
Chapter 1

The Nature of Colloids

1 INTRODUCTION

Colloids are all about size. They consist of at least two phases and the dimen-

sion of the dispersed phase has traditionally been considered to be in the sub-

microscopic region but greater than the atomic size range. That is within the

range 1 nm to 1mm. The term ‘colloid’ was coined for ‘glue-like’ materials

which appeared to consist of only one phase when viewed under the micro-

scopes of the day. Of course, now we are able to see much smaller particles

with the advance of microscopy. However, the size range is still taken to be

the same although 10mm would be a more appropriate upper limit as the

unique behaviour of colloidal particles can still be observed with particle

dimensions greater than 1mm.

The particle size is similar to the range of the forces that exist between the

particles and the timescale of the diffusive motion of the particles is similar to

that at which we are aware of changes. These two factors, as we shall see later

in this volume, are the key to understanding why so many colloidal systems

have interesting behaviour and textures. Typically, the range of the interparti-

cle forces is 0.1 to 0:5mm whether they are forces of attraction between the

particles or forces of repulsion. When we look at a colloidal sol in the micro-

scope, we observe the particles to move around with a random motion. This

is known as Brownian motion as it was recorded by the botanist Brown while

studying a suspension of pollen grains in the microscope. The cause of this

motion is, in turn, the motion of the molecules making up the suspending

fluid. All of the atoms or molecules are in random or thermal motion and

at any given instant the local concentration of a small volume element of

the fluid will be either higher or lower than the global average concentration.

The thermal motion of the colloidal particles will tend to be in the direction
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of the lower molecular densities. As these fluctuate in a random manner, so

does the directional motion of the colloidal particles and the velocity is

governed by the hydrodynamic drag. We know that diffusion tends to be

away from high concentrations to low concentrations so that if we have a

high concentration of particles then there will be a directional drift away

from this region. Now for a sphere, the Stokes drag factor, s, is a function of

the radius of the sphere, a, and the viscosity of the fluid, Z, as follows:

sv ¼ 6pZa (1:1)

The motion is random as we have already noted and the net velocity, v, is the

average distance moved, �xx, in the time interval t, namely:

v ¼ �xx=t (1:2)

The work that has been done in moving a particle is simply the hydrodynamic

force, fv ¼ vsv, multiplied by the average displacement �xx. The thermal energy

available for this motion is kBT where T is the absolute temperature and kB is

the Boltzmann constant. Hence we can write:

kBT ¼ �xxvfv (1:3)

Substituting for v and fv and rearranging:

D ¼ �xx2

t
¼ kBT

6pZa
(1:4)

Equation (1.4) is the Stokes–Einstein equation for the diffusion coefficient, D,

and has units of m2 s�1. We can define a characteristic timescale for this

diffusive motion if we calculate the time it takes for a particle to diffuse a

distance equal to the particle radius. This is achieved by a straightforward

substitution of a for �xx in Equation (1.4), as follows:

t ¼ 6pZa3

kBT
(1:5)

This is known as the Einstein–Smoluchowski equation. For an isolated par-

ticle in water at 20 8C with a diameter of 1mm, it takes about 0.5 s to diffuse

one radius. When the colloidal dispersion becomes concentrated, the inter-

actions with the neighbouring particles (hydrodynamic, electrostatic if the

particles are charged, or simply van der Waals’ forces) will slow the move-

ment down. The timescale of our perception is approximately 1ms to 1 ks and
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Table 1.1. Types of colloidal dispersions

Phase Gas (bubbles) Liquid (droplets) Solid (particles)

Gas Molecular solution Liquid aerosol (mist) Solid aerosol (smoke)
Liquid Foam (shampoo) Emulsion (mayonnaise) Sol (ink)
Solid Solid foam (packaging) Solid emulsion (butter) Solid sol (stained glass)

so we should expect to observe interesting temporal behaviour with colloidal

systems. We will re-visit this point later in this volume.

When we consider the number of possible phase combinations of our het-

erophase systems we find that there should be eight different possibilities.

This is illustrated in Table 1.1 where either phase could be a gas, a solid or a

liquid. Two gas phases will mix on a molecular level and do not form a

colloidal system. Each of the other combinations results in systems with

which we are familiar.

Gas bubbles and liquid droplets are spherical due to the surface tension

forces unless the phase volume is very high. Solid particles may be spherical

but are often non-spherical. The shape is a function of the history of the

formation. Opals are an example of a solid sol with spherical silica particles

in an aqueous silicate matrix. The silica particles are amorphous silica, and

the distribution of sizes of the particles is narrow and the particles form a

face-centred cubic array. It is diffraction of light by this highly regular struc-

ture which gives the characteristic colours. Colloidal dispersions in which the

standard deviation on the mean size is less than 10% of the mean are usually

considered to be ‘monodisperse’. If the particle size distribution is broader

than this, the dispersion is considered to be ‘polydisperse’. Although this cut-

off appears arbitrary, monodisperse systems have the ability to form colloidal

crystals while polydisperse systems do not. Bi-modal systems can also form

crystalline structures if the size ratio is suitable. When the particles are

formed by a crystallization process, other shapes are found. Silver chloride

can be produced as a colloidal dispersion in water as monodisperse cubes.

Hematite can form as ellipsoidal plates. Clays are naturally occurring alu-

minosilicates that usually form plates. Kaolinite particles (‘china clay’) are

hexagonal plates with an axial ratio of � 10:1. Montmorillonite particles can

have much greater axial ratios and under the right conditions can be dis-

persed as crystals of one or two unit layers thick. Attapulgite has a lath shape

and longer rod-like structures can be seen with crysotile asbestos. These

shaped particles show colloidal behaviour when the size is within the colloid

range. For spheres or cubes, we have a three-dimensional colloidal size, with

rods this is reduced to two dimensions, while for plates only one dimension

needs to be in the appropriate size range. This last case may seem strange but
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soap films are a good example of a system with two dimensions well within

the macroscopic size range but with the third in the colloidal range and being

governed by colloidal forces.

This last example of a colloidal system brings into focus systems other than

particles that have common ground with particulate colloids. Surface active

molecules or surfactants, such as soaps, detergents, lipids etc., can self-

assemble to form multimolecular aggregates of colloidal size and show the

effects of colloidal forces in addition to their individual phase behaviour.

2 COLLOIDS IN ACTION

It will serve as a useful illustration to take some examples of colloidal systems

and discuss why the colloidal state is used, what are the important aspects and

what characterization is desirable. Although each colloidal material appears

to be very different from others, there are frequently generic aspects and so

we can learn from solutions developed for quite disparate systems.

2.1 Decorative Paint

The function of this type of coating is twofold. First, it is intended to protect

the surface from damage from environmental conditions. Secondly, it is

intended to cover marks and produce an attractive colour. By choosing a

colloidal system we are able to manufacture and apply this very simply. A

polymer film provides the surface protection. Synthesizing the polymer as

colloidal particles dispersed in water can efficiently produce this. This mater-

ial is known as a latex and is manufactured by the emulsion polymerization

of vinyl monomers. The latter are dispersed as an emulsion using surface

active materials (surfactants) which adsorb at the surface of the droplets and

prevent them from coalescing. Once the polymerization reaction is initiated,

the size and stability of the subsequent particles is also controlled by the

surfactants. The advantages of using this colloidal synthetic route is excellent

heat and mass transfer and simple handling of the product which can easily

be pumped out of the reactor and into storage tanks. Here we have to under-

stand how the surfactants adsorb onto different organic phases and operate

at different temperatures.

The covering power of the film is provided by a white pigment and the

colour by tinting with coloured pigments. Light scattered from the white

pigment particles (usually titanium dioxide) hides the underlying surface. The

particles must be fine enough to give a smooth film but not too fine or insuffi-

cient light will be scattered – 200 nm is about the optimum size. To manufac-

ture this, we must understand the control of crystal growth and the

subsequent drying process to ensure easy redispersion of the dry powder
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down to the sub-micron level. The surface of the titanium dioxide is usually

covered by a layer of alumina or silica to reduce catalytic breakdown of the

polymer film when exposed to sunlight. The dispersion of dry powders in

liquids requires surfactants and energy. Here, we have to understand how

particles scatter light, the separation of colloidal particles and the ‘wetting-

out’ of dry powders and their subsequent redispersion. Thus, this means how

surfactants control the wetting of surfaces and how shear forces break up

aggregates. The coloured pigments may be organic and therefore require dif-

ferent surfactant systems and so we may put together a system with three

different surfactant materials and there will be ample opportunity for ex-

change at the various interfaces.

The final aspect of our paint is the application. At this point, the sedimen-

tation of the pigment must be controlled and the viscosity has to be such that

the wet film thickness is sufficient to give good hiding power. In addition, the

brushmarks have to level out as much as possible and the polymer particles in

the dry film must coalesce. Soluble polymers are added to adjust the viscosity

and to control sedimentation. This is partly due to the increase in the medium

viscosity as a result of the entanglements of the long polymer molecules but a

major effect is for the polymers to induce a weak flocculation of the particles

in a process known as depletion flocculation. Now, we must also understand

how polymer molecules behave in solution, how they interact with particle

surfaces and effect the particle–particle interaction forces.

The generic problems that we find when studying this coating are as

follows:

(a) control of particle size (of both inorganic and organic polymeric particles);

(b) surfactant behaviour in solution and adsorption;

(c) drying and the redispersion of powders;

(d) solution properties of polymers;

(e) particle interaction forces and the effect of surfactants and polymers on

these;

(f) sedimentation in concentrated systems;

(g) flow properties of concentrated systems.

2.2 Paper

Paper is another material of colloidal origin, which we use without a second

thought. It may be in the form of newsprint, a cardboard box, a glossy

magazine or the high-quality material that our degree certificates are printed

on. It is formed from cellulose, a naturally occurring sugar-based polymer

most frequently obtained from trees. When wood is pulped for the manufac-

ture of paper, the cellulose is separated into fibres with sizes into the colloidal

domain. The fibres are filtered to give a mat and dried in a high-speed
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continuous process. The fibres are negatively charged and this plays a role in

the tendency of fibres to aggregate, with the latter being an important feature

in the formation of a dense filter mat in which the particles are aligned to give

maximum strength in the direction of the moving sheet. The understanding of

both particle aggregation and filtration is paramount for successful produc-

tion in high-speed modern equipment.

Pigments such as titanium dioxide are added to give a white sheet. As the

fibres are hollow, some of the pigment particles end up inside the fibres. Re-

moval of this can become a problem in recycling. Ink from printing on the

exterior of the paper is less of a problem but does require the removal by deter-

gent action of surfactant materials. The attachment and detachment of particles

from surfaces require an understanding of the interparticle forces and how we

can manipulate them, whether by chemical environment or surfactant type.

Glossy paper requires additional colloidal treatment. Well-dispersed kaolin-

ite platelets are coated onto the surface and give a filler aligned parallel to the

paper surface. Kaolinite has both negatively and positively charged surfaces,

which tend to stick very firmly together to give a strong open particle net-

work. This aggregation is controlled either by inorganic ions, such as phos-

phates, or organic polyelectrolytes and again the ability to manipulate

interparticle forces is important. A binder is used with the clay surface to give

a sealed, smooth and glossy final surface. A colloidal dispersion of polymer

particles makes a suitable material. Emulsion polymerization is the normal

route for this type of material. The application of the coating mix requires a

knowledge of the flow of concentrated dispersions.

Some of the generic problems that we may identify here are as follows:

(a) control of particle–particle forces;

(b) separation of colloidal systems;

(c) interaction of surfactants with surfaces and detergent action in the re-

moval of particulates;

(d) hetero-aggregation and its control;

(e) particle size control.

2.3 Electronic Inks

Modern hybrid circuits are built up from sequential printing of fine circuits

and layers of insulating material. The circuits are printed by using inks with

metallic colloidal particles dispersed in organic media. For example, gold or

palladium has first to be produced as fine particles, separated and dried.

Sufficient knowledge to enable the control of particle size and the subsequent

separation of the colloidal particles is paramount here.

To make it into an ink suitable for printing, the system is dispersed in

organic solvents with the aid of a surfactant to prevent the particles from
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sticking together. The mechanism of the stabilization must be understood.

The viscosity of the concentrated dispersion has to be suitable for both flow

during the screen-printing and the production of the correct film thickness.

After drying, the circuits are completed by sintering the particles to give

optimum conductivity. This process has parallel problems to film formation

with polymer particles in other coatings, as well as in the firing of ceramic

materials, whether these are derived from clays or other oxides such as those

employed in high-grade ceramics used, for example, as chip bases in the

electronics industry. The generic colloidal problems that we can immediately

identify in this case are as follows:

(a) particle size control;

(b) separation and drying of particles;

(c) wetting of dry powders;

(d) adsorption of surfactants;

(e) stabilization of particles in a dispersion;

(f) control of flow properties;

(g) wetting of surfaces;

(h) sintering of fine particles;

2.4 Household Cleaners

A large amount of surfactant is sold for domestic cleaning purposes whether

for clothes, skin or other surfaces. Each of these will have a different detailed

formulation, of course, and as an example we will choose a cleaner for a

surface such as a sink. The first requirement is that there is a high surfactant

concentration. This is needed to solubilize grease and re-suspend particulate

material. Hence, an understanding of detergent action is essential. Abrasive

particles are required to break up the films that are responsible for staining

but these particles should not be of such a size that they produce deep

scratches or produce a ‘gritty’ feel. Particles of a micron or two in size will be

satisfactory. The creamy feel is also achieved by the formation of long

branching ‘worm-like’ assemblies of the surfactant molecules and requires a

sufficient understanding of surfactant phase behaviour to optimize this.

The size and density of the abrasive particles are such that sedimentation

will occur in a short period and to prevent this the system can be gelled

by the addition of a soluble polymer. This has the side benefit of enhancing

the texture or feel of the material. The solution behaviour of polymers and the

control of the flow properties have to be understood in order to optimize

the formulation. The generic problems here can be identified as follows:

(a) phase behaviour of surfactants in solution;

(b) detergent action;
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(c) control of particle size;

(d) solution behaviour of polymers;

(e) control of flow properties.

2.5 Butter

Milk is a colloidal dispersion of fat droplets which are stabilized by the

protein casein. This protein prevents the coalescence of the fat drops by a

combination of electrostatic repulsion and a steric barrier as the protein

layers make contact. On standing, the fat drops rise to the top in a process

known as creaming which is analogous to sedimentation. So far, colloid sta-

bility and creaming (sedimentation) can be identified as areas of importance.

In the churning process, a phase inversion is produced and a water-in-oil

emulsion is formed from an oil-in-water system. The saturated animal fats

have a molecular weight such that they crystallize at temperatures close to

body temperature. This is the reason why butter is difficult to spread at low

temperatures. Many spreads are produced by blending in lower-molecular-

weight vegetable oils with a lower melting point. The generic colloidal aspects

are as follows:

(a) interaction forces between particles;

(b) coalescence of emulsion droplets;

(c) phase inversion of emulsions;

(d) flow behaviour of concentrated dispersions.

There are many other materials that are colloidal at some stage of their use

but the colloidal problems can still be reduced to just a few generic problems. It

is important to recognize this in spite of the complexity of a particular system.

At first sight, it is often difficult to understand how the apparently abstract

physics and chemistry presented in most courses and texts can apply to a

‘practical system’. The application of the general principles though are usually

sufficient to enable the problems to be both defined and tackled in a systematic

manner. All of these points will be addressed in the following chapters.

3 CONCENTRATED COLLOIDAL DISPERSIONS

Traditionally, our ideas of colloidal interactions have stemmed from the be-

haviour of dilute systems of colloidal particles and the theoretical work based

on two isolated particles interacting. This is nearly always in quite a different

concentration region from the systems in which we employ colloids. However,

in recent years this situation has changed and we now have a great body of

work on concentrated dispersions. Of course, most of the academic work has
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been on model systems but general principles apply to the more complicated

systems that are in everyday use.

As a starting point, it is important to describe what we mean by a dilute

dispersion. This is not based on just the value of the weight or even the volume

fraction. It is based on the mean separation of the particles compared to the

range of the interaction forces between the particles. In the dilute state, the

particles are well separated so that the particle interactions are negligible at the

mean separation. The consequence of this is that the particles diffuse in a

random fashion due to the Brownian motion, with a diffusion constant that

can be described by Equation (1.4). The distribution of the particles in space

can be considered as uniform, i.e. randomly distributed and the spatial correl-

ations are very weak. Now, this is only strictly true for dispersions of particles

which approximate to hard spheres. If there are either forces of attraction or

repulsion acting between particles there will be some deviation from random as

the particles collide. This point can be important but we do not need to con-

sider it in detail at this stage; we only need to be aware of the possibility. In a

fluid continuous phase, the motion of particles can be described by the hydro-

dynamics appropriate to an isolated particle. This is true for diffusion, sedi-

mentation or viscous flow. The behaviour of the dispersion can be thought of

as analogous to that of a gas except that the motion is Brownian and not

ballistic, i.e. any two particles will experience many changes of direction before

colliding. This means that the concept of a mean free path is difficult to apply.

If we now steadily replace the continuous phase by more particles, as the

concentration increases our colloid becomes a condensed phase and we have a

more complicated behaviour. This is a familiar concept to the physical scientist

who will immediately recognize this behaviour as similar to that which occurs

when a molecular gas is compressed until it forms a liquid and finally a solid.

Many of the thermodynamic and statistical mechanical ideas translate well

from molecular liquids to colloids in the condensed state. However, a little

caution is required as the forces can be quite different. A liquid medium, for

example, can result in hydrodynamic forces with a range of a few particle

diameters. A very attractive feature though is that the colloidal forces can be

readily manipulated by changes in the chemical environment of our colloidal

particles. This, in turn, can dramatically alter the behaviour and thus it pro-

vides the means of manipulating the material to suit our needs more closely.

Now, in this condensed phase there will always be strong interactions be-

tween the particles. This is the case whether the interactions are repulsive or

attractive. Such a situation gives rise to strong spatial correlations and we

have a shell of nearest neighbours. The number of particles in this shell is the

coordination number and this reflects both the magnitude and type of force

as well as the concentration or particle number density. For example, if the

particles are of very similar size and the forces are repulsive, colloidal crystals

can be formed with very long-range order. The spatial arrangement is
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face-centred cubic and if the lattice spacing is of the order of the wavelength

of light, strong diffraction will be seen. Opal is a naturally occurring colloid

where this effect is utilized as a gemstone. When the particles are in a liquid

medium, ‘exciting behaviour’ can be seen. Three modes of diffusive motion

can be identified. The particles are all moving due to the thermal or Brownian

motion but are generally constrained to be within their individual coordin-

ation shell. This motion is quite rapid and is known as short-time self-diffusive

motion. The motion is still random and, if we were to take a series

of ‘snapshots’ of a particular volume, we would see that the number density

of particles in that region would fluctuate about the global mean for the

dispersion. The diffusion of these regions is the collective diffusion and the

constant is slower than for short-time self-diffusion. All liquids behave in this

way and it is this local density fluctuations in the continuous phase that

produces the Brownian motion of the particles. Occasionally, the fluctuations

will allow sufficient separation in a coordination shell for a particle to

move through and change its neighbours. This is known as long-time self-

diffusion.

The flow properties reflect this interesting behaviour. To illustrate the

point, let us consider a simple system of uniform particles with strong repul-

sive forces at a high concentration. The particles are highly spatially correl-

ated in a face-centred cubic structure. If we deform the structure, the

arrangement of particles is distorted. We have had to do work on the struc-

ture and the energy is stored by the movement of the particles to a higher-

energy configuration. An elastic response is observed. Over time, the particles

can attain a new low-energy configuration in the new shape by the long-time

self-diffusion mechanism. The system now will remain in the new shape with-

out applying the external force, i.e. the structure has relaxed and the elastici-

cally stored energy has dissipated (as heat). This is known as the stress

relaxation time and the material is behaving as a viscoelastic material. In

other words, we are saying that the material is now exhibiting a ‘memory’

and it takes several relaxation times before the original shape is ‘forgotten’.

When this timescale falls within that of our normal perception we are aware

of the textural changes and many concentrated colloids are manipulated to

take advantage of this.

The transition from a dilute to a condensed phase can be very sharp and is

a function of the range of the forces, as noted above. We may now move

back to consider a system of hard spheres – a system, incidentally, which can

only really be attained in a computer simulation but which we can get quite

close to under very limited conditions. In a computer simulation it is possible

to take a fixed volume and increase the fraction of that volume which is

occupied by particles, all in random Brownian motion, of course. The volume

fraction of the ‘dispersion’ is simply the product of the number of particles

per unit volume, Np, and the particle volume, vp, as follows:
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w ¼ Npvp (1:6)

The simulations show that a liquid/solid transition occurs at wt � 0:5. Below
this transition we have a viscoelastic liquid and above it a viscoelastic solid.

How does this relate to systems with colloidal particles stabilized by long-range

electrostatic repulsion or extensive polymer layers preventing the particles from

coming together? We can introduce the concept of an effective volume frac-

tion which is calculated from the particle

volumewhich has been increased by a volume

from which neighbouring particles are

excluded due to repulsion. For example, we

can easily visualize the case for a dispersion

of spherical particles, each of which has an

attached polymer layer which physically pre-

vents approach of another particle. Figure

1.1 illustrates this schematically.

The thickness of the polymer layer is de-

noted by d which gives the effective hard

sphere diameter as (d þ 2d). The effective

hard sphere volume fraction is now:

wHS ¼ Np

p(d þ 2d)3

6
(1:7)

and the liquid/solid transition would fall to a lower value of the volume

fraction calculated from the core particles. Thus:

wHS � 0:5

so:

wt � 0:5= wHS=wð Þ

and then:

wt �
0:5

1þ 2d
d

� �3 (1:8)

When the stability is due to long-range electrostatic repulsion between par-

ticles, we may also define an effective hard sphere diameter. The simplest

approach in this case is to recognize that the principle of the equipartition of

energy applies to colloidal particles so that a particle moves with kBT=2

d

δ

Figure 1.1. Schematic of a par-
ticle with an adsorbed polymer
layer which increases the effective
volume fraction of the system.
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Figure 1.2. Order–disorder regions calculated for a 100 nm particle.

kinetic energy along each of the x, y and z coordinates. Thus, an average

value of the energy of a Brownian collision would now be kBT . We may then

take the distance d as the distance at which the repulsive energy reaches this

value and again define an effective hard sphere diameter as (d þ 2d). This

now enables us to try to estimate the concentration of the liquid/solid transi-

tion. Figure 1.2 illustrates the result for a particle with a radius of 100 nm.

We will return to this in more detail in a later chapter but we should note at

this point that because the electrostatic interactions are relatively ‘soft’ the

material will form a soft solid. That is, the application of an external force

can cause large deformations. This is a natural consequence of the range of

the interparticle interactions compared with the particle size. The farther we

move to the right in Figure 1.2, then the harder the solid becomes.

4 INTERFACES

As soon as we consider a fine dispersion of one phase in another the issue of

the interface between the two phases becomes of major importance. As an
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illustration of the points that arise, consider the atomization of water into fine

droplets in air. The area per unit mass is known as the specific surface area

(SSA). The disperse phase is in the form of spherical particles because there

are surface tension forces that we will discuss in a moment. The calculation of

the SSA is based on the area of a sphere of diameter d (pd2) divided by its

mass ((pd3=6)rH2O
), where rH2O

is the density of water. This gives:

SSA ¼ 6

drH2O

(1:9)

Thus, for a litre of water (i.e. about 1 kg) before atomization, the

SSA � 0:05m2. After spraying to give droplets of 1mm, the value of the SSA

is � 6� 103 m2 kg�1 and we are now dealing with an interfacial area larger

than the area of a football field! It is easy to see why the effectiveness of a

catalyst is maximized when in a finely divided form, and also why the oxida-

tion of finely divided materials such as metals can be a dangerous problem

due to the exothermic reaction becoming uncontrollable. If the droplet size

were reduced to the order of 10 nm, the specific surface area would be

� 106 m2 kg�1. It is interesting now to consider the fraction of the molecules

that would be at the interface as the size of the drop is made smaller. The

approximate values are shown in Figure 1.3 and are significant fractions for

drops in the colloidal size range – particularly when the droplets would be in

the nanoparticle size range, i.e. up to a few tens of nanometres in diameter.

This looks just like a simple exercise in geometry so far but the implications

are quite important. To illustrate this, let us think about the amount of work

we would have to do to take our 1 kg of water down to droplets of 300 nm in

diameter where � 0:1% of the water molecules are at the surface. Remember

that the intermolecular forces in water are dominated by hydrogen bonding –

giving the tetrahedral structure – and at 4 8C when the density is 1000 kgm�3

this would be nearly complete. Thus, if we make the crude assumption that

each surface molecule is one hydrogen bond short and that the energy of a

hydrogen bond is � 40 kJ mol�1, then we may estimate how much work we

would have to do to disperse the water into a fog. (Note that there is a factor

of 2 involved as each hydrogen bond broken would result in two fresh surface

areas.) This result is also illustrated in Figure 1.3. Of course, if we had broken

all of the hydrogen bonds, we would have boiled the water (this would take

� 2:5� 103 kJ) but a lot of work is required to get bulk water down to drops

in the sub-micron region.

The above illustrates that we have to do work to create a new surface and

that the origin is the work done against the intermolecular forces. This is a

key concept when we consider surfaces or interfaces. Here, the term ‘surface’

is taken to refer to a surface of a liquid or solid in contact with a gas or

vapour, while the term ‘interface’ is used to describe the region between two
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Figure 1.3. The fraction of water molecules in a drop that are located at its surface:
(——) fraction of water molecules at surface; (_._._) work to disperse 1 kg of water.

condensed phases whether two liquids, two solids or a liquid and a solid. In

the bulk of the condensed phase, the intermolecular forces act between the

atoms or molecules in essentially a symmetric fashion. At the surface or

interface, there is an imbalance as the local chemical environment changes. If

we think of the intermolecular forces as molecular springs, the imbalance in

attractive force results in a surface tension, g1. This acts to minimize the

surface area. Now, when the surface area of the liquid is increased by an

amount @A against this surface ‘spring’ tension, the amount of work is given

by the following:

@W ¼ g1@A (1:10)

This is only the case for a pure material. If there are dissolved species present,

we must consider the presence of such species at the surface or interface as we

shall see when we explore surfactants. The units of the surface tension are

J m�2 (i.e. energy per unit area) and as energy is force multiplied by the

distance moved, the dimensions are also written as N m�1, which is the spring
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constant. Water, for example, has a value for g1 of 72 mN m�1. If we inte-

grate Equation (1.10) up to an area of 1m2, we have the energy required to

create a fresh surface of unit area, and we see that if this area is the SSA of

droplets of 300 nm in diameter, we require 1.4 kJ. This value compares fa-

vourably with the simplified estimate illustrated in Figure 1.3.

In water, the hydrogen bonding interaction is the strongest intermolecular

force although it is not the only contribution. The usual van der Waals forces

also play a role and contribute about 25% of the surface energy of water.

These are the forces that cause an interaction between all atoms and mol-

ecules, even the inert gases. They are the London dispersion forces which are

due to the coupling of the fluctuations of the charge density of the electron

clouds of one atom with its neighbours. This will be discussed in some detail

in Chapter 3 with aspects of the surface energy being discussed in Chapter 6.

An important feature of the recognition that an appreciable amount of work

is required to generate new surfaces is that the process is endothermic and

that the dispersed state is not the lowest energy condition. In other words,

there is a natural tendency for droplets to coalesce and for particles to aggre-

gate. To maintain the material in the colloidal state, we must set up the

correct conditions.

We have just begun to explore the molecular implications of an interface or

surface. The structure of the liquid surface in equilibrium with its vapour

cannot be as well defined as that of a crystalline solid and the concept of a

well-defined plane is a convenience rather than a reality as there is really an

interfacial region. When a surface is expanded or contracted, diffusional

motion to or from the bulk accompanies the changes and the intensive prop-

erties of the interface remain unchanged. With a solid surface, the situation

can be more complex and crystal structure, for example, can result in anisot-

ropy. The surface free energy described above appears to be straightforward.

However, equating the surface free energy just with the surface tension can

only hold for a pure liquid. Whenever another species is present, the distribu-

tion becomes important as this controls the details of the intermolecular

forces in the interfacial region. If the concentration of solute species is lower

in the surface region than in the bulk phase, the species is termed lyophilic as

it ‘prefers’ the bulk phase to the surface phase. The solute species is negatively

adsorbed at the surface or interface. Indeed, the stronger interaction between

the lyophilic solute species and the solvent can even lead to a small increase in

the surface tension. If the molecules tend to accumulate at the interface they

are termed lyophobic. This tendency for the solute species to accumulate at

the interface implies that the intermolecular interactions are most favourable

if there is a separation of the solvent and solute into the region of the surface.

This is particularly marked for amphiphilic (also termed amphipathic) mol-

ecules. These are a class of molecules known as surfactants or surface active

agents. In this case, there are two distinct moieties making up the molecule:
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part of the molecule is lyophilic while another part is lyophobic. In water, a

polar group such as the salt of a carboxylic acid group would be a lyophilic

moiety. In water, this is also described as being hydrophilic. A linear paraffin

chain or an aromatic hydrocarbon would be a typical lyophobic, or hydropho-

bic, moiety. The increase in concentration at the interface is known as the

surface excess.

The surface tension of water is lowered as solute molecules accumulate in

the surface region. Water is an associated liquid and the solute molecules do

not display the relatively strong hydrogen bonding forces. Thus, even if the

London dispersion forces are stronger, the surface tension is lowered. A dia-

gramatic picture of the surface of a solution is shown in Figure 1.4. Of

course, this picture is not restricted to the surface of an aqueous solution.

There are some important ideas illustrated in this figure. The interface

between the liquid phase and the vapour phase is not a plane when we work

at the molecular level. Rather, it is a region a few molecules in thickness – say

five or six – where the molecular density or concentration profile changes

from that of the liquid to that of the vapour. Hence, we can think of there

being a surface phase. When there are two molecular species present, we can

expect the concentrations to vary with the nature of the solute species, as

indicated in the previous paragraph. In this figure, we have large solute mol-

ecules which are lyophobic and so there is a surface excess concentration.

This is illustrated by the peak in the concentration profile (Figure 1.4(a)), and

as shown the large molecules have a much lower vapour pressure than the

solvent molecules, but this, of course, is not a prerequisite. When we know

the local concentration, in principle we can estimate the surface tension.

Direct measurement of the concentration profiles is not something that has

been achieved with precision so far but it is possible to estimate the surface

excess from measurements of the surface tension. To do this, we need to use

just a little thermodynamics, as clearly laid out in the text by Everett [1].

First, we are going to choose a volume for our system at equilibrium which

contains saturated vapour, v, the solution phase, ‘, and the surface phase, s.

Our problem is to define the volume of this surface phase. What we are going

to do is to model it as though it were just a planar surface with all of the

material in the surface phase located in that plane. This plane is known as the

Gibbs dividing surface – the Gds line in Figure 1.4(a) – and for simplicity we

will consider a volume with unit area Gds, as in Figure 1.4(b). As this is a

model, we may choose the location of the Gds to be the most convenient, i.e.

to make the calculations as simple as possible. The appropriate concentration

terms are defined as follows:

G1s is the number of moles of solvent species per unit area at the Gds;

G2s is the number of moles of solute species per unit area at the Gds;

c1‘ is the concentration of solvent in the liquid phase;

16 Colloids and Interfaces with Surfactants and Polymers



Surface phase
region

Bulk
solution

Vapour

Solute

Solvent

Gds

(a)

Gds

Unit area

Unit height

Unit height

Vapour

Liquid

(b)

Figure 1.4. Representations of a simple model for the liquid–vapour interface; Gds
indicates the Gibbs dividing surface (see text for details).

c1v is the concentration of solvent in the vapour phase;

c2‘ is the concentration of solute in the liquid phase;

c2v is the concentration of solute in the vapour phase;

c1 and c2 are the total concentrations of solvent and solute in the system,

respectively.

Thus, we have:

c1 ¼ c1‘ þ c1v þ G1s, and c2 ¼ c2‘ þ c2v þ G2s

i.e.

The Nature of Colloids 17



G1s � c1 ¼ �(c1‘ þ c1v), and G2s � c2 ¼ �(c2‘ þ c2v)

G1s � c1

(c1‘ þ c1v)
¼ G2s � c2

(c2‘ þ c2v)

G2s ¼ c2 þ (G1s � c1)
c2‘ þ c2v

c1‘ þ c1v

� �

which gives:

G2s � G1s

c2‘ þ c2v

c1‘ þ c1v

� �
¼ c2 � c1

c2‘ þ c2v

c1‘ þ c1v

� �
(1:11)

In principle, the latter term is experimentally accessible but we can simplify

Equation (1.11) if we choose the location of our Gibbs dividing surface care-

fully. We will define this surface so that the excess number of solvent mol-

ecules on the vapour side is exactly matched by the deficit on the liquid side.

This gives the value of G1s as 0 and then we call the surface excess of the

solute, G2s, the relative adsorption of solute at the surface.

The Helmholtz free energy of the system is just the sum of the free energy

of each phase:

F ¼ Fv þ F‘ þ Fs (1:12)

The surface term is of importance for our colloidal systems where the surface

area is large. For the bulk phases, we have the usual equation for the change

in free energy with the amount n of species i:

dFv ¼ �SvdTv � pvdVv þ
X
i

mvidnvi (1:13)

and an analogous equation for the surface:

dFs ¼ �SsdTs þ gsdAs þ
X
i

msidnsi (1:14)

Here, the pressure term is now the surface tension and the sign has to change as

it is a tension instead of a pressure. The phase volume is replaced by the area of

the surface. The temperature is constant and so when we integrate equation

(1.14) we then obtain the Gibbs–Duhem Equation for the surface:

Fs ¼ gsAs þ
X
i

msinsi (1:15)
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Differentiating Equation (1.15) generally gives us:

dFs ¼ gsdAs þ Asdgs þ
X
i

msidnsi þ
X
i

nsidmsi (1:16)

We can now equate Equations (1.16) and (1.14), recalling that the ‘SdT ’ term

is zero as we are working at constant temperature, to give the following:

Asdgs þ
X
i

nsidmsi ¼ 0 (1:17)

Dividing through by As gives us the relative adsorption of the components as

follows:

dgs ¼ �
X
i

Gsidmsi (1:18)

With a system with just two components, we can choose the Gds to give

Gs1 ¼ 0 and so remove the solvent from the equations. In addition, it is

convenient to use the chemical potential of the solute in the liquid phase (at

equilibrium, the chemical potential of each species, mi, is the same in each

phase) and we have the Gibbs adsorption isotherm, as follows:

dgs ¼ �Gs2dm‘2 (1:19)

The chemical potential is related to how much of the solute we have in the

liquid phase, that is, the activity of the solute:

dm‘2 ¼ RT ln a‘2 (1:20)

This now gives us a convenient means of estimating the relative adsorption of

the solute at the surface by measuring the slope of the curve of the surface

tension as a function of the natural logarithm of the activity:

Gs2 ¼ � 1

RT

dgs
d ln a‘2

� �
(1:21)

This equation is frequently used to estimate the amount of strongly adsorbed

material such as surfactants at the liquid surface. It will only be approximate

if the molar concentration is used as even though the solution concentrations

are usually low there are problems such as these are far from being ideal

solutions with an activity coefficient of unity. When there are several com-

ponents present, the algebra is only a little more complicated and general

expressions can again be found in the text by Everett [1].
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5 SURFACTANTS

Surfactants are molecules which have a chemical structure which makes it

particularly favourable for them to reside at interfaces. Hence, they are

termed surface active agents, or simply surfactants. Such molecules are a fre-

quent component of colloidal systems, whether man-made or naturally occur-

ring, and so it is of great importance to know how much resides at the

interfaces in our systems. It was shown above that the rate of change of

surface tension with the logarithm of the activity gives us an estimate of the

amount of the solute adsorbed at the interface. Now, we should use Equation

(1.21) to make all of the above algebraic manipulation worthwhile and to get

a feel for what the equation can tell us. The example that we will use is the

experimental data plotted in Figure 1.5 for a simple cationic surfactant in

water. The surfactant in this case is hexadecyltrimethylammonium bromide

(C16TAB). This consists of a straight 16-carbon aliphatic chain with the quar-

tenary ammonium group as the terminal group at one end. The ionic terminal

group carries a positive charge and is strongly solvated so that the long

aliphatic chain is carried into solution in water. The solution behaviour of

such surfactant molecules will be discussed in more detail in Chapter 2, but

represents a good example for our current purpose. An aliphatic chain of 16

carbon atoms is not very soluble in water and the result is that there is strong

adsorption at the water–vapour interface. The experimental curve of surface

tension against the concentration is given in Figure 1.5. The surface tension

shows a monotonic decrease up to a concentration of 9� 10�3 mol l�1.
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Figure 1.5. The surface tension as a function of concentration for heaxadecyltrimethy-
lammonium bromide in water.
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Beyond this, the curve is almost parallel to the x-axis. This point at which

this abrupt change in slope occurs is known as the critical micelle concentra-

tion (cmc). We will come to this shortly but let us concentrate on the first

section of the curve. First, we must recognize that we are using molar concen-

trations and not activities. Although the concentrations are low, the activity

coefficient will be slightly less than 1. Thus, our results will only be approxi-

mate but still of use. The limiting slope of the curve prior to the cmc is

1:18� 10�3, which yields a value from Equation (1.21) for Gs2 of

4:6� 10�6 molm�2. At 35 8C, we have the area occupied by a C16TAB mol-

ecule as 0:36 nm2. This is about twice that found for an undissociated fatty

acid which gives a close-packed layer at 0:19 nm2. The first thing to note is

that the trimethylammonium head group is a larger group than a carboxylic

acid group, but twice as big? Well, perhaps not. So, the second feature that

we should consider is that the group is positively charged. Like charges repel

and this acts to reduce the packing density.

Let us now consider the charge in more detail. We have a surface for which

we estimate from the surface tension measurements that there would be a

positive charge (i.e. 1:6� 10�19 C) for every 0:36 nm2 of surface. This gives a

measure of the surface charge density, ss, of � 45mCcm�2. Experiments

with solids, such as silver iodide, or oxides, such as titanium dioxide, yield

surface charge densities in the range 1� 15mCcm�2, and so this clearly

would be a very highly charged surface. Of course, the head groups are just

one half of the ion pair, while the bulky bromide ion is the counter-ion to the

surface charge and will be strongly attracted to the positively charged surface.

The binding of the counter-ions reduces the repulsion between the head

groups. The charge on the surface attracts the counter-ions but, as the con-

centration of the latter is high, diffusion acts in the opposite direction, tending

to dilute the concentration at the surface. The model for the surface now

consists of the hexadecyltrimethylammonium ions located in the surface with

the hydrocarbon tails extended into the vapour phase and the head groups

in a densely organized layer which is highly charged. The charge is balanced

by many counter-ions which are closely bound to the surface with the

remaining counter-ions in a more diffuse layer where the remaining

electrostatic attraction is balanced by diffusion. This concept of a charged

surface with a layer of counter-ions, some of which may be strongly bound,

and the remainder in a diffuse array is a key concept which helps us to

understand the behaviour of charged particles in a dispersion. This is known

as the electrical double layer and will be discussed more fully in subsequent

chapters.

This is an appropriate point at which to discuss the measurement of the

tension of the surface. The data presented in Figure 1.5 were obtained by

measuring the force exerted when attempting to pull a platinum ring out

of the surface. The equipment used for this was a DuNoüy tensiometer,
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although this is just one approach. Chapter 6 gives details for several other

methods. The inset shown in Figure 1.5 illustrates the geometry of the meas-

uring element. As a force is exerted on the ring support perpendicular to

the surface, the surface resists the displacement of the ring. In principle,

the force at which the ring will detach is given by the surface tension

in Nm�1 multiplied by twice the circumference of the ring (in m). (Remember

that the surface makes contact with both sides of the platinum wire of

the ring). A computer-controlled microbalance does this job very well. How-

ever, the points that we need to keep in mind here arise from the usual

condition in thermodynamic calculations that at some point we have required

the system to be at equilibrium. Thermostatting is of course a prerequisite.

The first problem that we must take care with is that the vapour phase

should be saturated. Hence, our system should be enclosed and sufficient

time taken for the vapour phase to come to equilibrium. This is particularly

important if the vapour pressure of the solute is significant when compared

to the solvent. This is not a problem with large molecules such as

C16TAB though. The second problem of equilibrium is, however, that at low

concentrations of surfactant a significant time passes before the molecules

in solution diffuse to the surface and equilibrium becomes established.

Each point of the curve shown in Figure 1.5 usually follows a dilution of

the solution and mixing. At concentrations close to the cmc, there are

many surfactant molecules close to the surface and equilibrium is quickly

attained. However, at the other end of the curve several minutes are needed

for consistent measurements to be achieved, repeat readings are necessary to

confirm the values and the time taken to produce the full curve can stretch

into hours!

The slope of the surface tension–log (concentration) curve increases steadily

as the surfactant concentration is increased. This tells us that the relative

adsorption of the C16TAB is increasing as more is added to the water. How-

ever, at the cmc there is an abrupt change in slope and what occurs now is

that the surface tension changes very little with more concentrated solutions.

What we find here is that above the cmc, where the surface is closely packed,

there are small aggregates of surfactant molecules in solution. In other words,

surfactant in excess of that required to give a concentration equal to the cmc

has self-assembled into ‘macro-ions’. Typically, the aggregation number of

surfactant molecules in a micelle is around 50–100 close to the cmc, with

diameters of a few nanometres. The core of the micelle can be pictured as

rather like a small oil droplet with the surfactant head groups located at the

surface. The latter moieties are strongly hydrated and the first two or three

carbon atoms of the tail near to the head group are close enough to be influ-

enced by the head group hydration. In fact, on the nanometre scale the

concept of a clear distinction between the outer edge of the hydrocarbon core

and the aqueous phase breaks down. This ability for surface active species to

22 Colloids and Interfaces with Surfactants and Polymers



self-assemble into various structures is extremely important in a wide range of

applications, from cell membranes to washing clothes.

It is also possible to use the variation in surface tension with surfactant

concentration to monitor the adsorption of the surfactant onto the surfaces

of particles in suspension. At equilibrium concentrations up to the cmc, the

procedure can be similar to a titration where a surfactant solution of known

concentration is added and the surface tension monitored without separating

the solids from the liquid. However, beyond the cmc the phases must be

separated, for example, by centrifugation, and an aliquot of the supernatant

removed and diluted carefully to below the cmc prior to the measurement.

The data presented in Figure 1.6 show the adsorption isotherm of C16TAB

onto a sample of china clay. For comparison, data obtained from radiochem-

ical assay are also given. The faces of the clay particles were negatively

charged and the edges positively charged at the pH of the experiment and so

the adsorption occurs on the particle faces. The isotherm shape is typical of

that of an high-affinity isotherm. Initially, the attachment is by the head

groups of the surfactant molecules leading to a monolayer, which results in

an hydrophobic surface and further adsorption occurs to give a bilayer. This

coverage occurs at an equilibrium concentration of the surfactant in the solu-

tion which is approximately half the value of the cmc. At much higher con-

centrations, there is evidence of yet further adsorption. The clay surfaces are

not simple though as they possess ‘steps’ and the adsorption close to the step

edges may require higher equilibrium concentrations. However, prior to
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Figure 1.6. The adsorption isotherm of heaxadecyltrimethylammonium bromide
on sodium kaolinite at 35 8C; data for adsorbed amounts below 4� 10�5mg g�1 were
obtained by independent radiochemical assay measurements.
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the adsorption of the surfactant, the clay particles are aggregated edge-to-face

in a ‘house of cards’ structure. As soon as the adsorption plateau is reached,

the particles are completely dispersed and the surfactant titration technique is

well suited to providing this type of adsorption data rapidly. At the plateau,

the area occupied by each molecule (calculating the face area from the specific

surface area measured by gas adsorption and reducing this by the fraction

corresponding to the edge area) is � 0:5 nm2 in each layer. (Note that this is

quite close to that found at the air/water interface at the same equilibrium

concentration.)

One of the main uses of surfactants is to provide stability to dispersions of

colloidal particles and the above titration technique provides a quick method

to determine how much surfactant is required. However, the molecules are

only physisorbed and not chemisorbed, and so care has to be taken when

additions to the system are made. If the system is diluted with solvent, then

surfactant will desorb until a new equilibrium is attained. To prevent this,

dilution should be carried out with a solvent phase containing the equilibrium

concentration of surfactant required to maintain the value where the adsorp-

tion plateau occurs. In addition to the provision of colloidal stability, surfac-

tants are also used to aid the wetting and hence the dispersion of powders in

liquids, as well as aiding the break-up of oil droplets in emulsification pro-

cesses, as we shall see in later chapters.

6 SOLUTION POLYMERS

Macromolecules or polymers, like surfactants, are often a key component in

colloidal systems and so it is important to introduce them here in this early

part of the text. The robustness of the stability against aggregation of many

colloids of biological origin is due to the presence of proteinaceous macro-

molecules on their surfaces. As an example of this we have to look no further

than the stabilization of the fatty acid droplets in milk which are stabilized by

casein. We often add polymers which will adsorb onto particles for this pur-

pose. However, nature has provided a very effective mechanism for keeping

particles apart by three components. Only part of the macromolecule adsorbs,

i.e. is attached. This leaves the rest which is solvated to expand away from the

interface and prevent other particles from close approach. The proteins are

also charged and the charges repel other particles too, thus adding to the

effectiveness of the stabilizing layer.

Synthetic polymers are also used as stabilizers. Homopolymers are not

much use as stabilizers, as if they are readily soluble in the continuous

phase they will not form strong effective attachments to the surface. Hence,

we emulate the smaller molecules like surfactants and make the poly-

mers contain some lyophobic blocks along the chain. Frequently, these
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polymers are of relatively low molecular weight, typically in the range of

5� 103 to 50� 103.

Polymers of higher molecular weights are also in common use though.

These are employed to alter the flow or sedimentation behaviour of colloidal

systems. For this reason they are termed ‘thickeners’ or ‘rheology modifiers’.

A polymer in solution increases the viscosity of that solution and high-mo-

lecular-weight material is particularly effective at this so that only a small

amount is required. When molecular weights > 106 are utilized, however,

problems in rheological behaviour become apparent. For example, droplets

do not break away from the bulk cleanly – we have a ‘stringy’ behaviour

which is due to a marked resistance to stretching. That is, the extensional

viscosity is high and applications such as spraying become difficult. One solu-

tion to this problem is to use a lower-molecular-weight polymer and make it

behave like a system of much higher molecular weight under quiescient condi-

tions, but like a lower-molecular-weight material upon application. This is

achieved by having a small mole percentage of lyophobic polymer material

on the backbone of the polymer, which results in a weak assembly of these

regions so that all of the polymer molecules are associated with each other.

This has similarities to the self-assembly of surfactant molecules and is be-

coming increasingly widely utilized.

It is interesting to note that when soluble polymers are added as a rheology

modifier to a colloidal dispersion, a synergistic effect is often observed. That

is, the relative increase in viscosity of the dispersion is markedly greater than

the relative increase found for the polymer solution on its own. What occurs

here is that solution polymer, which does not adsorb to the disperse

phase, produces a weak reversible aggregation of the disperse phase and

this increased interaction is observed as a further change in the rheological

behaviour.

Polymers with charged groups are known as polyelectrolytes and these can

be added as stabilizing agents for particulate dispersions or to cause aggrega-

tion. For example, poly(acrylic acid) produces a good dispersion of china clay

by adsorbing onto the edges which carry a positive charge. Positively charged

polyacrylamide can be used to remove negatively charged particulates by a

bridging mechanism which holds particles together and makes them easy to

separate. The polymer concentration required to do this is extremely low.

Too high a level could give complete coverage of the surfaces by the cationic

polymer and provide (unwanted) stability of the system.

7 SUMMARY

This introduction has defined what we mean by colloidal systems and has

illustrated how widely different systems can fit into this form of matter. The
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related systems of surface active molecules and macromolecules have also

been introduced and shown how they are intimate adjuncts to colloidal dis-

persions. A few common systems have been described which, although they

appear to be widely disparate, have some basic or generic aspects. These will

be a focus of this text and will show why the subject has a marked interdis-

ciplinary flavour.
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Chapter 2

Macromolecules and Surfactants

1 INTRODUCTION

Macromolecules and surfactants are added to nearly all formulations that

include colloidal particles. Macromolecules may be added to control the rheo-

logical behaviour as well as to control the stability of the dispersion. Surfac-

tants can be used as wetting agents to disperse dry powders, emulsifiers for

oil-containing formulations, and to provide stability against aggregation, as

well as being added as cleaning agents. Indeed, these molecules are so import-

ant to colloidal systems that we need to discuss their solution properties prior

to the discussion of colloidal particles.

2 MACROMOLECULAR DEFINITIONS

The term ‘macromolecules’ is used here to include synthetic polymers such as

poly(ethylene oxide), naturally occurring macromolecules, such as proteins

like gelatin, or polysaccharides like ethylhydroxy cellulose, or oligomers such

as cyclodextrin. In each case, the monomer or building block of the macro-

molecule is a small molecule. With synthetic polymers, the chains are often

hydrocarbons with side groups which give the correct properties. For

example, poly(acrylic acid) is water-soluble because of the polar carboxylic

acid group on every second carbon atom along the chain, whereas polystyrene

is soluble in aromatic hydrocarbons and not water as there is a benzene ring

attached to every second carbon atom. Sugar rings – glucose is a common

example – are the monomeric units of the polysaccharides, while amino acids

are the building blocks of proteins. We use the term ‘oligomer’ to indicate

that there is only a small number of monomeric units that are linked – may
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be ten or twenty, for example. Some chains are simple linear molecules while

others may be branched. This branching is taken to an extreme with dendri-

mers where each chain branch branches again and again to give a large

approximately spherical unit. Chains can be cross-linked, and if this is

achieved by covalent bonds, swollen gel particles can be prepared and

these are termed microgels. If the chains are lightly cross-linked by placing

a small amount of insoluble species on the chains, we have a weak self-

assembly and have synthesized an ‘associative thickener’. With a higher level

of self-association, we can produce highly swellable gels such as the ‘super

absorbers’.

If there are N segments bonded together in one chain (i.e. the degree of

polymerization is N) and the molar mass of each segment (monomer) is Mm,

the molecular weight of that chain is given by the following:

M ¼ NMm (2:1)

During the polymerization process, a distribution of chain lengths is

always produced [1]. Usually, the distribution is broad but some ionic-initiated

polymerizations can be controlled to give a narrower distribution than, for

example, a free-radical-initiated polymerization of a vinyl monomer. Hence,

we need to define the the various kinds of average molecular weight:

Measured by:

Number average: Mn ¼
X
i

Mini

ni
Osmotic pressure

Viscosity average: Mv Viscometry

Weight average: Mw ¼
X
i

Miwi

wi

¼
X
i

M2
i ni

Mini
Light scattering

Z-average: Mz ¼
X
i

M3
i ni

M2
i ni

Ultracentrifugation (2:2)

These averages increase in the order Mn < Mv < Mw < Mz, and so it is

important to define which method has been used to determine the

molecular weight. Although the detailed distribution is often not known

in detail, the width of the distribution is often characterized by the poly-

dispersity, P, which is defined in terms of two of the commonly measured

averages:

P ¼Mw

Mn

(2:3)

28 Colloids and Interfaces with Surfactants and Polymers



Polymer molecular weight standards, used for calibrating equipment,

for example, would have a value of P < 1:1, but polymers for bulk usage

usually have a polydispersity with a value of 3 or more. It should be

noted though that even a value of P ¼ 1:1 represents quite a broad distribu-

tion and will, of course, also depend on the details of the ‘skew’ in that

distribution. In practical usage of polymers, for example, as thickeners, this

wide distribution can be useful as the changes in viscosity with rate of shear-

ing the system is slower if the distribution is broad. Any property which

is dependent on the diffusive motion of the components will be affected

similarly.

3 CONFORMATION IN DILUTE SOLUTIONS

The texts by Flory [2, 3] present the classical descriptions of the solution

properties of polymers in dilute solution, while other important texts

include those by Yamakawa [4], deGennes [5] and Doi and Edwards [6]. The

starting point for the description of the conformation of a large

polymer molecule in solution is to use the statistics of a three-dimensional

random walk. At this stage, the problem is simpler than a description of

random motion, such as diffusion, because the step sizes are equal as each

step has a dimension equal to the monomer unit in the chain. By con-

sidering each bond as a vector and summing the squares, the mean-

square distance between the starting point of the chain can be calculated, so

that:

<r2c>¼ Nl2 (2:4)

where l is the segment length. This is for a freely jointed chain and no account

has been taken of finite bond angles, or the excluded volume interactions of

both neighbouring segments and distant segments along the chain that inter-

act as the ‘walk’ takes them back to cross the chain. For any real polymer

chain there are fixed bond angles, and rotation around the bonds is markedly

reduced if bulky side groups are present, and so the ‘walk’ is much more

spatially extended. In other words, a real chain is much stiffer than a freely

jointed one and the conformation is expanded, with the mean-square end-to-

end distance being expressed as follows:

<r2c>¼ c1Nl2 (2:5)

Here, c1 is the ‘characteristic ratio’, with some typical values being given in

Table 2.1.
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Table 2.1. Values of the characteristic ratio for various polymers

Polymer c1

Freely jointed chain 1
Tetrahedral bond angle 2
Poly(ethylene oxide) 4.1
Polydimethylsiloxane 5.2
Poly(12-hydroxystearic acid) 6.1
Polystyrene 9.5

The solvent chosen to dissolve the polymer is also important. In a good

solvent, a chain segment is surrounded by the maximum number of solvent

molecules that can be packed around it. In a poor solvent, there is an in-

creased probability of there being other chain segments around any particular

segment. (Thus, as the quality of the solvent decreases, the polymer chains

become insoluble.) The conformation of a polymer chain in solution is a

spheroidal coil which can be characterized by the root-mean-square end-to-

end chain dimension, as follows:

<r2c>
0:5 ¼ (c1N)0:5l Ideal solution

<r2c>
0:5 ¼ (c1N)0:6l Good solvent (2:6)

We may also characterize the coil dimension in terms of its radius of gyr-

ation, Rg. This is the average distance of the polymer segments from the

centre of mass of the coil:

R2
g ¼

P
i

mir
2
iP

i

mi

¼ <r2c>

6
(2:7)

The radius of gyration can be experimentally obtained from light scattering

measurements of dilute polymer solutions. It is interesting to compare the

dimensions of a polymer molecule dissolved in a good solvent with what we

would expect from the bulk density of the same polymer (Figure 2.1). We can

see from this figure that the dimensions of the molecule in solution are very

much greater than they would be in the dry state and so the concentration

of polymer within the coil in solution is very low indeed. It is important to

keep in mind that the ‘connectivity’ along the chain demands this very open

structure.
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Figure 2.1. The radius of a polystyrene molecule as a function of the (number-average)
molecular weight: (- - -) radius of gyration in a good solvent; (– – –) radius of an
amorphous sphere.

3.1 The Gaussian Chain

At first sight, it may appear that the model of a freely jointed chain would not

be a good picture of a real polymer with rigid bond angles, even though an

expansion factor has been included. However, if groups of several bonds are

considered, the co-operative effect is to add flexibility. Thus, the artifice is to

consider the chain segments as a larger unit which could contain, for example,

five bonds. This allows the flexibility to be reintroduced. The complication is

that the bond length is now a variable and so our random walk no longer has

the constraint of equal step lengths. This is now closer to the diffusion problem

and the result is that there is a Gaussian distribution of step lengths. Figure 2.2

presents a schematic illustration of part of a chain. The number of segments in

this example is N/5, with the mean step length from the Gaussian distribution

as l’, while l0=(l � 50:6) is taken care of in the value of c1 that we use.
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Figure 2.2. Schematic of a three-dimensional random walk with fixed bond angles
and fixed step lengths. The arrows indicate the increased flexibility introduced by
designating sections containing five bonds as one chain segment at the cost of variable
step lengths.

4 THE FLORY–HUGGINS THEORY OF POLYMER
SOLUTIONS

This theory [2, 3, 7] describes the thermodynamics of polymer solutions in

sufficient detail for the purposes of our present text. The starting point is

a simple lattice model. A cubic lattice is normally used, as this is easy to

visualize and there is no real gain in understanding from using other lattice

structures such as a tetrahedral one. The key feature of this lattice is that the

solvent molecules are assumed to be the same size as the segments of the

polymer chain. The entropy of mixing is estimated from the number of pos-

sible configurations on the lattice and the enthalpy from the interactions

between the various components.

4.1 The Entropy of Mixing

This is calculated from the number of ways that a polymer molecule can

occupy the sites on a filled lattice. Sites not occupied by chain segments must

be occupied by solvent molecules. Thus, there are ns lattice sites occupied by

solvent molecules with np sites occupied by polymer chains (illustrated in

Figure 2.3). The result is as follows:
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Figure 2.3. Illustration of a filled cubic lattice with solvent molecules surrounding a
polymer chain. Note that the lattice must be fully occupied and the solvent molecular
size is equal to the chain segment size.

DSmix ¼ �kB(nsln ws þ npln wp) (2:8)

The volume fractions, w, are given by the following:

ws ¼
ns

ns þNnp
; wp ¼

Nnp

ns þNnp
ws

wp

¼ ns

Nnp
, and so nswp ¼ Nnpws (2:9)

This is analogous to the problem of mixing two liquids except that volume

fractions have been used instead of mole fractions. The mole fraction of a

high-molecular-weight polymer in solution would always be very small, even

when the volume fraction is large, due to that high molecular weight. (If the

segments of the chain were not connected, we would just be mixing two

miscible liquids and DSmix ¼ �kB(n1ln x2 þ n2ln x1) where x is the mole frac-

tion of either the solvent, 1, or the solute, 2.)
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4.2 The Enthalpy of Mixing

Flory [2, 3, 7] calculated this by considering the local energy changes as we

mix polymer segments with solvent, as shown in Figure 2.4.

Therefore, the change in the internal energy is given by:

DUsp ¼ Usp � Uss �Upp

2
(2:10)

and the enthalpy of mixing by:

DHmix ¼ DUmix þ PDV

DHmix ¼ NcDUspþ � 0 (2:11)

The ‘PV ’ term can be approximated to zero, and so the number of contacts

per unit volume, Nc, is as follows:

Nc ¼ wsnpNz (2:12)

i.e. the number of contacts is equal to the probability of a site being occupied

by a solvent molecule, ws, multiplied by the number of polymer segments,

npN, and a coordination number for the lattice contacts, z. Therefore, the

enthalpy of mixing becomes (with Equation 2.9):

DHmix ¼ wpnsxkBT (2:13)

where we have defined x, which is known as the Flory–Huggins interaction

parameter, as the internal energy change per segment on mixing relative to

thermal energy as:

x ¼ DUspz

kBT
(2:14)

We may now write the free energy of mixing as follows:

DGmix ¼ DHmix � TDSmix

DGmix ¼ kBT(nsln ws þ npln wp þ nswpx)

DGmix ¼ RT(Nsln ws þNpln wp þNswpx) (2:15)

solvent solvent 2(solvent segment)segment segment

Figure 2.4. Interactions occurring on mixing polymer segments with solvent.
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where Ns, etc. are in molar quantities. Formally, Equation (2.10) should have

used a free energy component, so x really contains an entropy term; however,

as this is determined experimentally we do not generate practical problems by

this approximation. For a polymer in a good solvent, the value of x is found

to be between 0.5 and 0.1. Now that we have the free energy of mixing as a

function of the solution concentration, we may calculate the osmotic pressure

of the dilute polymer solution as follows [2]:

P ¼ RT

vs

wp

N
þ 1

2
� x

� �
w2
p þ . . .

� �
(2:16)

with vs as the molar volume of a solvent molecule. The significance of the

x-parameter can be immediately appreciated from Equation (2.16). When we

have the condition that x ¼ 0:5, the polymer/polymer interaction term van-

ishes and the osmotic pressure for the dilute solution and the osmotic pres-

sure relationship is similar to the van’t Hoff expression. Using the

relationships from the lattice model, Equation (2.16) can be recast in the

more familiar form:

P

cp
¼ RT

1

Mn

þ 1

2
� x

� �
vpN

M2
n

� �
cp þ . . .

� �
(2:17)

with cp as the polymer concentration in mass per unit volume and vp as the

molar volume of the polymer. The coefficient of the polymer concentration

on the right-hand side of Equation (2.17) is the osmotic second virial coeffi-

cient, B2, and is the slope of the curve of the reduced osmotic pressure as a

function of concentration, as illustrated in Figure 2.5. As the solvent proper-

ties are changed, by changing the temperature, pressure or composition, for

example, the value of x changes and the ‘quality’ of the solvent can be defined

as follows:

(1) x < 0:5 – we have a ‘good’ solvent for the polymer;

(2) x � 0:5 – the solvent is termed a u-solvent;
(3) x > 0:5 – the solvent is a ‘poor’ solvent, and as the value increases much

above 0.5, the polymer solubility reduces, even though it may be swollen

by the solvent.

For example, polystyrene is soluble in cyclohexane. The u-temperature is

38.5 8C, and so at 45 8C cyclohexane is a good solvent for polystyrene. At the

u-temperature, the conformation of the polymer molecule is minimally dis-

turbed by solvent–chain segment interactions and is as close to a random coil

as obtainable by that molecule.
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Figure 2.5. Schematic curves for the reduced osmotic pressure as a function of concen-
tration for the conditions (1) x < 0:5, and (2) x ¼ 0:5.

5 POLYMER SOLUTION PHASE BEHAVIOUR

When we consider the solubility of a solute in a solvent, our normal experi-

ence is for the solubility to increase as the temperature is increased and

conversely, if we cool a solution, at some temperature we will observe the

solute phase coming out of solution. This is the usual pattern with polymers

in a good solvent. When the system is cooled below the u-temperature, the

solvent becomes progressiveley poorer and two phases will be observed with

the polymer-rich phase being polymer swollen with solvent. The phase bound-

ary is known as the upper consolute solution temperature (UCST). Above this

temperature, a single phase is formed. In many aqueous systems, and occa-

sionally in some polar organic solutions of polymer, another phase boundary

– at the lower consolute solution temperature (LCST) – can be found where

phase separation can occurs as the solution is heated. Water-soluble polymers

contain polar groups such as hydroxyl, carboxylic acid or ether groups which

can take part in the hydrogen (H)-bonding structure of water. As the tem-

perature increases, the H-bonding is reduced, and the polymer ceases to be in

a good solvent and phase separation can occur. A general solubility diagram

is presented in Figure 2.6. This type of behaviour is also observed with non-

ionic surfactants in aqueous solution, with the LCST being termed the cloud

point.
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Figure 2.6. Illustration of a general solubility diagram: LCST, lower consolute solution
temperature; UCST, upper consolute solution temperature.

However, because of the connectivity of the groups making up a high poly-

mer, there are further subtleties in the phase behaviour of polymer solutions.

Consider a polymer in a u-solvent. In dilute solution, the polymer is as close

to a random coil configuration as it can obtain. As the concentration is

increased, the polymer molecules interpenetrate extensively as the interactions

between polymer segments, polymer/solvent and solvent molecules have simi-

lar energies in a ‘u-condition’. When the polymer is in a ‘better than u-solvent’,
the situation changes somewhat. At low concentrations (the dilute regime

illustrated in Figure 2.7(a)), the polymer coils are in an expanded configur-

ation and, on average, are separated from each other. Hence, if we were to

measure the concentration profile across a section of solution there would be

clear variations, as illustrated schematically in Figure 2.7(b). As the concen-

tration increases to a value denoted by c*, the polymer coils become ‘space-

filling’. The global polymer concentration is just equal to that which would be

calculated for a single coil, and so by using Equation (2.6) we have the

following:

c* � Mn

NA<rc>3=2
¼ Mn

NA(c1N)9=5l3
(2:18)

As the solution concentration increases, the variation in local concentration

becomes small as interpenetration increases, and the polymer solution is said

to be ‘concentrated’. This is illustrated in the lowest part of Figure 2.7(b).

(c** is the concentration where the individual coils are no longer discernible

and the chains are in their ‘ideal’ state). This boundary moves to higher con-

centrations as the temperature is increased to above the u-temperature. The

excluded volume interactions in the concentrated state result in the osmotic
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Figure 2.7. Schematics of (a) a polymer solution phase diagram, and (b) the concen-
tration variation across a polymer solution, showing the boundary from dilute to semi-
dilute as the coils ‘space-fill’ at c* and the approach to a uniform concentration at c**.

pressure continuing to increase with increasing polymer concentration, as well

as decreasing the diffusivity of the molecules.

In both the semi-dilute and concentrated regimes, each polymer molecule is

a component of a mesh due to the interpenetration of each molecule by its

neighbours. The mesh size is referred to as the correlation length and de-

creases with increasing concentration until the dimension is of the order of

the segment size in the melt state. Structural relaxation of the bulk system is

effected by the diffusion of the molecules. When they are part of an entangled

mesh, the net motion is by the wriggling or reptation [5] of each chain

through the mesh. The model for this motion [5, 6] is of a chain moving

through a tube. The dimensions of the tube cross-section are governed by the

mesh size as the walls are formed by the surrounding molecules. Of course, as

the concentration increases and the mesh size is reduced, the dynamics are

slowed.
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6 POLYMERS AT SURFACES

The starting point is to consider the interaction energy between the atoms or

molecules making up this third component with those between the solvent

and macromolecular species. If we use the concept of the Flory x-parameter,

then we may assign a value for the interaction with the surface by considering

the interaction energies between the polymer/solvent, polymer/surface and

solvent/surface. So, if the value of x < xsurf , the polymer will not absorb

(where xsurf is the polymer/surface value). Conversely, if the value of

x > xsurf , the polymer will adsorb. Detailed modelling has been carried out by

Scheutjens and Fleer [8], who used the lattice model at a surface and varied

the x-parameter over the first few layers. This enabled predictions of concen-

tration profiles to be made for both adsorbed homopolymers and adsorbed

copolymers. The profile has also been modelled as a ‘self-similar mesh’ by

deGennes [9, 10]. The details of the outer part of the concentration profile

become of interest in the discussion of particles stabilized by adsorbed macro-

molecules. Figure 2.8 illustrates the concentration profile for a non-adsorbing

polymer. To obtain a uniform polymer concentration right up to the inter-

face, the conformations in the different parts of the polymer would have to be

reduced as that part of the coil close to the surface becomes more concen-

trated. This is energetically unfavourable without a competing attraction from

the interface and the result is a depletion layer where the local concentration

is lower than the global average within a distance of � Rg away from the

surface. When the enthalpy change for the adsorption, coupled with the

depletion
layer
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Figure 2.8. Illustration of the closest approach of a non-adsorbing polymer coil to a
surface, showing the reduction in the local polymer concentration close to the surface
from the average value in the solution – the latter is termed the depletion layer.
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increase in entropy of solvent molecules displaced from the surface, is greater

than the decrease in entropy due to the restriction on polymer conformation,

the free energy is favourable for adsorption and the polymer will stick to the

surface. Figure 2.9 illustrates the type of conformation that occurs for a

polymer adsorbed from a u-, or better, solvent. In a poor solvent, of course,

the polymer will be adsorbed in a dense layer on the surface. Figure 2.10

shows the concentration profiles in the surface layer. Note that the tails pro-

ject further into the solution phase than the loops and so the total concen-

tration profile falls to that of the tails at the outer periphery.

Homopolymers are not usually added to colloidal systems to enhance the col-

loidal stability by adsorption. They are, however, frequently added as rheology

Tails

Loop

Trains

Surface

Figure 2.9. Representation of the conformation of a polymer adsorbed at an interface,
showing the features of ‘tails’, ‘loops’ and ‘trains’.
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Figure 2.10. Illustration of the concentration profile of an adsorbed polymer.
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modifiers (thickeners). Copolymers are much better candidates to act as stabil-

izers. The molecular design is chosen to be amphipathic so that part of the

molecule is in a ‘worse than u-solvent’, while the rest is in a ‘better than u-solvent’.
This provides strong attachment to the surface while maximizing the extension

of the soluble moieties. A variety of copolymer configurations are available and

are shown in Figure 2.11. Poly(vinyl alcohol) is prepared by the partial hy-

drolysis (e.g. � 80 %) of poly(vinyl acetate) and is a commonly used random

block copolymer stabilizer. The surface configuration adopted by such random

block copolymers will be similar to that illustrated in Figure 2.9.

The adsorption isotherms measured for adsorbing polymers are usually of

the high-affinity type so that when low amounts of polymer are added this is

all adsorbed. Figure 2.12 illustrates the type of curve frequently obtained in

A−B block copolymer

A−B−A block copolymer

A−B random block copolymer

(a)

(b)

(c)

Figure 2.11. Some examples of block copolymers: (a) A–B, e.g. poly(propylene oxide)-
co-poly(ethylene oxide); (b) A–B–A, e.g. poly(12-hydroxystearic acid)-co-poly(ethylene
oxide); (c) A–B random, e.g. poly(vinyl alcohol).
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Figure 2.12. Illustration of the type of high-affinity isotherm found for most adsorbing
polymers used for stabilizing colloidal particles.
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this case. The determination of an isotherm is usually carried out by equili-

brating aliquots of a dispersion with varying amounts of polymer, separating

the particles and carrying out an assay for the polymer in solution. This has

some practical difficulties, however. For example, the equilibration time can

be quite long – in some cases, it can be days. The lower-molecular-weight

species diffuse more rapidly and can occupy the surface first. Subsequent

displacement by larger molecules may then occur but this is slow due to the

‘multi-point’ attachment of the chains with the added complication of slow

surface motion to optimize the conformation. This behaviour makes the

mixing process important as the desorption and reorganization of polymer is

very slow. An added problem is that the equilibrium concentration of poly-

mer in the solution phase, close to the onset of full coverage, is low, thus

making the analysis difficult. When we use the dimensions of a polymer coil

given in Figure 2.1 above, and pack these together on a surface, monolayer

coverage corresponds to a value of the order of 1mg m�2. With the specific

surface area for many colloidal systems lying in the range 1 to 100m2 g�1, it
is clear from this that quite small amounts of polymer are sufficient to satur-

ate the surface of a dispersion.

7 POLYMER CHARACTERIZATION

The molecular weight is a key piece of information that we require for any

polymer system. There are several experimental options available to give us

such information. It is always useful to employ two different methods as this

will provide an insight into the polydispersity of the polymers that we are

using. At this point, it is worthwhile to briefly review the methods most

frequently used.

7.1 Intrinsic Viscosity

It is straightforward to obtain the viscosity of a polymer solution in a simple

U-tube viscometer where the time is measured for a known volume of solu-

tion to flow through a capillary tube [11]. The viscosity of a polymer solution

is described by the Huggins equation, as follows:

Z ¼ Z0[1þ [Z]cþ kH[Z]
2c2 þ � � � ] (2:19)

where c is the concentration of the polymer solution with a viscosity of Z, Z0

is the solvent viscosity, [Z] is the intrinsic viscosity, and kH is the Huggin’s

coefficient. The intrinsic viscosity is directly related to the size and shape of

the molecule in solution and therefore to the molecular weight, while the
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Huggin’s coefficient is a function of the pair-wise interaction of the molecules.

This equation could be extended to include higher-order interactions, but as

written is the low-concentration result. Equation (2.19) can be rearranged to

give the following linear expression:

Z
Z0
� 1

� �
c

¼ [Z]þ kH[Z]
2c (2:20)

The term on the left-hand side of Equation (2.20) is known as the reduced

viscosity. A plot of the reduced viscosity versus the solution concentration

gives a straight line with the intrinsic viscosity as the intercept. Experimen-

tally, the problem is that at low concentrations the relative viscosity, (Z=Z0),

is very close to unity so when we calculate the reduced viscosity we need data

of high precision. For example, if our viscometer had a flow time of 120 s, we

would like data to be reproducible to within 0.2 s. This requires a great deal

of care, cleanliness and excellent temperature control as the viscosity changes

exponentially with temperature.

The molecular weight can be obtained from the intrinsic viscosity by using

the Mark–Howink Equation:

[Z] ¼ KMa
v (2:21)

where K and a are constants for a given polymer and solvent pair. The value

of a is dependent on the quality of the solvent. In a u-solvent, a ¼ 0:5 and in

‘better than u conditions’ it can rise to 0.8. There is a comprehensive set of

data available in the literature [12]. Equation (2.21) was originally derived by

using polymers with narrow molecular weight fractions but, of course, with

the broad distribution that we usually work with, the value is an average. The

viscosity is a function of both the number density and the size in solution and

the average is in between the value we would calculate on the basis of number

and the average on the basis of weight.

7.2 Limiting Osmotic Pressure

The osmotic pressure–concentration relationship was given in Equation (2.17)

while the measurement of osmotic pressure provides a useful method of deter-

mining the molecular weight. The osmotic pressures of a series of solutions of

different polymer content are measured and a linear plot of P=c as a func-

tion of c should be obtained at low concentrations, as illustrated in Figure

2.13. The number-average molecular weight is obtained from the intercept

and the value of the x-parameter from the slope.
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Figure 2.13. (a) The reduced viscosity plotted as a function of concentration
for a polymer solution. The intercept yields the intrinsic viscosity and the slope is
kH[Z]2. (b) The reduced osmotic pressure plotted as a function of concentration for a
polymer solution. The number-average molecular weight is obtained from the intercept
and the 2nd virial coefficient from the slope, with the latter reducing to zero as x
approaches 0.5.

The type of osmometer used is dependent on the molecular weight of the

polymer. A membrane osmometer is used for Mn > 104 Da, while lower-

molecular-weight polymers are characterized by using a vapour pressure osm-

ometer. With a membrane osmometer, pressure is applied to the solution to

prevent the transfer of solvent across a microporous membrane. The vapour

pressure instrument measures the change in temperature of an evaporating

drop on the tip of a syringe. The higher the vapour pressure, then the faster

is the evaporative cooling rate. The vapour pressure of a solution is a func-

tion of the concentration and the molecular weight of the solute. The equip-

ment is calbrated with standard polymers of narrow molecular weight

distributions.

7.3 Angular Light Scattering

When light passes through a medium and penetrates a region where the

refractive index changes, light will be scattered radially from that region. A

dissolved polymer molecule is one such region and each molecule will scatter

light. The scattering of electromagnetic radiation is discussed in some detail

later in this volume. However, at this point we should recognize that the

amount of light scattered is a function of the number of scattering units per

unit volume, their size, and the difference in refractive index of the scattering

unit and the surrounding medium.

The simplest approach is to treat the scattering molecules as ‘point scatter-

ers’. As the dimension in solution has Rg as less than 5 % of the wavelength,

this is a good approximation. We measure the relative intensity of light scat-

tered at a given angle to give the Rayleigh ratio, R(Q), as follows:
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R(Q) ¼ Ir2

I0vs
(2:22)

where I is the transmitted intensity, I0 is the incident intensity, r is the path

length from the cell to the dectector and vs is the scattering volume. It is

convenient to measure the scattering at 908 and we can express the depend-

ence of the Rayleigh ratio on the concentration of a dilute polymer solution

as follows [13, 14]:

K1c

R(90)
¼ 1

Mw

þ 2B1c (2:23)

with the optical constant:

K1 ¼ 2p2n20

l4NA

]n

]c

� �2

(2:24)

being dependent on the incident wavelength, l, the refractive index of the

solvent, n0, and the rate of change of refractive index with polymer concen-

tration; B1 is the second virial coefficient and is dependent on the quality of

the solvent. In this case, the weight-average molecular weight is obtained

from the intercept of a plot of Equation (2.23) at zero concentration.

7.4 Gel Permeation Chromatography

When a polymer solution is passed slowly through a porous bed, or swollen

cross-linked gel, diffusion of the macromolecules means that they explore the

pores as they pass through. This slows the passage of the macromolecules as

when inside a pore, they are out of the flow and only pick up forward motion

when they emerge. Smaller molecules can explore small pores as well as large

ones with the result that they spend more time inside the pores. The net result is

that a separation occurs if the column is long enough. The larger macromol-

ecules emerge first, with the smaller fraction emerging last as the column is

eluted. The concentration of the polymer in the eluent is measured. A common

and convenient method for this is to measure the refractive index of the solu-

tion as it passes through. This provides a continuous electronic read-out. The

concentration can be calculated from a calibration curve of the refractive-index

dependence of solutions of the polymer being studied. The residence time on

the column is calibrated by using narrow-molecular-weight-distribution stand-

ards. This technique provides a molecular weight distribution and not just an

average value. In addition, the method may be scaled-up to provide a prepara-

tive route to small amounts of narrow-distribution material.
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Columns are available for both aqueous or non-aqueous systems. Adsorp-

tion of the macromolecules onto a chosen column material can prevent the

technique from being used successfully, and so the choice of an appropriate

packing material and solvent system is important.

The characterization of copolymers such as A–B–A block or hydrophobi-

cally modified polymers can present special difficulties. Such polymers are

synthesized so that part of the macromolecule is in a poor solvent. The result

is that some self-assembly may occur and lead to the measurement of aggre-

gates of macromolecules. Characterization of molecular weight needs to be

carried out in a solvent system which will suppress such aggregation. It must

then be recognized that the conformation in the solvent system used for the

final application may require some additional experimental work.

8 SURFACTANTS IN SOLUTION

A surfactant, or surface active agent, is a general term used to describe

molecules that interact with an interface. These consist of two parts, one of

which is highly soluble in one of the phases while the other is not. They are

small mobile molecules which are widely used in colloidal systems. For

example, they are used as soaps, detergents, dispersants, wetting agents and

germicides. Their structures consist of a hydrophobic tail which is usually a

hydrocarbon, although fluorocarbon and dimethylsiloxane chains can be

used, with a polar hydrophilic head group which may be ionic or non-ionic.

This type of molecular structure gives rise to the non-ideality of solutions of

surfactants and their phase behaviour. Figure 2.14 shows some examples of

different types of surfactant molecules. Surfactants are used in both aqueous

and non-aqueous systems and, although we usually think of the synthetic

materials that are manufactured in large quantities, there are some very im-

portant naturally occurring ones. For example, the surfactants present in our

lungs are vital for their operation, as are the bile salts produced by the

pancreas, and act to disperse dietary fat into colloidal size droplets (or chylo-

micra) which pass into the blood stream where they are utilized by the body.

The phospholipid lecithin is a constituent of cellular membranes. The fatty

acids are also surfactants and form the source of soaps, the manufacture of

which consists of basically producing the sodium salt in a high-concentration

phase which can be conveniently handled.

8.1 Dilute Solutions

We will mainly concern ourselves with aqueous solutions but it should be

kept in mind that analogous behaviours may be found in other solvents.

As surfactant is added to water, the molecules dissolve. In most cases, an
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Figure 2.14. (Plate 1). Some examples of different types of surfactants: (a) anionic; (b)
cationic; (c) non-ionic (EO, ethylene oxide).

increase in temperature aids this process but this is not universally true. In

solution, the polar head groups are hydrated – they can take part in the

H-bonding structure of the water. The hydrocarbon tails, on the other hand,

cannot do this and we can visualize a discontinuity in the structure of the

water around these tails. This has been referred to as a ‘cage’ and is cited as
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the origin of the ‘hydrophobic effect’. What this means is that for the tail to

be in solution there is a increase in free energy relative to the reduction in

the number of H-bonds, which we may think of as proportional to the area

of the ‘cage’. If several of these tails are brought together into an aggregate, the

surface area that is required to surround them would be less than the sum of

the areas of the individual ‘cages’. Furthermore, there will be an additional

enthalpic term from the van der Waals attraction between the tails. Opposing

this, of course, is the decrease in entropy associated with the clustering of the

chains, although the entropic term for the water increases. With ionic head

groups, the electrostatics oppose their close approach, but counter-ion binding

reduces this. In addition, water is also partially freed from the hydration sheath

of the head groups. Any interface, such as the air–water or oil–water interface,

also provides an opportunity for the tails to move out of the water structure.

With this picture in mind, let us consider the process of adding surfactant

to water in increasing amounts and changing the temperature in each case.

What we are doing, of course, is investigating the phase behaviour from a

series of isopleths (varying temperature at fixed concentrations). Figure 2.15

presents the type of phase diagram which we could expect. At low tempera-

tures, the solubility is low with surfactant molecules in equilibrium with the

surfactant solution. There is a critical point known as the Krafft point [15, 16],

and at temperatures higher than the value at this point (the Krafft tempera-

ture) the solubility appears to increase rapidly and the solution phase consists

of surfactant aggregates or micelles, as well as single molecules. Below the

Krafft temperature, micelles are not formed. The concentration at which mi-

celles are produced is known as the critical micelle concentration (cmc). The

latter varies with temperature above the Krafft temperature.

Concentration of surfactant

an isopleth

T
em

pe
ra

tu
re

Krafft point

L

Crystals + L

Micellar solution

Figure 2.15. Schematic phase diagram for a dilute surfactant–water system: L repre-
sents a ‘simple’ solution. The Krafft point is the critical point, and above the Krafft
temperature the solution consists of surfactant micelles as well as surfactant molecules.

48 Colloids and Interfaces with Surfactants and Polymers



8.2 Micellization

Provided that we keep our solution above the Krafft temperature for our

surfactant, there is clear evidence for a sharp self-assembly process occurring

at a particular concentration from a distinct change in the physical properties

of the surfactant solution. If the surface tension is measured for increasing

concentrations of surfactant in solution, the former decreases steadily as in-

creasing adsorption of surfactant molecules at the air/water interface disrupts

the local H-bonding and makes the surface more ‘oil-like’. The extent of the

adsorption can be calculated from the Gibbs adsorption equation, as dis-

cussed in Chapter 1. However, quite suddenly, the slope of the surface tension

versus concentration curve decreases to almost zero. This indicates that the

adsorption at the interface is now constant, although our solution concen-

tration is increasing. One explanation that might occur to us is that the

surface is now saturated by a monolayer and so no more sites are available.

However, then we find that other properties also change at the same concen-

tration. For example, the rate of increase in osmotic pressure fall dramatically

to a plateau. Light scattering experiments show a sharp increase in turbidity.

These latter two observations suggest that the increased amount of surfactant

that we have added is not in the solution phase. Measurements of the equiva-

lent conductance with increasing concentration show a marked decrease in

slope after the critical micelle concentration, so indicating that we now have

much less mobile charged units than we would expect from the individual

molecules of surfactant. Figure 2.16 illustrates the type of change that we

observe. Other measurements, e.g. by using NMR spectroscopy, also indicate

marked changes at the same concentration. All of these experiments provide

clear evidence of a phase change but with the formation of a sub-microscopic

phase. When we measure the size of the units of the new phase by light

scattering or neutron scattering, for example, this size is twice the length of

the linear surfactant molecule.

As the surfactant concentration is increased to a level a little above the

cmc, we have spherical units – micelles – with a diameter twice that of the

individual molecules, in addition to a constant concentration of single mol-

ecules. Attention was drawn above to the concept of the ‘hydrophobic effect’

andwemay think about themicelle in these terms. Consider some typical anionic

surfactants such as sodium dodecanoate or sodium dodecyl sulfate. In both

cases, there is a 12-carbon paraffin chain with a polar head group. The head

groups will remain in the water phase, with the tails in the spherical ‘oily’

phase. If the radius is larger than a stretched surfactant molecule, some of the

heads would automatically have to be buried in the oil phase, which would be

energetically expensive. At any given moment, some of the tails will be linear,

while others will be bent to fill the volume to give a density similar to that of

the bulk paraffin. With a CH2�CH2 distance of 0.127 nm, we can easily
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Figure 2.16. Schematic plots of the variation of certain physical properties of a surfac-
tant solution at the critical micelle concentration.

calculate that there would be 60 or 80 molecules per micelle for the dodecano-

ate or sulfate molecules, respectively (the latter having a longer head group). If

we take the diameter of a paraffin chain as 0.4 nm, we can compare the ‘water

contact area’ for the appropriate number of chains with that of the outer

surface of the micelle. Of course, we need to allow for the area occupied by the

polar head groups on the surface (0:2 nm2 per COOH group, for example).

When this is done, we find that about two thirds of the micellar surface consists

of carbon chains in contact with water, although this is only one sixth of the

area that would be in contact if the molecules were separated. In addition to

increasing the entropy of the water by freeing up the local structure, there will

also be a contribution from the hydrocarbon because its motion is less con-

strained than when restricted by the water ‘cage’. A detailed thermodynamic

treatment would include contributions from the mutual repulsion of the head

groups mitigated by the ion atmosphere around the micelle.

Of course, the question is ‘whether there is a variation in the size of mi-

celles around a mean value?’. To answer this, we need to consider the aggre-

gation process in a little more detail. Aggregation is a progressive process

which can be represented by the following multiple equilibria:

S1 þ S1 S2

S1 þ S2 S3

S1 þ Si � 1 Si, etc: (2:25)

50 Colloids and Interfaces with Surfactants and Polymers



which can be represented as follows:

iS1 ¼ Si (2:26)

where we have a single molecule, S1, forming a micellar aggregate, Si. The

equilibrium constant for this ‘reaction’ is given by the following:

Ki ¼ xi

(x1)
i

(2:27)

where x1 and xi are the mole fractions of the monomers and micelles, respect-

ively. The equilibrium constant gives the standard free energy of formation of

the micelle containing i monomers as follows:

DG0(i) ¼ �RT ln Ki ¼ �RT ln xi þ iRT ln xi (2:28a)

that is:

DG0(i)

RT
¼ iln x1 � ln xi (2:28b)

The standard free energy of formation of a micelle has contributions from the

following:

(a) a decrease as the hydrophobe–hydrophobe interactions replace the

hydrophobe–water interactions;

(b) an increase as we form an interface between the micro-phase of the mi-

celle and the surrounding water;

(c) an increase as we bring the hydrophilic head groups closer together by

concentrating the hydrophobes in one place.

Everett [17] has suggested the following equation for the standard free energy

of formation based on these contributions:

DG0(i)

RT
¼ �a(i � 1)þ b(i � 1)2=3 þ c(i � 1)4=3 (2:29a)

where the coefficients, a, b and c, have their origins in the contributions listed

above, with values that will vary with the chemical architecture of the system

For example, a will become increasingly negative as the chain length of the

hydrophobe increases and c would increase if the molecule had a charged

hydrophilic group To illustrate the implications of Equation (2.29a), we can

rewrite it with suitable numerical values for these three parameters, as follows:
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DG0(i)

RT
¼ �18:8(i � 1)þ 19:55(i � 1)2=3 þ 1:25(i � 1)4=3 (2:29b)

By combining Equation (2.29b) with Equation (2.27), we can compute the ratio

of the mole fractions of the micelles to that of the monomers as a function of i.

By using single molecule concentrations at � 10�2 M (which is a typical value

for the critical micelle concentration of a surfactant), we see from Figure 2.17

that there is a maximum in the curve at a value of i � 80. However, the

concentration has to get very close to the cmc before there is a significant

proportion of material in the aggregates (the numerical value of log (xi=x1)
must approach 0). If the concentration falls to around two thirds of the cmc,

the maximum disappears, thus indicating that aggregation would be absent.

As the concentration is increased to the cmc and a little above, we find that

the majority of the surfactant is present in aggregates and that these are of a
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preferred size. When we express the data as the ratio of the material in a

micelle with an aggregation number i to the monomer level as a function of

that aggregation number, it becomes quite clear that a preferred micellar size

is obtained with a sharp distribution around the modal value. We can con-

clude that at concentrations a little above the critical micelle concentration we

have a phase-separation process which gives a monodisperse or uniform-size

micro-phase. It is the balance between the opposing molecular interactions

that define the preferred size and prevents the separating phase growing indef-

initely. With ionic surfactants, the counter-ion type and charge play a part and

the micelle has to be modelled by taking into account the potential distribu-

tion around the sphere [18]. The value of the critical micelle concentration will

be a function of the electrolyte concentration as well as the temperature [19].

The micelles are not static, of course – the chains and head groups are

mobile. Bound counter-ions of ionic head groups, which neutralize 30–50 %
of the charge, are not associated with a particular group but are mobile

across the surface. Surfactant molecules can leave and rejoin micelles in a

dynamic equilibrium, with the residence time being of the order of 1ms. In
addition, we should not think of a micelle as being a permanent entity but a

‘unit’ with a lifetime of the order of 1ms. Even when there are oil-soluble

molecules dissolved in the interior of the micelle (this is known as solubiliza-

tion), the micelle is still not a permanent entity. The phenomenon of solubil-

ization will only extend the lifetime. Quite large molecules such as

naphthalenic dyes can be solubilized by micelles and this process causes the

micelle to increase a little in size. A typical micelle would only solubilize

about two naphthalene molecules and so the size increase is not great. Ali-

phatic alcohols with chain lengths of six to twelve carbon atoms also stabilize

the micelle by reducing the interactions between head groups. Figure 2.18

shows the variation of the cmc with chain length for a number of different

surfactants.

The above picture illustrates the phase behaviour at concentrations close to

the cmc. At higher concentrations, the problem becomes more complex and

other phase structures appear. Figure 2.19 shows some of the structures that

occur as the surfactant concentration increases. The most recently studied

structure is the long branched rod-like structures known as ‘worm-like’ mi-

celles, for which a large amount of literature has been produced in the past

fifteen years. The more organized structures, such as the liquid crystalline

mesophases illustrated as (3), (4) and (5) in Figure 2.19, have been known

since the early days of soap making when they were referred to as ‘middle’,

‘viscous’ and ‘neat’ phases, respectively. All of these four phases (2–5) are

viscoelastic but with different textures. The more fluid ones can be useful for

thickened detergent systems, with the lamellar phase giving us bar soaps.

Laughlin [16] has produced a particularly useful text describing the phase

behaviour and recognition of the various phases. The simplest way to observe
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Figure 2.18. The variation of critical micelle concentration with surfactant chain
length: s, CnEO6; j, CnTAB; m, CnSO4Na; d, CnCOONa (EO, ethylene oxide;
TAB, trimethylammonium bromide).
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Figure 2.19. Examples of some of the (self-assembled) phase structures that can occur
at temperatures above the cmc with increasing concentration of surfactant: (1) spherical
micelle (‘a’ as cross-section); (2) ‘worm-like’ micelle; (3) lamellar phase; (4) cubic phase;
(5) hexagonal phase.
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the phase behaviour is to place a small amount of the solid surfactant on a

microscope slide in contact with water. This is then viewed with a polarizing

microscope. In the contact zone between the solid surfactant and the water,

there is a progression of concentration from an isotropic solution through to

the solid phase. The refractive index is different in different directions for

both the hexagonal and lamellar phases. This results in quite distinct optical

patterns for each phase. With the cubic structure, the refractive indices are

the same along each of the three axes and no patterns are observed. The

sample can also be heated and the changes from one phase to another ob-

served. Usually, the phase behaviour is less sensitive to changes in tempera-

ture than it is to changes in concentration, that is, the phase boundaries do

not change very much as the temperature is raised, with the major change

being the loss of that phase as an isotropic solution is formed. With non-ionic

surfactants, the formation of a second, co-existing liquid phase is observed as

the cloud point. This is the result of the balancing of the hydrophobic effect of

the tails and the head group hydration. The latter reduces as the hydrogen-

bonding structure lessons with temperature and a second surfactant-rich

phase is produced, hence giving the clouding phenomenon. The addition of

electrolytes decrease the cloud point while the addition of co-solvents, such as

ethanol or propanol, increases the temperature at which we observe the phe-

nomenon. We need to operate close to the cloud point, ca. � 10 �C, if we

wish to use the surfactant efficiently as a dispersing aid [20]. This maximizes

the interfacial responsiveness of the molecules.

Other structures can also be found. Di-chain surfactants, such as lecithin,

for example, can form spherical bilayer structures. These may consist of just a

single bilayer – rather like a cell – and are known as vesicles. Spherical struc-

tures made up of multiple bilayers can also be formed. We can summarize by

noting that the richness of surfactant phase behaviour is due to the combin-

ation of packing constraints and the free energy changes associated with

hydrophobe–water interactions, the oil–water interface, and head group inter-

actions, which include charge for ionic surfactants – much easier to study

than to model!

8.3 Macromolecular Surfactants

This group of surfactants consists of large, mostly non-ionic molecules with

molecular weights in the range 1� 103 � 3� 103 Da. A variety of structures

can be produced, with the various types and their uses being given in a review by

Hancock [20], which includes, in addition, much information on short-chain

non-ionics. Just like short-chain surfactants, the molecules consist of a hydro-

phobic part and a hydrophilic part. Poly(ethylene oxide) chains are a common

choice for the hydrophile as this polymer has good water solubility at molecu-

lar weights > 103 Da. On the other hand, poly(propylene oxide) has poor
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Figure 2.20. The structures of some macromolecular surfactants [20]: EO, ethylene
oxide; PO, propylene oxide.

water solubility at this molecular weight and is therefore a useful choice as a

hydrophobe, either alone or in conjunction with other hydrophobic mol-

ecules. The structures of some commercially important macromolecular sur-

factants are shown in Figure 2.20. Such structures can vary from simple

linear block structures to sophisticated branched structures resembling

‘brushes’ or ‘combs’.

8.4 Choices of Surfactants for Applications

This is a major problem to most workers in the colloid field, especially when

the choice is not limited to those with government approval for the particular

product. Hancock [20] gives a useful review of the uses of small and large

non-ionic surfactants in a wide variety of applications. However, some gen-

eral observations are appropriate at this point. Short-chain anionic surfac-

tants are very widely used as stabilizers and wetting agents. These materials
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are mobile, adsorb to hydrophobic surfaces and form stable films. The sul-

fates and sulfonates are less vulnerable to the calcium ions in hard water than

the potassium salts of fatty acids, where the calcium binds strongly to the

carboxyl groups and precipitates the calcium salt as the familiar ‘scum’.

These materials are widely used as stabilizers and cleaning agents. The catio-

nics interact with biological membranes, which are invariably negatively

charged, and are useful as germicides. Coco-betaines and similar ionic mater-

ials have relatively low biological activity and can be found in personal-care

products such as shampoos. Short-chain non-ionics form more mobile, less

rigid films than similar chain length anionics and are useful in low-foaming

cleaning systems. The low rigidity of the surfactant films allows the thermal

fluctuations to become large enough to aid collapse of the films. Rigid films

damp out this motion and are thus more stable. These surfactants are also

useful as stabilizers in systems which have too high an electrolyte concentra-

tion for charge stabilization to work adequately.

Macromolecular surfactants do not make good wetting agents or emulsi-

fiers. For this purpose, we require small molecules which diffuse rapidly and

stabilize new interfaces by adsorption, building charge density and lowering

interfacial tensions in the process. However, macromolecular surfactants

make excellent stabilizers of emulsions or solid particles. The lower mobilities

and large moieties which are insoluble in the continuous phase mean that

they are reluctant to leave the interface. Typically, the molecular weights of the

soluble and insoluble parts of the molecules are similar. This maximizes the

interfacial concentrations of the stabilizing elements. We should also note

that these large molecules can show some self-assembly tendencies which can

result in multilayer formation at the interfaces, hence leading to even greater

stabilities. Poly(12-hydroxystearic acid)-co-poly(ethylene glycol) is a good

example of this. This surfactant is an excellent stabilizer of high-phase-volume

water-in-oil emulsions, such as can be found in cosmetic moisturizing creams.

The water droplets can be surrounded by a trilayer of surfactant in some

emulsions. In addition, the macromolecular materials are usually less sensitive

to temperature or electrolyte levels.

8.5 Proteins at Surfaces

Large protein molecules should also be thought of as macromolecular surfac-

tants, albeit with quite special properties as it is typical of biological systems

to have multiple roles. Proteins have a stabilizing function in naturally occur-

ring systems, with milk being a good example in which b-casein species stabil-

ize the fat droplets. Of course, proteins are also widely employed as stabilizers

in processed foods. However, it is not just in foodstuffs and pharmaceuticals

that they have applications. They have been used as stabilizers for inorganic

particles in paints, inks and photographic film, for example.
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Adsorption to a hydrophobic surface is by the attachment of the hydro-

phobic regions and may or may not involve the opening out of the protein

structure, i.e. denaturing of the protein, as it adsorbs [21]. Some proteins are

relatively unstructured (such as b-casein), while globular proteins have much

more structure which is little changed by adsorption. The attachment occurs

via a large number of segments, and like synthetic polymers, desorption is a

very slow (even unlikely) process, although if the system is challenged by the

addition of small mobile surfactants, desorption can be induced. These are

mobile enough to adsorb onto surface sites from where a protein segment has

temporarily desorbed, thus preventing reattachment. With an adsorption

energy of ca. 0:5kBT [21], we should visualize the adsorption at each site as

being a dynamic process but, with attachment at several hundred sites, this

will not lead to the loss of the whole molecule from the surface unless each

site is immediately taken up by a competitor.

Just as adsorption equilibrium is a slow process with synthetic polymers, so

it is with proteins. Rapid stirring, of course, limits the diffusion process to the

movement across the laminar boundary layer of fluid very close to the surface

but the approach to the final conformation and packing density can be a slow

process. In the final state, the stabilizing protein film provides a very robust

form of stabilization in the form of electrosteric stabilization (see Chapter 3).

There is an electrostatic component, although this is sensitive to pH changes

as the major component results from the presence of carboxyl groups. This is

enhanced by a steric component which resists the local increase in concen-

tration of the stabilizing moieties as two surfaces approach, as well as moving

the origin of the electrostatic component away from the surface. Finally, the

protein films are viscoelastic and this damps out the thermal interfacial fluctu-

ations, which produce coalescence of emulsions and foams.

Biodegradability is an additional advantage when using proteins as stabil-

izers, although this may be too rapid, and toxicity is less likely to be a

problem. The aliphatic alcohol ethoxylates are viewed as being acceptable in

their biodegradability behaviour, unlike the nonylphenol ethoxylates. The

toxicity of both to fish and other species though can be a problem in some

instances.
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Chapter 3

Interactions between Colloidal
Particles

1 INTRODUCTION

In Chapter 1, we started our discussion of colloidal systems with the influence

of size on the timescale of the motion of the primary components, that is,

the particles. In this present chapter, we will extend that discussion to how

the particles interact with each other and how these interactions result in the

various structures found in colloidal systems. This means that the focus will

be on describing the energies of the interactions. Usually, we will be thinking

in terms of a potential energy and will not be too concerned about kinetic

energy. It is also usual to think in terms of Newtonian mechanics. We can

visualize two particles close to each other, say at a centre-to-centre separation

of r, and ask how much work would we have to do to separate them to some

large distance apart. This is the potential energy of the particle–particle inter-

action and is termed the pair potential, u(r). This is calculated from how much

force is required to move the particles. So, if the force at distance r is f(r) then

we obtain the pair potential from the following:

u(r) ¼ �
ð1
r

f (r)dr (3:1a)

and of course:

du(r)

dr
¼ �f (r) (3:1b)
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Therefore, the particles can be thought of as though they are interacting via

‘colloidal springs’ and it is the nature of these springs that we need to de-

scribe. Let us also recall that the spring constant (or modulus) is the rate of

change of the force with the distance:

d2u(r)

dr2
¼ y(r) (3:2)

It is easier to deal with particles in an equilibrium state but we should never

forget the timescales as the systems that we use everyday may be far away

from their equilibrium state. Formally, the interaction energy is a free energy

which should include both the enthalpic and entropic contributions of all of

the components in the system, whether particles, solvent molecules, small

ions, surfactant molecules or polymer molecules. This means that any expres-

sion for the interaction energy between any two particles would take into

account an average contribution from all of the other components. This is

the potential of mean force. There are two approaches that are possible to

estimate this, i.e. we may determine it from the equilibrium structure of the

colloidal system, or we can produce a mathematical model of the system.

The former route may be possible in some simple idealized systems, although

the latter is very difficult to attain. Thus, what we will do is to try and esti-

mate the various contributions to the potential and then make the assumption

that they can be added together to give the total potential. In order to achieve

this, we will use relatively simple models which have enough information to

get us close to where we wish to go and give an adequate description of what

we observe. It is important to remember that these are simple models and we

should not be too surprised if they only agree with experimental results under

limited conditions. Often though, they will adequately serve our purpose.

There is an excellent publication by Isrealachvili [1] which gives a detailed

outline of both intermolecular forces and the interactions between particles.

As this present work is an introductory text, we shall be just working with the

salient features and if the interested reader should need more details, then the

cited text will supply it. A number of contributions to the interactions between

particles can be identified. Some of the interparticle forces work to bring

particles into close contact, while others act to separate them. As we shall see,

it is the interplay between these that results in the final state of our disper-

sions. If we understand the origins of these forces, it becomes possible to

modify them by control of the chemical environment or the chemical architec-

ture of the components of the dispersion. Each of the major contributions to

the net or total interparticle force can be described by using physical models.

These can become quite complex but they are also centred around quite

simple initial models. This makes it easy to understand the underlying con-

cepts even if the full manipulation becomes difficult, but then the application
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to complicated systems that we wish to use can appear a daunting prospect.

However, the same general principles apply and, although an accurate pre-

dictive calculation may not be within our reach for a particular product, the

choice of experiments will be much better focused.

2 INTERMOLECULAR ATTRACTION

The starting point for our discussion must be an examination of the forces

that occur between molecules. Some of these interactions are strong, and

hence are long-lived, such as the covalent bond, or the weaker, more transient

hydrogen bond. The origin of the attraction between particles does not lie in

these interactions but in the weaker interactions that are often referred to as

van der Waals interactions. These are the forces that account for the non-

ideality of gases and account for the deviations from the simple behaviour

described by the ideal gas equation:

PV

T
¼ NR ¼ nkB (3:3)

where the pressure is P, the volume V and the temperature T; n is the number

of gas molecules in the volume, or N if we use the number of moles, and kB is

the Boltzmann constant. There are several interactions that can occur which

are electrodynamic in origin and the traditional description separates these

into three distinct forms. We will discuss the origins of these but only at a

level sufficient to enable us to see the underlying mechanism for the attrac-

tion.

2.1 Keesom Interaction

It is not much of a surprise to find that the molecules in a gas such as

hydrogen chloride have a strong permanent dipole moment due to the polar-

ization of the covalent bond. The dipoles tend to align and this will be the

preferred arrangement. This dipole–dipole attraction is known as the Keesom

interaction and we can write the interaction free energy at an intermolecular

distance r as follows:

u(r)K ¼ �
CK

r6
(3:4)

where CK is a constant which depends on the particular type of molecule

being considered. For example, if we have two identical molecules of dipole

moment m:
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CK / m4 (3:5)

Because of the marked dipole alignment, the rotational motion of the mol-

ecules is restricted and we should be thinking of this as a ‘long-time’ inter-

action, that is, a low-frequency interaction.

2.2 Debye Interaction

This is the type of interaction that occurs between a polar molecule and a

non-polar one. The dipole on the polar molecule polarizes the electron cloud

of the non-polar molecule. The molecular rotation is still occurring and thus

we could think here of the frequencies associated with the interaction as those

in the microwave region. The interaction free energy for this dipole-induced

dipole interaction can be described by a similar expression to that used for

the dipole–dipole interaction (Equation (3.4) ). In this case, the polarizability

of the non-polar molecule is a key feature. It should also be recognized that

even for two polar molecules with different dipole moments the net dipoles

will be affected by interaction with the adjacent molecules. The following

equation illustrates this for molecules ‘1’ and ‘2’:

u(r) ¼ �CD

r6
(3:6)

and we note that the interaction constant, CD, for a system consisting of two

different molecules has the following dependence:

CD / a2m
2
1 þ a1m

2
2

� �
(3:7)

We are using an example with two permanent dipoles which will orient to

maximize the interaction and the timescales will again be long.

2.3 London or Dispersion Interaction

This describes the interaction that results in attraction between non-polar

molecules. It is due to the movement of the electron cloud around the atomic

nucleus resulting in a dipole that fluctuates. When two atoms come into close

proximity, the temporary dipoles become aligned, that is, the fluctuations

become coupled, and this is a preferred (or lower) energy state. Such a situ-

ation is illustrated in Figure 3.1.

The range of the interaction is similar to the two discussed previously but

the timescale of the fluctuations is now that of the electronic transitions and

so we should think towards the visible/ultraviolet part of the electromagnetic

spectrum. The interaction energy can be written as:
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Figure 3.1. The coupling of oscillating atomic dipoles which forms the basis of the
London (or dispersion) force between atoms.

u(r) ¼ �CL

r6
(3:8)

Now, the London constant, CL, for two similar atoms is proportional to the

ionization energy of the outer electrons, hnI, where h is the Planck constant,

and the polarizability, a, as follows:

CL / hnIa
2 (3:9)

and for two different types of molecule:

CL / h
nI1nI2

nI1 þ nI2

� �
a1a2 (3:10)

It turns out that this is a particularly important type of intermolecular inter-

action. This is because it is much larger than the Keesom or Debye contribu-

tions in nearly all cases of colloidal materials. Water is a notable exception,

with the dispersion interaction contributing only a quarter of the total. An

important feature of this interaction is that there is only a weak tendency to

change the orientation of neighbouring molecules. In the solid phase, this is

important as the fluctuations can still couple without requiring motion of the

molecules to maximize their alignment, as would be the case for molecules

with permanent dipoles.

Let us now consider the implications of this ‘attractive’ interaction with the

normal alkane series. These have particular relevance to many colloidal

systems as many of our surfactant systems have a linear aliphatic chain as one

element of their composition. This element has a tendency to self-assemble

at interfaces where the chains come into close proximity. The cohesive energy

of the solid hydrocarbon is estimated from the measured latent heats of

melting and vaporization. Here, we will use the data given by Isrealachvili [1]
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Figure 3.2. The latent heat of sublimation for a series of linear alkanes,
HCH2�(CH2)n�H [1].

and use his simple model calculation. Figure 3.21 shows the value of the molar

cohesive energy as �CH2� groups are added to the chain. The slope gives the

value per additional �CH2� as 6:8 kJmol�1. This is equal to � 2:75kBT at

25 8C, showing that these non-polar molecules are quite ‘sticky’. Taking each

chain as being surrounded by six nearest neighbours, and summing the inter-

actions over the neighbouring groups up and down the chain, as well as around

it, gave a value of � 6:9 kJmol�1.
This simple result is a very important illustration of how the dispersion

forces can apparently be additive to a good approximation. This will lead us

to consider the behaviour of the relatively large groups of molecules that

make up colloidal particles. However good this approximation appears to be

in some simple cases, it should be remembered that the interaction of each

1This figure shows the mathematical relationship for the straight line drawn through the experi-
mental points. R is known as the correlation coefficient, and provides a measure of the ‘quality of
the fit’. In fact, R2 (the coefficient of determination) is used because it is more sensitive to changes.
This varies between �1 and þ1, with values very close to �1 and þ1 pointing to a very tight ‘fit’
of the data.
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molecule is affected by all of the neighbouring fields and so that pair-wise

additivity is only an approximation.

2.4 A More Generalized Approach

All of the three interactions described above are based on the attraction

between dipoles and have the same distance-dependence. Therefore, we can

expect that we could handle these in one general description. The London

constant shown in Equations (3.9) and (3.10) is written as depending on the

ionization of the outer electrons. Other electronic transitions also take place

so that contributions at other frequencies can also occur. Thus, we must think

in terms of the full range of frequencies ranging from those of a few hertz up

to the ultraviolet region at � 1016 Hz. Furthermore, we have only considered

pairs of atoms or molecules interacting in the absence of any intervening

medium. The dielectric constant, or relative permittivity, of the medium is the

important factor here. If a sphere is placed in a medium of the same permit-

tivity and an external field applied to the system, the sphere will not be

polarized. If it has a dielectric constant which is either larger or smaller than

the medium, then it will be polarized. This effect is the basis for electro-

rheological fluids whose solid/liquid properties are readily and rapidly con-

trolled by the application of an electric field. In order to achieve the high

fields necessary for strong effects, the choice is to use a low dielectric constant

for the medium with a higher value for the material making up the particles.

It is the difference in dielectric constant which is important and we should

think in terms of an ‘excess polarizability’ [2]. It is important to recognize

that for the case of permanent dipoles there is an alignment contribution to

the polarizability as well as the electronic component. It is only the latter, of

course, that we need to consider with non-polar molecules but the full spec-

tral range would need to be included for full prediction. The dielectric behav-

iour as a function of frequency to give e(n) is a tractable experiment at lower

frequencies and the refractive index, n(n), is a viable measure of the dielectric

behaviour at the higher end of the spectrum (recall that e(n) ¼ n2(n)).
The general description of the interaction was given by McLachlan [3] as a

summation over the range of interaction frequencies for molecules ‘1’ and ‘2’,

interacting in a medium ‘3’, as follows:

u(r) ¼ � 3kBTa1(0)a2(0)

(4pe3(0)e0)
2r6
þ 6kBT

(4pe0)
2r6

X1
n ¼ 1

a1(in)a2(in)

e23(in)

" #
(3:11)

This summation is carried out over all frequencies so that all of the inter-

actions are captured. The first term on the right-hand side of the above

equation is the ‘zero-frequency’ term. Values for the latter are what we will
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usually find in data tables. The second term on the right-hand side of the

equation contains the contributions for all other frequencies, with the steps

being in terms of kBT :

n ¼ nnh

2p

� �
kBT= (3:12)

However, this term uses the frequency dependence of the polarizability at

complex frequencies, in. Here, i indicates the quadrature or imaginary com-

ponent of the frequency. This is the dissipative component as we are looking

at the interaction of the oscillating electromagnetic field with the molecules

and not the transmitted component of the field.

3 COMPLEX NUMBER MANIPULATION

We need to use complex number notation whenever we wish to describe the

behaviour of oscillating fields. This is something that we have to do frequently

in physical science. For example, we will use this in the later chapter in this

volume which deals with rheology when, for example, we describe what

happens when we apply an oscillating force mechanically to a concentrated

colloidal system. Here, we use the algebra to separate the elastic storage of

work done from that dissipated by viscous flow. (The response is similar to

that we would get from oscillating a dampened spring such as that used in an

automotive suspension unit.) Another common example is that of an AC

electric circuit with a capacitor and a resistor in series. At zero frequency (DC

voltage), we can store electrical energy in the capacitor and we would have

little interest in the resistor. As we increase the frequency of the AC voltage,

we store less in the capacitor and dissipate energy in the resistor. Let us come

now to examples closer to the subject of this chapter and consider electromag-

netic radiation. In the usual science courses, we learn about spectra and how

the applied radiation interacts with matter. We are familiar with the fact that

light can pass through a solution but we may find the intensity reduced at

some particular frequencies, perhaps in the UV, the IR and the microwave

regions. However, at the same time we talk of a refractive index. What we

mean here is what we would measure by transmission at some frequency. It is,

in fact, a complex number in which we should include dissipative terms as well

as storage, just like the AC circuit. The same applies to dielectric constants.

We are referring to the static (low-frequency plateau) value. We can carry out

the measurements at say 103 Hz and at higher frequencies we find interesting

behaviour as polar molecules respond and give dissipative contributions as the

timescales become too short for their motion.
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P= x + iy= r(cos θ + isin θ)

Figure 3.3. Illustration of complex number notation.

Initially, the use of complex number algebra appears much more difficult to

many scientific workers than is actually the case. The biggest barrier is the

nomenclature as when we say the number P ¼ xþ iy, where i2 ¼ ffiffiffiffiffiffiffi�1p
and

that x is the real part of P and y is the imaginary part! All we have to

remember is that the ordinary rules of algebraic manipulation apply and that

whenever we arrive at i2 we write �1 and also remember that 1=i ¼ �i. Even
this looks a little intimidating without some practice. It is useful just to think

of the notation as a simple way of writing down how we are dividing P, the

numerical value that we measure, into two contributions, x and y. Figure 3.3

shows this in graphical form, where P is given in both Cartesian coordinates

and polar coordinates.

To illustrate how this works, let us consider the polarizability, which is a

function of frequency. We can write the total polarizability as the sum of any

dipole (permanent or induced) alignment term, aa(n), and the electronic

polarizability of a molecule, ae(n) which is responsible for the dispersion

force [1, 4], as follows:

a(n) ¼ aa(n)þ ae(n) (3:13a)

This may be written in more detail as:

a(n) ¼ m2

3kBT(1� in=nrotation)
þ ae

1� (n=nI)
2


 � (3:13b)

where nrotation is the rotational frequency of the dipolar molecule and nI is the
ionization frequency (so here we are assuming that there is only one absorp-

tion frequency, nI).
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The quadrature (imaginary) component is:

a(in) ¼ m2

3kBT(1� i2n=nrotation)
þ ae

1� (in=nI)
2


 � (3:13c)

while for the range of n frequencies we obtain:

a(inn) ¼ m2

3kBT(1þ nn=nrotation)
þ ae

(1þ nn=nI)
2

� �
 (3:13d)

Therefore, the utilization of Equation (3.11) should appear less daunting as

the frequencies are just those where we observe adsorption. Consider now the

situation where we have two similar non-polar molecules interacting in a gas

– methane would be a good example. Equation (3.11) becomes (e3 ¼ 1 as the

interaction is across a vacuum):

u(r) ¼ � 3kBTa2
CH4

(0)

(4pe0)
2r6

þ 6kBT

(4pe0)
2r6

X1
n ¼ 1

a2
CH4

(in)

" #
(3:14)

Wecan replace the summationby an integration.UsingEquation (3.12),wehave:

dn ¼ (h=2pkBT)dn (3:15)

and so:

u(r) ¼ � 3kBTa2
CH4

(0)

(4pe0)
2
þ 3h

(4pe0)
2p

ð1
n1

a2
CH4

(in)dn

2
4

3
5 1

r6
(3:16)

In Equation (3.16), when frequencies approach the visible range, the second

term on the right-hand side becomes dominant. At frequencies below the

microwave region, only the first term on the right-hand side is important and

this is, of course, a constant. Methane has no permanent dipole and so the

frequency-dependent polarizability from Equation (3.13d) is:

aCH4
(in) ¼ aeCH4

1þ (n=nI)
2

(3:17)

Substituting this into Equation (3.16) and integrating yields the London dis-

persion result as we are just using the ionization frequency:

u(r) � � 3h

(4pe0)
2
a2
eCH4

nI

� �
1

r6
(3:18)
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Figure 3.4. Variation of the frequency-dependence of the quadrature component of the
polarizability of methane.

Hence, we may write the interaction energy with the London constant as

follows:

u(r) ¼ �CL

r6
(3:19)

The electronic polarizability for methane is 2:89� 10�40 C m2 J
�1

and the

ionization frequency is 3:05� 1015 s�1, which gives a value of CL ¼ 1:02
�10�77 J m6.

A plot of a2
CH4

(in)n as a function of n is given in Figure 3.4 and this shows

the spectral region which dominates the attraction between the methane mol-

ecules. Note how it is centred in the ultraviolet where we are accustomed to

seeing electronic excitations.

4 DISPERSION FORCES BETWEEN PARTICLES

We now have some understanding of how atoms and molecules attract each

other. In addition, we have indicated that considering the dispersion forces to

be additive can be a reasonable approximation as we start to work with larger

molecules. This clearly has importance when we are going to consider surfac-

tants and polymers, but it may seem surprising that we can extend this

approximation to describing the interaction between two particles. This
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Figure 3.5. The summation of the atomic dipolar interactions between two slabs of
material.

approach laid the foundation for our understanding of why particles coagu-

late and was pioneered by workers such as de Boer [5], Hamaker [6], Derja-

guin [7] and Langbein [8] using London’s approximation based on the

interaction at a frequency around the ionization frequency. This is where we

will begin.

The starting point is to consider the interaction between a single molecule

and a slab of material and then extend this to two slabs interacting. As we are

assuming that the energies are additive, we simply use Equation (3.19) and

add up the interactions between our reference molecule and all of the mol-

ecules in the slab of material (illustrated in Figure 3.5). Therefore:

interaction energy ¼ sum for molecules with each in lower slab

Next, we add this up for all of the molecules in the upper slab and so we now

have:

interaction energy ¼ sum of all molecules in upper slab

� (sum for molecules with each in lower slab)

The problem is that in order to calculate r for each interaction we would need

to know the detailed structure. It is simpler to use the number density of

molecules in the slab, rN, and to integrate over the volumes. This ‘semi-

continuum’ approach is in the spirit of the additivity assumption and would

only become a problem at very close separations. This results in the energy as

follows:

interaction energy ¼ CLr
2
N (a geometric term)
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and we have a general approach which has the characteristic of the material,

i.e. the electronic polarizability, the ionization frequency, and the square of

the product of the density and the molar mass as a front factor to a term

based on the shape of the material and the separation distance between the

two bodies. Depending on the shape of the two particles, solving the integrals

can be non-trivial but it is essentially a problem of geometry and calculus and

not one of physics. Examples of the algebraic manipulations are given in the

literature [1, 9, 10], although the purpose of this present text is just to illus-

trate the underlying mechanisms of colloid science. So, for example, for two

slabs which we can consider to be infinitely thick, the energy of unit area of

one slab interacting with the whole of the other slab is:

VA ¼ �pCLr
2
N

12H2
(3:20)

Here, VA is used to represent the dispersion energy between two slabs a

distance H apart and is the energy per unit area of surface. The numerator is

the material property and the denominator arises from the geometry. It is

common to express the material properties as a single material constant, i.e.

the Hamaker constant:

VA ¼ � A11

12pH2
, where A11 ¼ p2CLr

2
N1 (3:21)

The subscript ‘11’ indicates that the interaction is between two slabs of the

same material. So, if we had a slab of material ‘1’ interacting with material

‘2’, the Hamaker constant notation would indicate this, namely:

A12 ¼ p2CL12rN1rN2 (3:22)

If the ‘semi-infinite’ slabs are replaced by plates of finite thickness, t, Equa-

tion (3.21) has a slightly more complicated form:

VA ¼ � A11

12p

1

H2
þ 1

(H þ 2t)2
� 2

(H þ t)2

� �
(3:23)

Equation (3.23) was used to calculate the attractive energy for two small

plates as a function of thickness, using a value of A11 of 10�19 J and plate

areas of 0:1mm2. These values would be similar to those found for clay

particles. It is clear from Figure 3.6 that the finite thickness of the plate is

only important for thin plates and also that the variation of the interaction

with distance is greater for thin plates.
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Figure 3.6. Variation of the energy of attraction with the thickness of two plates, using
Equation (3.23): �, thickness ¼ 10 nm; þ, thickness ¼ 20 nm.

However, we still have the energy of attraction equal to the product of a

material constant and a geometric term which has been derived from an

integration over the particle volumes. This is the case whatever the shape of

the particles. For example, if we have two identical spheres of radius a and

centre-to-centre distance r, then when the spheres are close together the at-

tractive energy is:

VA(r) ¼ � A11a

12(r� 2a)
(3:24a)

or:

VA(H) ¼ �A11a

12H
, with H ¼ (r� 2a) and H � a (3:24b)

Here, H is the closest distance between the surfaces of the spheres. This

represents the total energy of interaction and not an energy per unit area

of surface. The more general expression for two spheres of radii a1 and a2
is [6]:
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Figure 3.7. Illustrations of interactions between different geometric forms: sphere–
sphere; sphere–plate; parallel cylinder; crossed cylinder. Note that the latter is equivalent
to the sphere–plate interaction if both cylinders have the same radius.

VA(r) ¼ �A11

6

2a1a2

r2 � (a1 þ a2)
2
þ 2a1a2

r2 � (a1 � a2)
2
þ ln

r2 � (a1 þ a2)
2

r2 � (a1 � a2)
2

" #( )
(3:25a)

and if the spheres are the same radii:

VA(H) ¼ � A11

12H
1þ H

2aþH
þH

a
ln

H

2aþH

� �� �
(3:25b)

The problem in calculating the dispersion interaction is the determination of

the geometric term which can become quite complex for relatively simple

geometric forms (see Figure 3.7). Some of these, such as parallel cylinders,

Interactions between Colloidal Particles 75



crossed cylinders and a sphere and a plate (the latter two result in the same

geometric factor), are given in the literature [1, 9–11]. For example, when a

spherical particle is close to a plate we have:

VA(H) ¼ �A12a

6H
(3:26)

A moment’s inspection of Equations (3.24b) and (3.26) shows that the inter-

action of a sphere with a thick plate has a geometric factor which is twice that

of two similar-sized spheres.

It should be noted that in Equation (3.26) we are considering the material

of the sphere to be different from that of the plate – hence the notation A12.

This is an appropriate point to include a consideration of the additional

problem of when our particles are immersed in a continuous medium and

what effect that this will have when compared to the case of two particles in

vacuo. The effect of the particles being immersed in a medium is to reduce the

net interaction. If, for example, the Hamaker constant of the medium ap-

proaches that of the particles, the attractive interaction approaches zero. We

must think in terms of a net or effective Hamaker constant. There are ap-

proximate estimates that we can use to estimate the effective Hamaker con-

stant (for example, see Hunter [9]). If we have particles of types ‘1’ and ‘2’

immersed in a medium ‘3’ we can write the effective Hamaker constant as the

sum of the particle–particle and medium–medium interactions for identical

volumes across a vacuum, minus the cross terms:

A132 ¼ A12 þ A33 � A13 � A23 (3:27a)

If the two particles are of the same material, this, of course, becomes:

A13 ¼ A11 þ A33 � 2A13 (3:27b)

Now, if we make the assumption that:

A2
jk ¼ AjjAkk (3:27)

then we may write Equations (3.27a) and (3.27b) as follows:

A132 � A
1
2

11 � A
1
2

33

� �
A

1
2

22 � A
1
2

33

� �
(3:28a)

and:
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Figure 3.8. The attractive interactions between 2mm tetradecane spheres in
water, both with each other and with the polystyrene container wall: (–.–.–) C14H30

sphere–sphere; (----) C14H30 sphere–wall: AC14 ¼ 5:2� 10�20; AH2O ¼ 3:7� 10�20;
APS ¼ 6:6� 10�20.

A13 � A
1
2

11 � A
1
2

33

� �2
(3:28b)

As an example of how these equations are relatively simple to use, let us

consider the situation where we have oil droplets (say n-tetradecane), which

are 2mm in diameter, dispersed in water with the dispersion in a polystyrene

(ps) container. Figure 3.8 shows the interactions between the individual drop-

lets and between the droplets and the container wall at close approach. In this

figure, the interactions were calculated by using Equations (3.24) and (3.26)

with the effective Hamaker constants from Equations (3.28) for the cases of

sphere– sphere and sphere–plate interactions. This figure illustrates that first

there is a strong attraction in both cases, even at distances of tens of nano-

metres, and secondly that the stronger attraction is between the oil droplets

and the wall of the container. This is partially because the sphere–plate inter-

action is twice that of two similar spherical particles, but also because the net

Hamaker constant for the interaction is larger. Although both are simple

hydrocarbons, polystyrene is a denser molecule with a large amount of aro-

matic character giving a different electronic polarizability.
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5 RETARDED DISPERSION FORCES

The range of the separation axis shown in Figure 3.8 is limited for several

reasons. At close separations, the detailed surface structure becomes a

limiting factor. We have assumed an atomically smooth surface. This can

only be the case for a limited number of conditions such as fluid surfaces, or

solids such as carefully cleaved mica. Even with these surfaces there is a limit

as the surfaces approach. This occurs as the electron orbital overlap becomes

significant. At this point, the free energy becomes dominated by a very short-

range repulsion. This is known as Born repulsion and is found as the inverse

r12 dependence in the well-known Lennard–Jones–Devonshire equation [12].

The former limitation though is of even greater importance in most practical

systems as we have often intentionally adsorbed material to mitigate the

interaction and the outer periphery of any adsorbed layers will not be as

well defined as the surface of the adsorbing particle. (The properties of the

layer should also be taken into account in estimating the attraction between

the surfaces.) The upper limit in Figure 3.8 is partially due to the restrictions

for the use of the simplified forms of Equations (3.24) instead of the full

Hamaker expressions, Equations (3.25). However, there is another feature

that we must discuss at this point. As the distance between the particles

increases, the correlation of the oscillating atomic dipoles becomes poorer

and the free energy decreases at a greater rate than we would have predicted.

This is due to the timescale of the field propagation when compared to the

timescale of the oscillation. This is termed retardation of the dispersion inter-

action.

The field propagation time is equal to the separation distance between

our surfaces divided by the velocity of light in the intervening material. So,

for example, if we consider two surfaces separated by a distance of 30 nm, the

propagation time from one surface to the other and then back would be

� 10�16 s. Now, the frequency of the radiation where the strongest inter-

actions are occurring is usually in the near-UV region and so the propagation

time represents the time taken for a significant part of an oscillation to occur.

In other words, the oscillations will no longer be quite ‘in-phase’ (i.e. the

dipoles are no longer completely aligned) and the attraction is weakened.

This weakening will become most marked for the higher-frequency contribu-

tions. So, we can conclude that we may have a good approximate description

of the attraction between particles at close separation but at separations

> 30 nm the values calculated will overestimate the interaction. The indica-

tion is also that there should be a frequency-dependence of this effect and a

different approach might be sought.
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6 THE GENERAL OR LIFSHITZ THEORY OF DISPERSION
FORCES BETWEEN PARTICLES

There is an additional problem with particles that are dispersed in a medium

such as an electrolyte solution. This is that the low-frequency contributions

(i.e. in the extreme case, the interactions of permanent dipoles) are heavily

screened by the ionic environment and the low-frequency interaction falls off

more rapidly with distance than would be the case in a vacuum. This indi-

cates that we can expect to be running into difficulties with the Hamaker

model and should see if the more general approach that was introduced

above will help us.

The starting point is to consider two slabs of material, ‘1’ and ‘2’, interact-

ing across a medium ‘3’. We need to think of each of these materials as slabs

of a dielectric material with static dielectric constants of e1(0), e2(0) and e3(0).
The interaction energy is a material property (the Hamaker constant) multi-

plied by a geometric factor. Equation (3.22) defined the Hamaker constant

for us and so for the two slabs acting across medium 3 we have:

A132 ¼ p2CL132rN1rN2 (3:29)

The London term, CL132, is given by Equation (3.11) (McLachlan’s equation)

which includes the polarizabilities of the molecules making up 1 and 2. The

bulk polarizability of slab 1 in the medium 3 can be written in terms of the

molecular properties of the material in 1 and the measurable macroscopic

dielectric properties, as follows:

rN1a1(in) ¼ 2e0e3(in)
e1(in)� e3(in)
e1(in)þ e3(in)

(3:30)

The frequency-dependent Hamaker function is then [1]:

A132 � 3kBT

4

e1(0)� e3(0)
e1(0)þ e3(0)

� �
e2(0)� e3(0)
e2(0)þ e3(0)

� �

þ 3h

4p

ð1
n1

e1(in)� e3(in)
e1(in)þ e3(in)

� �
e2(in)� e3(in)
e2(in)þ e3(in)

� �
dn (3:31)

The above equation indicates that we should know the dielectric properties

over the whole spectral range. There are some interesting implications of

Equation (3.31). Let us consider a small particle, ‘1’, dispersed in medium ‘3’,

Interactions between Colloidal Particles 79



interacting with a larger particle, ‘2’. If, for example, e1(in) < e3(in) < e2(in),
then A132 would be negative. This means that a particle of material 1 would be

rejected from the medium 3. If the particle of material 2 were liquid, particle

1 could be engulfed. (Engulfment is an important process in biological systems,

for example, it is part of our body’s defence mechanism where white cells

engulf and remove foreign cells such as bacteria in a process known as phaga-

cytosis.) After engulfment, particle 1 is in medium 2 and interacting with the

surface of 3. In this case, e3(in) is interchanged with the e2(in) in Equation

(3.31). Both terms in the brackets are negative and A123 is positive.

Calculation of the Hamaker ‘constant’ requires extensive measurements

from dielectric spectroscopy. The task is clearly a non-trivial one and the full

dielectric data are only available for a very few systems. Polystyrene particles

dispersed in aqueous media are a popular model colloidal system and Parse-

gian and Weiss [13] have carried out the full calculation for this system and

compared the results with the Hamaker treatment. Good agreement was

obtained but this does not mean that the more complicated Lifshitz analysis

should be neglected. It naturally includes retardation effects as well as

changes to the intervening media between particles.

Higher-frequency dielectric information is found from the frequency de-

pendent-refractive index data [1, 11]:

e(in) ¼ 1þ (n2(0)� 1)

(1þ n=ne)
(3:32)

where ne is the frequency of the dominant adsorption in the UV and n(0) is the

low-frequency value of the refractive index in the visible range. For the disper-

sion interaction, we can neglect interactions in the microwave region and

below. Some approximations for Equation (3.31) are available (e.g. Isrealach-

villi [1] and Russel et al. [10]). For example, if we have two particles of similar

material, ‘1’, interacting in a medium ‘3’, the effective Hamaker ‘constant’, that

is, the distance-dependent value of A which we will write as A131(H), is:

A131(H) ¼ 3kBT

4

e1(0)� e3(0)
e1(0)þ e3(0)

� �2

þ 3hne

16
ffiffiffi
2
p n21(0)� n22(0)

� �2
n21(0)þ n22(0)
� �3

2

F (H=le) (3:33)

Here, F H=leð Þ is a function of the distance between the surfaces relative to

the wavelength at the UV adsorption peak. The function is equal to 1 at small

distances of separation and reduces quite rapidly with distance H to a value:

H

le
! 1; F H=leð Þ � 2

5
2

pn3(0) n21(0)þ n23(0)
� �1

2

2
4

3
5H

le
(3:34)
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and there is an interpolation formula available [10] which can be used to

calculate intermediate values:

F (H=le) � 1þ H

le

pn3(0) n21(0)þ n23(0)
� �1

2

2
5
2

" #3
2

8<
:

9=
;
� 2

3

(3:35)

So, our computational procedure for estimating the interaction between

two spherical particles of the same material dispersed in a medium would be

to use Equation (3.25) with an effective Hamaker constant estimated from

Equation (3.33) with Equation (3.35) at each separation distance. Although

the process appears a little complicated, it is relatively easy to program a

computer to carry this out. However, before we can do this we need to take

another look at Equation (3.33). The first term in this equation uses the static

dielectric constants. This means that we are looking at the contributions from

permanent dipoles. Now, in media that are electrolytes, whether made up of

aqueous or organic components, the dipole interactions become heavily

screened and the first term approaches zero.

7 SUMMARY AND CALCULATION GUIDE

So far in this chapter we have seen how the van der Waals forces acting

between molecules arise from the dipolar behaviour of the molecules even

when there are no permanent dipoles. The latter are the London dispersion

forces. This early treatment assumed that the interaction occurred at a single

frequency. The forces may be summed to account for the interaction between

particles, as was carried out by Hamaker and de Boer. The interaction was

shown to be the product of a material property, a geometric term for the

shape of the bodies, and a distance-dependence.

More recently, the analysis has been carried out by treating the particles as

macroscopic dielectric materials. This is known as the Lifshitz treatment and

has some strong advantages, as follows:

(a) The pair-wise summation is no longer carried out and the macroscopic

behaviour automatically includes multi-molecular interactions.

(b) The interaction over the whole spectrum is included so that all of the

dipolar interactions are inherent in the computation.

(c) The retardation of the interaction that shows as a reduction in the inter-

action free energy as the separation between the bodies is increased can

be included as an integral part of the calculation. Moreover, the retard-

ation naturally is shown to reduce the high-frequency part of the spectral

response.
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(d) Any intervening medium is included naturally in the calculation and it is

no longer necessary to include combining relationships to provide an

approximation to the Hamaker constant.

(e) When the intervening medium is an electrolyte, the low-frequency inter-

actions (Keesom and Debye terms) are screened out.

(f) The equations indicate that two bodies of the same material will always

attract each other, but also that it is possible to have a repulsive inter-

action with the right combination of dielectric properties.

8 CALCULATION STRATEGY

In principle, the full Lifshitz calculation requires a detailed knowledge of the

full electromagnetic spectral response and these data are not often available

in sufficient detail. However, the approximations given above will usually be

sufficient. There are several decisions that we have to make, based on the

following questions, listed as follows:

(a) For what purpose are we going to use the results?

(b) Do we have a simple geometry or is the approximation to a simple geom-

etry a limiting factor?

(c) Do we need to know the distance-dependence of the interaction or are we

only really concerned with the effects when the surfaces are relatively

close?

(d) Do we have the required material properties to hand?

The answers to each of these will set our strategy and so let us consider each

in more detail.

It is only if we are carrying out very precise experiments to determine the

attractive interaction by using model systems that we would need to tackle

the full calculation. Often, we can use the value of the Hamaker constant as

opposed to the distance-dependent Hamaker function. In these cases, the

attractive energy equations for close distances would also suffice (for example,

Equations (3.24) and (3.26) ). The value of A could be calculated from Equa-

tion (3.33) with the function F (H=le) ¼ 1. In addition, there are values for a

wide variety of materials listed in the scientific literature [1, 10, 14, 15]. How-

ever, it would be preferable to utilize Equation (3.33) rather than the combin-

ing rules, as the values of e(0) and n(0) are quite easy to find in the literature

[16, 17]. Examples of this situation include problems of estimating adhesion

of particles to surfaces, separation of particles during dispersion, estimation

of the aggregation rates of particles, and estimation of the rheology of con-

centrated aggregated systems.
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If our materials are produced by techniques such as milling or high-speed

dispersion, the particles may be small compact aggregates of primary crystal-

lites or fragments of crystals. Plate-like surfaces may not be flat but ‘stepped’.

In cases like these, the simple approximations may be sufficient but the repre-

sentation at close distances can easily be poor. The surface detail makes less

difference at larger distances. We expect small liquid droplets to be spherical

but we should be aware that the value of the interfacial tension is important

in conjunction with the droplet size. In addition, at close distances of ap-

proach the surfaces are likely to flatten and increase the interaction area,

thereby increasing the attraction.

At this point, it will be useful to look at an example calculation. For

this purpose, we will take a poly(methyl methacrylate) latex particle in a simple

aliphatic hydrocarbon, namely dodecane. This has been widely used as a model

colloid by numerous workers. In this example, the particle size is 500 nm (i.e. a

radius of 250 nm). The material properties that we need are:

e1 (0) ¼ 3:6; e3(0) ¼ 2:01

n1(0) ¼ 1:492; n3(0) ¼ 1:411

le ¼ 99:9nm (from the speed of light/frequency

of the absorption peak in the UV)

Equation (3.33) is used to give the Hamaker constant (i.e. putting

F (H=le) ¼ 1) and the Hamaker function to show the effects of retardation.

In addition, we use the full Hamaker expression for identical spheres (Equa-

tion (3.25b) ) as well as the approximation for close approach (Equation

(3.24b) ). The results are shown in Figure 3.9, along with the plot for the

Hamaker function.

The first point to note is that there is little retardation until a distance of

> 10% of the wavelength of peak absorption. The drop has become

significant at distances greater than 30 nm. Although the retardation is large

at distances in excess of 500 nm, the attraction is becoming less than the

thermal energy at � 25 �C and we would be unable to discern the interaction,

let alone the detail. The conclusion that we may draw from this is that the

neglect of retardation and the use of the simplest equation for the interaction

(Equation (3.24b) ) will be adequate for most purposes for this system. If, for

example, we had the task of dispersing these particles, the amount of work

that we would put in would be the value of VA at the closest distance of

approach. Alternatively, if our task is to prevent the particles sticking firmly

together, we have to supply another interaction which will have a greater

potential energy but opposite in sign to the values at close distances.
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Figure 3.9. The attraction between two 2500 nm radius poly(methyl methacrylate)
spheres in dodecane. The variation of the combined Hamaker constant with distance
is also shown.

However, before we draw the conclusion that we can always take the sim-

pler route, let us look at another system. This time, we will use water as the

suspending medium with oil droplets as the particles. The oil phase here is

tetradecane which represents a light fuel oil and has a chain length commonly

found in nature. This chain length is the main fraction of coconut oil, for

example. The particles are assumed to be 2mm and are all of the same size

for our calculation. The material properties for this case are as follows:

e1(0) ¼ 2:03; e3(0) ¼ 80

n1(0) ¼ 1:418; n3(0) ¼ 1:333

le ¼ 103:4 nm

In the example calculation, we are using Equations (3.33) and (3.25b) as we

did in the previous example. Here though we are going to compare the
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Figure 3.10. The attraction between two 2mm tetradecane droplets in ‘pure water’ (----)
and ‘seawater’ (—) (using Equations (3.25b) and (3.33) ), where the low-frequency term
is screened.

attraction between the oil drops in ‘pure’ water and ‘seawater’. In the ‘pure’

water, the only ions are OH� and H3O
þ, with concentrations of

10�7 mol dm�3 (i.e. no dissolved carbon dioxide). ‘Seawater’ is used to give

such a high electrolyte concentration that we can assume that the low-

frequency contributions to the attraction are completely screened out. We shall

see later in this chapter how the ionic strength affects the range of electrical

fields and that at high ionic strengths the range is only a nanometre or two.

The results are shown in Figure 3.10 and upon examination of this figure

we should note that there is a large contribution due to the low-frequency

term, that is, the first term on the right-hand side of Equation (3.33). This

means that the oil droplets are ‘less sticky’ in seawater although an attraction

of � 100 kBT is still a strong attraction. In most cases when we have particles

dispersed in an aqueous medium, there is a significant ionic content. This may

be from the addition of ionic surfactants, electrolytes (acids, bases or salts)

and from ions associated with the particle surface due to surface charge. As

we shall see later, the concentration is always at its greatest between pairs of

particles and the neglect of the low-frequency contribution is an adequate

approximation. The result now becomes similar to the case where the

Interactions between Colloidal Particles 85



particles are dispersed in low-polarity media where the low-frequency contri-

butions amount to < 5 % of the Hamaker constant.

Finally, we should note that the case of the interaction between different

particles is also quite tractable in an approximate form where we are assum-

ing a dominant absorption peak in the UV. This is in a similar spirit to the

earlier London model. However, the approximation we are using makes it

easy to include a wide frequency variation so that retardation and the vari-

ation with dipolar materials are naturally included. The value of le changes

only a little from material to material and a value of 100 nm will normally

suffice, although with aromatic materials such as benzene, toluene or poly-

styrene, 150 nm would give a better approximation. The equation for two

particles of different materials, ‘1’ and ‘2’, acting across a medium, ‘3’, is as

follows [1]:

A132 � 3kBT

4

e1(0)� e3(0)
e1(0)þ e3(0)

� �
e2(0)� e3(0)
e2(0)þ e3(0)

� �

þ 3hc

le3
ffiffiffi
2
p n21(0)� n23(0)

� �
n22(0)� n23(0)
� �

n21(0)þ n23(0)
� �1

2 n22(0)þ n23(0)
� �1

2 n21(0)þ n23(0)
� �1

2þ n22(0)þ n23(0)
� �1

2

h i
8<
:

9=
;

(3:36)

If the particles where spherical, Equation (3.25a) would be used to calculate

the attraction. Although the equations look unwieldy, they are really quite

straightforward to use in our calculations. Again, in aqueous systems the

low-frequency contributions could be neglected and the following equation

would provide an adequate approximation:

A132 � 3hc

le3
ffiffiffi
2
p n21(0)� n23(0)

� �
n22(0)� n23(0)
� �

n21(0)þ n23(0)
� �1

2 n22(0)þ n23(0)
� �1

2 n21(0)þ n23(0)
� �1

2þ n22(0)þ n23(0)
� �1

2

h i
8<
:

9=
;

(3:37)

Metal particles such as gold, silver or platinum are important technologically

as they are widely used in the form of inks for printing electronic circuit

boards and integrated circuits. As they are conductors, the value of

eAu(0) ¼ 8. The characteristic frequency is the plasma frequency (i.e.

60 nm < le < 100 nm) and the value of the Hamaker constant for the metal

particles in water is found to be about 4� 10�19 J, i.e. metal particles are very

much ‘stickier’ than particles made up of organic materials.

One final point that we must remember is that this and any other con-

tinuum approach is limited in terms of the minimum separation of surfaces.

At very small distances, the molecular structures of both the surfaces and the
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species of the continuous phase become important. Even at a few tenths of a

nanometre, we cannot expect the approximations to be reliable. At this di-

mension we are dealing with the size of hydrated ions, and solvent molecules

such as aromatic or aliphatic hydrocarbons, as well as surface irregularities

on what we might regard as ‘smooth’ surfaces. The problem of the dimen-

sions of the intervening solution species leads us naturally to consider the

next interaction that we will study.

9 THE DEPLETION INTERACTION

This is usually an attractive interaction that can cause aggregation of particles

in concentrated dispersions although under some concentration conditions a

weak repulsion may occur. It is most frequently considered to occur in disper-

sions to which non-adsorbing polymer has been added. This would be typic-

ally the situation where a polymer thickener had been added to a dispersion

to control its rheological properties. A decorative paint system is a good

example of this. Polymer thickeners are added to prevent sedimentation of

pigment, as well as to give a thicker film and so increase the covering power.

The particulate components of the paint (pigments and latex particles) are

covered with adsorbed surfactants which restrict the adsorption of the soluble

polymers. What we observe is that the thickening power of the polymer is

much greater when particles are present in significant concentrations than

when they are absent. However, the depletion interaction may also cause

particles in the presence of concentrated surfactant micellar phases, or if there

are two widely different size populations, to phase-separate.

The range of the interaction is no greater than the dimension of the solu-

tion species which is causing the effect, and so we can consider it to be a

short-range interaction. That is, the range is much less than the dimensions of

the particles that we are considering to represent the ‘main population’.

Although the greatest mass may be in the large particles that we dispersing,

the greatest number is going to be in the small component which is causing

the depletion interaction. For example, a few percent of a soluble, non-

adsorbing polymer thickener could produce a marked interaction in a paint

dispersion of 60–70 % solids. This interaction was first suggested by Asakura

and Oosawa [18, 19] and further developed later [20, 21]. The concept is

based on the idea of a ‘depletion layer’ close to the surface of a particle.

Within this layer, the concentration of the non-adsorbing species (polymer

molecules, for example) is lower than the average. This does not mean that

there is complete absence of material in the layer but just that the centre

of mass of the solution species cannot approach closer than the radius

of gyration. This is shown in Figure 3.11, in which Rg is the radius of

gyration.
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r = 2a + H2Rg

(a) (b) (c)

Figure 3.11. The origin of the depletion interaction.

As a starting point, think initially in terms of the non-adsorbing species

consisting of hard spheres and then the concentration of material will follow

the profile illustrated in Figure 3.11(a). Of course, if the material were a

polymer in a good solvent, the increase in concentration would be slower,

with the value calculated from the product of the profile shown and the

concentration distribution within the coil. The mechanism for the interaction

is a phase-separation of the large and small particles due to an effective

decrease in concentration of the smaller particles as medium in the ‘depletion

layers’ is squeezed out by the aggregation of the large particles. The argument

then is as follows:

(1) There is a spherical shell around each particle which the centre of a small

sphere cannot occupy, i.e. we should exclude this volume when we calcu-

late the number density of small spheres, rp1.
(2) The osmotic pressure from the small spheres is rp1kBT .

(3) As the large particles come together, the overlapping part of the depletion

layers is now a volume which is freed from occupation by the small

particles.

(4) The osmotic pressure acts to push the large particles together as there is

an osmotic pressure difference between the volume excluded from the

polymer and the bulk.

(5) The pressure multiplied by the interaction area is the force, and so we

may construct the potential energy by integrating this force over the
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separation distance. This gives the depletion contribution to the pair po-

tential, Vd, simply as the osmotic pressure of the polymer solution multi-

plied by the overlap volume, vo:

Vd ¼ rp1kBT
� �

vo (3:38)

Figure 3.11(b) indicates the volume of liquid that is not accessible to a small

sphere as the larger spheres come together (shaded portions in the figure). We

may calculate this excluded volume from simple geometry. The lens is simply

twice the volume of a spherical cap. The centre-to-centre separation of

the large particles is r with the surface-to-surface separation H, the radius

of the large particles is a, and that of the small particles is Rg. The volume of

the cap of a sphere is therefore given by:

volume of spherical cap of height h ¼ p

3
h2[3(aþ Rg)� h] (3:39a)

where:

h ¼ (aþ Rg)� r

2

h i
(3:39b)

Now, we may write the depletion interaction between two spheres of equal

size as:

Vd ¼ � rp1kBT
� �

2
p

3
(aþ Rg)� r

2

h i2
2(aþ Rg)þ r

2

h i
(3:40)

The negative sign indicates that the interaction is attractive. Multiplying this

out, we have:

Vd ¼ �(rp1kBT)
4p

3
(aþ Rg)

3 1� 3

4

r

aþ Rg

� �
þ 1

16

r

aþ Rg

� �3
" #

(3:41a)

and if we write this in terms of the separation between surfaces, H ¼ r� 2a,

we have the following:

Vd ¼ �(rp1kBT)
4p

3
(aþ Rg)

3 1� 3

4

2aþH

aþ Rg

� �
þ 1

16

2aþH

aþ Rg

� �3
" #

(3:41b)

As we are assuming that the small particles are hard spheres, we may write

the relative depletion potential in terms of the volume fraction of the small

particles, wp1:
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This geometric function is plotted in Figure 3.12. The interaction is zero

until a distance equal to the diameter of the small particle is reached between

the large particles. A volume fraction of 0.05 would result in an attraction

of � 4kBT .

The interaction for other geometries is quite straightforward. For a sphere

and a plate, we just have the osmotic pressure multiplied by the interaction

area (the circular area of the cap of the sphere defined by the overlap of the

depletion layers), integrated as we move the two surfaces closer together. The

overlap distance is (2Rg �H). This gives us the volume of a spherical cap and

not a lens as was the case with two spheres. For plates, we have the osmotic

pressure multiplied by the overlap area of the two plates to give the force.

When this is integrated over distance as the plates are moved together, we

obtain the volume of the two depletion layers multiplied by the osmotic

pressure. Hence, for two plates the interaction increases linearly as the plates

approach each other, with the overlap again being (2Rg �H). So, when we
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write the expressions for models of the depletion potential for these geom-

etries we have:

for a sphere with a plate,
Vd

wp1kBT
¼ 1

4
2� H

Rg

� �2

1þ 3a

Rg

þ H

Rg

� �
(3:43)

and:

for two plates,
Vd

wp1kBT
¼ 3Ao

4p

2

R2
g

� H

R3
g

 !
(3:44)

where the overlapping area of the two plates is Ao. These expressions are

plotted in Figure 3.12, using some typical values for colloidal systems.

At this point, we have a simple model of the depletion potential, but we

must remember that this is a simplified model and we should consider its

limitations. The effect is of most interest with the case of solution polymers

which have been added to dispersions, often as a rheology modifier or thick-

ener. To exploit the effect, we need to take heed of the following:

(a) The polymer should be in a good solvent, i.e. x < 0:5.
(b) The polymer should be non-adsorbing, or if it adsorbs then the concen-

tration must be sufficient to be greater than that required to saturate the

surface, i.e. the concentration would ensure that we are on the plateau of

an adsorption isotherm.

(c) We must remember that a polymer coil is not a hard sphere but is

dynamic and with a concentration that decreases towards the periphery

of the coil.

(d) The polymer concentration should be relatively high so that the osmotic

pressure is large. This will invariably mean that we will have to use a

more complicated expression for the osmotic pressure than the van’t Hoff

limit, i.e. P ¼ rp1kBT þO r2p1

� �
þ . . . . . .

These last two points are important. The softness of a polymer coil can be

expected to change the interaction profile. This possibility will be enhanced if

the large particles are covered with a polymer layer. However, trying to

model variations would not be very useful compared to the change that must

occur due to the variation in coil size resulting from the polydispersity of the

polymer. The molecular weight distribution of the majority of polymer thick-

eners is large and the variation in the value of Rg is, of course, directly related

to this spread.

The osmotic pressure of the polymer solution can be tackled relatively

easily. The simplest approach might be to determine it experimentally,
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although there are expressions in the literature which can be used. However,

at this point we should look carefully at the model. When we do this, other

factors become apparent. If we consider a single polymer coil in isolation, the

dimension is a function of the molecular weight and the polymer/solvent

interaction, i.e. the Flory–Huggins x-parameter. We are not dealing with an

isolated coil in pure solvent though and whatever else there is in solution can

be expected to have an impact. Electrolytes increase the value of x towards

0.5 for water-soluble polymers such as poly(ethylene oxide). Thus, we expect

the polymer coil to shrink as the salt concentration is increased. Increasing

temperature will also do this in aqueous systems as the H-bonding levels are

reduced. The addition of low-molar-mass alcohols will produce a similar

result. Surfactants can interact with polymer chains and change their spatial

characteristics. The presence of other polymer molecules is particularly inter-

esting. Of course, we have already drawn attention to the osmotic pressure

change for the calculation of the depletion potential, but we should also

remember that the dimensions of the polymer coils are also dependent on the

polymer concentration. This is easy to visualize if we recall that at a concen-

tration of c*, the polymer coils would just fill the fluid volume. This means

that at the peripheries the local polymer concentration becomes higher than

that of an isolated coil. The diffusional motion increases this effect, thus

resulting in a redistribution of the segments to give a more compact conform-

ation. In other words, the value of Rg is reduced. Here, we have two compet-

ing effects: the increase in polymer concentration increases the depletion

potential as the osmotic pressure is increased, although the dimensions of the

depletion layer are reduced, thereby decreasing the strength of the interaction.

The result is that we can find a maximum attraction at an intermediate poly-

mer concentration.

A re-examination of Figure 3.11 should also indicate another problem with

the model which can alter the profile of the potential curve. As two large

particles approach at distances of H < 2Rg we can see that there is a volume

of liquid in between which does not contain the small spheres – the origin

of the depletion effect. Note that we are not referring to the overlap volume of

the depletion layers! That volume is just a mathematical consequence of inte-

grating the interaction area with separation distance. The ‘real’ excluded

liquid volume is a rather more complicated toroidal shape. However, this

volume also varies as the interparticle distance varies. For an isolated particle

pair in a large volume of polymer solution, there would be no change in the

osmotic pressure. In a concentrated system, however, we must be careful.

This volume variation exists with every interaction. At volume fractions > 0:3
with weakly aggregating systems like these, there can be six or more inter-

actions per particle and this must be multiplied by the number of particles

(divided by 2 so that we do not double the count, of course). What are the

implications of this? We usually work in a region where the osmotic pressure
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is high and this also means that it is varying sharply with concentration.

Reference to Figure 3.11(c) above shows clearly that the excluded volume

goes through a maximum at intermediate separations. This means that in a

concentrated system, the osmotic pressure is at a maximum at these inter-

mediate separations also and is not a constant as the above model assumes.

The result is that the maximum attractive force is not at contact but a little

way prior to that point [22]. This is important for properties such as the

rheology where, for example, the elasticity is a rate of change of the force

with distance, that is, the curvature of the potential well.
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Chapter 4

Forces of Repulsion

1 INTRODUCTION

In Chapter 3, we discussed the attractive interactions between colloidal par-

ticles. There are other contributions to the pair potential which prevent par-

ticles from adhering to each other. These are the forces of repulsion and this

chapter will describe the most important of these.

2 ELECTROSTATIC INTERACTIONS

Many interfaces in aqueous systems carry an electrical charge. Like charges

repel each other. In the simplest case, this may be described by Coulomb’s

law; however, we shall see that the ionic content of the system modifies this.

The repulsion though can be strong and prevent interfaces from coming to-

gether. Let us consider a soap film, as an example. In this case, a surfactant is

strongly adsorbed at the interface with hydrocarbon tails on the vapour side

and ionic head groups on the water side of each interface. Sodium or potas-

sium fatty acid salts make the classic soaps with the number of carbon atoms

ranging from 14 to 18, depending on the source. When a foam is produced,

the water drains due to gravity and the close-packed arrays of ionic end

groups approach each other. At some point, the forces come into balance

with the magnitude of the electrostatic repulsion controlling the final thick-

ness of the foam films. This repulsion occurs between any ‘like-charged’ inter-

faces and is an important factor in determining the colloidal behaviour of

aqueous systems and also those of intermediate polarity (those with a relative

permittivity of 10).
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The model that we will use is mainly a continuum model in which we will

assume any charged surface to be uniformly charged and therefore structure-

less. Our colloidal systems will also be electrically neutral so that any surface

charge is always balanced by an equal amount of charge opposite in sign in

the continuous phase. The distribution of the solution charge close to the

charged surface though is where we put our efforts. The two layers of charge

are known as the electrical double layer. Ions in solution of the same sign

as the charged surface are referred to as co-ions and those of opposite sign as

counter-ions. There will always be some ions present in our aqueous solvent

phase, of course, such as H3O
þ and OH�, as well as species such as carbon-

ate, silicate, etc., even when we have not intentionally added electrolytes. Ions

which interact specifically with the surface to vary the value of the surface

charge are known as potential-determining ions; H3O
þ would be an example

of such an ion with our fatty acid soap films, for example, as the carboxylic

acid is a weak acid and the degree of dissociation would be different at pH 2

and pH 10. Electrolytes whose ions play no direct part in the charging

mechanism are known as indifferent electrolytes. However, the specificity of

the ion–surface interaction is of major importance in controlling the behav-

iour of colloidal systems and is still a rich field of study.

3 THE ORIGINS OF SURFACE CHARGE

There are several mechanisms by which an interface may acquire a charge. In

many cases, we have some control over the value of the charge. Each mech-

anism is introduced below with some examples but it is important to be aware

that there can be more than one mechanism operating in our practical

systems.

3.1 Adsorbed Layers

Surfactants are often added as a component to disperse systems, for example,

as a wetting aid for the dispersion of dry powders, and as an emulsifier for

liquid systems, as well as a stabilizer for the end product. Ionic surfactants

are relatively cheap and are frequently added. The final conformation at the

interface is for the hydrophobic tails to be at the interface with the ionic

groups outermost. The surface density is always high in a surfactant-

stabilized system. Proteins also adsorb onto hydrophobic surfaces and pro-

vide an hydrophilic charged outer layer. An example is provided by the fat

droplets in milk which are stabilized by casein. The charge is negative as it

results from the carboxyl groups on the protein.

Natural rubber latex is a dispersion of poly(cis-isoprene) with a negatively

charged surface from the adsorbed protein on the latter. Reduction of the
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pH prevents the dissociation of the carboxyl groups and coagulation results.

Synthetic rubber latices (poly(styrene–butadiene) rubbers) have some charged

groups chemically bound to the polymer but invariably have a high concen-

tration of anionic surfactants adsorbed on the surfaces of the particles. The

surfactant has two functions: first, as an emulsifier for the monomer prior to

synthesis, and secondly to provide colloid stability to the final product.

Poly(acrylic acid) can be used with oxides in order to provide a coated

surface with a negative charge at pH values where the oxide surface may have

a low positive charge. Inorganic ‘macro-ions’ can also be used for this pur-

pose. China clay (kaolinite) is an important additive in paper to provide a

glossy surface and it can be stabilized with poly(acrylic acid) adsorbed onto

the positively charged edges. ‘Calgon’, a phosphate which adsorbs on the

faces, is also used as a stabiliser for kaolinite. Titanium dioxide particles are

often coated with a layer of alumina and poly(acrylic acid) will adsorb onto

the surface at neutral pH.

3.2 Ionogenic Surfaces

The charge on this type of surface is controlled by the ionization of chemical

moeities at the surface. Carboxyl groups that are chemically bound to the

polymers of synthetic latices provide an example. The charge is a function of

pH as the degree of dissociation itself is a function of pH. Although the pKa

of an isolated –COOH group is equivalent to a pH of � 4, this is not the

situation with a surface with many groups in close proximity. The dissoci-

ation of one group makes it more difficult for the immediate neighbours to

dissociate. This is the polyelectrolyte effect and means that the surface has a

variable pKa and pH values as high as 9 may be required to ensure dissoci-

ation of all of the surface groups.

The surfaces of uncoated oxide particles have surface hydroxyl groups. At

high pH, these can ionize to give �O� and at low pH the lone pair on the

oxygen can hold a proton to give –OHþ2 . For example, if we consider the

surface of a titanium dioxide particle we have oxygen atoms on the surface of

the crystal giving an amphoteric surface with the scheme:

Surface TiOHþ2 þH2O
H3O

þ
 �� Surface TiOH

OH���! Surface TiO� þH2O

Hence, this type of surface not only shows a variation in the magnitude of the

surface charge with pH but also a variation in the sign. At an intermediate

pH value, the charge can be reduced to zero and the pH at which this occurs

is termed the isoelectric point (iep) or the point of zero charge (pzc). Fre-

quently, the two terms are used interchangeably but they are not always the

same. For a simple oxide surface, the former term is to be preferred as we
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expect the charge to be uniformly zero across the surface. With rather more

complex materials, where there is more than one type of surface present, we

may have a situation where both surfaces carry a charge, but of opposite sign.

Then, at some pH value we can have zero net charge as the two values

balance each other. This would then be the pzc. China clay (kaolinite) is a

layer lattice aluminosilicate, where the edges are positive with negative basal

surfaces. In this case, the iep of the edges is at pH � 8 with the face iep at pH

� 2 and a pzc for the particle at pH � 6. Table 4.1 lists the isoelectric points

for some oxides.

3.3 Isomorphous Substitution

This is a common occurrence in clay minerals. The basic structure of a

clay particle is an aluminosilicate layer lattice. As the clay is formed, it crys-

tallizes with a layer of silicon atoms tetrahedrally coordinated to oxygen

atoms (an SiO2 layer). The next layer of the lattice is aluminium with octa-

hedrally coordinated oxygens (an Al2O3 layer), some of which are shared

with the tetrahedral silica layer. This layer structure is repeated throughout

the crystal. If it is a 1:1 layer lattice structure, there are alternating layers of

silica and alumina (e.g. kaolinite). Alternatively, it can crystallize in a 2:1

structure, with the alumina layer sandwiched between two silica layers (e.g.

montmorillinite). During the crystallization process, an occasional silicon

atom can be substiututed by an aluminium atom, and more frequently an

aluminium atom by a magnesium atom. A small amount of such substitution

does not produce too much distortion of the lattice to stop it growing and it

retains the same structure – hence, the term isomorphous substitution. Thus,

the number of oxygen atoms is the same. As anions they are larger than

the cations in the structure and their packing is the dominant factor. How-

Table 4.1. Values of the isoelectric points for a number of oxides

Oxide Formula iep

a-Alumina a-Al2O3 9.1
Haematite a-Fe2O3 6.7
Magnesium oxide MgO 12.5
Rutile TiO2 3.5
Silica SiO2 2.0
Zinc oxide ZnO 10.3
Zircon ZrO2 5.7
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ever, the difference in valency of the magnesium, compared to the aluminium

anions, for example, means that part of the oxygen anion coordination

will be incomplete, thus resulting in a negative charge. This charge is

balanced by soluble cation species at the surface of the crystal, with the result

that the basal surfaces of clay minerals carry a significant negative charge.

In the dry state, the counter-ions to this surface charge are located on

the surface, while in the hydrated state they are in solution near the surface.

The 2:1 layer lattice clays have a unit cell � 1 nm thick and on hydration,

water penetrates between the layers and the negative charges of the

surfaces repel and cause the clays to swell. This swelling can result in a

separation between (orginal) unit cells of a greater dimension than that of the

(original) unit cell. This means that the expansion of the clay can be very

marked. Such a phenomenon causes major difficulties in building on land

with high clay contents.

3.4 Differential Solution of Surface Ions

When the colloidal particles are made up of sparingly soluble salts, dissol-

ution occurs until the concentrations of the ionic components in solution

correspond to the solubility products of the compounds. Silver halides are a

much studied example of this class of material, with silver bromide disper-

sions, for example, having a long history of a commercially important com-

ponent of photographic emulsions. For many years, silver iodide was used as

a model colloid for academic studies. It is readily produced from mixing silver

nitrate and potassium iodide solutions. Under the correct conditions, a dis-

persion is formed with the particles confined to a narrow size distribution and

with a cubic shape. Now, the solubility product, Ks ¼ [Agþ][I�] ¼ 10�16. If
the precipitation is produced under conditions which have an excess of I�,
say 1� 10�4 M, we form a dispersion with negatively charged particles. Using

p[I�] as� log [I�], we have a solution with a p[I�] of 4, and hence the

p Agþ½ 	 ¼ 12, and the solution of Agþ ions is suppressed with the surface of

the particle consisting of I� species. At p[I�] ¼ 10:5, i.e p[Agþ] ¼ 5:5, the

surface populations of the two ion types are equal and the pzc is reached as

the net charge is zero. Here, the potential-determining ions are Agþ and I�.
We might have expected that the pzc would have occurred when there were

equal numbers of Agþ and I� species present, i.e. at p[I�] ¼ 8; however, the

solvation of the smaller cation is greater and the adsorption is in favour of

the large anion.

On the surface of the silver iodide crystal, at or close to the pzc, we have a

large number of charged species. This means that as the surface is charged up

only a relatively small increase in the number of anions or cations is required

and we may represent the surface potential as we would for an electrode

surface by the Nernst equation [1]:
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c0 ¼
RT

Fc

ln
Agþ

[Agþ]pzc

" # !
(4:1)

where Fc is the Faraday constant. This gives a surface potential of

� � 60mV for plus or minus a factor of 10 in the silver ion concentration

from that corresponding to the pzc.

Other colloidal crystallites can also show Nernstian behaviour and some

examples are given by Hunter [1]. However, it should be pointed out that this

behaviour is far from universal for colloidal particles. For example, with

amphoteric surfaces such as oxides, the surface charge population close to the

pzc is very small and as the surface charges up the activity of the species at

the surface changes and we no longer find Nernstian behaviour. There are a

variety of models available for different types of surfaces and a good sum-

mary can again be found in the text by Hunter [1].

3.5 The Structure of the Electrical Double Layer

When we have a colloidal particle with a charged surface there is always an

equal and opposite charge in the solution. The structure of the solution part

of the double layer must now be considered. We will start with modelling a

flat surface and then consider curved interfaces. The earliest treatment was

due to Helmholtz and this described a simple model of a uniformly charged

surface with ions of opposite charge, the counter-ions, in a uniform layer

adjacent to the surface and treated as point charges. However, a more com-

plex picture superseded this model. The first point that we need to consider is

that the solvated counter-ions have a finite size, that they can interact lat-

erally and that there may be specific chemical interactions with the surface.

That is, we must be aware that other than straightforward electrostatic forces

may be involved. The second point to remember is that the diffusive motion

of the ions will oppose the tendency to concentrate the counter-ions in the

interfacial region and result in a diffuse array. It is in studying this diffuse

region that we will put most of our effort here after first considering the first

layer of ions.

| The Stern Plane

This is the inner region of the solution part of the double layer. It is usually

modelled by using the Langmuir isotherm, which describes the formation of a

monolayer. We should be familiar with the isotherm in the context of gas

adsorption where the adsorption is a function of the pressure and the fraction

of the sites that are occupied. In our present case, the adsorption energy is made

up of the electrostatic attraction and any other ‘specific’ interactions. So, we
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have a monolayer consisting mainly of counter-ions at the surface whose

population is a function of the electrostatic potential plus specific chemical

interactions, as well as the ionic content of the aqueous phase. (Here, the

ionic strength is analogous to pressure in the gas-phase adsorption.) Another

problem is that in colloidal systems the molecular structure of the surface

means that the discrete nature of the charges needs to be considered at

this level. This acts to increase the site occupation so that, if we were to

estimate the adsorption energy, a lower energy would be required to attain

the same level of counter-ion density at the surface than would be the case

if the surface charge is considered to be ‘smeared out’ uniformly over the

surface.

The picture that is emerging now is a complicated one and a detailed

analysis is outside the scope of this introductory text. Good descriptions of

the current ideas are given in the texts by Hunter [1] and Lyklema [2],

along with the major references to the original research papers. For our

present purposes, we will consider our surface to be uniformly charged with a

surface charge density of s0 C m�2 and adjacent to this a layer of counter-

ions. It is to the outer edge of this layer that we must now turn our attention.

At this plane, the adsorbed ions have changed the charge to sd and the

potential relative to ground (i.e. at a very large, and so effectively infinite,

distance from the surface) is cd. This is just the work done in bringing a

point charge from infinity to this plane. From here, we will be treating the

ions as point-charges. Now, unfortunately this is a difficult quantity to meas-

ure on a routine basis but we can relatively easily estimate a potential from

electrokinetic measurements where we have a motion between the fluid and

the interface. This potential is known as the z-potential and is the potential

where the centre of the first layer of solvated ions that are moving relative to

the surface is located. This is termed the ‘shear plane’, but it is not at a well

defined distance from the surface and so we have the situation where we can

determine a potential but where the position is a little uncertain at � 0.5 nm

or so from the surface. This distance would be about three times the radius of

a solvated ion, but the utility of the z-potential is that it reflects the value of

cd which can differ in sign as well as markedly in magnitude from the poten-

tial at the surface, c0. An illustration of our emerging model of the double

layer is given in Figure 4.1.

The population of the Stern layer is a function of the ion type. Multivalent

ions bind more strongly than monovalent ones. The solvation and polariz-

ability are also important factors. These characteristics lead to the specificity

of the various ions. So, for example, with a positively charged surface we

observe a very marked difference in the binding of the halide anions in the

series F� through to I�. The addition of multivalent counter-ions to a col-

loidal dispersion can result in a densely populated Stern layer and a reversal

in the sign of the charge relative to the particle surface.
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Figure 4.1. Illustration of a simple model for the electrical double layer at the surface of
a colloidal particle.

| The Diffuse Double Layer

This is the part of the electrical double layer outside the Stern layer where the

concentration of ions is determined by the competing effects of electrostatics

and diffusion. What we are going to do is to calculate the distribution of ions,

and from this the potential as a function of distance. Ultimately, this will

enable us to model the electrostatic repulsive energy as we estimate the work

done in bringing one surface up to a second surface.

The model that we are going to use is known as the Gouy–Chapman model,

named after the two physicists who developed it independently. We start by

defining the potential at a distance x from our surface as c(x). As we are

considering a flat surface which is uniformly charged, there will only be a

dependence in the x-direction, with the potential being constant in planes

parallel to our surface. In addition, the ions are treated as though they were

point-charges and the number of ions of ‘type i’ per unit volume in the bulk

electrolyte is ni0. We make use of the Boltzmann distribution to estimate the

ion density at x:
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Figure 4.2. Local ion concentration profiles: c(0) ¼ �30mV, in 10�3 mol dm�3 NaCl.

ni ¼ ni0 exp � ziec(x)

kBT

� �
(4:2)

where e is the charge on the electron and zi is the valency of the ion. We need

to be careful about signs here and remember that as the sign of the charge

on the counter-ion is always opposite to that of the surface, the exponent will

always be negative for the counter-ion concentration and positive for the

co-ion concentration. Equation (4.2) describes the situation where the counter-

ion concentration increases close to the interface – adsorbed – while the

concentration of the co-ions is reduced close to the interface – negatively

adsorbed. Figure 4.2 shows how the local ion concentration profiles behave

according to Equation (4.2). The number of charges per unit volume, i.e. the

space charge density, r, is given by:

r ¼
X
i

nizie (4:3)

In order to make the algebra more transparent, we can take the case of a

symmetrical electrolyte where z� ¼ �zþ. Using Equation (4.2), we can write

the net space charge density as:

r ¼ n0ze exp � zec(x)

kBT

� �
� exp

zec(x)

kBT

� �� �
¼ �2n0ze sinh zec(x)

kBT

� �
(4:4)

recalling that the identity sinh (x) ¼ (ex � e�x)=2.
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Now, Poisson’s equation relates the space charge density to the curvature

of the potential, as follows:

r2c(x) ¼ � r

e0er
(4:5)

where the Laplace operator r2 ¼ ]2=]x2 þ ]2=]y2 þ ]2=]z2, while for a planar

surface, r2 ¼ d2=dx2.
Substituting for r in Equation (4.5) gives us the Poisson–Boltzmann equa-

tion, as follows:

r2c(x) ¼ 2n0ze

e0er
sinh

zec(x)

kBT

� �
(4:6)

Rewriting this for the planar interface:

d2c

dx2
¼ 2n0ze

E0Er
sinh

zec(x)

kBT

� �
(4:7)

Prior to seeking solutions to this equation, let us specify the boundary condi-

tions that we have:

x ¼ d x ¼ 1
c(x) ¼ cd c(x) ¼ 0

dc(x)

dx
¼ 0 (4:8)

As an initial proposition, let us look at the case for small potentials where

(zec(x)=(kBT)) < 1. For a univalent electrolyte, we have z ¼ 1 and then we

have the condition that c(x) < 25mV. When x is small, sinh (x) � x and

Equation (4.7) becomes:

d2c

dx2
� 2n0(ze)

2

e0erkBT
c(x) (4:9)

This is known as the Debye–Hückel approximation. Equation (4.9) is a linear

homogeneous second-order differential equation whose solution is in terms of

exponentials and with the boundary conditions given above we have the

potential as a function of distance away from the Stern layer as:

c(x) � cd exp (� kx) (4:10a)
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where for any electrolyte:

k ¼
P
i

ez2i
� �

n0

ee0kBT

2
4

3
5

1
2

(4:10b)

In Equation (4.10b), k is the Debye–Hückel parameter that we find in the

theory of electrolytes and which controls the rate of decay of potential with

distance away from a surface.

We will look in more detail shortly at the behaviour of k as the electrolyte

concentration and type are changed, but first we should consider the solution of

Equation (4.7) at higher potentials. With a little manipulation (see Hunter [1]

and Russell et al. [3], for example), Equation (4.7) may be integrated to give:

c(x) ¼ 2kBT

ze
ln

1þ exp (� kx) tanh
zecd

4kBT

� �

1� exp (� kx) tanh
zecd

4kBT

� �
2
664

3
775 (4:11)

recalling that the identity tanh (x) ¼ (ex � e�x)=(ex þ e�x), and so ¼ (e2x � 1)=
(e2x þ 1). A comparison of the results for surfaces with potentials of �25mV

and �75mV are shown in Figure 4.3, calculated from Equations (4.10) and

(4.11). The 1:1 electrolyte concentration in this case was 10�3 M.

Let us now consider the case where we have a high potential (tanh (x) � 1

as x
 1). At long distances from the surface, x is large and exp (� kx) is
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Figure 4.3. Decrease of electrical potential with distance for a planar surface in
10�3 mol dm�3 NaCl.
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small and so the logarithms can be expanded as a series and only the leading

terms used. Hence at long distances, we have:

c(x) � 4kBT

ze
tanh

zecd

4kBT

� �
exp (� kx) (4:12)

So, we have the exponential fall of potential at large distances and, as the

tanh function ! 1 for high potentials, the behaviour appears to be that of a

surface with a reduced potential zec=(kBT) � 4. Therefore, at long distances

our surface appears to have a potential of 100mV regardless of how much

higher it may be. This is important as we are often interested in the inter-

actions of highly charged surfaces as they approach at separations corres-

ponding to kx
 1.

The Debye–Hückel parameter characterizes the decay of the potential with

distance from the surface. Equation (4.10b) shows that this is a function of

both the concentration of the bulk electrolyte and the valency of the

ions. Figure 4.4 gives plots for various electrolyte types. Thus, when kx ¼ 1

the potential will have fallen to 37% of the value at the start of the diffuse

layer. For the potential to have fallen to � 1 % of the Stern layer value, the

distance will have to be as far away from the surface as � 4:5 ‘decay lengths’.

Hence, even at moderate electrolyte concentrations we can see that the decay

of the potential occurs at distances comparable with the dimensions of many

colloidal particles.

0

20

40

60

80

100

10−5 10−4 10−3 10−2 10−1

 1:1
 2:1
 2:2
 3:1

[Electrolyte] (mol dm−3)

κ−
1  

(n
m

)

Figure 4.4. The Debye–Hückel decay length as a function of the concentration and
type of electrolyte.
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When the z-potential was introduced it was defined as the potential at the

‘shear plane’ and was taken as an approximation to the potential of the

Stern layer, i.e cd � z, although the location of the shear plane is about a

hydrated ion diameter further from the surface. Because it is often easy to

measure, it is normally the z-potential that we will use for calculating diffuse

layer interactions. It is straightforward to estimate the charge at the Stern

layer which is, of course, equal but opposite in sign to the diffuse layer

charge. We can use Equation (4.5) to estimate the charge at a distance d from

the surface:

sd ¼ �
ð1
d

r dx ¼ e0er

ð1
d

d2c(x)

dx2
dx (4:13)

so that:

sd ¼ e0er
dc(x)

dx

� �1
d

(4:14)

Our boundary condition is that at infinity the slope of the potential–distance

curve is zero, and so we then have:

sd ¼ �e0er dcd

dx
(4:15)

Equation (4.9) gives us the distance-dependence of the potential for small

potentials, with the slope at d given by:

dc(x)

dx jd ¼ �kcd exp (� kd) ¼ �kcd, as kd! 0 (4:16)

and so:

sd ¼ ke0ercd � ke0ez (4:17)

For higher potentials, we can use the same route but now using Equation

(4.7) instead of Equation (4.10) to yield [1]:

dc(x)

dx jd ¼ � 2kkBT

ze
sinh

zecd

kBT

� �
(4:18)

so that:
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sd � 2ke0erkBT
ze

sinh
zez

2kBT

� �
(4:19)

| The Diffuse Layer and Spherical Particles

The solution of the Poisson–Boltzmann equation is not available in an ana-

lytical form except when the Debye–Hückel approximation for low potentials

is used. As there is spherical symmetry it is usual to use spherical polar

coordinates instead of Cartesian so that the equivalent form of Equation (4.7)

for a symmetrical electrolyte with r as the distance from the centre of the

particle is:

1

r2
]

]r
r2
]c(r)

]r
¼ 2zen0

e0er
sinh

zec(r)

kBT

� �
(4:20)

With the Debye–Hückel approximation, we obtain the diffuse layer potential

as a function of distance (as for a particle of radius a):

c(r) ¼ cd

a

r
exp [� k(r� a)] (4:21)

Here, we are assuming d to be very much smaller than a. We can also

estimate the Stern layer charge along similar lines to the flat surface, to

give:

sd ¼ e0ercd(1þ ka)

a
(4:22)

In addition, the charge at the ‘shear plane’ can be estimated if the z-potential
is substituted for the Stern potential.

For potentials in excess of 25mV, we need numerical solutions to the

Poisson–Boltzmann equation. Loeb et al. [4] have provided extensive tables

from such numerical calculations and these authors, as well as others, have

also supplied some approximate analytical expressions (see, for example,

Hunter [1] and Oshima et al. [5]). As an example, a useful expression for the

charge of the Stern layer, approximating it to that at the ‘shear plane’, would

be [4]:

sd � e0erkkBT
ze

2 sinh
zez

2kBT

� �
þ 4

ka
tanh

zez

4kBT

� �� �
(4:23)
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4 THE INTERACTION BETWEEN DIFFUSE
DOUBLE LAYERS

As two charged surfaces approach each other, they interact. If the sign of the

charge is the same, they usually repel each other; alternatively, if the charges

are opposite, they attract. In a vacuum, the repulsion is described by Coulomb’s

law but in a liquid medium the interaction is screened by the ion atmosphere.

The algebra for two planar surfaces is easiest to follow. The model used to

calculate the repulsion uses the ion concentration between the surfaces to give

an osmotic pressure difference between the surfaces and the bulk electrolyte.

The potential distribution is assumed to be the sum of the potentials due to the

two surfaces. This is illustrated in Figure 4.5, where we plot the potential

distribution between two flat surfaces with a small overlap of diffuse layers.

4.1 The Interaction between Similar Flat Plates

The simplest route is to estimate the osmotic pressure at the mid-plane pos-

ition between two surfaces separated by a distance h i.e. at h/2 where

dc(x)=dx ¼ 0 and c(x) ¼ cm. Once we have the osmotic pressure, the poten-

tial energy per unit area of surface is calculated from an integration of the

force (osmotic pressure) we overcome in bringing the two surfaces from an

infinite distance apart to position H.
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Figure 4.5. The potential profile between two planar surfaces at 25mV, in 10�3 mol
dm�3 NaCl.
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The difference in the ion concentration at the mid-plane and the bulk

electrolyte gives us the osmotic pressure, P(H):

P(H) ¼ kBT(nþ þ n� � 2n0) (4:24)

Using the Boltzmann distribution of ions (Equation (4.2)), we can rewrite

Equation (4.24) for a symmetrical electrolyte as:

P(H) ¼ 2n0kBT cosh
zecm

kBT

� �
� 1

� �
(4:25)

recalling that the identity cosh (x) ¼ (ex þ e�x)=2. For small values of x, we

can expand cosh (x) � 1þ x2=2, and so for small potentials, we have:

P(H) � k2e0er
2

c2
m (4:26)

Substituting for the mid-plane potential, cm ¼ 2c(H=2), we now have:

P(H) � k2e0er
2

[2cd exp (� kH=2)]2 ¼ 2k2e0erc2
d exp (� kH) (4:27)

and the potential energy is:

VR ¼ �
ðH
1
P(H)dH (4:28)

which, with the boundary condition that P(H) ! 0 as H ! 1, gives:

VR ¼ 2ke0erc2
d exp (� kH) (4:29a)

namely:

VR � 2ke0erz2 exp (� kH) (4:29b)

The same route is taken for systems with higher potentials where we cannot

justify the simplifying Debye–Hückel approximation. If we look at the case of

a weak overlap of the diffuse layers so that kH > 1, we can still simply add

the local potentials that we estimate from the isolated surfaces (Equation

(4.12) ). Following the same route as used above for the low-potential case,

we can derive the resulting expression for VR:
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VR ¼ 64n0kBT

k
tanh2

zecd

4kBT

� �
exp (� kH) (4:30)

4.2 The Interaction between Dissimilar Flat Plates

Of course, the interaction will not always be between two identical surfaces.

For two flat plates with potentials cd1 and cd2, we have, in the Debye–Hückel

limit [1]:

VR ¼ ere0k
2
f c2

d1 þ c2
d2

� �
[1� coth (kH)]þ 2cd1cd2cosech (kH)g (4:31)

Some results using Equation (4.31) are plotted in Figure 4.6 for two surfaces

with potentials of �25 and �15mV. In addition, the results obtained for two

surfaces of equal potential at 20mV are shown for reference. We see a max-

imum in the interaction energy at kH � 0:5. At close separations, the poten-

tial energy decreases and eventually becomes attractive. At the maximum of

the curve, the electrostatic interaction force is zero and is attractive in the

above example when kH < 0:5. This is quite an exciting result as it indicates

why some materials with a similar sign charge may stick together or hetero-

coagulate. For example, we could picture a protein-coated surface of a cell

−5 � 1015

5 � 1015

1 � 1016

0

1 10 102

h (nm)

ψδ1 = −25 mV; ψδ2 = −15 mV

ψδ = −20 mV

V
R
/K

B
T

(m
− 2

)

Figure 4.6. Potential energy of interaction for two flat plates.
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close to its isoelectric point tending to stick to clay particle just as a result of

electrostatic interactions. Of course, dispersion forces are also usually attract-

ive and will aid the process.

4.3 Constant Charge or Constant Potential?

At this point, we should note that the charge at the Stern plane is related to the

local potential gradient (Equation (4.15) ). If we examine Figure 4.5, and keep

the potential at the surfaces as fixed points, when we bring the two plates close

together, the slope of the potential decreases due to the summation of the

potential distributions. This means that the local charge changes (decreases) as

a result of the constant potential. Hence, the results expressed by Equations

(4.29) and (4.30) are strictly for that constant potential condition. In fact, we

get an identical result with both the Debye–Hückel approximation and weak

overlap condition if we keep the charge constant. At higher potentials and

greater overlap, this is not the case and we have different results if we work at

constant potential or constant charge. Where appropriate, the inclusion of c or

s in the subscript will be used to indicate if the equation relates to constant

potential or constant charge. The choice of the appropriate equation would

seem to be easily related to the type of surface that we have. For example, a

surface with a charge due to isomorphous substitution in a lattice should be a

good candidate for a constant-charge surface. On the other hand, a surface

where the charge is controlled by the concentration of potential-determining

ions in solution might best be treated as a constant-potential surface. In prac-

tice, the choice is rarely clear-cut. However, care should be exercised when

using the constant-charge expressions at small separations as the approxima-

tions become inadequate, predicting much too strong a repulsion at kH < 1.

5 THE INTERACTION BETWEEN TWO SPHERES

A similar approach to the repulsion between flat plates is taken to estimating

the repulsion between two spheres. The problem of solving the potential

distribution around a sphere is carried over to the problem of overlapping

diffuse layers. However, there are a number of approximate expressions avail-

able (for example, see Hunter [1], Russel et al. [3] and Verwey and Overbeek

[6] ). Here, we give the approximate equations with an indication of where

they can be used rather than discuss the details of the derivations.

5.1 Identical Spheres at ka < 5

Here, the diffuse layer is becoming of a similar magnitude to the particle

radius. With the Debye–Hückel approximation for the potential around each

sphere, and simply summing the two, i.e. weak overlap, we have:
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VcR ¼ 2pere0ac2
d exp (� kH) (4:32)

As with the case of flat plates, we have VsR ¼ VcR. This solution is best for

weak overlap so that at kH > 2 it is satisfactory over a wide range of ka. As

ka! 1 or less, it is useful at close distances of approach [7].

5.2 Identical Spheres at ka > 10

In this case, our diffuse layer is thin when compared to the particle radius.

The results for low potentials, with h being the closest distance between the sur-

faces of the particles (i.e.H ¼ r� 2a, with r the centre-to-centre distance), are:

VcR ¼ 2pere0ac2
d ln [1þ exp (� kH)] (4:33a)

VsR ¼ �2pere0ac2
d ln [1� exp (� kH)] (4:33b)

The constant potential expression, Equation (4.33a), works well for all separa-

tions and is acceptable down to ka > 2 if at close approach such that kH < 23.

The constant charge expression, Equation (4.33b), should be used with caution,

especially at close approach, as a large overestimate can be obtained.

5.3 Spheres of Radii a1 and a2 at ka > 10

The equivalent form of Equations (4.33a) for spheres of any radii was given

by Hogg et al. [8]:

VcR ¼pere0a1a2
a1 þ a2

c2
d1 þ c2

d2

� � 2cd1cd2

c2
d1 þ c2

d2

� � ln 1þ exp (� kH)

1� exp (� kH)

� �(

þ ln [1� exp (� 2kH)]
o

(4:34)

5.4 A Sphere and a Plate

The result is that the potential energy is twice that estimated for two

similar spheres, so that, for example, with ka < 5 at weak overlap we can write:

VcR ¼ 4pere0ac2
d exp (� kH) (4:35)

and for close approach and large ka:

VcR ¼ 4pere0ac2
d ln [1þ exp (� kH)] (4:36)
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6 THE EFFECT OF PARTICLE CONCENTRATION

Up to this point, we have only considered the interaction of two isolated

colloidal particles. It is reasonable to neglect the presence of other particles

if the time-average separation of the particles is very much larger than the

range of the diffuse layer. Once the separation becomes similar in magni-

tude to the range of the diffuse layer, it becomes untenable to consider the

osmotic pressure between a pair of particles relative to a ‘bulk value’. The

background electrolyte now contains other particles with their counter-ions.

The simplest approach is to consider the additional concentration of ions

due to the particle counter-ions as an addition to the ions of the back-

ground electrolyte. Of course, each charged particle is a ‘macro-ion’ but

the number is very much smaller than the number of the corresponding

counter-ions, and hence the particle contribution may be ignored without

introducing a large error. However, once the volume fraction of the par-

ticles becomes high, the volume occupied by the particles must be allowed

for as this volume is excluded to the ions. Russel et al. [3] give us a

convenient expression for k for a symmetrical electrolyte with ions of va-

lency z as follows:

k ¼ e2

ere0kBT

� � 2z2n0 � 3s0zw

ae

� �� �
(1� w)

8>><
>>:

9>>=
>>;

1
2

(4:37)

The (1 �w) term in the denominator corrects the ion concentration for the

volume occupied by particles, while s0 is the surface charge density which is

often measurable by titration. If the Stern layer charge was available, it

would be better to use that value as the strongly bound counter-ions are

effectively removed from osmotic activity. The z-potential could be used to

give an estimate of sd; (s0=e)(4pa
2) is the number of charges per particle

of radius a and surface charge density of s0, and so (s0=ze)(4pa
2) is

the number of counter-ions associated with each particle, while 3w=4pa3

is the number of particles per unit volume. The product of these last two

terms and z2 gives the counter-ion contribution to the equation. Now, the

counter-ions are assumed to have the same activity as would an ion in bulk

solution and so we are not making any correction for the structuring effect

of the charged particles. To do so would require a complex statistical mech-

anical analysis. However, the approximation given in Equation (4.37) is a

useful correction for many concentrated dispersions. This is most important

for small charged particles where we have added little extra electrolyte.
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Figure 4.7. The Debye–Hückel parameter as a function of w: a ¼ 200 nm; [NaCl] ¼
10�4 mol dm�3; s0 ¼ 10mCcm�2. The dashed line represents the limiting value for zero
volume fraction.

As an illustration of the problem, we may consider two suspensions of

charged spherical particles in a dilute solution of sodium chloride. Polymer

latex particles would be a good example here as they can be produced with

quite high surface charge densities and also in many different sizes. Figure 4.7

shows how the range of the diffuse layer can vary with particle concentration

with a plot of the Debye–Hückel decay length, k�1, against the volume frac-

tion, w. There is nearly a factor of 10 change in the Debye length which,

because of the square-root relationship with ion concentration, means that

the background electrolyte is completely swamped by the counter-ion concen-

tration as the dispersion becomes concentrated. At volume fractions of � 0.35

we are at similar concentrations to those found in many coatings. The effect

on the electrostatic repulsive potential is illustrated in Figure 4.8 where curves

are plotted for three concentrations of particles. The value of 10mC cm�2

does represent a higher value than those found in many systems, which are

often in the range 0.1 to 1mC cm�2. However, even at these lower values we

obtain values of 12 nm < k�1 < 20 nm at high solids contents, and so the

exponential functionality in the repulsive energy expression is still a signifi-

cant correction.

The addition of ionic surfactants to dispersions is common. They are added

to aid dispersion and to provide charge to prevent aggregation. The density

of surfactant molecules on the surface of the particles usually corresponds to

a monolayer and so the surface charge density is high. However, the Stern
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Figure 4.8. Electrostatic repulsion potential for three different concentrations of
particles (using Equation (4.33a) ): a ¼ 200 nm; [NaCl] ¼ 10�3 mol dm�3; cd ¼ 80mV;
sd ¼ 10 mC cm�2.

charge is lower as many counter-ions are strongly bound but it is also import-

ant to recognize that the ionic surfactants are also electrolytes. The problem

is a little more complex though as the surfactant molecules form micelles

which limit their numbers in free solution and the micelles also bind the

counter-ions to the amphiphilic molecule. However, the diffuse layer counter-

ions should still be included and the micelles can act as small particles and we

will need to keep this in mind when we consider the behaviour of concen-

trated dispersions.

7 STERIC INTERACTIONS

In many colloidal systems we add non-ionic materials which adsorb onto the

surfaces of our particles. The purpose is to prevent aggregation by keeping the

surfaces apart. For this to be effective, the molecules must be firmly attached

but must also extend into the solution so that the surfaces cannot approach too

closely, and this gives the term ‘steric interaction’. The types of molecules that

are most effective for this purpose are non-ionic surfactant block copolymers.

(Charged species such as proteins and polyelectrolytes are also used but we will

delay discussion of these until we discuss the full picture of colloid stability.)

Simple homopolymers are rarely used for this purpose as they need to be

chemically grafted to the surface to prevent desorption if they are lyophilic,

and if they are lyophobic they will be difficult to get into solution and would

form a dense ineffective layer. In this section, we will concentrate on materials

which are effective stabilizers as this is where the important applications lie.
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So, the picture emerging is of molecules with one or more strong anchoring

moieties but with other moieties which are in a good solvent. This means that

we can design effective systems which can operate as stabilizers in high elec-

trolyte concentrations or in non-aqueous (or better, low polarity) media. The

simple linear non-ionic surfactants can be used as well as larger molecules.

The model that we are going to work with is relatively simple but it is import-

ant to recognize that the problem is many faceted and necessarily complex if

a full treatment is to be attempted. In outline, what we will discuss is the

approach of two surfaces which are fully covered by strongly attached poly-

mer (or non-ionic surfactant) layers. As the surfaces approach, the outermost

parts of the layers start to mix as the molecules interpenetrate. The result is

an increase in free energy. At close approach, we may picture an additional

constraint as the surface–surface separation becomes less than the dimension

of a single layer. This would result in a further increase in free energy as the

chains are ‘compressed’, that is, there are even fewer possible configurations

available to each molecule, thus resulting in a marked decrease in entropy.

However, this is not a problem that we shall have to deal with when consider-

ing good steric stabilizers as we shall see that the repulsion becomes very

large before such close approach is attained. Thus only the outermost parts

of the layers in systems are of practical importance although we could con-

struct systems where this would not be the case.

Before we can begin to construct our model, we must have some informa-

tion on the composition of the layers attached to the surfaces. Figure 4.9

illustrates some of the scenarios that we must consider. The schematic shown

in Figure 4.9(a) illustrates a surface covered with terminally anchored poly-

mer molecules. The local polymer concentration, r2, shows a maximum a

little way away from the surface with the concentration falling further out.

Remember that the coils are dynamic and we are trying to obtain the closest

lateral spacing. The profile is distorted from that which we could expect from

an isolated coil, first, by the proximity of the particle surface, and secondly,

by the crowding of the neighbouring coils. Hence, the extension away from

the surface should be a little greater than the dimension of an isolated coil in

solution. If we consider a block or graft copolymer strongly attached to the

surface, we may expect the profile to be a little denser as the adsorbing

sections of the molecule force the soluble moieties closer together. The exten-

sion away from the surface is a maximum for the longest tails where only one

end is attached. Loops are pulled to the surface at both ends and tend to have

a shorter extension. The adsorbed sections (‘trains’), of course, are held close

to the surface. This is illustrated in Figure 4.9(b) where the profile is shown as

relatively uniform until the outer portion of the tails are reached. Lastly, in

Figure 4.9(c) we illustrate an adsorbed surfactant layer which has a uniform

concentration profile with a short-range reducing profile due to the variation

in chain length. The polydispersity of most surfactants tends to be less than
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Figure 4.9. Schematics of concentration profiles of adsorbed layers.

we find with most polymer systems. The polydispersity of the latter means

that the outer profile of the layer can be expected to fall more slowly than we

might expect from the periphery of an isolated chain. In summary, we would

like to have the following three pieces of information:

. the amount of material attached to a unit area of the surface

. an adsorbed layer ‘thickness’

. the profile of the outer part of the layer

The experimental estimation of each of these features has been discussed

earlier in Chapter 2. In this section, we will restrict our discussion to the

interaction between two coated particles. Furthermore, the model will be

restricted to that of layers of uniform concentration as this will simplify the

algebraic description and make the route more transparent. This represent a

less serious limitation than might be apparent at first sight as effective steric

stabilization is frequently provided by densely packed layers of non-ionic

surfactants or branched polymer chains forming part of a block copolymer.

The interaction calculated by using this model will result in a steeper pair-

potential than may actually be the case, but the softness is nearly always the

result of stabilizer polydispersity and this is not easy to model effectively. We

will return to this point at the end of the discussion.

The starting point for our model is the recognition that the steric inter-

action is zero until the outer periphery of the polymer layer on one particle

comes into contact with that of an adjacent particle. Closer approach means
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that the polymer or surfactant chains start to mix. The chain concentration in

the overlap volume is higher than that in either of the isolated layers and this

results in an osmotic pressure acting to separate the particles. If the thickness

of the layer is d, the interaction occurs when the particle surfaces are at

separations < 2d. This is the interaction that we will model.

Should the particle separation become < d, a second effect should be mod-

elled. The surface of the second particle further restricts the possible conform-

ation of the chains attached to the opposing surface, giving rise to an

additional contribution to the interaction energy. This volume restriction term

will be neglected here as in any successful steric stabilizer this degree of the

overlap of layers will never occur as only a small degree of overlap is suffi-

cient to produce potentials much greater than kBT .

In Figure 4.10, we see the overlap of adsorbed layers of uniform concentra-

tion for several geometries for layers which have a thickness of d and with a

particle surface-to-surface separation distance of h. The concentration of sta-

bilizer in each layer is c2 and so the concentration in the overlap region is 2c2.

This means there is a higher osmotic pressure in the region where the two layers

are mixing than before they came into contact. We will define this as the excess

osmotic pressure, PE, which acts to separate the particles. In order to calculate

the force, we must define the area over which the pressure is acting. For

the examples illustrated in Figure 4.10, this is the unit area for the plates and

the area at the base of the spherical cap which is located at the mid-plane. The

interaction energy between the particles (which originates from the free energy

of mixing the polymers in the solvent) is then the difference in the free energy of

two particles at overlap relative to the value just at contact. This value can be

calculated by integrating the force with the distance between the particles:

VS ¼
ðh
2d

�PEAdx (4:38)

δ

h/2 Interaction
area

(a) (b) (c)

Figure 4.10. Schematics of steric interactions – overlap of adsorbed layers for different
geometries: (a) plate–plate; (b) sphere–sphere; (c) sphere–plate.
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Of course, the integral of ‘Adx’ gives us the overlap volume which we may

define as vo.

The Flory–Huggins model of polymers in solution gives us the osmotic

pressure of a polymer solution as a function of concentration (as discussed

earlier in Chapter 2):

P ¼ RTc2

M2

þ RTB2c
2
2 þ . . .

� �
(4:39)

where B2 is the second virial coefficient:

B2 ¼ v2

M2

� �2
1

v1
(0:5� xÞ (4:40)

with the subscripts ‘1’ and ‘2’ referring to the solvent and polymer species,

respectively, as earlier. We can now use Equation (4.39) to calculate the

energy difference as:

VS ¼ �(2voPx ¼ 2d � voPx ¼ h) (4:41)

and so:

VS ¼ RT2c2

M2

þ RTB2(2c2)
2

� �
� 2

RTc2

M2

þ RTB2c
2
2

� �� 
vo (4:42)

which gives us:

VS ¼ 2RTB2c
2
2vo (4:43a)

VS ¼ 2RT

v1

c2v2

M2

� �2

(0:5� x)vo (4:43b)

We should note in Equation (4.43) that the term, which is squared in the

parentheses, is just the volume fraction of polymer in the layer. For the three

geometries illustrated in Figure 4.10, we have the overlap volumes as follows:

plate�plate, vo ¼ 2d�H (4:44a)

sphere�sphere, vo ¼ 2p

3
(d�H=2)2(3aþ 2dþH=2) (4:44b)

sphere�plate, vo ¼ 4p

3
(d�H=2)2(3aþ dþH) (4:44c)
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There are the same expressions that are given by Hunter [1] and Napper [9].

Other models are also available, e.g. Russel et al. [3], Dolan and Edwards [10]

and DeGennes [11], but the above are sufficient for our purpose here.

The expressions given in Equations (4.43a) and (4.43b) indicate what we

can expect for sterically stabilized particles. The major features are:

(a) There is a marked change with temperature.

(b) The repulsion increases rapidly as the polymer concentration in the layer

is increased.

(c) There is an increase in repulsion as the separation decreases.

An increase in temperature can be anticipated to give an increased repul-

sion with non-aqueous systems directly from the ‘RT ’ term, but also from the

decrease in the x-parameter as the solubility improves. However, especially in

aqueous systems, this is not always the case as the x! 0:5 as T ! the LCST

(where LCST is the lower consolute solution temperature, above which phase-

separation of the polymer takes place). As this occurs, the repulsion ap-

proaches zero, the adsorbed layer collapses, and further temperature increases

result in attraction.

As shown in Equations (4.43a) and (4.43b), the repulsion increases with the

square of the polymer concentration in the adsorbed layer. A more rapid

increase than this would have been included if we had not restricted ourselves

to the simple Flory–Huggins treatment. In principle, we could use the osmotic

pressure obtained experimentally from polymer solutions of similar concen-

tration. However, that would not necessarily provide a better description as

polymer attached to a surface is not quite the same as similar molecules that

are free in solution. In addition, the model assumes that a higher polymer

concentration is localized to the overlap volume and this is an oversimplifi-

cation. Some rearrangement must occur, resulting in a larger but poorly de-

fined interaction volume. This ‘local dilution’ would easily counteract the

improvement of a more complex expression for the osmotic pressure due to

the latter’s marked dependence on concentration. At this point, it is relevant

to recall the approximations made in the Flory–Huggins model. This was

based on a simple mixing concept, using a lattice model with the molar

volumes of the solvent and the chain segments being equal. The x-parameter

was expressed as an enthalpic term. Now, the latter depends on both the

temperature and the polymer concentration as there is also an entropic con-

tribution [9]. The value of x increases as both the temperature and polymer

concentration increase. This would reduce the magnitude of the interaction

energy as the surfaces approach.

The biggest problem, however, is concentration detail in the early overlap

regime. This is the point at which polydispersity is really controlling the

softness of the interaction and a detailed profile of the outermost layer
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Figure 4.11. Illustration of the simplified model for adsorbed polymer layers, using the
relationships shown in Equations (4.45a–4.45c) to give the concentration decrease of the
outer layer: ( . . . . . . ) polymer concentration, exponential fall (Equation (4.45b)); (-- -- --)
polymer concentration, cube root fall (Equation (4.45c)).

concentration is needed. Although there are some models for the concentra-

tion profiles of adsorbed layers and some experimental measurements, such

information is poorest at the outermost extremities of the layers. This is the

region that is of the greatest interest in systems with good steric stabilizers as

it is the curvature here that we require when we need to estimate interparticle

forces or rheological properties.

In order to illustrate how the system could be modelled, let us consider the

simplified model for the concentration profiles shown in Figure 4.11. Here,

there is a uniform polymer concentration extending from the surface to a

distance d1. The polymer concentration then falls monotonically until it is

negligible, at dm. A practical system which would have a profile somewhat

similar to this would be a particle stabilized with poly(12-hydroxystearic

acid), a useful stabilizing moiety for particles dispersed in hydrocarbons. This

heavily branched stabilizer is predominantly a hexamer but with pentamers

and septamers also present. The profiles shown in Figure 4.11 follow the

following equations:

x < d1, c ¼ <c> (4:45a)

d1 < x < dm, c ¼ exp �5 x� dm
dm � d1

� �� �
(4:45b)

or:
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Figure 4.12. Illustration of the interaction between two plates with polymer ‘brush’
layers, displaying an exponentially decaying concentration at the outer periphery of each
layer.

c ¼ 1� x� dm
dm � d1

� �1
3

(4:45c)

It should be stressed that both rates of decay are purely illustrative. The

exponential decay rate was chosen to give a very low concentration at dm. A
hydrodynamic thickness of dh ¼ 10 nm is also identified on this figure and

serves to illustrate that we might expect repulsion prior to a surface–surface

separation of 2dh. We can use the relationships shown in Equations (4.45a–

4.45c) in conjunction with those in Equations (4.44a–4.44c) to describe the

concentration variation prior to the integration to give the energy. Figure

4.12 illustrates the results obtained for two plates covered with polymer

‘brushes’ whose concentration profile could be that shown as the exponential

decay in Figure 4.11. It is interesting to note that not only is the decay very

rapid as the interaction ‘follows’ the square of the concentration but that we

do not see a significant repulsion until the surface–surface separation ap-

proaches 2dh. After this, it rises rapidly over the next 1–2 nm.

8 CALCULATION STRATEGY

Although the above discussion illustrates that a knowledge of the details

of the concentration profile is desirable, it is difficult to obtain this informa-

tion experimentally. Techniques such as neutron scattering loose their sensi-

tivity at the low local concentrations at the periphery. In many practical
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circumstances, we prepare colloidal systems with the most effective steric

stabilizers that we can. Thus, we can frequently use a uniform densely packed

profile and the value of dh can be measured. The interaction energy will

increase very rapidly as soon as the two layers come into contact. This situ-

ation can be approximated to:

H > 2dh, VS ¼ 0 (4:46a)

H < 2dh, VS ¼ 1 (4:46b)

In the case of non-ionic surfactants, the stretched surfactant chain length

would give a suitable distance for the repulsive wall. When combining this

with the attractive potentials, we can get an indication as to whether or not

the attraction has been reduced to a few units of ‘kBT ’ or less so that the

system can readily be handled. Only occasionally will we require more

detailed information of the potential and then we have to model the concen-

tration profile of the stabilizer layer. However, in aqueous systems, or those

of intermediate polarity, the electrostatic repulsion will control the pair-

potential profile; the z-potential is the potential at a distance from the surface

corresponding to dh.
As an illustration, we may take the problem of the interaction of terminally

anchored polymer chains which has been analysed in some detail by Dolan

and Edwards [10] and deGennes [12]. The expression using the latter’s work

for the force between two planar surfaces is as follows:

FT(h) ¼ kBTG3=2 H

2d

� ��9=4
� H

2d

� �3=4
" #

� A

6pH3
(4:47)

where G is the number of chains per unit area of surface. As an illustrative

calculation, we may take a d value of 10 nm, a surface density of polymer of

one chain every 100 nm2 and a Hamaker constant for the system of

A � 10�20 J. The results obtained are presented in Figure 4.13 and show the

very rapid rise in repulsion at 2d as the two ‘brush’ layers begin to overlap.

Of course, the polydispersity is not taken into account. The very steep wall is

of less interest than the details of the minimum at the start of the near vertical

rise, and this is where chain polydispersity and weak electrostatics are likely

to control the profile.
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Figure 4.13. Illustration of the net force between two plates: d and s ¼ 10 nm; A ¼
1� 10�20 J.
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Chapter 5

The Stability of Dispersions

1 INTRODUCTION

The term ‘stability’ has two distinct meanings in the context of colloidal

dispersions. In many practical situations, it is taken to mean that there are no

signs of phase-separation over a period of time. If particles in a dispersion

showed a tendency to sediment or cream over a period of storage, that disper-

sion would be termed ‘unstable’. However, we also use the term in another

context to mean that the particles have no tendency to aggregate. With large

or dense particles, these two usages can be contradictory. With very small

particles, this may not be the case. Hence, we will refer to colloid stability

when we mean that the particles do not aggregate and mechanical stability

when they do not sediment. The key to understanding colloid stability is the

pair-potential. In Chapters 3 and 4, we have developed expressions describing

the distance-dependence of the various components of the potential energy of

interaction of two particles. The total potential energy of interaction, i.e. the

pair-potential, is calculated as the sum of each of these components.

2 THE STABILITY OF CHARGE-STABILIZED COLLOIDS –
THE DLVO THEORY

The linear combination of the dispersion force contribution to the pair-

potential with the electrostatic repulsion gave the first comprehensive model

framework for the stability of colloidal dispersions. This work was due to

Derjaguin and Landau [1], and independently by Verwey and Overbeek [2] –

hence the term, DLVO theory – and we may summarize the total interaction

energy as follows:

Colloids and Interfaces with Surfactants and Polymers – An Introduction J. W. Goodwin
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Figure 5.1. The pair-potential calculated for the rutile form of titanium dioxide at
concentrations of 1mM (–––) and 10mM (---) of sodium chloride.

VT ¼ VA þ VR (5:1)

So, for example, we may use Equation (3.25b) for VA and Equation (4.33a) for

VR (see earlier) to describe the interaction between two titanium dioxide par-

ticles as a function of separation at different electrolyte concentrations. The

results of such a calculation are illustrated in Figure 5.1. for 100 nm radius

rutile particles with a z-potential of �45 mV. The calculation is for an isolated

pair of particles and so we are considering very dilute dispersions. As VA and

VR have a quite different dependence on particle separation, the combined

curve has quite a complicated structure. The general features are as follows:

(1) A primary minimum, Vpmin, where the dispersion interaction is much

larger than the electrostatic term. The details here are uncertain, however,

as details of the molecular structures of both the surface and the

adsorbed ions are of a similar scale to the separation.

(2) The primary maximum, Vmax, which occurs at a distance a little further

away where the electrostatic interaction is dominant.

(3) After this, the interaction energy decreases to the secondary minimum,

Vsmin, as the attractive interaction again becomes a little larger than the

repulsion.

The primary minimum indicates that the aggregated state is the lowest-energy

condition and this is where we would expect the particles to reside. The

primary maximum opposes the close approach of the particles and is an

activation energy that must be exceeded for aggregation to occur. The motion

of the particles is governed by the thermal energy and, of course, we may
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describe the energy distribution by the Boltzmann equation. This is important

as we can see that we are predicting a kinetic stability as the rate of aggrega-

tion should be proportional to exp (� VT=kBT). When VT 
 kBT , our par-

ticles will be in a colloidally stable state. The value of Vsmin � kBT in our

example and thus we may expect many of the particles to be in close proxim-

ity for much of the time. In other words, as the net attractive energy is only a

little larger than the average thermal energy, any aggregation in the secondary

minimum is reversible. We will return to discuss the kinetics of the aggrega-

tion of particles later in this chapter.

In Chapters 3 and 4, we discussed the various contributions in some detail.

If there is a net repulsive interaction between two particles such that

VT 
 kBT , the particles will not aggregate. If there is a strong attraction so

that �VT 
 kBT , we will get strong aggregation or coagulation of the par-

ticles with the particle surfaces coming into close proximity. In the case of

fluid particles, this is the precursor to coalescence. There are other situations

where the particles are attracted at long distances but do not come into close

contact. Here, we will use the term flocculation to describe the aggregation.

Many authors use the terms interchangeably but it is useful to separate them.

For example, particles can be flocculated in a shallow attractive well but still

have a large energy barrier to overcome before they can come into close

contact. Some examples here are aggregation in the secondary minimum pre-

dicted for some electrostatically stabilized dispersions, or aggregation due to

the depletion forces produced when a non-adsorbing polymer is added to a

dispersion. In both of these situations, the well is �1 > Vmin=kBT > 100 and

the aggregates may be redispersed with moderate shearing forces, unlike the

coagulated state. The term bridging flocculation is used to describe the aggre-

gation of particles by the adsorption of polymer on two particles simultan-

eously, thereby ‘tying them’ together.

3 MECHANISMS OF AGGREGATION

3.1 Electrostatically Stabilized Dispersions

One of the great early successes of the DLVO theory of formulation of the

pair potential for electrostatically stabilized particles was the ability to predict

their coagulation on the addition of electrolytes [3]. The addition of an indif-

ferent electrolyte reduces the range of the repulsive component and the max-

imum in the potential energy curve is reduced. An indifferent electrolyte is

one which does not contain a potential-determining ion, such as Agþ with

silver halide particles or H3O
þ with oxide particles. At some point, the value

of the maximum approaches zero and there is no barrier to particles coming

into close contact due to the dispersion forces. Of course, the concentration
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and type of the counter-ions does have an effect other than compression of

the diffuse layer. The adsorption in the Stern layer can also change which we

can readily observe experimentally via changes in the z-potential. The latter is

frequently assumed to equate to the Stern potential, cd, and is therefore used

in calculations of the pair-potential. The variation in the tendency to adsorb

in a series of ions of the same valency is known as the Hofmeister series and

these ions’ specificities also show up in other colloidal features such as micel-

lization [3]. The series for monovalent cations and anions is as follows [2]:

Csþ > Rbþ > Kþ > Naþ > Li
þ

CNS� > I� > Br� > Cl� > F� > NO�3 > ClO�4

With cations, the small size of the lithium ion results in a higher charge

density which, in turn, means that it is more strongly hydrated. The larger

anions are more easily polarized and this increases the adsorption. We see a

stronger effect of the ion type with positive particles and anionic counter-ions

than with negative particles and cationic counter-ions.

The valency of the counter-ion is extremely important. The coagulating

power of an ion increases dramatically with its valency, as encompassed in the

Shultz–Hardy rule [3–5] which states that the coagulating power varies as z6

where z is the counter-ion valency. Experimentally, this is not always the case

and a lower exponent can be found. Figure 5.2 illustrates the conditions for
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Figure 5.2. The pair-potential calculated for polystyrene latex particles with a radius of
500 nm as a function of the z-potential and sodium chloride concentration: (–.–.–.)
�20mV, 100mM; ( . . . . . . .) �30mV, 400mM; (- - - -) �50mV, 10mM.
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the loss of stability. The data shown in this figure were obtained for polystyr-

ene latex particles with a diameter of 1mm and were calculated for different

combinations of z-potential and electrolyte concentration resulting in the con-

ditions for instability being met. The unstable particles are those where the

conditions pertain that:

Vmax ¼ 0, and so at this point
VR

VA

¼ �1 (5:2a)

and also:

]VT

]H
¼ 0 ¼ ]VR

]H
þ ]VA

]H
, with k! kccc (5:2b)

If we take the equations for two similar flat plates, i.e. Equations (3.21) and

(4.30) (see earlier), and differentiate these, we have:

0 ¼ �kcccVR � 2

H
VA (5:3a)

or:

kcccH ¼ 2 (5:3b)

and so putting this value back into the expression for Vmax, we have, from

Equations (3.21) and (4.30):

64nkBT

kccc
tanh

zecd

kBT

� �
exp (� 2) ¼ A121k

2
ccc

48p
(5:4)

The expression for k was given earlier by Equation (4.10a). Substitution of

this into Equation (5.4) gives us the following result for the critical coagula-

tion concentration (ccc):

ccc / 1

z6
(5:5)

However, what often occurs as the electrolyte concentration is increased is

that the potential, cd, falls to a low value and then we find experimentally

that we have the weaker dependence:

ccc / 1

z2
(5:6)
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What we observe experimentally is that as we approach the critical coagula-

tion concentration (ccc), we start to see aggregates in suspension. Hence, we can

determine the value by simply using a series of test tubes containing a range of

electrolyte concentrations, to each of which we add a known amount of disper-

sion. After a few minutes, aggregates will be seen at concentrations above the

ccc. This experiment can be made a little more precise if a spectrophotometric

determination of turbidity is carried out. The procedure here is as follows:

(1) Mix a known volume of the dispersion with known volumes of different

electrolyte concentrations.

(2) Allow these to stand for a fixed time – 30min would be suitable.

(3) Centrifuge the dispersions at a low g-value so that only the aggregates are

removed.

(4) Measure the turbidities of the supernatants.

A curve similar to that shown in Figure

5.3 will be obtained.

It is important to be aware that the

coagulating powers of multivalent

cations can be a little more complex

than we might expect initially. Triva-

lent cations such as Al3þ and La3þ

only exist in this form at low pH

values. As Matijévic has pointed out

[6], as the pH approaches values of 7

and above, these ions exist as large

complex highly charged species. Hence,

we should begin to think of these coun-

ter-ions as small counter-charged nano-

particles which can cause hetero-coagulation, and this is why they are such

effective coagulants.

4 HETERO-COAGULATION AND
HETERO-FLOCCULATION

This is an important aspect of the aggregation of colloidal particles in many

practical situations. We will discuss this in broader terms here than is often

done. Thus, under this heading we are including aspects of the interaction of

particles which can carry an opposite charge from each other and the effects of

polyelectrolytes with a charge different in sign from the particles. It was pointed

out in the previous paragraph that ions such as Al3þ only exist in this form at

values of pH <� 4. At higher pH values, large hydrolysed complex ions are

Electrolyte concentration

T
ur

bi
di

ty

ccc

Figure 5.3. The turbidity of the
supernatant from a dispersion as a
function of concentration of added
electrolyte.
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formed with high charge densities. These can be very strongly adsorbed to the

surfaces of negatively charged particles. Clearly, if present in high concentra-

tion, the surface charge can be reversed in sign in exactly the same manner as

occurs with high concentrations of the simple multivalent ions and the system

would be potentially ‘re-stabilized’. Hence, when used as coagulants, the con-

centrations are kept low. Neutralization of the surface charge is one mechanism

for aggregation just as it is with simple multivalent ion species. The diffuse layer

compression is, of course, occurring simultaneously, as discussed in the previ-

ous section, but the strong binding has a very large effect in the reduction of the

Stern potential, cd. However, complete neutralization of the charge is not a

prerequisite for aggregation to occur. There are two further possibilities. First,

the small macro-ions can act as bridges at low concentrations. Secondly, the

adsorption can produce ‘patches’ on the surface of different charge so that on

close approach local attraction can occur. This is just ‘charge patch’ floccula-

tion, as suggested by Gregory [7], as a mechanism for the aggregation of nega-

tively charged particles by cationic polymers. For this to work, the background

electrolyte concentration must be sufficiently high that an approaching particle

surface can ‘recognize’ such a local difference with the resulting attraction. This

means that the patches have to be of a similar magnitude to the decay distance

of the diffuse layer potential, k�1.

4.1 Polymeric Flocculants

Cationic polyelectrolytes, such as a positively charged polyacrylamide-based

copolymer, can form bridges, causing hetero-flocculation. The radius of

gyration of a polyelectrolyte is much larger than if the polymer were uncharged

as the charged groups repel each other, thus forcing the coil to take up an

expanded configuration. The dimension of the coil is a function of electrolyte

concentration as the screening of the charges varies, and in many cases also the

pH. Bridging by polymers (or by other particles) is most effective if the particles

are small and concentrated enough that

their average separation is of a similar

magnitude to the maximum dimension

of the coagulant species. This will not be

the case with larger colloidal particles

and then the charge patch mechanism

becomes the likely route. The critical

factor here is that the coagulating poly-

mer species will have sufficient time to be

adsorbed ‘flat’ on the surface before an

encounter with another particle can

occur. A schematic of this situation is

shown in Figure 5.4. Both bridging and
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Figure 5.4. Schematic of ‘charge
patch’ formation by the adsorption
of a cationic polyelectrolyte on an an-
ionic particle.
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charge patch flocculation work well when the surface coverage is less than 50 %
(by adsorbed polymer). As greater coverage is attained, there is an increasing

tendency for a stable system to be engineered. Polymeric flocculants are nor-

mally used at concentrations of the order of parts per million (ppm).

Anionic polyelectrolytes, such as poly(acrylic acid) and partially hydrolysed

polyacrylamide, can also be utilized as polymeric flocculants. However, many

colloidal systems of practical importance are anionic also. In this case, diva-

lent ions such as Ca2þ can be added and act as ion bridges to bind the

polymer to the surfaces and promote bridging flocculation. Calcium ions bind

very strongly to carboxyl groups and this can help to attach the anionic

polymer to material coated with proteinaceous material. Ion bridges between

two separately coated particles can also be formed, hence producing a floccu-

lated system.

Depletion flocculation should also be considered at this point of the discus-

sion. This mechanism though is not useful in terms of separation processes as

the attractive well is too shallow. The flocculated state is readily re-dispersed

and so the particles could not be successfully separated, for example, by

pressure filtration. In fact, this reversibility is a feature that can be used to

advantage in some situations as we shall see when we discuss mechanical

stability.

4.2 Particulate Hetero-coagulation

The charge patch flocculation mode described above is just one example of

hetero-coagulation where surfaces with charges of different sign attract one

another. The dispersion force contribution is also present so that the total

attractive force is large. An example of hetero-coagulation, which is of im-

mense practical importance, is to be found in the colloidal behaviour of clays.

Kaolinite is an aluminosilicate which has a 1:1 layer lattice structure. The clay

crystal is made up of alternating layers of silica tetrahedra and alumina octa-

hedra connected via shared oxygen atoms. The basal planes are silica and the

crystals are irregular hexagons which have an axial ratio of approximately

10:1. As with all oxides, the silica surfaces are amphoteric so that the surface

hydroxl groups can either ionize or bind a proton:

SiO O−
O

O

Si HO O

O

O

SiO O

O

O

−H

H

+

The point of zero charge (pzc) occurs at a low pH for silica and hence the

surfaces would be negatively charged. However, there is an additional factor

in that in the formation of the clay, some of the silicon atoms were replaced
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by aluminium, and some of the alumin-

ium in the next layer down by magne-

sium. The crystal structure, although

distorted, is basically the same as the

cations are smaller than the oxygen

anions. This is known as isomorphous

substitution and the result is that there

is an excess negative charge due to the

replacement of ions by some of lower

valency. This charge is balanced by

positive ions in the Stern and diffuse

layers. The surfaces are therefore

strongly negatively charged. Isomorph-

ous substitution is only present in the outermost crystal layers and is prob-

ably one of the factors that limits the growth. The crystal edges have exposed

alumina layers and the pzc of this edge surface is close to that of alumina.

The result is that the edges are positive at pH < 7 and become increasingly

negative at pH > 7. Hence, at pH values < 7 the clay particles aggregate in

an edge–face structure similar to a ‘house of cards’. Figure 5.5 illustrates this

mode of hetero-coagulation.

Another situation in which hetero-coagulation can occur is in mixed par-

ticle systems, especially when at least one of the components is an oxide or a

particle coated with a layer which has an isoelectric point at a different pH

from the other component. In this situation, the van der Waals attraction will

be aided by the attraction of oppositely charged surfaces over some of the pH

range. The readjustment of the pH of the dispersion after aggregation has

taken place will not result in re-stabilization of the aggregated particles due

to the large amount of energy required to overcome the deep primary min-

imum attractive energy. The exception would be particles coated with a pro-

tein layer. In this case, the expansion of the hydrophilic layer due to the

internal charge repulsion may be sufficient to aid the ‘re-peptization’.

The mixing of particle systems of different surface charges is important.

To illustrate this, we can take the example of the mixing of a system of

large negatively charged particles with some small positively charged ones.

As the particle number varies as the cube of the size, the small particles are

likely to be present in larger numbers that the larger ones in the final mixture

unless very small amounts are used. If the small particles are added to the

large, the probable result will be a bridging aggregation with complete separ-

ation of the large particles from suspension. If the large are added to the

small with good mixing, a system of large particles coated with small ones

can be achieved. The order and mode of mixing in a hetero-coagulative

system is just as important as it is with the mixing of adsorbing polymers to a

dispersion.
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Figure 5.5. Schematic representation
of ‘edge–face’ coagulation found with
kaolinite at pH values < 7 when the
edges carry a positive charge and the
faces are negative. The particles form
a very open structure, referred to as
‘card-house’ aggregation structure.
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4.3 Aggregate Structure

We have already seen how the hetero-coagulation of a clay leads to an open

structure. This type of structure can space-fill, that is, occupy the whole

volume available to the dispersion at low volume fractions. This has import-

ant implications for applications involving aggregated systems. For example,

the rheological properties change dramatically so that handling can become

difficult. Filtration may start as an easy separation process once a system is

aggregated but the final ‘de-watering’ is limited and so subsequent drying can

be a slow and expensive process. A relatively weak aggregation would be a

preferable situation here so that collapse of the filter cake to a high-solids

density could be achieved. In the case of ceramics, the rheology of the open

structures is excellent for shape formation with minimal elastic recovery after

yield at moderate to high stress. However, the open structures result in con-

siderable shrinkage on drying and firing. These two examples illustrate clearly

that the details of aggregate formation have great practical importance.

If the potential barrier to aggregation is reduced to zero, we have the

situation where particle collisions are ‘sticky’. This mode of aggregation is

termed diffusion-limited aggregation. The simplest visualization of this is to

consider the particles with a hard-sphere potential which has been modified

to give a narrow but deep square attractive well close to the surface. Particles

then collide and stick as they diffuse. The aggregates grow in size with an

open-dendritic or fractal-type structure. Computer models generate this type

of open branched type of structure and some careful experiments have con-

firmed these models. A fuller description may be found in Russel et al. [5] As

these aggregates grow by accretion of ‘sticky’ particles, they grow into each

other and span the available space. This point is known as the percolation

threshold. At higher concentrations, denser structures result, and these are

more difficult to define by a single parameter such as the ‘fractal dimension’.

In addition, although these structures are academically interesting, they are

invariably modified in general applications. Systems are mixed during the

addition of a coagulant and further ‘shear-processed’ during subsequent

handling. The shear forces on these very large and fragile structures compact

them to relatively high densities. For example, systems of monodisperse

spherical particles can be compacted to random packing densities (i.e.

w � 0:64) in monodisperse spherical aggregates by shearing the coagulating

system [8]. The point to remember here is that the strongly aggregated struc-

tures are metastable structures. The lowest energy configuration would be a

very dense unit with the maximum number and/or area of contacts.

The structures that we observe then are a combination of processing and

the strength of the attractive interaction. The attractive well can be controlled

by the addition of material to the surface prior to coagulation. Non-ionic

surfactants and polymers are excellent candidates for this, providing a steric
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barrier and limiting the aggregation to a weak flocculation. Excellent experi-

mental studies of aggregate structures formed with weakly flocculated systems

have been reported by Russel et al. [5] and Sperry [9]. A series of different sized

polymer latices were mixed with different molecular weight water-soluble poly-

mers to give depletion-flocculated systems. Phase-separation occurred at a

value of Vmin � �2kBT . Stronger attractions resulted in rigid branched aggre-

gates, while weaker attractions gave fluid-like aggregates more akin to a separ-

ated fluid phase. So, at some combination of attractive potential and thermal

energy, equilibrium structures were attainable, but if Vmin 
 �kBT non-

equilibrium structures are formed. For phase-separation to occur, the time for

the break-up of a pair of particles must be significantly longer than the time for

more particles to collide with the doublet. However, if it is much longer than

the time over which we are prepared to study the system, we will not wait long

enough to see an equilibrium structure. The diffusion coefficient, D, of a par-

ticle is given by the Stokes–Einstein equation, as follows:

D ¼ kBT

6pZ0a
(5:7)

where a is the particle radius and Z0 the viscosity of the medium. The diffusion

constant has units of a flux, that is, m2 s
�1
, and we can calculate the character-

istic diffusional time as the time it takes for a particle to diffuse through a mean

distance of a. Thus, the Einstein–Smoluchowski equation gives the time as:

tD ¼ a2

D
¼ 6pZ0a

3

kBT
(5:8)

However, if there is an attractive potential the break-up rate will be slowed

down as only a fraction of the particles will have sufficient thermal energy at

any time to escape. The diffusion time must therefore be modified by the

Boltzman factor to reflect this energy distribution:

tD ¼ 6pZ0a
3

kBT
exp �Vmin

kBT

� �
(5:9)

Figure 5.6 indicates how tD increases with the attractive potential for particles

of different size.

4.4 Slow Structural Changes

The usual laboratory timescale (our timescale) is 1ms to 1 ks, but times which

are very much longer than this cannot be neglected as products can be in
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Figure 5.6. The time taken for doublets to separate as a function of particle radius and
the depth of the attractive potential maximum: ( . . . . . . ) a ¼ 50 nm; (- - - -) a ¼ 100 nm;
(– – – –) a ¼ 250 nm; (����) a ¼ 500 nm; (––––) a ¼ 1000 nm.

storage for several months. There are two points to note here. The first is that

if new, ‘sticky’, particles arrive at a doublet before the doublet can break-up

we can expect to observe phase-separation. We see how the break-up time

increases rapidly with both particle size and attractive potential. The second

point is more subtle as we can find changes occurring slowly with time. These

are also related to the diffusive process. Consider a particular system with

monodisperse spherical particles of 500 nm radius and weakly flocculated

with an attractive potential of Vmin � �10kBT . At a volume fraction of

� 0:3, we have a flocculated phase and experiments indicate that this is close

to space-filling (see, for example, Goodwin and Hughes [10]). However, this is

not the densest packing, which would be closer to face-centred cubic. From

Figure 5.6, we see that the break-up time for a pair is � 2 h. What occurs is

that particles in the lower-density zones diffuse to higher-density zones, i.e.

they increase the number of nearest neighbours (coordination number) to

move into a lower energy state. Migration in the opposite direction is clearly

less favourable as each extra contact increases the total Vmin by 10kBT . The

final result is a slow change in local density followed by a collapse of the

structure as it suddenly consolidates. This can take place over periods of

time from hours to weeks, depending on the volume fraction (as this controls

the local mean particle density or coordination number). We see an appar-

ently stable system which, after a long incubation time, sediments rapidly

with tracks being formed as the medium is forced up to the top of the bed.
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Consolidation of suspension concentrates on storage is a common problem in

systems of large dense particles.

5 THE RATE OF COAGULATION

5.1 Diffusion-Limited Aggregation

The initial rate of aggregation was first analysed quantitatively by von Smo-

luchowski who modelled the system as that of diffusing spherical particles

which stick on collision contact but where the pair-potential is zero up to that

contact. Detailed descriptions of the model for the diffusion behaviour can be

found in Hunter [4] and Russel et al. [5]. A simplified approach is sufficient

for our purposes here.

Figure 5.7 illustrates the geometry of this model. If r is the centre-to-centre

distance between our reference sphere and an approaching particle, contact

occurs when r ¼ 2a for a monodisperse system. The central particle is

treated as a ‘sink’ so that no account is taken of any growth of the reference

unit. This is satisfactory as the description is of the initial coagulation

rate. As both particles are diffusing, the net diffusion coefficient is equal

to 2Dm2 s
�1

[2]. The net velocity of an incoming particle is therefore

2D=a m s�1. The surface area of our ‘collision sphere’ is 4p(2a)2. The flux

through the collision sphere, if there are initially Np particles per unit

volume, is:

JB ¼ Np

2D

a
4p(2a)2 (5:10)

Surface area of  collision                                           Net velocity = 2D/a
sphere  = 4π(2a)2

Figure 5.7. Illustration of Brownian collision of two identical particles of radius a with
a diffusion constant of D.
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As this process is occurring with each particle, the collision frequency due to

Brownian diffusion is:

cB ¼ NpJB

2
(5:11)

where the factor of ‘2’ is introduced to prevent ‘double-counting’. Substitut-

ing for D from Equation (5.7) into Equation (5.11) gives:

cB ¼ N2
p

8kBT

3Z0

(5:12a)

As each collision results in coagulation, the initial coagulation rate that we

should observe in a quiescent system is given by the following:

� dNp

dt
¼ N2

p

8kBT

3Z0

(5:12b)

with the half-life of the rapid aggregation process being determined for this

second-order rate equation from:

t1
2
¼ 3Z0

4kBTNp

(5:13)

However, the formation and aggregation of doublets and larger multiplets

should be included [3] and results in Equation (5.13) providing a poor esti-

mate of the situation.

5.2 The Effect of the Continuous Phase

The fast aggregation rate is inversely proportional to the viscosity of the

suspending medium. This rate appears to be directly proportional to the

temperature but increases more rapidly than this as the viscosity of a liquid

decreases exponentially with increasing temperature. Clearly, a high viscosity

reduces the rate of aggregation but there is an additional effect of the particle

being in a liquid medium. The range of the hydrodynamic disturbance around

a moving particle scales with the particle radius. This means that as two

particles approach the hydrodynamic interactions start to become significant

as r < 3a. As r! 2a, the reduction in the rate of approach becomes large

with the liquid between the two particles having to drain out of the interven-

ing space before the particles can come into contact. The hydrodynamic inter-

action acts in a similar fashion to a repulsion in that it slows the approach
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and hence extends the time taken for the formation of doublets. This problem

has been analysed by Derjaguin [11] and Spielman [12], with the latter calcu-

lating the reduction in the initial aggregation rate as a function of the viscos-

ity of the medium.

5.3 Potential-Limited Aggregation

The von Smoluchowski rate given in Equation (5.12b) will overestimate the

rate if there is a repulsion between the particles. Fuchs tackled this problem

and his analysis is discussed in detail in Hunter [4] and Russel et al. [5]. The

pair-potential slows the approach of two particles. At any distance, the frac-

tion of particles with thermal energy in excess of the potential at that distance

is given by the Boltzman factor, i.e. exp (� VT=kBT). The flux through succes-

sive spherical shells as the particles approach is slowed from the simple colli-

sion case and only a fraction of the particles that encounter one another can

approach close enough to stick. The fraction of the encounters that stick is

1/W, where W is known as the stability ratio. We can express W as the ratio

of the two fluxes as follows [4]:

W ¼ 2a

ð1
2a

exp (VT=kBT)
dr

r2
(5:14)

Reerink and Overbeek [13] pointed out that the maximum in the pair-potential

was the dominant factor in restricting the approach of particles as in the slow-

coagulation regime the electrolyte concentration is such that the diffuse layer is

very compressed. They showed that a useful approximation to the integral

equation (5.14) was:

W � 1

2ka
exp (Vmax=kBT) (5:15)

Figure 5.8(a) shows the pair-potentials calculated for silver bromide particles

with a z-potential of �50mV and a particle radius of 50 nm. Equation (5.15)

was employed to estimate the stability ratio for the same particles using the

pair-potentials from Figure 5.8(a), with the results being shown in Figure

5.8(b). However, the height of the primary maximum relative to the secondary

minimum was used in the calculation as this would be the energy required for

the particles to move from a secondary minimum flocculation to a primary

minimum coagulated state. It is clear from Figure 5.8(b) that the stability ratio

changes very rapidly with electrolyte concentration. The result is that we will
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Figure 5.8. (a) The pair-potential calculated for silver bromide with a particle radius of
50 nm and a z-potential of �50mV: ( . . . . . . ) ka ¼ 11:6,Vmax ¼ 37:3kBT ; (----)
ka ¼ 23:2,Vmax ¼ 17:4kBT ; (–––––) ka ¼ 36:7,Vmax ¼ 1:5kBT . (b) The stability ratio
calculated for silver bromide as a function of the concentration of a 1:1 indifferent
electrolyte (using Equation (5.15)).

usually just notice a change from a stable dispersion to a rapidly aggregated

one under normal laboratory conditions. So, although it might appear that

the electrolyte concentration of a sample is low enough for the stability to be

adequate, the slow coagulation process is the type of problem that occurs

during storage.
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6 AGGREGATION IN FLOWING DISPERSIONS

There are two effects of a flow field on the aggregation behaviour of disper-

sions that we need to consider. The first is that the collision frequency is

increased and this effect was first analysed by von Smoluchowski (see, for

example, Hunter [4] and Russel et al. [5]). This just has an effect on the rate

of aggregation but the hydrodynamic contribution to the interaction should

also be considered [5]. This latter effect can cause a stable dispersion to

aggregate under certain conditions. Aggregation under quiescent conditions is

termed orthokinetic coagulation where collisions are solely due to Brownian

motion. In a strong flow field, where the collisions are controlled by the shear

field, the aggregation is termed perikinetic coagulation.

6.1 The Effect of Flow on Collision Frequency

This discussion will be restricted to laminar flow. In a high-speed mixer, the

flow is turbulent with chaotic vortices so that the particles are subjected to a

wide and unpredictable range of hydrodynamic forces and a much more

complex treatment would be required.

In a mixed or flowing system, there is a variation of fluid velocity with

position in the fluid. This is known as a shear field. With simple shear, the

fluid is moving at a uniform velocity in, say the x–y plane, with a change in

velocity in the z-direction. This is illustrated in Figure 5.9.

In the absence of Brownian motion, a particle will move at the velocity of

the liquid at the plane coincident with the centre of the particle, vp, which is a

distance zp from the reference x–y plane:

vp ¼ zp
dv

dz
(5:16)

z

y

x

dv
dz

dv
dz

v v/2

−v/2

Figure 5.9. Illustrations of a simple shear field, where both figures are mathematically
equivalent with the same velocity gradient. The right-hand representation is used in this
case as it emphasizes the symmetry of the collision process.
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Figure 5.10. Illustration of collision trajectories for particles under simple shear flow.
Note that there is symmetry on each side of the x�y plane.

The geometry is illustrated in Figure 5.10. Any particle whose centre passes

through the ‘collision disc’ with a radius of 2a collides with the reference

particle on the x-axis. The problem is now straightforward as it reduces to

calculating the fluid flux through the ‘collision disc’ and as we know that the

particle concentration is Np, we have the number of collisions with a reference

particle. The fluid flux through the area element dz is given by.

fz ¼ dv

dz
zdz2yz (5:17a)

fz ¼ dv

dz
[2a cos (u=2)][� a sin (u=2)][2a sin (u=2)] (5:17b)

Therefore, the total flux of particles through the disc is as follows:

fp ¼ Np2
dv

dz
(2a3)

ð0
p

[� sin2 (u=2) cos (u=2)]du (5:18)

As collisions occur with all of the particles, the total collision frequency due

to flow, cf , is the product of fp and Np, although we have to divide by two to

prevent ‘double-counting’:
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cf ¼ 16

3
N2

pa
3 dv

dz

� �
(5:19)

However, as the particles approach in the shear field the hydrodynamic inter-

actions cause the colliding pair to rotate and with the combination of the

slowing of the approach due to liquid drainage [5,12], i.e. lubrication stresses,

and Brownian motion, not all collisions will lead to aggregation. Equation

(5.19) must be reduced by a factor a to account for this:

cf ¼ a
16

3
N2

pa
3 dv

dz

� �
(5:20)

This ‘collision efficiency factor’ is of order ‘1’ and a typical value would be

a � 0:8. It is interesting to compare the Brownian collision frequency (cB)

from Equation (5.12a) with that due to flow in Equation (5.20):

cf

cB
¼ 2aZ0a

3

kBT

dv

dz
(5:21)

If the particles are dispersed in water at a temperature of 25 8C, the ratio in

Equation (5.21) becomes:

cf

cB
� 4� 1017a3

dv

dz
(5:22)

When we stir liquid in a beaker with a rod, the velocity gradient is in the

range 1 to 10 s�1: With a mechanical stirrer, 100 s�1 would be a reasonable

value, while at the tip of a turbine in a large reactor one or two orders of

magnitude higher could be possible. Hence, the particle radius a must be

< 1mm if even slow mixing can be disregarded.

This description of the collision process does not include the details of the

collision trajectories which are governed by the hydrodynamic interactions. A

more detailed description should also include the effects of interparticle repul-

sion and attraction, as well as the contact time [3].

6.2 The Effect of Flow on the Interaction Force

The above description of the collision frequency due to von Smoluchowski is

useful if we are looking at particle coagulation rates in the absence of a

potential barrier. When we consider the case of potential-limited aggregation,

we have to consider the contribution due to the hydrodynamic forces acting

on the colliding pair. An excellent analysis of this situation has been carried

The Stability of Dispersions 145



Compression Tension

v
θ

vradial

vtangential

Figure 5.11. Illustration of the geometry of a colliding pair of particles with the
maximum compression and tension at 458 to the shear plane.

out by Schowalter and is given in Russel et al. [5]. To illustrate the underlying

concept, we will consider a simple model.

Figure 5.11 shows the forces acting on a collision doublet in simple shear.

This figure shows the trajectory with the points at which the maximum com-

pression and tension occur, that is, at values of u ¼ 45�. The particles have

the same radius a and the reference particle is at z ¼ 0. The velocity of the

streamline coincident with the centre of the colliding particle at the orienta-

tion giving the force maximum is:

v ¼ dv

dz
2a sin (45) (5:23)

Now, the radial component of the Stoke’s drag force on the particle is:

Fh ¼ 6pZ0avradial ¼ 6pZ0a cos (45) (5:24)

and so we may write:

Fh ¼ � dv

dz
6pZ02a

2 sin (45) cos (45) (5:25a)
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Fh ¼ � dv

dz
6pZ0a

2 (5:25b)

where the ‘�’ indicates the compression or tension, respectively. It should be

noted at this point that the trajectory illustrated in Figure 5.11 is a simplifica-

tion. This trajectory would be altered by the colloidal forces on close ap-

proach. The details would depend on whether there was a net attraction or

repulsion but the maxima and minima would still be at the positions shown

and therefore Equation (5.25b) is satisfactory for our purposes.

It is possible to use Equation (5.25b) to indicate where the stability or in-

stability boundaries are located for particular dispersions. To carry this out, all

we have to do is to equate the interparticle forces at the maximum and min-

imum points on the force–distance curve. As an example, we shall consider a

polystyrene latex system at a sodium chloride concentration of 50mM. For the

calculation, we shall choose a particle radius of 500 nm. The pair-potential can

be calculated by using Equation (4.33a) for the repulsion and Equation (3.24b)

for the attraction (see earlier). The interparticle force is given by:

FT ¼ � dVT

dH
(5:26a)

and so we have:

FT ¼ 2pere0kacd

exp (� kH)

1þ exp (� kH)

� �
� aA11

12H2
(5:26b)

The value of ka is 368 and so we have a situation where the interparticle

forces are changing in a region very close to the particle surface; hence,

hydrodynamics control the trajectories until the particles are at very close

distances. The force–distance curve for this system, with a z-potential of

�40mV, is shown in Figure 5.12, where z ffi cd is assumed. The stability

boundaries are calculated in terms of the value of the shear rate required to

change the aggregation state at different values of the z-potential. The results

obtained are shown in Figure 5.13. There are several features of note in this

stability diagram. At z-potentials less than 20mV, the dispersion is coagu-

lated at all values of the shear that are plotted. With a small increase in the

potential above this value, the dispersion is aggregated, but is flocculated and

not coagulated at low shear rates. However, at shear rates of the order of

105 s�1 the hydrodynamic forces are sufficient to cause the dispersion to form

doublets which are coagulated. It is also interesting to note that the shear

forces on this particle size, ionic strength and diffuse layer potential combin-

ation will only break down the doublets flocculated in the secondary min-

imum when shear rates of the order of 103 s�1 are reached. Although shear
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Figure 5.12. The interparticle force plotted as a function of surface separation for two
polystyrene latex particles: a ¼ 500 nm; z-potential ¼ � 40mV; 1:1 electrolyte concen-
tration ¼ 50mM: Fmax ¼ 3:96� 10�10N; Fs;min ¼ � 3:80� 10�11 N.
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Figure 5.13. The stability map for polystyrene latexes as a function of shear rate and
z-potential. The particle radius was taken as 500 nm, with the calculations being carried
out for a 50mM solution of a 1:1 electrolyte.
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rates of this magnitude are readily attainable in a viscometer, they would

represent a very high stirring rate with a paddle stirrer in a beaker on the

laboratory bench, but are easily achieved in pumps and large reactors with

turbine mixers. Equations (5.25a) and (5.25b) show that the shear forces

increase as the square of the particle radius and so the stability boundaries

drop rapidly with increasing particle size as the colloidal forces change more

slowly with radius. Hence, particle with a radius of 3 or 4mm are much more

sensitive to shear-induced aggregation than particles of 0.3 or 0:4mm in

radius. It is also important to note that at electrolyte concentrations which

are becoming high enough to be approaching a slow coagulation condition,

the z-potential is unlikely to be as high as �50mV. This means that we are

most interested in the steep part of the coagulation boundary where relatively

low shear rates can be important. For example, localized high electrolyte

concentrations can occur during the addition of a solution to a dispersion,

even when the systems is stirred, and so attention must be paid to the mixing

and addition rates.

In many situations, the volume fraction of the dispersion is maintained as

high as it is possible in order to retain suitable handling properties, that is

good heat and mass transfer properties. Hence, when the hydrodynamic

forces on a pair of particles are considered, it is really the ‘multi-body’ hydro-

dynamic forces that are critical. As a first-order approach, we can take the

‘effective medium’ or mean-field approach and use the viscosity of the disper-

sion to calculate the local force. To illustrate this, we shall use the high-shear

result for the viscosity of a dispersion of monodispersed hard spheres. The

details of the derivation are described in the discussion on the rheology of

dispersions later in this volume, and so here we will just give the result

obtained, as follows:

Z ¼ Z0 1� w

0:605

� ��1:513
(5:27)

The stability boundaries shown in Figure 5.13 by the dashed lines were calcu-

lated by using a volume fraction of 0.45. Clearly, the boundaries drop in pro-

portion to the viscous forces as expected and so it is easier to reduce the break-

up of flocculated pairs. Thus, a larger fraction of the stable area is occupied by

particles that we would term ‘dispersed’. However, the important thing to

observe is that the boundary is moving away from the �20mV threshold more

rapidly, therefore indicating more shear sensitivity. Indeed, we now see that

close to the �20mV threshold for rapid coagulation, flocculated particles will

become coagulated at only moderate shear rates with there being no opportun-

ity to separate them. At first sight, this may seem an unimportant point, but

we frequently have concentrated dispersions to which we wish to add stabil-

izers, such as a surfactant, for example, and of course, mix with the addition of
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a stabilizer solution. Once coagulated, separating the particles to allow the

stabilizers to adsorb and function correctly may be impossible.

At this point of the discussion, the question naturally arises concerning the

break-up of coagulated particles, as Equations (5.25a) and (5.25b) give an

estimation of the hydrodynamic forces available. This is, in part, the same

problem as we see in the dispersion of dry powders into a liquid medium and

the break-up of liquid drops in emulsification, although both of these pro-

cesses have additional factors. In the case of the ‘re-dispersion’ of coagulated

particles, the problem is to estimate the depth of the primary minimum as the

shear force has to be sufficient to overcome the attraction and pull the par-

ticles apart to a distance equivalent to the maximum in the curve. Here, the

problem comes down to details of molecular dimensions, so that the hydra-

tion of bound ions and their dimensions, for example, must control the ap-

proach. We could take a cut-off distance of, say 0.5 nm, as a typical minimum

separation and use this to calculate a re-stabilization boundary. The force–

distance curve is very steep at this point and so the calculation would not be

of great practical use. Another problem is that on this scale the details of the

surface topography, distribution of charges, etc. become important. Finally,

experimentation to either confirm the result or to provide a basis for estima-

tion becomes difficult as the shear rates required would invariably involve

turbulent flow fields which are chaotic and difficult to describe.
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Chapter 6

The Wetting of Surfaces
by Liquids

1 INTRODUCTION

At first sight, the wetting of a macroscopic surface by a liquid appears to be

unrelated to the normal colloid discussion. It is, however, intimately related

to the detailed surface chemistry and physics which determine the behaviour

of particles. The same intermolecular forces are involved and the adsorption

of macromolecules or surfactants is usually handled as though it was occur-

ring on a macroscopic surface.

There are a large number of situations in which the manner and rate that a

surface is wetted by a liquid are of major importance. Many colloidal materials

are obtained as dry powders which are then dispersed in a liquid medium.

Pigments and fillers immediately come to mind. The extraction of oil from

porous rock by replacing it through pumping water into the well is another

case. We could pick many others from commercially important areas such as

the enhancement of mineral ores via flotation to the more apparently mundane

operations such as washing clothes or maintaining visibility through widows in

wet conditions. Hence, this is an area of study which fits naturally into prob-

lems of the application of colloidal systems, as we shall see in the following.

In Chapter 1, the concept of surface tension was introduced in terms of the

Helmholtz free energy per unit area of surface (Equation (1.15)) which can be

re-stated as follows:

gs ¼
Fs

As

�
X
i

misnis (6:1)
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where the subscript ‘s’ denotes the surface, F is the free energy and A the

area, with m and n being, respectively, the chemical potential and number of

moles of each species in equilibrium. This formal definition helps to focus our

attention on the details of the intermolecular forces, the molecular compos-

ition of the interfacial region and where we draw the ‘Gibb’s dividing surface’

as our description of the actual location of the surface. However, the experi-

mental observations that we make, and the interpretations that we will dis-

cuss in this chapter, treat surfaces as macroscopic with well-defined locations

and analyse the force balances by using classical mechanics. It is possible to

achieve a great deal with this approach but we must always keep in mind

adsorption processes and that the surfaces should be in equilibrium unless we

are specifically looking at rate processes.

2 THE CONTACT ANGLE

When a small amount of liquid

is placed on the surface of a

solid it forms a drop which

covers a limited area of the

surface. This is illustrated in

Figure 6.1 in which the contact

angle, u, is the angle between

the tangent to the liquid at the

contact line and the solid sur-

face [1]. The limiting condition

is that 0� < u < 180�. If we

take the condition where the contact angle approaches zero, we have a sur-

face that is completely wetted by the liquid. Water on clean glass is an

example of this. The glass is hydrophilic due to the silica surface, along with

the large number of oxygen atoms and surface silanol groups which can

hydrogen bond with the water surface. Mercury on a polytetrafluorethylene

(PTFE) surface forms drops with a contact angle of about 150� and this can

be considered to be complete non-wetting of the surface. If the value of the

contact angle is � 90�, the droplet does not spread readily. If the volume in

the drop is changed, we can observe that the line at the three-phase junction,

the wetting line, moves with some difficulty. If liquid is withdrawn, the angle

is reduced from the value that we see when liquid is added. These experiments

have to be carried out slowly and carefully so that we are as close to an

equilibrium value as possible. The angle obtained as we just finish expanding

the drop is known as the advancing contact angle, uA, while the one that is

observed as the liquid has just been withdrawn is the receding contact angle,

uR. These angle change if they are measured while the wetting line is in

Liquid

Solid

Vapour
θ

Figure 6.1. The contact angle, u, formed by a
drop of liquid on a solid surface.
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Figure 6.2. The balance of interfacial tensions at the vapour–liquid–solid contact line
shown for (a) a flat surface, and (b) a ‘non-flat’ surface.

motion. They are then known as the dynamic contact angles and merit a

discussion in some detail due to their importance in many coating and

printing processes.

2.1 The Young Equation

In the illustration of the liquid drop shown in Figure 6.1, the contact line will

move until equilibrium is established. We may describe this situation in terms

of the force balance in the plane of the surface shown in Figure 6.2(a) and

expressed as the vector addition:

gvs ¼ gls þ gvl cos u (6:2)

Here g12 is the interfacial tension between phases ‘1’ and ‘2’ (e.g. vapour (v)

and solid (s)). (It is only referred to as the surface tension if it refers to the

liquid/saturated vapour interface.) We should note that Equation (6.2) refers

to a drop on a flat surface. If the surface is not flat, then the balance shown in

Figure 6.2(b) gives [2, 3]:

aþ b 6¼ 180�: gvs � gls þ glv cos b; gls � gvs þ glv cos a (6:3)

However, the contact line is not

straight – it is curved and the

radius of curvature is important

as this results in what is known as

the line tension, TL, which acts in

opposition to the expansion of

the drop (as illustrated in Figure

6.3). Equation (6.2) should there-

fore be written for a drop of

radius r as follows:

TL

Figure 6.3. Schematic of the line tension,
TL, acting along the contact line of a liquid
drop.
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gvs ¼ gls þ gvl cos uþ TL

r
(6:4)

The line tension is not very large, being typically of the order of

TL � 10�11 N, with the value of TL=r > 1mN m�1 making a significant con-

tribution. Therefore, we need only use Equation (6.4) for very small systems

such as capillary condensation in porous solids.

3 METHODS FOR THE MEASUREMENT
OF CONTACT ANGLE

There are several methods available for measuring the contact angle and

suitable equipment may be purchased ‘off the shelf ’. The technique chosen

will depend on the surface. For example, if it is a crystal face one of the first

two methods described below would be suitable when using drops or bubbles.

If it is a thin element which has had some form of surface treatment, one of

the other methods may be easier. In all cases, the roughness of the surface is

an issue which must be addressed.

3.1 Sessile Drop

In this approach, a drop of liquid is placed on the surface for which the contact

angle is required. A syringe is then used – either to add liquid to give the value

of the advancing angle, or to withdraw liquid to give the value of the receding

angle (Figure 6.4). A low-power microscope coupled to a computerized image

analysis system is the most

convenient method for this

evaluation. The simplest

method is to draw a tan-

gent to the image on the

screen at the contact point

of the drop and the surface.

Rather better, however, is

to digitize the image of the

curved surface, fit the

points to a polynomial and

compute the tangent to the

curve at the contact point.

The drop and experimental

surface should be enclosed

in a cell so that the drop is

surrounded by saturated

Solid

Liquid Vapourθ

Figure 6.4. Schematic of the sessile drop experi-
ment. In this approach, liquid is added or removed
via the syringe and the drop profile is photographed.
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vapour. This allows the surface of the solid to reach an adsorption equilibrium

and to limit evaporation of the droplet. The drop must be sufficiently large that

the syringe needle does not affect the curvature of the drop surface close to the

contact line.

3.2 Captive Bubble

In this experiment, the

solid is immersed in the

liquid and a bubble is pro-

duced from a gas-tight syr-

inge and brought into

contact with the surface

(Figure 6.5). Again, a low-

power microscope coupled

to a camera and a com-

puterized imaging system

is the most convenient

method of determining the

angle. In this case, expan-

sion of the bubble enables

the receding angle to be

recorded, while contraction gives the advancing angle. This method has an

advantage in that a saturated vapour is readily achieved.

3.3 Wilhelmy Plate

This is caried out by

employing the same equip-

ment that can be used to

determine the surface ten-

sion of a liquid. In this

mode, the plate must be

fully wetted and a contact

angle of � 0� is assumed.

However, if the surface

tension of the liquid is

known, the data can be

used to calculate the con-

tact angle. The experimen-

tal arrangement is shown

in Figure 6.6. The change

in force recorded by the

Vapour

Substrate

Liquid

Expand or contract bubble

θ

Figure 6.5. Schematic of the captive bubble experi-
ment. Expanding the bubble gives uR, while contrac-
tion provides uA.

t

h
w

Force

θ

Figure 6.6. Schematic of the Wilhelmy plate experi-
ment, where h is the depth of immersion of a plate of
width w, with a thickness t. The net force is measured
with a balance.
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(a) (b)

θ

θR

θA

Figure 6.7. Schematics of the two tilted plate methods for measuring the contact angle.

balance on partial immersion of the plate is equal to the surface tension force

minus the bouyancy of the immersed section of the plate, as follows:

force ¼ 2(wþ t)gvl cos u� wthr1 (6:5)

where w is the width of the plate of thickness t, and so 2(wþ t) is the length

of the contact line; h is the depth immersed while the liquid density is r1.
The advancing and receding angles are obtained by altering the depth of

immersion.

3.4 Tilted Plate Methods

There are two methods which use tilted plates, as shown in Figure 6.7. When

a drop is placed on an inclined plane, and the tilt of the plane is increased

until the drop just starts to move, the advancing and receding angles may be

obtained in one experiment (Figure 6.7(a)). This sounds easy but it requires a

continuous recording of the image to determine the point to take the meas-

urement and the technique is particularly prone to vibrations which lead to

significant experimental scatter. The second technique, illustrated in Figure

6.7(b), also involves a tilted plate and makes use of the observation that

the meniscus will appear flat when the plate makes an angle of 180� u
with the surface. Advancing and receding angles can only be obtained by

changing the immersion depth of the plate.

4 CONTACT ANGLE HYSTERESIS

The value of the contact angle obtained experimentally is found to depend on

whether the liquid is advancing over the surface or receding, and uA � uR.
We may also observe ageing effects. The first thing to consider is the nature
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of the surface. Although we may form a fresh surface, the nature of that

surface rapidly changes by the adsorption of material from the atmosphere.

This may be physical adsorption of water or hydrocarbons, or chemical ad-

sorption to give an oxide layer on metals or water, as in the formation of

surface silanol groups on freshly prepared silica. Recall from Chapter 3 that

the surface tension tells us about the surface energy and for ‘atomic liquids’

this can be calculated from the London dispersion forces, while the hydrogen

bonding in liquids such as water makes the dominant contribution. With

solids, things can be more complex as there can be residual strains present,

but solids have much higher surface energies (and tensions) than liquids.

Nevertheless, the adsorption on the surface can make a very large difference.

Isrealachvili [4] quotes data for cleaved mica which illustrate this well. For

mica, freshly cleaved under high vacuum, the value is 4:5 J m�2 and this falls

to 0:3 J m�2 when it is cleaved under normal laboratory conditions and water

can adsorb. A thin liquid layer can form on the solid surface and we might

think that the contact angle would become very small, as the liquid would in

effect be in contact with itself. The wetting film has to be thick for this to be

the case. With thin films such as monolayers, the underlying intermolecular

forces are still evident. Of course, when we make measurements of advancing

angles, there may only be a monolayer or so of liquid adsorbed on the solid,

but when we reverse the process and withdraw liquid and rapidly measure the

receding angle, a much thicker film may be present which only thins slowly.

However, there are other reasons for the observed hysteresis. Surface het-

erogeneity can result from polycrystallinity or variation in local composition.

When the wetting line moves over a heterogeneous surface, it will stick as it

passes a boundary from a lower-energy to a higher-energy region. This will

hold back the contact line, thus increasing the advancing angle and reducing

the receding angle. Surface roughness is an important cause of hysteresis. The

schematic shown in Figure 6.8 illustrates the effect. When the angle is meas-

ured, the surface is taken as a plane through the undulations, although the

liquid must form the angle to the local surface, which may be at an angle to

the viewing plane. As shown in this figure, if the surface is at an angle a to

the measurement or viewing plane, the receding angle will be apparently

θapparent

motion of edge of drop

θR
θA

Figure 6.8. Schematic of a drop on a rough surface. Here, we measure an ‘apparent’
contact angle, and hence the differences between the advancing and receding angles,
even though the true contact angle does not alter (� 908 in the figure).
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reduced by a and the advancing angle increased by a at the points shown.

What will happen is that the drop will move in ‘jumps’ from one metastable

configuration to the next. Wenzel [5] has defined a ‘roughness factor’, Rf , in

terms of the ratio of the actual surface area to the apparent geometric area

for which the apparent contact angle was u
0
, and so Young’s equation now

becomes:

Rf (gvs � gls) ¼ gvl cos u
0

(6:6a)

and so:

Rf ¼ cos u
0

cos u
(6:6b)

The dimension scale of the surface heterogeneity or roughness is important. A

dimension of at least 100 nm appears to be required. This means, for example,

that optically smooth surfaces will not show much hysteresis due to roughness.

5 SPREADING

The surface tension of a pure liquid was defined as the surface energy of that

liquid. That is, it is the energy required to generate the unit area of a new

surface. The work of cohesion, Wll, of a liquid is the work that would be

required to separate two ‘slabs’ of the liquid, as shown in Figure 6.9(a):

Wll ¼ 2gvl (6:7)

The work of adhesion, Wls, is the work required to separate two different

materials (shown in Figure 6.9(b)). This is calculated as the sum of the ener-

gies of the new surfaces that are formed, minus that of the interface that is

lost, as follows:

Wls ¼ gvs þ gvl � gls (6:8)

Figure 6.9(c) shows the spreading in similar terms. We may define the equilib-

rium spreading coefficient, S, in terms of the work of adhesion and work of

cohesion. We have to do work to create the new liquid surfaces and then this

is offset by the work of adhesion of the liquid to the vapour/solid surface:

Svls ¼Wls �Wll (6:9a)

Svls ¼ gvs � gvl � gls (6:9b)
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Figure 6.9. Schematics of the processes of (a) cohesion, (b) adhesion, and (c) spreading.

We may then use the Young equation (Equation (6.2)) to put both the work

of adhesion and the spreading coefficient in terms of readily measured quan-

tities such as the contact angle:

Wls ¼ gvl( cos uþ 1) (6:10)

This is known as the Dupré equation, and the spreading coefficient is given

by the following:

Svls ¼ gvl( cos u� 1) (6:11)

and, of course, the contact angle can be written in terms of the ratio of the

work of adhesion and that of cohesion, as follows:

cos u ¼ 2
Wls

Wvl

� 1 (6:12)

It is instructive to note the following limits:

Wls ¼Wvl; cos u ¼ 1, and so u ¼ 0�

Wls ¼Wvl

2
; cos u ¼ 0, and so u ¼ 90�

Wls �Wvl; cos u! �1, and so u! 180� (6:13)
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Of course, this is no surprise as the work of cohesion and adhesion are

calculated from the surface energies, which are a reflection of the intermolecu-

lar forces. For non-polar liquids, the London dispersion forces provide a

good estimate of the surface energy via the appropriate Hamaker constants.

Girifalco and Good [6] and Fowkes [7] have observed that as the geometric

mean gave a reasonable approximation for the combined Hamaker constant,

the geometric mean of the work of cohesion, and hence the surface tensions,

could be used to calculate the interfacial tension. So, for two liquids with

surface tensions equal to g1 and g2, the interfacial tension, g12, from Equa-

tion (6.8), is as follows:

g12 ¼
W11

2
þW22

2
�W12 (6:14)

or:

g12 ¼ g1 þ g2 �W12 (6:15)

Now:

W12 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W11W22

p
¼ 2

ffiffiffiffiffiffiffiffiffiffi
gd1g

d
2

q
(6:16)

and:

g12 � g1 þ g2 � 2

ffiffiffiffiffiffiffiffiffiffi
gd1g

d
2

q
(6:17)

where the superscript ‘d’ is used to indicate the dispersion force contribution

to the surface tension. For example, the surface tension of water has a disper-

sion force contribution and a larger H-bonding contribution, thus

gH2O
¼ gdH2O

þ gHH2O
¼ 22þ 50:5 ¼ 72:5mN m�1. So, by using Equation

(6.17) for octadecane on water we can calculate the interfacial tension at

20�C as � (28þ 73� 2(28 � 22)0:5), i.e. � 51mN m�1, as the interaction

across the interface is due to the dispersion forces.

When we are considering liquids wetting a solid and we combine Equations

(6.10) and (6.16), we obtain the following:

gvl( cos uþ 1) ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
gdvlg

d
s

q
(6:18)

Note that the surface tension of the solid is not modified by the vapour from

the liquid in this expression, and so we must be careful in the application of

Equation (6.18). Rearrangement of the latter gives the following:
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gds ¼
gdvl( cos u� 1)2

4
(6:19)

So, we may use measurements of the contact angle and the dispersion contri-

bution to the surface tension of the liquid/vapour interface to estimate the

solid surface tension. Good results have been obtained for non-polar mater-

ials. In many cases, the vapour from the liquid adsorbs on the surface of the

solid and the surface pressure of this wetting film, Pslv, needs to be con-

sidered. Therefore, we should write:

gs ¼ gls þPvls (6:20)

The surface pressure is most significant when the contact angle approaches

zero and the surface is completely wetted by the liquid which spreads over the

surface giving stable films at all thicknesses. When the contact angle is greater

than zero, the thinning film produced as the liquid spreads becomes unstable

and breaks up into droplets.

The critical surface tension of wetting, gC, can be defined by making use of

Equation (6.19) as u! 0; then gds ! gdvl ¼ gC. A plot of cos u versus (gdvl)
�0:5

should be linear and the value of the surface tension found by extrapolating

the line to cos u ¼ 1 gives an estimate of the surface tension of the solid. This

is known as a Zisman plot [8] and has been used to determine the surface

energies of solids with low surface energies. However, this is only an approxi-

mation as the surface pressure would have to be zero and that would not be

the case as u approaches zero.

5.1 The Adsorption of Surfactants

In many practical situations, surfactants are present as stabilizers, dispersants

or wetting aids. Often, we will be concerned with the wetting of solids using

aqueous solutions but that will not always be the case. The adsorption of the

surfactant at each interface must be considered. Young’s equation is a useful

starting point and if it is written as:

cos u ¼ gvs � gls
gvl

(6:21)

it is immediately apparent that if either of the surface tension values at the

liquid–solid or liquid–vapour interfaces decrease, then cos u will increase and

so wetting is improved as this means that the contact angle moves towards

zero. As the surfactant is in the liquid phase, adsorption at the solid–vapour

interface may not be complete. For example, this would be the case if we were

coating by using a blade or a roller technique. In other situations, this may
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not be the case as the solid may be in the liquid phase prior to the gas phase

being introduced. The separation of minerals by froth flotation is an example

here. In this process, the crushed mineral and its matrix are mixed with water

and a surfactant solution is added (the ‘collector’). Preferential adsorption

onto the mineral fragments occurs and air is pumped into the solution to

produce a froth. Additional surface active materials (‘frothers’) are used to

reduce the liquid–vapour tension to enhance the frothing response. These

have to be carefully chosen so that they do not change the contact angle too

much. The contact angle at the mineral–liquid–vapour line is increased

(cos u! 0) so that the desired mineral particles become attached to bubbles

and are removed in the froth. There is a complex situation here as there is

more than one type of solid surface present, as well as more than one surfac-

tant being added with quite specific interactions with the surfaces occurring.

As a simple example, let us consider the effect of a cationic surfactant such as

hexadecyltrimethylammonium bromide (C16TAB), at the glass (fused silica)–

water–air interface. The silica surface is negatively charged at pH values of 2

or higher and the cationic head group produces strong adsorption of the

surfactant at low solution concentrations. A monolayer of surfactant at the

liquid–solid interface is formed by the time a solution concentration of

� 5� 10�5 M is reached. The contact angle of water on clean glass is < 10�

while with a monolayer of C16TAB this is � 90�. The cmc of the surfactant is

� 10�3 M, and at that concentration a bilayer of surfactant is adsorbed and

the contact angle is again reduced to < 10�. At a concentration of 5� 10�5 M,

the adsorption of the surfactant at the air–liquid interface is low and has only

reduced the surface tension by about 10%. The large change is to the solid

surface which now consists of a surface of densely packed alkane chains

causing both the values of gvl and gls to drop dramatically, although with the

former (to � 27mNm�1) falling more than the latter. Wetting is again

favoured by the ionogenic surface formed by the bilayer in combination with

the reduced tension of the air–water surface as the cmc is approached.

6 CURVED SURFACES

The surface tension acts in the plane of the surface, and so if we have a small

volume of liquid a spherical drop is formed. There is a pressure drop across

the interface and we may calculate this by balancing the work done in at-

tempting to reduce the surface area with that generated by the internal pres-

sure. The change in the surface energy of a sphere of radius r is given by the

following:

gvldA(r) ¼ gvl8prdr (6:22)
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At equilibrium, this is balanced by the change in the pressure drop, thus:

4pr2DPdr ¼ 8pgvlrdr (6:23)

The result is the Young–Laplace equation [1]:

DP ¼ 2gvl
r

(6:24)

where r is the radius of the spherical drop. Equation (6.24) applies to any

curved interface and it may be generalized for two different radii of curvature

measured orthogonally, as follows:

DP ¼ gvl
1

r1
þ 1

r2

� �
(6:25)

(Note the convention is that the radius of curvature is measured in the

liquid phase and so the sign convention is positive for a drop and negative

for a bubble.) This means that the vapour pressure of a liquid in a small

drop is higher than for a flat surface but is lower in a bubble than the flat

surface. A consequence of this is that large drops grow at the expense of

small ones as the material evaporates from the smaller and condenses on the

larger drops.

7 CAPILLARITY

The behaviour of liquids in capillaries and pores is an important aspect of the

wetting of surfaces. The wetting of rock in oil wells is one such example. A

single capillary is a suitable starting point for the discussion. Figure 6.10(a)

shows a capillary with a circular cross-section of radius r in which the liquid

has risen to a height h. The liquid rises until the surface force which causes

the liquid to spread on the surface is balanced by the gravitational force on

the column of liquid. The pressure drop across the interface (the capillary

pressure) is given by the Young–Laplace equation for a circular capillary:

DP ¼ hg(r1 � rv) ¼
2gvl
r

(6:26)

In nearly all cases, r1 
 rv. When the contact angle is greater than zero, the

radius of curvature of the meniscus, rc in Figure 6.10(a), is r= cos u and Equa-

tion (6.26) then becomes:
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(a) (b)

Figure 6.10. (a) Schematic of the capillary rise in a tube where the radius is r and the
radius of curvature of the meniscus is rc. (b) Schematic of the capillary rise in a porous
block, where the volumetric flow rate in a ‘pore’ is Q.

hr1g ¼
2gvl cos u

r
(6:27)

This is an equilibrium measurement and provides another route to the deter-

mination of the contact angle. It should be noted that we have an inverse

dependence of h on the radius of curvature. So, if we have a shape in which

the radius of curvature changes we should expect to see a greater rise with the

sharpest curvature. It is instructive to look at the behaviour of water in a

small square glass optical cell. The meniscus is highest in the inside corners

where there is a small radius of curvature. If the same cell is then stood in a

dish of water, we can see that the wetting line on the outside is lowest at the

outer corners (negative radius of curvature).

The imbibition of liquid into a capillary (or pore) is illustrated in Figure

6.10(b). The rate is often important in many situations. We start by using the

Poiseuille equation for the flow of liquid in a tube:

Q ¼ DPpr4

8LZ
(6:28)

where L is the wetted length of a capillary of radius r, Z is the viscosity of the

liquid and Q is the volume flow rate, given by the following:

Q ¼ pr2
dL

dt
(6:29)

We may now substitute Equations (6.26) and (6.29) into (6.28) to give the

Washburn equation, as follows:

dL

dt
¼ rgvl cos u

4lZ
(6:30)
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Integration of the above gives the distance the liquid penetrates in a given

time:

ðL(t)
0

LdL ¼ rgvl cos u

4Z

ðt
0

dt (6:31a)

L(t) ¼ rgvl cos u

4Z
t

� �0:5

(6:31b)

This result is for a single pore but it is readily adapted for a porous solid. If

we have a porous block of material, for example, rock, the pores will vary in

diameter and path. The effect can be included in one factor, the tortuosity

factor, K:

L(t) ¼ rgvl cos u

4ZK2
t

� �0:5

(6:32)

For a given porous system, r=K2 is a constant. If the penetration is measured

by using two or three different liquids which each have a value of cos u � 1,

but with different viscosities, the value of r=K2 can be determined by using

Equation (6.32).

The penetration of oils, water or surfactant solutions is of great importance

in both the drilling for oil and gas, as well as in the recovery from mature wells.

Some of the clay-based formations are soft, porous and easily wetted by water

so that controlling the size of the well-bore can be difficult. The ‘break-through’

of water into the recovery well from well bores used to pump in replacement

water is also a major problem. Polymers and surfactants can play an important

role in controlling the contact angles and viscosities in these porous systems.

7.1 Dispersion of Powders

Another common situation concerning the penetration of liquid into a porous

matrix is in the dispersion of dry powders in liquids. Many colloidal systems

are dried and subsequently redispersed. The dry powders are easy to store and

transport, and are also easy to handle in batch applications. Pigments, fillers

and some foodstuffs are commonly handled in this way. When dried and

ground, it is useful if the aggregates are macroscopic so that dust problems are

minimized but large aggregates have to be wetted and broken up. The particles

are held together by dispersion forces and in the dry state these are very strong

as there is no intervening medium to mediate them and also the particles are in

intimate contact in a deep attractive well. The first requirement is that the
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liquid must wet the particles. If the contact angle is low, the medium will be

imbibed and the Laplace pressure is given by Equation (6.25) (suitably modi-

fied by the tortuosity factor K ). The rate of penetration is given by the Wash-

burn equation but note that as the aggregate is immersed in the fluid, the air

inside is trapped and will give a back pressure and slow the penetration. As the

pressure is higher than atmospheric, the gas will dissolve and allow the pene-

tration to continue. However, this will be slower as the gas has to diffuse out

of the aggregate through the imbibed liquid. This is clearly a slower process for

large aggregates than small ones. As an example, we can take a pore radius of

0:1mm, a surface tension for the wetting liquid of 40mNm�1 and a contact

angle of 608. If K � 1, the Laplace pressure is 4 atm. Even if the pore penetra-

tion continues until the internal pressure reaches this value, it will be insuffi-

cient to break-up the aggregates, but will slow the wetting of the aggregates.

Of course, we normally use mechanical action, that, is shear forces, to aid the

break-up, by milling, for example. If the deformation rates (shear, extension,

or both) are high and the concentration of aggregates is also high, there may

be enough force to overcome the interparticle attraction. The hydrodynamic

stress is then given by the following:

Fh

a2f
/ Z(w) _gg (6:33)

where Fh is the hydrodynamic force produced on an aggregate with a radius

of af by a shear rate of _gg (in s�1), and Z(w) is the viscosity of the concentrated

suspension of aggregates. Deformation rates of 105 to 106 s�1 are high, while

much higher values are difficult to achieve. The value of the dispersion viscos-

ity is of great importance here as stresses equivalent to several atmospheres

would be required to overcome the dispersion forces. This is why it is much

easier to disperse powders as a paste and subsequently dilute, rather than add

all of the dispersion medium initially.

The wetting of the aggregate though is still an essential part as solvation of

the surface allows repulsion to occur as well as reducing the attraction. Re-

pulsion may be the development of electrical charge while it may also be the

solvation of polymeric or protein layers. Both of these result in repulsion

aiding break-up of the aggregates, as well as stabilizing the dispersed units to

prevent re-agglomeration. This introduces another feature of capillary behav-

iour in porous systems. This is the tendency for vapours to condense in small

pores and this will aid the wetting process.

7.2 The Kelvin Equation

The Young–Laplace equation indicates the pressure difference across a

curved interface. The Kelvin equation enables us to calculate the change in
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vapour pressure due to the curvature of the interface. A clear derivation is

given in Hunter [9], and we will give the outline here. For a pure liquid, at the

curved interface at equilibrium the chemical potentials in the liquid and

vapour phases are equal and the pressure drop is given by the Young–

Laplace equation, as follows:

m1 ¼ mv

P1 � Pv ¼ 2gvl
r

(6:34)

We may make a small displacement from equilibrium and then we have:

dm1 ¼ dmv

dP1 � dPv ¼ d
2gvl
r

� �
(6:35)

where the changes in the chemical potentials are:

dmv ¼ V vdPv � SvdT (6:36a)

dm1 ¼ V 1dP1 � S1dT (6:36b)

Here, the bars indicate the molar volumes and entropies. At constant tem-

perature, and as we are close to equilibrium, we may write:

P1 ¼ V v

V 1

Pv (6:37)

Substituting this into Equation (6.34) yields:

V v

V 1

� 1

� �
dPv ¼ d

2gvl
r

� �
(6:38)

The boundary conditions that we need for the integration of Equation (6.38)

are: r!1; Pv ! P0 (the vapour pressure of the liquid with a flat surface).

Then, by taking note that as:

V v

V 1


 1 and V v � RT

Pv

, then

ðPv

P0

RT

V 1

dPv

Pv

� �
�
ðr
1
d

2gvl
r

� �
(6:39)
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the result for the vapour–liquid surface is given by:

ln
Pv

P0

� �
� V 1

RT

2gvl
r

(6:40)

If the cross-section is oval instead of circular, then Equation (6.40) is written

in terms of the major and minor radii, r1 and r2:

ln
Pv

P0

� �
� gvlV 1

RT

1

r1
þ 1

r2

� �
(6:41)

If we consider a liquid drop, the radius of curvature (in the liquid) is posi-

tive and Equation (6.40) indicates that as r decreases, Pv=P
0 > 1, that is, the

vapour pressure of the liquid in the drop becomes increasingly larger than

that of the flat surface. This is in contrast to the case of a bubble where the

radius of curvature (in the liquid) is negative and then decreasing the radius

means that the vapour pressure becomes lower although the actual pressure

(the capillary pressure) is higher (as given by the the Young–Laplace equa-

tion). The vapour pressure above the liquid in a capillary or a pore is also

lower and this gives rise to the phenomenon of capillary condensation. In

this case, vapours start to condense in the finest pores or crevices where

there is a highly curved region prior to the saturation vapour pressure being

reached.

This effect of condensation in regions with a sharp curvature can also be a

problem with dry powders stored in a humid atmosphere. At the contact

points between the particles (usually agglomerates), the curvature is such

that capillary condensation occurs in the contact zones. The force exerted

by the liquid can be large enough to make the powder particles stick quite

firmly together and we recognize this as ‘caking’. It is a useful exercise to

calculate the force, assuming that the particles are smooth spheres completely

wetted by the liquid phase [9]. The geometry is illustrated in Figure 6.11,

where the radius of the particles is R and the radii of curvature of the

liquid wetting the particles are r1 and r2. The Laplace pressure is, as given

earlier:

DP ¼ gvl
1

r1
� 1

r2

� �
(6:25)

This gives the force Fcc, holding the surfaces together, as follows:

Fcc ¼ DPpr22 ¼ pgvl
r22
r1
� r2

� �
(6:42)
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Now as r2 > r1, and noting from

Figure 6.11 that 2R � r22=r1:

Fcc � 2pRgvl (6:43)

7.3 Solid Particles Solubility

It is interesting to note that the

Kelvin equation can also be used to

describe the change in solubility of a

solid particle in a liquid as the par-

ticle size is reduced. The solubility

increases as the size is reduced in the

same manner as the vapour pressure

of the liquid in a drop increases as

the size is reduced. This means that larger particles grow by the transference of

material from smaller particles. This is known as Ostwald ripening and the

analogous form of the Kelvin equation is:

ln
s(r)

s(r!1)

� �
� 2glsV s

rRT
(6:44)

where s(r) is the solubility of a solid with a radius r. However, the equivalent

of capillary condensation also occurs where two crystals make contact (in a

sedimented bed, for example) and then they fuse together and make redisper-

sion impossible.

8 TEMPERATURE EFFECTS

As a material is heated we observe melting and then boiling of the liquid

phase to produce the vapour. In some cases, we just observe sublimation of

the solid. The surface tension of a material is due to the intermolecular forces

in the material as we have already discussed. The surface tension then reflects

the decreasing attraction and decreases with increasing temperature. This

effect is larger in the liquid phase when compared to the corresponding solid

and occurs for both simple molecular liquids where the intermolecular forces

are dispersion forces or for those with other contributions. For example, the

decrease in hydrogen bonding in water as the temperature is increased to-

wards 100 8C is very familiar to us.

When we consider the equilibrium expressed by the Young equation (Equa-

tion (6.2) ), we note that the change in the tension at the liquid–vapour inter-

face will be greater than the difference in the changes of the tensions at the

R
r1
r2

Figure 6.11. Illustration of liquid
condensation in the contact region be-
tween particles in a powder to give a liquid
bridge, where R is the radius of curvature
of the particle surface, and r1 and r2 are
the radii of curvature of the meniscus
(Note that r2 is negative in this figure.
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solid–vapour and solid–liquid interfaces. For equilibrium to be maintained,

the contact angle must decrease, that is, cos u increases. This means that the

surface we are considering is more easily wetted at higher temperatures.

Adamson [1] provides a more extensive discussion on the effect of tempera-

ture on contact angle. We shall make use of this change to provide an esti-

mate of the enthalpy of the wetting process.

8.1 The Heat of Wetting

The free energy change on completely immersing a solid in a liquid can be

estimated from the difference in tensions as we replace the vapour–solid inter-

face by a liquid–solid interface:

�DGw ¼ gvs � gls (6:45)

We must keep in mind that Equation (6.45) is implying that the solid is

uniform throughout and we can consider it to be in an equilibrium state.

Thus, we are assuming that the tensions are a good approximation to the

surface free energy of the solid. We associate the temperature-dependence

with the change in entropy, and so we may take the approach of Harkins and

Jura [10] in their work using heats of immersion:

DHw ¼ DGw þ TDSw (6:46)

and by using Equation (6.45) with the variation of each tension with tempera-

ture, we have:

DHw ¼ gls � T
dgls
dT

� �
� gvs � T

dgvs
dT

� �
(6:47)

Grouping the like terms:

DHw ¼ � (gvs � gls)� T
dgvs
dT
� dgls

dT

� �� �
(6:48)

We may use the Young equation to put this in terms of the contact angle and

the vapour–liquid tension:

DHw ¼ � gvl cos u� T
d(gvl cos u)

dT

� �
(6:49)

This enables us to estimate the heat of wetting simply by measuring the

changes in contact angle and the surface tension of the liquid as a function of
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temperature. In many cases, this is a simpler experiment than using calorim-

etry as the heat change is so small. However, the precision of the contact

angle measurements is only a few degrees, and we must recognize the ap-

proximation in equating the surface tension of the solid with the surface free

energy.

8.2 Dynamic Contact Angles

Thus far, the discussion in this chapter has been restricted to static processes

which, if not in equilibrium, are in a metastable state. During the coating of

surfaces, often at very high rates, the dynamics are important. The first issue

to consider is the tensions at the liquid interfaces. If surfactants have been

included in the formulation of a coating, the kinetics of the adsorption pro-

cesses at both the liquid–solid and the liquid–vapour interfaces are important.

As the timescale for diffusion to the interface is approached by the timescale

of the creation of the new interfaces, adsorption will not be completed. As the

coating rates are increased, the tensions approach those due to the major

liquid component. In practice, this is not often a factor though as the surfac-

tant concentrations are frequently around the critical micelle concentrations

so as to ensure sufficient material to provide the colloidal stability of the

particulates in the system.

A more universal problem is that of the hydrodynamic or viscous stress.

The viscous force acts in the same direction as the solid–liquid surface ten-

sion, that is, in the same direction in which the surface is moving or in the

opposite direction to the motion of the coating implement whether a blade,

brush or roller. Figure 6.12 provides a simplified schematic for the coating of

a moving tape by using a blade to determine the thickness of the coat. At

rest, we can use the Young equation (Equation (6.2)) for the force balance by

using the advancing contact angle, as follows:

z

velocity v

Static

θAv = 0

θAv =0 θAv

θAv

fh

Figure 6.12. Schematic representation of a coating, using a blade to determine the film
thickness.
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gvs ¼ gls þ gvl cos uAv!0 (6:2)

and when the coating is being applied we must include the viscous force term

in the new force balance:

gvs ¼ gls þ gvl cos uAv þ fh (6:50)

where fh is the hydrodynamic force per unit length of interface moving at a

velocity v with uAv being the dynamic advancing contact angle at that vel-

ocity. Rearrangement gives the dynamic contact angle as:

uAv ¼ arccos cos uAv!0 � fh

gvl

� �
(6:51)

Assuming the coating is a Newtonian fluid, the shear stress (Nm�2) is equal

to the product of the viscosity and the shear rate. The latter is calculated

from the tape velocity and the gap, z. So, we have:

s ¼ Z _gg and _gg ¼ v

z
(6:52)

We need to characterize the area over which the stress is acting to give the

force, and per unit length of wetting line we may use the distance into the

liquid film where flow is occurring as nz, where n � 1. A value of n � 1 will

simplify the calculations – this is a reasonable approximation – and so the

viscous force contribution is:

fh ¼ Z
v

z
nz � Zv (6:53)

The dynamic advancing contact angle is now:

uAv � arccos cos uAv!0 � Zv
gvl

� �
(6:54)

Note that for the equivalent relationship for a receding angle the viscous

contribution must be added:

uRv � arccos cos uRv!0 þ Zv
gvl

� �
(6:55)

Let us take an example to illustrate the process. If the static contact angle is

608 (no hysteresis), the surface tension of the coating is 50mNm�1 and the
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Figure 6.13. The dynamic contact angle plotted as a function of the front velocity,
where the calculations were carried out for a solution with a static surface tension of
50mNm�1 and a viscosity of 0.1 Pa s.

viscosity is 0:1Nm�2 s (0.1 Pa s), we have the effect of tape velocity shown in

Figure 6.13. We see from this figure that with this modelled coating system

operating at a velocity of � 7:5m s�1, the dynamic advancing contact angle is

� 1808. When this occurs, air is entrained and the resulting coating is poor

with patches of bare surface. The implication for the receding angle curve is

that ‘de-wetting’ becomes ineffective at velocities � 2:5m s�1 with such a

model. This would be important in situations such as drawing a fibre out of a

coating fluid. Even when a surface is completely wetted by the coating, air

entrainment still occurs if the velocity is high enough. The results of an

example calculation, which uses the same simple model, is shown in Figure

6.14. In this case, the entrainment is predicted at a quite low velocity of

� 50 cm s�1 as the viscosity is much higher at 0.25 Pa s.

Many coatings consist of concentrated dispersions and the viscosity de-

formation rate curve is non-linear with the material showing shear thinning.

The shape of the curve will be modified with a more rapid rise at low veloci-

ties as the stress is proportionately larger. The curve shape will also depend

on the precise flow behaviour in the coating system and the model given

above would need to be modified for the particular flow pattern and the

change in that flow with coating velocity. However, it does illustrate the

general behaviour quite adequately.
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Figure 6.14. The dynamic contact angle calculated for a moving surface with a static
contact angle of zero, a surface tension of 63mNm�1 and a viscosity of 0.25 Pa s. Air
entrainment occurs as the velocity reaches 50 cm s�1.
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Chapter 7

Emulsions and Microemulsions

1 INTRODUCTION

Dispersions of one liquid in another imiscible liquid are of great importance

in many applications, ranging from through such diverse fields as foods and

pharmaceutics to the oil industry. Many of the general features of colloidal

dispersions are also common to emulsions, such as the stabilizing mechanisms

that counteract the attraction due to dispersion forces or the tendency of

large particles to settle or ‘cream’ due to the effects of gravity. The fluid

nature of both the particle and the interface results in special features that we

do not observe with solid particles, although some of these are shared with

the disperse phases in foams. Not everything that is commonly referred to as

an emulsion is, in fact, a liquid-in-liquid dispersion. For example, the photo-

graphic ‘emulsion’ which is coated onto a film matrix is a dispersion of solid

particles (silver halide and dye crystals depending on the film type) and has a

fluid continuous phase when coated, but neither phase is a liquid when in the

camera. Emulsion polymers used in decorative paints provide another

example of this. The monomers are dispersed as an emulsion prior to poly-

merization, but once polymerized the particles are solid although their glass

transition temperature is well below room temperature so that they can fuse

to form a film. The polymer particles though never completely lose their

individual identity and dissolve in one another.

Most common emulsions have a particle size distribution at the upper end

of the colloidal size range, that is, with a radius in the 1 to 10mm range. The

problem here is that in their formation a great deal of energy is required to

create the large amount of new interface that is produced with particles with

radii of one or two orders of magnitude smaller. By using a mixed surfactant

system, say an ionic surfactant with a co-surfactant such as an alcohol, drop-

lets with a radius of � 100 nm can be produced and such systems are
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frequently referred to a ‘mini-emulsions’. Just like their larger brethren, these

systems are inherently colloidally unstable. However, if the surfactant and co-

surfactant contents are increased to high levels, a thermodynamically stable

hetero-phase system may be formed with droplet radii in the 10 nm range.

These systems are called ‘microemulsions’ and are a quite different type of

colloidal dispersion from the mini- and normal emulsions. So, although both

types are discussed in this chapter, they will be considered quite separately.

Many of the considerations that we apply to dispersions of one liquid in

another apply to the dispersion of any fluid in a liquid, e.g. dispersions of a

gas in a liquid are foams and are very similar to emulsions. Not all foams are

of the very high-phase volumes that we are familiar with in the foams formed

by the detergents used in the hand-washing of dishes or in shampoos. A low-

phase-volume foam is termed a ‘low-quality’ foam, while a high-phase-volume

foam (say at w > 0:75) is termed a ‘high-quality’ foam. When we are referring

to a liquid dispersed phase, we would use the terms ‘emulsion’ and ‘cream’ for

the equivalent concentrations. The compressibility of the gas phase is much

greater than that of a liquid dispersed phase and the solubility is also invari-

ably much greater. Both of these factors provide additional layers of complex-

ity. We will, however, not deal with foams specifically in this text but should

keep them in mind when we think of emulsions.

2 EMULSIFICATION

When we make an emulsion, we disperse one liquid phase in a finely divided

form in another liquid phase which is imiscible with the first. Hence, we may

disperse water in an oil (a W/O emulsion), oil in an aqueous phase (an O/W

emulsion) or one oil in another (an O/O emulsion). The latter is not very

common but W/O and O/W emulsions are very widely used. It is also possible

to turn one into the other – a process known as phase-inversion. For example,

milk is an O/W emulsion which is phase-inverted to give a W/O emulsion

which we recognize as butter. However, the first question that we need to

address is ‘how do we disperse one system in the other?’. During the emulsifi-

cation process, we have to create a large amount of new interface. The free

energy change is estimated from the product of the interfacial tension and the

areal change. There is also a positive entropy change as we are dispersing one

phase, and so we may write:

DGformation ¼ g12DA� TDS (7:1)

where g12 refers to the interfacial tension of liquid ‘1’ against liquid ‘2’, with

the latter being the continuous phase. We are not dispersing the disperse

phase into very small drops and so the entropy change is small:
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g12DA >> TDS (7:2)

This informs us immediately that emulsification is not a spontaneous process

and that we have to provide the energy input. In part, this may be in terms of

heating but it is mainly in terms of mechanical energy by using very high

shear rates. Equation (7.1) tells us that the resulting droplets would be un-

stable, so that we must find a means of preventing them reforming into two

distinct phases. The free energy change only tells us about the difference in

the initial and final states, and so once formed we may provide a kinetic

stability via the forces of repulsion that we employ with rigid particles. How-

ever, the details of the route is important in the formation process as well.

When shear forces are produced by intense flow fields, the droplets are pro-

gressively broken down from large macroscopic drops to small drops in the

colloidal domain. In order to disrupt a droplet, a force has to be applied to it,

hydrodynamically in the case we are considering here. The pressure gradient

must be large enough to exceed that due to the Laplace pressure:

dP

dr
� DP

a
¼ 2g12

a2
(7:3)

Of course, the area produced by dispersing unit volume of phase 1 in phase 2

is simply 3/a as the droplets are spherical, and so we readily note by compar-

ing Equation (7.1) with Equation (7.3) that the latter is where most of our

work will come from.

The work required to break up the droplets may be applied in various

ways. In a high-speed disperser or blender, large shear and elongational

forces are applied to the droplets. The droplets elongate and break in the

middle. As they separate, a small or ‘satellite’ drop is formed as the neck

breaks. The newly formed drops must be rapidly stabilized as they tend to

coalesce during subsequent collisions. When very high flow velocities are

used, turbulent flow is usually produced. In turbulence, the flow is chaotic

with localized eddies with high energy dissipation. The inertial forces are

large and are the cause of the instabilities in the flow field, and hence the

density of the continuous phase is important, with higher densities leading to

turbulence at lower flow rates. The size of the local eddies can be defined in

terms of the Kolmogorov scale (from Kolmogorov’s analysis) and so we may

write the droplet size as follows [1]:

a � E
� �0:4g0:612 r

�0:2
2 (7:4)

where E
� ¼ dE=dt, the rate of energy dissipation per unit volume. An ultra-

sonic probe may also be used to produce emulsions. In this case, the local

cavitation is used to break up the droplets.
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In all cases though, the processes are not very efficient and there is nor-

mally significant heating [2]. This can aid the break-up as the timescale of the

disruption process is also important. The viscosities of both phases decrease

with increasing temperature and an important factor is the timescale of the

extension of the droplets during break-up (slower with higher viscosity) com-

pared to the timescale associated with the flow field (inversely proportional to

the flow rate). The result is that larger drops are produced from disperse

phases with higher viscosities. Of course, a higher viscosity of the continuous

phase means higher shear forces on the drops and so a faster deformation,

thus leading to a smaller drop size. However, the turbulence will not be as

marked, with the flow having a larger eddy size, and so the beneficial effect of

increasing the continuous phase viscosity may by reduced somewhat.

2.1 Emulsion Type

The control of which phase is to be the disperse phase is of major importance.

The major controlling factors are the type of surfactant that is used and the

temperature of the emulsification process, although the volume ratio and

the viscosity ratio of the two phases can be important. The higher-viscosity

phase tends to be the continuous phase, with the stability of the dispersed

phase being enhanced due to the slower drainage of the thin film produced as

two drops collide. The choice of surfactant is normally the controlling factor.

There may be limitations when the emulsion is intended for a specific use,

such as food or personal-care products. However, there are some general

guidelines which can be useful.

The simplest of these is known as Bancroft’s rule which states that the

continuous phase should be the phase in which the surfactant is the most

soluble. A good example with which to illustrate this is the water/cyclohexane

system studied by Shinoda and co-workers [3, 4], in which a non-ionic surfac-

tant (a nonylbenzene ethoxylate at 5wt%) was used. We will consider what

these authors observed at a phase ratio of 1:1. At room temperature, the

surfactant is below its cloud point and is most soluble in the water phase, with

the ethylene oxide groups strongly hydrated and fitting into the H-bonding

structure of the water. The emulsification process results in an O/W emulsion

being formed. At 80 8C, the surfactant is more soluble in the cyclohexane

where it forms inverted micelles with the ethylene oxide groups oriented to-

wards the centre of the micelles. This occurs as the hydration of the ethylene

oxide moieties is reduced. An interesting question to address is ‘what happens

when an emulsion is formed at, say room temperature, and it is then heated

to 80 8C?’. The result is that the emulsion can invert and the temperature at

which this occurs is known as the phase-inversion temperature (PIT). In this

case, the PIT was � 55 �C and in this region the surfactant produced a con-

centrated lamellar surfactant phase as the solubility was not high in either
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phase, with some cyclohexane droplets as well as some water droplets. The

PITs occur at the cloud points of non-ionic surfactants in water, while with

ionic surfactants they can occur at the Krafft points. The phase-inversion can

be followed by observing changes in the physical properties of the system,

such as conductivity or viscosity, for example.

Attempts have been made to classify surfactants numerically in terms of

their chemical structure so that the selection of emulsifiers would be more

straightforward. This was first attempted by Griffin [5] for non-ionic

surfactants and the concepts extended by Davies and Rideal [6]. The

hydrophilic–lipophilic balance (HLB) number is defined in terms of numerical

values assigned to the chemical groupings in the surfactant, as follows:

HLB ¼ 7þ
X

(hydrophilic group numbers)�
X

(lipophilic group numbers)

(7:5)

The group numbers assigned by Davies and Rideal [6] are given in Table 7.1.

It is interesting to note that while the ethylene oxide group is hydrophilic, the

propylene oxide group is hydrophobic. This is confirmed by the effectiveness

of the ABA block copolymers, PEO–PPO–PEO, to act as stabilizers. Thus,

we may estimate the HLB numbers for our surfactant systems from Equation

(7.5), for example:

Table 7.1. HLB numbers for various chemical groups, with data taken fromDavies and
Rideal [6]

Type Chemical group Group numbera

Lypophilic –CH– 0.475
=CH– 0.475
–CH2– 0.475
CH3– 0.475

Hydrophilic –SO4Na 38.7
–COOK 21.1
–COONa 19.1
–SO3Na 11.0
=N– 9.4
Ester (sorbitan ring) 6.8
Ester (free) 2.4
–COOH 2.1
–OH (free) 1.9
–O– 1.3
–OH (sorbitan ring) 0.5

aExamples of derived group numbers: ethylene oxide (�CH2�CH2�O�) ¼ 1:3� 2(0:475) ¼ 0:35
– hydrophilic; propylene oxide (�CH2�CH(CH3)�O�) ¼ 1:3� 3(0:475) ¼ �0:125 – lipophilic.
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Table 7.2. Classification of surfactant application by using
the HLB range of the surfactant, according to Griffin [5]. Note
the original classification was for non-ionic systems

Application HLB range

W/O emulsifier 3–6
Wetting agent 7–9
O/W emulsifier 8–18þ
Detergent 13–16
Solubilizer 15–18

. sodium dodecyl sulfate, CH3(CH2)11OSO3Na, has an HLB number of 40

. dodecyl hexaethylene gylcol monoether,

CH3(CH2)11O(CH2CH2O)5CH2CH2OH(orC12E6),hasanHLBnumberof5.3

. glycerol monostearate, HOCH2CH(OH)CH2OOC(CH2)16CH3, has an

HLB number of 3.7

When two surfactants are mixed together, the HLB of the mixture may be

estimated from the HLB number of each component multiplied by the mass

fraction of the component.

Griffin [5] used the HLB numbers to classify surfactants for particular uses

and his classification is given in Table 7.2. Therefore, glycerol monostearate

would be a suitable choice to produce a W/O emulsion while sodium dodecyl

sulfate could be used to produce an O/W emulsion.

The HLB classification is a useful initial guide but is only an indication. A

better solution is to use the Hildebrand solubility parameter. This can be

related to the van der Waals forces between the components [7]; however, the

HLB numbers are widely used. We should also note that the HLB values for

non-ionic surfactants correlate well with the cloud point temperatures of such

surfactants and so, in turn, should provide a guide to the values of the PITs.

3 STABILITY OF EMULSIONS

The aggregation of emulsion droplets is a function of the same parameters as

were discussed for the aggregation of solid particles. Hence, it is important to

know the value of the combined Hamaker constant, the magnitude of any

electrical charge and the state of steric stabilizer layers. The fluid nature of

the particle adds complexity as the interface can deform under the influence

of both attractive forces and shear. This means that factors such as the dens-

ity of the packing of steric layers or charges are slightly variable but also that

the location of the stabilizing moieties can also rapidly change as lateral

diffusion in the stabilizer layer can be rapid.
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There are further additional factors that we need to consider. Perhaps the

most important of these is that aggregation is frequently not the final state.

The coalescence of particles to form larger particles, and finally two distinct

phases, leads to a larger decrease in the free energy than is the case with

aggregation alone. Of course, aggregation does not always have to lead to

coalescence and stable dispersions of fluid particles and we will have to con-

sider the details of the trilayer film formed by the two-droplet surface films

separated by a thin film of the liquid disperse phase. Although two-body

interactions can occur during collisions as the result of Brownian motion or

collisions due to a shear field, we will usually have coalescence occurring in

the concentrated state. This may be produced by aggregation and/or by gravi-

tational separation. The latter is just sedimentation or creaming if the disperse

phase is less dense than the continuous phase. Monodisperse emulsions are

very unusual and the wide particles size distributions of most emulsions mean

that droplets at w < 0:75 are spherical, albeit with flattened interaction zones

if in the aggregated state. Above this concentration, we have creams and the

droplets become increasingly deformed as the dispersed-phase volume is in-

creased. The smaller droplets are more rigid than the larger ones and the

latter deform first, giving polyhedral shapes with some surfaces concave due

to the presence of particles with smaller radii of curvature. This is illustrated

in Figure 7.1(a).

Many common emulsions have the majority of their mass of material in

droplets with radii of curvature in the 0:5�110mm range. It is relatively easy

to deform droplets of these dimensions and so there are flat parallel areas

between the particles. The interparticle forces acting across the thin films

determine the mean separation distance. These are the dispersion forces, elec-

trostatic forces and/or steric forces discussed in detail in Chapters 3 and 4.

Such forces are formulated from static or equilibrium models, but when

considering the stability to coalescence of emulsions (and many of the points

are also directly applicable to foams), the dynamics are a major factor. When

two fluid droplets come together, whether during a Brownian collision, a

(a)

Plateau border

(b)

Figure 7.1. Schematics of (a) a section of a concentrated emulsion illustrating the
polyhedral shapes of the droplets, and (b) the junction between three droplets, showing
the thin-film region with parallel faces and the region of varying curvature known as the
plateau border.
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shear-induced collision or due to the gravitational force, the following pro-

cesses occur. The rate of close approach is determined by the balance of those

forces bringing the particles together, the interparticle forces, and the viscous

force from the fluid drainage as we would anticipate for rigid particles. In

addition, we have to consider the changes in the interaction region, i.e. at

close separations the interaction zones flatten and this increases both the

strength of the interactions and the viscous resistance to the drainage as the

potential contact area is increased. As the interaction zone grows, the area of

the interface increases. The rapid stretching of the interface results in a locally

higher interfacial tension and this opposes the stretching. The difference in

the dynamic surface tension and the static value resists the expansion and acts

as a driving force to move the adsorbed stabilizing material into the inter-

action zone. This flow also causes fluid to be drawn into the thinning film

region by viscous drag and, in addition, opposes the drainage. These effects

are grouped together by the term Marangoni effect. There is a further effect,

known as the Gibbs effect, which is governed by the decrease in adsorbed

amount of stabilizer at the expanded interface which increases the stiffness

(dilational elastic modulus) of the film. In thin films, the local mass concen-

tration of stabilizer can be too low to re-establish the initial equilibrium.

These effects are usually grouped together and referred to as the Gibbs–-

Marangoni effect and act to resist deformation of the interfaces in the thin-

film region. However, we must also think in terms of local thermally (diffu-

sion) driven ‘ripple-like’ disturbances. The Gibbs–Marangoni effect will act to

damp these out but they are a main mechanism by which coalescence occurs.

To understand this, we must visualize the thin intervening film between two

fluid particles where local wave effects cause local fluctuations in the separ-

ation. The stiffer the film, then the smaller are the fluctuations. The force

which maintains the film, known as the disjoining pressure, is the sum of the

attractive forces and the repulsive forces. The elastic modulus is the rate of

change of the force with distance and is again the sum of the attractive and

repulsive terms. We may write this as follows:

modulus ¼ ]FR

]H
� ]FA

]H
(7:6)

It is quite clear from this equation that if ]FR=]H < ]FA=]H the stiffness

decreases and the magnitudes of the ‘ripples’ (local thinning) increase and

coalescence will occur.

We can summarize the factors that lead to a stable emulsion as follows:

(1) The stabilizer on the surface of the droplets should produce sufficient repul-

sion to maintain a film of the continuous phase between droplet surfaces

during collision or in a concentrated system such as a sediment/cream.
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(2) The stabilizer should be strongly adsorbed at the interface so that it will

not desorb as droplets come together.

(3) The dilational modulus of the stabilizer layer is high so that the thermal

disturbances are damped and will grow to a magnitude comparable with

the dimensions between adjacent drop surfaces.

(4) The solubility of the disperse phase in the continuous phase should be as

low as possible in order to minimize diffusive transport from one droplet

to another in the process known as ‘Ostwald ripening’.

3.1 Ostwald Ripening of Emulsions

This is the expression given to the process whereby the droplet size distribu-

tion in an emulsion progressively shifts towards larger sizes. The origin of the

effect is the Laplace pressure acting to increase the pressure inside the droplet.

As a result of the pressure increase, molecules of the dispersed phase diffuse

from the high-pressure regions to the low-pressure ones, that is, the small

droplets dissolve and the larger ones grow as the material is transferred by

diffusion through the continuous phase.

The Laplace pressure is given by Equation (6.24) (see earlier) for droplets

in a vapour, and for a drop of radius r1 in a liquid, we have:

Pr1 ¼ Pr ¼ 1 þ 2g12
r1

(7:7)

where g12 is the interfacial tension. Clearly, if there are two droplets with

different radii the difference in pressure between them is:

Pr2 � Pr1 ¼ 2g12
1

r2
� 1

r1

� �
(7:8)

and this acts to equalize the radii at a rate governed by the diffusion of the

dispersed phase through the continuous phase. In Chapter 6, we also discussed

the Kelvin equation (Equation (6.40)), which describes the change in vapour

pressure with drop radius. The analogous situation for a drop in a liquid (or a

solid particle in a liquid, for that matter) is the solubility of the dispersed phase

in the continuous. So, if cr is the concentration of the dispersed phase in the

continuous phase as a result of the applied pressure Pr, we can write the ana-

logue of Equation (6.40) for the solubility of the dispersed phase as follows:

ln
cr1

cr ¼ 1

� �
¼ V 1

RT

2g12
r1

(7:9)

and for two drops we have therefore:
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ln
cr1
cr2

� �
¼ M1

r1RT
2g12

1

r2
� 1

r1

� �
(7:10)

where M1 and r1 are the molar mass and density of the dispersed phase,

respectively. Hence, Ostwald ripening is most marked if the distribution of

drop sizes is broad and the interfacial tension is high.

The data [8] shown in Figure 7.2 illustrate the relative growth in the mean

particle size of an oil-in-water emulsion after a period of 10 d. The stabilizer

was sodium dodecyl sulfate and the initial mean droplet size was � 1mm.

This figure also clearly shows how the relative growth rate follows the solubil-

ity of the alkane in water.

The prevention of Ostwald ripening is usually desirable as ageing a formu-

lation is not an attractive proposition. The solubility of the dispersed phase in

the continuous phase is a factor which effects the rate rather than the ultimate

state. The interfacial tension may be manipulated somewhat but this is also

likely to change the initial size distribution. The addition of small amounts of

a third component, which is soluble in the dispersed phase but has a ex-

tremely low solubility in the continuous phase, is an effective strategy to limit

the size drift. In this case, the concentration of the third component is the

same in all of the particles after emulsification. As ripening commences, the

concentration in the small particles increases and that in the large ones de-

creases and this opposes and ultimately limits the ripening process. (The

situation in the droplets is directly analogous to an osmometer where

the continuous phase is acting as the semi-permeable membrane.) Now, if the

surfactant has a very low solubility in the continuous phase while being
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Figure 7.2. The Ostwald ripening behaviour of oil/water emulsions stabilized with
sodium dodecyl sulfate, taken from Winsor [8]: j, u, n-alkanes; d, s, cyclohexane; r, e,
aromatic alkanes (where the solid symbols refer to data for the radius ratios and the
open symbols to the alkane solubilities).
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sufficiently surface active to act as a stabilizer, of course, it will act as this

third component. The reduction in the specific surface area that occurs as the

ripening proceeds increases the concentration of surfactant dissolved in the

small droplets. It is a common practice to dissolve surfactants in what will

become the dispersed phase.

4 MICROEMULSIONS

The interfacial tension is an important parameter in the control of droplet

size in emulsification. This may be reduced by the addition of co-surfactants

such as long-chain alcohols. Droplet sizes of � 100 nm may be produced in

this way and the resulting emulsions are referred to as ‘mini-emulsions’. These

differ little from emulsions with larger droplet sizes in terms of stability,

although the rate of creaming/sedimentation is reduced and this may no

longer be a problem in a formulated product. If interfacial tensions are re-

duced to very low levels though, a further reduction in droplet size can occur

down to � 10 nm. The systems are produced at moderate-to-high levels of

surfactant and are transparent due to the small size of the dispersed phase.

The viscosity is usually low, unlike liquid crystal phases, and the stability is

quite different from what we regard as ‘normal emulsions’. Such systems

represent thermodynamically stable phases and are termed microemulsions.

Formation is spontaneous, requiring little or no input of mechanical energy

beyond a gentle mixing of the components. This inherent stability means that

the systems are quite different from ‘normal emulsions’ and have very little in

common with them except that they are colloidal systems consisting of oil,

water and surfactants.

Microemulsions have been used in many formulations [9, 10]. Cleaning

systems range from dry-cleaning fluids to self-polishing floor and car waxes.

The hard wax (‘Carnuba’ wax or other synthetic polymers) is in the oil phase,

and when the coating dries the wax particles form the film. As the dimensions

are so much smaller than the wavelength of light, the surface asperities are

too small to result in individual reflections. Other examples of applications

are in cutting oils, pesticides and flavours for foods. There are some examples

of chemical reactions being carried out in microemulsions, with the most

successful of these being the polymerization of acrylamides to give very high-

molecular-weight products [11]. An interest in the use of microemulsions in

tertiary oil recovery increases and decreases in parallel to oil prices. The

attraction is the spontaneous formation of the microemulsion so that oil

trapped in the pores of depleted oil wells (although there can be 75% of the

original amount remaining) can be flushed out. The large amounts of surfac-

tant required is the cost-limiting factor. Microemulsion fuels using vegetable

oils from sustainable sources have also been formulated [10].
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4.1 Phase Behaviour

The phase diagrams for microemulsions are quite complex as we have at least

three components (and often four), namely the oil, water (electrolyte solution)

and surfactant (and sometimes a co-surfactant). We must also remember that

temperature and pressure are going to be important in many situations. A

diagrammatic representation of a six-component phase map is not possible –

just four requires a tetrahedron but the usual practice is to reduce the repre-

sentation to a three-component map. This may be achieved by working at a

constant surfactant/co-surfactant mix, in addition to constant temperature

and pressure. Alternatively, the surfactant concentration in the electrolyte

solution can be kept constant and the co-surfactant concentration can be the

third variable. This enables us to utilize the conventional triangular phase-

diagram plot. Temperature variations are then represented by slices across a

parallel-sided triangular prism. The plotting of the phase diagrams is a

lengthy endeavour as many samples are required to precisely define the

boundaries. The process may be speeded up by using a titration technique [8],

where two of the components are adjusted sequentially. A schematic of a

typical phase map is given in Figure 7.3.

A wide range of surfactants can produce microemulsions. Anionic surfac-

tants, such as sodium dodecyl sulfate or potassium oleate, require co-surfac-

tants such as aliphatic alcohols of shorter chain length. As an alternative to

the alcohols, some non-ionic surfactants can be used in which a polyethylene

glycol moiety replaces the simple alcohol, although it should be noted that

the properties are a little different [10]. Some di-chain ionic surfactants, such

as Aerosol OT (sodium di-(2-ethylhexyl)sulfosuccinate) and didocecylammo-

nium bromide, do not require a co-surfactant to form microemulsions with

oil and water. The same is true for some non-ionic surfactants. This occurs in

the phase inversion boundary region between W/O and O/W systems.

W + SA

Co

O OW

Co + SA

L2

L1 L1

L2

Figure 7.3. Schematic ternary phase diagrams showing the oil-in-water microemulsion
region, L1, and the water-in-oil microemulsion region, L2: O, oil; W, water; SA, surfac-
tant; Co, co-surfactant.
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Figure 7.4. Schematic phase diagrams of various types of microemulsion systems, as
classified by Winsor [8]: O, oil; W, water; S, surfactant. The overall compositions are
given by the intersections of the dashed lines, the shaded areas represent the microemul-
sion plus pure component regions, while the ratios of the microemulsion phases and the
pure liquid phases are given by the ‘tie-lines’ and the ‘lever rule’.

Figure 7.4 shows schematically the type of microemulsion systems that were

classified by Winsor [8], where we see microemulsion phases in equilibrium

with excess water or oil. The composition of the three-component systems are

shown as the intersections of the broken lines. The ends of the ‘tie-lines’ give

the compositions of the two phases, while the ‘lever rule’ gives the amounts of

each. Any change to the system which changes the hydrophobic balance of the

surfactant may enable us to move from one type of system to another. For

example, at a constant temperature the change of a surfactant to one with a

longer chain length would take us from left to right in the figure. A similar

result can be achieved by changing the polarity of the water phase (by the

addition of short-chain alcohols, for example), increasing the temperature for

a non-ionic surfactant or increasing the electrolyte concentration for an ionic

species. This is the same process as described above for the phase-inversion

temperature for the non-ionic system studied by Shinoda and Kunieda [4]

where the H-bonding in the water is reduced. This decreases the solubility of

the hydrophile moiety and increases the solubility of the hydrophobe. The

head group of an ionic surfactant becomes less soluble with increasing added

electrolyte. This is readily observed as the cmc decreases with added salt as the

ion binding is increased and the mutual repulsion decreased (i.e. we are tending

to ‘salt-out’ the molecule). So, just as for macroemulsions, we have the
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continuous phase as the one in which the surfactant is most soluble, as

described by Bancroft’s rule. The curvature of the surface is governed by

the packing of the molecules at the interface and this, of course, includes

solvation and electrostatic interactions. For the formation of such small drop-

lets as we find in microemulsions (5–50 nm), the interfacial tension has

to be ‘ultra-low’, with typical values being in the range from 10�4 up to

10�2 mNm�1.
The Winsor III system (see Figure 7.4) is particularly interesting. The con-

centration of the system is outside the two-phase regions marked in the figure

and is in a multi-phase region. The HLB of the surfactant is such that we have

equal solubility and no preferred curvature. This means that the interfacial

tension is not just ‘ultra-low’ but is approaching zero. The rigidity (elasticity)

of the interface is therefore low and the interface is readily deformed by ther-

mal fluctuations so that curvatures in favour of both the water and the oil

directions are probable. A ‘bicontinuous’ or ‘sponge’ microemulsion phase is

produced, with a domain size typical of the microemulsion size domain, that is,

� 10 nm. If the rigidity of the film is increased, by the use of long-chain alco-

hols as co-surfactants, for example, the bicontinuous middle phase has a lamel-

lar structure with oil swelling the hydrophobe region.

4.2 Characterization of Microemulsions

The first problem that we must solve is ‘which type of system do we have?’.

Conductivity is an easy check here. If the conductivity is low, the system is a

water-in-oil microemulsion. Conversely, if it is high then we have an oil-in-

water system. A bicontinuous phase would also have a high conductivity and

we would need other information to separate this from the O/W microemul-

sion.

Transmission electron microscopy, coupled with a freeze-fracture tech-

nique, is especially useful in studying the bicontinuous phase [12]. In this, we

use liquid nitrogen to very rapidly cool a small sample so fast that the water

is turned to ‘amorphous ice’. If we were to put a sample straight into liquid

nitrogen, a gaseous layer around the sample would act as an insulator –

therefore, we place the sample into a volume of liquid propane which is held

at liquid nitrogen temperatures. The cooled sample is placed in a high

vacuum, fractured and then coated with tungsten to give a shadow – a replica

is next formed from a platinum/carbon coating, which can then be viewed in

the electron microscope.

Dynamic light scattering can be used to follow the diffusive motion of the

individual droplets. However, the samples are relatively concentrated and the

diffusion is slowed by particle–particle interactions. NMR spectroscopy can

be employed to determine the molecular diffusion – in this case, a technique

known as pulsed-gradient spin-echo NMR spectroscopy is used.
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Small-angle neutron scattering is a particularly powerful technique as the

use of D2O and deuterated oils and surfactants and/or co-surfactants enable

detailed information of the droplet structures to be obtained. Small-angle

X-ray scattering may also be useful but it is not possible to vary the contrast to

bring out the detail with this technique, as is the case with neutron scattering.

In addition, the scattering is much weaker when using X-rays as the elements

are all of low atomic number and the X-rays are scattered by the electrons.

Neutrons are scattered by the atomic nuclei and thus give stronger scattering.

4.3 Stability of Microemulsions

It was stated above that microemulsions are a thermodynamically stable phase,

and are therefore unlike macroemulsions. The modelling of these systems is a

more recent development than that of the stability of other colloidal systems

and is still not fully complete. Most practical systems contain many compon-

ents and usually these will contain impurities which will also be surface active.

Nevertheless, it is instructive to consider the main ideas involved in modelling

the stability, although we will not follow the detail of the analysis.

The foundations were laid in the work of Overbeek [13] and Ruckenstein

and Krishnan [14]. These workers discussed the free energy change in the

formation of a microemulsion consisting of droplets, although we will not

broaden the discussion to the details of the bicontinuous or sponge phase.

Following these authors, we may split the free energy of formation into sev-

eral components:

DGdisp ¼ DGI þ DGE � TDSdisp (7:11)

where DGI is the free energy associated with creating the interfacial area of

the droplets. The electrostatic components associated with the interactions

produced by charged surfactant molecules are represented by the DGE term

and are a function of the curvature, that is, droplet radius, and also of the

relative interfacial concentrations of the charged surfactant and uncharged

co-surfactant. The entropic term is the contribution of the fine droplets in a

random dispersion. To obtain a thermodynamically stable system, the free

energy of the microemulsion phase must be lower than that of the original

mixture of macroscopic phases. Hence, the value of DGdisp must be negative.

Being a little more specific, we can write:

DGI / gowA (7:12)

where A is the area of the interface that has been created with an interfacial

tension of gow and this is positive. As the droplets are small, the value of A

is necessarily large and so the interfacial tension has to be ‘ultra-low’. The
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electrical work needed to get two drops to their mean position is calculated

from the electrostatic potential multiplied by the charge:

DGE /
ð
cds (7:13)

This again is positive as particles of similar charge repel and confining many

charged particles into the space available to the macroscopic phases will re-

quire the input of energy. The entropic term for n particles occupying a space

is given by nkBT and so:

TDSdisp / kBT ln
w

wm

� �
(7:14)

The volume fraction, w, is that of the disperse phase, while the maximum

volume fraction that could be occupied by hard spheres is given by wm. The

droplets in a microemulsion are spherical and monodisperse and in a static

system we could imagine that we might pack them together in either a face-

centred cubic or hexagonal close-packed structure which would give a max-

imum volume fraction of 0.74. The dense random packing of hard spheres is

lower, at a maximum volume fraction of � 0:62. The thermal motion of the

droplets means that each has a larger excluded volume that we might predict

for a static system and a phase transition occurs at a volume fraction of >
0.5, and even lower when particles are charged (this point is discussed in more

detail in Chapter 9). We can see immediately from Equation (7.14) that for

w < wm the entropic term is negative and for a stable microemulsion system

to be formed, this term must be larger than those given by Equations (7.12)

and (7.13). The work carried out by Ruckenstein and Krishnan [14] included

adsorption isotherms of the surfactant and co-surfactant at the interface and

this modifies both the interfacial tension and charge terms.

Although this discussion has referred to ‘droplets’ and ‘hard spheres’, it is

important to keep in mind that the radius of a microemulsion droplet is of

the same order of magnitude as the length of the surfactants used, noting that

any co-surfactants are invariably shorter molecules. So, as the droplet size is

on the same scale as the molecules, the interfacial structure is much less sharp,

with significant penetration of the two phases into the interfacial region. The

molecular shapes and the packing together of these shapes in a curved surface

[7, 10, 15] is a critical consideration. In an O/W microemulsion, the surfactant

chains are on the inside of the droplet interfacial region and are much more

crowded than in a W/O microemulsion formed from the same surfactant

system. When we refer to the diameter of a droplet, this is just some average

value and different methods of determination will give different values. It is

instructive to follow the estimate of water core size given by Overbeek et al.

[15] for the water (300mM NaCl)/cyclohexane/sodium dodecyl sulfate (SDS)/
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co-20 % pentanol system. These workers used the limiting slope of the inter-

facial tension versus the log (surfactant concentration) curve to give the sur-

face excess from the Gibbs adsorption equation (see Chapter 1). Their results

gave one SDS molecule for every 0:9 nm2, so that each of these molecules

would have three pentanol molecules ‘associated’ with it in the macroscopic

interface, which is, of course, flat. Assuming that this molecular area is also

that at the curved surface of the water core of the droplet, we can calculate

the water droplet surface area, AD (in m2), for the number of moles of surfac-

tant in the system, nSDS, as follows:

AD ¼ 9� 10�19(nSDSNAv) � 5:4� 105nSDS (7:15)

As the molar volume of water is 1:8� 10�5 kg m�3, the volume of water in

the system is:

VH2O ¼ 1:8� 10�5nH2O (7:16)

Recalling that for a sphere, V=A ¼ (p=6)D3=pD2 ¼ D=6, we can use Equa-

tions (7.15) and (7.16) to give the approximate diameter (in nm) of the water

core as:

DH2O ¼
6VH2O

AH2O

� 0:2
nH2O

nSDS

� �
(7:17)

We can make a similar estimate for the O/W system, although in this case the

SDS/pentanol ratio is 1:2 [10, 15]. The estimates of droplet size are quite close

to those measured [15].

The measurement of the limiting slope of the gOW versus log cSA curve is

not easy as the interfacial tensions are very low. A useful technique to use

is the ‘spinning-drop’ method. In this case, the denser phase (usually water) is

placed in a capillary tube. The tube is rotated at high speed and a small

amount of the less dense phase (usually the oil) is added. The centrifugal

forces keep the droplet centred in the tube. These forces also elongate the

drop. The axial ratio is measured by using a travelling microscope and its

value is limited by the value of the interfacial tension and the angular velocity

of the capillary. This technique is the only one readily available for the meas-

urement of ultra-low interfacial tensions.
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Chapter 8

Characterization of Colloidal
Particles

1 INTRODUCTION

It is a prerequisite to understanding the way that colloidal systems behave to

be able to know the details of the particles in our dispersions, such as the

particle size, the size distribution, the shape, the charge and the dimensions of

any adsorbed layers. There is a wide range of methods available and we shall

review some of them in this chapter. In many situations, we may be restricted

to which ones can be applied as well as to only some of these techniques

being readily available. However, it is always true that the better our system

is characterized, then the better our understanding and the easier it is to

manipulate the formulation to optimize the material.

In this chapter, we will discuss the use of microscopy in terms of size and

shape distributions. Following this, we then address the scattering of radi-

ation by colloidal particles. This will focus on particle size and structure

although it sets the scene for the discussion of concentrated systems in the

next chapter. Characterization of the electrical properties is discussed next

and finally the viscosity of dispersions is addressed as this is a function of the

detailed nature of the particles.

2 PARTICLE SIZE

The first question that we ask when we discuss a colloidal dispersion is ‘What

is the particle size?’. Of course, we mean the mean size and we would also like

to know something about the size and shape distributions as well as the
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Figure 8.1. Example of a particle size distribution presented as a histogram: number-
average diameter¼ 201 nm; standard deviation¼ 19 nm; coefficient of variation¼ 9.4%.

specific surface area, but this latter information is often seen as of less import-

ance than ‘the size’. Before the methods are discussed, it is important to give

some basic definitions.

An example size distribution is shown in Figure 8.1 as a histogram. The

number average diameter, Dn, is calculated in the same way as the average

molecular weights for polymers, discussed in Chapter 2:

Dn ¼
P

niDiP
ni
¼
X

fiDi (8:1)

where ni is the number and fi the fraction of particles that are found in the

size class Di. We group similar sizes together to plot them as a histogram.

Experimentally, of course, this grouping might conveniently correspond to

the multiple of the resolution of the instrumentation. The standard deviation,

ss, and the coefficient of variation, cv, are now:

ss ¼
X

fi(Di �Dn)
h i0:5

; cv ¼ 100ss

Dn

(8:2)

We can calculate the various moments of the distribution, Mj , by using the

following equation [1]:

Mj ¼
X

fiD
j
i (8:3)
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Figure 8.2. Frequency and cumulative distribution curves for a (colloidal) particle:
number-average diameter ¼ 201 nm; standard deviation ¼ 19 nm; coefficient of vari-
ation ¼ 9.4 %.

Thus, the first moment is the number average given in Equation (8.1) and the

weight average is the ratio of the fourth to the third moment:

M4

M3

¼
P

Di fiD
3
iP

fiD
3
i

, as wi ¼ rfiD
3
i (8:4)

where wi is the mass of particles with a diameter Di and density r. In the

example distributions plotted in Figures 8.1 and 8.2, the number-average

diameter is 201 nm with a standard deviation of 19 nm, which is equal to a

coefficient of variation of 9.4%. The weight-average diameter is 226 nm.

Here, we can see how the average changes as we use different weightings. We

must keep in mind that size determinations which use different physical prop-

erties of the particles can correspond to different averages and so quite differ-

ent sizes may be observed, especially if the size distribution is broad.

The shape of the distribution is indicative of how the system was produced.

The example illustrated above (Figure 8.2) has a skew showing a tail towards

smaller sizes. This is typical of the distribution that we find from a dispersion

which is prepared by a particle nucleation and growth procedure. The tail

indicates that new particles are formed until late in the process. If the system

has been prepared by comminution, the tail is usually towards the larger sizes

as we progressively reduce the size down to a limiting threshold. It is conven-

tional to refer to a system as being ‘monodisperse’ if the coefficient of vari-

ation on the mean diameter is  10%. When viewing a size distribution,

especially when presented on a logarithmic scale, it is important to keep in
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Figure 8.3. Summary of the techniques available for the measurement of particle size.

mind that a small size fraction can dominate the number and area of the

system. In addition, it should be noted that the large size fraction of the

distribution contains most of the mass of the disperse phase.

There is a wide range of techniques available for the determination of

particle size. A summary of the more common methods is given in Figure 8.3.

Some of these methods give the full distribution, while others provide just a

mean value. The average is not always the number average and the measure

of the distribution width is often determined by an algorithm which is embed-

ded in the instrument software, the details of which are not available to

the user.

3 MICROSCOPY

3.1 Optical Microscopy

The optical microscope is a valuable tool in any colloid laboratory. With

modern optics, we can see much of the colloidal size range although we are

still restricted to the larger end of the range for size data. The state of the

dispersion is immediately apparent as it is observed in an ‘unperturbed’ state.

Aerosols are an exception here as the motion is so rapid that high-speed

photography would be required. With particles dispersed in a liquid, we can

see immediately if the system is well dispersed, coagulated or weakly floccu-

lated. In the latter case, particles can be seen to move together for some time

and then to separate. The Brownian motion of particles dispersed in any
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Figure 8.4. Illustration of the determination/definition of particle size for a non-
spherical particle, in this case, a platelet: (a) three-dimensional ‘image’, showing the
surface topography; (b) projected ‘image’, which loses the surface topography; (c) length
bisecting the particle – Martin’s diameter, dM; (d) perpendicular distance between
tangents of opposite sides – Feret’s diameter, dF; (e) diameter of circle of equal projected
area, da; (f) diameter of a sphere with the same surface area, ds; (g) diameter of a sphere
with the same volume, dv.

liquid presents problems with resolution if an accurate size is required. Dried

samples may solve this problem but often a study of the particles in the wet

state is important. A good photographic recording system is always required

to optimize the method, whether normal transmission, dark field or fluores-

cence microscopy are employed.

Once an image has been obtained it has to be analysed by hand, or usually

by a computerized image-analysis system. If the particles are spherical, the

determination of particle size is straightforward – we simply define the diam-

eter as the size. However, for non-spherical particles the problem is not so

easy, as illustrated in Figure 8.4. In this figure, the particle is depicted as a

platelet which would be similar to a kaolinite clay particle. The clay crystal

has surface topographical detail which is lost in the projected image. The

various dimensions are also defined in the figure (the dimensions shown in
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Figure 8.4(f) and 8.4(g) would be obtained by techniques other that micro-

scopy, of course, but are included here to illustrate the difficulties often en-

countered when ‘sizes’ are compared for the same material). Calibration

requires an image for a stage micrometer, with the best precision being � 3%.

3.2 Electron Microscopy

Transmission electron microscopy (TEM) is the preferred technique for size

analysis if optimal precision is required. Here, a sample of the dispersion is

placed on a mesh grid coated with a thin polymer or carbon film. When it has

dried, the grid is placed in the microscope column which is then evacuated. The

beam of electrons produces an image which is focused onto a fluorescent screen.

The principle is exactly analogous to that of a ‘normal’ optical microscope. The

lenses are electromagnets, and the wavelength of the electron beam is controlled

by the accelerating voltage used in the microscope, with 10 or 20 kV being

typical values, so that a resolution of < 1 nm is available. The limit though is

not inherent in the instrument but more often is governed by the electron dens-

ity of the particle and its thermal stability. Particles of high-atomic-number

elements scatter electrons more strongly than low-atomic-number elements

such as carbon. The heating effect of the beam is greatest in the highly focused

intense beam used at the highest magnification and this can cause particles to

shrink or decompose. The lowest magnification is limited by ‘pincushion’ dis-

tortion of the image which is readily observed on the screen. The reliable range

for particle size analysis covers particles from� 10 nm to 10mm. The magnifica-

tion has to be calibrated with each sample and the standards used are crystal

spacings for the higher magnifications and carbon replicas of gelatine casts,

taken from diffraction gratings, for the lower magnifications. Like optical mi-

croscopy, a precision of 3% is the best that we can usually achieve.

Scanning electron microscopy (SEM) is frequently available from the same

instrument. In this mode, the electron beam is focused down to a spot of

� 5 nm and scanned across the specimen. The latter is mounted on an alu-

minium stub and usually coated with a conducting material such as a thin

film of gold. This prevents electrostatic charge building up which interferes

with the image. The scanned beam produces low-energy secondary electrons

from the sample surface which are collected and displayed on a TV monitor.

The image that we see gives us a three-dimensional perspective of the sample

surface which can be immensely valuable and is always of interest. However,

in terms of size analysis, the ‘foreshortening’ results in a wider distribution of

measured sizes than is actually the case. The resolution is less than with TEM

and is limited by the size of the focused and scanned spot. If the conducting

coating is absent, the energy distribution of the secondary electrons can be

analysed and the composition of the surface layers can be determined. This

technique is termed electron probe microanalysis.
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In general, with electron microscopy we are limited to dry specimens as a

high vacuum is required in order to prevent scattering of the electron beam

by gas molecules. Microscopes are available in which the sample chamber is

isolated from the rest of the microscope, except by a small aperture. The

evaporation rate is slowed by the aperture and with a sufficiently powerful

vacuum system a well-defined beam can be achieved. This enables wet

samples to be imaged. However, the sample system is subject to evaporation

and therefore is rapidly changing, which hence limits the utility of the

technique.

3.3 Atomic Force Microscopy

Atomic force microscopy (AFM) is also a scanning technique. In this ap-

proach, a fine stylus mounted on a delicate cantilever spring is brought into

close proximity with the surface being studied. The surface is displaced back-

wards and forwards until the selected area has been examined. The displace-

ment of the stylus is monitored by using a laser beam and an image is built

up on a computer monitor. A group of piezoelectric crystals are used to

provide the fine three-dimensional displacement of the specimen. The optical

lever and the spring constant control the resolution available, with this being

similar in magnitude to that achieved by using SEM. It is relatively easy to

use this technique with wet surfaces without any of the complications of

electron microscopy.

With colloidal systems, the most important application of AFM has been

in the study of (colloidal) particle interactions. A polystyrene latex particle is

a convenient model, spherical, colloidal particle and, by attaching a latex

particle to the stylus with cyanoacrylate adhesive, the displacement of the

stylus as it is brought into close proximity to another particle is monitored.

From a knowledge of the spring constant and the displacement, the force–

distance curve can be constructed. The limitation of this approach is that the

particles must be large enough to be attached to the stylus without the mater-

ial of the latter playing a part in the interaction. Particles greater than 103 nm

have been examined successfully with this technique.

4 ZONAL METHODS

In these methods, a dilute colloidal dispersion is caused to flow through a

well-defined zone and changes in either the electrical or optical properties of

the zone are monitored. The magnitude of the change is related to the size of

the particles and the number is given by a direct count. A major problem is

that we must take care to avoid the coincidence that two or more particles are

in the sensing zone simultaneously. If this occurs, they will be read as a single
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particle. The statistical correction to the number should be no more than a

few percent of the total count. To ensure this, the concentration of the disper-

sion must be very low. The number of particles per unit volume in a disper-

sion is directly proportional to the solids concentration and inversely

proportional to the cube of the particle diameter. Hence, the smaller the size,

then the greater is the dilution that has to be made. This can represent a

problem with colloidal dispersions of particles made up of soluble and even

sparingly soluble materials. The sensitivities of the methods are such that they

work best with dispersions containing particles with diameters > 1mm.

4.1 Electrical Sensing

This was first commercialized with the production of the Coulter Counter

which was originally designed simply for counting human red blood cells. It

was very quickly developed to enable size distributions to be determined. The

principal in this technique is that a dilute dispersion is drawn into a tube

through a small cylindrical orifice, with the latter manufactured from sap-

phire. An electrode is placed on either side of the orifice so that it can be

operated as a small conductivity cell. As a particle passes through the orifice,

the conductivity changes and as the aperture current is set, the magnitude of

the voltage pulse is proportional to the volume of the particle in the sensing

zone. The pulse counter is set to progressively lower threshold values during

repeated counts so that a cumulative distribution is obtained of the number

of particle with a volume greater than the threshold value. The data are then

converted to the diameter of the equivalent spherical particle and the numbers

adjusted for the coincidence of two particles being within the zonal volume

simultaneously and for the background levels of particles in the continuous

phase. Filtered media must be used to keep the background down to low

levels.

For this conductivity method to work, the final dilution has to be into an

electrolyte with a high conductivity. With aqueous systems, a concentration

of between 1 and 5M sodium chloride is required. Non-aqueous systems can

be used if a suitable organic electrolyte can be found which is compatible with

the dispersion. The very large dilution means that the coagulation rates are

slow and so if measurements are done immediately, aggregation does not

affect the data. Otherwise, a suitable non-ionic stabilizer for the particles is

required. The instrument calculations assume that the particles are non-con-

ducting. If this is not the case, then the data must be corrected to move the

distribution to larger-size values.

The range of the instrument is a function of the aperture size. If the particle

diameter is < 5% of that of the orifice, poor discrimination is obtained. If the

particle size is > 40% of the orifice diameter, blockages will occur as when

two or three particles arrive simultaneously at the orifice, they can prevent
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each other from entering. Smaller orifices make this blocking problem more

severe but do enable smaller particles to be counted. The usual range of

orifice diameters used is from 500mm down to 30mm. With the smallest

orifices, high aperture currents are needed to produce large enough voltage

pulses. The problem then is that of heating of the solution in the aperture

and although high electrolyte concentrations can be employed, the noise

created by the rapid heating of the fluid in the sensing zone is the limiting

factor.

A final point that the operator must bear in mind is that the system is

stirred and that the sensing zone is not limited to the actual orifice. This zone

extends out a small way from the ends of the orifice so that particles passing

through these regions will also be counted. The coincidence correction is

based on the random placement of particles in a given volume and a ‘cross-

flow’ through either end of the sensing volume is not allowed for. The stirring

then has to be as slow as possible but still sufficient to prevent either sedimen-

tation or creaming.

4.2 Optical Sensing

In this case, we are not referring to equipment that carries out angular light

scattering from single particles. Such equipment is available but it should be

considered with light scattering in general. Here, we are looking at the change

in transmission of light across a defined zone as particles move through that

zone. The extinction is proportional to the total amount of light scattered as

well as that absorbed.

A rectangular cross-sectional flow chamber is used with a well collimated

light source (usually a laser) on one side of the chamber and a photodiode

detection system on the other. Apertures can define the optical area very well

and so there is not a problem at the edges of the zone as we have with an

electrical sensing system. Laminar flow must be used, however, as turbulence

must be avoided to prevent local recirculation in the eddies. The counting and

pulse height analysis procedures are similar to those used in the electrical

zonal system, plus the same problem of a coincidence correction is present.

The sensitivity is only in part controlled by the incident intensity as the major

factor is the relative cross-sectional area of the particle to the illuminated

area. Hence, the particle sizes of the dispersion have to be > 1mm if the

system is to be analysed.

5 SCATTERING METHODS

Colloidal particles scatter electromagnetic radiation and the sizes and shapes

of the particles can be calculated by analysing the intensity of the scattered
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radiation measured as a function of the angle around the scattering volume.

The intensity is a function of the particle size and the wavelength of the

radiation, as well as the intensity of the latter and the ability of the former

to scatter the radiation. The upper end of the wavelength scale is provided

by lasers which give plane-polarized light in the wavelength range of 250 to

700 nm. For the lower end of the scales, high-energy X-rays from a synchro-

tron source and low-energy neutrons from a reactor with a zone cooled with

liquid deuterium are employed. The synchrotron gives radiation with an

intensity which is about a hundred times brighter than conventional labora-

tory sources and the wavelength can be varied over a range of approxi-

mately 0.05 to 1 nm. The neutrons, tapped from a high-flux reactor, using

the cold deuterium moderator to reduce the frequency, have a wavelength

range of 0.1 to 1 nm. A mechanical collimator is then used to select a

narrow range from this. An alternative source is the use of a circular accel-

erator with a target which produces a large pulse of neutrons when hit. This

is known as a ‘spallation’ source. Pulses are continuously produced with a

range of wavelengths in each pulse. The scattering of a particular wave-

length is isolated by using its ‘time-of-flight’, which is easy to monitor as

each pulse provides a start time as a reference. The light scattering pho-

tometer is a bench-top piece of laboratory equipment. The X-ray and neu-

tron spectrometers are shared systems in central locations and, of course,

much more expensive. They are therefore only occasionally used for size

determination alone.

The scattering of light and X-rays occurs from the interaction of the

radiation with the electrons of the atoms making up the particles being

studied. The neutrons, on the other hand, interact with the nuclei of the

atoms. This leads to the extremely important property in that there is a

very marked difference in the scattering of neutrons from hydrogen, which

just contains a proton as the nucleus, compared to that of deuterium with

a neutron and a proton making up the nucleus. Thus, deuterated materials

can be introduced into particles, polymers, surfactants or solvents to

change the contrast and so hide or bring out structural features of the par-

ticles. This is analogous to changing the refractive index in a light scattering

experiment and this is very difficult to achieve with simple hydrocarbon-based

materials.

We are quite familiar with the interaction of light with matter in that this is

used routinely to provide important physico-chemical information. Light can

be reflected or refracted by macroscopic objects. It can also be diffracted by

the edges of component which are large when compared to the wavelength

and we make use of this Fresnel diffraction in measuring the sizes of particles

at the upper end of the colloid size scale. Light may be absorbed and the

energy dissipated as heat or re-emitted at a lower frequency ( fluorescence).
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However, we will not be dealing

with these two phenomena

here, with our discussion being

centred around the interaction

and re-emission of light at the

same wavelength. The energy is

directly proportional to the fre-

quency of the wave, v rad s�1

(via the Planck constant). There

being no dissipation, the scat-

tered wave has the same fre-

quency as the incident wave.

Figure 8.5 illustrates the geom-

etry for a simple scattering ex-

periment. Here, the incident

wave is scattered through an

angle u, and as there is no

energy change, the magnitude of the scattered wave is the same as that of the

incident wave, as follows:

jksj ¼ jkij ¼ 2p

l
(8:5)

where l is the wavelength of the radiation. The scattering vector, Q, is given

by the following relationship:

ks ¼ ki þQ (8:6)

From the construction shown in Figure 8.5, we can see that the magnitude of

the scattering vector is as follows:

jQj ¼ Q ¼ 4p

l
sin

u

2

� �
(8:7)

The scattering vector has units of reciprocal distance and we should note that

the distance that we probe in a scattering experiment is about 2p=Q. Meas-

urements at different values of Q may be made by either measuring the

scattered radiation at different angles for a fixed wavelength, or by varying

the wavelength at a fixed scattering angle. Figure 8.6 shows the scattering

angle plotted against the dimension probed by using radiation with wave-

lengths of 0.35 and 350 nm. The angle used for investigating colloidal

particles with neutrons or X-rays is usually < 10�. Hence, we refer to

Incident wave

Scattered
wave,
|ks| = 2π/λ

θ/2

Scattering
vector, Q

ki

Figure 8.5. Illustration of the geometry
employed in a simple scattering experiment
(plan view).

Characterization of Colloidal Particles 205



0

1

2

3

4

5

6

7

20

40

60

80

100

120

140

160

1 10 100 1000

Dimension probed (nm)

Sc
at

te
ri
ng

 a
ng

le
 f

or
 λ

=
 0

.3
5 

nm

Sc
at

te
ri
ng

 a
ng

le
 f

or
 λ

=
 3

50
 n

m

Figure 8.6. The scattering angle, u, as a function of the dimension (distance, 2p=Q) for
neutrons and light.

small-angle neutron scattering (SANS) and small-angle X-ray scattering

(SAXS). With light, the range of angles normally used varies from � 20 to

1608, although smaller angles can be probed successfully.

6 ANALYSIS OF SCATTERED RADIATION

We can only provide an outline of this large and important topic here but

there are some excellent texts available [1–5] which cover the area in detail.

Light scattering from colloidal systems has a long history. The complexity of

the analysis, however, increases as the particle radius approaches the wave-

length of the radiation, and we will start here with the most straightforward

situation.

6.1 Rayleigh Scattering

When the particle radius is < 5 % of the wavelength, a colloidal particle can

be adequately treated as a point in the electric field of the light ray. The

oscillating electric field causes the outer electrons of the atoms making up the

particle to oscillate at the same frequency. We can treat the particle as a

single oscillating dipole. Such a dipole radiates light of the same frequency in

all directions, where the intensity is a function of the angle to the incident

direction and plane of polarization. The first case to consider is that where we

are measuring the intensity as a function of the angle in the horizontal plane

and the electric field of the light is polarized normal to this plane, i.e. it is
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vertically polarized. The intensity of the scattered light, I(u), relative to the

incident intensity, I(0), is given by the following [2]:

I(u)

I(0)

� �
V

¼ 16p2

r2l4
a

4pe0

� �2

(8:8)

The subscript ‘V’ indicates that the radiation is vertically polarized and that

the scattering angle is measured in the horizontal plane. The intensity is

inversely proportional to the square of the distance to the detector, r. The

wavelength of the radiation is l and e0 is the permittivity of free space; a is

the polarizability of the particle and this is a function of the relative refractive

index of the particle, n2, to that of the suspending medium, n1, and the

volume of the particle, vp:

a21 ¼ 3e0
n221 � 1

n221 þ 2

� �
vp, where n21 ¼ n2

n1
(8:9)

Clearly, as Equation (8.9) indicates, the particle will not scatter light if it has

the same refractive index as the medium. Substituting Equation (8.9) into

Equation (8.8) and also writing the volume in terms of the particle diameter,

Dp, we have:

I(u)

I(0)

� �
V

¼ 2p4

r2

D6
p

l4
n221 � 1

n221 þ 2

� �2

(8:10)

This equation indicates that we will see no angular dependence of the scat-

tered intensity for vertically polarized light.

When the plane of the polarization is horizontal, the angular dependence will

change. We will not see the radiation from the particle when we examine the

latter along the polarization axis. In this case, the relative intensity is given by:

I(u)

I(0)

� �
H

¼ 2p4

r2

D6
p

l4
n221 � 1

n221 þ 2

� �2

cos2 u (8:11)

If the radiation is unpolarized, the incident intensity is equally divided

between the vertical and horizontal components and we will see the relative

scattered intensity as the sum of the two:

I(u)

I(0)

� �
¼ 1

r2

p4D6
p

l4
n221 � 1

n221 þ 2

� �2

(1þ cos2 u)

" #
(8:12)
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Figure 8.7. Variation in the angular intensity as a function of the scattering angle for a
‘Rayleigh scatterer’.

Figure 8.7 shows the variation in angular intensity that we would see for

the scattering from a small particle when using unpolarized light, as well as

horizontally or vertically polarized light. In Equation (8.12), r is an instru-

ment constant while the term in square brackets is termed the Rayleigh ratio,

R(u). When we have light scattered from a dilute dispersion, each particle

contributes and so the intensity as a function of the angle is:

I(u) ¼ I(0)

r2
R(u)r (8:13)

where r is the number density of particles in the dispersion in the scattering

volume. This assumes that the separation between particles is large and so the

light scattered by each particle is not subsequently scattered a second or third

time by neighbouring particles, that is, there is no multiple scattering. This is

easily checked by showing that there is a linear dependence on concentration.

Note that Equation (8.12) is very sensitive to the particle size as the particle

diameter is given to the sixth power. Hence, if there is a distribution of

particle sizes, the larger fractions contribute much more strongly to the scat-

tered intensity than the smaller sizes and the average diameter calculated

from the scattering will be weighted to the ‘larger end’ of the size distribution.

6.2 Rayleigh–Gans–Debye Scattering

As the particle diameter becomes a significant fraction of the wavelength of the

radiation, we can no longer treat the particles as ‘point-scatterers’. Radiation
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as for spheres. For example, the radius of gyration of a spherical particle with

a homogeneous density profile is as follows:

RG ¼ 3

5

� �0:5
Dp

2
¼ 0:39Dp (8:16)

If we measure the intensity at two angles, we may use Equations (8.14) and

(8.16) to determine the particle size. Angles of 45 and 135 8 are usually chosen

for this and the ratio of the two intensities is known as the dissymmetry ratio.

Now, for our homogeneous sphere we can write the dissymmetry ratio, after

substituting for Q from Equation (8.7), as follows:

I(45)

I(135)
� 1� 1:17(Dp=l)

2

1� 6:83(Dp=l)
2

(8:17)

Therefore, we can determine the diameter simply from measuring the dissym-

metry ratio.

Alternatively, we may use the value of I(90) as a reference intensity (the

cos u term in Equation (8.12) becomes zero), and so we can write:

I(u) � I(90)(1� cos2 u)[1� (QRG)
2=3] (8:18)

Equation (8.18) gives us the radius of gyration of our particle. For homoge-

neous particles, the radii of gyration for various shapes are given by the

following:

spherical ring, radius a:RG ¼ a

sphere, radius a:RG ¼ a
ffiffiffiffiffiffiffiffi
3=5

p
thin disc, radius a:RG ¼ a=

ffiffiffi
2
p

thin rod, length L:RG ¼ L=
ffiffiffiffiffi
12
p

(8:19)

and so we can determine the particle dimension from the ratio of the inten-

sities.

As the particle size increases further from the Rayleigh region, the form

factor can no longer be adequately described by using only the first term in

the series expansion (Equation (8.15)). For homogeneous spheres of radius a,

we may write the form factor as follows [4]:

P(u) ¼ {3[ sin (Qa)�Qa cos (Qa)]=(Qa)3}2 (8:20)
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Figure 8.9. Variation of the particle form factor, P(u), as a function of Q for two
different particle sizes, when using a wavelength of 600 nm.

Figure 8.9 shows the variation of P(u) as a function of Q calculated for two

different particle sizes when using a wavelength of 600 nm. There is a marked

structure in the angular variation of the form factor as the radius approaches

the wavelength of the radiation. As the particle size distribution broadens, the

sharp troughs become shallower and are smoothed out for a sample with a

broad size distribution.

For large particles, i.e. (n2 � n1)a=l � 1, the theoretical analysis, known as

the Mie theory [2], is much more complex and is limited to spherical particles.

Computer programs are available to match the structure of the angular inten-

sity scan from the theory with that observed experimentally [2, 6]. The prob-

lem is not just computational, however, but is also one of measuring the

absolute intensities accurately so that a lot of care is required to ensure good

data. This is always true for light scattering as small amounts of airborne

dust can easily get into our dispersions. As most dust particles are in the

upper end of the colloid size domain, the scattering from such contaminants

can result in significant errors.

6.3 X-Rays and Neutrons

The above discussion is presented in terms of the refractive indices of the

disperse and continuous phases. The analysis is the same for both X-rays and

neutrons except that the scattering length density of the particles is used

instead of the refractive index. For a particle, the scattering length density

is calculated by summing the scattering lengths, bi, of all of the atoms in

the particle. As we noted above, the scattering of X-rays occurs from the
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electrons of the atom and is therefore the product of the atomic number, zi,

of the atom and the scattering length of an electron (which is 2:8� 10�15 m).

Neutrons, however, are scattered from the nucleus and the scattering length

does not vary regularly with the atomic number of the atom. The values are

tabulated, of course, and so this does not represent a problem. We can calcu-

late the scattering length densities for neutrons and X-rays of our particles,

rSN and rSX, respectively, as follows:

rSN ¼ Nm

X
i

bNi

rSX ¼ Nm

X
i

bXi
¼ 2:8� 10�15Nm

X
i

zi
(8:21)

where Nm is the number of molecules per unit volume made up of atoms of

type i in the particle, namely:

Nm ¼ rmNA

Mm

(8:22)

in which rm and Mm are the density and molar mass of the molecules, respect-

ively, and NA is the Avogadro constant. Similar calculations must be carried

out for the continuous phase, of course. Values of the scattering lengths of

some selected atoms are given in Table 8.1. We can express the refractive index

in terms of the scattering length density and the wavelength as follows [7]:

n ¼ 1� rSNl
2=p (8:23)

and we would not observe scattering from the particle if its refractive index

matches that of the medium. This ability to ‘contrast-match’ can often be

exploited.

Table 8.1. Scattering lengths (10�15 m) for neutrons and X-rays
of some typical atoms

Atomic species bSN bSX

H �3.74 2.85
D 6.67 2.85
C 6.65 17.1
O 5.81 22.8
Na 3.36 31.3
Si 4.15 39.0
Cl 9.58 48.4
Cd2þ 3.7 131.1

212 Colloids and Interfaces with Surfactants and Polymers



By using equations (8.21) and (8.22) with the values taken from Table 8.1, the

scattering length density for water is as follows:

103 � 6:022� 1023

0:018
[5:81� (2� 3:74)]� 10�15 ¼ �0:56� 1014 m�2

while that for deuterium oxide is 6:34� 1014 m�2. Many hydrocarbon poly-

mers fall in between these values so that polymer particles or coatings can be

visualized separately if combinations of hydrogenated and deuterated mater-

ials are used. This technique is known as ‘contrast-matching’. As an example

that may be used to illustrate how we could apply this technique, consider a

small polystyrene particle (say, r � 25 nm) coated with a monolayer of dode-

canoic acid as a stabilizer. In the experiment to study the coating, we could

use d23-decanoic acid. Now, the scattering length density for h8-polystyrene is

1:41� 1014 m�2 and that for the deuterated dodecanoic acid is 5:3� 1014 m�2.
In a mixture of approximately 25 % D2O=75 % H2O, we will have a scatter-

ing length density match with the core particle and will ‘see’ the layer as

a hollow spherical shell. On the other hand, when we use a mixture of 85 %
D2O=15 % H2O we will no longer be able to ‘see’ the surfactant shell with

the neutron beam and will just scatter from the core polystyrene particle. In

100 % water, of course, we will scatter from both the core and the shell.

Figure 8.10 illustrates this effect.

It is convenient to express the scattering of neutrons from a dispersion of

particles in the following form:

I(Q) ¼ Ar
4pa3p
3

 !2
(rp � rm)

2P(Q) (8:24)

100 % H2O 25 % D2 O/75 % H2O 85 % D2 O/15 % H2O

a1

a2

Figure 8.10. Illustration of the ‘contrast-matching’ of a polystyrene particle with a
deuterated dodecanoic acid layer using different H2O=D2O mixtures.
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where A is the instrument constant which includes the wavelength, the inci-

dent intensity and the distance to the detector. (Neutron detectors are made

up of two-dimensional arrays of 1 cm2 measuring elements.) The subscripts rp
and rm refer to the scattering length densities of the particle and medium,

respectively, ap is the radius of the particle and r is the number density of

particles in the dispersion. The equivalent expression for concentric spheres,

that is, a dispersion of particles with attached layers, is as follows [8]:

I(Q)

Ar( 4p
3
)2
¼ (rp � rm) 3a31

sin Qa1 �Qa1 cos Qa1

(Qa1)
3

� �� �

þ (rL � rm) 3a32
sin Qa2 �Qa2 cos Qa2

(Qa2)
3

� �
� 3a31

sin Qa1 �Qa1 cos Qa1

(Qa1)
3

� �� �

(8:25)

The first term on the right-hand side of Equation (8.25) represents the scatter-

ing from the core particle while the second term is that from the shell with a

scattering length density of rL. Clearly, as the scattering length density of the

medium is adjusted to equal that of the layer or the particle, we will be able

to determine the dimensions of the particle or the layer, respectively.

6.4 The Guinier Approximation

When Qa� 1, Equation (8.15) provides a reasonable approximation to P(Q),

and so we have:

I(Q) ¼ Arv2p(rp � rm)
2 1� (QRG)

2

3
þ . . .

" #
(8:26)

Writing this as the exponential form instead of the series:

I(Q) ¼ Arv2p(rp � rm)
2 exp � (QRG)

2

3

" #
(8:27)

which in logarithmic form gives:

ln I(Q) ¼ ln I(0)� (QRG)
2

3
(8:28)

Therefore, from a plot of ln I(Q) versus Q2 we have the radius of gyration of

a particle of arbitrary shape from the initial slope as �R2
G=3, and the inter-

cept as I(0) ¼ Arv2p(rp � rm)
2.

214 Colloids and Interfaces with Surfactants and Polymers



6.5 Porod’s Law

This describes the scattering response at high values of Q. As the angles and

wavelengths become large, the intensity of scattered radiation varies as Q�4.
The limiting equation is as follows:

I(Q) � 2pS(rp � rm)
2Q�4 (8:29)

where S is the surface area of the material. It is useful to think in terms of the

fractal dimension of the surface, dsf . Then the proportionality is:

I(Q) / Q�(6�dsf ) (8:30)

When we think of a characteristic distance on the surface, r, the area is

proportional to r2, and so the fractal dimension is 2. However, when we have

a rough surface there is a three-dimensional character so that the area can be

thought of being proportional to r3, and then dsf ! 3, and therefore:

I(Q) / Q�4, smooth surface

I(Q) / Q�3, rough porous surface
(8:31)

7 NEUTRON REFLECTION

Macroscopic surfaces can be investigated by using a small-angle neutron reflec-

tion technique. The intensity of the neutron beam is measured as a function of

the incident angle, u, and of the wavelength. The reflectivity is dependent on the

properties of the surface, such as the thickness of any surface layer and its

scattering length density. The reflectivity, R(Q), is determined from the vari-

ation across the interfacial region, that is, in the z-direction:

R(Q) ¼ 16p2

Q4

ð
]r(z)

]z
exp (iQz)dz

����
����
2

(8:32)

where we can see the Q�4 decay that we expect from a flat surface. The

reflectivity is a complex quantity (note the iQz exponential term) as we would

expect for any waveform.

This technique has been used effectively to study monolayers of surfactants

on water. The water layer can be rendered ‘invisible’ by using a ratio of

D2O=H2O of 0.08:0.92 as the scattering length density of the mixture is now

zero. The reflection is then just from the monolayer. The scattering length

density of the monolayer, rF is:
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rF ¼
P
i

bNi

Amlm
(8:33)

where Am is the area per molecule in the layer and lm is the length of the

molecule in the layer (layer thickness). (Note the latter will not necessarily be

the length of a stretched surfactant – it is just the thickness of the layer.) We

can treat the scattering length density as uniform across our surfactant mono-

layer so that the reflectivity is now:

R(Q) � 16p2

Q 4
r2F2[1� cos (Qz)] (8:34)

A plot of R(Q)Q 4 versus Q varies sinusoidally with a total amplitude of

32p2r2F and the peak at p=lm. Hence, the length of the surfactant in the

monolayer can be determined from the value of Q at the first peak and the

area per molecule from the amplitude of this peak, via Equation (8.34).

8 DYNAMIC LIGHT SCATTERING

The time-average scattering that we have discussed so far is elastic scatter-

ing in that the frequency of the scattered radiation is the same as the incident

value. The particles in the suspension are moving with Brownian motion

and we can expect a broadening of the wavelength due to a Doppler shift.

In principle, this shift would yield the diffusion coefficient and thus give a

measure of the particle size. However, this shift is small and difficult to

measure.

The technique that we use to follow the motion is known as photon correl-

ation spectroscopy [9], the name of which is indicative of the experimental

methodology. Lasers produce coherent light and the equipment is focused to

give a small scattering volume. The particles in the dilute dispersion scatter

the light and because the light is coherent, the phase relationship is main-

tained. This means that the dispersion acts like a three-dimensional diffract-

ing array. The structure is random (as the dispersion is dilute and therefore

the particles are non-interacting by definition) and we see a random diffrac-

tion pattern. As the particles are in motion, the diffraction pattern also

moves. This is termed a ‘speckle pattern’. From the detector (photomulti-

plier), we look at the small area defined by the scattering volume and the

bright spots or speckles move in and out of our vision at a rate that is

dependent on the Brownian motion. The photomultiplier is connected to a

photon correlator, and the intensity is measured as a function of time. The

total time can be set and the intensity (number of photons) is measured over
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a series of short time-intervals until the total time is reached. Such a time

interval is termed the ‘correlation delay time’, tc. Remember that the intensity

is rapidly fluctuating up and down as the speckles move in and out of the

field of view. Hence, at two of these times which are close together there is a

strong correlation in the intensities but this will not be the case for times

which are widely separated. The instrument constructs the correlation func-

tion by comparing the product of the number of photons counted initially

with those counted in the correlation delay time intervals measured over

longer and longer times with the square of the ‘long-time’ value. The correl-

ation function decays exponentially, as follows:

g(tc) ¼ exp (� tcDsQ
2) (8:35)

where Ds is the self-diffusion coefficient of the particle. Note that DsQ
2 is just

the time taken for a particle to diffuse through a distance of Q�1. The

data are plotted as the natural logarithm versus Q2, which should yield a

straight line, and then the diffusion coefficient is found from the slope. The

Stokes–Einstein relationship is used to give the hydrodynamic radius of the

particle:

aH ¼ kBT

6pZ0Ds

(8:36)

where Z0 is the viscosity of the continuous phase. Of course, as the dispersion

consists of particles of monodisperse hard spheres, the hydrodynamic radius

should correspond with that determined by microscopy. If the particles are

non-spherical or are covered with a stabilizer layer which has a thickness

which is a non-negligible fraction of the radius, the hydrodynamic radius will

be larger than that obtained from microscopy measurements.

As the size distribution becomes broader, the range of diffusion times in-

creases in direct proportion. The correlation function then becomes the sum

of each of the exponential decaying terms, weighted by the probability of

each time occurring. The experimental plot has to be analysed with this in

mind as all dispersions have some degree of polydispersity. The problem here

is that we cannot obtain a unique solution when we try and invert the

summation. (Mathematically, this is termed an ‘ill-conditioned’ problem.)

The method used by each instrument manufacturer is to set up a model

which is calibrated against particles of known size. This usually works well

for mixtures of monodisperse particles of well separated sizes but may not

be so reliable with a single but broad distribution. In addition, as the

intensity of scattered light is being measured, the mean will be weighted to

the larger sizes.

Characterization of Colloidal Particles 217



9 CHARACTERIZATION OF THE ELECTRICAL
PROPERTIES OF PARTICLES

In this section, we will concentrate on the properties of the surfaces of col-

loidal systems rather than bulk properties such as the dielectric behaviour.

The surface charge densities of particles can be determined by titration. The

larger the particle size, then the more difficult this becomes as the total titrat-

able charge is inversely proportional to the specific surface area. Electroki-

netic techniques are used to determine the z-potential. The larger part of our

discussion will centre around the latter as this is an important factor for

determining the interactions between particles.

9.1 Surface Charge By Titration

This technique is appropriate for particles with fixed ionogenic groups on the

surfaces of the particles. A good example of such a surface is a polymer latex

particle with charge polymer groups. These can be the terminating groups on

the ends of the polymer chains or result from a charged copolymer. A good

example of the latter are latices which have an considerable fraction of acrylic

acid copolymerized in the particles. These latices can be used as modifiers in

portland cement formulations.

As it is the strongly attached or covalently bound charge that we are meas-

uring, physically adsorbed material such as weakly adsorbed surfactants have

to be removed. In addition, all of the counter-ions to the surface groups must

be converted to ones which can be readily titrated, e.g. protons or hydroxyl

ions. Free material in solution must also be removed. Treatment with a

mixed-bed ion-exchange resin which has its components in the Hþ and the

OH� forms can achieve all of these objectives, leaving acid groups in the

hydrogen form, and all salts, acids or bases converted to water.

The dispersion is then titrated with acid or base as appropriate. The

‘equivalence-point’ is determined either conductometrically or potentiometri-

cally. The experimental difficulty is that dilute acid or bases may have to be

used, e.g. at concentrations of 10�2 M, and we have to be careful to exclude

carbon dioxide. Conductometric data are easier to obtain and give the total

charge with the equivalence points being shown by clear changes in the

slopes. The latter reflect how strong or weak the acids or bases are. For

example, strong acids give a marked negative initial slope as mobile protons

are replaced by lower-mobility sodium ions. Weak acids have a slight positive

initial slope as the acid groups in the hydrogen form are poorly dissociated

and so only a few protons are contributing to the measured conductivity, but

all of the sodium ions that have been used to replace them are ionized.

Potentiometric data are less easy to analyse but give additional information

in terms of the pKa values of the groups. We should keep in mind with
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particle surfaces that the ionization of one group is affected by the neighbour-

ing groups, that is, the surface has a polyelectrolyte character and so can have

a wide range of pKa values rather than a single one.

9.2 Electrokinetic Methods

All of these methods rely on the movement of the suspending medium past

the charged interface. As such, they can in some cases be applied to macro-

scopic surfaces in addition to colloidal particles. The property which is deter-

mined here is the z-potential and not the surface potential. This is because we

are making measurements from the relative motion of the electrolyte solution

and the surface. The counter-ions that are strongly bound in the Stern layer

are assumed to be static on the surface and so the relative motion starts

between this region and the hydrated ions and water molecules next to the

Stern layer. This gave rise to the concept of a ‘shear plane’. This is a conveni-

ent simplification for our calculations but we must be aware that it is no

better than the modelling assumption that we normally use for a planar

particle surface with the charge smeared out uniformly over this. Hence,

although the models are satisfactory for distances that are many molecular

diameters away from the surface, the precision becomes less at very close

distances. Thus, we are left with a potential that we can measure reasonably

accurately but at a distance from the surface which will be around 0.5 or

1 nm. The important point though is that it represents a good description of

the potential that a test probe would experience as it was brought from a

large distance towards the surface. The Stern potential can be much lower

and even of reverse sign to the surface potential due to the strong adsorption

of multivalent counter-ions or surfactant molecules. There are a number of

methods available to determine the z-potentials of surfaces. A summary is

presented in Table 8.2 and we will briefly discuss these in the following.

Throughout our discussion, we are going to assume that the liquid is New-

tonian, that is, the shear stress, s, is directly proportional to the shear rate, _gg,
produced in the liquid, and the proportionality constant is the coefficient of

viscosity, Z. The definitions of these terms are illustrated in Figure 8.11. In

general, the fluid velocity gradient is not linear over large distances and it is

important to know how this varies with distance as liquid flows in, for

example, a capillary tube, which can be used to determine the z-potential of
macroscopic surfaces. The geometry that we will use for flow through a capil-

lary is shown in Figure 8.12. For steady flow through the tube, the applied

force is equal to the viscous drag force:

DPpr2 ¼ � dv(r)

dr
Z2prL (8:37)
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Table 8.2. Examples of electrokinetic techniques used to measure the z-potential
of particles

Technique Conditions Procedure

Streaming potential Static interface Move liquid; measure
potential

Electro-osmosis Static interface Apply potential; measure
liquid motion

Sedimentation potential Moving interface Particles sediment; measure
potential

Electrophoresis Moving interface Apply potential; measure
particle motion

Primary electroviscous
effect

Moving interface and liquid Measure suspension
viscosity

Ultrasonic vibration Moving interface and liquid Apply ultrasound; measure
AC potential

Force, F

Velocity, u

Distance, x

St
re

ss
,

σ

Shear rate, γ .

.

.

Viscosity, η

τ = F

A

γ = du
dx

η = τ
γ

Area, A

Figure 8.11. Definitions of the shear stress, t, the shear rate, g� , and the viscosity, Z, for
a Newtonian liquid. Note that if x is sufficiently small, then the velocity gradient will be
linear and there will be a constant shear rate between the surfaces of area A. This is the
case for most rotational viscometers.

Figure 8.12. Geometry of the flow through a capillary tube.

220 Colloids and Interfaces with Surfactants and Polymers



The boundary conditions for the integration of Equation 8.37 are:

v ¼ 0, at r ¼ a

v ¼ v0, at r ¼ 0

ð0
v(r)

�dv(r) ¼ DP

2LZr

ða
r

rdr (8:38)

This gives us the well-known parabolic velocity profile for a liquid under

laminar flow through a tube:

v(r) ¼ DP

4LZ
(a2 � r2) (8:39)

We can use Equation (8.39) to calculate the volume flowing through any

element, and by multiplying by the area of that element, 2prdr, and then

integrating across the radius, we obtain the Poiseuille equation for the volume

flow rate, Q, through a capillary tube, as follows:

Q(r) ¼ v(r)2prdr (8:40)

so that:

Q ¼ DPp

2LZ

ða
0

(ra2 � r3)dr ¼ DPpa4

8LZ
(8:41)

9.3 Streaming Potential

The simplest form of this experiment is to use a capillary tube with an elec-

trode compartment at each end, flow electrolyte through the tube and meas-

ure the potential developed between the electrodes. This is illustrated in

Figure 8.13. A high-impedance voltmeter is required as the resistance between

the electrodes is high and care has to be taken to avoid the development of

turbulent flow due to too high a flow rate.

In the diffuse layer, there is a higher concentration of counter-ions than co-

ions. This, of course, balances the net charge at the Stern plane. The reason a

potential develops is that the flow of the liquid moves the ions in the diffuse

layer along the tube. There is therefore a net charge flux through the tube and

a ‘back-current’ is produced equal and opposite to this. Far from the wall,
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Figure 8.13. Schematics of the apparatus used to measure the streaming potential:
(a) test capillary arrangement; (b) cell containing a packed bed of particles or fibres.

the counter- and co-ion fluxes are equal and so only the diffuse layer contributes.

Ohm’s law is used to calculate the potential developed at the electrodes from this

current and the resistance of the contents of the tube. Our problem then is to

calculate the number of ions per unit volume at any position in the diffuse layer,

the space charge density rc(r), and their velocities. Integration across the tube

then gives the total current and hence the streaming potential, Es.

The first step is to write the back-current in terms of the ion flux:

i ¼ �2p
ða
0

rc(r)v(r)rdr (8:42)

Although it is convenient to take the integration out to the tube wall and

ignore the thickness of the Stern plane, this, of course, does not imply that we

are looking at the surface and not the Stern plane. We can relate the space

charge density to the curvature of the diffuse layer potential by using Poisson’s

equation. In addition, it is acceptable to use the planar form of the equation as

long as ka is very large, i.e. we are not considering microscopic pores at low

electrolyte concentrations:

d2c(x)

dx2
¼ �rc(x)

e
(8:43)

where e is the permittivity of the solution and x is the distance from the

charged surface. It is therefore convenient to recast Equation (8.42) in terms

of the distance from the wall of the tube, x, using r ¼ (a� x):
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i ¼ �pDP

2LZ

ða
0

(2ax� x2)(a� x)rc(x)dx (8:44)

Now, as a
 x, we only require the leading term from the expansion of the

terms in brackets in this equation and hence we have:

i ¼ pa2eDP
LZ

ða
0

x
d2c

dx2
dx (8:45)

The boundary conditions for Equation (8.45) are:

c(x) ¼ z, at x ¼ 0

dc(x)

dx
¼ 0 and c(x) ¼ 0, at x ¼ a (8:46)

Equation (8.45) is integrated by parts and with the above boundary condi-

tions gives the current as follows:

i ¼ pa2eDP
LZ

z (8:47)

Noting that the resistance of the tube can be written in terms of molar con-

centration of the electrolyte, c, and the equivalent conductance, L:

R ¼ L

cLpa2
(8:48)

By using Ohm’s law, Equation (8.47) can be written in terms of the streaming

potential, Es, with Equation (8.48). It is also useful to use Equation (8.41) to

give the result in terms of the volume flow rate as:

Es ¼ Q

cL

8Le
pa2

z (8:49)

Hence, we can vary Q and plot Es as a function of Q. This should give a

straight line with a slope directly proportional to the z-potential. The propor-

tionality constant is (8Le=cLpa2).
We have to be careful about the development of a standing potential

between the electrodes, indicating slight surface differences and polarization

of the electrodes. In order to minimize these effects, the electrodes should be

‘shorted’ when not being used for measurement and the flow direction should
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be reversed and the measurement repeated. We will have deviation from a

straight line if the flow rate is such that it will result in turbulence, or if a

packed bed of fibres or coarse particle is used, the pressure drop is high

enough to change the packing and hence the path through the bed.

The capillary (see Figure 8.13(b)) can be constructed of the material in

which we are interested or we can coat the internal surface with this material.

This may be achieved by physical adsorption of materials such as proteins or

surfactants, by chemical grafting of the material, or even by casting the ma-

terial from solutions or melts. The cell shown in Figure 8.13(b) can contain

fibres or coarse particles. If these are fine and low electrolyte concentrations

are employed, we should be aware that the conductivity that we might meas-

ure would become dominated by the contribution from transport in the dif-

fuse layers, that is, surface conductance, and the calculated z-potential would
be lower than if this effect is allowed for.

9.4 Electro-osmosis

Electro-osmotic flow can be observed when an electrical potential is applied

across a capillary or a porous plug and is due to the motion of ions moving in

the potential gradient. Of course, in the bulk there is no net flow as the mass

transport due to anions and cations balance out each other. This is not the case

when one of the types of charge has a fixed location while the other has not, as is

the case with a surface where the diffuse layer ions are free to move freely in a

direction parallel to the surface. We will consider the case of a capillary with a

charged wall to illustrate the effect. The electrical field strength is the applied

potential per unit length of the capillary, E. Consider a small element, dx thick

and of unit area. The force on this element due to the applied field on the

solvated ions is then:

electrical force ¼ Erc(x)dx (8:50)

This force produces the motion of the element and when the flow is steady, it

is balanced by the viscous drag force. This drag on the surface of the fluid

element is due to the relative velocity change across the element and the stress

is determined from the rate of change of the stress across the element multi-

plied by the distance over which it is changing, as follows:

viscous force ¼ Z
d2v(x)

dx2
dx (8:51)

Equating the forces for the steady flow condition and substituting for the

space charge density by using the planar form of Poisson’s equation (Equa-

tion (8.43)), and then integrating twice with respect to x to give the fluid

velocity a long distance away from the wall, yields:
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�Ee
ð
d2c(x)

dx2
dx ¼ Z

ð
d2v(x)

dx2
dx (8:52)

The boundary conditions for the above equation are as follows:

x ¼ 0,c ¼ z and v(x) ¼ 0

x ¼ a,
dc

dx
¼ 0,c ¼ 0 and

dv(x)

dx
¼ 0 (8:53)

and these give the velocity at a distance x away from the wall as:

v(x) ¼ Ee
Z

[z� c(x)] (8:54)

When x
 1=k, the velocity no longer changes with distance and we have

‘plug flow’ of the liquid through the tube, that is, the velocity profile is flat

over most of the tube radius with the change in the region close to the wall.

This is a situation which appears similar to ‘wall slip’ as the bulk of the liquid

moves unsheared through the capillary, although it arises from a different

origin. The maximum velocity, which we may call the electro-osmotic vel-

ocity, veo, from Equation (8.54), is given by the following:

veo ¼ Ee
Z

z (8:55)

Two schematic arrangements whereby the electro-osmotic flow in a capillary

tube of radius a can be measured are illustrated in Figure 8.14. A packed bed of

coarse particles or fibres could be substituted for the capillary in each case. The

bed itself would need to be held in place by perforated electrodes. Figure

8.14(a) is the simplest arrangement. Here, the volumetric flow rate, Q, is meas-

ured, and this is equal to the electro-osmotic velocity multiplied by the cross-

sectional area of the capillary. In addition, Ohm’s law can be used to cast the

relationship in terms of the measured current and electrolyte concentration:

EL ¼ i
L

cLpa2
(8:56)

The flow rate is then given by:

Q ¼ i
e

cLZ
z (8:57)

and a graph of the flow rate versus the current yields the z-potential from
the slope.
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Figure 8.14. Schematics of two experimental arrangements used for the measurement
of electro-osmotic flow in a capillary. In the sealed system (b), the liquid is forced to
recirculate by moving back along the tube centre.

In Figure 8.14(b), the exit tubes are arranged vertically and the result of the

applied field is to produce flow resulting in a difference in height of the liquid

in the two limbs. Under steady conditions, the liquid appears static with a

difference in the head. This does not mean that the flow near the capillary

walls has ceased. What is happening is that the liquid is forced to recirculate

back down the centre of the tube. The flow profiles of both arrangements are

also shown in Figure 8.14. Making use of the Poiseuille equation (Equation

(8.41)), we can equate the two flow rates and the electro-osmotic pressure

becomes:

hrg ¼ i
8Le

pa 4cL
z (8:58)

A plot of the pressure versus the current then enables the z-potential to be

determined.

As with streaming potential, this technique may be used for materials

which can be made in the form of capillaries, and to study the adsorption of

surfactants or proteins onto these surfaces, as well as for packed beds of

particles and fibres.
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9.5 Sedimentation Potential

This is also known by the term Dorn effect. As large colloidal particles sedi-

ment in an electrolyte, there is relative motion between the particles and the

fluid in a similar manner to fluid flowing through a packed bed in a streaming

potential experiment. A potential is developed between the top and bottom of

the sedimenting region. The velocity of the motion is governed by Stokes law

for very dilute systems and is slowed by the ‘back-flow’ of liquid as the

volume fraction of the suspension exceeds 0.1. The experimental difficulties in

using this effect to estimate the z-potential then are first that the potential is

small as the velocity is small, and secondly that in order to vary the velocity,

a centrifuge would be required and this makes the measurement of the poten-

tial rather difficult. Hence, this is not a methodology that is of more than

passing interest.

9.6 Particle Electrophoresis

This is the ‘inverse’ of the sedimentation potential in that here we apply an

electric field and measure the velocity of the particles. This is the most widely

used technique for the determination of the z-potentials of colloidal particles.
It is also the most widely studied of all of the electrokinetic techniques, with a

wide variety of cell types being used. Traditionally, cylindrical cells were used

with an ultramicroscope arrangement to view the particles. The microscope

illuminates the particles at 908 to the viewing direction so that the particles

are observed as bright spots due to the light scattered from them. The motion

is then measured as a function of the applied field. Currently, laser illumin-

ation is employed and the motion is measured by using a variant of photon

correlation spectroscopy. The results are then given as the electrophoretic

mobility, ue, which is the velocity per unit field strength:

ue ¼ veL

E
(in units of m2 s�1 V

�1
) (8:59)

Large particles will sediment and this contribution can be ignored as long as

the electric field and the motion is measured in the horizontal direction.

Brownian motion, however, is random and not uni-directional and so cannot

be eliminated from the measurement. This effect is superimposed on the

measured particle motion and is responsible for a spread of velocities with

even the most uniform dispersions. For example, if we have a particle with a

diameter of 0:5mm and z � 70mV, we would expect a 5 % spread in the

measured electrophoretic mobility values just from Brownian motion alone.

If a cylindrical cell is used for the measurements, electro-osmotic flow will

occur due to charges on the wall of the cell. If a sealed system is used,
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measurements can be made at the point of the recirculating electrolyte where

there is no net motion of the fluid. There is a cylindrical surface inside the cell

where the motion of the liquid in one direction is just counterbalanced by the

motion in the other direction and this region is known as the stationary level.

The net velocity is calculated from summing the electrophoretic velocity and

the velocity from the Poiseuille flow in the reverse direction. The null position

is at a distance of a=
p
2 from the centre of the tube. The experimental appar-

atus must be carefully adjusted in order to make measurements at this pos-

ition. However, measurements can also be made between electrodes in an

optical cuvette where there is no cell surface between the electrodes. This

completely avoids the problems stemming from the use of capillary cells and

cells can be placed in dynamic light scattering equipment with very little

modification.

| The Mobility at ka > 100

The diffuse layer is small compared to the radius of the particles. This enables

us to treat the diffuse layer as planar relative to the particle surface and both

the lines of force from the electric field and the fluid flow lines are then taken

as being parallel to the particle surface. So, we have the condition for a large

particle at a moderate-to-high electrolyte level. This is the case which is nearly

always assumed in the software that is supplied with most pieces of equip-

ment when z-potential is being evaluated as opposed to mobility.

Figure 8.15 illustrates the model which is employed. The particle is moving

at a velocity ve through the electrolyte solution due to the application of an

electric field and hence there is a velocity gradient close to the particle surface

and we have an analogous situation to that which we have discussed for

electro-osmosis. When we consider a small element of unit area at a distance

ve

r

dr

Figure 8.15. The model for electrophoretic mobility used to derive the Smoluchowski
equation (Equation (8.64) below) with simplified flow lines around a particle moving
with a velocity ve due to an applied field. The particle is assumed to be non-conducting
and the electrical field is also distorted in order to be parallel to the surface of the sphere.
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r from the surface, the change in the viscous drag on this element is the result

of the change in the velocity gradient across it. So, by integrating with respect

to r we get the viscous stress at the surface of the particle:

�Z
ð
d _gg

dr
dr ¼ �Z

ð
d2v(r)

dr2
dr (8:60)

The negative sign is just indicating that the velocity decreases as we go further

away from the particle surface. Now, the electrical force is the charge multi-

plied by the field strength, while the total charge on the particle, sT, is the

charge density at the shear plane multiplied by the area of the particle:

EsT ¼ �E4pa2e dc(r)
dr

����
r ¼ 0

(8:61)

The planar form of Poisson’s equation (Equation (8.43) ) can be used as the

diffuse layer dimension is so much smaller than the radius. When there is

steady motion, we equate the forces. To do this, we must multiply the viscous

stress by the surface area of the particle:

E4pa2e
dc(r)

dr

����
r ¼ 0

¼ 4pa2Z
dv(r)

dr
(8:62)

In order to calculate the velocity, we must integrate with respect to r, giving:

Eez ¼ Zve (8:63)

by using the boundary conditions, r ¼ 0,c(r) ¼ z and v ¼ ve. In terms of the

mobility, we have:

ue ¼ ez
Z

(8:64)

This is the Smoluchowski equation for the electrophoretic mobility of colloidal

particles. Note that there is no size term in the equation as the surface area

terms cancel out.

| The Mobility at k� 1

In this limit, the particle is assumed to act as a point charge so that the lines

of force of the electric field are unperturbed by the particle. Again, as we have

steady motion we balance the forces on the particle. In this model, the drag
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on the particle is the sum of two terms. The first of these is taken as the

velocity multiplied by the Stokes drag factor, i.e. ve6pZa. The second force

slowing the particle motion is the electrical force on the ions of the diffuse

layer as these will try and migrate in the opposite direction to the particle as

their charge is of opposite sign. So, in balancing the forces we can write:

sTE ¼ 6pZave þ Ef (r(r)) (8:65)

Note that r is the distance from the particle centre. The electrophoretic vel-

ocity is now:

ve ¼ �E4pa2e
6pZa

dc(r)

dr

����
r ¼ a

� (a correction term) (8:66)

The correction term is due to the motion created by the movement of the

diffuse layer ions resulting from the applied electric field. It is straightforward

to calculate the force due to the field on a thin spherical shell in the diffuse

layer as:

4pr2Er(r)dr ¼ 4pr2Ee
d2c(r)

dr2
(8:67)

This force would induce a motion so that there would be a relative velocity,

dv(r), between layers which would produce the force between adjacent layers,

and so approximating each layer to a continuous shell and balancing the

drag, the result is:

6pZrdv(r) ¼ 4pr2Ee
d2c(r)

dr2
(8:68)

Integrating with the boundary condition that at large distances the potential

gradient is zero and rearranging to give the liquid velocity at a long distance

from the particle, v1, yields:

v1 ¼ 2Ee
3Z

ð
d2c(r)

dr2
dr (8:69)

We can now substitute Equation (8.69) into Equation (8.66) and with integra-

tion by parts with the boundary condition that at r ¼ a, c(r) ¼ z:

ve ¼ 2eEz
3Z

(8:70)
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and expressing this in terms of the electrophoretic mobility gives:

ue ¼ 2ez
3Z

(8:71)

This limiting equation is the Hückel equation. The mobility that it yields is

less than that we would expect from the Smoluchowski equation. However,

both are limiting approximations and we require a better estimate for many

colloidal dispersion when we have 1 < ka < 100. Over most of the size range,

we cannot treat the particle as a point charge in a uniform field but we have

to allow for the distortion of the electric field around the particle. This means

that the field is variable with position around the particle and only when the

particle is very large can the field be considered to have lines of force parallel

to the surface at all points (as in the Smoluchowski model). We need a distor-

tion which is a function of the radius. The local field acts on the diffuse layer

ions and alters the retardation correction to the particle velocity [1, 10].

ue ¼ 2ze
3Z

[1þ Kf (ka)] (8:72)

where K is calculated from the conductivity of the particles and the medium,

and for non-conducting particles, K ¼ 1=2. This is the Henry equation. The

function of ka can be written as a power series. For example, for ka > 5:

f (ka)

2
¼ 1

2
� 3

ka
þ 25

(ka)2
� 220

(ka)3
þ . . . (8:73)

This function provides a smooth transition from the Hückel result to the

Smoluchowski result as ka increases to values of � 100.

However, there also needs to be a correction for the distortion of the

diffuse layer from spherical symmetry. A full analysis requires numerical

computation as there is no simple analytical result. Some of the results of

such calculations from the literature were published in tabular form by Otte-

will and Shaw [11] and these show that for a 1:1 electrolyte the Henry equa-

tion (Equation (8.72)) provides an adequate description, although this is not

the case with multivalent species such as 2:2 electrolytes, for example, where

there can be considerable deviations in the intermediate ka regime and then a

numerical computation is required [12].

9.7 Electroacoustics

We have already seen how a DC potential produces the motion of an electro-

lyte past a surface. Now, if an AC potential is applied to a dispersion we can
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expect the particles to follow the oscillating field as will the diffuse layer

distortion. When the frequency is increased to levels in excess of � 1MHz,

the particle inertia can become large enough to prevent significant particle

motion although the ions can still respond and a pressure wave is produced

which can be monitored with an ultrasonic transducer. Alternatively, an

ultrasonic vibration can be applied and the relative motion of the diffuse

layer produces an AC potential (cf. the streaming potential). When the fre-

quencies exceed � 20MHz, the diffuse layer can no longer respond, the signal

is lost and the particle appears to be uncharged. The process has been ana-

lysed in detail [13] and is used to determine a dynamic mobility, ud. In add-

ition, the frequency variation may be used to determine the mean particle

diameter.

The current commercially available equipment applies an ultrasonic vibra-

tion and measures the resultant AC potential. The particle inertia is a function

of the particle size but also the difference in the density, Dr, between

the particle and the medium. This technique operates most efficiently with

dense particles. In addition, the amplitude of the signal is proportional to

the volume fraction of the dispersion as the higher the volume fraction, then

the more oscillating dipoles there are and so the stronger the signal. We may

use this to advantage as there are no optical requirements as we had in electro-

phoretic measurements, and work at moderate volume fractions can be carried

out when the dispersions are opaque. The dynamic mobility is given by:

ud ¼ ez
Z
G(w,Dr) (8:74)

where G is a correction factor which is a function of the dispersion concen-

tration, as well as the particle and medium densities, and w is the volume

fraction. The current state of the theory assumes that the diffuse layers

around each particle do not interact with those of the neighbouring particles.

This means, however, that we are limited to dilute dispersions and we must

check that the mobility is linear with concentration. For large particles and

thin diffuse layers, we could still work with a high-solids content. However,

with small particles and dilute electrolyte concentrations, we can often be

limited to w < 0:1.

10 VISCOSITIES OF DISPERSIONS

Measurement of the viscosity of a dispersion is a useful method of character-

izing the particles in that dispersion. The viscosity is, of course, sensitive to

the concentration of particles but in addition to this it is a function of particle

charge and shape, as well as the dimensions of any adsorbed layers. Capillary
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viscometry can be precise and is most suitable for use with dilute dispersions.

This is because, as we have noted above, the fluid velocity has a parabolic

profile so when we calculate the shear rate from dv(r)/dr we find that there is

a linear change of shear rate from zero at the tube centre to a maximum value

at the wall. For example, a wall shear rate in excess of 103 s�1 is common. As

a result, we should avoid systems which are non-Newtonian; that is, there is

not a linear dependence of shear stress on the shear rate. However, this is not

normally a problem with dilute dispersions.

10.1 Dependence on Volume Fraction

Particles in a flowing fluid produce a dilation of the field as the fluid flows

around them. Figure 8.16 illustrates schematically the flow around single

particles and also how pairs of colliding particles interact. Particles move at

the velocity of the streamline in line with the particle centre. The fluid flowing

past the upper surfaces of the particles in this figure is moving more rapidly

than the particles and conversely that at the lower surfaces is moving more

slowly. This produces a rotation of the particle and a rotation rate equal to

half of the shear rate, _gg=2. This is known as the vorticity of the shear field.

Figure 8.16 also shows the manner in which colliding pairs of particles inter-

act with the flow field. The ‘near-field’ interaction is how we first think of a

collision in that the particles come together and rotate as a single unit. The

‘far-field’ interaction though must also be included. In this case, the particle

centres are not on a collision trajectory but are close enough so that the

dilation of the flow around one particle is disturbed by that around the other.

These interactions with the shear field enhance the energy dissipation rate and

we measure this as an increase in the viscosity. The hydrodynamics of the

interactions are well established and we may write the viscosity of dispersions

of hard spheres in shear flow as follows:

Dilation of the flow −
particles spin

Far-field interaction −
flow around each
interacts with the other

Near-field interaction −
pair rotate as a unit 

Figure 8.16. Schematic illustration of the interactions of particles with shear flow.
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Z(0) ¼ Z0[1þ 2:5wþ 6:2w2 þO w3
� �

] (8:75)

where w is the volume fraction of the dispersion and Z0 is the viscosity of the

continuous phase. The viscosity of the dispersion is Z(0) and we are using the

‘0’ to indicate the low shear limiting behaviour so that the spatial arrange-

ment of the particles is not perturbed by the shear rate. This condition means

that the diffusional time for a particle, t, is less than the characteristic shear

time, so that t _gg < 1. The first coefficient in Equation (8.75) was derived by

Einstein [14] and the second by Batchelor [15]. We do not have a rigorous

hydrodynamic derivation of the coefficient for the three-body collision and

the equation is therefore limited to dispersions where w < 0:1.
Many flows have an extensional component and some can be mainly exten-

sional with only a small shear component. When a fluid is sprayed, there is a

large extensional contribution as the fluid is forced through a small nozzle.

This is also the case in blade and roller coating. For extensional flow, the

appropriate relationship is as follows [15]:

Z(0) ¼ Z0[1þ 2:5wþ 7:6w2 þO w3
� �

] (8:76)

This indicates that we can expect differences in the viscous behaviour of

dispersions of moderate-to-high concentrations in different types of flow as

then the two- and higher-body interactions dominate the response. It is also

important to note that it is never possible to achieve a steady extensional flow

and we must be aware that the residence time in the extension regime should

also be considered. A review of dispersion viscosity can be found in the texts

by Hunter [1] and Goodwin and Hughes [16].

Every deviation from the particles being hard spheres results in a change to

the Einstein and Batchelor coefficients. Hence, the dispersion viscosity may be

used to give information on adsorbed layers, particle charge, particle shape

and the fluid nature of the particles. The experimental problem is that we

must work with dilute dispersions in order to have rigorous hydrodynamic

descriptions and this means that the variation in the viscosity can be quite

small. We can re-write Equation (8.75) in the general form:

Z(0)
Z0

¼ 1þ [Z]wþ kH[Z]
2w2 þ . . . (8:77)

where [Z] is the intrinsic viscosity and kH is the Huggin’s coefficient [16]. It is

usual to express this in linear form, as follows:

Zred ¼
(Z(0)=Z0)� 1

w

� �
¼ [Z]þ kH[Z]

2w (8:78)
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A plot of the reduced viscosity, Zred, versus the concentration then yields

the intrinsic viscosity and deviations from ‘2.5’ indicate deviations from hard-

sphere behaviour. However, even if that difference is 50%, this will only

change the viscosity of a dispersion at a volume fraction of 0.05 by � 6%.

Now, if we are using a capillary viscometer when we are measuring an efflux

time of � 200 s, then 6% would mean a change of 12 s. We would obviously

like to achieve good precision so that would mean that subsequent times

should agree within < 0:5 s at worst. This is a very demanding experiment.

10.2 Adsorbed Layers

Stabilizer layers are often present on colloidal particles. These may be short-

chain surfactants or polymers. In order to optimize the stabilizing properties,

the surface concentrations are maximized and hence the layers cannot be

regarded as ‘free-draining’. This means that the fluid must flow around the

layer and not through it. With polymer layers, this will be an approximation

as there can be some fluid motion within the layer, although much restricted.

At the outer periphery, where the population is the longer tails, significant

flow will occur. Thus, the layer thickness must be termed a ‘hydrodynamic’

thickness and this may be an underestimate of the particle–particle interaction

thickness. The way the adsorbed layer is included is by using an effective

volume fraction, w0:

w0 ¼ w
aþ d

a

� �3

(8:79)

in Equation (8.75) where d is the adsorbed layer thickness. In terms of the

intrinsic viscosity, we could write:

[Z] ¼ 2:5
aþ d

a

� �3

(8:80)

An adsorbed layer thickness of 10% of the particle radius will increase the

intrinsic viscosity by 33%. As most stabilizer layers have d < 10 nm, this

method for determining the thickness is limited to particles with a radius less

that � 150 nm if the data obtained are going to have reasonable precision.

10.3 Fluid Droplets

When the disperse phase is a fluid, the forces exerted by the shear field can

deform the particle. The force maxima are at 458 to the flow direction and so

the droplets becomes elongated as the shear force varies from a compression
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to a tension as we scan the angle to the shear direction from 08 through 458
to 1358. As well as the continuous deformation of the droplet, the field vorti-

city results in the outer surface moving continuously around the droplet,

resulting in some circulation within. Taylor [17] carried out the analysis for a

droplet where the interface allows the ready transfer of energy across, that is,

it is thin and not rigid. In this case, the circulation of the fluid inside the drop

resulted in a decrease in the rate of energy dissipation compared to that for

rigid particles, and with the viscosity of the internal phase being Zi we have

the intrinsic viscosity as:

[Z] ¼ 2:5
Zi þ 0:4Z0

Zi þ Z0

� �
(8:81)

For the above equation, we can consider the following limiting conditions:

Zi ¼ 1, [Z] ¼ 2:5; Zi ¼ Z0, [Z] ¼ 1:75; Zi ¼ 0, [Z] ¼ 1.

In many emulsions, the viscosities of the two phases are similar and so the

middle condition will be reflected. The last condition is relevant to gas

bubbles and is what we would find from measuring the viscosity of low-

quality foams, i.e. dilute foams. In the case of a particle with a thick, low-

density, polymer layer, we can expect some analogous behaviour in that some

distortion of the layer could occur and some motion of the liquid within the

layer would decrease the overall rate of energy dissipation when compared to

a rigid particle the same size as the particle plus polymer layer, and the

intrinsic viscosity would be less than 2.5. Interpreting the viscosity then to

give the layer thickness would clearly lead to an underestimate. However, the

detailed hydrodynamics would be rather different and so the analogy should

not be taken as far as attempting to estimate a ‘layer viscosity’.

10.4 Electroviscous Effects

There are a number of electroviscous effects and these have been reviewed

most recently by van de Ven [18]. The first one identified, and hence known

as the primary electroviscous effect, was the effect of the distortion of the

diffuse layer caused by the flow of liquid past the particle. The similarity to

electrophoresis and electroacoustics immediately comes to mind. The result

for the intrinsic viscosity for a large ka and small potentials is:

[Z] ¼ 2:5þ 6(ez)2

KZ0a
2

(8:82)

where K is the specific conductance of the electrolyte solution. This equation

was derived by von Smoluchowski and has the same restrictions as his equa-
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tion for the electrophoretic mobility (Equation (8.64)). As the value of ka falls

to below 100, we should have a variation with ka and there are analyses avail-

able which have analytical approximations, although the solution for any

potential and any ka value must be carried out by numerical calculation [19].

However, under most conditions the increase in the value of the intrinsic vis-

cosity above the value of 2.5 is small and require great precision in the viscosity

measurement if an estimate of the z-potential is required. The exception is for

small particles in dilute electrolyte and then a numerical calculation is required.

The interaction between two charged particles in flow leads to a change in

the second coefficient in Equation (8.75). This effect is known as the second-

ary electroviscous effect. The most complete treatment was given by Russel

et al. [20], which gives us:

Z( _gg)
Z0

¼ 1þ [Z]þ 2:5þ 3

40

r0

a

� �5� �
w2 (8:83)

where r0 is the centre-to-centre distance between the particles as they collide.

This parameter is calculated from the balance between shear forces pushing

the particles together and the electrostatic repulsion from the particle sur-

faces. Thus, r0 will vary from � 2a at very high shear to much larger values

at low shear. Of course, at very low shear, Brownian forces are still operating

and they will control the closest distance of approach. In many stable coll-

oidal systems, we find that at a surface separation of � 5=k there is � 1kBT

of repulsive energy and so as a first estimate we should have r0 � 2aþ 5=k as

a low-shear limit. Note that we now have a shear dependence, that is, the

dispersion is non-Newtonian and this means that we will no longer have a

simple interpretation of the flow times as the dispersion viscosity due to the

large variation of shear rate across the capillary.

Polyelectrolytes are effective stabilizers of colloidal dispersions as they pro-

vide an ‘electrosteric’ barrier to aggregation. The charged groups along the

chains of polyelectrolytes repel each other and cause the chains to take up an

expanded conformation. Added electrolyte and, if the charged groups are

weak acid groups, changes in pH cause changes in the conformation. This is

known as the tertiary electroviscous effect as the dimensions of the polymer

affect the value of the viscosity. When the polymer is attached to a particle

surface, the adsorbed layer can be expanded or contracted by altering the

chemical environment – thus d in Equation (8.80) will change.

10.5 Particle Shape

The rotation of anisometric particles in a shear field is periodic and the orbit

depends on the initial orientation. The hydrodynamic analysis is available for

prolate and oblate ellipsoids [18] but not for particles of arbitrary shape. In
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order to introduce the problem, we shall consider the limiting rotational

orbits of a rod in a shear field. When the major axis of the rod is aligned with

the flow direction, the rod will rotate ‘end-over-end’ with a constantly

changing angular velocity dependent on the angle of the axis to the shear

plane. The rod effectively ‘flips’ over. This orientation is one which corres-

ponds to a high energy dissipation rate compared to a sphere of the same

volume. However, the rod could be aligned with its major axis in the shear

plane but perpendicular to the flow direction. In this orientation, it simply

‘rolls’ and this corresponds to a lower rate of energy dissipation than for a

similar volume sphere. Rotary Brownian motion will tend to randomize the

orientations and so we have to average over all possible configurations. If the

Brownian motion is weak compared to the shear field, there are solutions

available in the literature [21]. The calculations indicate that axial ratios > 5

are required before the increase in the intrinsic viscosity becomes large

enough to be measured with precision. However, when the Brownian motion

is strong compared to that from the shear field, the effect is stronger as the

time aligned with the flow is reduced. In addition, we find that shear-thinning

occurs when the rotational rates are of the same order. Thus, for an axial

ratio of 5, the intrinsic viscosity increases by 30% at high shear rates while

the increase is 100% at low shear rates [21].
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Chapter 9

Concentrated Dispersions

1 INTRODUCTION

Much of this volume has dealt with dilute colloidal dispersions where we have

considered the properties of single particles or two particles interacting with

each other. However, as we increase the concentration of a dispersion, multi-

body interactions become increasingly important and we have a condensed

phase. This occurs when the interparticle forces produce a structure which is

space-filling. The forces may be strongly attractive as occurs with clays used

for the manufacture of ceramics, but structures may be due to weakly attract-

ive forces or indeed simply to interparticle repulsion. We saw early in this

volume how concentrated aggregates of surfactant molecules produce three-

dimensional structures and these are just examples of colloidal condensed

phases.

The macroscopic properties of the structures formed by concentrated col-

loidal dispersions takes us into the behaviour of thickened liquids and gels.

Such systems are becoming increasingly referred to as complex fluids, soft

matter or soft solids. There are two important questions that have to be

addressed with such materials. The first of these is ‘what is the structure?’.

Intimately connected with this is how it may be determined. The second

question is ‘what are the physical properties?’. The latter question is primarily

the one of rheological or handling properties of the dispersion. The first

question can be successfully addressed for model colloidal dispersion such as

monodisperse spheres, while in answering the second, we can always make

measurements to record the behaviour which, although often of critical im-

portance to commercially important systems, may be difficult to predict for

any but the more simple systems. However, the work on model systems has

greatly increased our understanding and is an important guide to the inter-

pretation of more complicated systems.
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2 THE STRUCTURE OF CONCENTRATED DISPERSIONS

The scattering of radiation as a means of providing information on particle

size etc. was described in Chapter 8. The scattering of X-rays by organized

molecular structures as opposed to individual molecules is a concept that is

generally familiar. This is also the case for the scattering of X-rays, neutrons

and light from concentrated colloidal systems. The angular intensity of scat-

tered radiation is the product of that scattered from the individual particles

and that from the periodic structure in the dispersion. So, for a dispersion of

monodisperse spheres we may write:

I(Q) ¼ (rp � rm)
2NpV

2
pP(Q)S(Q) (9:1)

To obtain S(Q) from the intensity data, we measure the intensity of a dilute

dispersion where S(Q) ¼ 1, and then divide the I(Q) which we obtained for the

concentrated system with the values for the dilute one scaled by the ratio of the

concentrations. The value of S(Q) varies withQ in a periodic manner when Q�1

is of a similar magnitude to the periodicity in the structure of the dispersion.

We are used to observing Bragg peaks for the scattering from a highly ordered

structure such as we find with a crystal. We have an analogous situation with

concentrated dispersions although the interparticle forces often allow much

more motion and the peaks tend to be broader and may be similar to the

peaks that we find from molecular liquids. The structure is dynamic (from the

Brownian motion) and we are observing an average over all of the structures.

The problem then is to go from the structure factor to a description of the

spatial arrangement of the particles. In principle, we should be able to carry

out a Fourier-transform of the measured structure factor to calculate the pair

distribution function which gives us the local density of particles with refer-

ence to a central particle, that is, it is simply the probability of finding a

particle at any distance r from the centre of a reference particle. This inver-

sion may not be straightforward [1] and is not the usual route. It is more

common to either calculate a pair distribution function and then use that to

determine an S(Q) for comparison or to use a computer simulation. Figure 9.1

shows structure factors calculated [1, 2] for ‘hard-sphere’ fluids. This figure

serves to illustrate some general points. The first is that as systems become

more concentrated, the periodic structure becomes increasingly well-defined.

The second point is related to the behaviour at low Q values. Note from this

figure how S(0) is greater for the lower-concentration system. S(0) is equal to

the osmotic compressibility of the system [1, 3] and it should be no surprise

that a more concentrated system is more difficult to compress – in other

words, it is less compliant. The relationship between the pair distribution

function g(r) and the structure factor is as follows [1, 3]:
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Figure 9.1. The structure factor calculated for dispersions of hard spheres at volume
fractions of 0.2 (___) and 0.4 (----). Note that as Q! 0,S(Q) reduces at higher concen-
trations, indicating that the compressibility is lower, i.e. the modulus is higher.

S(Q) ¼ 1þ 4pr0
Q

ð1
0

r[g(r)� 1] sin (Qr)dr (9:2a)

where r0(¼ Np=V ) is the average number density of particles in the disper-

sion. Now, the Fourier-transform of this equation gives the pair distribution

function, g(r) [1, 3]:

g(r) ¼ 1þ 1

2p2rr0

ð1
0

[S(Q)� 1]Q sin (Qr)dQ (9:2b)

where the limits of g(r) are: r! 0, g(r)! 0; r!1, g(r)! 1.

The shape of the pair distribution function is dependent on the details of

the interactions between the particles and is related to the potential of mean

force [1]:

g(r) ¼ exp �F(r)

kBT

� �
(9:3)
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The potential of mean force is the reversible work done in bringing two

particles together from an infinite separation. Of course, in the dilute limit this

is just the colloid pair potential but in a concentrated system there are all of the

interactions with other particles along the way. Hence, the potential of mean

force has an oscillatory character and this shows in the structure of g(r).

The structures illustrated in Figure 9.2 are for two common concentrated

colloidal situations. The structure for the weakly attractive system (Figure

9.2(a)) shows the particles in close contact but although the packing is dense

it is not highly ordered. This would be typical of say a depletion-flocculated

system or a sterically stabilized system where there is no long-range repulsion.

The pair distribution function, g(r), is also shown and the shape is typical for

a system which is weakly attractive with a very sharp peak corresponding to

the first nearest-neighbour shell at r=2a ¼ 1. Figure 9.2(b) presents the situ-

ation for a system with long-range repulsion. The separation between the

particles would correspond to a volume concentration of � 25%. Here, the

first nearest-neighbour peak corresponds to � r=2a ¼ 1:2. There is slightly

more short-range order here, but with such a large surface–surface separation

(about 0.4a) the Brownian motion results in a rapid fall in the structure

relative to the central particle. As the concentration is increased with this

sort of system, we can have colloidal crystals formed. However, the usual

structures are nearer to a ‘colloidal glass’. This is because a considerable time

is required for the reorganization to occur to produce well-defined crystals

r

Weak attraction Long-range repulsion 

dr

g(
r)

r/2a

1

1

g(
r)

r/2a

1

1

(a) (b)

Figure 9.2. Illustrations of the structures in concentrated dispersions of particles with
(a) weak attraction, and (b) long-range repulsion between the particles. The correspond-
ing pair distribution functions are also shown.
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(usually face-centred-cubic (fcc) symmetry). In addition, the material is read-

ily deformed and the structure reduced in size.

This means that we have a very important observation which actually applies

to both systems. The structures that we are nearly always working with are non-

equilibrium forms. At first sight, this would seem to be a major problem when

we are characterizing the macroscopic behaviour. It is not the case, however, as

we shall see as we can obtain good predictions of the behaviour in the labora-

tory by just considering the nearest-neighbour interactions to be the dominant

term. However, we must be wary. For example, we may have a weakly floccu-

lated concentrated dispersion which appears to be space-filling – in other words,

we do not see sedimentation occurring. However, we may see that many hours

later, the structure suddenly compacts and we observe a rapid sedimentation.

This is simply the structure locally densifying to reduce the local energy. This

can only occur at the expense of supports elsewhere, as at some point the

‘overburden’ becomes critical as the structure becomes progressively weaker in

some regions concomitant with densification in other regions. We then observe

a sudden collapse. This represents an important problem in designing non-

sedimenting dispersions which may be subjected to long-term storage.

There is one other structure which we should consider at this point. This is

the type of structure that is formed by particles with a strong interparticle

attraction, that is, in coagulated dispersions. If we carry out computer simula-

tions, or careful experiments in the laboratory, these diffusion-limited aggre-

gates have a fractal structure. In a concentrated dispersion, the growth of the

fractal aggregates means that they interpenetrate. In practical terms, the com-

plexity involved in attempting to describe such situations is rarely worth

tackling as the systems that we use are all heavily shear-processed and this

dominates the structure. For example, we may coagulate a monodisperse

concentrated dispersion, but when sheared we find that we have a system of

spherical aggregates in which the particles are in dense random packing [4].

These systems show a marked change, which is irreversible, when first sub-

jected to shear but subsequently change very little and so the initial state is of

minor importance to that produced by shear processing.

Returning to the pair distribution function, we have seen how we have a

periodic function which gives the concentration of particles at a distance r

from the central particle relative to the global average number density.

Hence, we can define the number of particles in a shell dr thick from the

volume of the shell, the global average density and g(r), as follows:

number ¼ r04pr
2g(r)dr (9:4)

Hence, if we integrate this expression over a distance corresponding to the

first nearest-neighbour shell, we have the coordination number for the struc-

ture, z, as follows:
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z ¼ 4pr0

ðrmin

2a

r2g(r)dr (9:5)

Of course, the number density may be written in terms of the volume fraction

of the dispersion and the particle volume, giving:

z ¼ 3w

a3

ðrmin

2a

r2g(r)dr (9:6)

The results of such a calculation are shown in Figure 9.3 for the two situations

illustrated in Figure 9.2, namely a weakly flocculated system and a strong

repulsive system with long-range interactions. The coordination numbers

obtained for the weakly attractive system [5] correspond to a latex in ‘high salt’

but sterically stabilized with non-ionic surfactant. The pair potential had an

attractive minimum of 7kBT at � 10 nm from the surface. The shape of the

curve is sigmoidal and as the volume fraction is increased we see that the

coordination number increases most rapidly at w � 0:3. What is happening in

this structure is that the coordination number is increasing while the particles

are at close separation, i.e. in the potential minimum. On a practical applica-

tion note, it is common to encourage the separation of particles by causing

some aggregation and then centrifuging or using a filter press. When the coord-

ination number increases rapidly, the structure becomes very strong and ‘de-

watering’ becomes difficult. We noted that as Q ! 0, S(Q) gives the osmotic
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Figure 9.3. The coordination numbers calculated for the structures formed from both
weakly flocculated and those with long-range repulsion between the particles.

246 Colloids and Interfaces with Surfactants and Polymers



osmotic compressibility. This is the excess osmotic pressure, i.e. that due to

the particle–particle interactions. Thus, from Equation (9.2a) we can see im-

mediately that we expect the compressibilty to be reduced as g(r) increases.

Figure 9.3 also shows the equivalent result for a system with long-range

repulsion between the particles. The ka � 1 condition means that the particles

become highly ordered at a low volume fraction. When such a system is

concentrated, the structure (fcc) is the same short-range structure throughout

most of the concentration range but the separation is changing, and qualita-

tively quite different from the weakly attractive system.

A consequence of the structure that we see developing as we concentrate

dispersions is that the compressibility of the structure is reduced. This means

that the structure resists changes in volume as we might expect to see in a

centrifugation or filtration experiment. We are talking about the bulk elastic

modulus of the structure so that we are observing solid properties with the

concentrated dispersion. This resistance to a change in the shape of the struc-

ture also shows in shear or extension experiments and the resistance is a

function of the g(r) and the rate of change of the interparticle force with

changes in separation. However, we also find that under high stress, or some-

times under low stress applied for long times, the systems flow. This area of

study is known as rheology and is a key feature of most of the concentrated

dispersions that we use everyday.

3 RHEOLOGY

3.1 Definitions

When we study the deformation and flow of concentrated systems, we must

define the forces and deformations carefully. The stress is defined as the force

per unit area over which it is applied and so has the units of pascals (SI unit

of pressure and stress). The strain is the deformation relative to the original

dimension, and so is dimensionless. An arbitrary applied stress which results

in a deformation has to be described in all three dimensions. There are shear

stresses as well as stresses normal to the reference planes in the material. To

describe this, we need to resort to tensor algebra and this has operational

rules for the manipulation of the equations which may not be too familiar to

many of those interested in colloids. The complexity is avoided in the labora-

tory by carefully controlling the way in which the materials deform or the

way the stress is applied. Thus, we can limit our mathematical maniplulations

to simple linear algebra and a little complex number algebra in the contents

of this present chapter. The symbol commonly used for stress in much of the

rheological texts is s, and that used for the strain is g, and we will use these

here, despite the risk of confusion due to their use to also denote charge and
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σ = force/area σ = force/area

z y

x

γ = dx/dz dγ/dt = du/dz
and u = dx/dt

Solid Liquid

Hookean solid, σ = Gγ Newtonian liquid, σ = hdγ/dt

(a) (b)

Figure 9.4. Definitions of the shear stress, s, the shear strain, g, and the rate of shear, g_,
for (a) a Hookean solid, and (b) a Newtonian liquid.

surface tension. Moreover, it will implied that they are for shear stresses and

strains, as shown in Figure 9.4.

In addition to stress and strain, the other parameter that we need to define is

the timescale of the experiment. It is important to relate this to a characteristic

timescale of the material behaviour. This is the type of thing that we do auto-

matically when, for example, we carry out an experiment where a chemical

change is taking place in a wide range of situations such as working with

radioisotopes or when simply observing an expiration date on a commercial

product, such as a foodstuff, in our everyday lives. In a rheological experiment,

we are considering movement – the timescale that is relevant here is that of the

diffusional process. It is the slowest process which is rate-determining and

with a condensed phase we need to define a long-time self-diffusion time.

The Einstein–Smoluchowski equation gives the average time for a particle

to diffuse through one particle radius and by using the Stokes–Einstein equa-

tion which defines the diffusion coefficient, we have the characteristic time, t,
as follows:

t ¼ a2

D
¼ 6pZ(0)a3

kBT
(9:7)

The important point to note in Equation (9.7) is that the limiting viscosity is

that of the colloidal dispersion under low-shear-rate conditions and not that

of the continuous phase, Z0. This is the effective medium concept which gives

a first-order estimate of all of the multi-body hydrodynamic interactions. If

the experimental time is tex, we can define the dimensionless group, known as

the Deborah number, as follows:
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De ¼ t

tex
(9:8)

If a material is only deformed by an applied stress for such a short time that

the particles do not have time to diffuse very much, when the stress is re-

moved the original shape is regained and the deformation is termed elastic.

The reason is that as the structure formed by the particles is deformed, work

is done and this is stored in that structure. Removal of the stress allows the

structure to move back to a lower-energy configuration. The situation where

the experiment continues for a time which is much longer than the time for

particle diffusion results in a permanent or viscous deformation of the mater-

ial as the structure moves towards a low-energy configuration in the new

shape. We say that the stress has relaxed and the characteristic time, t, is thus
the stress relaxation time. There are three ranges of the Deborah number that

can be identified, as follows:

De � 1 De � O(1) De 
 1

liquid-like viscoelastic solid-like

and it is immediately clear that there is progression from the behaviour of

liquids through to that of solids. This appears to contradict our normal ex-

perience where the liquid/solid transition is very sharp but this only means

that the relaxation time changes dramatically with a very small change in

temperature, concentration or pressure (stress). With concentrated colloids,

surfactants and polymer solutions, the change in relaxation time is not so

sudden as the structural components can move over larger distances and we

can often make use of the broader viscoelastic range to produce the correct

handling properties for colloidal products.

It is important to note that experimental timescales are not arbitrarily

chosen by laboratory instrumentation. Such instruments are built with time-

scales that either simulate a process that we require numerical data for, such

as the brushing of a paint film or the sedimentation of a colloidal dispersion

on storage, or to quantify an observation that we have made. This latter

aspect takes the problem to our in-built ‘bio-timescale’. We are aware of

changes taking place over times ranging approximately from 10�3 to 103 s.

Hence, if the relaxation time lies within the range 10�4 s < t < 104 s, the vis-

coelastic responses will be observed as we handle the material.

Many materials are produced as colloidal dispersions because of their

liquid-like behaviour under at least certain conditions. Often, this is under

high stresses and/or high strains and the property that is required is the

‘correct’ viscosity. In practice, the last stage in a formulation is often the

adjustment of the concentration by the addition of solvent to a particular

viscosity value. The characteristic timescale for a continuous shear process is
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just the reciprocal of the shear rate, _gg�1 ¼ dt=dg, which is the time for unit

strain to occur. As this is the characteristic experimental timescale, this imme-

diately suggests the dimensionless group which is known as the Péclet

number, Pe, which for a concentrated colloid is given by the following:

Pe ¼ t _gg ¼ 6pZ(0)a3 _gg
kBT

(9:9)

Note that again we are using the suspension viscosity limit at low shear rate

as the viscosity of the effective medium. We should explore this in a little

detail. At low Péclet numbers, the relaxation time is short when compared to

the characteristic shear time and the structure is relatively unperturbed by the

shear action. However, at high Péclet numbers the shear rate is dominant and

the structure is controlled by the hydrodynamic forces as the particles have

insufficient time to diffuse to allow for the shape change. This means that at

Pe � 1 the structure should be intermediate. We will explore how this should

effect the viscosity in the next section while we note at this stage that the

viscosity must be a function of the structure.

3.2 The Viscosities of Concentrated Dispersions

In Chapter 8, the viscosity of a dilute dispersion was presented and the equa-

tion describing the variation with volume fraction was based on rigorous

hydrodynamic analysis, and in the dilute limit the result due to Einstein was

as follows:

Z ¼ Z0(1þ [Z]wþ . . . ) (9:10)

where the intrinsic viscosity, [Z] ¼ 2:5 for hard spheres at a volume fraction

of w. As rigorous hydrodynamics cannot take the result much above w � 0:5,
the effective medium approach due to Krieger and Dougherty [6] will be used.

The most straightforward analysis was presented by Ball and Richmond [7]

and is repeated here as it emphasizes some important points. The following

equation gives us the rate of increase of viscosity with volume fraction as:

dZ
dw
¼ [Z]Z0 (9:11)

Now, when we consider the small replacement of a volume of the continuous

phase by some further particles we may expect a similar rate of change in

viscosity, and so:

dZ ¼ [Z]Z(w)dw (9:12)
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Here, we are using Z(w) as the viscosity of the system that the newly added

particles will ‘experience’. As the new particles have to have been added to a

constant-volume system, the change in concentration must be corrected to the

available volume:

dZ
Z(w)

¼ [Z]
dw

1� w

wm

� � (9:13)

Here, the maximum concentration at which flow can occur is wm and so w=wm is

the excluded volume of the dispersion, i.e. (1� w=wm) is the liquid volume that

could be replaced by more particles. Integration through the volume fraction

range, with the boundary condition that as w! 0,Z(w)! Z0, gives theKrieger–

Dougherty equation for the volume-fraction dependence of the viscosity as:

Z(w)
Z0

¼ 1� w

wm

� ��[Z]wm

(9:14)

For a monodisperse system of hard spheres, [Z] ¼ 2:5. The value of wm varies [5]

from the value of the liquid–solid transition for hard spheres under quiescent

conditions (i.e. 0.495 for freezing and 0.54 for melting) to 0.605, corresponding

to the flow of hexagonally packed layers at high shear rates. So, we can expect

the viscosity to be a function of the shear rate. These values give, for uniform

hard spheres, the limiting viscosities at high and low shear rates as follows:

Z(0)
Z0

¼ 1� w

0:5

� ��1:25
;

Z(1)

Z0

1� w

0:605

� ��1:51
(9:15)

We have used wm ¼ 0:5 as the maximum volume fraction in the lower shear

limit but we should recognize that the liquid and solid phases can co-exist

between volume fractions of 0.495 and 0.54 and this will allow some flow to

occur between these limits. The shear-thinning behaviour is illustrated in

Figure 9.5 in which the high and low shear limits of the viscosity are plotted

as a function of the volume fraction of the dispersion.

There are four regions shown in Figure 9.5. In Region A, the dispersions

behave as simple Newtonian fluids with no discernible shear dependence,

while in Region B some shear-thinning may be observed. Throughout Region

C, viscoelastic liquid-like behaviour can be found with both the high-shear-

limiting viscosity, Z(1), and low-shear-Newtonian limit, Z(0), being access-

ible. The concentrated dispersion in this region can be characterized as a weak

gel as significant elastic behaviour can be observed. We can also call a colloid

in this region a complex fluid. In Region D, the behaviour is that of a viscoe-

lastic solid so that Z(0) is no longer accessible but there is a yield stress
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Figure 9.5. The relative viscosity as a function of volume fraction in the high- and low-
shear limits. The dispersion is Newtonian in Region A, ‘pseudoplastic’ in Region C and
viscoelastic (‘plastic’) in Region D (some shear-thinning can be observed in Region B).

which when exceeded, the structure will melt and flow occurs. This is the soft

solid stage. At high shear stresses, a value of Z(1) can be measured. At the

upper limit of this region, the material will fracture under a sufficiently high

stress and we will not observe flow. Table 9.1 summarizes the measurable

parameters which are characteristic of the material. Figure 9.5 also shows the

type of shear stress–shear rate curves that are measured, and so in Region A

the linear response of a Newtonian fluid is seen, Region C displays typical

‘pseudoplastic’ behaviour and Region D is characteristic of a plastic material.

The static and dynamic yield stresses are shown where appropriate.

The shear-thinning response of the pseudoplastic dispersion is a smooth

change from the low-shear Newtonian behaviour to the high-shear plateau.

The curve is well described by the Krieger equation [8] which is written in

terms of the reduced stress, sr:

Z(sr) ¼ Z(1)þ Z(0)� Z(1)

1þ (bsr)
n (9:16)
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Table 9.1. The characteristic parameters for a viscoelastic colloid, where G(1) is the
high-frequency limiting shear modulus, sy the static yield value, sB the dynamic or
Bingham yield value, v the frequency of an applied small-amplitude shear oscillation,
_gg the shear rate and t the characteristic time

Region Linear responses
– small stresses
and/or strainsa

Non-linear
responses – large
stresses or strainsb

Liquid-like
Region C

G(1) (Pa)
v�1 
 t (s)

Z(0) (Pa s) Z(0); _gg�1 
 t (s)
Z(1); _gg�1 � t (s)

Solid-like Region D G(1) (Pa) sy (Pa) Z(1); _gg�1 � t (s)
v�1 � t (s) sB

a For example, oscillations.
b For example, continuous shear.

The reduced stress, which was derived from dimensional analysis, is directly

related to the Péclet number:

sr ¼ a3s

kBT
¼ Pe

6p
(9:17)

For a monodisperse system, n ¼ 1, and using a value of the exponent n > 1,

the viscosity shear-thins over a wider range of stresses than the monodisperse

system. The value of b is obtained from the mid-point of the curve. Recalling

that Pe is the ratio of the convective to thermal timescales for the particle

motion, means that midway between the Brownian-motion-dominated struc-

ture (the zero-shear plateau) and the shear-dominated structure (the high-

shear plateau) bsr ¼ 1, so that b ¼ 1=src. The latter parameter, the critical

reduced stress, is the value of the reduced stress at the mid-point of the

viscosity curve. It is instructive to think of this in terms of the characteristic

time t for the relaxation of the structure. This concept suggests that a spectral

range of relaxation times should be included. For example, as the size distri-

bution broadens, the range of relaxation times also broadens because the

diffusive motion is a function of particle size and local concentration (as well

as pair-potential for particles other than hard spheres). As a starting point,

we can sum the contributions of each component to the stress weighted for its

probability, ri, and then we may rewrite Equation (9.16) as:

Z(sr)� Z(1)

Z(0)� Z(1)
¼
X
i

ri
1

1þ srci

� �
(9:18)

where srci is the critical stress for the ith component. Figure 9.6 illustrates the

response for a system with a single relaxation time and how an example
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Figure 9.6. The effect of a range of relaxation times on the shear-thinning response of a
dispersion: (- - - -) single relaxation time; (---------) spectral range; (-- � --) spectrum.

spectrum over a range of different times broadens the response from ca. three

or four orders of magnitude to at least six. We should keep in mind that for a

monodisperse system, we expect a spectrum of relaxation times from the

fluctuations of the local concentration due to the collective diffusion of the

particles [5]. We will see later how this concept of using a spectrum of relax-

ation times fits naturally with the practice adopted in analysing linear viscoe-

lastic data. This is most appropriate when used with polymer solutions where

we can usually identify the low-shear viscosity with the low-frequency

dynamic viscosity (the Cox–Mertz rule). With particulate systems, this corres-

pondence is not always good but nevertheless it is an important characteriza-

tion.

As the colloidal forces between the particles become significant, the stress

required to move them relative to each other increases. This means that the

total stress for the flowing system is the sum of the hydrodynamic and the

colloidal terms. Note that for a simple hard-sphere system, the colloidal term is

the Brownian term. At very low shear rates, the hydrodynamic term becomes

much smaller than the colloidal contribution. The result is that the zero-shear

viscosity is controlled by the colloidal forces. There are statistical mechanical

models available [9] to calculate the viscosity which integrate the contributions

from the colloidal forces over the structure. The latter is given by the pair dis-

tribution function, which is distorted by the shear field. For the case of charge-

stabilized dispersions, we may treat the particles as ‘effective’ hard spheres

where the ‘effective’ radius for such spheres is given in the low-shear limit as
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the collision radius of the particles during a Brownian motion encounter. This

was carried out by equating the electrostatic repulsive force with the thermal

force. Russel et al. [10] derived the closest distance between particle centres,

which is, of course, the value of the ‘effective’ hard sphere diameter, r0(0):

r0(0)� k�1 ln {a= ln [a= ln (a= ln . . . )]}

wherea¼ 4pEk(az)2 exp (2ka)
kBT

" #
(9:19)

This is just an increase in the excluded volume of the particle and so modifies the

value of the maximum volume fraction at which the viscosity diverges. Hence,

the low-shear limiting viscosity for charge-stabilized dispersions now becomes:

Z(0) ¼ Z0 1� w

w
0
m

� �5w
0
m
2

where w
0
m ¼ 0:495

2a

r0(0)

� �3
(9:20)

Figure 9.7 shows how sensitive the low-shear viscosity is to particle size for

small charged particles at moderate electrolyte concentrations. Here, the cal-

culation used values of z ¼ 50mV with a charge density of the Stern layer of
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Figure 9.7. Zero-shear limiting viscosity as a function of particle radius: z ¼ 50mV;
sd ¼ 1mC cm�2: (1) a ¼ 50 nm; (2) a ¼ 100 nm; (3) a ¼ 250 nm; (4) high-shear limit.
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sd ¼ 1mCcm�2, with the latter quantity being used to calculate the value for

k(w) as this gives the number of counter-ions in the diffuse layer. Equation

(9.19) gave a value of r0(0) � (2aþ 5=k), which serves to illustrate the import-

ance of the slow decay with distance of the pair-potential and indicates the

origin of the large excluded volume of small charged particles. We should

also note that the very steep rise in the viscosity as the liquid/solid transition

is approached will be less sharp in practice due to the co-existence of the two

phases in the volume fraction range 0.50–0.54.

Similar results are found for particles with attractive forces dominating the

long-range part of the pair-potential, resulting in a weakly flocculated system.

The modelling requires a different approach and the particle size dependence

is different. In most practical cases, colloidal formulations have many com-

ponents and so it is not always clear how the behaviour relates to the theoret-

ical calculations which are frequently carried out for model dispersions of

monodisperse spheres. However, there are some common origins so that we

may formulate some general observations.

3.3 Viscosity Summary

(1) There are three forces which govern the stress that we observe when we

measure the viscosity as a function of shear rate, namely hydrodynamic

forces, Brownian (thermal) forces and colloidal forces arising from the

form of the pair-potential.

(2) In the high-shear limit, the dispersion structure and measured stress is

dominated by the hydrodynamic forces.

(3) The high-shear limit of wm is a function of the nature of the disperse

phase. Polydispersity increases the value [5], as do the fluid particles due

to particle deformation, although this does not occur until high volume

fractions are reached as the surface forces are strong for particles with

colloidal dimensions. Particle anisometry increases this value.

(4) We should note that in many applications much higher shear rates

occur than can be accessed by using most laboratory rheometers and

also there is frequently an extensional component present. With

particulate systems, this does not present a problem as the shear-

thinning occurs over a relatively narrow range of shear rates or applied

stresses and so the high-shear limit can be reached, or at least ap-

proached. However, this is not the case with solution polymers which

have a much broader response due to first, the broad molecular weight

distributions, which are much broader than the particle size distribution

produced with most particulates. Secondly, the relaxation modes of

each chain varies from the timescales ranging from the centre-of-

mass diffusional time of the whole molecule down to that of a single

segment.
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(5) In the low-shear limit, the dispersion structure and excluded volume of

the particles are governed by the balance of the Brownian and colloidal

forces. Measurements under low-shear conditions are therefore particu-

larly useful in identifying changes in colloidal interactions as formulation

conditions are varied.

(6) The prediction of the shear-thinning behaviour is usually not possible as

the complexity of most practical systems rules this out and we have to

rely on experimental measurements.

(7) Many formulations are produced in the concentration regime between

where the low-shear viscosity increases rapidly and the high-shear limit.

In this region, it is usually the viscoelasticity that is most important as

this dominates our perception of the ‘handling properties’ of the disper-

sion, whereas the extremes of behaviour are the most important param-

eters for the applications. For example, brushing, spreading or spraying

are all high-shear processes with shear rates _gg � 103 s�1, while sedimen-

tation is a ‘long-time’ low-stress process where _gg! 0.

4 LINEAR VISCOELASTICITY OF COLLOIDAL
DISPERSIONS

The discussion of viscoelasticity in this text is restricted to linear responses,

where the viscosity is Newtonian and the elasticity obeys Hooke’s law, and so

the limiting constitutive equations for shear are:

s ¼ Z _gg; s ¼ Gg (9:21)

This means that in the laboratory we have to restrict our measurements

to low stresses and strains, but moreover, we must check that this is the case

if we are to use the analysis of the data to give characteristic parameters

of the dispersion rheology. Hence, we should determine that if the stress

or strain is changed then the corresponding strain or stress changes in pro-

portion.

4.1 Constitutive Equations

When we make measurements in the laboratory, it is convenient to fit the

data to a curve so that we may summarize the data in terms of as few

characteristic parameters as will give an adequate description of our observa-

tions. This serves two purposes. It enables us to make a quantitative compari-

son of different materials, which could be new batches of the same

formulation or different formulations. Thus, the subjectivity is minimized. In

addition, we may be able to interpret the characteristic parameters in terms of
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the interactions between the microstructural components. Even if the latter

becomes difficult, the former is an imperative.

When we devise experiments to determine the viscoelastic response of a

material, we need to vary the stresses or strains over a range of timescales to

explore the response over a range of Deborah numbers. For example, we can

apply a step stress/strain and follow the response over time or we may oscillate

the material over a range of frequency. The measured data are in terms of

the elastic modulus if we measure the stress as a function of applied strain,

or the compliance if the strain is recorded as a function of the applied stress.

The problem that we then have is to fit the experimental curves. As an aid to

this end, we can invoke the responses of mechanical analogues to help us to

derive suitable equations. Note that it is also possible to use the responses of

electrical circuits for the same purpose. The algebra is similar in both cases.

The utility of the constitutive equations is primarily to give the correct response

of the material over the range studied and, if possible, to yield the limiting

behaviour.

The mechanical analogues use Hookean springs for the elastic behaviour

and Newtonian dashpots or dampers to give the viscous response. These can

be coupled in many combinations to give mechanical responses similar to the

experimental curves that we are attempting to simulate. A few of these are

shown in Figure 9.8, along with the corresponding equations relating the
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G0γ + ηγ
G2

η2

1
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1 1
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+

+ =

η1

η2

γ γ+ + +=

.
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.

G
σ
.

Figure 9.8. Mechanical models of linear viscoelastic materials with the corresponding
equations. The characteristic time for all models is t ¼ Z=G.
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stress and strain. Which ones we make use of depends on the form of the

experiment that we carry out. The appropriate equation is then used to calcu-

late the form of the modulus or compliance of the model for the appropriate

form of the temporal dependence of the applied strain or stress. Although it

would be possible to construct very complicated analogues, these would be of

little utility as we loose uniqueness of the fit if we have many ‘characteristic

parameters’. We will therefore restrict our use to just a few of the possible

models, keeping in mind that that the object is to compare and record the

responses of materials with as few characteristic parameters as possible. A

quantitative microstructural interpretation of these may occasionally be pos-

sible for the simplest systems.

5 PHENOMENOLOGY

This section will describe the various experiments that are carried out to

characterize linear viscoelasticity. The first method described – the application

of an oscillating deformation – is one frequently used and the derivation of

the responses from a mechanical analogue is illustrated in some of these as

examples. The results of the algebraic analyses for the other types of experi-

ments are only simply stated.

5.1 Oscillating Strain

In this experiment, the concentrated colloid is usually subjected to a sinusoid-

ally oscillating strain and the resulting stress is measured at a variety of

frequencies. During the experiment the rheometer records three parameters:

. the peak strain that is applied

. the resulting peak stress

. the difference in phase between the strain and stress wave forms at each

frequency

Figure 9.9 illustrates the form of the stress that we would measure for a

material subjected to an oscillating strain, which we will assume to have a

frequency of 1 rad s�1. In this example, the maximum strain, g0, is 0:05 and

the maximum stress s0 is 25 Pa. Now, the stress per unit strain is the modulus

at an oscillation frequency of v, as follows:

G*(v) ¼ s0

g0
(9:22)

which for the example data shown in Figure 9.9 gives a value of 0.5 kPa for

the complex modulus, G*. This modulus has contributions from both a storage
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Figure 9.9. Forced oscillation experiment for a material with G* ¼ 0:5 kPa at a strain
of 5 %: d ¼ 30�; G0 ¼ 0:433 kPa; G00 ¼ 0:25 kPa.

(elastic) and a loss (viscous dissipation) term. If the material was a simple

Hookean solid, the position of the maximum stress would coincide with that

of the maximum strain. On the other hand, if the experiment was carried out

on a Newtonian liquid, the maximum stress would be coincident with the

maximum rate of strain. The phase shift, d, enables us to assign values to the

storage and loss contributions to the complex modulus, as follows:

G*(v) ¼ G0(v)þ iG00(v)
G0(v) ¼ G*(v) cos d

G00(v) ¼ G*(v) sin d (9:23)

Here, we are using the normal complex number algebraic notation where

i2 ¼ �1 and :

G0(v)þ iG00(v) ¼ G*(v)( cos vtþ i sin vt) ¼ G*(v)eivt (9:24)

Alternatively, the complex viscosity can be defined as follows:

Z*(v) ¼ G*(v)

v
¼ Z0(v)þ iZ(v) (9:25)

and the dynamic viscosity as the real, or in-phase, part of the complex

viscosity:

Z0(v) ¼ G00(v)
v

(9:26)
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Returning to the curves in Figure 9.9, the values for the storage and loss

moduli, respectively, are G0(v) ¼ 0:433 kPa and G00(v) ¼ 0:25 kPa at 1 rad s�1.
Experimentally, we determine the moduli over as wide a range of frequency as

is practicable, but the problem is then to condense these data to as few charac-

teristic material constants as will provide an accurate fit to such data.

To illustrate the process further, we can take the constitutive equation for a

Maxwell model, which has a single spring in series with a dashpot, as shown

in Figure 9.8(c). So, for an oscillating strain we have:

_gg* ¼ _ss*

G
þ s*

Z
(9:27)

and the complex stresses and strains are written in terms of the peak stresses

and strains that are measured:

g* ¼ g0 exp (ivt); _gg* ¼ iv exp (ivt) ¼ ivg*

s* ¼ s0 exp [i(vtþ d)]; _ss* ¼ ivs0 exp [i(vtþ d)] ¼ ivs*
(9:28)

Substitution of the above into Equation (9.27) and rearranging gives:

ivg*

ivs*
¼ 1

G*(v)
¼ 1

G
þ 1

ivZ
(9:29)

Noting that the characteristic or time of the material is tr ¼ Z (Pa s)/G (Pa),

we can then rearrange Equation (9.29) to give:

G*(v) ¼ G
ivtr

1þ ivtr

� �
(9:30)

We can separate the complex modulus into the strorage and loss moduli and

multiplying Equation (9.30) throughout by (1� ivtr) gives:

G0(v)þ iG00(v) ¼ G
(vtr)

2

1þ (vtr)
2

" #
þ iG

(vtr)

1þ (vtr)
2

� �
(9:31)

If for our example we assume the relaxation time to be 0.5 s, the value of G

from the data given can be readily calculated, as follows:

G00(1) ¼ G
0:5

1þ 0:52

� �
, which gives G ¼ 0:625 kPa

and Z ¼ 0:5� 0:626 ¼ 0:318 kPa s
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Figure 9.10. Frequency responses for a Maxwell liquid with Z(0)¼0:32Pa s, G(1)¼
0:63 Pa and tM ¼ 0:5 s: (1) dynamic viscosity; (2) storage modulus; (3) loss modulus.

The frequency dependences of the storage and loss moduli are as illustrated

in Figure 9.10. Features of the curves that are typical of a Maxwell model are

that:

. the storage modulus reaches a plateau at high frequency, G0(v)!
G(1)v ! 1, noting that G(1) ¼ G in the model;

. G00(v) > G0(v) when v < 1=tr, but G
00(v) < G0(v) when v > 1=tr ;

. G00(v)v ¼ 1=tr
¼ 0:5G(1);

. at low frequencies, the dynamic viscosity reaches a plateau, and so

Z0(v)v ! 0 ! Z(0), noting that Z(0) ¼ Z in the model.

At this point, it is useful to consider some experimental data obtained using

a colloidal product. The material in this case was a shower gel. The formula-

tion consisted of a concentrated surfactant system at a high enough concen-

tration so that a condensed phase of ‘worm-like’ micelles can form. The

rheology of the formulation had been ‘fine-tuned’ with a little polymer. The

experimental data obtained from this system when using an applied strain of

10% are plotted in Figure 9.11. The data are shown by symbols, with the

corresponding curves being calculated for a Maxwell model. The value for the

relaxation time was 0.1 s and for Z(0) 30 Pa s. Both were easily determined

from the curves and these values gave G(1) ¼ Z(0)=tr ¼ 300 Pa. Note that the

fits become poor at frequencies above > 10Hz. This is caused by the applied

frequency approaching a resonance frequency of the measuring unit. However,
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Figure 9.11. Oscillation responses for a sample of shower gel. The symbols represent
experimental data, with the curves calculated for a Maxwell fluid with Z0 ¼ 30 Pa s and
t ¼ 0:1 s.

it is evident from the forms of the rest of the plots that the shower gel is a

viscoelastic fluid and a Maxwell model provides an adequate description of

the material with a well-defined characteristic time and a clear limiting viscos-

ity at low frequencies. Hence, these are the only parameters which we need to

record to characterize the material and enable a batch-to-batch comparison.

The next example that we are going to consider is a household cleaner used

for kitchens. Like the shower gel, this contained a large amount of surfactant

in order to remove greasy deposits. However, it also contained an abrasive

powder to aid the cleaning action. This abrasive was calcium carbonate and

the particle size was in the upper part of the colloidal range, that is, 1mm <
mean diameter < 10mm. If the particle size is too large, the material feels

‘gritty’ and not creamy; if too small, the abrasive action is sacrificed. Now,

the density difference between the calcium carbonate and the surfactant con-

centrate is � 2000 kg m�3. If this was the final formulation, the particles

would sediment slowly as the system would be a viscoelastic fluid like the

shower gel. However, poly(acrylic acid) was also included as a ‘rheological

modifier’. Divalent Ca2þ ions bind strongly to –COO� groups and cross-link

the polymer. This cross-linking makes such a system a viscoelastic solid and

sedimentation is prevented as the limiting viscosity at low stresses, Z(0)!1.

Careful choice of the polymer concentration limits the cross-link density and

the structure is readily strain ‘melted’ (i.e. broken). The experimental data are

presented in Figure 9.12, with the curves representing the values calculated

for the mechanical analogue shown in Figure 9.8(e), that is, a Maxwell model

in parallel with a single spring providing the solid-like response at long
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in Figure 9.8(e), using the following parameters: G(0) ¼ 30 Pa; t1 ¼ 0:25 s; G1 ¼ 150Pa
(giving G(1) ¼ 180Pa).

periods of time. It is important to recognize that the presence of a G(0) value

with the curves of the storage and loss moduli diverging is indicative of solid-

like behaviour and clear control of sedimentation. Such curves need three par-

ameters, and the values used were: G(1) ¼180 Pa,G(0)¼ 30 Pa and t1¼ 0:25 s
(Z(0) is, of course,1). In terms of the model shown in Figure 9.8(e), this gives

G0 ¼ 30 Pa,G1 ¼ (180� 30) ¼ 150 Pa and Z1 ¼ (150� 0:25) ¼ 37:5 Pa s. The

fit is moderately reasonable in terms of the storage modulus. However, the loss

modulus is poorly described at frequencies both higher and lower than the

characteristic frequency. This broadening of the response is indicative of there

being more than one relaxation process present – not a surprising result for a

system consisting of ‘worm-like’ micelles, cross-linked polymer chains and

large particles of colloidal size. We get a much better fit to the experimental

data when we use a more complicated model. A good fit was obtained by using

a four-element model consisting of three Maxwell models and a spring in paral-

lel. The values for each of the components are given on Figure 9.13. Note that

the main peak is barely changed and that a smaller G(0) is predicted but it is

still of the same order of magnitude as the simpler model. For routine quality

control purposes, the data obtained from the simpler approach illustrated

in Figure 9.12 would often be adequate. This may not always be the case

though and in terms of product development it would be important to deter-

mine, numerically, how the values shown in Figure 9.13 vary with compo-

nent changes. Of course, the data range shown in this figure should be

broadened as much as possible but the general concept introduced here is an

important one.
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We are seeing here a simple illustration of a spectral response, i.e. there is a

series of processes occurring which all contribute to the overall response.

Mathematically such a series is described as the generalized Maxwell model,

(see Figure 9.14) which is represented as follows:

G0(v) ¼ G(0)þ
Xn
1

G(1)n
(vtn)

2

1þ (vtn)
2

G00(v) ¼
Xn
1

G(1)n
(vtn)

1þ (vtn)
2 (9:32)

G0

(a) (b)

τ1 τn τ1 τn

G�(ω) = Gi
1

n (wti)2

1+(wti)2
∑ G�(ω) = G0 + Gi

(ωτi)2

1

n

1+(wti)2
∑

Gi
1

n
G��(ω) = 

wti
1+(wti)2

∑G��(ω) = Gi
1

n wti
1+(wti)2

∑

Figure 9.14. Illustrations of generalized Maxwell models for (a) a viscoelastic fluid, and
(b) a viscoelastic solid.
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It is very important to recognize that this is qualitatively different from the

viscous response that we discussed earlier. In that case, we were looking at

the shear melting of the structure as the rates of deformation became too

rapid for parts of the structure to accommodate the change. This was a non-

linear measurement. In the case we are now discussing, the measurement is

linear and the structure is not being significantly modified by the experiment,

that is, this is a non-destructive experiment, while the former one was a

destructive experiment. We may be able to fit our data by using Equation

(9.32) but we should also recognize that the way in which Equation (9.32) is

written implies that each relaxation process has equal weighting. An alterna-

tive way of expressing the spectral response is through an integral equation

instead of a summation, as follows:

G0(v) ¼ G(0)þ
ðþ1
�1

H
(vt)2

1þ (vt)2
d ln t

G00(v) ¼
ðþ1
�1

H
(vt)

1þ (vt)2
d ln t (9:33)

where H is known as the relaxation spectrum and is equivalent to each of

the G(1) values at each time multiplied by the probability of that process.

Note that here the temporal behaviour is expressed on a logarithmic scale

as often we observe very broad responses. Of course, if our material is a

viscoelastic liquid, then G(0) ¼ 0 in Equations (9.32) and (9.33). Thus, for

a viscoelastic liquid, such as the shower gel example shown in Figure 9.11, we

can write the ‘generalized Maxwell model’ equations as follows:

G0(v) ¼
Xn
1

G(1)n
(vtn)

2

1þ (vtn)
2

G00(v) ¼
Xn
1

G(1)n
(vtn)

1þ (vtn)
2

(9:34)

which in integral form are:

G0(v) ¼
ðþ1
�1

H
(vt)2

1þ (vt)2
d ln t

G00(v) ¼
ðþ1
�1

H
(vt)

1þ (vt)2
d ln t (9:35)
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At this point, we can see the similarity with the characterizing of materials

by spectroscopic methods in the microwave, infrared, etc. However, we rarely

see sharp, well separated peaks. So, although our relaxation spectrum is really

the summary of our material behaviour, recording the maximum peak

height(s) and the frequency at which it (they) occur does not provide enough

information. This is because in nearly all cases we are looking at multiple

processes which are located closely in time and we should note from Figure

9.10 how a single process has a curve which displays a ‘half-width half-height’

of � 1:5 orders of magnitude in frequency.

5.2 The Limiting Behaviour at High Frequencies

To estimate the limiting responses at high frequencies, that is, as v!1, we

should note that for a viscoelastic liquid:

G*(v)v ! 1 ! G(1) ¼
Xn
1

G(1)n or ¼
ðþ1
�1

Hd ln t

as
(vt)2

1þ (vt)2
! 1, and

(vt)

1þ (vt)2
! 0 (9:36)

The low-frequency limit is also of interest and in this case is expressed in

terms of the limiting value of the complex viscosity, or the zero-shear viscos-

ity, as follows:

Z*(v)v ! 0 ¼
G*(v)v ! 0

v
! Z(0) ¼

Xn
1

G(1)ntn or ¼
ðþ1
�1

Htd ln t

as
vt2

1þ (vt)2
! 0, and

(t)

1þ (vt)2
! t (9:37)

The modelling of the zero-shear viscosity has already been discussed for some

colloidal dispersions and there are models available in the literature for poly-

mers in solution [11]. The modelling of the high-frequency modulus will be

discussed later in this chapter.

Carrying out the same exercise for a viscoelastic solid yields:

G(1) ¼ G(0)þ ¼
Xn
1

G(1)n or ¼ G(0)þ
ðþ1
�1

Hd ln t (9:38)
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The low-frequency limit is:

G*(v)v ! 0

v
! Z(0) ¼ G(0)

v! 0
þ
Xn
1

G(1)ntn !1

or ¼ G(0)

v! 0
þ
ðþ1
�1

Htd ln t!1 (9:39)

which is, of course, the correct result for a solid! As an illustrative exercise, we

will take the spectra used to fit the data shown in Figure 9.13 with and

without the G(0) term to show the frequency-dependence of the complex

viscosity. It is quite clear from Figure 9.15, that without the G(0) value in the

four-component spectrum, the viscosity reaches a plateau value of � 350 Pa s

at frequencies below 10�2 rad s�1. When there is a solid-like component, the

viscosity increases steadily towards infinity with unit slope.

It is appropriate to consider the implications of this in terms of the pro-

duct behaviour. When such a formulation has been prepared to be non-

sedimenting, the solid-like response would appear to be desirable. However, the
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Figure 9.15. The complex viscosity calculated for the four-component viscoelastic
spectrum used in Figure 9.13 and for a viscoelastic liquid from the same spectrum
with the G(0) value ¼ 0.
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plateau value of the low-shear viscosity of the fluid-like system is sufficiently

high that, for abrasive particles such as calcium carbonate, if the radius of the

largest particles or aggregates is < 2 or 3mm the sedimentation rate is so slow

that it would take � 3 months for a 1mm layer of clear fluid to form. This,

however, may be acceptable if the length of time spent by the formulation in

storage is usually less than this.

5.3 Stress Relaxation or the Step-Strain Experiment

This experiment is the mechanical analogy of the temperature jump and pres-

sure jump experiments used to study chemical equilibria. In this case, we

apply a small shear strain to the material as rapidly as possible and then

follow the resulting stress as a function of time. A suitable starting point

to describe the behaviour is to consider the response of a single Maxwell

model, that is, a linear viscoelastic fluid with a single relaxation time. This

is then the analogue of a first-order chemical reaction approach to equilib-

rium and we follow the stress from its initial value, s0, to 0 over time with

a constant strain of g0. A curve such as that shown in Figure 9.16 will

be obtained. We can express the rate of change of stress at any time as

follows:

0

5
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15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ(
t)
 (
P
a)

t (s)

t/τM = 1σ(t) = σ0e−1

σ0

Figure 9.16. Stress relaxation for a linear viscoelastic ‘Maxwell 1’ fluid with a charac-
teristic time of 1 s after being subjected to a step strain of 5 %.
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ds(t)

dt
¼ �ks(t) (9:40)

where k is the first-order rate constant for this relaxation and thus has units

of s�1. This is the reciprocal of the characteristic or Maxwell relaxation time,

tM. We can write Equation (9.40) in terms of the stress relaxation modulus,

G(t), by dividing through by the value of the constant applied strain:

dG(t)

G(t)
¼ �kdt (9:41)

This equation is then integrated to give the value of the relaxation modulus at

time t, as follows: ð
dG(t)

G(t)
¼ � 1

tM

ð
dt (9:42)

The limits for the integration are t ¼ 0 and t, and so we have:

ln G(t)� ln G(t! 0) ¼ � t

tM
(9:43)

that is:

G(t) ¼ G(t! 0) exp � t

tM

� �
(9:44)

This can be generalized to include as many processes as are required to

describe the curves:

G(t) ¼
Xi ¼ n

i ¼ 1

Gi exp (� t=ti) (fluid) (9:45a)

G(t) ¼ G(0)þ
Xi ¼ n

i ¼ 1

Gi exp (� t=ti) (solid) (9:45b)

Figure 9.17 shows the plots for the Maxwell liquid shown in Figure 9.16

(corresponding to the data found for the shower gel presented in Figure 9.11)

and the four-component model used to describe the solid-like behaviour of

the domestic cleaner in the oscillation experiment plotted in Figure 9.13. The

integral forms of the stress relaxation equations for the generalized Maxwell

models are as follows:

G(t) ¼
ðþ1
�1

H( ln t) exp (� t=t)dln t (fluid) (9:46a)
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Figure 9.17. Stress relaxationmodulus as a function of time for (1) aMaxwell liquidwith
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G(t) ¼ G(0)þ
ðþ1
�1

H( ln t) exp (� t=t)dln t (solid) (9:46b)

The stress relaxation experiment has some strong points in its favour. For

example, it is much more rapid to carry out than applying a series of discrete

oscillation frequencies, especially if very low frequencies (long timescales) are

important. However, there are some other points that we need to keep in

mind. The first is that rapid responses can be lost during the period taken to

apply the step strain. Secondly, large strains are always applied during the

loading of the instrument with the sample and these may not be applied

evenly. It is therefore useful to apply an oscillating strain with an initially

large but decreasing amplitude to remove any residual directional stress com-

ponents, and then allow sufficient recovery time for structural ‘rebuild’ to

take place prior to starting the experiment. This is also good practice with the

oscillation experiment. Thirdly, we should keep in mind that the solution to a

sum of exponential functions is difficult mathematically. This is known as an

‘ill-conditioned’ problem and will not give a unique solution. The simplest

approximation to estimating the spectrum from the relaxation curve [11] is

built into some equipment software and is as follows:

H( ln t) � �dG(t)
d ln t

(9:47)
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The stress relaxation modulus calculated for the four-component model plot-

ted in Figure 9.17 is re-plotted in Figure 9.18 as a function of ln t, along with

the relaxation spectrum calculated from Equation (9.47). Peaks corresponding

to the three relaxation times are clearly visible. The area under the spectrum,

when added to the G(0) value of 10 Pa, is equal to the value of

G(t! 0) ¼ G(1) ¼ 230 Pa (see Equation (9.38) ). The individual relaxation

times are resolved but only the value of G1 can be readily estimated just by

approximating the peak to a triangular shape of height 10 Pa and a width of

4, giving an area of 20 Pa. Estimation of the values of G2 and G3 would

require a model of the peak shapes, as the two peaks overlap each other.

5.4 Creep Compliance

In this experiment, a step stress is applied and the compliance is followed as a

function of time. With the modern range of controlled-stress instruments it is

easier to apply the stress in very short times than in the step-strain experi-

ment. The compliance, J(t), (the measured strain per unit applied stress) is

recorded as a function of time. Models such as those illustrated in Figures

9.8(d) and 9.8(f) are typical of those used to describe the response. Figure 9.8(d)

shows a model of a solid with a retarded response – this is known as a Kelvin

or Voight model. Springs or dashpot dampers can be added to provide an

instantaneous elastic response or a fluid response, respectively. The Burger

body shown in Figure 9.8(f) has both. The compliances of the individual

elements in series are simply added to give the compliance of the whole

model, as follows [12]:
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J(t) ¼ g(t)

s0

¼ 1

G
1� exp � t

tK

� �� �
(Kelvin model� solid) (9:48)

J(t) ¼ 1

G2

þ 1

G1

1� exp
t

tK

� �� �
þ t

Z2

(Burger body� liquid) (9:49)

where tK ¼ Z1=G1 and is known as the Kelvin retardation time. Note that

here Z2 is the zero shear viscosity, Z(0), and G2 is equal to G(1) of the

material described by the model.

In addition, we should note that 1=G(1) ¼ Jg, the ‘glassy compliance’ of

the material. Curves calculated from Equations (9.48) and (9.49) are plotted

in Figure 9.19 for both the creep and recovery responses after the application

of a step stress of 1 Pa. Note that only the elastic components give recovery –

the viscous compliance is permanent.

The limiting slope of the creep curve gives the zero-shear viscosity (that is

Z(0) ¼ Z2 in Equation (9.49)) but there is often an experimental problem

associated with its determination from this part of the data. We have to be

sure that we are still working at small enough strains for which linear behav-

iour is occurring and quite large strains may be used before the experimental

curve appears to have become linear. It is straightforward to see if too large a

strain has occurred as the elastic recovery should be the same as the initial

elastic strain. So, although it is tempting to leave the stress applied to the

sample until the compliance response becomes linear, the likely result will be a

very small elastic recovery. The inverse of the slope then is not the zero-shear
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Figure 9.19. Creep and recovery curves for the Kelvin model and the Burger body
calculated by using Equations (9.48) and (9.49): G1 ¼ 50Pa; tK ¼ 10 s; G2 ¼ Jg ¼ 80
Pa; Z2 ¼ Z(0) ¼ 5 kPa s.
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viscosity because the structure has been markedly perturbed by the strain –

here, strain melting has occurred. The solution is to apply the stress for a

short enough time to ensure that only small strains are induced and then to

analyse the recovery curve.

The response described by the constitutive equation for the Burger body

(Equation (9.49) ) has three elements. This may be generalized by adding a

range of retardation times, either as a summation or in an integral form, as

follows:

J(t) ¼ Jg þ
Xn
1

1� exp � t

ti

� �� �
(solid) (9:50a)

J(t) ¼ Jg þ
Xn
1

1� exp � t

ti

� �� �
þ tJv (liquid) (9:50b)

where the steady state or viscous compliance is Jv ( ¼ Z(0)). The integral

forms of these equations are:

J(t) ¼ Jg þ
ðþ1
�1

L( ln t) 1� exp � t

t

� �h i
dln t (solid) (9:51a)

J(t) ¼ Jg þ tJv þ
ðþ1
�1

L( ln t) 1� exp � t

t

� �h i
dln t (liquid) (9:51b)

where L(ln t) is the retardation spectrum of the material. This may also be

determined from oscillating stress experiments carried out at different fre-

quencies. We should note that for a linear viscoelastic material the complex

compliance is as follows:

J* ¼ G*�1 (9:52)

The dynamic compliances are given by:

J 0(v) ¼
ðþ1
�1

L( ln t)
1

1þ (vt)2
dln t (9:53a)

J 00(v) ¼
ðþ1
�1

L( ln t)
vt

1þ (vt)2
dln t (9:53b)
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The manufacturers of controlled stress rheometers frequently output the data

as dynamic moduli by using the following relationships:

G0(v) ¼ J 0(v)
[J 0(v))2 þ (J 00(v)]2

(9:54a)

G00(v) ¼ J 00(v)
[J 0(v))2 þ (J 00(v)]2

(9:54b)

However, it is important to note that the relationships expressed by Equa-

tions (9.54a) and (9.54b) are only true as long as the material is within the

linear range of behaviour. As with all of the experiments described in this

section, the first stage in the analysis of a new material should be to determine

its linear range of response.

5.5 The Limiting Behaviour at Long or Short Times

The limiting responses at long or short times can be important in the end uses

of colloidal materials and are often important as characterization parameters.

For example, Equations (9.36) and (9.38) give the high-frequency limit to the

storage modulus in terms of the integral of the whole relaxation spectrum for

a liquid-like system and a solid-like system, respectively, whereas Equation

(9.37) gives the zero-shear viscosity for the liquid-like system derived from the

spectrum. The challenge is to predict these values from our knowledge of the

colloidal particles. The zero-shear viscosity of colloidally stable and concen-

trated dispersions of charged spherical particles has already been discussed.

The problem of the viscosity of long rods has much in common with that of

semi-dilute polymer solutions [13] utilizing reptation dynamics. Some of the

models have also been reviewed by Goodwin and Hughes [5].

Modelling of the high-frequency elastic response has not been discussed so

far although in some cases it is relatively straightforward to carry out [5]. It is

useful to think in terms of the family of material properties consisting of the

internal energy density, the excess osmotic pressure (that is, just the contribu-

tion due to the interactions between the particles) and the high-frequency

shear modulus of the dispersion [5]:

�EEa3

kBT
¼ 9w

8p
þ 3

2
w

ð1
0

r2g(r)
V (r)

kBT
dr (9:55a)

�a3

kBT
¼ 3w

4p
� 3w2

8pa3

ð1
0

r3g(r)
d

dr

V (r)

kBT

� �
dr (9:55b)
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G(1)a3

kBT
¼ 3w2

40pa3

ð1
0

g(r)
d

dr
r4
d

dr

V (r)

kBT

� �� �
dr (9:55c)

In each of these equations, we are integrating the interaction over the disper-

sion structure whether this is the interaction energy, the interparticle force or

the ‘colloidal spring constant’. The particle size and volume fraction are read-

ily determined experimentally and we can calculate the pair-potential. In most

colloidal systems, the first nearest-neighbour interactions dominate the re-

sponse and so the use of the pair-potential is often a reasonable approxima-

tion. The problem is then the pair-distribution function. In principle, this may

be determined from the inversion of the structure factor obtained from scatter-

ing, but it may also be modelled by using the statistical mechanical techniques

for molecular liquids. Comparison of the values calculated from Equation

(9.55c) with those obtained from experiments using models for spherical par-

ticles [14], with a short-range attractive minimum in the pair-potential, show

excellent agreement. These dispersions contained particles with a weak attract-

ive minimum between the particles. It is interesting to note that the longer the

range of the interaction, then the lower the volume fraction at which elastic

responses appear. Fluid-like systems can be found with the longer-range at-

tractions, while rigid solid phases are produced when the interaction is of very

short range when compared to the particle radius. We should also note that we

are dealing here with non-equilibrium structures. Just the process of mixing

the systems or placing them into a rheometer cell for measurement tends to

homogenize the structures, which is one of the reasons that methods developed

for liquid-state calculations can be so successful for systems which are clearly

solids in that yield-behaviour G(0) values can be seen.

The situation can be simplified when there is a long-range repulsion be-

tween the particles with a narrow size distribution. In this case, the local

structure becomes ordered which simplifies the structure factor. The separ-

ation is the same for all of the nearest neighbours and the structure has face-

centred-cubic (fcc) symmetry. In some cases, long-range order can be pro-

duced, that is, we have a ‘colloidal crystal’. However, it is much more usual

for the order to be short range and we should think in terms of a ‘colloidal

glass’. The regularity of the spatial aspects of the structure enables Equations

(9.55a–9.55c) to be written more simply for a spherical cell with a coordin-

ation number of z and a mean centre-to-centre particle separation as:

�EEa3

kBT
¼ 9w

8p
þ 3wz

8p

V (R)

kBT
, with R ¼ 2a

wm

w

� �1=3

(9:56a)

Pa3

kBT
¼ 3w

4p
� wz

8p

d

dR

V (R)

kBT

� �
(9:56b)
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G(1)a3

kBT
¼ wzR2

40p

d2

dR2

V (R)

kBT

� �
(9:56c)

A similar result to Equation (9.56c) can be derived by using a ‘zero-Kelvin

lattice model’ [5] (zero-Kelvin, so there is no relaxation). With a slightly

different spatial averaging process, the result was:

G(1)a3

kBT
¼ 3wzR2

256p

d2

dR2

V (R)

kBT

� �
(9:56d)

The effectiveness of Equation (9.56d) in accurately describing the elastic re-

sponse has been demonstrated by using a range of charge-stabilized monodis-

perse particles. Again, we should note that the structures are non-equilibrium

ones due to the preparation and handling techniques employed and are similar

to colloidal glasses. (The equilibrium structure would be in the form of colloidal

crystals.) These can be observed with small particles just above the phase transi-

tion. The forces are so weak that the long-range structure is readily broken

down on very gentle stirring, although the short-range structure is maintained.

Polymers are often used to produce weak gels so that sedimentation is

controlled at the same time as high-shear viscosity is maintained at a chosen

level. With polymer gels, we are not usually concerned with the high-fre-

quency limit of the storage modulus but the plateau or network modulus.

This is observed over a long range of timescales [11, 13]. The faster processes

which result in the G(1) are characterized by the relaxation times associated

with the motion of one or two repeat units on the chain. The much slower co-

operative motion of reptation governs the other end of the timescale observed

for simple homopolymers. With cross-linked polymers, the lifetime of the

links is much longer than that of an entanglement. These cross-links can be

due to covalent bonds, ion–chain interactions, particle chain interactions or

hydrophobe self-assembly. The simplest treatment is to model the system as a

swollen elastomeric network so that the network modulus, GN, is simply

proportional to the number of links contributing to the network, NL:

GN ¼ NLkBT (9:57)

There are models available to calculate NL for the various types of polymer

network [5]. We should note that NL is the number density of effective links

and so requires some statistical modelling in most cases.

5.6 Processing Effects

The key factors that we need to aid our understanding of the behaviour

of concentrated dispersions are the interactions between particles and the
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structure of the system. It is usually possible to calculate the pair-potential even

if the potential of mean force may be more difficult to estimate. The structure is

the major problem. Whenever we measure our materials, they will have been

subjected to large deformations and the effects of these are frequently import-

ant. For example, we can set up a model experiment to study diffusion-limited

aggregation and start to observe fractal clusters being formed. As soon as the

system is transferred to a container or an instrument cell, it is subjected to large

deformations and we will then be studying a processed system. This may work

in our favour in many instances but it may also lead to long-term changes on

storage. To clarify these points, we will take one or two examples.

In some instances, concentrated systems which are coagulated are used.

Clay slurries for slip-casting, or at higher concentrations for ceramic mater-

ials, are examples of these. If a dispersion is caused to coagulate and then

pumped or spread, the shear processing will do two things. It will tend to

densify the local structure and then break this up into flow units made up

of many particles. Spherical polymer particles coagulated with electrolyte

and sheared in a controlled fashion produce monodisperse dense spherical

clusters [5]. The interacting units then become the large clusters and so any

model based on the summation of all of the interactions between all of the

single particles in the system would fail as a large overestimate of the resist-

ance to continuous motion.

The models used above for the behaviour of concentrated dispersions of

uniform-sized particle, which are either structured due to strong repulsive inter-

actions or weak attractions, are based on a structural uniformity which is based

on short-range structures. In both cases, the lowest energy state that we can

visualize would be large crystals rather than the glassy or liquid-like structures

that we use. These models work in a satisfactory manner because the intensive

mixing that is a part of the process of loading the systems into containers or

measuring equipment produces these metastable structures. The relaxation

times are often very long – days, weeks or even years. If the weakly attractive

system is explored a little further we can sometimes see unexpected phenomena,

such as delayed settling. What occurs is that the shearing forces are large

enough to pull the individual particles apart and distribute them evenly. On the

cessation of shearing, the particles form a uniform liquid-like structure with a

coordination number that is a function of the volume fraction. The motion of

the individual particles allows slow local densification to occur as, for example,

twelve nearest neighbours is a lower energy state than eight. The local densifi-

cation leads to other regions with fewer particles. As such weaknesses grow, a

point can be reached where the structure collapses and the liquid is expelled

from the voids. The collapse can be quite rapid once the system reaches a

critical state, although it can take a long time to reach that condition.

Mixtures formed with different particle sizes and/or densities can show

structural changes as the result of low shear forces. For example, the
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Figure 9.20. Hexagonal spot patterns obtained from diffraction in an optical rhe-
ometer for a sample under oscillatory shear [15]. Reproduced by permission of
H. Sakabe, ‘The Structure and Rheology of Strongly Interacting Suspensions’, PhD
Thesis, University of Bristol, Bristol, UK, 1995.

structure of some systems may become sufficiently broken down, i.e. the

viscosity has been lowered, by the low frequency, although large-amplitude

deformations produced when transporting bulk shipments may mean that

large or dense particles can separate out. Simple jar tests in the laboratory

may not show this.

Another interesting example concerning the effect of low shear is that on

concentrated systems formed from stable particles. Oscillations can enhance

the structuring rate and large amplitudes are more effective than small. Figure

9.20 shows the optical diffraction patterns produced in an optical rheometer

[15]. Systems of bimodal particles can be induced to crystallize by slow rotation

if the particle size ratios and concentrations are carefully chosen [16].
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Scanning electron micrographs of some colloidal particles:

(a) A film of printing ink showing well-dispersed titanium dioxide pigment

(3400�).
(b) Sodium kaolinite (china clay) particles in an open ‘card-house’ aggregate

(9100�).
(c) Dried polystyrene latex showing how the order in a concentrated disper-

sion is maintained on drying (9100�).
(d) Coagulated bimodal latex mixture after shear processing showing densely

packed, uniform aggregates (700�). Reproduced with permission from

‘Modern Aspects of Colloidal Dispersions’ edited by Ottewill and Rennie.

Copyright (1998) Kluwer Academic Publishers.
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Preface

We take for granted the behaviour of colloidal systems from a very early age

and as we are formerly taught the various scientific disciplines, the nature of

colloids is rarely mentioned. This is surprising as it impacts on so many

products that we use everyday. The processing and delivery of the correct

properties is often dependent on the material being in the colloid state and

yet few courses cover the subject in depth, if at all. As a result, many scientific

workers have to acquire their knowledge piecemeal while working on other

problems. An introductory text is what is most used in this situation. Special-

ist texts are often left on the shelf as we search for attempts to solve a

particular problem. This present text covers a little more ground than some

of the older introductory volumes that are still available but I have attempted

to help the reader in the more complicated regions by providing a strategy for

any calculations. Some derivations are outside the scope of an introduction,

but, where they are straightforward, they are included in order to help readers

gain as much insight as possible. None of the mathematics is at a high level.

The references are mainly to specialist volumes in the area. This is not to

discourage the reading of the original work but it is because the general

volumes are more readily available in many libraries and often help to put

the work in context. There will inevitably be some areas that are neglected, as

with any introductory volume. This is in part due to what areas are perceived

to be currently most generally needed and the composition of this volume has

been governed by the questions which are currently asked when discussing

problems in industry.

I would like to acknowledge with gratitude the help and encouragement of

all of my previous colleagues in the Department of Physical Chemistry at the

University of Bristol, UK, especially Professors Ron Ottewill and Brian Vin-

cent, the past and current holders of the Leverhulme Chair in that Depart-

ment and also to Dr Paul Reynolds, the manager of the Bristol Colloid

Centre.

Jim Goodwin

Portland, Oregon, 2003
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