(Version: 15 April 2002)

Corrigenda for <u>Transport Phenomena</u> (2d Edition, 2nd Printing)

(In designating line locations, "a" means "from above" and "b" means "from below")

Note: The authors wish to thank the following people who have pointed out errata to us.

Robert C. Armstrong (MIT) Lawrence Belfiore (Colorado State University) Albert Co (University of Maine) Sam Davis (Rice University) Ole Hassager (Technical University of Denmark) Daniel J. Klingenberg (University of Wisconsin) Lii-ping Leu (National Taiwan University) Frans Nieuwstadt (Technical University of Delft) Pierre Proulx (Université de Sherbrooke) Carlos Ramirez (University of Puerto Rico in Mayaguez) Thatcher W. Root (University of Wisconsin) Yo-han Tak (Pohang University of Science and Technology) Lewis E. Wedgewood (University of Illinois at Chicago) Michael C. Williams (University of Alberta) H. Henning Winter (University of Massachusetts) John Yin (University of Wisconsin)

¡Special thanks to Professor Carlos Ramirez and his students!

Some teachers and students might find the following reference of interest: "Who Was Who in Transport Phenomena," by R. B. Bird, *Chemical Engineering Education*, Fall 2001, pp. 256-265.

<u>Page</u>	Location	<u>Reads</u>	Should Read
4	Table 0.2-1	Change the second "22	." to "23"
20	Fig 1.2-2(<i>a</i>)	In the first and second	drawings from above,

should appear to be an arbitrary angle, rather than 90 degrees

- 21 Fig 1.2-3 Velocity profile needs to be redrawn so that it does not appear that there is slip at the wall
- 22 Eq 1.3-2 x_{α} should be defined as the mole fraction of species α
- 23 Eq 1.3-3 $(2.80)^{1/2}$ $(28.0)^{1/2}$
- 24 3 lines above assuming summing Eq 1.4-5
- 28 Ex 1.4-2, table $\sum_{\beta=1}^{3} x_{\alpha} \Phi_{\alpha\beta}$ $\sum_{\beta=1}^{3} x_{\beta} \Phi_{\alpha\beta}$
- 33 After Eq 1.6-3 In the expression for ψ , a left parenthesis should be inserted immediately after the left bracket.
- 37 Prob 1A.1, ans 10^{-4} 10^{-5}
- 38 Prob 1A.6 $\Delta \tilde{U}_{vap}$ $\Delta \hat{U}_{vap}$
- 38
 Prob 1A.6
 Table 1.1-1
 Table 1.1-2
- 38Prob 1B.21B.21B.2
- 38 After Eq 1B.3-1 ...the Mooney ...Eq. 1.6-2. Equation.
- 39 Eq 1C.3-1 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty}$
- 42 Item (a) In connection with the no-slip condition, there should be a reference to S. Richardson,

		same velocity profile (section) as the comple	condition leads to the over most of the cross-
49	Fig 2.3-1	Drawing should make thickness of the lightly	
49	Fig 2.3-1	The quantity <i>R</i> should radius of the cylindrication of the cylind	be shown as the inner al wall
49	Fig 2.3-1	The arrow representin momentum in at <i>r</i> sho similarly, the arrow re combined flux of mom should have its tail at <i>r</i>	presenting the nentum out at $r + \Delta r$
56	Fig. 2.5-1	$ au_{zz}$ should be replaced	by $ au_{xz}$ in two places.
56	Fig. 2.5-2	In the equation below insert a minus sign jus	-
59	Eq 2.6-5	Should be a box aroun	d this equation
62	Prob 2A.4	$1 \text{ micron} = 10^{-6}$	$1 \text{ micron} = 10^{-6} \text{ m}$
65	Prob 2B.7 (line 1)	diameter	radius
67	Eq 2B.10-3	8μ	8 <i>µ</i> L
79	Fig. 3.2-1	indicating the flux	indicating the directions of the fluxes
94	2 lines before Eq 3.6-42	$\frac{1}{2}\rho\Omega^2 rp$	$\frac{1}{2} ho\Omega^2 r^2$

105	Prob 3A.6 ans	C	С
109	Eq. 3B.10-1	Just before the term or insert a minus sign	n the left side,
117	Eq 4.1-14	$\frac{\int_{0}^{\eta} \exp\left(-\overline{\eta}^{2}\right) d\overline{\eta}}{\int_{0}^{\eta} \exp\left(-\overline{\eta}^{2}\right) d\overline{\eta}}$	$\frac{\int_0^{\eta} \exp\left(-\overline{\eta}^2\right) d\overline{\eta}}{\int_0^{\infty} \exp\left(-\overline{\eta}^2\right) d\overline{\eta}}$
117	Ex 4.1-2 (I.C.)	for all <i>y</i>	for $0 \le y \le b$
118	After Eq 4.1-29	These equations has	These equations have
125	Eq 4.2-19	$=\int_{0}^{2\pi}$	$=\mu\int_0^{2\pi}$
129	3 lines after Eq 4.3-19	$\Psi = \frac{3}{2}$	$\Psi = -\frac{3}{2}$
145	Prob 4B.7a	Add at the end of part "Is this flow irro	
145 149	Prob 4B.7a Eq. 4C.3-5	1	
		"Is this flow irro $\nabla^2 p$	tational?"
149	Eq. 4C.3-5	"Is this flow irro $\nabla^2 p$	tational?" $ abla^2 \mathcal{P}$
149 150	Eq. 4C.3-5 Prob 4C.4 ans	"Is this flow irro $\nabla^2 p$ $\mathcal{P}_2 / \mathcal{P}_1$	tational?" $\nabla^2 \mathbf{P}$ R_2/R_1
149 150 151	Eq. 4C.3-5 Prob 4C.4 ans Prob 4D.4 title	"Is this flow irro $\nabla^2 p$ $\mathcal{P}_2 / \mathcal{P}_1$ flows. ¹⁰	tational?" $\nabla^2 \mathcal{P}$ R_2/R_1 flows.
149 150 151 151	Eq. 4C.3-5 Prob 4C.4 ans Prob 4D.4 title Prob 4D.4(<i>a</i>) Prob 4D.5	"Is this flow irrow $\nabla^2 p$ $\mathcal{P}_2 / \mathcal{P}_1$ flows. ¹⁰ solution.	tational?" $\nabla^2 \mathcal{P}$ R_2/R_1 flows. solution. ¹⁰

		"Show that the express reproduces the velocity four incompressible flo Here h_3 is the scale fac coordinate (see §A.7). (vector v of Eq. A.7-18 h	y components for the ows of Table 4.2-1. tor for the third (Read the general
151	Prob 4D.5(c)	corresponding to Eq. 4.3-2	of $[(\nabla \psi_1) \times (\nabla \psi_2)]$
154	Eqs 5.1-4 & 5	$v_{z,\max}$	$\overline{v}_{z,\max}$
155	Eq 5.1-6	0.198	0.0198
157	2 lines above Eq 5.2-3	5.5-2	5.2-2
167	Eq 5.5-7	$\overline{ au}_{rz}^{(t)}$	$ar{ au}_{rz}$
175	Line 5a	r < b r > b	r < bR r > bR
175	Eq 5C.2-3	$\frac{(r-aR)v_*^>}{\nu}$	$\frac{(R-r)v_*^>}{v}$
175	Eq 5C.2-4	$(1-a^2)\sqrt{1-b^2}$	$\frac{(b^2 - a^2)^{3/2}}{\sqrt{a}} + (1 - b^2)^{3/2} \bigg\}$
180	Eq 6.2-6	bold-face script Plight-	-face script P
184	5 lines after Eq 6.2-23	$32.17 \text{ lb}_m/\text{ft }\text{lb}_f\text{s}^2$	32.17 $(lb_m ft/s^2)/lb_f$
185	Eq 6.3-5	\mathcal{P}	$\breve{\mathcal{P}}$

186	1 line below Eq 6.3-13	defintition	definition
186	5 lines above Eq 6.3-14	6.1-2	6.2-2
193	Prob 6A.1, ans	10 ²	10 ³
193	Prob 6A.3, ans	gal/hr	gal/min
193	Prob 6A.4	liquid in centipoises.	liquid.
194	Prob 6A.9, ans	679	480
195	Eq 6B.4-3	I	T_z
201	Eq 7.2-5	$\frac{5.5}{\pi (0.025)^2}$	$\frac{5.5}{\pi (0.025)^2 (1000)}$
207	Example 7.5-1 (line 2b)	The water	Water at 68°F
208	Eq 7.5-18	$\hat{W}_m = w\hat{W}_m$	$W_m = w \hat{W}_m$
213	Eq 7.6-28	234 1041	-234 -1041
224	Prob 7A.1, ans	$1.64 \\ 1.13 \times 10^4$	0.157 1.08×10^{3}
229	Prob 7B.12 title	Criterion for Vapor- Free Flow in a Pipeline	Criterion for vapor- free flow in a piping system
271	Table 9.1-5	63 92	0.63 0.92

273	Line 14a	and the proceed	and then proceed
274	Line 5a	is it customary to use	it is customary to use
278	Line 6a	from Eq. 1.4-18	from Eq. 1.4-14
278	Eq 9.3-20	Add on to the last line = $0.0257 \text{ W/m} \cdot \text{J}$	1
278	1 line after Eq 9.3-20	6.35 K	0.02657 W/m·K
278	Ex 9.3-1 (last line)	9.1-1	9.1-2
278	Line 10b	Eqs. 9.3-17 and 18	Eq. 9.3-17
278	Line 9b	Example 1.5-2	Example 1.4-2
280	Ex 9.4-1	given in Table 9.1-2 is 0.103	as interpolated from Table 9.1-3 is 0.101
282	Eq 9.6-4	$\kappa_{\mathrm{eff},zz}$	$\kappa_{\mathrm{eff},xx}$
287	Prob 9A.1(b)	9.1-1	9.1-2
288	Prob 9A.11(a)	mate the fitted or sample. The righ	nes closely approxi- nes ⁶ for the present it-hand member of Eq. nultiplied by 1.25 for
288	Prob 9A.11,Ans	Answers in cal/cm \cdot s \cdot k respectively: (a) Eq. 9A $k_{eff} = 6.3 \times 10^{-3}$ and 0	

$$g_1 = g_2 = g_3 = \frac{1}{3}$$
, vs. 6.2×10^{-3} and 0.54×10^{-3}
with $g_1 = g_2 = \frac{1}{8}$ and $g_3 = \frac{3}{4}$. (b) Eq. 9.6-1
gives $k_{\text{eff}} = 5.1 \times 10^{-3}$ and 0.30×10^{-3} .

288Prob 9A.11(b)The particle...0.712(Delete that sentence)

289 Eq 9C.1-4
$$y = \frac{\tilde{V}}{RT} \left[T \left(\frac{\partial p}{\partial T} \right)_{\tilde{V}} - 1 \right] \quad y = \frac{\tilde{V}}{R} \left(\frac{\partial p}{\partial T} \right)_{\tilde{V}} - 1$$

289 Eq 9C.1-5
$$y = Z \frac{1 + (\partial \ln Z / \partial \ln T_r)_{p_r}}{1 - (\partial \ln Z / \partial \ln p_r)_{T_r}}$$

$$y = Z \frac{1 + (\partial \ln Z / \partial \ln T_r)_{p_r}}{1 - (\partial \ln Z / \partial \ln p_r)_{T_r}} - 1$$

- 298Eqs 10.3-20In both equations, add $+T_0$ the right side
of the equation
- 298 Fig 10.4-1The quantity *b* should be the thickness of the
gap between the two cylinders
- 300 Eq 10.4-10 Delete the last term in this equation, (x/b)

301	Eq 10.5-4	$-\mu v_z \frac{dv_z}{dz}$	$+\rho \hat{H}^{o}v_{z}-2\mu v_{z}\frac{dv_{z}}{dz}$
301	Line 2b	first and fourth	first, fourth, and fifth
302	Eq 10.5-15	Z	Ζ
302	Eq 10.5-16	0 <z<l< td=""><td>0<z<1< td=""></z<1<></td></z<l<>	0 <z<1< td=""></z<1<>
303	Eq 10.5-17	z>L	Z>1
303	Fig 10.5-2	$\Theta_{\mathrm{I}},\Theta_{\mathrm{II}},\Theta_{\mathrm{III}}$	Θ^{I} , Θ^{II} , Θ^{III}

307	Eq 10.6-29	The third term in the d $\frac{\ln(r_2/r_1)}{k_{12}} + \frac{\ln(r_3/r_2)}{k_{23}}$ [That is, a plus sign ne	$r_2)$
310	Eq 10.7-17	102	120
312	Eq 10.8-10	In the second line of th needs to be added to the	1 , 1
317	After Eq 10.9-5	Move the right parentl "10.B-11" to just after '	2
318	Eq 10.9-12	$\frac{B^2}{12\mu}$	$\frac{B^2}{2\mu}$
319	Eq 10.9-17	$\frac{1}{2}$	$\frac{1}{12}$
323	Eq 10B.5-1	$T_b - T_0$	$(T_b - T_0)$
325	Prob 10B.8 ans	T_1	T_{κ}
326	Prob 10B.11	Use§10.9	Use the \breve{y} , \breve{v}_z , and Gr defined in §10.9 (but with $\overline{\mu}$ in lieu of μ)
326	Eq 10B.11-2	Insert: $b_T = \frac{1}{2}\overline{\beta}\Delta T$, be	fore $b_{\mu} = \cdots$
326	Eq 10B.11-4	Gr	$\frac{1}{2}$ Gr
326	1 line after Eq 10B.11-4	second b_{μ} .	third and higher powers of ΔT
326	2 lines after Eq 10B.11-4	$P = \frac{2}{15} \operatorname{Gr} b_{\mu}$	$P = \frac{1}{30} \operatorname{Gr} b_T + \frac{1}{15} \operatorname{Gr} b_\mu$

326 Eq 10B.11-5 Replace the entire equation by

	$v_z = \frac{1}{12} \operatorname{Gr}\left(\breve{y}^3 - \breve{y} \right)$	$+\frac{1}{60}\mathrm{Gr}b_T(\bar{y}^2-1)-\frac{1}{80}\mathrm{Gr}b_T$	$v_{\mu}(\bar{y}^2 - 1)(5\bar{y}^2 - 1)$
326	Prob 10B.13	Eq. 10.5-1	Eq. 10.5-7
327	Prob 10B.14 ans	$T_1 - T_0$	$T_0 - T_1$
328	Prob 10B.16 Answer	(b)	(c)
328	Prob 10B.16 Answer (a)	$\frac{\cosh\sqrt{4h/D} z}{\cosh\sqrt{4h/D} L}$	$\frac{\cosh\sqrt{4h/kD} z}{\cosh\sqrt{4h/kD} L}$
334	2 lines above Eq 11.1-1	conservation energy	conservation of energy
345	Fig 11.4-1	Extend the vertical line end of the double arro becomes tangent with the outer sphere	w for <i>R</i> until it
345	Eq 11.4-23	$\left[\frac{d}{dr}\left(\frac{1}{r^2}\frac{d}{dr}\left(r^2v_r\right)\right)\right]$	$\left(\frac{1}{r^2}\frac{d^2}{dr^2}\left(r^2v_r\right)\right)$
345	Eq 11.4-24	w _r	w_r^2
349	Line 2a	11.4-44 to 4 11.4-	44 to 49
363	2 nd line of (c) Prob 11.B-2	Omit <i>r</i> = <i>R</i> .	Multiply Eq. 11B.2-1 by rdr and integrate from $r = 0$ to $r = R$.
363	Eq 11B.2-3	$\langle T \rangle$	T_b

363 Eq 11B.2-5 The bracket on the right side of the equation should read:

$(r)^2$	$1(r)^4$	1
$\left(\overline{R}\right)^{-1}$	$\overline{2}(\overline{R})$	$\overline{4}$

363 After Eq	Replace the sentences by:
11B.2-5	after determining the integration
	constant by an energy balance
	over the tube from $z = 0$ to $z = z$.
	Keep in mind that Eqs. 11.2-2 and 5
	are valid solutions only for large z.
	The complete solutions for small z
	are discussed in Problem 11D.2.

- 367 Line 12a freezing of the solid freezing of the liquid
 367 Prob 11B.12(b) Just before the period, insert the following: ; here A is a constant
- 369 Prob 11B.15(c) three dimensionless dimensionless
- 370 Prob 11C.2, ans $(x^2 B^2)y$ $(B^2 x^2)y$
- 377 Eq 12.1-25 $\exp\left[\left(n+\frac{1}{2}\right)^2 \pi^2 \tau\right] = \exp\left[-\left(n+\frac{1}{2}\right)^2 \pi^2 \tau\right]$
- 383 Line 6a with time with ζ
- 384 Eq 12.2-15 $\psi = \frac{q_s}{q_0}$ $\psi = \frac{q_y}{q_0}$
- 384 Line 4b $\chi \to \infty, \ \psi \to 1$ $\chi \to \infty, \ \psi \to 0$
- 386 2nd paragraph Moreover...equation Moreover, both the velocity components (in Cartesian coordi-

nates!) of §4.3 and the temperature profiles of this section satisfy the Laplace equation.

396	Prob 12A.5 Ans	0.111	0.111 cm ² /s
396	Prob 12B.1 Ans	7.9 0.19	8.2 0.20
420	Eq 13.6-24	$lpha_2$	<i>a</i> ₂
423	Fn 1	1882-1857	1882-1957
425	Eq 14.1-9	k^{01}	k_{01}
434	Eq 14.3-14	L/D	<i>z</i> / <i>D</i>
435	Before and af- ter Eq 14.3-16	Re _b	Re
	—		
451	Prob 14B.2	oil temperature	oil bulk temperature
451 451	Prob 14B.2 Prob 14B.5	oil temperature dT	oil bulk temperature dT_b
		-	-
451	Prob 14B.5	dT	dT_b To these we add (also at the entry and exit
451 455	Prob 14B.5 §15.1, line 7a	<i>dT</i> To these we add: <i>Q</i>	dT_b To these we add (also at the entry and exit planes):
451 455 477	Prob 14B.5 §15.1, line 7a Eq 15B.1-2	<i>dT</i> To these we add: <i>Q</i> 1242	dT_b To these we add (also at the entry and exit planes): Q_c

509	Prob 16B.3	The second part (a) she	ould be relabeled (b)
509	Prob 16B.3	Steel pipe (inside wall thickness 0. 26 Btu/hr \cdot ft \cdot F) insulated with 2 ($k = 0.35$ Btu/hr \cdot wrapped with a	vo-inch horizontal e diameter 2.067 in., 154 in.; $k =$ carrying steam is in. of 85% magnesia ft · F) and tightly layer of clean = 0.05). The pipe is ir at 1 atm and
523	Ex 17.2-1, table	<i>T</i> (K)	$T_c(\mathbf{K})$
527	After Eq 17.3-17	over a wide of	over a wide range of
529	Line 3b (in text)	process here	process there
530	Ex 17.4-1, soln	0.705	0.705 cp
531	Eq 17.4-9	1.40	140
536	Eq 17.8-4	x_A	x_{α}
538	Fn 5	Insert after (1999): ; 40 , 1791 (2001)	
540	Prob 17A.7 Title	self-diffusion at high density	self-diffusion
542	Eq 17C.2-3	$ abla x_A$	$ abla \omega_A$
544	Fn 1	3nd edition	3rd edition

553	Eq 18.3-14	Add large space between the equation and the parenthetical expression	
553	Last line	$Da^{II} \rightarrow 0$	$Da^{II} \rightarrow \infty$
559	Eq 18.5-5	$\approx \mathcal{D}_{AB} \frac{\partial c_A}{\partial x}$	$\approx -\mathcal{D}_{AB} \frac{\partial c_A}{\partial x}$
570	Prob 18A.6		The density of liquid ether may be taken to be 0.712 g/cm ³ at the experimental conditions
572	Prob 18B.7	Fig. 18.2-3	Fig. 18.2-4
574	Prob 18B.10(a)	$c\mathcal{D}_{23} = 4.68 \times 10^{-6}$	$c\mathcal{D}_{23} = 4.68 \times 10^{-6}$ g-moles/cm·s
574	Prob 18B.10(b) (iv) below table	$N_{2z}, B, C, \text{ and } D$ N_{1z}, N_{1z}, N_{2z}	LN_{2z} , LB , LC , and LD LN_{1z} , LN_{1z} , LN_{2z}
574	Prob 18B.10 next-to-last sentence	is close enough	converges
575	Prob 18B.11 ans	x_{B0}	$x_{B\infty}$
584	Line 4b	$ ho D \omega_{lpha} / D t$	$ ho D \omega_A / D t$
589	Fn d of Table	19D.1	19D.2
593	Fig 19.4-1	z (in 2 places)	y (in 2 places)
594	Line 6a	$T = T_{\infty}$	$T = T_{\delta}$

- 607 Fig 19B.4The z axis should extend downward from the
oxygen-SiO $_2$ interface.
- 607 Prob 19B.6 which it undergoes which A undergoes
- 608 Eq 19B.6-2 Eq. 19B.6-2 should read as follows:

$$\sqrt{\frac{k_{1}^{'''}}{\mathcal{D}_{AB}}}(R-R_{0}) - \ln \frac{1 + \sqrt{k_{1}^{'''}/\mathcal{D}_{AB}}R}{1 + \sqrt{k_{1}^{'''}/\mathcal{D}_{AB}}R_{0}} = -\frac{k_{1}^{'''}c_{A0}M_{A}}{\rho_{\rm sph}}(t-t_{0})$$

[*Note*: In a previous list of corrigenda, Eq. 19B.6-2 was given incorrectly]

- 6171 line after
Eq 20.1-23is given by
sight product of a sight pr
- 617 Eq 20.1-24 $\varphi(x_{A0})$ φ
- 617 Example 20.1-1, ...calculations....calculationslast line(see §22.8).
- 618 Line 3b of text shown in Fig. 20.1-2 shown in Figure 20.1-2 (for a = b)
- 618 Fig 20.1-2 by Eqs. 20.1-36 to 38 by Eqs. 20.1-35 to 37 (for *a* = *b*)
- 620Eq 20.1-59 $\omega_A^{(2)}$ $\overline{\omega}_A^{(2)}$ [Make the same change one line above the
equation as well as two lines above the
equation]631Line 4bFigures 22.8-6 and 7Figures 22.8-5 to 7

643	Footnote 2	P. C. Chatwin(1985)	H. B. Fisher, Ann. Rev. Fluid Mech., 5 , 59-78, (1973)
649	Prob 20A.5(a)	Eq. 20.1-38	Eq. 20.1-37
649	Prob 20A.6	and Sc = 2.0.	$n_{B0}(x) = 0$, and Sc = 2.0.
649	Prob 20A.6	Replace the last 2 senter Use Fig. 22.8-5, with <i>R</i> Eq. 20.2-51, to find the flux ϕ (denoted by ϕ_{ω} calculations with mass Eq. 20.2-1 to calculate <i>R</i> calculate $n_{A0}(x)$	calculated as R_{ω} from dimensionless mass for diffusional fractions). Then use
649	Prob 20A.7 title	forced convection	forced-convection
649	Prob 20A.7	accuracy.	accuracy against that of Eq. 20.2-47
649	Prob 20A.7(c)	Table 20.2-2	Table 20.2-1
650	Prob 20B.2 line 1a	with α constant	(delete this phrase)
650	Prob 20B.2 line 1a	provided that	provided that k , p , and c (or ρ) are essentially constant, and that
650	Prob 20B.2 line 1a	= constant.	= constant; conse- quently α is then a constant
650	Eq 20B.2-2	$\frac{1 - \operatorname{erf}(Z_T - \varphi_T)}{1 - \operatorname{erf}\varphi_T}$	$\frac{\operatorname{erf}(Z_T - \varphi_T) + \operatorname{erf}\varphi_T}{1 + \operatorname{erf}\varphi_T}$

650	Prob 20B.6	Delete part (a) of the problem, and relabel (b) and (c) as (a) and (b)	
651	Prob 20B.7	to obtain equations	to obtain implicit equations
651	Prob 20B.7	cases:	steady-state operations:
651	Prob 20B.7(b) solution	(incorrect in book)	$K = \frac{1}{\mathrm{Sc}} \omega_{A\infty} \Pi'(0, \mathrm{Sc}, K)$
652	Prob 20B.8	<i>n</i> = 1,2,	<i>n</i> = 0,1,2,
652	Prob 20C.1(a)	a spherical bubble	the spherical bubble of Problem 20A.2(a)
656	Prob 20D.5,title	embedded	interfacially embedded
668	Prob 21A.1(a)	lnsc	ln sc
681	Line 10b	The heat transfer are	For forced convection around a solid sphere, Eq. 14.4-5 and its mass-transfer analog are:
705	Table 22.8-1, heading	in §22.8.	in §22.8. Mass- based versions appear in §20.2 and §22.9.
707	Eq 22.8-11	arphi	φ_x (3 times!)
707	Eq 22.8-12	arphi	φ_T (3 times!)

- 707Line above
Eq 22.3-13both formulas
is the dimensionlesseach formula
is a dimensionless
- 707 Eq 22.3-13 Delete the entire equation and replace by the following two equations, all on one line:

$$\varphi_x = \frac{N_{A0} + N_{B0}}{c} \sqrt{\frac{t}{\mathcal{D}_{AB}}} \qquad \qquad \varphi_T = \frac{N_{A0} + N_{B0}}{c} \sqrt{\frac{t}{\alpha}}$$

- 707 Eq 22.3-13 (22.8-13) (22.8-13a,b)
- 7073 lines after
Eq 22.3-13subsection,
subsection;
- 707 3 lines after Eq 22.8-13 which...model (delete this phrase)
 715 Eq 22.8-53 Insert the coefficient 0.6205 on the r.h.s.
- 722 Prob 22A.3 Add at end of problem statement: See §14.5 for forced-convection heat transfer coefficients in fixed beds.

722	Prob 22A.3, title	air temperature	inlet air temperature
737	Line 4b	$t >> t_{\rm res} \dots t_{\rm obs}$	$t_{\rm res}/t_0 <<1$ and t
738	Line 1a	duration of an observation, t_{obs} .	, t_{obs} , the time at which the observations of the effluent concentration begin.
738	Eq 21.3-66	$t_{\rm obs} >> t_0 >> t_{\rm res}$	$t_0 >> t_{\rm res}$ and $t_{\rm obs} \ge t_{\rm res}$
756	After Eq 23.6-30	finite	nonzero

757	After Eq 23.6-37	at any other cross section	at every point
757	After Eq 22.6-39	very short	finite
757	3 lines before Eq 23.6-41	Eq. 23.6-31	Eq. 23.6-32
758	Line 1a	or	or, if $I^{(n)}$ is assumed constant over a cross-section,
758	Eq 23.6-44	$\left[I^{(0)}\right]_{rol avg}$	<i>I</i> ⁽⁰⁾
758	Eq 23.6-46	Change lower limit of	integral from 0 to $-\infty$
758	After Eq 23.6-46	usually	commonly
758	After Eq 23.6-46	Thus	Then
766	After Eq 24.1-6	$q^{(h)}$	$\mathbf{q}^{(h)}$
	Eq 24.2-8 ke same change in	$\nabla \ln a_{\alpha}$ Eqs. 24.2-9 and 10 and 2	$(\nabla \ln a_{\alpha})_{T,p}$ in Eq. 24.4-1]
773	Eq 24.2-21 (rhs)	x	Z
776	Eq 24.4-5	g +	g –
777	1 line above Eq 24.4-11	Fick's first law for the protein	the protein flux
777	After Eq 24.4-11	sincezero.	which somewhat resembles Fick's first law.

Eq 24.4-12	subscript M	subscript W
After Eq 24.4-12	Actuallysolutior	n. Note that the radial molar flux of water greatly exceeds that of protein, and that the convective protein flux $c_P v_{migr}$ is very small.
Just above fns.	electromotive	electromagnetic
line 1a	we	use Eqs. 24.4-24 and 5 to
Eq 24.4-26	Replace the last ter	rm by:
	$+\frac{1}{cRT}\left(\rho_{M^{+}}\mathbf{g}_{M^{+}}-a\right)$	$oldsymbol{arphi}_{M^+} \sum_eta oldsymbol{ ho}_eta \mathbf{g}_eta ight)$
Eq 24.4-27	Replace the last ter	rm by:
	$+\frac{1}{cRT}\left(ho_{X^{-}}\mathbf{g}_{X^{-}}-\omega\right)$	$\left(p_{X^{-}} \sum_{eta} oldsymbol{ ho}_{eta} \mathbf{g}_{eta} ight)$
1 line after Eq 24.4-27	f	Next we use the expression or \mathbf{g}_{α} in Eq. 24.4-5, as well as Eqs. 24.4-24 and 25, to get:
Eq 24.4-28	$+\left(\frac{x_{S}}{RT}\right)F\nabla\phi$	$-\left(\frac{x_{S}}{RT}\right)F\nabla\phi$
Prob 24A.1(a)	Fig. 24.3-1	Fig. 24.2-1
Prob 24B.3 ans	0.653	0.064
	After Eq 24.4-12 Just above fns. line 1a Eq 24.4-26 Eq 24.4-27 l line after Eq 24.4-27 Eq 24.4-27	line 1a we Eq 24.4-26 Replace the last ter $+\frac{1}{cRT}\left(\rho_{M^{+}}\mathbf{g}_{M^{+}}-c\right)$ Eq 24.4-27 Replace the last ter $+\frac{1}{cRT}\left(\rho_{X^{-}}\mathbf{g}_{X^{-}}-a\right)$ 1 line after Eq 24.4-27 Nextget: $\prod_{\substack{a \in a \\ a \in a \\ g \in a}}$ Eq 24.4-28 $+\left(\frac{x_{s}}{RT}\right)F\nabla\phi$ Prob 24A.1(a) Fig. 24.3-1

801	Prob 24C.3 table	0.507	1.507
803	Prob 24C.6	surface	surface (<i>s</i> and <i>c</i> indicate "sphere" and "continuum")
803	Prob 24C.6	Hererespectively.	Develop expressions for ϕ_c and ϕ_s , if $\phi_c \rightarrow Ar \cos \theta$ for large <i>r</i> .
804	Prob 24D.1	it is	it may be
808	2 lines after table	υω	vw
808	3 lines after table	$[v \times w]$	$[\mathbf{v} \times \mathbf{w}]$
810	Eq A.1-14	Note	Not
810	Ex 5	W	W
813	3 lines after Eq A.2-20	magnitude of <i>v</i>	magnitude of v
815	Line 2 of §A.3	write a vector <i>v</i>	write a vector v
815	Eq A.3-4	$\left\{ \mathbf{\delta}_{i}\mathbf{\delta}_{j}\cdot\mathbf{\delta}_{k}\mathbf{\delta}k_{l}\right\}$	$\left\{ \mathbf{\delta}_{i} \mathbf{\delta}_{j} \cdot \mathbf{\delta}_{k} \mathbf{\delta}_{l} \right\}$
817	Line 3a	υω	vw
820	2 lines above Eq A.4-6	if the vector <i>v</i>	if the vector v
820	3 lines above Eq A.4-10	and the vector <i>v</i>	and the vector \mathbf{v}

821	Footnote 1	abla v	$ abla \mathbf{v}$
822	Line 4a	the vector function <i>v</i> [That is, an equals sign between the two expre	
822	Eq A.4-30	$[\mathbf{t} \cdot v]$	$[\mathbf{t} \cdot \mathbf{v}]$
822	Eq A.4-32	v_j	$v_j =$
823	Ex 2	0	0
823	Ex 6	0	0
823	Ex. 7(b)	0	0
825	Eq A.5-6	S	S
825	Ex 3	Eq. A.5-6	Eq. A.5-5
828	2nd equation in Exercise 1	$\frac{4}{3}\delta$	$\frac{4}{3}\pi\delta$
829	Eqs A.7-1 to 3	0	0
829	Eqs A.7-6 to 8	0	0
848	Eq B.6-9	80	g_{ϕ}
886	Curl operator	832	831, 832
887	Dissipation function	847	849
887	Divergence	832	830, 832

operator

887	Energy equation	847	849
888	Gamma functior	n 853	855
890	Lennard-Jones potential	864	864, 866
892	Products of vectors	813, 817, 827	810, 813, 817, 818, 827
893	Temperature, equation of change for	859	850
893	Tensor, unit	815	19, 817
895	Wenzel	Krames	Kramers