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Introduct ion  

The following pages are the notes from a seminar that I gave during the 

spring and some portion of the summer of 1993 at the Mathematics Institute 

of Oslo University. The aim of the seminars was to give a rapid but rigorous 

introduction for the graduate students to Analysis on Wiener space, a subject 

which has grown up very quickly these recent years under the impulse of the 

Stochastic Calculus of Variations of Paul Malliavin (cf. [12]). 

Although some concepts are in the preliminaries, I assumed that the students 

had already acquired the notions of stochastic calculus with semimartingales, 

Brownian motion and some rudiments of the theory of Markov processes. A 

small portion of the material exposed is our own research, in particular, with 

Moshe Zakai. The rest has been taken from the works listed in the bibliography. 

The first chapter deals with the definition of the (so-called) Gross-Sobolev 

derivative and the Ornstein-Uhlenbeck operator which are indispensable tools of 

the analysis on Wiener space. In the second chapter we begin the proof of the 

Meyer inequalities, for which the hypercontractivity property of the Ornstein- 

Uhlenbeck semigroup is needed. We expose this last topic in the third chapter, 

then come back to Meyer inequalities, and complete their proof in chapter IV. 

Different applications are given in next two chapters. In the seventh chapter we 

study the independence of some Wiener functionals with the previously devel- 

oped tools. The chapter VIII is devoted to some series of moment inequalities 

which are important for applications like large deviations, stochastic differential 

equations, etc. In the last chapter we expose the contractive version of Ramer's 

theorem as another example of the applications of moment inequalities developed 

in the preceding chapter. 

During my visit to Oslo, I had the chance of having an ideal environment for 

working and a very attentive audience in the seminars. These notes have partic- 

ularly profited from the serious criticism of my colleagues and friends Bernt 

Oksendal, Tom LindstrOm, Ya-Zhong Hu, and the graduate students of the 

Mathematics department. It remains for me to express my gratitude also to 

Nina Haraldsson for her careful typing, and, last but not least, to Laurent De- 

creusefond for correcting so many errors . 

Ali Sfileyman Ostiinel 
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Prel iminaries  

This  chapter  is devoted to the basic results about  the Wiener measure,  Brownian 

mot ion,  construct ion of  the I to stochastic integral and the chaos decomposi t ion 

associated to it. 

1 T h e  B r o w n i a n  M o t i o n  a n d  t h e  W i e n e r  M e a -  

sure  

1) Let W = C0([O, 1]), w E W, t E [0, 1], define Wt(w) = w(t) ( the coordinate  

functional) .  If we note by Bt = a{Ws;s < t}, then there is one and only one 

measure tt on W such tha t  

i) tt{W0(w) = O} = 1, 

ii) Vf E C ~ ( R ) ,  the stochastic process process 

1/0' ( t , ~ )  ~ S ( w , ( ~ ) )  - ~ S"(W,(~))ds 

is a (Bt, ~)-mart ingale.  /~ is called the Wiener measure.  

2) From the construct ion we see tha t  for t > s, 

E•[exp ia(Wt - W,)IB, ] = exp-c~2( t  - s), 

hence (t, w) ~ Wt(w) is a continuous addit ive process (i.e.,a process with inde- 

pendent  increments)  and (Wt;t E [0, 1]) is also a continous mart ingale .  

3) S t o c h a s t i c  I n t e g r a t i o n  

Let K : W x [0, 1] --* R be a step process : 

n 

Kt(w) = E a i ( w ) .  l[t,.t,+,t(t), ai(w) E L2(Bt,)  �9 
i = 1  

Define 

fO I(K) = K~dW,(w) 
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as 

Then we have 

n 

(W,,+, - 
i----1 

i.e. I is an isometry from the adapted step processes into L~(p), hence it has a 

unique extension as an isometry from 

L2([0,1] x W,A, dt x dp) ;~ L~(p) 

where .A denotes the sigma algebra on [0, 1] x W generated by the adapted, left 

(or right) continuous processes. I(K) is called the stochastic integral of K and 

it is denoted as .[1 KjdWs. If we define 

~0 t It(K) = K, dWs 

as 
1 

fo l[o,tl(s)K, dWs, 

it is easy to see that  the stochastic process t ~ It(K) is a continuous, square 

integrable martingale. With some localization techniques using stopping times, 

I can be extended to any adapted process K such that f :  K~(w)ds < c~ a.s. 

In this case the process t ~ It(K) becomes a local martingale, i.e., there exists 

a sequence of stopping times increasing to one, say (Tn, n E N) such that  the 

process t ~ hAT. (K) is a (square integrable) martingale. 

A p p l i c a t i o n :  I t o  f o r m u l a  

stochastic integration: 

a) If f E C2(R) and Mt = f~ grdWr, then 

f[ 1/ '  f (Mt)  = f(O) + f '(Ms)KsdWs + -~ 

b) 
~o t 1 ~0 t gt(I(h)) = exp( h, dW, - -~ h~ds) 

We have following important  applications of the 

f"(M,)K~ds.  

is a martingale for any h E L 2 [0, 1]. 
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4) A l t e r n a t i v e  c o n s t r u c t i o n s  o f  t he  B r o w n i a n  m o t i o n  a n d  t h e  W i e n e r  
m e a s u r e  

A) Let (Ti;i E N) be an independent sequence of Nt(0, 1) Gaussian random 

variables. Let (gi) be a complete, orthonormal basis of L2[0, 1]. Then Wt defined 
by 

fo' Wt(w) = E T i ( w )  �9 gi(s)ds 
i = l  

is a Brownian motion. 

R e m a r k :  If (gi;i E N) is a complete, orthonormal basis of L2([0, 1]), then 

(fogi(s)ds;i E N) is a complete orthonormal basis of H([0, 1])(i. e., the first 

order Sobolev functionals on [0, 1]). 

B) Let (f~,.T, P)  be any abstract probability space and let H be any separable 

Hilbert space. If L : H ~ L2(~,~' ,  P) is a linear operator such that for any 

h E H, E[exp iL(h)l = exp- �89  [hl~r, then there exists a Banach space with dense 

injection H ~ W dense, hence W* ~ H is also dense and a probability measure 
/~ on W such that 

exp(w*,w)dp(w) = exp- �89  I J*@*) 

and 

L(j*(w*))(w) = (w*,w) 

almost surely. (IV, H, p) is called an Abstract Wiener space and p is the Wiener 

measure. If H([0, 1]) = {h : h(t) = f t  h(s)ds, [hill = ]hiL~[0,1]} then p is the 

classical Wiener measure and W can be taken as C0([0, 1]). 

R e m a r k :  In the case of the classical Wiener space, any element X of W* is a 

signed measure on [0, 1], and its image in H -- H([0, 1]) can be represented as 

j*(X)(/) = f j  X([s, 1])ds. In fact, we have for any h E H 

(j*(X),h) = < A , j ( h ) >  

= h ( s ) a ( e s )  

= h(1)a([O, 1] ) -  a([O, sl)h(s)ds 

/o 1 = (A([O, 1]) - A([O, s])�88 

/o -- A([s, 1])h(s)ds. 
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5) Le t  us  come  back to t h e  classical  W i e n e r  space: 

i) It follows from the martingale convergence theorem and the monotone class 

theorem that the set of random variables 

{f (W~l , . . .  , Wt.) ; t i  E [0, 1], f E S (Rn) ;n  E N} 

is dense in L 2 (/z), where S ( R  n) denotes the space of infinitely differentiable, 

rapidly decreasing functions on R n. 

ii) It follows from (i), via the Fourier transform that the linear span of the 

set {exp f :  hodW, - �89 f :  h2,ds; h E L2([0, 1])} is dense in L2(/z). 

iii) Because of the analyticity of the characteristic function of the Wiener mea- 

sure, the elements of the set in (ii) can be approached by the polynomials, 
hence the polynomials are dense in L2(/z). 

5.1 C a m e r o n - M a r t i n  T h e o r e m :  

For any bounded Borel measurable function F, h E L2[0, 1], we have 

E,[r(w § h, ds). exp[-  h,dW, - -~ h~ds]] :- E~,[F]. 

This means that the process Wt(w)§ fo h,ds is again a Brownian motion under 

the new probability measure 

/0  /01 exp(-  h.dW. - ~ h~as)a,.  

Proof." It is sufficient to show that the new probability has the same charac- 

teristic function as p: if x* E W*, then x* is a measure on [0, 1] and 

w . ( x ' , w ) w  = W,(,o)x'(ds) 

= Wr x*([O,t]) i -  fo lx'([O't])dW~(~) 

= Wlx*([O, 1 ] ) -  x*([O, tl).dWt 

/0 = x*(lt, 1])dW,. 
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Consequently 

E[exp i f a  1 x*([t, 1])dWt(w + 1"if h,ds) . s 

1 1 1 1 1 

: E[exp i f0 x*([t, 1])dWt+i fo x*([t, 1],htdt-fo h,dW, --~ fo h2tdt] 

,~01 ~01 1~ 1 = E[exp i (ix* ([t, 1]) - ht)dWt, exp i x* ([t, 1])htdt - ~ h~tdt] 

,[1 f01 lf01 = exp ~ (ix*([t, 1]) - ht)2dt  + i z*([t, 1])htdt - -~ h~dt 
JO 

l f o 1  = e x P - 2  (z*([t, 1]))2dr 

1 
= e x p - ~  [ j(z*)I~, �9 

QED 

Suppose that (Mr) is a continuous C o r o l l a r y  (Pau l  L~vy 's  T h e o r e m  ) 
martingale such that M0 = O, Mt 2 - t is again a martingale. Then (Mr) is a 
Brownian motion. 

Proof :  We have the Ito formula 

~0 t 1~  ~ f(M,) = f(O) + f '(M,),  aM, + ~ f"(M,) ,  ds. 

Hence the law of {M~ : t E [0, 1]} is p. QED 

5.2 T h e  I to  R e p r e s e n t a t i o n  T h e o r e m :  

Any ~o E L~(p) can be represented as 

= E[~] + K, dW, 

where K E L2([0, 1] • W), adapted. 

P roof :  Since the Wick exponentials 

s = exp h.,dW, - 1/2 h~ds 

can be represented as claimed, the proof follows by density. QED 
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5.3 W i e n e r  chaos r e p r e s e n t a t i o n  

Let 1<1 = f :  hsdW~, h E L2([O, 1]). Then, from the Ito formula, we can write 

L 1 I9( I9 1) L1  = K s h~ds Kvl P KP~-lh'dW~ + 7 .-v-2 2 

L 1 . 1) L L _- P [(p _ tl Kt2P-~ ht~dWt~ + (p-1)(P-2 1) t~h.~:3h~dt2]dWt,. 

- [ -  , . . 

iterating this procedure we end up on one hand with K~ = 1, on the other hand 

with the multiple integrals of deterministic integrands of the type 

']P= i htlht~'"ht'dW::'"dW:;' 
o<tp<tp-l<...<_tl<l 

i i = 0 or 1 with dW ~ = dt and dWt 1 = dWt. 
Let now ~ C L2(p), then we have from the Ito representation theorem 

L = E[~] -4- K, dW, 

by iterating the same procedure for the integrand of the above stochastic integral: 

L I l i l t '  11, 2 = E[~] + E[Ks]dWs + E[Kt,,t~]dWt~dWt, -4- 
JO dO 

+ , o  

After N iterations we end up with 

N 

~:~ = 2 JP(ICP) -[- ~N"i-1 

0 

and each element of the sum is orthogonal to the other one. Hence (~N; N E 

N) is bounded in L2(p). Let (~g~) be a weakly convergent subsequence and 

~co = lim ~Nk. Then it is easy from the first part that ~co is orthogonal to 
k---* oo 

N 
the polynomials, therefore ~co = 0 and w -  lim ~ Jp(Kv) exists, moreover 

N~co 0 
N co 

sup ~ IIJp(Kv)[[~ < o0, hence ~ Jv(Kp) converges in L2(p). Let now flp be an 
N 1 1 

element of L~[0, 1] p (i.e. symmetric), defined as flp = Kp on Cp = {tl < "" < 

tv}. We define Iv(fllp) = p[Jp(Kv) in such a way that 

E[ll,,(fl,.)l'] = (,,)' io K:a, ...,,, = v, i Ifl,,l'a,,...a,,>. 
P 

lo,1]' 

Let ~p = ~ . , ,  then we have 
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(Wiener chaos decomposition) 





Chapter I 

Gross-Sobolev Derivative, 

Divergence and 

Ornstein-Uhlenbeck 

Operator 

Motivat ions  

Let W = C0([0, 1], R a) be the classical Wiener space equipped with/z the Wiener 

measure. We want to construct on W a Sobolev type analysis in such a way that  

we can apply it to the random variables that  we encounter in the applications. 

Mainly we want to construct a differentiation operator and to be able to apply 

it to practical examples. The Fr6chet derivative is not satisfactory. In fact 

the most  frequently encountered Wiener functionals, as the multiple (or single) 

Wiener integrals or the solutions of stochastic differential equations with smooth 

coefficients are not even continuous with respect to the Fr6chet norm of the 

Wiener space. Therefore, what we need is in fact to define a derivative on 

the LP(/t)-spaces of random variables, but in general, to be able to do this, we 

need the following property which is essential: if F, G E LP(Iz), and if we want 

to define their directional derivative, in the direction, say ~ E W, we write 

~F(w+tff))lt=o and ~G(w+t~b)lt=o. If F = G p-a.s., it is natural  to ask that  

their derivatives are also equal a.s. For this, the only way is to choose @ in some 

specific subspace of W, namely, the Cameron-Mart in space H: 

H - { h :  [0, 1] --* Rd/h(t) - ]~(s)ds, Ih] 2 : ~01 I]/(8)]2d8} �9 

In fact, the theorem of Cameron-Mart in says that  for any F E LP(/~), p > 1, 
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h E H  

E . [ F ( w + h ) e x p [ -  h(s) d W , -  : 2 �9 :lhlm]] = E~,[F], 

or equivalently 

Jo' E~,[F(w+ h)] = E[F(w).exp h, .dW, - �89 

T h a t  is to say, if F = G a.s., then F( .  + h) = G(. + h) a.s. for all h E H.  

1 T h e  C o n s t r u c t i o n  o f  V a n d  i ts  p r o p e r t i e s  

If  F : W --+ R is a function of  the following type (called cylindrical ): 

F(w) = f ( W , , ( w ) , . . . ,  W,.(w)), f �9 S(R"),  

we define, for h �9 H,  

VhF(w) = d F(w + Ah)l~=0. 

Noting that  W,(w + h) = W,(w) + h(t), we obtain  

vl 
VhF(w) = Z (gif(Wt~ (w), . . .  , Wt.(w))h(t,), 

i=1 

in part icular  

~0 t j~01 VhWt(w) = h(t) = h(s)ds = l[0,t](s) h(s)ds. 

If  we denote by Ut the element of  H defined as Ut(s) = fo l{o,d(r) dr, we have 

VaWt(w)  = (Ut, h)H. Looking at the linear m a p  h ~ XThF(w) we see tha t  it 

defines a r andom element with values in H,  i.e. V F  is an H-valued r a n d o m  

variable�9 Now we can prove: 

P r o p .  1.1: V is a closable operator  on any LP(#) (p > 1). 

P r o o f :  This means  tha t  if (Fn : n E N)  are cylindrical functions on W, such 

that  Fn --. 0 in LP(p) and if (VFn;  n E N)  is Cauchy in LP(p, H), then its l imit 

is zero. Hence suppose tha t  VFn -* ~ in LP(p; H). 
To prove ~ = 0 #-a.s., we use the Cameron-Mar t in  theorem: Let T be any 

cylindrical function. Since such ~ 's  are dense in LP(p), it is sufficient to prove 
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that El( ( ,  h)H. ~] = 0 a.s. for any h e H. But we have 

E[(VFn, h)to] = dE[F,~(w + ,~h). ~11~=0 

- 2 J0 Ih'12ds)]l~=~ 

Z 1 = E[F,(w)(-Vhto(w) + ~(w) h(s)dW,)] ,~_~0 

by the fact that F,~ ~ 0 in LP(/~). QED 

This result tells us that we can define LP-domain of V, denoted by Domp(V) 

a s  

Def in i t ion :  F E Domp(V) if and only if there exists a sequence(F,~; n E N) of 

cylindrical functions such that F,~ --* F in L p and (VF, )  is Cauchy in LP(/-t, H). 

Then we define 

V F  = lim VF , .  
n ~ O O  

The extended operator V is called Gross -Sobo lev  de r iva t ive  . 

We will denote by Dp,1 the linear space Domp(V) equipped with the norm 

IIFHp,I = IIFIIp + IIVFIIL.(.,H)- 

R e m a r k s :  1) I f X  is a separable Hilbert space we can define Dp,I(X) exactly 

in the same way as before, the only difference is that we take Sx instead of S, 

i.e., the rapidly decreasing functions with values in X. Then the same closability 

result holds (exercise!). 

2) Hence we can define Dp,k by iteration: 

i) We say that  F E Dp,2 if V F  E Dp,I(H), then write VZF = V(VF) .  

ii) F E Dp,k if V k - I F  E Dp,~(H| 

3) Note that,  for F E Dp,k, VkF is in fact with values H gk (i.e. symmetric 

tensor product). 

4) From the proof we have that if F E Dpj ,  h E H1 and ~ is cylindrical, we 

h a v e  

E[VhF. ~] = -E[F.  Vh~] -4- Eli(h). F.  ~], 

where I(h) is the first order Wiener integral of the (Lebesgue) density of h. If 
E Dqj (q-1 Tp-1 = 1), by a limiting argument, the same relation holds again. 

Let us note that  this limiting procedure shows in fact that  if V F  E LP(/~, H) 

then F.I(h) E LP(I~), i.e., F is more than p-integrable. This observation gives 

rise to the logarithmic Sobolev inequality. 
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1 .1  R e l a t i o n s  w i t h  t h e  s t o c h a s t i c  i n t e g r a t i o n  

Let ~ = f (Wt~ , . . . , Hit,),  ti <_ t, f smooth. Then we have 

Vh~p(w) = ~ Oi f (Wt , ,  . . . , W t . ) h ( t i )  , 
i = 1  

hence ~7~0 is again a random variable which is Bt-measurable. In fact this prop- 

erty is satisfied by a larger class of Wiener functionals: 

P r o p o s i t i o n  I I .1  Let to E Dp,1, p > 1 and suppose that  ~ is Bt-measurable 

for a given t > 0. Then ~7~, is also Bt-measurable and furthermore, for any 

h E H1, whose support  is in [t, 1], ~Th~ = (~7~, h)H = 0 a.s. 

P r o o f i  Let (~,~) be a sequence of cylindrical random variable converging to 

in Dp,1. If ~,,~ is of the form f ( W t , , . . .  , Wtk),  it is easy to see that ,  even if 

9 -  is not Bt-measurable, E[~,IBt]  is another cylindrical random variable, say 

O n ( W t l ^ t , . . . , W t k ^ t ) .  In fact, suppose that  tk > t and t l , . . . , t k - 1  < t. We 

h ave 

E [ Z ( W , 1 , . . . ,  W,~)lt~,] = E[f (W,1 .  .. , W,,_, ,  W,,  - W, + W,)lt~,l 

J ,  f ( W , , ,  . . . , W,~_,, W, + x)p,~_,(x)d~ 

= O(W~, , . . .  , W~_ , ,  W, ) ,  

and 0 E S if f E $(Rk) ,  where pt denotes the heat kernel. Hence we can choose 

a sequence (~n) converging to $0 in Dp,1 such that  ~7~n is Bt-measurable for 

each n E N. Hence ~7~ is also B~-measurable. 

If h E H1 has its support  in [t, 1], then, for each n, we have ~Th~o, = 0 a.s., 

because ~7~pn has its support  in [0, t] as one can see from the explicit calculation 

for ~Tton. Taking an a.s. convergent subsequence, we see that  ~Th~, = 0 a.s. also. 

QED. 

Let now K be a step process: 

Kt (w)  -- ~ ai(w)l]t, , t ,+d(t ) 
i = 1  

where ai E Op,1 and Bt,-measurable for any i. Then we have 

fo 1 K, a w ,  = ~--] a~(w,,+,  - w , , )  
i 

and 

~0 
1 n 

Vh K ,  dWs = Z V h a i ( W t , + ,  -- Wt , )  + ai (h( t i+,)  - h( t i ))  

1 

= V h K s d W ,  + K . h ( s ) d s .  
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Hence 

and 

~0 
1 

-I- /ol [Ksl2ds} 

p 
V K, dWs H 

2 "pl21 1 

Using the Burkholder-Davis-Gundy inequality for the Hilbert space valued mar- 

where /~'. = ~0 Krdr. 

tingales, the above quantity is majorized by 

2epE ([(fol l~TI~sl2HdS) p'2] +E 

= ~PlIVklI~.(.,H| + II/~'IIL~(.,H), 

Thanks to this majoration, we have proved: 

P r o p o s i t i o n  I1.2 Let /~ E Dp.I(H) such that Kt _- dK(t)dt be Bt-measurable 

for almost all t. Then we have 

I J0 t V KsdWs = V.K,  dWs + f~" a.s. 

C o r o l l a r y  1: If ~ = I.(fn), .In e L2([0, 1]"), then we have, for h E HI, 

VhI , , ( f , , )=n f f ( t l , . . .  , t , )dWt, , . . .  ,dWt._,.h(tn).dtn. 

[0,q" 

Proof." Apply the above proposition n-times to the case in which, first f,, is 

C~176 1]n), then pass to the limit in 52(#). QED 

The following result will be extended in the sequel to much larger classes of 

random variables: 

C o r o l l a r y  2: Let ~ : W ~ R be analytic in H-direction. Then we have 

~, = E[~,] + ~2  I. (EEZ"~,I 
n = l  ~k n !  ' 

i.e., the kernel ~o~ E Z2[0, 1] ~ of the Wiener chaos decomposition of ~ is equal 

to 
E[W~] 

n! 
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P r o o f i  We have, on one hand, for any h E H, 

~01 ~01 ] E[T(w + h)] = E [~o. exp hsdW, - �89 h~ds = E[~.~(I(h))]. 

On the other hand, from Taylor's formula: 

E[~,(w + h)l = E[~,I + ~ E (V'~ (  ' h| 

1 

= E l + l +  
1 

oo 1 E[I,,(E[Un@]).In(h+")] 

1 
oo 

= Ella]+ E E [  I'(E[Vn~])I"(h| 

hence, from the symmetry, we have 

1 I n i . ( ~ . )  = ~ .(ELY ~]), 

where we have used the notation I t (h)  = I(h) = f :  ]~dW8 and 

c0,r" 

I,,(~,.) = ot~:-.-2ot, (t~,...  , t~)dW, . . . d W , .  
[0,l]" 

QED 

D e f i n i t i o n  I I . l :  Let ~ : W -* H be a random variable. We say that  ~ E 

Domv(6 ), if for any ~ E Dq,t (q-1 §  = 1), we have 

E[(V~, ~)H] _< c~,~(~).ll~ll~, 

and in this case we define ~ by 

E [ ~ . r  = El(C, V~')H], 

i.e., ~f = V* with respect to the measure p, it is called the divergence operator 

(for the emergence of this operator cf. [10] and [7] the references there). Let us 

give some properties of it: 

1.) Let a : W --* R be "smooth", ~ E Domp(~i). Then we have, for any 

T EDq,I, 

E[~(a~)!o] -- E[(a~, V~,)] 

= E[(~, aVtp)] 

-- E[(~,V(a~,) - ~.Va)] 

= E [ ~ . a ~ -  ~,.(Va,~)], 
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hence 

~(a~) = a6~ - (Va ,  ~). 

2.) Let h E H1, then we pretend that 

~fh = h(s)dW,.  

To see this, it is sufficient to test this relation on the exponential martingales: 

if k E Ht ,  we have 

/01 /0' E[~h.exp. L d W ,  - �89 k~e~] = 

= E[(h, V E( / (k ) )H , ) ]  

= El(h, k).s 

= (h, k ) . , .  

On the other hand, supposing first h E W*, 

E[I(h).C(I(k))] = E[I(h)(w + k)] 

= Eli(h)] + ( h , k ) . ,  

= (h, k )H, .  

Hence in particular, if we denote by l[,,t] the element of H such that l[,,t](r) = 

fo  l[,,tl(u)du, we have that  

[ ~(il,,,]) = Wt - W, . ] 

3.) Let now K be a step process 

n 

Kt(v) = E ai(w)'l[t',"+d (t) '  
1 

where ai E Dp,1 and B,.-measurable for each i. Let f f  he fo K,  ds. Then from 

the property 1, we have 

r~ f i  

' f f  = '(Eai'l[t',t '+'[) --': E {ai'(l[,,,t,+~[)- (Vai,l[t,,t,+,[)}. 
1 1 

From the property 2 .  we have 8(itt.t ,+lt) = Wt~+l - Wt, , furthermore, from the 

proposition II.1, the support of •al is in [0, ti], consequently, we obtain 

~ k  = ~ a , ( w , , + ,  - w , , )  = g ,  a w , .  

i = 1  

Hence we have the important  result which says, with some abuse of notation 

that  
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T h e o r e m  II.1:  Dom,(~) (p > 1) contains the adapted stochastic processes 

(in fact their primitives) such that 

E[(~01 2 ,,121 Ksds ) ] < o o  

and on this class 6 coincides with the Ito stochastic integral. 

R e m a r k :  To be translated as: the stochastic integral of K is being equal to 

the divergence of/-f[ 

We will come back to the notion of divergence later. 

2 The  Ornste in-Uhlenbeck Operator 

For a nice function f on W, t > 0, we define 

Ptf(x) = / w  f(e- t  x q- V/-~ - e-2t Y)l't(dY) ' 

this expression for Pt is called Mehler's formula. Since p(dx)p(dy) is invari- 

ant under the rotations of W • W, i.e., (/~ • ely) is invariant under the 

transformation 

Tt(x, y) = (xe -t + y(1 - e-2t) a/2, x(1 - e-2t) a/2 - ye-t), 

we have obviously 

IIPJ(x)ll~,(,,) <_ f / I(f | 1)(Zt(x,y))[Pp(dx)#(dy) 

= f / ] ( f  | 1)(x, y)lPl~(dx)lz(dy) 

= f If(x)l'~(d~), 

P , ( e ( I ( h ) )  = e(,-'~(h)) 
{30 

= ~ e -nt In(h| 
n! 

n~-O 

Hence, by homogeneity, we have 

Pt(In(h*n)) = e-'~tIn(h | 

and by density, we obtain 

p , I , , ( y . )  = e - " ' l . ( y . ) ,  

for any p > 1, lIP, filL, < Ilfllt, ; hence also for p = oo by duality. A straight- 
forward calculation gives that, for any h E H N W* (= W*), 
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for any fn E Z2([0, 1]n). Consequently P, o Pt = P,+t, i.e., (Pt) is a measure 

preserving Markov semi-group. Its infinitesimal generator is denoted by - E  and 

is E is called the Ornstein-Uhlenbeck or the number operator. Evidently, we 

have Eln(fn)  = nJn(fn); i.e., the Wiener chaos are its eigenspace. From the 

definition, it follows directly that (for ai being f't.-measurable) 

that is to say 

P t ( E  a i ( W t i + l  - W t i )  ) --~ e - t  E(Ptai)(Wt,+l - Wt,) ,  

and by differentiation 

Also we have 

1 1 

0 0 

1 1 

0 0 

+ E.)H, dW, .  

VPt~o = e-t  ptv~o. 

L e m m a :  We have 6 o V = s where 6 is the divergence operator (sometimes 

it is also called Hitsuda-Ramer-Skorohod integral). 

Proof :  Let ~ = ,~(I(h)) ,  then  

(6 o V ) r  = 6(h. ,~(I(h)))  

-- ( I ( h )  -Ihl~)C(I(h)) 
= C E ( / ( h ) )  

QED 

Let us define for the smooth functions 9, a semi-norm 

HI,plHp,~ = I1(I + L ) W 2 ~ I I L . ( . )  �9 

At first glance, these semi-norms (in fact norms), seem different from the one 
k 

define by []~Up,k = ~ HvJ~oHL)'(I~,H|  �9 We will show that  they are equivalent. 
0 

Before that we need 

P r o p o s i t i o n  We have the following identity: 

6 o V = s  
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Proof :  

martingales; if h E H1, 

It is sufficient to prove, for the moment that result, on the exponential 

On the other hand: 

and 

6 ( v c ( i ( h ) ) )  

~C( I (h ) )  - d-~fftt'f'(I(h)) ,=o 

- d E ( ~ - ' I ( h ) )  ,--o 

= ( e - ' I ( h ) )  - e - 2 t ] h l 2 H , ) E ( e - t I ( h ) )  t = o  

= ( I ( h )  - I h l 2 ) s  

V~'(I(h)) -= h.  S(I(h))  

= ~(h. E(I(h))) 

= 6 h .  s  - (Vs h) 

= 6hC.(I(h)) -Ihl~s 
QED 



Chapter II 

Meyer Inequalities 

M e y e r  I n e q u a l i t i e s  a n d  D i s t r i b u t i o n s  

Meyer inequalities are essential to control the Sobolev norms defined with the 

Sobolev derivative with the norms defined via the Ornstein-Uhlenbeck operator. 

They can be summarized as the equivalence of the two norms defined on the 

(real-valued) Wiener functionals as 

and 

k 

IIlr ~ ' = IIV r174 
i = 0  

IIr = I1(I + Z:)k/2r 

for any p > 1 and k E N. The key point is the continuity property of the Riesz 

transform on LP([O,27r],dz), i.e., from a totally analytic origin, although the 

original proof of P. A. Meyer was probabilistic (cf. [13]). Here we develop the 

proof suggested by [6]. 

1 S o m e  P r e p a r a t i o n s  

Let f be a function on [0,2r], extended to the whole R by periodicity. We 

denote by ](x) the function defined by 

aj ] ( x )  = ~p . v .  f ( x  + t) - f ( x  - t) dt 
2 tan t/2 

0 

(principal value). 

then the famous theorem of M. Riesz, of. [33], asserts that, for any f e L p[O, 27r], 

jr e LP([0, 2r]), for 1 < p < co with 

Iljrllp _ Apllfllp, 
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where Ap is a constant depending only on p. Most of the classical functional 

analysis of the 20-th century has been devoted to extend this result to the case 

where the function f was taking its values in more abstract spaces than the real 

line. We will show that our problem also can be reduced to this one. 

In fact, the main result that  we are going to show will be that 

liP( I + Z:)-I/2~IIp ~ II~llp 

by rewriting ~7(I + s  as a n  LP(~, H)-valued Riesz transform. For this we 

need first, the following elementary 

L e m m a  1: Let K be any function on [0, 2r] such that 

o L+ ([0, rr]), K(0) - i cot ~ �9 

then the operator f ---+ T g f  defined by 

1 fo TKf(z) = 7r -p .v .  ( f ( z  + t) - f ( z  - t ))K(t)dt  

is again a bounded operator on LP([O, 2r]) with 

for any p �9 (1, ~ )  [ITK fllp ~ Bpllfllp 

where Bp depends only on p. 

P r o o f :  In fact we have 

Hence 

IT, d -  ]1(~) < 

< 

- ] ' ~lat 1 I f ( z  + t) - f ( x  - t)l IK(t) - 5 cot 
71" 

0 

cllfllL, IlK - �89 cot ~IIL~ �9 

IITKflIp <_ (clIK - �89 cot ~IIL= + Ap)llfllp. 

R e m a r k :  , 0 L~([O, 27r]), then we have If for some a # O, aK(O) - ~ cot ~ E 

[,TKf['p = ~a~llaTkfllp < ~a~llaTKf --flip + i-a~lllfllp 

< [[aK - �89 cot -~IIL~ [Ifllv + ~Tllfllv 

<_ cpllfllp 

QED 

with another constant %. 
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Coro l l a ry :  Let K be a function on [0, Tr] such that K = 0 on [~ , r ]  and 

K - � 8 9  L ~ ( [ 0 ,  ~ ] ) .  Then TK defined by 

TI<f(x) = / ( f(x + t) - f (x  - t))K(t)dt 

0 

is continuous from LP([0, 27r]) into itself for any p E [1,cr [. 

P r o o f l  We have 

since on the interval 

Lemma. 

1 0 
cK(8)l[0,~] - ~ cot ~ E L~ r]) 

-~, it , sin o E ,1 , then the result follows from the 

QED 

2 as  t h e  R i e s z  T r a n s f o r m  

Let us denote by Ro(x,y) the rotation on W • W defined by 

Ro(x, y) = (x cos 0 + y sin O, - x  sin 0 + y cos 0). 

Note that R0 o Re = Rr We have also, putting e -t = cos 0, 

Ptf(x) : / f ( e - t x +  ~/1 -e-2ty)p(dy)  

W 

= f ( f  | l)(Ro(x, y))#(dy) = P_ logcosof(x). 

W 

Let us now calculate (I  + s  using this transformation: 

oo 

0 

= f ( - l o g c o s  01-1/2 c o s 0 - f ( T |  1)(Ro(x,y)lp(dy)tanOdO 

0 W 

x/2 

=/#(dy ) [ / ( - logcosO)- l /~s inO(~ |  

W 0 
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On the other hand, we have, for h �9 H (even in C~([0 ,  1])) 

d 
= -~'-~Pt~p(x + ,~h)l;,=o 

d f ~(e_t( x + )~h) + X/1 r Y)p(dv)l~=o 
dA 

x/1 - e -2 '  / 1  #(dY)l~=~ 

) = d-'-~ x/1 - :e-" I(h) (y),(dy)l~=o 

e--t / 
= ~ T - ~ - - 2 ,  ~(e-'x+vrf-e-~'V)~h(V)V(dv) 

W 

Therefore 

v~(I Jr ~ ) - - l [ 2 ~ ( X )  

oo 

= / t-1/2e-tVhpt~(x) dt 

0 
oo 

x/1 - e -2t 5h(Y)~(e-tx + V/1 - e-~t y)/l(dy)dt 
0 W 
~/2 

= /(--l~176 -1/2c~ / 
sin----~- tan 0 ~h(y)(w | 1)(Ro(x, y))l~(dy)dO 

0 

= / ( -  logcos0)-'/~cos0 / ~h(v)-(~| ~)(n,(., v))t,(dv)~0 
0 W 

Since I~(dy) is invariant under the transformation y ~ - y ,  we have 

f Sh(y)(9,| 1)(no(x,y))p(dy)= - f 5h(y)(~| i)(R_o(x,y))#(dy), 
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therefore: 

Vh(I +/:)-x/2~,(x) 

,r/2 

= f ( - l ogcosO) - ' /~ .  
0 

f ~fh(y) (9  | 1)(Ro(x, y)) - (9  | 1)(R_o(x, Y))#(dy)dO 
2 

= f ~ f h ( y ) / g ( 0 ) ( ( ~ |  1 ) (Ro(x ,y ) ) - (~@ 1)(R_o(x,y)))dOp(dy), 

W 0 

where K(O) = �89 cos 0 ( -  log cos 0) -1 /2 .  

L e m m a  2: We have 

2I<(0) : co t  L+(0 

P r o o f :  

then 

and 

hence 

The  only problem is when 0 --+ O. To see this let us put  e -t = cos 0, 

0 x/T+c -t 2 
r = ~ - e - ,  ~ 

e -t 1 
K(o) = - ~  ~ -~ 

0 71" 
2K(0)  - cot ~ E L+([0 ,  ~-]). 

Q E D  

Using L e m m a  1, the remark following it and the corollary, we see tha t  the 

map  f ~-* p.v. f ( f(x + O) - f (x  - O))K(O)dO is a bounded map  from LP[O, ~r] 
0 

into itself. Moreover 

L e m m a  3: Let F : W • W --~ R be a measurable,  bounded  function.  Define 

TF(z ,  y) as 

x/2 
l *  

TF(x,  y) = p.v. / (F o Ro(x, y) - F o R-o(x, y))K(O)dO. 

0 

Then,  for any p > 1, there exists some c v > 0 such tha t  

IITFIIL:(.• <_ c p l l F I I L : ( . •  �9 
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Proof i  We have 

./2 

(TF)(RI~(x , y)) = p.v. S (F(np+o(x, y)) - F(nn_o(x, y)))K(O)dO, 
o 

this is the Riesz transform for fixed (x, y) E W • W, hence we have 

i ITF(nj(~,y))l"dn <_ c. i IF(R.(~,y))l"dn, 
o o 

taking the expectation with respect to #x • p, which is invariant under R j ,  we 

have 

E,,• ] ITF(R~(z, y))lPd3 

0 

: E~,x~, JlTF(x,y)IPd3 
o 

= 2E[iTFIV] 
7r 

<_ c., i If(Rz(x,y))lVds7 
0 

= :rcvE[lFiV]" QED 

We have 

T h e o r e m  1: V o (I + L:) -1/2 : L P ( p )  ---* Lv(p, H) is continuous for any p > 1. 

Proof :  With the notations of Lemma 3, we have 

Vh(I + s = S 5h(y) T(T | 1)(x, y)p(dy). 
w 

From Schwarz inequality: 

IV(I + s _< f IT(~ | 1)(x, Yll2tL(dy) 

w 

hence, for p > 2, 

E[IV(I + t : ) - ' /2~l~]  . [( I i./. | ,//-,./l',,/<,./)"'] 
w 

_ ~jim(.| l)(x,y)l%(dy) 
w 

, i f  I(~ | 1)(x, y)lVp(dy)p(dz) v = I I ~ I I L . ( . )  �9 
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For the case 1 < q < 2, let ~ and r be smooth (i.e., cylindrical), since 

o V = Z:, we have, for p-1 + q-1 = 1 (hence p > 2!): 

E[9r  = 

E[(V(I(+s V(I  + s 1 6 2  

-.]- E[(I + C)-I/2~.(I --I.- /2)-1/2~/3] , 

E[(V(I  + /2 ) - I /2~ ,  V( I  + /2 ) - i /2 r  = E[~r - E[(I +/2)-i~.r 

Since (I  + L:) -1 is continuous on nP(p) (it is a contraction), we have 

sup IE[(V(I +/2)-1/2~,  V(!  + Z:)-I/2r < ellr 
II~llp_<l 

hence IIV(I + C)-x/2r q ___ cqllr - QED 

C o r o l l a r y  1: We have 

I1(I + / 2 ) - ~ / ~ l l p  < epll~llp, 

for any ~ �9 LP(p; H) for p �9 c~[. 

Proof." Just take the adjoint of V(I  +/2)  -1/2. QED 

C o r o l l a r y  2: We have 

i) IIV~llv _ e , l l ( I  + C)i /2~l lp 

ii) I1(1 +/2)1/2~11p <- 6p(ll~llp + IIV~llp). 

P r o o f :  

i) IlVmllp = IIV(I +/2)-1/2(1 +/2)'/2~11p _ cpll(Z + z:)~/2~llp �9 

ii) II(Z +/2)~/~mllp = I1(I + z:)-1/2( I + z:)~llp 

= I1(I + ~:)-~/2( z + 6V)~llv 

___ I1(I + / 2 ) - a / ~ l l p  + I1(I + z:)- l /2~V~llp 

< II~llv + cpllV~llp, 

where the last inequality follows from the Corollary 1. QED 

hence 





Chapter III 

Hypercontractivity 

H y p e r c o n t r a c t i v i t y  

We know that the semi-group of Ornstein-Uhlenbeck is a bounded operator on 

LP(tt), for any p E [1,oo]. In fact for p E]l,co[, it is more than bounded. It 

increases the degree of integrability, this property is called h y p e r c o n t r a c t i v i t y  

and it is used to show the continuity of linear operators on LP(#)-spaces de- 

fined via the Wiener chaos decomposition or the spectral decomposition of the 

Ornstein-Uhlenbeck operator. We shall use it in the next chapter to complete 

the proof of the Meyer inequalities. Hypercontractivity has been first discovered 

by E. Nelson, here we follow the proof given by [14]. 

In the sequel we shall show that this result can be proved using the Ito for- 

mula. Let (it, A, P)  be a probability space with (Bt;t E R+) being a filtration. 

We take two Brownian motions (Xt;t  >_ 0) and (Yt;t > 0) which are not nec- 

essarily independent, i.e., X and Y are two continuous, real martingales such 

that  (X~ - t )  and (Yt 2 - t )  are again martingales (with respect to (Bt)) and that 

Xt - X ,  and Yt - Ys are independent of B,, for t > s. Moreover there exists 

(pt;t E R+),  progressively measurable with values in [-1, 1] such that 

t 

(XtYt -/p, ds, t >_ 

g *  

O) 
. 1  

0 

is again a (Bt)-martingale. Let us denote by 

x ,  = ~ ( X , ; s  < t), y,  = a ( y , ; s  < t) 

i. e., the correponding filtrations of X and Y and by X and by y their respective 

supremum. 

L e m m a  1: 1) For any ~ E LI(It, X , P ) ,  t >_ O, we have 

E[~l/~t] : E[@Xt] a.s. 
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2) For any r E L I ( ~ , y ,  P),  t _> 0, we have 

E[r = E[r ] a.s. 

P r o o f :  

motion. Hence 
O 0  

= E[~] + / H, dX, 

0 

where H is (Xt)-adapted process. Hence 

t 

E[~,IB,] - E[~] + f H, dX, 

0 

1) From L6vy's theorem, we have also that (Xt) is an (Xt)-Brownian 

: 

QED 

Let us look at the operator T : LI( fLX,  P) --* LI( fLY,  P) which is the 

restriction of E[.[y] to the space Ll(f~, X, P).  We know that T :  LP(X) ~ LP(Y) 

is a contraction for any p > 1. In fact, if we impose some conditions to p, then 

we have more: 

P r o p o s i t i o n  1: If Ip,(w)l _<, (dr • dP a.s.) for some r E [0, 1], then T : 

Lv(X) ---* Lq(y) is a bounded operator, where 

p -  1 > r2(q-  1). 

P r o o f i  p = 1 is already known. So suppose p,q E]1,cr Since L~176 is 

dense in LP(X), it is enough to prove that IITFIIq <_ IIFIIp for any F E L~176 
Moreover, since T is a positive operator, we have IT(F)I <_ T(IFI), hence we can 

work as well with F E L~(X) .  
From the duality between LP-spaces, we have to show that 

(~, 1 ) 
E[T(F)G] < IIFHpllGllq,, + - = 1 , 

q 

for any F E L T ( X  ), G ~ LT(Y  ). Moreover, we can suppose without loss of 

generality that F , G  E [a,b] a.s. where 0 < a < b < cr (since such random 

variables are total in all L~.-spaces, i.e., they separate L~. for any p > 1). 

Let 

i t  = E[FPIXt] 

Nt = E[G q'lyt]. 

Then, from the Ito representation theorem we have 

t 

Mt = Mo + / r  
, J  

0 
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t 
1 .  

Nt = No + / CsdYs 
J 

0 

where r is X-adapted, r is y-adapted,  Mo E[FP], No E[G ]. From the Ito 

formula, we have 

M~ Nt ~ = M~ Ng 

t t 

0 0 

t 

1 
+ -~ / M:gs~A'ds 

0 

where 

At = o~(a _ l)(  r "~ 2 . ..,r162 ( r ~ 2 
\Mr/  + zaP-~t~tPt + fl(fl- 1 ) \ N t /  

and e~-- 1 , f l =  ~, . 

[TO see this we have 

Mt ~ = 

Nt ~ = 

t t / o/o-1 /o_ 2 
Mg + a M2-1r + ~ M s Csds 

0 0 

hence 

Mt ~ Nt # - M~ No ~ 
t t t 

0 0 0 

t 

/ M•(flN]_lr + fl(Z 2 1)N~_2r 

0 

t 

+ / N ] ( a M : _ I r  + a(a2- 1-------) M:-~r 

0 

t 

"bO//~ / ?ufa - lh ] ' f l - l "h  Cspsds 

0 

then put together all terms with "ds".] 



30 Hypercon tractivity 

As everything is square integrable, we have 

E[M~N~] = E[E[XP[Xoo] ~'. E[Yq'[Yoo] ~] 

= E [ X .  Y] 

1 J E[N~M~'At]dt + EM~'N~o 
2 

0 

O0 

1 / E[M~'N~A,Jdt = E[XVlaE[Yq'] ~ + -~ 
0 

Hence 
O0 

1 f E[M~N~A,]dt E [ x Y ] -  []xH JVll , = 

0 

Now look at At as a polynomial of second degree with respect to m -~ . Then 

! - ~2~p~ - c ~ ( a -  1)/~(fl- 1). If6 < 0, then the sign of At i s  same as the sign 

o f a ( a - 1 ) < O , i . e . , i f p ~ _  _<: (a-1)(~-,)~_~ = ( 1 - ~ ) ( 1 - ~ ) = ( p - 1 ) ( q ' - l ) a . s . ,  

then we obtain 

E[XY] = E[T(X)Y] <_ [[X[[v[[YHq,. QED 

L e m m a  Let (w, z) -- W x W be independent Brownian paths. For p E [0, 1], 

define x -- pw +V/1  - p2 z, Xoo the a-algebra associated to the paths x. Then 
we have 

E[F(w)[Xoo] = / F(px + ~/1 - ~2 z)#(dz). 

W 

Proof :  For any G E L ~176 (Xr we have 

E[F(w). G(x)] = E[F(w)G(pw + V/1 - p2 z)] 

= E [ E ( p w  + x/1 - p2 z)G(w)] 

= + v l f -  p2 5)G( (v) . p(d(o)~(ds) 

= E[G(x) f F(px + X/1 - p2 5). #(dh)] 

where w, z represent the dummy variables of integration. QED 

C o r o l l a r y  1: Under the hypothesis of the above lemma, we have 

[[ f F(px + v/l -- p 2 5)it(d5 ) Lq(dla) ~_ [[F,,L. 
W 

for any ( p -  1) _> p2(q _ 1). 



Chapter IV 

LP-Multipliers Theorem, 

Meyer Inequalities and 

Distributions 

1 / .Y-Mul t ip l i ers  T h e o r e m  

LP-Multipliers Theorem gives us a tool to perform some sort of symbolic calculus 

to study the continuity of the operators defined via the Wiener chaos decompo- 

sition of the Wiener functionals. With the help of this calculus we will complete 

the proof of the Meyer's inequalities. 

Almost all of these results have been discovered by P. A. Meyer (cf. [13]) 

and they are consequences of the Nelson's hypercontractivity theorem. 

First let us give first the following simple and important  result: 

T h e o r e m  1: Let F E LP(/J) and F = )-~,, In(Fn)  its Wiener chaos develop- 

ment. Then the map F ~ I , ( F n )  is continuous on LV(#). 

P r o o f :  Suppose first p > 2. Let t be such that p = e 2t -4- 1, then we have 

liP, Flip _< IIFll2. 

Moreover 

I led.(F.) l lp  ___ IlI.(F.)ll~ _< IIFII2 ___ IIFIIp 

but PtIn(Fn)  = e -a t In (Fn) ,  hence 

flI.(F.)llp _< e=tllFllp. 
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For 1 < p < 2 we use the duality: let F ~ I,~(Fn) = Jn (F) .  Then 

Ill,,(F)llp = sup I(G,J.(F))I 
Ilallq<l 

= s u p l ( J . ( a ) , F ) l  

= s u p l ( J . G , J . F ) l  

_< sup e"'llGIlallFIIp 

= ~ ' ~ ' I I F I I p  - 

P r o p o s i t i o n  1: M u l t i p l i e r ' s  t h e o r e m  

Let the funct ion h be defined as 

oo 

= 

k=O 

be an analytic function around the origin with Z:k la,,I ( 5 ) k  

for some "0 e N.  Let r  = h(x  -c') and define Tr on LP(#) as 

oo 

T c F  = E r 

~ = 0  

Then the opera tor  to Tr is bounded on LP(p) for any p > I. 

Q E D  

< +c~  for n _> no, 

P r o o f :  Suppose first a = 1. Let Tr = T1 + T~ where 

n o - 1  

T I F  = E r  T~F = ( I  - T 1 ) F .  

n=O 

From the hypercontract ivi ty ,  F ~ T1F is continuous on LP(p). Let 

Since 
no--1 

( I  - Ano)(F ) = E I.(F.), 
n=O 

An o : L v ---, L p is continuous,  hence P i A n o  : L p ~ L p is also continuous.  

Apply ing  Riesz-Thorin interpolation theorem, which says tha t  if PiAno is L q 

1 is in the interval Lq and L ~ ---, L 2 then it is LP --, L p for any p such tha t  

[~, �89 we obtain  

IIP, A.ollv,v <_ IIP,,a.ollg,:~ P A 1-0 P A o /x ~-0 , ,-,o q , ,  _< I I ,  -o11~,~11 - o l l q , ~  
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1 : 0 l q 0  where p ~ + - - ,  0 E]0, 1[. Choose q large enough such that 0 ~ 1 (if 

necessary). Hence we have 

IIP*A-olIp.p 5 e-"~176 K = K(,o, O). 

Similar argument holds for p E]I, 2[ by duality. 

We have 

T2(F) = E r 

1 k 

n>.rto k 

-- F.o  
k n>_no 

= E ak E s 
k n>_no 

= Eaks  
k 

We also have 

IlZZ-~A,oFIIp 

IIC-2AnoFIb 

IIs 

: f P~A,ordt " _< K f e-"~176 _< K.  IIFIIPno0 
0 0 

o o  c2o 

= Pt+sAnoFdt < K" (n00)2  , 

0 0 

1 
<_ KIIFIIP (noO)k . 

Therefore 

Z IIT2(F)llp 5 KIIFIIp n k = KIIFIIp 1 
k no  

by the hypothesis (take no + 1 instead of no if necessary). 

For the case c~ e]0, 1[, let Ol~)(ds) be the measure on R+,  defined by 

f e-~'Ol")(ds) = e-'~ ~ 

R,+ 

Define 

~ E f Qt F = e-'~tI,~(F,,) = P, FO ~ 

0 
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Then 

O<3 

IIQ~'A,,oFIIp < IiFIIpJe-"~176 
0 

= t i F l i v e - ' ( " ~ 1 7 6  

the rest of the proof goes as in the case a = 1. QED 

E x a m p l e s  o f  a p p l i c a t i o n :  

1) Let 

r  = ~ G - ~ )  s e l  - oo, 0 4  

' \ 1 , / r - T ~ /  " 

Then T , : L V  --  LP is bounded. Moreover r  1 h-l(V/--s r = 

h - l ( x )  = ~ is also analytic near the origin, hence Tr : L v ---+ L p is also 

a bounded operator.  

2) Let r  = ~ ~ then h(x) = ~ satisfies also the above hypothesis. 

3) As an application of (2), look at 

I1(I + z:)'/~V~ll,, -- I IV (2 /+  z:) ' /~ l l , ,  

< I1(I + ,c)~/~(~z + z:)~/%ll,, 

= 11(2z + z : ) ' / ~ ( / +  z: ) ' /~ l l , ,  

= I IT,~(/+ Z : ) ' / ~ ( /+  Z:)' /%II, ,  

< c,,ll(Z +,C)~II,,. 

Continuing this way we can show that  

IlVk~llL,(,,,n*') _< e,,,kllr II(I + Z:)'~/%IIp) 

< ~,,.k(ll~ll,, + IlVk~'IIL,(,.u~'.)) 

and this completes the proof of the Meyer inequalities for the scalar-valued 

Wiener functionals. If  ,1, is a separable Hilbert space, we denote with Dv,k(X ) 
the completion of the X-valued polynomials with respect to the norm 

II,~llo,,,~(~) = I1(I + s 

We define as in the case ,l" = R,  the Sobolev derivative V, the divergence 6, etc. 

All we have said for the real case extend trivially to the vector case, including 
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the Meyer inequalities. In fact, in the proof of these inequalities the main step 

is the Riesz inequality for the Hilbert transform. However this inequality is also 

true for any Hilbert space (in fact it holds also for a class of Banach spaces which 

contains Hilbert spaces, called UMD spaces). The rest is almost the transcription 

of the real case combined with the Khintchine inequalities. We leave hence this 

passage to the reader. QED 

C o r o l l a r y  For every p > 1, k 6 R, V has a continuous extension as a map 

Dp,k "-) Dv,k-I(H). 

P r o o f i  We have 

IIV~ll,,~ = II ( I+L:)k /2V~IIp  

< cpll(1 + s  + ~)k/2~l lv  

II(I + s  

= II~llp,~+l - 
QED 

C o r o l l a r y  5 = V* : Dp,k(H) --~ Dp,k-1 is continuous Vp > 1 and k 6 R. 

P r o o f :  The proof follows from thc duality. QED 

In particular: 

C o r o l l a r y  

V :NDp,k  = D---+ D ( H ) =  ["] Dp,k(H) 

p,k p,k 

is continuous and extends continuously as a map 

v :  m '=  Uvp,k ~ o ' ( n )  = U D~,~(H), 
p,k p,k 

the elements of the space D' are called Meyer-Watanabe distributions. 

~ N Dp,k(n) = D(H) -~ D 

is continuous and has a continuous extension 

6: D' (H) --~ D' 
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Proofi  Everything follows from the dualities 

(D)' = D', (D(H))' = D'(H). 

QED 

Definit ion: For n > 1, we define 6 '~ as (V") * with respect to p. 

P ropos i t ion  2 For ~a E L2(/~), we have 

~o: E[;I + ~ ~g'(E[V"~]). 
n>_l 

P r o o f i  

have 

First suppose that h ~-~ ~(w + h) is analytic for almost all w. Then we 

(W~(w), h|174 
~(w + h) = ~(w) + ~ n! 

n > l  

Take the expectations: 

E[~(w+ h)] = E[~.g(6h)] 

(E[V~] ,  h ~") 
: E[~] + 

n! 
n .  

= E[~]+ Z E[ln(E[Vn~])g(6h)] 
.>1 L n! ] " 

Since the finite linear combinations of the elements of the set {g(6h); h E H} is 

dense in any LP(#), we obtain the identity 

I~(E[Vn~]) 
~(w) = E[+] + Z 

n! 

Let r E D, then we have (with E[r = 0), 

(~,r = ZE[l,~(~,~)ln(r 

= Z E [ In(E[Vn~~ 

n n[ 

= ~ ' ( E [ V " ~ I ,  W.) = 
n 

: E l(z[v"~l,z[v"~]) 

n 
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hence we obtain that 

E  rEIv~ 
n 

in particular 6nE[~7"@] = I,~(E[~7"~]). 

Let us give another result important  for the applications: 

QED 

P r o p o s i t i o n  3 Let F be in some LP(p) with p > 1 and suppose that  the 

distributional derivative V F  of F,  is in some Lr(p, H),  (1 < r). Then F belongs 

to D~^p,1. 

P r o o f i  Without loss of generality, we can assume that r <_ p. Let (ei;i r N) 

be a complete, orthonormal basis of the Cameron-Martin space H. Denote by Vn 
the sigma-field generated by 5el , . . .  , 6en, and by 7rn the ortohogonal projection 

of H onto the subspace spanned by e l , . . .  , e,~, n E N. Let us define F,~ by 

F~ = E[P1/,~FIV, d, 

where P1/n is the Ornstein-Uhlenbeck semigroup at t = 1/n. Then Fn belongs 

to Dr,k for any k r N and converges to F in Lr(/z). Moreover, from Doob's 

lemma, Fn is of the form 

F (w) = 

with a being a Borel function on R n, which is in the intersection of the Sobolev 

spaces NkWr,k(Rn,l~n) defined with the Ornstein-Uhlenbeck operator Ln = 
- A  + x " x7 on R n. Since L ,  is elliptic, the Weyl lemma implies that a can 

be chosen as a C~176 Consequently, XTFn is again Vn-measurable and 

we find , using the very definition of conditional expectation and the Mehler 

formula, that  

VFn = e[e-'/'~ r,~P~/nvelv, d. 

Consequently, from the martingale convergence theorem and from the fact that 

~', ---+ It1 in the operators'  norm topology, it follows that 

VF.---+VF, 

in Lr(tt, H),  consequently F belongs to Dr,1. Q.E.D. 

A p p e n d i x :  P a s s i n g  f r o m  t h e  c l a s s i c a l  W i e n e r  s p a c e  t o  t h e  

A W S  ( o r  v i c e - v e r s a ) :  

Let (W, H,/~) be an abstract Wiener space. Since, h priori, there is no notion of 

time, it seems that we can not define the notion of anticipation, non-anticipation, 

etc. 

T h i s  d i f f i cu l ty  can  be  o v e r c o m e  in t h e  fo l lowing  way:  

Let (Px; A E E), E C R, be a resolution of identity on the separable Hilbert 

space H, i.e., each p~ is an orthogonal projection, increasing to IH, in the sense 

that A ~-* (pxh, h) is an increasing function. Let us denote by Hx = p~(H) 
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Def in i t i on  1: We will denote by 9v~ the a-algebra generated by the real poly- 

nomials ~ on W such that  V~ 6 Ha p-almost surely. 

L e m m a  1: We have 

up to/~-negligeable sets. 

V :ra = t~(w) 
aE~ 

Proof i  We have already VUA C 13(W). Conversely, if h E H, then V6h = h. 

Since U HA is dense in H, there exists (h,)  C U HA such that h,, ---* h in H. 
AEE A 

Hence 6hn -* ~h in LP(bt), Vp > 1. Since each ~hn is V.Ta-measurable, so does 

6h. Since 13(W) is generated by {Sh; h E H} the proof is completed. QED 

Def in i t i on  2: A random variable ~ : W ---+ H is called a simple, adapted vector 

field if it can be written as 

~= ~ Fi(pa,+lhi-pa, h') 
/<+co  

where hi E H, Fi are ~'A,-measurable (and smooth for the time being!) random 

variables. 

P r o p o s i t i o n  4 For each adapted simple vector field we have 

i) @ = ~ Fi~(pa,+lhi-pa,hi) 
/<+co  

ii) E[(8~) 2] = E[I~I~]. 

Proof i  i) We have 

~[Fi(pa,+, - px,)hi] = Fi6[(px,+, - pa,)hi] - (V FI, (px,+, - px,)hi).  

Since VFi 6 Hx, the second term is null. 

(ii) is well-known. QED 

R e m a r k :  If we note EFi 1]a,,a,+,l(A)hi by ~(A), we have the following nota- 

tions: 

~ = 6 (A)dpa with 116~112 2 = E d (~a ,pa~a)  = II IlL <.,H) , 

E 

which are significantly analogous to the things that we have seen before as the 

Ito stochastic integral. 

Now the Ito representation theorem holds in this setting also: suppose (px; A 6 
E) is continuous, then: 
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T h e o r e m  2 Let us denote with D~,o(H ) the completion of adapted simple 

vector fields with respect to the L2(tt, H)-norm. Then we have 

L2(#) = R +  {6~: ~ E D~,o(H)}, 

i.e., any ~ E L2(tt) can be written as 

= + 

for some ~ E D~,o(H). Moreover such ~ is unique up to L2(p, H)-equivalence 

classes. 

The following result explains the reason of the existence of the Brownian 

motion (cf. also [26]): 

T h e o r e m  3 Suppose that there exists some 120 E H such that  the set {px~0; 

,~ E E} has a dense span in H (i.e. the linear combinations from it is a dense 

set). Then the real-valued (.T'x)-martingale defined by 

bx = 6pAf2o 

is a Brownian motion with a deterministic time change and (Fx;~  E E) is its 

canonical filtration completed with the negligeable sets. 

E x a m p l e :  Let H = H,([0, 1]), define A as the operator defined by Ah(t) = 
t 

f sh(s)ds. Then A is a self-adjoint operator on H with a continuous spectrum 
0 

which is equal to [0, 1]. Moreover we have 

= 

t 

/ l[o,x](s)tt(s)ds 
0 

t 

and f~o(t) = f l[o,l](S)ds satisfies the hypothesis of the above theorem, f~0 is 
0 

called the vacuum vector (in physics). 

This is the main example, since all the (separable) Hilbert spaces are isomor- 

phic, we can carry this time structure to any abstract Hilbert-Wiener space as 

long as we do not need any particular structure of time. 





Chapter V 

Some applications of the 

distributions 

Introduct ion  

In this chapter we give some applications of the extended versions of the deriva- 

tive and the divergence operators. First we give an extension of the Ito-Clark 

formula to the space of the scalar distributions. We refer the reader to [2] and [17] 

for the developments of this formula in the case of Sobolev differentiable Wiener 

functionals.  Let us briefly explain the problem: although, we know from the Ito 

representation theorem, that each square integrable Wiener functional can be 

represented as the stochastic integral of an adapted process, without the use of 

the distributions, we can not calculate this process, since any square integrable 

random variable is not neccessarily in D2,1, hence it is not Sobolev differen- 

tiable in the ordinary sense. As it will explained, this problem is completely 

solved using the differentiation in the sense of distributions. Afterwards we give 

a straightforward application of this result to prove a 0 - 1 law for the Wiener 

measure. At the second section we construct the composition of the tempered 

distributions with nondegenerate Wiener functionals as Meyer-Watanabe dis- 

tributions. This construction carries also the information that the probability 

density of a nondegenerate random variable is not only infinitely differentiable 

but also it is rapidly decreasing. The same idea is then applied to prove the 

regularity of the solutions of the Zakai equation for the filtering of non-linear 

diffusions. 
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1 Extens ion  of the Ito-Clark formula 

Let F be any integrable random variable. Then we know that  F can be repre- 

sented as 
1 

= E[F] + / F H.dW. , 
* f  

0 

where (Hs; s E [0, 1]) is an adapted process such that,  it is unique and 

1 

i H2sds < +oo a.s. 

0 

Moreover, if F E LP (p > 1), then we also have 

1 

Ig, lds) J<+~. 
0 

One question is how to calculate the process H. In fact, below we will extend 

the Ito representation and answer to the above question for any F E D' (i.e., 

the Meyer-Watanabe distributions). 

We begin with: 

t 

L e m m a  1 Let f E D(H), then 7r~ defined by 7rf(t) = f E[~,lf,]ds belongs 
0 

again to D(H), i.e. 7r: D(H) ---* D(H) is continuous. 

P r o o f i  We have s = ~'/2~, hence 

1 

0 

1 

= E [ ( I  iEI(/+ 
0 

1 

_< (c...) 
0 

where the last inequality follows from the convexity inequalities of the dual 

predictable projections (c.f. Dellaeherie-Meyer, Vol. 2). QED 

L e m m a  2: r :  D(H) ---* D(H) extends as a continuous mapping to D'(H) ---* 
D'(H). 
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P r o o f :  Let ~ E D(H), then we have, for k > O, 

-- I1~(I + z::)-k/2~llp <- Cpll( I + z:)-k/2r 

_< cpll~llv,-k, 

then the proof follows since D(H) is dense in D'(H). 
QED 

Before going further let us give a notation: if F is in some Dp,1 then its Gross- 

Sobolev derivative V F  gives an H-valued random variable. Hence t ~ V F ( t )  is 

absolutely continuous with respect to the Lebesgue measure on [0, I], we denote 

by D,F its Radon-Nikodym derivative with respect to the Lebesgue measure. 

Note that it is ds x dtt-almost everywhere well-defined. 

L e m m a  3: Let ~ E D, then we have 

Moreover r V ~  E D(H). 

1 

: E[~] + / E[D,~oIf, ldW, 
0 

= E [ ~ ] + 6 r V ~ .  

t 

P r o o f :  Let U be an element of L2(p, H) such that u(t) = f i~sds with (~it;t E 
0 

[0, 1]) being an adapted and bounded process. Then we have, from the Girsanov 

theorem, 

1 1 

E[~,(w + au(w)), exp(-~ u, ew,  - V ~,es)] = E[~]. 

0 0 

Differentiating both sides at X = O, we obtain: 

1 

E[(V~(~), u) - ~ f u,~Ws] = 0, 
0 

i.e., 
1 

E[(V~o, u)] = E[~ / i~,dWs]. 
0 
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Furthermore 

1 

0 

1 

0 

= E[0rV~,  U)H] 
1 1 

0 0 

1 

Since the set { f i t , d W , ,  it as above} is dense in no2(/~) = n2(#) - (n2(~t), 1), we 
o 

see that 
i 

= 6 ~ V ~ .  

0 

The rest is obvious from the Lemma 1. QED 

T h e o r e m  1: For any T E D', we have 

T = (T, 1> + 6 r V T .  

P r o o f :  Let (~,,~) C D such that ~,,~ ~ T in D'. Then we have 

T = l i m ~  

= linm[E[cpn ] + 6;r 

=: ]imE[~pn] + lim~-V~p. 

- - l im(1,  ta,) + lim6~rV~, 

= (I,T)+6~VT 

since V : D '  ~ D ' ( H ) ,  a" : D'(H) ~ D'(H) and  6 : D ' ( H )  --+ D '  are all linear, 
continuous mappings. QED 

Here is a nontrivial application of the Theorem 1: 

T h e o r e m  2 : ( 0 - 1  law) L e t A E B ( W )  such tha t  A + H = A .  T h e n / z ( A ) = 0  

or 1. 

Proof." A + H = A implies that 

1A(W + = U(w) 

hence V I A =  0. Consequently, Theorem 1 implies that 

1A = (1A, 1) = #(A) ::*'/~(A) 2 = p(A). QED 
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2 L i f t i n g  o f  S'(I[(d) w i t h  r a n d o m  v a r i a b l e s  

Let f : R --* R be a C~-function, F G D. Then  we know tha t  

V ( f ( F ) )  = f ' ( F ) V F .  

Now suppose tha t  [VF[~ 2 e N LP(~), then 

(V(f(F)),VF)n 
f ' ( F )  = IVFl~ 

Even if f is not  C 1, the right hand side of this equality has a sense if we look at 

V ( f ( F ) )  as an element of D ' .  In the following we will develop this idea: 

D e f i n i t i o n :  Let F : W --* R d be a r andom variable such tha t  Fi G D, Vi = 

1 , . . .  ,d, and tha t  

[det(VFi,  VFj)] -1 G N LP(IJ)" 
p > l  

Then  we say tha t  F is a n o n - d e g e n e r a t e  r andom variable. 

L e m m a  1 Let us denote by cr 0 = (~7Fi, VFj )  and by 7 = a - 1  (as a matr ix) .  

Then  7 G D ( R  d | Rd).  

P r o o f :  Formally, we have, using the relation a �9 7 = Id, 

VTij = E Tik?jtVakt . 
k,I 

To just ify this we define first erie j = o'ij -Jr- g6ij, ~ > 0. Then we can write 

t = fij (at) ,  where f : R d |  R a --* R a |  R d is a smooth  function of polynomial  7~j 

growth.  Hence 7~j E D. Then  from the domina ted  convergence theorem we have 

t k ~ L P  " 
7 i j  ---* "Yij in L p as well as V 7ij ~.. Vl~/ij (this follows again f rom 7" "at  = ld).  
QED 

L e m m a 2  Let G E D .  Then  we have, V f E S ( R  a) 

i) E[Oif(F).G] = E[f(F). l , (G)] 

where G ~ li(G) is linear and for any 1 < r < g < oo, 

sup Illi(G)llr < + o o .  
IIGIIq.l_< 1 

ii) Similarly 

and 

E[Oi,...ik f o F.G] = E [ f ( F ) .  li,...ik (G)] 

sup lit,, ,k(a)llr < ~ .  
I lVll~,~_< 1 
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Proofi  We have 

V(. f  o F)  = ES, f ( F ) V F ~  ~ ( V ( / o  r ) ,  VFj) = Ea,jO, f ( F ) .  

Since o" is invertible, we obtain: 

O,1'(F) = ~ ~,i(v(/o F), VFj). 
J 

Then 

E[Oif(F).Gl = E E[Tq(V( /o  F),VFj).G] 

J 

i 

hence we see that / i (G) = E j  5{VFjTqG}. We have 

I,(G) = - y~i(V(TqG), V F i )  - 7qar .F i]  

J 

j k,~ 

H e n c e  

Iz,~(a)l _< ~ [ ~  I~,~wl Iw~,l IvF~l I~1 + t~,jl Ivy? Ival + 

+ 17:il lal Is 

Choose p such that ~ = ~ + ~ and apply HSlder's inequality: 

d 

II~,(a)ll. <_ ~ [~tlallA'~,~-r~,lw~,l.tvv~l.llp + 
j = l  k,l 

+ ll'r;s IvF?IlplIIvalll, + Ibql:F~iipllGilq] 
d 

_< ]IGIIq,, [ ~ ] ] ' r ,  kTi,JVFk,llVF~lllp + 
j = l  

+ II~;j IvDIrr~ + II~,jc~llp] �9 

ii) For i > 1 we iterate this procedure. QED 

Now r e m e m b e r  t ha t  $ ( R  d) can be written as the interseetian (i.e., pro- 
jective limit) of the following Banach spaces: 

Let A = I - A + Ixl 2, Ilfl(2k = {{A~'fll~ (the uniform norm) and S~k = 
completion of S(R a) with respect to the norm I1' 112k. 
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T h e o r e m  1 Let F E D ( R  d) be a non-degenerate random variable. Then we 

have for f E S(Rd):  

lifo Fllp,-2k < cp,kllfll-2~:. 

P r o o f i  Let r = A - k f  E s ( a d ) .  For G E D, we know that  there exists some 

~?2k(G) E D (G ~ O2k(G) is linear) from the Lemma 2, such that  

E[Akr o F.G] = E[r  o F.r/2k(G)], 

i.e., 

Hence 

and 

E[f o F.G] = E[(A-k f)(F).rl2k(G)] . 

[E[f o F.G]I < IIA-k fll~llo2k(G)llL, 

sup JE[foF.G]I <_ IIA-kfll~ sup JJrl2~(G)JJl 
IlGllq,2k< 1 [IGJjq,2k_< 1 

= K I I f l l - 2 k  �9 

Hence lifo FIIp,-2k _< Kllfll-2k- QED 

C o r o l l a r y  1: The map f *--* f o F  from S ( R  d) --* D has a continuous extension 

to S ' ( R  d) ---* D' .  

S o m e  a p p l i c a t i o n s  

If F : W ~ l:t d is a non-degenerate random variable, then we have seen that  the 

map f ~ f o F from S ( R  a) ~ D has a continuous extension to S ' ( R  d) ---* D' ,  

denoted by T ~-* T o F.  

For f E S(R.d), let us look at the following Pettis integral: 

f(x)Cxdx, 

Rd 

where Ex denotes the Dirac measure at x E R d. We have, for any g C S(Rd) ,  

< f f(.)r = f ( f ( x )Ex ,  g)dx 

: / f(x)(~:x,g)dx 

= / f ( x ) g ( x ) d x  = (f ,g).  

Hence we have proven: 
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L e m m a  1: The following representation holds in S(Ra):  

f = JR" f(x)C~dx. 

Lifting of S'(~ d) 

From Lemma 1 we have 

L e m m a  2: We have 

(Ey (F), ~)f(y)dy = E[f(F).~], 

for any ~ E D, where (., .) denotes the bilinear form of duality between D' and 

D. 

Proof :  Let p~ be a mollifier. Then gu �9 Pc ---' '~u in S' on the other hand 

f(e~ �9 p,)(r):(~)dy = f p,(r + ~).:(y)d~ = 

= /p , ( y ) f ( y+F)dy  ,_~ f(F). 

On the other hand, for ~o E D, 

!irno/ < (Cu * pe)(F),~o > f(y)dy 

Coro l l a ry :  We have 

= / ~-01im < (g'y �9 p~)(F), ~ > f(y)dy 

= / < Cy(F),!a > f(y)dy 

= < f ( F ) , ~  > 

= E[f(F):]. QED 

(E~(F), 1) = d(dx#) (x ) 1 7 .  = pF(x), 

moreover PF E ,-q(R 4) (i.e., the probability density of F is not only C ~ but it is 
also a rapidly decreasing function). 

Proof :  We know that the map T ---* E[T(F).~] is continuous on S ' ( R  d) hence 

there exists some PF, v E S ( R  d) such that 

E[T(F) .~] = s (PF,~,, T)S'. 

Let PF,1 = PF, then it follows from the Lemma 2 that 

= [(,f.~(F), 1)f(y)dy. E[f(F)] 
J QED 
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R e m a r k :  

hence 

From the disintegration of measures, we have 

/ E[~tF = x]f(x)dx = E[f(F)4a] 

= / f(x)(Ex(F),ia)dx 

E[@F = x] = (,~:(F), @ 

dx-almost  surely. In fact the right hand side is an everywhere defined version of 

this conditional probability. 

R e m a r k :  Let (xt) be the solution of the following stochastic differential equa- 

tion: 

dxt(w) = bi(zt(w))dt + cq(zt(w))dw~ 

x0 = x given, 

where b : R d ----* R d and ai : R a ---* R a are smooth vector fields with bounded 

derivatives. Let us denote by 

where 

a b~ c9 o~ 0 

i = 1  

1E 
If the Lie algebra of vector fields generated by {X0, X 1 , . . .  , Xa} has dimension 

equal to d at any x E R d, then xt(w) is non-degenerate cf. [32]. In fact it is also 

uniformly non-degenerate in the following sense: 

t 

E/IDet(Vx'r,Vx{)l-Pdr<oc, V O < s < t ,  Vp> I. 

$ 

As a corollary of this result, combined with the lifting of $ '  to D' ,  we can 

show the following: 

For any T E $ ' (Rd) ,  one has the following: 

t t 

$ $ 

where the Lebesgue integral is a Bochner integral, the stochastic integral is 

as defined at the first section of this chapter and we have used the following 

notation: 

1 02 a(x) = (~ra*)ij, ~ = [ ~ l , . . . , a a ] -  
A = F_b'o,  + F_, 
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A p p l i c a t i o n s  t o  t h e  f i l t e r ing  o f  t h e  d i f fus ions  

t 

Suppose that yt = f h(z,)ds + Bt where h E C ~ ( R  d) | R d, B is another 
0 

Brownian motion independent of w above. (yt;t E [0, 1])is called an (noisy) 

observation of (xt). Let Yt = a{ys; s E [0, t]} be the observed data till t. The 

filtering problem consists of calculating the random measure f ~ E[f (x , ) lYd.  

Let p0 be the probability defined by 

dP~ = Z~ 1 dP 

1 t 

1 f ih(x,)12ds. Then for any bounded, 3;t-measurable where Zt = exp f h(xs) .dys-~ 
0 0 

random variable Yt, we have: 

Zt 
= Z [ y f ( x , ) . Y , ]  = Z~ 

= Z~ = 

= E[Eo[l t ly t ]E~ �9 Yt], 

hence 

E[f(xt) lYt  ] = E~ 

E~ [ZtlYt] 

If we want to study the smoothness of the measure f ~ E[Y(z,)lYd, then 

from the above formula, we see that it is sufficient to study the smoothness of 

f ,--, E~ The reason for the use of p0 is that w and (yt;t E [0, 1]) 

are two independent Brownian motions under p0 (this follows directly from Paul 

L~vy's theorem of the characterization of the Brownian motion). 

After this preliminaries, we can prove the following 

T h e o r e m  Suppose that the map f ~ f (x t )  from S ( R  d) into D has a continu- 

ous extension as a map from S ' ( R  d) into D'. Then the measure f ~ E[f(xt)lYt] 
has a density in s (Rd) .  

P r o o f i  As explained above, it is sufficient to prove that the (random) measure 

f ~ E~ has a density in S(Rd).  

Let /:y be the Ornstein-Uhlenbeck operator on the space of the Brownian 

motion (yt;t E [0, 1]). Then we have 

t t 

0 0 P 

It is also easy to see that 

z.~z, e N LP . 
P 
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�9 Hence Zt(w, y) C D(w, y), where D(w, y) denotes the space of test func- 

tions defined on the product Wiener space with respect to the laws of w 

and y. 

�9 The second point is that the operator E~ is a continuous mapping 

from D~,k(w ,y) into D~ since s commutes with E ~  (for any 

p_> 1 , k e Z ) .  

�9 Hence the map 

T ~ E~ ]Yt] 

is continuous from S ' ( R  d) ~ D'(y). In particular, for fixed T E S', qp > 1 
and k E N such that T(xt) E Dp,-k(w). Since Zt E D(w, y), 

and 

Hence 

�9 Hence 

ZtT(xt) C Dp-k(w, y) 

T(xt).(I + s C Dp,-k(w, y). 

E~ �9 (I + s ] C Dp,-k(y). 

(I + s176 + s lY,] = E~ lYt] 

belongs to LP(y). Therefore we see that: 

T ~ E~ lY,] 

defines a linear, continuous (use the closed graph theorem for instance) 

map from S ' ( R  a) into LP(y). Since S ' ( R  d) is a nuclear space, the map 

T ~ E~ is a nuclear operator, hence by definition it has a 

representation: 
O 0  

0 = E A i f i |  
i=1 

where (ai) E l l  (Yi) C S ( R  d) and (o,i) C LP(y) are bounded sequences. 
Define 

kt(x, y) = E Aifi(x)oq(y) C S(Rd)@ILP(y) 
i 

where ~1 denotes the projective tensor product topology. It is easy now 

to see that,  for g E S ( R  d) 

f g(x)kt(x, y)dx = E~ �9 ZtlYt] . 

R '  QED 





Chapter VI 

Positive distributions and 

applications 

Positive Meyer-Watanabe distributions 

If 0 is a positive distribution on R d, then a well-known theorem says that  0 

is a positive measure, finite on the compact  sets. We will prove an analogous 

result for the Meyer-Watanabe distributions in this section, show that  they are 

absolutely continuous with respect to the capacities defined with respect to the 

scale of the Sobolev spaces on the Wiener space and give an application to 

the construction of the local t ime of the Wiener process. We end the chapter 

by making some remarks about the Sobolev spaces constructed by the second 

quantization of an elliptic operator on the Cameron-Mart in space. 

We will work on the classical Wiener space C0([O, 1]) = W. First we have 

the following: 

P r o p o s i t i o n :  Suppose (Tn) C D'  and each Tn is also a probabili ty on W. If 

7", --* T in D' ,  then T is also a probability and T.  ---* T in the weak topology of 

measures (on W). 

Proof." It  is sufficient to prove that  the set of probabili ty measures (u~) asso- 

ciated to (Tn), is tight. In fact, let S = D N Cb(W). If the tightness holds, then 

we will have, for u = w - lim u, ,  

= s. 

Since S is weakly dense in Cb(W) the proof will be completed ( remember  

e i{w'w'), w* 6 W*, belongs to S!). 
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Let G(w) be defined as 

1 1 

c ( ~ )  = / / I ~ ( t )  - ~ ( s ) l  8 
It ~ dsdt. 

0 0 

Then, it is not difficult to show that  G E D and A:~ = {G(w) _< A} is a 

compact  subset of W (cf.[l]). 

Moreover, we have U A,x = W almost surely. Let T E C~ such that  
A > 0  

0 < ~ <  1 ; ~ ( x ) = l f o r z _ > 0 , ~ ( x ) = 0 f o r x < - l .  L e t T ~ ( x ) = ~ ( z - A ) .  

We have 
/ *  

un(A~) < [ ~(C(w)) un(dw). 
Jw 

We claim that  

/w~( C ) d . .  = <~,~(C), T.). 

To see this, for r > 0, write 

a,(w) = / Ira(t)-  w(~)l s 
(E + It - ~1)" ds dt. 

[o,ip 

Then ~a(G~) E S (but not ~a(G),  since G is not continuous on W!) Since 

~a(G~) E S = Gb(W) n D, we have 

/~( a ~ ) d t , ,  = (~(a,) ,  T,~). 

But ~ ( G , )  ~ ~ ( G )  in D, hence 

lim@~(a,, T~) : ( ~ ( a ) ,  T,). 

From the dominated convergence theorem, we have also 

lim / ~(G~)dun = / ~(G)dun. 
r 

This proves our claim. Now, since T~ ---, T in D' ,  exists some k > 0 and p > 1 

such that  T.  --* T in Dv_k.  Therefore 

@~(C), r,,) = ((I  + / : : ) k / ~ , ( G ) ,  (I + E)-k/~T.) 

< I1(I + Z;)k/2~'~(G)llq .sup I1(I + C)-k/2T-IIp �9 

From the Meyer inequalities, we see that  

lira I1(I + s = O, 
A---* oo 
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in fact, it is sufficient to see that Vi(~z(G))  ~ 0 in LV for all i _< [k] + 1, but  

this is obvious from the choice of ~ .  

Therefore we have proven that 

lira supp.(A~) < sup I1(I + Z:)-~T-II~ lim I1(I + Z:)k~(G)llp - 0 
A--*O0 n - -  n A- *O0 

which is the definition of tightness. QED 

C o r o l l a r y :  Let T 6 D' such that (T, 9) > 0, for all positive ~ 6 D. Then T 

is a Radon measure on W. 

P r o o f :  Let (hi) C H be a complete, orthonormal basis of H. Let V, = 

cr{6hl, . . .  ,6hn}. Define Tn as Tn = E[P1/,TIV,] where P1/n is the Ornstein- 

Uhlenbeck semi-group on W. Then T, > 0 and it is a random variable in 

some LP(/~). Therefore it defines a measure on W (even absolutely continuous 

with respect to/~!). Moreover Tn ~ T in D', hence the proof follows from the 

proposition. QED 

1 C a p a c i t i e s  a n d  p o s i t i v e  W i e n e r  f u n c t i o n a l s  

If p 6 [1, oo[, O C W is an open set and k > 0, we define the (p, k)-capacity of 

O a s  

�9 C v k ( O ) = i n f {  ~ p D v k , ~ _  , [I [Ip,b : ~ 6 , > 1 p - a . e ,  o n  O } .  

** If A C W is any subset, define its (p, k)-capacity as 

Cp,k(m) = inf{Cp,k(O); 0 is open O D A}. 

�9 We say that some property takes place (p, k)-quasi everywhere if the set on 

which it does not hold has (p, k)-capacity zero. 

�9 We say N is a slim set if Cp,k(N) = O, Vp > 1, k > O. 

�9 A function is called (p, k)-quasi continuous ifVc > 0 , 3  open set O~ such that 

Cp,k(O,) < c and the function is continuous on 0~. 

�9 It is called Do-quasi continuous if it is (p, k)-quasi continuous V(p, k). The 

following results are proved by Fukushima & Kanako: 

L e m m a  1: 

i) If F 6 Dp,k, then there exists a (p, k)-quasi continuous function ~5 such 

that  F = .P /~-a.e. and _P is (p, k):quasj everywhere defined, i.e. if G is 

another such function, then Cp,k({F # G}))  = 0. 
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ii) If A C W is arbitrary, then 

Cp,k(A) = in f{ l l@lp ,k  : ~v ~ Dr,k, ~ > 1 (p, r) - q.c. on A} 

iii) There exists a unique element UA E Dp,k such that  /JA > 1 (p, k)-quasi 

everywhere on A with Cp,~(A) = IlUallp,k, and 0A > 0 (p, k)-quasi every- 

where. UA is called the (p, k)-equilibrium potential of A. 

T h e o r e m  1: Let T E D ~ be a positive distribution and suppose that  T E Dq,-k 
for some q > 1, k _~ 0. Then, if we denote by UT the measure associated to T, 

we have 

~T(A) <_ IlTllq_~(cv,k(A))'/P, 
for any set A C W, where /)T denotes the outer measure with respect to VT. In 

particular /2 T does not charge the slim sets. 

P r o o f :  Let V be an open set in W and let Uv be its equilibrium potential  of 

order (p, k). We have 

(P1/nT, Uv) = / Pw,~TUvd# 

>_ / P1/,,T Uv d# 

V 

>_ / P1/,~Td# 

V 

= ~ p , / o T ( V )  �9 

Since V is open, we have, from the fact that  gV~/.r ---* ~'T weakly, 

lim ~f~p, ,_  . T(V) _> ~T(V). 

On the other hand 

limoo(P,/,~T, Uv) = (T, Uv> 

<_ I I T l l q , - k l l U v l l p , k  

= IITIIq-~Cp.~(V)'/P. 
QED 

An application 

1) Let f : R d --+ R be a function from $ ' ( R  d) and suppose that  (Xt) is a 

hypoelliptic diffusion on R d. Then Xt is a nondegenerate random variable in 
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the sense of  the second section of the fifth chapter  (cf.[32]). Consequent ly  we 

have the extension of the I to formula  

t t 

I(x,)-  f f , 
u B 

with the obvious notat ions .  Note that ,  since we did not make  any differentiabil i ty 

hypothesis  abou t  f ,  the above integrals are to be interpreted as the e lements  of  

D I. Suppose tha t  Lf is a bounded  measure  on R d, f rom our result abou t  the 

posit ive dis tr ibut ions,  we see tha t  f: Lf(Xs)ds is a measure  on W which does 

not charge the slim sets. By difference, so does the t e rm f: aij (Xs)Oif(Xs)dW~. 

2) Apply  this to d = 1, L = �89 (i.e. cr = 1), f ( x )  = Ixl. Then  we have 

t t 

1 
iw, l - lw l = 7 f  lxl(w,)ds + j ff---x [x[(W,)dW, . 

B B 

d As  lxl = sign(z) ,  we have 

t t 

f -dxlxl(W~)dW.=/sign(W.)dW,=M' 
B B 

is a measure  absolutely continuous with respect to/z .  Since l im Mt ~ = Nt exists 
u ~ 0  

in all L p, so does 
t 

lim ~ / ~lxl(W,)ds 
B 

t 

in L p for any p > 1. Consequent ly  f Alxl(W,)ds is absolutely  cont inuous with 
0 

respect  to ~u, i.e., it is a r a n d o m  variable.  It  is easy to see tha t  

i.e., we obta in  

Alxl(W,) = 2&(W,) 

t t 

0 0 

= 2It ~ 

which is the local t ime  of Tanaka .  Note tha t ,  a l though s  is s ingular  with 

respect  to p, its Pet t is  integral is absolutely continuous with respect  to p. 

2) If  F : W ~ R d is a non-degenerate  r andom variable,  then for any S E S~(R d) 

with S > 0 on 8 + ( R d ) ,  S(F) E D' is a posit ive dis t r ibut ion,  hence it is a posi t ive 

Radon  measure  on W. In par t icular  t?~(F) is a posit ive Radon  measure.  
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Distributions associated to F(A) 

For a "tentative" generality we suppose that  (W, H , p )  is an abstract  Wiener 

space. Let A be a selfadjoint operator on H,  we suppose that  its spectrum lies 

in ]1, ~ [ ,  hence A -1 is bounded and IIA-111 < 1. Let 

Hoo = N D o m ( A n ) ,  

hence Hoo is dense in H and a ~ (Aah, h) is increasing. Denote by Ha the 

completion of Hoo with respect to the norm Ihl~ = (Aah, h); a E R. Evidently 

H'~ ~ H - a  (isomorphism). If ~ : W ~ R is a nice Wiener functional with 
o o  

= ~ In(~n),  define the second quantization of A 
r t = 0  

F(A): = El:]  + ~ I , ( A ~  
n = l  

a 
D e f i n i t i o n :  For p > 1, k E Z, a E R, we define Dr, k as the completion of 

polynomials (based on H ~ )  with respect to the norm: 

II~llp,k;. = II(I + 'C)k/2r(A~/2)~IIL.(.), 

where ~,(w) = p o l y n o m i a l ( 6 h , , . . . ,  ~hn), hi C Hoo . 
If  2" is a separable Hilbert space, Dp, k(2" ) is defined likewise. 

R e m a r k :  i) I f ~ = e x p ( 6 h -  1 2 [h I ) then we have 

F(A)~ = exp 6 ( A h )  - �89 IAhl  2 . 

ii) D$~,k is decreasing with respect to a , p  and k. 

T h e o r e m  1: Let (W a, H a , p a )  be the abstract  Wiener space corresponding 

to the Cameron-Mart in  space Ha.  Let us denote by r)(a) the Sobolev space on ~ p , k  

W a defined by 

I1~11D272 = I1(1 + Z:)k/2:IIL.<.o,wo) 

Then D('~)p,k and D~,k are isomorphic. 

R e m a r k :  This isomorphism is not algebraic, i.e., it does not commute  with 

the pointwise multiplication. 

P r o o f i  We have 

E[e i6(A"/~h)] = exp ~1 IAa/2 h 2 = exp - -  

which is the characteristic function o f / l a  on W a. 

lhl~ 
2 

QED 
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such that  T h e o r e m  2: i) F o r p > 2 ,  a E R ,  k E Z ,  there exists some fl > 

II~llo;,k <-Ilmllo~,k 

consequently N D~ = ~' ~,~ N D;,~. 
ot,k ot,p,k 

ii) Moreover, for some fl > a we have 

II~lID;. _< II~ll.~,o - 

Proof i  i) We have 

II~llz%. = II ~;-~'(1 + n)~;/21.((A'~/2)~"~,dllz,, 
/1 

= ~--~(1 + n)k /2e" te- '~ t ln( (A~' /2)~"~n)  L,"  

From the hypercontractivity of Pt, we can choose t such that p = e 2t + 1 then 

tl ~--~(l+n)k/2ente-ntln( ' ' ' ) [}p < Z ( l + n ) k / 2 e ' ~ t l n ( " ' ) 2 "  

Choose fl > 0 such that IIA-~II _< e- ' ,  hence 

~(1 + .)'~/~e" z.(...) 

< Z ( 1  +n)k/2F(A#)F(A-~)ent l ,~((A~/2) |  2 

< ~--~(1 + n)k/2111,~((A~+'~/=)| 

= I 1 ~ 1 1 ~ . , , ~ . .  �9 

ii) If we choose IIA-all < ~-, then the difference suffices to absorb the action of 

the multiplicator (1 + n) k/2 which is of polynomial growth and the former gives 

an exponential decrease. QED 

C o r o l l a r y  1: We have similar relations for the any separable Hilbert space 

valued functionals. 

Proof." Use the Khintchine inequality. 

As another corollary we have 

C o r o l l a r y  2: i) V : �9 --~ q>(Hoo) = N~(H~)  and 5 : <I,(H~) --~ ~I, are con- 

tinuous. Consequently V and ~ have continuous extensions as linear operators 

+'  --, + ' ( H _ ~ )  and r  --, +'.  

ii) q~ is an algebra. 

iii) For any T E +',  there exists some ~ E + ' ( H _ + )  such that T = (T, 1) + g~. 
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Proof." i) Follows from Theorem 1 and 2. 

ii) It is sufficient to show that ~ E �9 if ~ E ft. This follows from the mul- 

tiplication formula of the multiple Wiener integrals. (left to the reader). 

iii) If T E ~' ,  then there exists some cr > 0 such that T E D2--~, i.e., T 

under the isomorphism of Theorem 1 is in L2(p~, W ~) on which we have Ito 

representation (cf. Appendix to the Chapter IV). 

P r o p o s i t i o n :  Suppose that A -1 is p-nuclear, i.e., 3p > 1 such that  A -p is 

nuclear. Then �9 is a nuclear Fr~chet space. 

P r o o f :  This goes as in the white noise case, except that the eigenvectors of 

F(A -1) are of the form He,(~She,1,... , ~hn) with hc~, are the eigenvectors of A. 

QED 

Applications to positive distributions 

Let T E if' be a positive distribution. Then there exists some D~ .~  such that 

T E D~'~ k and (T, ~) > 0 for any ~ E Dq, k, ~ > O. Hence i~(T) is a positive 

r~(~) (i.e., the Sobolev space on Wa). Therefore ia(T) is a Radon functional on ~l,k 

measure on W - %  Hence we find that,  in fact the support of T is W -~  which is 

much smaller than H-oo. 

O p e n  q u e s t i o n :  Is there a smallest W - a ?  If yes, can one characterize it? 



Chapter VII 

Charac ter i za t ion  of  

i n d e p e n d e n c e  of  s o m e  

W i e n e r  funct iona l s  

1 Independence of Wiener functionals 

In probability theory, one of the most important  and difficult properties is the 

independence of random variables. In fact, even in the elementary probability, 

the tests required to verify the independence of three or more random variables 

get very quickly quite difficult. Hence it is very tempting to try to characterize 

the independence of random variables via the local operators that  we have seen 

in the preceeding chapters. 

Let us begin with two random variables: let F , G  E Dp,1 for some p > 1. 

They are independent if and only if 

E[ei'~F eiZ G] = E[ei'~r]E[e izc] 

for any c~,/3 E R, which is equivalent to 

E[a( F)b( G)] = E[a( F)]E[b( G)] 

for any a, b E Cb(R). 

Let us denote by 5(F)  = a(F) - E[a(F)], then we have: 

F and G are independent if and only if 

E[f i(F)-  b(G)] = 0, Va,b E Cb(R).  

Since e i ~  can be approximated pointwise with smooth functions, we can suppose 

as well that a,b E C~(R) (or C~~ Since s is invertible on the centered 
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random variables, we have 

E[a(F)b(G)] : E [ s 1 6 3  b(C)] 

= E [ 6 V s  �9 b(G)] 

= E[(V~-l f i (F) ,  V(b(G)))H] 

= E [ ( ( I +  f_.)-XVa(F), V(b(a)))] 

= E [ ( ( I +  f_.)-X(a'(F)VF),b'(G)VG)H] 

= E[b'(G). ((I + ~.)-I(a '(F)VF),  VG)tt] 

= E[b'(a). E[((I + s  VG).I~(G)]] .  

In particular choosing a = e iax, we find that 

P r o p o s i t i o n  1: F and G (in Dp,1) are  independent if and only if 

E[((I  + C) - ' (~ "~VF) ,  VG)~I~(C)] = 0 a . s .  

However this result is not very useful, this is because of the non-localness 

property of the operator Z: -1. Let us however look at the case of multiple 

Wiener integrals: 

First recall the following multiplication formula of the multiple Wiener inte- 
grals: 

L e m m a  1: Let f E L2([0, 1]P), g E L2([0, 1]q). Then we have 

P^q p!q! 
Ip(f) . Iq(q) .= E m!(p - m)!(q - m) (Ip+q-2m(f |  

m-~O 

where f | g denotes the contraction of order m of the tensor f | g (i.e., the 
partial scalar product of f and g in L2[O, 1]m). 

By the help of this lemma we will prove: 

T h e o r e m  1: Ip(f) and Iq(g) are independent if and only if 

f ~ l  g = 0 a.s,  o n  [0,1]  p + q - 2 .  

Proof." (=~) : By independence, we have 

2 2 
Eli; lq] = p!ll.fll2q!llgll 2 = p!q!l l f  | gI[ 2 

On the other hand 

pAq 

lp(f)lq(g) = E m!C'~Cq Ip+q-2m(f | g) , 
0 
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hence 

E[(IA/)I~(g)) 2] 
pAq 

- ~ _ , ( m ! C ~ C ~ ) 2 ( p  + q - 2m)!ll/+~gll 2 
o 

> (p + q)! l l /6gl l  2 (dropping the terms with m _> 1). 

We have, by definition: 

1 2 
IIf&gll 2 = ( p . ~ q ) !  E f ( t ~ 1 7 6 1 7 6 1 7 6  

aESp+q 

1 

( (p + q)!)2 
o,~ESp+q 

where Sp+q denotes the group of permutations of order p + q and 

f I ( t . ( 1 ) , . . . , ,  ta (p  ) ) g (  t a(p+ l ) , . . . t~,(p+q) ) . 

[0,1]P+q 

f ( t , ( 1 ) ,  . . . , t=(p) ) g(  t~(p+ U , . . . , G(p+ q ) )d t  l . . .  dtp+ q . 

Without loss of generality, we may suppose that p _< q. Suppose now that 
( a ( 1 ) , . . . , a ( p ) )  and (Tr(1), . . . ,  7r(p)) has k >_ 0 elements in common. If we use 

the block notations, then 

( toO), . . .  , t,(p)) = (Ak, ,4) 

( t a ( p + l ) , . . .  , t a ( p + q ) )  = B 

( t , ( 1 ) , . . . ,  t,@)) = (Ak, 0 )  

( t ,@+l) , . . . , t~(p+q))  = D 

where Ak is the subblock containing elements common to ( t~o) , . . .  , t~(v)) and 

(to,(1),... ,to(p)). Then we have 

Aa,, = I f ( A k , f t ) g ( B ) . f ( A k , C ) g ( D ) d h . . . d t p + q .  

[O,1]P+q 

Note that A k U A U B  = A k U C U D  = { t l , . . .  , t p + q } ,  AnC = O. Hence we have 

U B = G ' U D .  S i n c e A [ 3 C =  0, we h a v e C C B  a n d A C  D. From the fact 

that (fi~, B) and (G', D) are the partitions of the same set, we have D \ A  = B \ C .  
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Hence we can write,  with the obvious nota t ions :  

=/ 
[0,1]P+q 

= /  
[0,11,+~ 

f(Ak, A)g(C, B\C).  f(Ak, C)g(,4, D\A)dt l . . .  dtp+q 

f ( Ak, A )g( O, B\  O) f ( Ak , O)g( A, B\ O)dAkdA dOd( B\  C ) 

I" 
/ (Y | g)(Ak, B\C')(f | g)(Ak, B\C') . dAkd(B\C) 

[0,1]q-p+2k 

2 
= IlI |  gllL:(10,1lq-,§ 

where we have used the re la t ion D \ . 4  = B \ C '  in the second line of  the above  

equalities. Note that for k = p we have Aa,~ = Ill | gll~:. Itence we have 

E[I~(f)I2q(g)] 

-_ p!llYll 2.q!llgll 2 

- (P + q)! ((P + q)!)~ o , ,  ~,~ 

T h e  number  of  A~,~ with  (k = p) is exac t ly  (p+,)(p!)2(q!)~. hence we have 

p - 1  

P!q!llYll211all 2 > p!q!llf | all 2 + ~ ]  ckllI | gll~([0,1l,-,+:k) 
k = 0  

with  ck > 0. For this  re la t ion to hold we should have 

IIf |  = 0 ,  ~ = 0 , . . . , p -  i 

in pa r t i cu l a r  for k = p - 1, we have 

I l l  |  ~11 - -  0 .  

(<::): F rom the Propos i t ion  1, we see t ha t  it  is sufficient to prove 

( ( I  + z : ) - ~ " r v r ,  v I , ( 9 ) )  = o a.s. 

with  F = Ip(f), under  the  hypothes i s  f @1 g = 0 a.s.: Let us wri te  e iaI,(]) = 
Ik(hk), then 

k 

ei~I,(1)V Ip(f) = p" ~--~Ik(hk)" Ip-l(f) 
k 

k^(p-1) 

= P" Z Z C~p,k,rlp-l+k-2r(hk | f ) .  
k r=O 
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Hence 

kA(p-1) 

(1 + f_.)-lei'~F~TF = p. Z Z (1 + p + k - 1 - 2rl-'lp-l+k-2r(hk | f ) .  
k r=0 

When we take the scalar product with VIq(g) , we will have terms of the type: 

(Ip-l+k-2r(hk | f), Iq-l(g))H = 
o |  

= ~ l~_~+~_~(h~ or Y ( , ~ ) l / ~ - ~ ( g ( ~ ) )  �9 

i= I  

If we use the multiplication formula to calculate each term, we find the terms as 

o|  

= f(h~ | I(e, ll(t~,... ,tp+~_~r_,lg(e,)(tl,... ,tq-lldtldt2... 

1 

= f / ( h k  | f(O))(tl,... ,tp+k-~r-1)g(O, t l , . . .  ,tq_l)dOdtl ... 
#=0 

From the hypothesis we have 

1 

/ f(O, ts...)g(O, s l . . . , )dO=O a.s., 

o 

hence the Fubini theorem completes the proof. QED 

C o r o l l a r y  1: 

[0, 1] q. L e t  

and 

Let f and g be symmetric L2-kernels respectively on [0, 1]v and 

S! = span{f  | h :  h E L2([O, 11) p-l} 

Sg = span{g| k;k E L2(]0, 1]q-')}. 

Then the following are equivalent: 

i) Iv(f) and Iq(g) are independent 

ii) S! _L Sg in H 

iii) The Gaussian-generated ~r-fields ~{Ii(k); k E S/} and ~{Ii(l);l E Sg} are 

independent. 
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Proof :  ( i~ii) :  (i) implies t h a t f  Q, g = 0 a.s. I f a  E Sf,  b E Sg then a = 

f | h and b = g | k (rather finite sums of these kind of vectors). Then 

(a, b) = ( f  | h,g | k) = ( f  | g, h | k)(L:)| (Fubini) 

= O .  

(ii=~i) I f ( f |  h| = 0 Vh G L2([0, llP-1), k G L2([0, i]q-1), then f |  = 0 
a.s. since finite combinations of h @ k are dense in L2([0, I]P+q-2). 

(iiccdii) Is obvious. QED 

P r o p o s i t i o n :  Suppose that Ip(f) is independent of Iq(g) and Ip(f) is inde- 

pendent of L(h). Then Ip(f) is independent of {Iq(g), L(h)}.  

Proof." We have f | g = f | h = 0 a.s. This implies the independence of 

Ip(f) and {Ig(g), It(h)} from the calculations similar to those of the proof of 

sufficiency of the theorem. QED 

In a similar way we have 

P r o p o s i t i o n :  Let { Ip , ( f~) ;a  E J} and Iq~(gz);/3 E K} be two arbitrary 

families of multiple Wiener integrals. The two families are independent if and 

only if Ip,,(.f,~) is independent of Iq~,(gz) for all (a,/3) E g x K. 

Coro l l a ry :  If Iv(f) and Iq(g) a r e  independent, so are also Ip(f)(w + h) and 

Iq(g)(w + le) for any h, k E H. 

Proof." 

/e. We have then 

Ip(f)(w + h) = E (Ip-i(f), h| . 
i=0 

Let us define f[h | G L2[O, 1] p-i by 

Ip-i(f[h@i]) = ( Ip-i(f), h@i). 

If f @1 g = 0 then it is easy to see that 

f[h @i] | g[k @#] = O, 

hence the corollary follows from Theorem 1. 

From the corollary it follows 

Let us denote, respectively, by h and k the Lebesgue densities of tt and 

QED 
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Iv ( f )  and Iq(g) are independent if and only if the germ a-fields 

o'{Ip(f), Vlp(f),... , ~7'-11,(f)} 

 q-liq(g)} 

are independent. 

oo 

C o r o l l a r y :  Let X, Y E L2(tt), Y = E I,(g,~). If 
0 

~TX | g,  = 0 

then X and Y are independent. 

P r o o f :  This follows from Prop. 1 

a . s .  V n  

QED 

C o r o l l a r y :  In particular, if h E H, then ~7/~ = 0 a.s. implies that ~ and 

I i (h)  -- 6h are independent. 





Chapter VIII 

M o m e n t  inequalit ies for 

Wiener  functionals 

In several applications, as limit theorems, large deviations, degree theory of 

Wiener maps, calculation of the Radon-Nikodym densities, etc., it is impor tant  

to control the (exponential) moments  of Wiener functionals by those of their 

derivatives. In this chapter we will give two results on this subject. The first one 

concerns the tail probabilities of the Wiener functionals with essentially bounded 

Gross-Sobolev derivatives. This result is a straightforward generalization of the 

celebrated Fernique's l emma which says that  the square of the supremum of the 

Brownian path on any bounded interval has an exponential moment  provided 

that  it is multiplied with a sufficiently small, positive constant. The second 

inequality says that  for a Wiener functional F E Dpj, we have 

Ew • Ez[U(F(w)- F(z))] < Ew • E~[U(21,(VF(w))(z)], 

where w and z represent two independent Wiener paths, Ew and E~ are the 

corresponding expectations, and Ii(VF(w))(z)is the first order Wiener inte- 

gral with respect to z of V F ( w )  and U is any lower bounded, convex function 

on R. Then combining these two inequalities we will obtain some interesting 

majorations.  

The last inequality is an interpolation inequality which says that  the Sobolev 

norm of first order can be majora ted  by the multiplication of the Sobolev norm 

of second order and of order zero. 

1 Exponential tightness 

First we will show the following result which is a consequence of the Doob 

inequality: 
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T h e o r e m  1: Let ~ E Dp,1 for some p > 1. Suppose that ~7~ E L~176 

Then we have 

(c  - 2 

#{1~1 > c} _< 2exp 21[V~ll~o~(~,,H) for any e >_ 0. 

P r o o f :  Suppose that E[~] = 0. Let (el) C H be a complete, orthonormal 

basis of H.  Define Vn = a{~el, . . .  ,be,} and let ~n = E[P1/,,~[Vn], where P~ 

denotes the Ornstein- Uhlenbeck semigroup on W. Then, from Doob's Lemma, 

~n = f , (6e l  . . . .  , ~en). 

Note that,  since fn E A W, .k (Rn ,# - )  ~ f,~ is C ~ on R '~ from the Sobolev 
p,k  

injection theorem. Let (Bt;t E [0, 1]) be an R'~-valued Brownian motion. Then 

p{[~.[  > c} = P{lf~(B~)I > c} 

_< P{ sup [E[f,(B1)[13~][ > c} 
t e l0 ,1 ]  

= P{ sup [Ql-tf,~(Bt)[ > c}, 
tel0,1] 

where P is the canonical Wiener measure on C([0, 1], R")  and Q~ is the heat 

kernel associated to (Bt), i.e. 

Q~(x,A) -- P{Bt  + x E A}. 

From the Ito formula, we have 

t 

Q~-,f~(Bt) = Ql f , (So)  + / ( D Q ~ _ , f ~ ( B , ) ,  dB,).  

0 

By definition 

QJ,,(Bo) 
f 

= Qlf,(O) = / A ( y ) .  Ql(0, dy) = 

= / f n ( y ) e _  ~1~ dy 

= E[E[P1/,~[V,]] 

= E[Pl/n~] 

= E[~] 

= 0 .  

Moreover we have DQtf  = QtDf,  hence 

t 

Ql-, f~(Bt)  = f (Ql_~Df,(B~), dB~) 
0 

= M ? .  
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The Doob-Meyer process (M n, Mn)t of the martingale M"  can be controlled as 

(M", Mn)t 

t 

= /IDQ~-,fn(B,)12ds < 

0 

t 

< fllDf, ll2c ds = tllv/, ll -  = tllV.t', llL (,.) < 

0 

Hence from the exponential Doob inequality, we obtain 

P{ sup JQl-tf,,(Bt)] > c} < 2exp 
re[o:] 

e 2 

211V ll  " 

Hence 
_ C  2 

#{konl > c} < 2exp 211V~II~(.,H)" 

Since ~o. ~ ta in probability the proof is completed. QED 

Corollary 1 

have 

1 Under the hypothesis of the theorem, for any A < ~ ,  we 

E[exp A[~I 2] < oo. 

Proof." The first part follows from the fact that, for F > 0 a.s., 

O 0  

E[F] = / P { F  > t}dt. 

0 

The second part follows from the fact that [VHWHJH < 1. QED 

R e m a r k :  In the next section we will give a precise estimation for E[exp AF2]. 

In the applications, we encounter random variables F satisfying 

IF(w + h) - F(w)l _~ cfhlH, 

almost surely, for any h in the Cameron-Martin space H and a fixed constant c > 

0, without any hypothesis of integrability. For example, F(w) = suPtr ] Jw(t)h 
defined on C0[0, 1] is such a functional. In fact the above hypothesis contains 

the integrability and Sobolev differentiability of F.  We begin first by proving 

that under the integrability hypothesis, such a functional is in the domain of V: 
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L e m m a  1 Suppose that  F : W ~ R is a measurable random variable in 

Up> 1 L v (#), satisfying 

IF(w + h) - F(w)[ < clhlH, 

almost surely, for any h E H, where e > 0 is a fixed constant. Then F belongs 

to Dp,1 for any p > 1. 

R e m a r k :  We call such a functional H-Lipschitz. 

Proof." Since, for some P0 > 1, F E L v~ the distributional derivative of F,  

XTF exists . We have V ~ F  E D '  for any k E H.  Moreover, for r E D, from the 

integration by parts formula 

E[VkF r = - E [ F  Vkr + E[F6k r 

_ d [t=oE[F r  + tk)] + E[FSk r 
dt 
d 

- dt [t=oEiF(w - tk) r c(tSk)] + E[F6k r 

= l i m - E [  F ( w -  tk) - F(w)r  
t~O t 

where ~(6k) = e,,p ~k - 1/~lkl ~. Consequently, 

IE[VkFr < cI•IHE[Ir 

_< clklHIICllq, 

for any q > 1, i.e., ~TF belongs to Lv(# ,H)  for any p > 1. Let now (ei;i E N) 
be a complete, orthonormal basis of H,  denote by V,~ the sigma-field generated 

by 5 e l , . . .  ,Sen, n E N and let r~ be the orthogonal projection onto the the 

subspace of H spanned by e l , . . .  , e n -  Let us define 

F,~ = E[P1/,,FIV, ], 

where P1/n is the Ornstein-Uhlenbeck semigroup at the instant t = 1/n. Then 

Fn E fqkDpo,k and it is immediate,  from the martingale convergence theorem and 

from the fact that  rrn tends to the identity operator of H in the norm-topology, 

that  

VFn = E[e-1/"Tr,~Pt/nVF[Vn] --* VF,  

in / ) ' ( # , H ) ,  for any p > l, as n tends to infinity. Since, by construction, 

(F,~;n E N) converges also to F in LV~ F belongs to Dvo A. Hence we can 

apply the Corollary 1. 

Q.E.D. 

L e m m a  2 Suppose that  F : W ~ R is a measurable random variable satisfy- 

ing 

I F ( w +  h ) -  F(w)J < clhlH, 

almost  surely, for any h E H,  where c > 0 is a fixed constant. Then F belongs 

to Dr, 1 for any p > 1. 
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P r o o f :  Let F .  = IFI/X n, n ~ N. A simple calculation shows that 

IF,(w + h) - F,(w)l  < clhtH, 

hence Fn E Dp,x for any p > 1 and t~TF.I _< c almost surely from the Lemma 1. 

We have from the Ito-Clark formula (cf. Chapter V), 

/o' F,~ = E[Fn] + E[D,F,~I.Ts]dW,. 

From the definition of the stochastic integral, we have 

[(f01E[D,F,,I .T,]dW,) 2] = E [ fo 1 [E[D, FnI.T,]I2ds] E 

= E[IXYF, I 2] 

< c 2 

Since F,, converges to IFI in probability, and the stochastic integral is bounded 

in L2(#), by taking the difference, we see that (ELF,], n E N) is a sequence of 

(degenerate) random variables bounded in the space of random variables un- 

der the topology of convergence in probability, denoted by L~ Therefore 

sup,  #{E[F,~] > c} --* 0 as c ---, or Hence lim,~ E[F,~] = E[IFI] is finite. Now we 

apply the dominated convergence theorem to obtain that F E L2(p). Since the 

distributional derivative of F is a square integrable random variable, F E D2,t. 

We can now apply the Lemma 1 which implies that F E Dp,1 for any p. 

Q.E.D. 

R e m a r k :  Although we have used the classical Wiener space structure in the 

proof, the case of the Abstract Wiener space can be reduced to this case using 

the method explained in the appendix of Chapter IV. 

C o r o l l a r y  ( F e r n i q u e ' s  L e m m a ) :  2 For any A < �89 , we have 

E[exp  llwll ] < 

where Ilwll is the norm of the Wiener path w E W. 

We will see another application of this result later. 

2 Coupling inequalities 

We begin with the following elementary lemma (cf. [18]): 
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L e m m a : 3  Let X be a Gauss ian  r.v. on R d. Then  for any convex funct ion  U 

on R and C l - f u n c t i o n  V : R a ---* R ,  we have the following inequal i ty :  

71" t 

where Y is an independen t  copy of X and E is the  expec ta t ion  with respect  to 

the  p roduc t  measure .  

P r o o f :  Let X0 = X s i n 0 + Y c o s 0 .  Then  

7r/2 

v(xI-  v(YI = /  v(xolao 
0 

7c/2 

= 
0 

7r/2 

7r / (V'(Xo), X•)rt, dO = -~ 
0 

where dO = ~--~2 �9 Since U is convex, we have 

~r/2 

- < ~ ' x ' ~ ) ) d O .  v(v(x)  v(Y)l f v(~(v (xo), 
0 

Moreover  X0 and X~ are two independen t  Gauss ian  r a n d o m  var iables  wi th  the  

same  law as the  one of  X .  Hence 

0 

Now we will ex tend this result  to the Wiene r  space: 

T h e o r e m  2 Suppose  t ha t  ~, E D p , 1 ,  for some p > 1 and U is a lower bounded ,  

convex funct ion (hence lower semi-cont inuous)  on R .  We have 

- ] 
where E is taken with  respect  to #(dw) x p(dz) on W • W and on the  classical  

Wiener  space,  we have 

1 

Ii(VF(w))(z) = / 
d 
-~ V~(w,t)dz, . 

0 
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Proof." Suppose first that  

= f (6h l (w) , . . . , 6hn (w) )  

with f smooth on R n, hi E H, (hi, hi) = 6ij. We have 

i = l  

= ~ bi f ( t~hl(w) , . . . ,6hn(w))I i (hl ) (z)  
i--1 

= ( f ' ( X ) , Y ) R ,  

where X = (Shl(w), . . . ,6h,~(w))  and Y = (6hl(z) , . . . ,6h , , (z ) ) .  Hence the 

inequality is trivially true in this case. 

For general ~, let (hi) he a complete, orthonormal basis in H,  

Vn = a{6hl , . .  . ,6hn} 

and let 

~,  = E[P1/,#IV,,], 

where P1/n is the Ornstein-Uhlenbeck semigroup on W. 

We have then 

Let r,, be the orthogonal projection from H onto span {hi . . . . .  hn}. We have 

I i (V~n(w))(z)  = II(V~E,~[P1/n~IV,,])(z) 

= 

= I~(~r,~Ew[e-~/"P,/,~V~lY,])(z) 

-_ Ez[I~(Ew[e-1/'~p~/nV~lV,~])l(Zn ] 

where t~n is the copy of Vn on the second Wiener space. Then 

= E[U (z~P::)I'(V~'(wl)(z)), ] 
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Now Fatou's lemma completes the proof. QED 

Let us give some consequences of this result: 

T h e o r e m  3 The following Poincar~ inequalities are valid: 

[ i) E[exp(p - E[p])] < E exp T IVpl , 

ii) E[]p - E[p]]] < ~E[]Vp}H]. 

- - 2 k  2 k  

. E  V 2k iii) E [ l P -  E[p]l 2k] < (~)  ~ [I PlH], k E N. 

R e m a r k :  Let us note that the result of (ii) can not be obtained with the clas- 

sical methods, such as the Ito-Clark representation theorem, since the optional 

projection is not a continuous map in Lt-setting. Moreover, using the Hhlder 

inequality and the Stirling formula, we deduce the following set of inequalities: 

7r V l ip- E[p]IIp ~ p~ll PIIL'r 

for any p > 1 . To compare this result with those already known, let us re- 

call that using first the Ito-Clark formula, then the Burkholder-Davis-Gundy 

inequality combined with the convexity inequalities for the dual projections and 

some duality techniques, we obtain, only for p > 1 the inequality 

l ip- E[p][lp ~ KPZ/211VplIL.<.,H), 

where K is some positive constant. 

Proof :  Replacing the function U of Theorem 2 by the exponential function, 
we have 

E [ e x p ( p -  E[p])] _< Ew • Ez[exp(p(w) - p(z))] _ 

_< Eo [E~ [ [ exp~ ' , IV~(~) / ( z / ] ]  

71" 

= E[exp 

(ii) and (iii) are similar with U(x) = Ix] k. k E N. QED 

T h e o r e m  4: Let p E Dp,2 for some p > 1 and that VJ\TplH E LCC(p,H) (in 

particular, this is satisfied if V2p E L~(tt, H ~ H ) ) .  Then there exists some 
A > 0 such that 

E[expAIPl] < ~ .  
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Proof." From Theorem 3, (i), we know that 

A2~r 2 
E[expAl~ - E[~]l] < 2E[exp _ - y -  Iv~l ~ ] 

�9 Hence it is sufficient to prove that  

E[exp .~2lV~12 ] < 

for some A > 0. However Theorem 1 applies since vlV~l c L~(~,, H). 

C o r o l l a r y  3 Let F E Dp,1 for some p > 1 such that IVFIH E L~ 
then have 

E[expAF 2] < E ~1  - -'W'I----~H 
- ~,~ ~ 7 ~  1 - ~ - I V F I 2 ] J  ' 

for any A > 0 such that  lily lullL~(.)-r < 1. 

QED 

We 

Proof." Ley Y be an auxiliary, real-valued Gaussian random variable, living on 

a separate probability space (fl,/4, P) with variance one and zero expectation. 

We have, using Corollary 2 : 

E[expAF 2] = E |  E p [ e x p v ~ F Y ]  

_ E |  [exp{v/2--f~E[F]Y+ 2 2A~'2}] < IVFI Y 

= E 1 exp ~ V F p  ' 
1 ),~2 ~ 1 - - ~ I V F I H  - T I  ] J 

where Ep denotes the expectation with respect to the probability P. 
Q.E.D. 

3 A n  i n t e r p o l a t i o n  i n e q u a l i t y  

Another useful inequality for the Wiener functionals * is the following interpola- 

tion inequality which helps to control the L v- norm of V F  with the help of the 

LP-norms of F and V2F. 

�9 Th is  resu l t  has  been  proven as an  answer  to a ques t ion  posed by D. W. St roock,  cf. also 

[4] 
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T h e o r e m  5: For any p > 1, there exists a constant Cv, such that ,  for any 

F 6 Dp,2, one has 

The theorem, will be proven, thanks to the Meyer inequalities, if we can prove 

the following 

T h e o r e m  6: For any p > 1, we have 

II(I + ~:)~/~Fllp < ~llFll~/211(z + C)Fllfi/2. 

P r o o f :  Denote by G the functional ( I  + s Then we have F = ( I  + s 

Therefore it suffices to show that  

4 1/2 z;)-lall~/2. II(Z + ~)-X/2Gllp < ~ l l a l l v  II(I + 

We have 

/? (I + s - vr~ t-1/2e-tptadt,  
r o / 2 )  

where Pt denotes the semigroup of Ornstein-Uhlenbeck. For any a > O, we can 

write 

r(]12) 

Let us denote the two terms at the right hand side of the above equality, respec- 

tively, by Ia and IIa. We have 

II(Z + z:)-v~GIIp _< r(--(i-~/2) [11 ,~ll,~ + IIH,~IIp]. 

The first term at the right hand side can be majorated as 

IlIoll,, _< t-1/2llGllpdt 

= 2v'~llGIIp. 

Let g = ( I  + s  Then 

~a ~176 t-1/2 e-t ptGd t = fa ~176 t-1/2e-tpt(I + 17.)(1+ l:)-lGdt 

= f~176  + f_.)gdt 

t _ l /2d  (e_tpt)dt 
= f~ dt 

i f ~  ~176 = -a-1/2e-apag + "~ t-a/2e-tptgdt, 
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where the third equality follows from the integration by parts formula. Therefore 

1 t_Z/Ulle_tptgljvd t IIH.IIp < a-1/211e-aP.gllp +-~ 

< a-1/2llgll v +-~ t-u/211gllvdt 

= 2a-1/211gl l  p 

= 2 a - 1 / 2 1 1 ( I + Z : ) - l G I I p .  

Finally we have 

[l(Z + s p < ~ [ a l / 2 1 l a l l  v + a-~/211(I + Z:)-lGIIp]. 

This expression attains its minimum when we take 

II(Z + s p 
a ~  

IIGIIp 

Combining this theorem with Meyer inequalities, we have 

Q.E.D. 

C o r o l l a r y  4 Suppose that (Fn, n E N) converges to zero in Dp,k, p > 1, k E Z, 

and that  it is bounded in Dp,k+2. Then the convergence takes place also in 

Op,k+l. 





Chapter IX 

I n t r o d u c t i o n  to the  

t h e o r e m  of R a m e r  

The Girsanov theorem tells us that if u : W ~-* H is a Wiener functional such 
that du -if/ = ~(t) is an adapted process such that 

f0 ~ 1f01 E [ e x p -  u(s)dW, - -~ lu(s)12ds] : 1, 

then under the new probability L d p ,  where 

/o I L = e x p -  it(s)dW, - -~ li~(s)12ds, 

w + u ( w )  is a Brownian motion. The theorem of Ramer studies the same problem 

without hypothesis of adaptedness of the process u. This problem has been 

initiated by Cameron and Martin. Their work has extended by Gross and others. 

It was Ramer [19] who gave a main impulse to the problem by realizing that 

the ordinary determinant can be replaced by the modified Carleman-Fredholm 

determinant via defining a Gaussian divergence instead of the ordinary Lebesgue 

divergence. The problem has been further studied by Kusuoka [11] and the final 

solution in the ease of (locall.y.) differentiable shifts in the Cameron-Martin space 

direction has been given by Ustiinel and Zakai [31]. In this chapter we will give 

a partial ( however indispensable for the proof of the general ) result. 

To understand the problem, let us consider first the finite dimensional case: 

let W = R n and let Pn be the standard Gauss measure on R n. If u : I~ n ~-~ R'* 

is a differentiable mapping such that I + u is a diffeomorphism of R n, then the 

theorem of Jacobi tells us that,  for any smooth function F on R n, we have 

/R - 1 
F(x + u(x))l det(I + Ou(x))l exp{- < u(x), x > - ~ l u l 2 } ~ . ( d x )  

= L~ r(x)~n(dx), 
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where Ou denotes the derivative of u. The natural  idea now is to pass to the 

infinite dimension. For this, note that,  if we define det~(I + 0 u) by 

det2(I  + Ou(x)) = de t ( l  + O u ( x ) ) e x p - t r a c e O u ( x )  

= l-I(1 + Ai) exp -Xi ,  
i 

where (hi) are the eigenvalues of 0 u(x) counted with respect to their multiplicity, 

then the density of the left hand side can be written as 

1 
A = ]det~(I + 0 u(x))[ exp - < u(x), x > +trace  O u(x) - -~ [u[ ~ 

and let us remark that  

< u(x), x > - t r a c e  0 u(x) = 5u(x), 

where 8 is the adjoint of the 0 with respect to the Gaussian measure #n. Hence, 

we can express the density A as 

A = ]det2(I + Ou(x))[ exp -bu(x )  ]u(x)[~ 
2 

As remarked first by Ramer,  cf.[19], this expression has two advantages: first 

det2(I  + Ou), called Carleman-Fredholm determinant,  can be defined for the 

mappings u such that  Ou(x) is with values in the space of Hilbert-Schmidt oper- 

ators rather than nuclear operators (the latter is a smaller class than the former), 

secondly, as we have already seen, ~u is well-defined for a large class of mappings 

meanwhile < u(x), x > is a highly singular object in the Wiener space. 

After all these remarks, we can announce the main result of this chapter, 

using our standard notations, as 

T h e o r e m :  Suppose that  u : W ~-~ H is a measurable map  belonging to 

D p j ( H )  for some p > 1. Assume that  there are constants c and d with c < 1 

such that  for almost all w E W, 

IIW, II < c < 1 

and 

IlVull~ _< d < oo, 

where I1" II denotes the operator norm and I1" I1~ denotes the Hilbert-Schmidt 

norm for the linear operators on H. Then: 

�9 Almost surely w ~ T(w)  = w+u(w) i s  bijective. The inverse o f T ,  denoted 

by S is of  the form S(w)  = w + v(w) ,  where v belongs to Dp , I (H)  for any 

p > 1, moreover 

c d 
and IlVvll~ < ]]Vvl]_< 1 - c  - 1 - c '  

#-almost  surely. 
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�9 For all bounded and measurable F,  we have 

E[F(w)] = E[F(T(w))  . IA~(w)l] 

and in particular 

where 

EIA~I = 1,  

1 2 
A~ = Idetu(I + ~7u)] exp- ,Su - -~]UlH, 

and det2(I + Vu) denotes the Carleman-Fredholm determinant of I + Vu. 

* The measures #, T*# and S*/~ are mutually absolutely continuous, where 

T*/t (respectively S*#) denotes the image of # under T (respectively S). 

We have 

dS*# 
- I A ~ l ,  

d/~ 

dT* l.t 
- IA.I,  

dp 

where A~ is defined similarly. 

R e m a r k  As it has been remarked in [15], ifllVui[ _~ 1 instead of l lWl l  ~ c < 1, 

then taking ue = (1 - e)u we see that the hypothesis of the theorem are satisfied 

for ue. Hence using the Fatou lemma, we obtain 

E[F o T [A. ]] _< E[F] 

for any positive F E Cb(W). Consequently, if Au # 0 almost surely, then T*# is 

absolutely continuous with respect to #. 

The proof of the theorem will be done in several steps. As we have indicated 

above, the main idea is to pass to the limit from finite to infinite dimensions. 

The key point in this procedure will be the use of the Theorem 1 of the preced- 

ing chapter which will imply the uniform integrability of the finite dimensional 

densities. We shall first prove the same theorem in the cylindrical case: 

L e m m a  1 Let ~ : W ~ H be a shift of the following form: 

~(w) = ~ (xi(6hl , . . .  , 6h,~)hi, 
i=1 

with ai E C ~ ( R  n) with bounded first derivative, hi E W* are orthonormal* 

in H.  Suppose furthermore that ]lV~ll _< e < 1 and that ll~7~ll2 _< d as above. 

Then we have 

*In fact hi E W* should be distinguished from its image in H, denoted by j(h). For 

notat ional  simplicity, we denote bo th  by hi, as long as there is no ambiguity. 



84 Theorem o f  Ramer  

�9 Almost surely w ~-* U(w) = w + ~(w) is bijective. 

�9 The measures p and U*p are mutually absolutely continuous. 

�9 For all bounded and measurable F, we have 

E[F(w)] = E [ F ( U ( w ) )  . IA~(w) l ]  

for all bounded and measurable F and in particular 

E[ IAe l ]  = 1, 

where 
1 

A~ = ]det~(I + ~ ) 1  exp -6~ - ~ ]~]~/. 

�9 The inverse of U, denoted by V is of the form V(w)  = w + ~(w), where 

n 

I](W) = Z ~ i ( 6 h l '  " " ' 6hn) / l i '  

i = 1  

c 
such that llVr/[[ < ~ and lIVril[2 < a 

- -  - -  l - - c "  

Proof." Note first that due to the Corollary 1 of the Chapter VIII, E[exp Ai~l 2] < 

c~ for any A < ~ .  We shall construct the inverse of U by imitating the fixed 

point techniques: let 

rio(w) = 0 

,7.+~(w) = -,~(~ + ,7,~(w)). 

We have 

I n . + l ( w ) -  n~(~)lH < c l n . ( ~ ) -  n . - l (w) lH 

< C~I~(w)IH. 

Therefore r/(w) = l ir th_~ z/,~(w) exists and it is majorated by V~_~l~(w)l. 
the triangle inequality 

I,l,,+~(w + h) - ~.+l(w)l  < 

< 

Hence passing to the limit, we find 

We also have 

]~(w + h + r/n(w + h)) - ~(w + r/n(w))] 

clhi + c l . . ( ~  + h) - ' - ( ~ ) i  

C 
ir/(w + h) - rl(w)l < Ih]. 

1 - c  

U(w + ,7(w)) = w + ~(w) + ~(w + ~(w))  

= w + ~(w) - ~(w) 

W ~  

By 
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hence U o (Iw + 71) = Iw,  i.e., U is an onto map.  If U(w) = U(w'), then 

I~(w) - ~(w') l  = I~(w' + ~ ( ~ ' )  - ~ ( ~ ) )  - ~ (w' ) l  

< c l~(w)  - ~ (~ ' )1 ,  

which implies that  U is also injective. To show the Girsanov identity, let us com- 

plete the sequence (hi;i < n) to a complete orthonormal basis whose elements 

are chosen from W ' .  From a theorem of Ito-Nisio [8], we can express the Wiener 

path w as 
o@ 

w = ~ 6 h i ( w ) h i ,  
i = 1  

where the sum converges almost surely in the norm topology of W. Let F be a 

nice function on W, denote by lan the image of the Wiener measure/~ under the 

map w ~ Y']~i<,, 6hi(w)hi and by u the image of p under w ~ ~~i>, 6hi(w)hi. 
Evidently/.t  = # ,  x u. Therefore 

ElF o V IAel] = [_ E,,[F(w + ~-~(zi + ai(z l  . . . .  z,,))hi)[Ael]Prt.(dz) 
n 

i < n  

= E[F], 

where ~Ul~-(dx) denotes the standard Gaussian measure on R "  and the equality 

follows from the Fubini theorem. In fact by changing the order of integrals, we 

reduce the problem to a finite dimensional one and then the result is immediate  

from the theorem of Jacobi as explained above. From the construction of V, it 

is trivial to see that  

~(w) = ~ / 3 i ( 6 h l , . . . ,  6h , )h i ,  

i < .  

for some vector field (/31,... ,/3,) which is a C a mapping from R "  into itself due 

to the finite dimensional inverse mapping theorem. Now it is routine to verify 

that  

V~ = - ( I  + V~)*V~ o V, 

hence 

IIv~ll2 III + V~l l l lV~  o v i i2  

< (1 + IIV~ll)llV~ o vii2 
C 

< ( 1 +  l _ c ) d  

d 

1 - c  

Q.E.D. 

L e m m a  2 With the notations and hypothesis of Lemma l, we have 

6~ o V = - 6 7 -  I~1~ + trace(V~ o V) .  Vt/, 

almost surely. 
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P r o o f i  We have 
OO 

6~ = ~ ( ~ ,  e i ) ~ -  v , , ( ~ ,  e~), 
i=l 

where the sum converges in L 2 and the result is independent of the choice of the 

orthonormal basis (el; i E N). Therefore we can choose as basis h i , . . . ,  h,~ that  

we have already used in Lemma l, completed with the elements of W* to form 

an orthonormal basis of H, denoted by (hi; i C N). Hence 

n 

6~ = Z ( ~ ,  hi)6hi - Vh,(~, hi). 
i = 1  

From the Lemma 1, we have ~ o V = - 7  and since, hi are originating from W*, 

it is immediate to see that 6hi o V = 6hi + (hi, 7). Moreover, from the preceding 

lemma we know that yT(~ o V) = (I  + ~7q)*V~ o V. Consequently, applying all 

this, we obtain 

n 

~ o V  = Z (  ~oV,hi)(~hi + ( h i , 7 ) ) -  (~h,(~,hi) )oY 
1 

n 

= (~oV,  q ) - t - 6 ( ~ o V ) - t - Z V h , ( ~ o V ,  h i ) - V h , ( ~ , h i ) o V  
1 

n 

= -171 ~ - ~7 + ~_ , ( v~  o v [h,], Vq[hi])  
1 

= -171 ~ - 67 + trace(V~ o V .  V7) ,  

where V~[h] denotes the Hilbert-Schmidt operator ~7~ applied to the vector 

h r H. Q.E.D. 

R e m a r k  Since ~ and 7 are symmetric, we have q o U = - ~  and consequently 

~q~ U = - ~ -  I~1~ + trace(V7 ~ U)- V~. 

C o r o l l a r y  1 For any cylindrical function F on W, we have 

E [ F o V ]  = E[FIA~I]. 

E[FoU]  = E [ F I A ,  I]. 

P r o o f i  The first part follows from the identity 

E[F]A~I ] = E [ F o V o U I A r  

= ElF o Y]. 
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To see the second part, we have 

E l F  o U] = = 

From the lemma, it follows that 

1 

IAel o Y 

[ 1 ] 
E r o U iA d o--------V o U IAel 

1 V] E IF [Ar ~ . 

1 
Idet2(I + V~) o V I exp(@ + " " " '  '~/LIr 

V O 

1 
exp - @  - 1/21712 + trace((V~ o V) .  Vr/) 

Idet2(I + V~) V[ O 

IA, I, 

since, for general Hilbert-Schmidt maps A and B, we have 

det2(I + A).  det~(I + B) = exp trace(AB) �9 det2((I + A)(I  + B)), 

(in fact this identity follows from the multiplicative property of the ordinary 

determinants and from the formula (e) given in [5], page 1106, Lemma 22) and 

in our case (I  + x7~ o Y).  (I + X7q) = I. Q.E.D. 

P r o o f  o f  t h e  t h e o r e m :  Let (hi ; i  E N) C W* be a complete orthonormal 

basis of H. For n E N, let V, be the sigma algebra on W generated by 

{ 6 h l , . . .  , 6h,~}, 7rn be the orthogonal projection of H onto the subspace spanned 

by { h i , . . .  ,h ,} .  Define 

~,, = E [~r, P,/,,uIV,,] , 

where P1/,, is the Ornstein-Uhlenbeck semigroup on W with t = 1/n. Then 

~,~ ~ ~ in Dp,I(H) for any p > 1 (cf., Lemma 1 of Chapter VIII). Moreover ~,~ 

has the following form: 

~,~ = ~ a '~(6hl , . . .  , 6h,)hi ,  
i - - 1  

where a~ are CCr as explained in the Proposition 3 of Chapter IV. We 

have 

hence 

IIV~.ll _< e-l/"E [PI/.IlVulIIV.], 

and the same inequality holds also with the Hilbert-Schmidt norm. Conse- 

quently, we have 

IIV~.ll ___ c ,  IIV~.l12 _ d, 
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p-almost surely and hence, each {n satisfies the hypothesis of Lemma 1. Let 

us denote by r/, the shift corresponding to the inverse of Un = I + (n and let 

Vn = I + r/n. Denote by An and Ln the densities corresponding, respectively, to 

(n and r/,,, i.e., with the old notations 

An = A~. and Ln = A ~ .  

We will prove that the sequences of densities 

{An : n 6 N }  and {Ln : n 6 N }  

are uniformly integrable. In fact we will do this only for the first sequence since 

the proof for the second is very similar to the proof of the first case. To prove 

the uniform integrability, from the lemma of de la Valld-Poussin, it suffices to 

show 

sup E[[An[[IogAn[] < oo, 
n 

which amounts to show, from the Corollary 1, that 

sup E [[ log An o I/~, ]] < or 

Hence we have to control 

E [[ logdet2(I + V(n o Vn)[ + [@n o Vn] + 1/2[(n o Vn[ 2] . 

From the Lemma 2, we have 

6{n o Vn = -6r l , ,  - [qn[~ + trace(V(n o V,~). Vqn, 

hence 

E[I~{n o v .  I] S II@-IIL:(.) + E[l~nl 2] + E[IIV~. o Vn[12 IIV~nll2] 

2 < I[~nllL:(.,H) + ll~nllL~C.,n) + llV~nIIL~c,~,H| + - -  

2 d(1 + d) 
< II~ . l lL~( . ,H)+l l~ . l lL~( . , . )+  1----=-~-c ' 

where the second inequality follows from 

[I~711L~(.) < IIVTJlL~(.,H| + IIT[IL~(.,H)' 

From the Corollary 1 of Chapter VIII, we have 

sup E[exp ~1~.121 < or 
n 

hence for anyc~<  2d2 , 

sup E[l~.l  2] < o o .  
n 

d 2 

1 - - c  
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We have a well-known inequality (cf.,[5], page 1106), which says that  

1 2 
]det2(I + A)I _< exp ~IIAII2 

for any Hilbert-Schmidt operator A on H, applying this to our case, we obtain 

d 2 
sup ] logdet2(I  + ~7~n o V,,)[ _< -~- 

n 

and this proves the uniform integrability. 

Since the sequence (An; n E N) is uniformly integrable, it converges to Au 

in LI(#) ,  hence we have 

ElF o T In,,]] = E[F], 

for any F E Cb(W), where T(w) = w + u(w). 
To show the convergence of the inverse flow we have: 

10.-~. , I  < I~.oV.--&,oV.l+l~mOt~--~mOVml 
< I ~ . o V . - ~ m o V . l + e l o . - , . ~ l .  

since c < 1, we obtain: 

(1 - c ) l , .  - , m l  < I~. o Vn -- ~m o V.I. 

Consequently, for any K > 0, 

~ { 1 0 . - , T m l > K }  < ~ { l ~ . o G - & ~ o V . l > ( 1 - c ) K }  

= Z []A,~II{I, _,,,=t>fl_r ---* 0, 

as n and m go to infinity, by the uniform integrability of (An; n E N) and by 

the convergence in probability of (~n;n E N). As the sequence (tin ; n E N) 

is bounded in all L p spaces, this result implies the existence of an H-valued 

random variable, say v which is the limit of (q,;  n E N) in probability. By 

uniform integrability, the convergence takes place in LP(#, H) for any p > 1 

and since the sequence (Vrl,; n E N) is bounded in L~176 H | H), also the 

convergence takes place in Dp,I(H) for any p > 1. Consequently, we have 

e[F(w + v(w)) IA, I] = E[F], 

and 

E[F(w + v(w))] = E[F IAut], 

for any F E Cb(W). 
Let us show that  S : W --* W, defined by S(w) = w + v(w) is the inverse of 

T : let a > 0 be any number, then 

~ { l l T o S ( w ) - w l l w  > a }  = i , { l l T o S - U ,  oSl lw > a / 2 }  

+~{llU. o s - u .  o v . I Iw > ~12} 

= E[iAuil{IIT_U.IIw>./2}] 

+p{i~n(w + v(w)) - G~(w + the(w))[ > el2} 

< E[IA,,II{I._e,,I>./2 }] 
a 

+ t , { I v  - ,7,,I > G }  ~ o, 
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as n tends to infinity, hence/z-almost surely T o S ( w )  = w.  Moreover 

It{llS o T (w)  - wllw > a} = # { I l S o T - S o U ~ I I w  > ~ / 2 )  

+ i t{ l lSo  Un - V. o Unllw > a12} 

a(1 - c) 
_< It{l~-~l> -27 } 

+E[IA,.II{I,_,.I>~/2}] --, o, 

by the uniform integrability of (A,I, ; n E N), therefore it-almost surely, we have 

S o T ( w )  = w.  Q.E.D. 
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