constraint equation (10.8) becomes

ψ,rr +r−1ψ,r +ψ,zz − 1
2 (ψ,

2
r +ψ,2z +χ,rr +χ,zz ) = 4πe2(χ−ψ)Tµν nµnν .

(10.12)
The right-hand side of this equation will, of course, be zero everywhere except at
the position of the loop.

The residual gauge freedom in the line element (10.10) can be eliminated by
requiring that χ = O(R−2) andψ ∼ −M/R for large values of R = (r2+z2)1/2,
where M is a positive constant. The 3-surface S is then asymptotically flat, and
M is the instantaneous gravitational mass of the loop. Also, if the string loop
lies on the equatorial circle {r = a, z = 0} then, in analogy with the isotropic
form (7.32) of the bare straight-string metric, it is expected that for small values
of ρ = [(r − a)2 + z2]1/2 the metric function ψ will tend to a finite value ψ0,
while e2(χ−ψ) ∼ cρ−8µ, where µ is the mass per unit length of the string and c is
a positive constant.

The line element (10.10) near the string then becomes

gab dxa dxb ∼ −cρ−8µ(dr2 + dz2)− a2e−2ψ0 dφ2 (10.13)

and so the proper length of the loop is L = 2πae−ψ0 . Also, substituting the
asymptotic expansion

χ ∼ −4µ lnρ (ρ � a) (10.14)

into the equation (10.12) for the stress–energy tensor of the source gives

Tµνn
µnν = µc−1ρ8µδ(2)(r − a, z). (10.15)

Now, if equation (10.12) is integrated over the volume bounded on the
outside by a sphere S1 with R large and on the inside by a torus T1 with ρ small,
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using the Euclidean volume element dV = r dr dφ dz, then
1
2

∫
(ψ,2ρ +ψ,2z ) dV =

∫
S1
(∇ψ − 1

2∇χ) · dS−
∫
T1
(∇ψ − 1

2∇χ) · dS

+ π
∫
S1
χ dz − π

∫
T1
χ dz (10.16)

where ∇ is the standard cylindrical gradient operator.
In view of the boundary conditions in the limit as R →∞ and ρ → 0, this

equation reduces to

1
2

∫
(ψ,2r +ψ,2z ) dV = 4πM − 8π2µa. (10.17)

Thus, the gravitational mass M of the loop is related to its local properties and the
field ψ by

M = µLeψ0 + (8π)−1
∫
(ψ,2r +ψ,2z ) dV . (10.18)

The second term on the right of (10.18) reflects the contribution of free
gravitational radiation to the total mass of the loop as measured by a distant
observer. Because the constraint equation (10.12) contains two independent fields
χ and ψ there is a limitless range of possible solutions even when the source
parameters µ and L are fixed, each corresponding to a different axisymmetric
distribution of gravitational radiation on S. It might be thought that one way to
resolve this ambiguity would be to require that S be free of gravitational radiation,
in the sense that the gravitational mass M take the smallest possible value for
given values of µ and L. However, Frolov et al [FIU89] have shown that there
exist sequences of solutions in which µ and L are fixed but M can be chosen
to be arbitrarily close to zero. Thus there is no direct relationship between the
properties of the near-field and far-field solutions.

In the absence of any obvious physical criteria for singling out a particular
class of solutions, Frolov et al have instead investigated two families of solutions
notable for their mathematical tractability. Both families are most compactly
described in terms of toroidal coordinates (ξ, η), defined implicitly by

r = a(cosh ξ − cos η)−1 sinh ξ (10.19)

and
z = a(cosh ξ − cos η)−1 sin η (10.20)

with η ∈ (−π, π] and sgn(η) = sgn(z).
The equatorial plane corresponds to η = 0 (for r > a) and η → ±π (for

r < a with z → 0± respectively), while the axis of rotational symmetry is ξ = 0
(see figure 10.1). Each surface of constant ξ is a torus enclosing the equatorial
circle r = a, with the circle itself corresponding to the limit ξ → ∞. Near the
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Figure 10.1. The toroidal coordinate system.

circle, ρ ∼ 2ae−ξ , and so the near-field geometry will be string-like if χ ∼ 4µξ
for large ξ .

The first of the two classes of solutions constructed by Frolov et al is chosen
to have

χ =
{
4µ(ξ − ξ0) ξ > ξ0
0 ξ < ξ0

(10.21)

where ξ0 is an arbitrary positive constant. Hence,

χ,rr +χ,zz = a−2(cosh ξ − cos η)2(χ,σσ +χ,ηη )
= 4µa−2(cosh ξ − cosη)2δ(ξ − ξ0) (10.22)

and so the solution is characterized by an impulsive gravitational wavefront on
the toroidal surface ξ = ξ0.

The remaining metric function,ψ , is fixed by the constraint equation (10.12)
and can be expressed as an infinite series of toroidal harmonics [FIU89]. It turns
out that ψ is well defined if ξ0 is smaller than a critical value ξcrit which depends
only on the mass per unit length µ of the string. One interesting feature of
the solutions, alluded to earlier, is that as ξ0 → ξcrit the ratio M/(µL) of the
gravitational mass of the string to its local mass tends to zero. Thus, the effect of
the impulsive toroidal wavefront is, in some sense, to mask the far gravitational
field of the string.

The second class of solutions has a more geometrical flavour. Starting with
the metric of a conformally-flat 3-surface in toroidal coordinates

ds2cf = −a2ω4(dξ2 + dη2 + sinh2 ξ dφ2) (10.23)

with a conformal factor ω(ξ, η), Frolov et al excised the discus-shaped wedge
bounded above by the surface η = π − 4πµ and below by the surface η =
−π + 4πµ, and then glued the exposed faces together, as shown in figure 10.2.
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Figure 10.2. Excising the wedge −π + 4πµ < η < π − 4πµ.

The extrinsic curvature of the exposed faces has components

Kξξ = 2aωω,η and Kφφ = 2aωω,η sinh2 ξ (10.24)

and so the faces have a matching extrinsic geometry if ω,η = 0 at η = ±(π −
4πµ). This, in turn, is guaranteed if the conformal factor ω is a smooth, periodic
and even function of the rescaled angular coordinate

η∗ = (1− 4µ)−1η (10.25)

which ranges over (−π, π].
Because the metric of a flat 3-surface in toroidal coordinates has ω =

(cosh ξ − cosη)−1/2, the conformally-flat metric (10.23) will be locally isometric
to the spatial section of the straight-string metric (7.28) in the neighbourhood of
the string if

ω ∼ (cosh ξ − cos η∗)−1/2 (10.26)

for large values of ξ . In addition, ω must satisfy the constraint equation

(3)R = −2a−2ω−4[1+ 4ω−1(ω,ξξ + coth ξω,ξ +λ2ω,η∗η∗ )] = 0 (10.27)

where λ ≡ (1 − 4µ)−1. The required solution has been constructed by Frolov et
al, and is most conveniently written in the form

ω(ξ, η∗) = π−1
∫ ∞

ξ

dτ

(cosh τ − cosh ξ)1/2
sinh λτ

coshλτ − cos η∗
. (10.28)

Note here that in the limit λ → 1 the metric is flat, and so the integral in
(10.28) reduces to (cosh ξ − cos η)−1/2 when λ = 1. Furthermore, for large
values of the spherical radius R,

(ξ2 + η2)1/2 ∼ 2 a R−1 (10.29)
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Figure 10.3. The ratio M/(µL) as a function of µ.

and so spacelike infinity corresponds to the limit ξ , η∗ → 0. From equation
(10.28) it is easily verified that in this limit

ω ∼ λ−1(cosh ξ − cos η)−1/2 + 21/2π−1λ−1 I (λ) (10.30)

where

I (λ) =
∫ ∞

0
cosech x(λ cothλx − coth x) dx . (10.31)

Now, in terms of the original cylindrical coordinates r and z, the line element
at spacelike infinity reads:

ds2cf = − ω4(cosh ξ − cos η)2(dr2 + dz2 + r2 dφ2)
≈ − λ−4[1+ 8aπ−1 I (λ)/R](dr2 + dz2 + r2 dφ2) (10.32)

and so the proper asymptotic distance from the origin is Rprop = λ−2R, while the
gravitational mass M is

M = 4aπ−1λ−2 I (λ). (10.33)

Also, the local mass of the string is µL = 2πµa ≡ 1
2πaλ

−1(λ − 1), and so the
ratio of gravitational-to-local mass is

M/(µL) = 8π−2λ−1(λ− 1)−1 I (λ). (10.34)

As λ → 1 (the weak-field limit) the mass ratio goes to 1, as would be
expected. However, as λ increases the mass ratio declines monotonically, and
tends to zero like 4π−1λ−1 lnλ as λ → ∞ (which corresponds to the critical
angle deficit limit θ ≡ 8πµ = 2π). The dependence of M/(µL) on the bare
string mass per unit length µ is shown in figure 10.3.
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10.2 Black-hole formation from a collapsing loop

Given the degree of complexity evident even in the construction of the 3-surface
outside a circular cosmic string at a moment of time symmetry, it is unlikely that
an exact solution for a collapsing loop will ever be developed. This is a great
pity, given the interesting and—almost certainly—pathological behaviour that is
expected of a string loop as it collapses to a point.

The trajectory of a circular loop in Minkowski spacetime was discussed in
chapter 3, and the equation of the world sheet in the aligned standard gauge was
seen to be

Xµ(τ, σ ) = R0[τ, cos τ cos σ, cos τ sin σ, 0] (10.35)

where R0 is the initial radius of the loop, and σ ranges from 0 to 2π . The loop
collapses to a point at the origin at τ = π/2, and the 4-velocity of the string as
measured by a local observer

V µ = R−10 Xµ,τ = [1,− sin τ cosσ,− sin τ cosσ, 0] (10.36)

is asymptotically null, as V 2 = cos2 τ .
The likely fate of a realistic (that is, self-gravitating and quantum-

mechanical) loop when it collapses to a point was the subject of sustained if minor
interest throughout the 1980s. The possibilities included the naive view that the
string would pass through itself and re-expand, that it would unwind and dissipate,
and that it would trigger the formation of an event horizon and ultimately a black
hole. The question was finally resolved by Stephen Hawking in 1990, who used a
simple geometric analysis of the problem to argue that a circular loop would form
an event horizon after radiating away at most 29% of its original energy [Haw90].

If T again denotes the world sheet of the loop, then in the neighbourhood of
the collapse event T will be effectively null. Furthermore, in the absence of other
sources of stress–energy or gravitational radiation the spacetime M will be flat
outside the future J+(T) of T. If a cylindrical coordinate system xµ = (t, r, φ, z)
is used to describe the flat regionM−J+(T), with the collapse event at t = 0, then
near the moment of collapse T will trace out the null 2-surface {r = −t, z = 0},
with t < 0.

Let v = t + r be a null coordinate which is zero on T. Then nµ = v,µ is
a null vector tangent to T, and the stress–energy tensor of the string loop has the
form

Tµν = snµnνδ(v)δ(z) (10.37)

where s is a scalar field. The energy conservation equation DνTµν = 0, therefore,
reduces to

s,r +r−1s = 0 (10.38)

and so s = k/r for some constant k, a result which is any case evident from the
geometry of the problem.
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Consider now the collapsing null spherical shell N inscribed by T, which in
spherical coordinates (t, R, φ, θ) has the equation R = −t , again with t < 0.
According to the well-known singularity theorems of Penrose and Hawking
[HE73], the string loop will collapse to form a singularity if a trapped surface
appears. A trapped surface is a closed 2-surface with the property that both the
ingoing and outgoing families of normal null geodesics are non-diverging. Let C
be the closed 2-surface formed by the intersection of the spherical shell N with
a general smooth surface R = h(θ), where h is symmetric about the equatorial
plane (θ = π/2), and h(π/2) = r0 for some fixed constant r0. The equatorial
cross section of C is then the position of the string at time t = −r0.

The 2-surface C is spanned by the unit vectors

τµ = R−1h,θ (δµt − δµR)− R−1δµθ and σµ = (R sin θ)−1δµφ (10.39)

and so to within a scale factor the vector tangent to the outward null geodesics
orthogonal to C is:

qµ = 1
2 (1+ R−2h,2θ )δµt + 1

2 (1− r−2h,2θ )δµR − R−2h,θ δµθ . (10.40)

The corresponding geodesic expansion� is:

� = −(τµτ ν + σµσν)Dµqν = 1
2 R

−1 − R−2h,θθ + 3
2 R

−3h,2θ . (10.41)

In general � will be positive and of order R−1 but the stress–energy of the
string loop will cause any geodesics passing through it to reconverge, with the net
effect on� given by Raychaudhuri’s equation:

qµ�,µ= − 1
2�

2 + 2ω2 − 2σ 2 − 8πTµνq
µqν (10.42)

where ω is the rotation and σ the shear of the geodesic congruence. Because C
is axisymmetric the congruence is actually shear-free but for the purposes of the
analysis it is necessary only that �, ω and σ be bounded on C.

If equation (10.42) is integrated an infinitesimal distance forward across C
then because δµR = δµr on the equatorial plane and qt + qR = 1, the expression
qµ�,µ is equivalent to d�/dv for equatorial geodesics. Furthermore, since
nµqµ = 1,

Tµνq
µqν = kδ(v)δ(z)/r0 (10.43)

on C, and so the net change in � in crossing C is

� = −8πkδ(z)/r0. (10.44)

Suppose now that the function h defining C is smoothly deformed to give a
sequence of functions which converge pointwise to

h0(θ) = r0(1+ | cos θ |)−1. (10.45)



342 Strong-field effects of zero-thickness strings

The closed 2-surface C0 corresponding to h0 is the intersection of the spherical
shell N with the two null hyperplanes satisfying the equation −t + |z| =
r0. Geometrically, C0 consists of two paraboloid caps glued together on the
equatorial circle r = −t = r0, where the hyperplanes cross.

Since C0 is constructed from sections of hyperplanes, it is clear that � = 0
everywhere on C0 except possibly the equatorial plane. (Alternatively, this can be
verified by substituting h0 into equation (10.41) above.) Also, h0,θ has the values
r0 just above the equatorial plane and −r0 just below it. From equation (10.41)
therefore, the geodesic expansion on C0 is:

� = 2r−10 δ(θ − π/2) = 2δ(z). (10.46)

The net expansion�+� will, therefore, be zero and the surface C0 marginally
trapped, if r0 = 4πk1.

The physical significance of this result is that if µ ∼ 10−6 is the mass per
unit length of the string (in Planck units) and rl is a characteristic dimension
of the loop—for example, its radius at maximum expansion—then a trapped
surface will form about the loop when it has shrunk to a radius r = 4πµrl ∼
10−5rl . Furthermore, if the hypothesis of Cosmic Censorship holds then an event
horizon will form about the loop, whose final state according to the No-Hair
Theorem will be a Schwarzschild black hole. By the Second Law of Black Hole
Thermodynamics, the area of this black hole will be bounded below by the area
of the trapped surface C0, which is

A(C0) = 2π
∫
r |dt2 − dr2 − dz2|1/2 = 4π

∫ r0

0
r dr = 2πr20 (10.47)

where the line element on C0 reduces to dr because −t + |z| = ρ0 and so
dt2 = dz2.

The mass of the final black hole, therefore, satisfies

M f ≥
√
A(C0)/16π = r0/

√
8. (10.48)

By contrast, the mass of the string loop at large radius is

Mi = 2π
∫
T tt r dr dz = 2πk = r0/2 (10.49)

1 This argument, which effectively depends on the cancellation of two distributional quantities, �
and �, can be made more rigorous by smearing out the string’s stress–energy tensor along C. For
example, if equation (10.37) is replaced with

Tµν = snµnνδ(t + r)ε−1�(ε−1z)
where � is any even smooth function with support on [−1, 1] and ε is a positive constant, then in the
limit as ε→ 0 the value of � integrated over z along C tends to −8πk/r0. Similarly, from (10.41)
the integrated expansion � in the limit as h→ h0 is 2.
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and so the maximum energy that can be radiated away in the form of gravitational
waves during the course of the collapse is

Mi − M f ≤ (1− 1/
√
2)Mi (10.50)

or 29.3% of the initial mass.
Claude Barrabès [Bar91] has generalized this result to include loops with a

‘stadium’ geometry (that is, in the shape of a pair of semi-circles connected by
straight-line segments) which are collapsing at the speed of light. The maximum
energy that can be radiated away is then about 33% of the initial mass but this
bound is little more than a mathematical curiosity, as no cosmic string with
stadium geometry obeying the Nambu–Goto equations of motion would collapse
to a singular line in the manner envisaged by Barrabès.

10.3 Properties of the near gravitational field of a cosmic
string

Another line of approach to the problem of understanding the gravitational
properties of a string loop is to analyse the gravitational field in the vicinity of
the world sheet. This was first done in detail by Unruh et al in 1989 [UHIM89],
although some preliminary versions of their results were developed by Sokolov
and Starobinskii [SS77] and Clarke et al [CEV90].

As usual, let the world sheet of a general string configuration be a two-
dimensional manifold T. Following Unruh et al it is assumed that T is equipped
with a smooth metric tensor γAB (where A, B . . . range from 0 to 1). Let �
be a fixed timelike geodesic on T and t the proper distance along � from an
arbitrary reference point. If z is chosen to be the proper distance from � along
the family of spacelike geodesics on T which intersect � orthogonally, then with
ζ A = (t, z) the intrinsic metric in the neighbourhood of any point � on � has the
form γAB = diag(1,−1) plus terms of order z2.

In order to construct a full four-dimensional coordinate system in the
neighbourhood of � Unruh et al appealed to the existence of a family of
geodesically-generated spacelike 2-surfaces {N�} with the properties that
(i) each surface N� intersects the world sheet at a point � = (t, z) on T; and
(ii) if a general point on N� is identified by the coordinates xµ = (t, z, r, φ),

where r is the geodesic distance along N� from � and φ ∈ [0, 2π) is a
suitably-chosen angular coordinate, then near � the line element reads:

ds2 ≈ dt2 − dz2 − dr2 − a20r2 dφ2 (10.51)

where a0 < 1 is a constant.

The asymptotic form (10.51) of the line element is, of course, modelled on
the metric (7.28) outside an infinite straight string. Unruh et al envisaged the
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surfaces N� being generated by spacelike geodesics which intersect the world
sheet T ‘orthogonally’ but since the line element (10.51) has a conical singularity
and, therefore, no well-defined tangent space at T the definition of an ‘orthogonal’
geodesic is somewhat problematic. For the moment N� will be restricted only by
the requirement that the dr dζ A and dφ dζ A cross terms that would appear at
higher order in (10.51) go to zero sufficiently rapidly that they can be ignored as
r → 0. As will be seen in section 10.4.1—where the assumptions made here are
given a more rigorous justification—this means in practice that the cross terms
should be of order r2.

In parallel with the analysis of section 7.2, the metric near � can be reduced
to a more convenient form by replacing the geodesic radius r with the isotropic
radius ρ = (a0 r)1/a0 . The near-field line element (10.51) then becomes:

ds2 ≈ dt2 − dz2 − ρ−8µ(dx2 + dy2) (10.52)

where x = ρ cosφ, y = ρ sinφ and µ = 1
4 (1 − a0). In what follows, I will

abbreviate (x, y) as xi , where the indices i , j , . . . range from 2 to 3.
The structure of the Riemann tensor near the world sheet is, of course,

determined by terms of higher order than those appearing in (10.52). In order to
calculate the effect of such terms, the full metric will be taken to have the ADM
form (10.1), with the important proviso that the shift function Na is assumed to
be small enough that it can be ignored to leading order. Following the notation of
section 10.1, the acceleration of the unit vector nµ = Nδtµ normal to the surfaces
of constant t is

aµ ≡ nλDλnµ = N−1(nλN,λ nµ − N,µ ). (10.53)

Because nµ is tangent to the world-sheet geodesic � the only non-zero
components of the acceleration vector in the limit r → 0 (with z small) will
be ax and ay .

Now, the components Ratbt of the Riemann tensor can be decomposed in the
form

hκρh
µ
σ Rκλµνn

λnν = hκρhλσnµDµKκλ + aρaσ −∇ρaσ + Kµρ Kµσ (10.54)

where hµν is the projection operator and Kµν the extrinsic curvature tensor on the
surfaces of constant t , as before. If it is assumed that Kµν and aµ are differentiable
functions of t , z and the coordinates xi spanning the surfaces N�, then the only
singular term on the right of (10.54) is −∇ρaσ . Using the connection generated
by the near-field line element (10.52), it is easily seen that the only divergent
components of Ratbt are

Rit j t ∼ −∇i a j ∼ −4µρ−2(δik xk ā j + δ j k xkāi − ākxkδi j ) (10.55)

where āi denotes the value of ai = (ax , ay) in the limit r → 0.
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If the foregoing analysis is now repeated with � chosen to be the spacelike
geodesic parametrized by z which passes through � and the roles of the
coordinates t and z reversed, then in exactly the same way the tidal components
Razbz can be shown to include the divergent terms

Rizj z ∼ −∇i b j ∼ −4µρ−2(δik xkb̄ j + δ j kxk b̄i − b̄kxkδi j ) (10.56)

where bµ is the acceleration of the unit vector normal to the surfaces of constant
z, and b̄i is the limiting value of bi . Thus, Rit j t and Rizj z both diverge as
ρ−1 ∼ r−1/a0 , and their physical components diverge as ρ8µ−1 ∼ r−2+1/a0 .
Despite this divergence, however, the Ricci components Rtt and Rzz remain finite
as r → 0, as the contractions of the expressions on the right of (10.55) and (10.56)
with gi j = −ρ8µδi j are identically zero2.

The divergent terms ∇i a j and ∇i b j also contribute to the Ricci components
Rij . The projection of the Ricci tensor tangent to the surfaces of constant t can be
written in the Gauss–Codazzi form

hκρh
λ
σ Rκλ = (3)Rρσ + hκρhλσnµDµKκλ + aρaσ −∇ρaσ + K Kρσ (10.57)

and if Kµν and aµ are again assumed to be differentiable functions of t , z and xi

then the only divergent terms on the right of (10.57) are (3)Rρσ and −∇ρaσ . The
asymptotic form of (3)Rρσ could, in principle, be calculated directly but a more
elegant method is to again reverse the roles of t and z and note that the analogue
of (10.57) contains ∇ρbσ in place of −∇ρaσ .

Thus,

Rij ∼ ∇i b j −∇i a j ∼ 4µρ−2[δik xk(b̄ j − ā j )+ δ j k xk(b̄i − āi )− (b̄k− āk)xkδi j ]
(10.58)

and the stress–energy tensor will remain bounded near the string only if b̄i = āi .
Indeed, the physical components of Rij will remain bounded only if bi − ai goes
to zero at least as rapidly as ρ1−8µ ∼ r2−1/a0 .

The constraint b̄i = āi is an expression of the fact that the world sheet
T must have zero mean curvature3, which was earlier (in section 2.2) seen to
be a consequence of the equation of motion in the absence of gravitational
back-reaction. In terms of the metric components the equation (10.53) for the
acceleration vector aµ and its analogue for bµ indicate that

gtt ∼ 1− 2āi x i and gzz ∼ −(1+ 2b̄i x i ) (10.59)
2 The divergence of the Riemann tensor near a general string world sheet was discovered
independently by Clarke et al [CEV90], although they assumed that the tidal tensor must remain
bounded near a string and, as a result, claimed that strings could not bend on anything smaller than a
cosmological scale.
3 Or more accurately that the mean curvature scalars K(i) = pλνDλn(i)ν of the surfaces of constant

r must go to zero as r tends to zero, where nν
(i) ≈ ρ4µδνi (i = 2, 3) are the unit vectors normal to the

surfaces and pλν ≈ gλν + δi j nλ
(i)n

ν
( j) is the projection operator along the surfaces. Near the world

sheet, K(i) ≈ ρ4µ(b̄i − āi ) and the result follows.
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for small r , and so (since b̄i = āi ) neighbouring spacelike-separated surfaces N�

diverge with increasing distance from the world sheet if āi > 0 and converge if
āi < 0.

Another interesting property is that the magnitudes a and b of the
acceleration vectors ai and bi tend to zero as ρ4µ (or faster):

a ∼ b ∼ ρ4µ(δi j āi ā j )1/2 (10.60)

which, in turn, means that all spacelike and timelike geodesics on the world sheet
T are also geodesics of the full four-dimensional spacetime M. The world sheet
is, therefore, a totally-geodesic submanifold of M, a fact which led Unruh et al
[UHIM89] to declare that all string loops are necessarily straight. In physical
terms, there exists a family of geodesics in the neighbourhood of T which trace
the contours of the world sheet and so at the level of geodesic structure (although
not of the tidal forces) the world sheet is indistinguishable from a flat manifold.
However, this effect would not be observable near a realistic cosmic string,
because with µ ∼ 10−6 the conformal factor ρ4µ appearing in (10.60) would
remain of order unity until well inside the string core.

The analysis given here of the near gravitational field of a string has been
predicated on a number of assumptions, not the least of which is that the
acceleration vectors normal to the surfaces of constant t and z are differentiable
functions of the coordinates xi . This assumption might seem somewhat strong
but, in fact, all the exact solutions with conical singularities examined in chapter 9
satisfy these assumptions (in many cases with āi = b̄i = 0). So too does the
metric on the conformally-flat 3-surface described in section 10.1, where the
analogue of the world-sheet coordinate z is the angular coordinate φ. The crucial
feature of the analysis is not the arbitrary nature of the assumptions (which, in fact,
could be taken to be defining properties of a general string metric) but that they
are consistent with the vacuum Einstein equations Rµν = 0. The assumptions are
extended and given a more rigorous foundation in the next section.

10.4 A 3 + 1 split of the metric near a cosmic string

10.4.1 General formalism

So far no formal definition has been offered of a general zero-thickness cosmic
string metric. Clearly, any proposed definition must be narrow enough to apply
only to spacetimes containing a two-dimensional submanifold with distributional
stress–energy tensor of the form (6.1) but broad enough to encompass all known
exact solutions which have been identified as string metrics. It should be noted
that the first requirement specifically excludes metrics containing ‘spinning’
cosmic strings of the type first introduced by [Maz86], which are endowed with
angular momentum and are sheathed by congruences of closed timelike curves
(see section 9.3.4).
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In this section a general (zero-thickness) cosmic string will be defined to be a
line singularity with certain restrictive features. The concept of a line singularity
was first given a formal justification in 1977 byWerner Israel [Isr77], who defined
a line singularity to be a singular boundary T of spacetime with the following
properties:

(i) Each point � in a neighbourhood of T can be connected to T with a spacelike
curve of finite proper length. The spacelike geodesic which extremises the
distance from � toTwill be referred to as a ‘radial geodesic’, and the distance
r from � to T along this curve as the ‘geodesic distance’ to �.

(ii) The surfaces r = constant are 3-cylinders with topology �× �2 (outside an
infinite string, for example) or �× �× � (outside a string loop).

(iii) Each 3-surface r = constant is surrounded by a congruence of simple, non-
reducible closed spacelike curves � whose circumference tends to zero as
they are Lie-transported inwards to T along radial geodesics.

As was done in section 10.3, a natural coordinate system can be erected
in a neighbourhood of T by labelling each point � on T with coordinates (t, z)
and parametrizing the family of radial geodesics which terminate at � with a
continuous variable η which ranges from 0 to 2π and is chosen so that each closed
curve � stipulated by (iii) is a parametric curve of η. Thus, a radial geodesic can
be identified by a triple of coordinates xa = (t, z, η), and the coordinates of a
point at a geodesic distance r from T will be written as xµ = (r, t, z, η). This
coordinate system uniquely identifies spacetime points out to the local radius of
curvature of T, where neighbouring radial geodesics first begin to cross.

The difference between this coordinatization and the more primitive version
used in the previous section is the fact that the radial geodesics are stipulated to
extremize the proper distance from T. Because r measures the proper distance
along a family of spacelike geodesics, the metric tensor gµν satisfies:

grr = −1 and gar ,r = 0. (10.61)

Furthermore, if xµ(r) = (r, xa0 + εζ a(r)) denotes an arbitrary perturbation
of any of the radial geodesics then the distance along this curve to T is

s(r) = r − gar(xb0 )εζ a(0)+ O(ε2) (10.62)

and so because the radial geodesics extremise the proper distance to T,

gar = 0. (10.63)

Thus, instead of the less stringent ADM form (10.1), the line element
decomposes into the 3+ 1 Gaussian normal form:

ds2 = −dr2 + gAB dζ A dζ B + 2gηA dζ A dη+ gηη dη2 (10.64)

where again ζ A = (t, z) and A, B . . . range from 0 to 1.
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Also, according to property (iii) gηη < 0 and the proper length of each closed
curve with r , t and z constant tends to zero as r → 0, so that limr→0 gηη = 0.

The spacelike surface generated by all the radial geodesics which terminate
at a given point � on the singularity will be denoted N�, and is spanned by the
vectors δµr and δµη . In the absence of Killing vectors, the 2-surfaces N� provide a
natural mechanism for developing an invariant characterization of the angle deficit
around T. If N is any geodesically-generated spacelike surface through a point �
on T then the angle deficit θ on N is defined by the Gauss–Bonnet formula

θ = 2π − lim
ε→0

∮
γε

κg ds (10.65)

where {γε} is a continuous family of smooth closed curves with winding number
1 on N which shrink to � as ε→ 0, and κg is the geodesic curvature of γε.

In the case of the bare straight-string metric (7.28) the surfaces N� are just
the surfaces of constant t and z, and the angle deficit on each of these surfaces
is θ = 8πµ. As a natural generalization of this result, I will define a spinless
cosmic string to be a line singularity T with the following additional properties:

(iv) On each surfaceN� the angle deficitθ has the value 8πµ, whereµ ∈ (0, 14 )
is a fixed constant.

(v) It is possible to choose the coordinates t and z so that the metric components
gAB and gAB tend to well-defined, non-degenerate, η-independent limits
γAB and γ AB as r → 0, with γ AB the inverse of γAB .

(vi) The stress–energy tensor Tµν in any (deleted) neighbourhood of T is locally
finite, in the sense that if E is any of the physical components of Tµν then
the limit

lim
ε→0

∫ r

ε

E
√
g dr (10.66)

is well defined for all r > 0.

Property (vi) ensures that the string is surrounded by vacuum or material with a
finite total stress–energy but places no intrinsic constraint on the string itself.

Since κg = |gηη|−1/2(|gηη|1/2),r on each surface N�, property (iv) ensures
that

θ ≡ 8πµ = 2π − lim
r→0

∫ 2π

0
(|gηη|1/2),r dη (10.67)

and so
lim
r→0
(|gηη|1/2),r = (1− 4µ)G(t, z, η) (10.68)

where G is some function (periodic in η) satisfying the normalization condition∫ 2π
0 G dη = 2π .

If the radial geodesics are now reparametrized with an angular coordinate
φ(t, z, η) defined by

dφ

dη
= G(t, z, η) and φ(t, z, 0) = 0 (10.69)
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then gφr = 0, φ ranges over [0, 2π) on each surface N�, and
limr→0(|gφφ |1/2),r = 1− 4µ. Thus

gφφ ≈ −a20r2 (10.70)

for small values of r , where again a0 = 1− 4µ.
Finally, property (v) endows the singularity T with a 2-metric γAB , which

allows T to be treated as a geometrical object—the world sheet of the string—
in its own right. In the vicinity of T, given that γ AB is the inverse of γAB ≡
limr→0 gAB ,

gAB ≈ (−γ ABgφφ − γ−1εACεBDgCφgDφ)(−gφφ + γ EF gEφgFφ)−1 (10.71)

where γ = − det(γAB) and εAC is the flat-space alternating tensor (with ε12 =
−ε21 = 1 and ε11 = −ε22 = 0). Taking the inner product of (10.71) with γAB
and requiring that limr→0 gAB = γ AB forces γ EF gEφgFφ to go to zero more
rapidly than r2. This fact, combined with (10.71), indicates that the components
gAφ must go to zero more rapidly than r .

In summary, therefore, the line element (10.64) has the limiting form

ds2 ≈ γAB dζ A dζ B + 2gφA dζ A dφ − dr2 − a20r2 dφ2 (10.72)

where the indefinite 2-metric tensor γAB is a function of ζ A = (t, z) only and
limr→0 gφA/r = 0.

Incidentally, Israel in his general characterization of line sources [Isr77]
assumed in place of properties (iv) and (v) that the limits Cµν ≡
1
2 limr→0

√
ggµλgλν,r are well defined and that

Cµν ,η= 0 and Cηt = Cηz = 0. (10.73)

Israel imposed the second condition in order to exclude line singularities with
intrinsic angular momentum but, unfortunately, it also disallows cylindrical
metrics supporting × mode gravitational waves, such as the Xanthopoulos
solution (9.118), which has Cφz = −βκ20ρ−40 . In fact, it turns out that in the
more fully developed near-field expansions of section 10.4.3 all components of
Cµν except Cφt and Cφz are zero, whereas the reverse is true of Israel’s class of line
sources. Thus, the two characterizations are quite different.

10.4.2 Some sample near-field expansions

Before proceeding to examine the vacuum Einstein equations in the near-field
limit, it is instructive to transform some of the string solutions discussed in
chapter 9 into the 3 + 1 form (10.64). Indeed, it is useful to first of all compare
(10.64) with the Minkowski metric rewritten in terms of coordinates (ζ A, r, φ)
expanded about an arbitrary smooth indefinite surface S′ = {xµ = Xµ(ζ 0, ζ 1)},
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in the same way that (10.64) is tailored to the geometry of the normal surfaces
N�. In these coordinates the Minkowski line element becomes:

ds2 = (γAB + 2xi K(i)AB + xi x jγ CDK(i)AC K( j )BD − r2ωAωB) dζ A dζ B
+ 2r2ωA dζ A dφ − dr2 − r2 dφ2 (10.74)

where γAB = X,A ·X,B is the 2-metric induced on S′, xi = [r cosφ, r sin φ], and
K(i)AB and ωA are the extrinsic curvature tensors and twist vector of the surface
S′, respectively. (This expansion is just the cylindrically-symmetric version of the
tailored line element (1.82).)

The similarities between (10.74) and the limiting form (10.72) of the general
string metric are clear and indicate that the latter presumes only a minimal
departure from the geometry around surfaces in flat space. In particular, it is
expected that the short-distance behaviour of the metric components gAφ should
encode information about the twist of the world sheet T, while the first-order
terms in gAB should be related to the extrinsic curvature of T.

Turning now to the explicit string solutions of chapter 9, it is evident that the
general travelling-wave metric (9.12) can be recast in the 3 + 1 form (10.64) by
defining r = a−10 ρ

a0 and tan φ = y/x . Then gAφ = 0, gφφ = −a20r2 and

gAB = γAB +
[
F ±F
±F F

]
AB

(10.75)

where γAB = diag(1,−1) and

F(t, r, φ, z) =
∞∑
n=1

rn/a0[cos(nφ)A′′n(t ± z)+ sin(nφ)B ′′n (t ± z)] (10.76)

for arbitrary four-times differentiable functions An and Bn .
Continuing the analogy with (10.74), it can be seen that the world sheet of

the string is twist-free, and that the first-order (r1/a0) terms in gAB suggest that
the surfaces of constant r have extrinsic curvature tensors K(i)AB proportional to
r−1+1/a0A′′n(t ± z) and r−1+1/a0B ′′n (t ± z), which since r−1+1/a0 = r4µ/(1−4µ)
vanish in the limit as r → 0. This behaviour is, of course, consistent with the
general analysis of section 10.3.

Rewriting the Robertson–Walker string metric (9.29) in 3 + 1 form is more
intricate. It is necessary first of all to integrate the geodesics of the 3-metric

ds2 = a2(η)[dη2 − (1− kR2)−1 dR2 − R2 dθ2] (10.77)

out from the axis θ = 0 with dη/ds = dR/ds = 0 initially, then identify r with
the proper distance s, t with the initial value η0 of the cosmic time η, and z with
the initial value R0 of R.
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The resulting transformation from (η, R, θ) to (t, r, z) is defined by the
equations

R sin θ =
(
R2 − z2
1− kz2

)1/2
r =

∣∣∣∣ ∫ η

t
[a2(t)− a2(u)]−1/2a2(u) du

∣∣∣∣ (10.78)

and∫ R

z
(1−ku2)−1/2(u2− z2)−1/2u du = a(t)

∣∣∣∣ ∫ η

t
[a2(t)−a2(u)]−1/2 du

∣∣∣∣ (10.79)

where η > t if ȧ(t) > 0 and η < t if ȧ(t) < 0.
For small values of the geodesic distance r , this transformation reads:

η = t − 1
2a(t)

−3ȧ(t)r2 R = z + 1
2 z
−1a(t)−2(1− kz2)r2 (10.80)

(plus terms of order r4 in both cases) and

θ = z−1a(t)−1r + 1
3 z
−3a(t)−5[z2ȧ(t)2 − a(t)2(1− kz2)]r3 + O(r5). (10.81)

The corresponding line element has gAφ = 0,

gtt ≈ a(t)2 + [a(t)−1ȧ(t)]·r2 (10.82)

gzz ≈ −(1− kz2)−1{a(t)2 − a(t)−2[ȧ(t)2 + ka(t)2]r2} (10.83)

and
gφφ ≈ −a20r2{1− 1

3a(t)
−4[ȧ(t)2 + ka(t)2]r2}. (10.84)

Note that, in contrast with the travelling-wave solutions, the metric tensor
appearing here expands as a power series in r2 rather than in r1/a0 . The near-field
behaviour of the string spacetime (9.29) is, therefore, qualitatively different from
that of a travelling wave. Furthermore, with the gauge choice

τ = t and σ =
∫
(1− kz2)−1/2 dz (10.85)

the world sheet T has the 2-metric γAB = a2(τ ) diag(1,−1), and so T has non-
zero intrinsic curvature if ȧ �= 0. It is evident from the near-field expansion that
the terms in the metric proportional to r2 are all dependent on the presence of
non-zero spatial curvature (k �= 0) or non-zero world-sheet curvature (ȧ �= 0).

The Aryal–Ford–Vilenkin metric (9.53) can be treated in a similar way. The
3+ 1 form is found by defining r and z implicitly by the equations

r = ±
∫ R

z

[(
1− 2m

u

)(
1− z2

u2

)]−1/2
du

θ = ±z
∫ R

z

[(
1− 2m

u

)(
1− z2

u2

)]−1/2
u−2 du

(10.86)
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where the positive branch applies outside the event horizon (R > 2m) and the
negative branch inside the event horizon (R < 2m). For small values of r the line
element has the limiting form:

ds2 ≈
(
1− 2m

z

)(
1+ m

z3
r2
)
dt2 −

(
1− 2m

z

)−1 (
1+ m

z3
r2
)
dz2

− a20r2
(
1− 2m

3z3
r2
)

dφ2 − dr2. (10.87)

Again the near-field expansion proceeds in powers of r2 rather than powers
of r1/a0 and the second-order terms are dependent on the existence of non-zero
world-sheet curvature, as they are all proportional to the tidal term m/z3 while
the 2-metric on the world sheet

γt t = 1− 2m

z
γzz = −

(
1− 2m

z

)−1
(10.88)

has an associated scalar curvature (2)R = 4m/z3.
As a final example, this time involving a non-zero twist term, consider the

canonical cylindrically-symmetric line element (9.83). Provided that the metric
functions χ , ψ and α can be expanded as powers of r2 (which is true of all the
solutions in section 9.3 except those Levi-Cività-seeded soliton solutions which
fail to be conical on axis) and α is of order at least r2, the line element in 3 + 1
form has:

gtt ≈ e2χ0 + (2χ̇0 + χ̇2
0 − χ̈0 − 1

2 χ̇0χ
′′
0 )r

2 (10.89)

gzz ≈ − e2ψ0 − e2(ψ0−χ0)(2ψ̇0 − 1
2 χ̇0ψ

′′
0 )r

2 (10.90)

gφφ ≈ − e−2(χ0+ψ0)r2 − e2ψ0α2

− 1
3e
−2(2χ0+ψ0)(χ̇2

0 − 2χ̇0 + 1
2 χ̇0χ

′′
0 − 6ψ̇0 + 3

2 χ̇0ψ
′′
0 )r

4 (10.91)

and gzφ ≈ −e2ψ0α, with gtz and gtφ of order r4 or smaller. (Here, a subscripted
0 denotes the value of the corresponding function at r = 0, so that χ0, ψ0 and
the subscripted derivatives are all functions of t only.) The twist term gzφ is,
therefore, dependent directly on the presence of × mode gravitational waves.

10.4.3 Series solutions of the near-field vacuum Einstein equations

The class of solutions to the Einstein equations containing a zero-thickness
cosmic string as defined in section 10.4.1 is presumably very broad, if only
because the stress–energy tensor outside the string is only weakly constrained
by condition (vi). The properties of such a string can be studied in isolation
from the effects of any surrounding matter or radiation fields by making the more
restrictive assumption that the string lies in a vacuum exterior, so that the Einstein
equations reduce to Rµν = 0 away from the world sheet T.
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Furthermore, all the exact string solutions examined so far admit near-field
series expansions of the 3 + 1 metric tensor in powers of either r1/a0 (where
0 < a0 < 1) or r2. Expansions of the first type are characteristic of the travelling-
wave metrics (9.25), while expansions of the second type seem to be associated
with non-zero world-sheet or metric curvature. It is for this reason that I chose
in [And99b] to refer to the two types of disturbances as ‘travelling waves’ and
‘curvature waves’ respectively.

These considerations suggest that one avenue of approach to studying the
near gravitational field outside a general cosmic string is to expand the 3 + 1
metric tensor in undetermined powers of the geodesic distance r and then impose
the vacuum Einstein equations. Before this is done, note first that the coordinates
ζ A = (t, z) on T can always be chosen so that the 2-metric γAB is conformally
flat:

γAB = κ(t, z)ηAB (10.92)

where ηAB = diag(1,−1), in which case the scalar curvature of the world sheet
is

(2)R = κ−1ηAB(ln κ),AB . (10.93)

Then the general series expansion of the 3+ 1 metric tensor has the form

gAB = κ
(
ηAB +

∞∑
n=1

P(n)ABr
jn

)
gAφ =

∞∑
n=1

Q(n)A r
kn (10.94)

and

gφφ = −a20r2
(
1−

∞∑
n=1
β(n)r ln

)
(10.95)

where P(n)AB , Q
(n)
A and β(n) are all functions of t , z and φ, and the sequences of

exponents { jn}, {kn} and {ln} are positive and ascending, with k1 > 1 as required
by property (v).

Generating the corresponding power-series expansions of the Riemann and
Ricci tensors is a tedious process whose first steps have been outlined in
[And99b]. For instance,

RAφ = 1
2k1(2− k1)Q(1)A rk1−2 + o(r0) (10.96)

and so the assumption of a vacuum exterior entails that k1 ≥ 2. Similarly,

RAB = − 1
2κa

−2
0 (P

(1)
AB ,φφ + j21a20P(1)AB )r j1−2 + O(r0) (10.97)

and so either j1 ≥ 2 or P(1)AB ,φφ + j21a20P(1)AB = 0. In the second case, a non-trivial

solution P(1)AB exists if and only if j1 is an integer multiple of 1/a0. If j1 = 1/a0
then

P(1)AB = LAB cosφ + MAB sinφ (10.98)
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where the coefficient matrices LAB and MAB are functions of t and z only.
In addition, the leading-order term in the expansion of Rrφ imposes the trace
constraints ηAB LAB = ηABMAB = 0.

Continuing in this way gradually builds up a multinomial expansion for the
metric tensor in powers of r1/a0 and r2. If it is assumed that µ < 1/8 (so that
1 < 1/a0 < 2) and the smallest possible power of r is chosen at each step then

gAB = κ[ηAB + (LAB cosφ + MAB sin φ)r1/a0

+ ( 14 (2)RηAB − κ−1a−20 ωAωB)r
2] + O(r2+1/a0) (10.99)

gAφ = r2ωA + (2a0 + 1)−1[ωB(LBA cosφ + MBA sin φ)

+ a20κ−1(κLBA),B sin φ − a20κ−1(κMB
A ),B cosφ]r2+1/a0 + O(r4)

(10.100)

and
gφφ = −a20r2(1− 1

6
(2)Rr2)+ O(r4+1/a0) (10.101)

where the twist vector ωA , the symmetric travelling-wave potentials LAB and
MAB and the scalar curvature (2)R are all functions of t and z, and the world-
sheet indices A, B . . . are raised and lowered using the flat 2-metric ηAB .

It has already been mentioned that the potentials LAB and MAB must be
trace-free. Further conditions on LAB and MAB appear at higher orders in the
expansion. For example, the Ricci components RAB vanish at order r2/a0 only
if Ltz/Ltt = Mtz/Mtt = ±1, while if gAφ vanishes to order r2+1/a0 then κLAB
and κMAB are functions of t ± z only, and the leading-order (n = 1) terms in the
generating function (10.76) for a travelling-wave metric are completely specified.

Moreover, if RAB = 0 at order r2/a0 then gAB contains a term of the form

κ(L̄ AB cos 2φ + M̄AB sin 2φ)r2/a0 (10.102)

where L̄ AB and M̄AB must be trace-free if Rφr = 0 at order r2/a0 , while
L̄t z/L̄t t = M̄tz/M̄tt = Ltz/Ltt if RAB = 0 at order r3/a0 . Thus, the full
travelling-wave metric term (10.75) appears piece by piece at successive orders in
the expansion, provided that gAφ is identically zero.

The corresponding series expansion of the Riemann tensor contains only
three terms (modulo symmetries) whose physical components diverge near the
world sheet, namely

RArBr ∼ 1
2a
−1
0 (a

−1
0 − 1)κP(1)ABr

1/a0−2 (10.103)

RArBφ ∼ 1
2 (a

−1
0 − 1)κP(1)AB ,φ r

1/a0−1 (10.104)

and
RAφBφ ∼ 1

2 (a0 − 1)κP(1)ABr
1/a0 . (10.105)

The physical components of all three of these terms diverge as (1/a0 −
1)r1/a0−2 ∼ µr4µ−1 (for small µ), which is again in agreement with the analysis
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of section 10.3. As can be seen, the divergence in the Riemann tensor is due
solely to the contribution of the leading-order (n = 1) travelling waves. The
remaining physical components of Rabcd all tend to zero as r1/a0−1, except for
those of Rrφrφ and RABCD , which tend to finite, generally non-zero limits on the
world sheet.

In summary, there seems to be no obstacle to developing a series solution
for the 3 + 1 metric tensor outside the world sheet T of a zero-thickness cosmic
string, with the scalar curvature (2)R of T, the twist vector ωA and the full set
of travelling-wave potentials as boundary data, although there is a complicated
nonlinear coupling between the × mode gravitational waves (represented by ωA)
and the travelling waves. The physical properties of such a solution are consistent
with the general description of the metric near T offered in the previous sections,
although there is no guarantee that the near-field solution in any particular case
can be extended to give an acceptable global solution.

One outstanding problem that has yet to be resolved is the connection
between the general relativistic description of a zero-thickness string, which hints
at a complex set of dynamical modes coupled to various types of gravitational
radiation, and the conventional flat-space description, in which the string motion
is constrained by the Nambu–Goto action. The two regimes appear to have
points of contact in the weak-field approximation, particularly in the context
of the back-reaction problem (where radiative effects contribute a secular
correction to the Nambu–Goto motion) but these contacts remain very tenuous.
Of course, the world sheet of a zero-thickness gravitating string is a totally
geodesic submanifold, and so there is a sense in which it not only satisfies
the Nambu–Goto equations but is, in fact, ‘straight’. However, this effect
is merely a mathematical curiosity and would not be detectable by a distant
observer. Whether the motion of a gravitating string can ever be approximated
by a Nambu–Goto string in an otherwise flat spacetime remains an unanswered
question.

10.4.4 Distributional stress–energy of the world sheet

One final property of the near-field metric expansions (10.99) to (10.101) that
deserves special mention is that they induce a distributional stress–energy density

with�
√
gT tt = �√gT zz =µδ(2)(r) and all other components zero, just as the bare

straight-string metric does. A stress–energy density of this form is, of course,
implied by the general expression for the stress–energy tensor (6.1) of a Nambu–
Goto string, and is here assumed to be one of the defining features of a zero-
thickness cosmic string.

The proof of this claim is similar to the corresponding proof in section 7.5.
In isotropic coordinates xi ≡ (x, y) = (ρ cosφ, ρ sin φ), the leading-order terms
in the near-field expansions of the 3+ 1 metric components become:

gAB = κηAB + a−1/a00 κ(LABx + MAB y)+ O(ρ2a0) (10.106)
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gAx = −a−20 ωAρ
−8µy + O(ρ2a0) and gAy = a−20 ωAρ

−8µx + O(ρ2a0)
(10.107)

and
gi j = −ρ−8µδi j + O(ρ4a0−2). (10.108)

In what follows, it will be assumed that the full expansions converge at all
points inside a fixed deleted neighbourhood S of the world sheet T. The isotropic
coordinate system maps S to the neighbourhood of a plane (the image of T) in �4 .
Let �0 be a point on the world sheet, with coordinates (ζ A, xi ) = (ζ A0 , 0) ≡ xµ0 ,
and define D(�0) to be the minimum Euclidean distance from �0 to the boundary
of S. Let h be a smoothing operator with support that lies entirely within the 4-
sphere of radius 1

2D(�0) centred on the origin in �4 . Define S�0 to be interior of
the sphere of radius 1

2D(�0) centred on �0 in �
4 .

Then if xµ is any point in S�0 , x
µ = xµ − xµ0 and hε(xλ) = ε−4h(xλ/ε)

for any ε in (0, 1], the smoothed metric components gεµν in S�0 are defined in
analogy with (7.72) by

gεµν(x) =
∫
�4
gµν(x0 + y)hε(y −x) d4y. (10.109)

(Note that the restrictions on x and the support of h ensure that the integrand is
non-zero only if the point x0 + y lies within S.)

In particular,

gεAB = κε(ζC)ηAB + εNεAB
(
ζC ,

x

ε
,
y

ε

)
+ O∗(ε2a0) (10.110)

gAx = −ε1−8µW εA
(
ζC ,

y

ε
,
x

ε

)
+ O∗(ε2a0)

gAy = ε1−8µW εA
(
ζC ,

x

ε
,
y

ε

)
+ O∗(ε2a0)

(10.111)

and
gi j = −ε−8µ f

( x
ε
,
y

ε

)
δi j + O∗(ε4a0−2) (10.112)

where κε, NεAB , W
ε
A and f are smooth functions of their arguments (including ε),

and a function is said to be O∗(εk) if it has the general form εkGε where Gε is a
smooth function of ζ A and xi/ε and a continuous function of ε, with the property
that lim∗ε→0 G

ε is also a smooth function of ζ A and xi/ε (where lim∗ denotes that
the limit is taken with xi/ε fixed) of order (ρ/ε)k when ρ/ε is large.

The smoothed stress–energy tensor T (ε)µν induced by gεµν can be expanded
in powers of ε by noting that the x or y derivatives of any of the previous smooth
functions is just ε−1 times another smooth function. It turns out that√

gεT (ε)tt = ε−2H
( x
ε
,
y

ε

)
+ O∗(ε−1) (10.113)
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and √
gεT (ε)zz = ε−2H

( x
ε
,
y

ε

)
+ O∗(ε−1) (10.114)

where H is the function defined in a similar context in section (7.5), namely

H = − ε2

16π
[(ln f ),xx +(ln f ),yy ] (10.115)

and the remaining components of
√
gεT (ε)µν are all O∗(ε−1−8µ) or smaller.

Now let K ⊂ S(�0) be a closed ball centred on �0. The action of
√
gεT (ε)tt on

an arbitrary smooth functionψ with compact support lying inside K is, therefore,∫
K

√
gεT (ε)tt ψ d4x = ε−2

∫
K
Hψ d4x + ε−1

∫
K
Gεψ d4x (10.116)

where Gε is a smooth function of ζ A and xi/ε, with lim∗ε→0 G
ε also a smooth

function of ζ A and xi/ε, of order (ρ/ε)−1 when ρ/ε is large. It was shown in
section (7.5) that in the limit as ε→ 0 the first integral on the right tends to

µ

∫
K
ψ(ζ A, 0) d2ζ. (10.117)

Let Ḡ be the function ρ
ε
Gε, and T∗ the compact two-dimensional set K ∩T.

Viewed as a function of the five parameters xµ and ε, Ḡ is continuous on
K×(0, 1], and, in particular, is zero onT∗×(0, 1] as ρ = 0 there. By construction
limε→0 ε

−1Gε = 0 pointwise on K −T∗, as Tµν = 0 there, so Ḡ can be extended
to a continuous function on K × [0, 1] − (T∗ × {0}) by defining it to be zero on
(K − T∗)× {0}. Finally, since taking lim∗ε→0 is the same as taking limε→0 with
xi = κ iε where κ i and ζ A are constant, and lim∗ε→0

ρ
ε
Gε is a continuous and

bounded function of xi/ε ≡ κ i , the set of limiting values of Ḡ along any curve of
the form xi = κ iε and ζ A constant as ε→ 0 is bounded, as it is along any curve
with ε ≡ 0 (on which Ḡ ≡ 0) terminating at the same point on T∗ × {0}.

This means that Ḡ must be bounded in some neighbourhood of each point
on T∗ × {0} (with trivial adjustments to this statement necessary for points in
the boundary (∂K ∩ T∗) × {0}) and so Ḡ is bounded throughout K × [0, 1].
Hence, the function |ρ

ε
Gε| has a supremum C for all ε in (0, 1] and |ε−1Gε| is

uniformly bounded above by Cρ−1 on K . Since ρ−1 is locally integrable on �2

the dominated convergence theorem implies that

lim
ε→0

ε−1
∫
K
Gεψ d4x = 0.

A similar argument disposes of the remainder terms in the other components
of
√
gεT (ε)µν , as they are all of the form ε−kGε where k < 2 (provided that
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8µ < 1 as assumed earlier)4. So |ε−kGε| is uniformly bounded above by Cρ−k
for some constant C on K , and since ρ−k is locally integrable on �2 when k < 2,
the integral of ε−kGεψ over K vanishes in the limit as ε→ 0.

The original metric gµν , therefore, induces a distributional stress–energy

density�
√
gTµν with

�√gT tt (ψ) =�
√
gT zz (ψ) = µ

∫
K
ψ(ζ A, 0) d2ζ (10.118)

and all other components zero. Thus, provided that the expansions (10.99) to
(10.101) converge in some deleted neighbourhood of the world sheet T to tensor
fields which can be extended to give a globally acceptable 3 + 1 vacuum metric
tensor, a distributional stress–energy density can be ascribed to T, and it has the
same form

�√gTµν = µδ(2)(x, y)(δµt δtν + δµz δzν) (10.119)

as the stress–energy density of the bare straight-string metric (7.28).

4 A slight adjustment to the proof is necessary if k < 0, as then ( ρε )
kGε is no longer a continuous

function on K × (0, 1]. But in this case it is easily seen that Gε itself is uniformly bounded on K .
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Bogomol’nyi parameter, 19, 33, 56
Boltzmann’s constant, 2
boosted two-string spacetime,

275–278
boost matrix, 279
bosons, ix, 1, 7, 11, 13–15, 18, 21,

24, 27
Brandenburger, Robert, 81
bridging segment, 82–85
broken symmetry, 14, 15, 17, 18,

24, 26
Brown, Robert, 71, 72
bubble nucleation, 15, 27
Burd, Adrian, 294, 295
Burden, Conrad, 117, 197, 202,

204, 212

Caldwell, Robert, 127
cardioid string, 137–141
Carroll, Shaun, 278, 280
Carter, Brandon, 170
Casper, Paul, 127, 198, 202, 204,

212, 219, 222, 223, 226
cat’s-eye strings, 108–112
degenerate, 110–112
oscillating, 109–110, 111
spinning, 109, 110

causal curve, 43
causal future, 43–44
causal past, 43–44
causally-disconnected set, 43–44,

47, 49, 67

centre-of-momentum frame, 64, 65,
73, 86, 89, 99, 112, 114,
122, 185, 193, 226, 242,
277, 280, 282

characteristics, 40, 41, 57
Chaube, Sandeep, 307, 309, 310
Choquet-Bruhat, Yvonne, 261, 263
Christoffel symbols, 144, 160, 165,

171, 177, 253, 260
circular loop, 34, 78, 105–108, 110,

115, 117, 126, 142, 149,
153, 170, 199–201, 207,
227, 332, 334–343

collapse, 34, 106, 148, 149, 150,
153–157, 168, 226–231,
334, 340–343

Clarke, Chris, 262, 343, 345n
closed timelike curves (CTCs) x,

275–278, 280, 282, 313, 346
closed universes, 147, 150, 278,

282, 297, 307–310
coarse-grained averaging, 192, 193,

206, 214, 228
compactified spacetime, 331
complementarity relations, 89, 90
conformal diagram, 281
conformal gauge, 42n
conformal time, 148, 151
conformally-flat metrics, 41, 156,

302, 337, 338, 346, 353
conical singularities, 250, 259, 263,

272, 283, 291, 298, 299,
301, 305, 306, 309, 310,
315, 318–320, 322, 325,
332, 344, 346, 352

conical spacetime, 250–254, 263,
295, 325

self-force on a massive particle
182, 263–266

connections, 37, 50, 344
conservation equations, 45, 46, 66,

145, 152, 153, 168, 169,
177, 215, 235, 247, 340

conservation laws, xi, 43–48, 59,



Index 369

63–68, 153
Cosmic Censorship, 342
cosmic strings, ix, x, xi, 1, 26, 27,

Chapters 2–10
angular momentum, 44, 48, 59,

65–67, 99, 107, 109–112,
116–120, 123, 125, 128,
130, 168, 213, 217–219,
225, 346

currents, 66
per unit length, 313

anti-rigidity, 34
bending, 333, 345n
bulk velocity, 54–56, 61, 64, 65,

67, 70, 86, 88n, 89, 99, 181,
212, 241, 273, 278, 282

capture by a black hole 160–168,
170

critical curve, 163–167
centre-of-mass, 64, 241, 242
disintegrating, 330
dynamics, x, xi, 2, 18, 27, 28,

32–34, Chapters 2–5, 286,
332, 355

energy, 44–46, 48, 49, 61, 64, 86,
99, 153, 169, 174, 191, 193,
210, 211, 227, 231, 233,
234, 244, 245, 340

gravitational, 172
kinetic, 49
per unit length, 210, 211, 254,
255, 258, 259

equation of motion, 32–34,
36–42, 45, 46, 49, 50, 57,
59, 62, 66, 70, 72, 82, 88,
99, 103, 106, 108, 133, 134,
144, 145, 149, 151, 153,
154, 156, 157, 160, 161,
164, 166, 168–171, 177,
179, 181, 183, 185, 193,
231, 232, 235, 343, 355

fragmentation, 42n, 43, 44, 47,
48n, 49, 56, 86, 87, 89, 91

fundamental period, 61, 121,

135, 193, 194, 215, 232,
233, 242

infinite, 35, 44, 46, 62, 99–105,
145–147, 157–167,
170–176, 179, 182,
204–211, 237, Chapters 7–9

initial-value formulation 68–70,
135, 137

intersection, 44, 47, 54, 55, 92,
103

length, ix, 35, 44, 67, 186, 191,
193, 210, 244

invariant, 48–49, 59, 67–68,
99, 106, 107, 119, 134, 135,
138, 141, 193, 233, 243

local Lorentz factor, 63, 65, 77,
81, 85, 94, 100, 104, 106,
109–111, 116–118, 120,
123, 124, 130, 133, 134,
136, 138, 139, 142, 160,
189, 235, 238

mass, 44, 185, 189, 212, 274,
337, 339, 342

gravitational, 335–337, 339
mass moment, 66
mass per unit length, ix, 25, 26,

27, 32, 38, 107, 153, 163,
182, 188, 193, 249, 272,
280n, 281, 283, 287,
292–294, 299, 300, 302,
312, 315, 325, 330, 335,
339, 342

effective, 312
gravitational, 249, 254, 305

momentum, 44, 46, 48, 59,
61–65, 86, 181, 212, 233,
234, 278

currents, 46, 63
near gravitational field 332, 336,

343–358
3+ 1 split, 346–358

non-straight, 333
orthogonal, 293, 307, 310, 330
rigidity, 33, 34



370 Index

cosmic strings (continued)
root mean square velocity 64, 65,

225
rotational energy, 119
scattering, 56
secular evolution, 80, 81, 92–98,

232
self-acceleration, 234–240,

242–245
self-gravity, x, xii, 27, 34–36, 88,

97, 231–245
self-intersections, 25, 59, 85–93,

95–99, 103, 109, 111, 112,
114, 123–125, 137, 140,
142, 143, 203

polarity, 89, 91, 92, 95
snapping, xii, 324–331
generating function 330

spinless, 348
spinning, 313, 346, 349
straight, xii, 99–100, 103,

145–147, 182, Chapters
7–8, 293

stress–energy tensor, 44–46, 52,
53, 181–183, 205, 219, 233,
234, 247, 249, 255, 333,
340–342, 346

strong-field effects, xii, 36, 189,
Chapter 10

tension, 35, 45, 82, 104, 105,
154, 157, 166, 258, 259, 300

wire (Nambu) approximation xi,
2, 28, 29, 32, 33, 35, 36, 38,
54, 56, 181, 182, 247, 255,
286, 290, 332, 333

cosmological constant, 292,
301–303, 329

cosmological time, 148, 151, 350
covariantly constant null vector

field 287, 288
curvature singularities, 304–308,

314, 316, 318, 320, 322,
332, 333

naked, 314

curvature tensors, 38
curvature waves, 333, 353
cusps, xi, 37, 39, 49–53, 54, 57, 59,

60n, 63, 73, 74–76, 78, 79,
80–85, 87–90, 92–99, 104,
106–114, 116–119, 121,
124, 128–130, 134,
136–140, 142, 143,
184–189, 191, 195, 196,
198, 199, 203, 218, 235,
238–245, 332

degenerate, 93–95, 238
generic, 76, 77, 185
non-isolated, 50, 78
permanent, 107, 118, 119, 121,

134, 203
semi-permanent, 109, 111, 136,

137, 142
truncated, 85, 88, 92, 94, 97

cusp angles, 186, 239
cusp beaming, 186–189, 191, 193,

195, 196, 200, 201, 203,
204, 217, 239, 245

cusp displacement, 240–242
cusp drift term, 242, 243
cusp duration, 77, 79, 81, 94
cusp energy, 79–81, 84, 85, 94
cusp evaporation, 80–85, 88, 92, 97
cusp factors, 90, 91, 93, 95, 96
cusp helicity, 218, 219
cusp length scales (radii), 77–79,

81, 94, 186, 188, 191
cusp mass, 188, 189
cusp parameters, 74, 76, 95
cusp polarity, 89
cusp precession, 242, 243, 245
cusp propagation, 78, 119
cusp self-acceleration, 234–240,

242–245
cusp separation (bridging) vector

74, 76, 79, 80, 95, 97, 238
cusp tangent vector, 69, 74, 76
cusp twisting, 95–97, 112, 114
cusp velocity, 51, 63, 74, 76, 94, 95,



Index 371

186, 218, 238, 239, 242–245
Cutler, Curt, 276
cylindrical spacetimes, xii, 295,

303–324, 349
line element, 295, 303–305, 352
canonical, 306, 311, 314

one-soliton solutions, 318–320
separable vacuum solutions

305–307
two-mode soliton solutions

321–324
two-soliton solutions, 319–321

d’Alembertian, 4, 182
daughter loops, 44, 47, 49, 86, 87,

89, 91, 92, 127, 212, 226
decay time, 211, 245
deficit parameter, 310
degenerate kinked cuspless loops

107–108, 196–199, 212, 217
DeLaney, David, 71, 122, 123
de Sitter spacetime, 151, 301, 329,

330
de Vega, Hector, 147, 149, 150,

153, 156
de Villiers, Jean-Pierre, 159, 160,

166, 167
Dirac bispinor field, 5, 6, 8, 9–14
Dirac delta function, 58, 220, 327
Dirac equation, 2, 5, 6
Dirac matrices, 5, 9
distributions, 58, 253, 254,

259–262, 272, 290–292,
328, 333, 342, 355–358

domain walls, xi, 1, 17, 26, 27
dominated convergence theorem

262, 357
doubled rotating rod, 66, 106–110,

116, 117, 124, 199, 200
Duncan, Comer, 227, 230, 231
Durrer, Ruth, 197, 202, 212, 215,

218, 219
dust-filled universe, 294, 296
Dyer, Charles, 257n, 295

Economou, Athanasios, 321–323
Economou–Tsoubelis solution

321–323
Egusquiza, Inigo, 147, 149, 150,

153
Einstein equations, xii, 27, 177,

178, 181, 182, 192, 209,
237, 246–248, 253, 255,
256, 259, 267, 272, 303,
310, 324, 332, 346, 349,
352, 353

cylindrical vacuum, 304, 314
Gauss–Codazzi form, 334

Einstein–Rosen metrics, 304, 305,
316–321

Einstein tensor, 246, 255, 273, 288,
329

Einstein summation convention 3
Einstein–Higgs–Yang–Mills field

equations 253, 286, 290,
333

electromagnetic field, 1–3, 6, 7, 10,
12, 14, 24

current density, 3–5
potential, 4, 7

electromagnetic radiation, 290
electrons, 5, 6, 8–12, 15, 25, 26, 35
electron field, 5, 6, 8–14
electronvolt, 2
electroweak force, 1, 24
electroweak strings, 17, 18, 25–28
electroweak unification, xi, 2, 3, 7,

8–15
Ellis, George, 259
Embacher, Franz, 119, 130, 132,

225
energy flux, 217, 234
ergosphere, 168, 172, 174–176
Ernst equation, 312
Euler–Lagrange equations, 5, 18,

19, 23n, 31–34, 39, 132, 133
extrinsic curvature, 29, 30, 38, 40,

248, 256, 273, 294, 296,
326, 333, 334, 337, 344, 350



372 Index

false vacuum, 17
fermions, ix, 6, 8, 9, 24, 26, 27
field point, 183, 184, 186, 187, 189,

190, 195, 196, 200, 201,
204, 213, 217, 227, 228,
231, 234–236, 238, 239

field reconnection, 80–85, 97, 98
figure-of-eight string, 141–143
Förster, Dietrich, xi, 28
frame-dragging, 333
freely-falling observer, 48, 290
Friedmann universe, xi, 146, 151
closed, 146, 147, 150, 151
matter-dominated, 146, 148, 150
open hyperbolic, 150, 151
radiation-dominated, 146–148,

150
spatially-flat, 147–149

Frolov, Andrei, 157
Frolov, Valeri, 159, 160, 166, 167,

170, 171, 173, 287, 289,
334, 336–338

fundamental domain, 193, 194,
231, 233, 241

Fustero, Xavier, 316, 317
future null infinity, 310, 311,

316–322

galaxy formation, ix, x, 26
Gal’tsov, Dmitri, 265, 266, 271, 283
Garfinkle, David, 88, 128, 189, 195,

197, 198, 227, 230, 231,
253, 254, 258, 259, 286,
287, 289, 294

Garriga, Jaume, 318–320
gauge bosons, 11, 13–15, 18
gauge conditions, 41–42, 50, 57,

59, 60, 62, 63, 68–71, 74,
100, 128, 134, 144–147,
153, 165, 168, 169, 171,
172, 177, 179, 182, 186,
190, 193, 208, 214, 225,
229, 233

gauge coordinates, 36, 37, 40–42,

52, 56, 59–62, 69, 74, 75,
77, 83, 132–135, 137, 138,
141, 142, 144, 145–147,
153, 162, 168, 171, 177,
179, 219, 233, 240, 241,
273, 291, 351

gauge fields, 2, 4, 8, 9, 17, 18, 20,
23

SU(2), 10, 11, 13
gauge group, 24
gauge invariance, 4–6, 8, 10, 11
gauge (parametric) periods, 42, 43,

60, 61, 64, 67, 70, 85, 86,
89, 91, 240

gauge transformation, 4–6, 8, 10,
12, 13, 19, 30, 37, 38, 40, 49

Gauss–Bonnet formula, 348
Gaussian curvature, 325
Gaussian normal line element, 347
generalized cosmic strings, 292,

297, 305
geodesically-generated 2-surfaces

333, 343, 348
geodesic curvature, 348
geodesic cylindrical coordinates

291
geodesic distance, 29, 285, 343,

347, 351, 353
geodesic equations, 169, 170, 172,

173, 190
geodesics, 157, 169, 171, 179, 182,

230, 251, 252, 267, 273,
276, 277, 284, 291, 333,
341, 343–347, 350

expansion, 341, 342
rotation, 341
shear, 341

Geroch, Robert, 253–255, 257, 259,
262

GGRT gauge, 61–63, 177, 179
Gleiser, Reinaldo, 326
global strings, xi, 21, 23, 26, 54
global symmetry, 6, 21
gluons, 24



Index 373

Goddard, Paul, 61
Goldstone boson, 21
Goldstone, Jeffrey, 61
Goto, Tetsuo, xi
Gott construction, 274–278, 280
Gott–Hiscock solution, 246, 257,

258
Gott, J Richard, 246, 247, 249, 255,

257, 273, 274, 276, 278, 282
Gowdy, Robert, 307, 309, 310
grand unification theory (GUT) ix,

1, 24
gravitational acceleration, 182, 184,

185, 187, 191, 233,
238–240, 242–245, 265

gravitational beaming, 185, 187,
189, 227, 239

gravitational collapse, 50, 125–127
gravitational lensing, 182, 251, 295
gravitational mass per unit length

249, 254, 305
gravitational potential, 160, 165,

263, 264
gravitational radiation, x, 25, 49,

68, 80, 99, 127, 135, 181,
191–227, 233, 243, 271,
273, 284, 286, 290, 294,
308, 336, 340, 355

+ mode, 304, 305, 313, 321–324
× mode, 304, 305, 313,

321–324, 349, 352, 355
angular momentum, 211–219
back-reaction, 35–36, 87, 99,

211, 212, 231–245, 345, 355
cosmological background x, 196
harmonic (Fourier) modes 201,

204, 207, 208, 210, 211,
214, 245

linear momentum, 211–213
torque, 212, 244

gravitational rocket effect, 181,
212, 244

gravitational self-force, 263–267
gravitational shock waves, 324,

326–331
colliding, 330, 331

gravitational waves, 177, 179, 227,
342

cylindrical, 312, 315
plane-fronted, 287, 290

gravity, x, xi, xii, 1, 2, 26–28,
34–36, 50, 78, 97, 106, 155,
157, 167, Chapters 6–10

2+ 1 dimensions, x, xii, 246,
271–274, 278, 282

Newtonian, 184, 259
Gregory, Ruth, 294, 301
Griffiths, Jerry, 326, 328, 330
GUT strings, 25–28, 79, 81, 188,

189, 231, 233, 252, 267,
294, 333

hadrons, 5, 6, 24
harmonic gauge, 214, 227, 228, 229
harmonic loops, 62, 63, 70–72,

114–130
01 (1-harmonic) solutions 71, 72,

115–118, 124, 128, 130,
199, 201–203, 207, 222,
226, 245

012 solutions, 72, 122
0123 solutions, 122
1—2—3/1—2—3 harmonic

solutions 127
1/3 harmonic solution, 242, 243,

245
1/5 harmonic solution, 242–245
1—3/1 harmonic solutions 124,

202
1—3/1—3 harmonic solutions

122, 123
2/1 harmonic solution, 121, 122
2/—1 harmonic solution 122
3/1 harmonic solution, 124, 242
3/—1 harmonic solution 128
Garfinkle–Vachaspati solutions

128–131, 198



374 Index

Kibble–Turok solutions 124,
125, 128

p/q harmonic solutions
117–122, 130, 134, 185,
197, 202–204, 207, 212, 242

Turok solutions, 124–128, 202,
212

Vachaspati–Vilenkin solutions
128–129, 197, 199–202,
203n, 212, 218, 222, 243,
244

Hausdorff topology, 291
Hawking, Stephen, 260, 340
Hayward, Sean, 330, 331
Headrick, Matthew, 282
Heaviside step function, 57, 178,

222, 325, 330
Heaviside units, 3
helical strings, 33, 103–105,

204–208, 210, 332
boosted, 105
pitch angle, 103–105, 204

helicity, 8, 9
Higgs boson, 14, 15, 18, 21, 25
Higgs field, ix, xi, 14, 15, 17, 20,

23, 25, 30, 35, 56, 80, 85,
92, 97, 257

Higgs mass, 15, 17–25, 30, 31
Higgs mechanism, 1, 2
Higgs–Yang–Mills field equations

295
Hindmarsh, Mark, xi, 3, 208, 252,

301
Hiscock, William, 246, 247, 249,

256, 258
Hogan, Peter, 326, 328, 330
holonomy, 278–282, 290
matrices, 279–282

homotopy, 17, 18, 78
hoop conjecture, 125
horizon, 147, 189, 205, 286, 340,

342
acceleration, 300
effective, 154, 154n, 170

Kerr, 168, 170, 172, 174–176
Schwarzschild, 154, 155, 158,

160, 163, 166, 298–301,
331, 352

Horowitz, Gary, 177
Hubble radius, 294, 297
hydrostatic boundary condition

258, 303
hypersurfaces, 273, 275, 276, 342
achronal, 277, 277n
null, 277, 298, 307–309, 330,

340–342
spacelike, 277

identity tensor, 4
impact parameter, 160, 163, 164,

166
impulsive gravitational wavefronts

178–179
infinite straight-string metric, see

bare straight-string metric
inflation, 27, 151
intercommuting, 54–58, 86, 87, 103
interior solutions, 246–249,

254–259, 288, 293–294,
302, 303, 306, 307, 332

intrinsic 2-metric, 29–32, 36–41,
49, 50, 53, 181, 291, 343,
349–353

invariant distance, 35
inverse scattering transform method

316–318
Israel, Werner, 258, 345, 347

junction (boundary) surface, 273,
276, 294–296, 303, 326–328

Kerr metric, xi, 144, 167–176, 299,
311, 313, 314, 323, 333

Boyer–Lindquist form, 167–168,
311

extreme, 170, 174–176
Kerr–de Sitter metric, 176
Kerr–Newman metric, 176, 299,

313, 331



Index 375

Kerr–Newman–Unti–Tamburino
metric 323

Kibble, Tom, ix, xi, 3, 60, 61, 64,
122

Kibble–Turok sphere
(representation) 59, 60, 63,
73–80, 84–88, 91, 92, 97,
107, 108, 110, 112, 113,
115, 222, 225

Killing equation, 46
Killing–Staeckel tensor, 169, 172,

173
Killing vector fields, 45–48, 65,

145, 152, 168, 177, 246,
256, 291, 293, 332, 348

kinked solutions, 101–103,
107–114, 135–143,
196–199, 212, 217, 225,
226, 245

kinkless loops, 74, 78, 88, 89
kinks, xi, 36, 39, 42n, 43n, 54–58,

59, 73, 78, 79, 85, 87,
90–92, 99, 101–103,
107–111, 114, 135–138,
140, 162, 163, 184,
189–191, 195, 196, 217,
225, 235, 245

Kinnersley–Walker metric, 300,
301

Klein–Gordon equation, 2, 7
Kretschmann scalar, 306, 307, 309
Kruskal diagram, 298
Kruskal–Szekeres coordinates, 298,

331

Laguna, Pablo, 254, 259
lagrangian, 4, 6, 21, 23n, 38, 39,

134
(Abelian) Higgs, 18–21, 27, 29,

31, 32, 38
electromagnetic, 5
electron, 5
electroweak, 12, 13, 15, 24
lepton, 9–11

Proca, 8
QCD, 24
scalar, 7, 12
SU(2), 11
SU(3)× SU(2)×U(1), 24
Weinberg–Salam, 13, 15

Lake, Kayll, 295, 306
Landau–Lifshitz stress–energy

tensor 216
lapse function, 334
Larsen, Arne, 157
leptons, 5–7, 9–14
Letelier–Gal’tsov spacetime, xii,

282–285
Letelier, Patricio, 272, 285, 290
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