(Version: 15 April 2002)

Corrigenda for Transport Phenomena (2d Edition, 2nd Printing)

(In designating line locations, "a" means "from above" and "b" means "from below")

Note: The authors wish to thank the following people who have pointed out errata to us.

Robert C. Armstrong (MIT)
Lawrence Belfiore (Colorado State University)
Albert Co (University of Maine)
Sam Davis (Rice University)
Ole Hassager (Technical University of Denmark)
Daniel J. Klingenberg (University of Wisconsin)
Lii-ping Leu (National Taiwan University)
Frans Nieuwstadt (Technical University of Delft)
Pierre Proulx (Université de Sherbrooke)
Carlos Ramirez (University of Puerto Rico in Mayaguez)
Thatcher W. Root (University of Wisconsin)
Yo-han Tak (Pohang University of Science and Technology)
Lewis E. Wedgewood (University of Illinois at Chicago)
Michael C. Williams (University of Alberta)
H. Henning Winter (University of Massachusetts)

John Yin (University of Wisconsin)
¡Special thanks to Professor Carlos Ramirez and his students!
Some teachers and students might find the following reference of interest: "Who Was Who in Transport Phenomena," by R. B. Bird, Chemical Engineering Education, Fall 2001, pp. 256-265.

Page Location Reads Should Read

4 Table 0.2-1 Change the second "22" to "23"
20 Fig 1.2-2(a) In the first and second drawings from above,
should appear to be an arbitrary angle, rather than 90 degrees

21
Fig 1.2-3
Velocity profile needs to be redrawn so that it does not appear that there is slip at the wall

Eq 1.3-2

Eq 1.3-3
24
3 lines above Eq 1.4-5 Ex 1.4-2, table $\quad \sum_{\beta=1}^{3} x_{\alpha} \Phi_{\alpha \beta}$
x_{α} should be defined as the mole fraction of species α

$$
(2.80)^{1 / 2}
$$

assuming
summing $\sum_{\beta=1}^{3} x_{\beta} \Phi_{\alpha \beta}$ left bracket.

Prob 1A.1, ans 10^{-4}
10^{-5}

38
Prob 1A. 6
$\Delta \tilde{U}_{\text {vap }}$
$\Delta \hat{U}_{\text {vap }}$
38
Prob 1A. 6
Table 1.1-1

1B.2)
Table 1.1-2

1B. 2

> Eq 1C.3-1
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \infty_{-\infty}^{\infty}$
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty}$ should be a reference to S. Richardson,
J. Fluid Mech., 59, 707-719 (1973). There it is shown that the no-slip condition leads to the same velocity profile (over most of the crosssection) as the complete-slip condition, but with a sinusoidal wall (describing roughness).

49 Fig 2.3-1
$49 \quad$ Fig 2.3-1
$49 \quad$ Fig 2.3-1

56

56 Fig. 2.5-2

59 Eq 2.6-5
62 Prob 2A,$~ \begin{array}{ll}\text { Prob 2B } \\ \text { (line 1) }\end{array}$
62 Prob 2A
$\begin{array}{ll}62 & \text { Prob 2A. } 4 \\ 65 & \begin{array}{l}\text { Prob 2B. } 7 \\ \text { (line 1) }\end{array}\end{array}$
$62 \begin{array}{ll}\text { Prob 2A } \\ 65 & \begin{array}{l}\text { Prob 2B } \\ \text { (line 1) }\end{array}\end{array}$
67
79

94
Fig. 2.5-1

Eq 2B.10-3
Fig. 3.2-1

2 lines before
8μ
indicating the flux

Eq 3.6-42

Drawing should make it clear that Δr is the thickness of the lightly shaded region

The quantity R should be shown as the inner radius of the cylindrical wall

The arrow representing the combined flux of momentum in at r should terminate at r; similarly, the arrow representing the combined flux of momentum out at $r+\Delta r$ should have its tail at $r+\Delta r$
$\tau_{z z}$ should be replaced by $\tau_{x z}$ in two places.
In the equation below the lower plate insert a minus sign just after the equals sign

Should be a box around this equation
1 micron $=10^{-6} \quad 1$ micron $=10^{-6} \mathrm{~m}$
diameter radius
indicating the directions of the fluxes
$\frac{1}{2} \rho \Omega^{2} r^{2}$

109 Eq. 3B.10-1 Just before the term on the left side, insert a minus sign

117 Eq 4.1-14
$\frac{\int_{0}^{\eta} \exp \left(-\bar{\eta}^{2}\right) d \bar{\eta}}{\int_{0}^{\eta} \exp \left(-\bar{\eta}^{2}\right) d \bar{\eta}}$
$\frac{\int_{0}^{\eta} \exp \left(-\bar{\eta}^{2}\right) d \bar{\eta}}{\int_{0}^{\infty} \exp \left(-\bar{\eta}^{2}\right) d \bar{\eta}}$
117 Ex 4.1-2 (I.C.)
for all y
for $0 \leq y \leq b$
118 After Eq 4.1-29 These equations has These equations have
Eq 4.2-19
$=\int_{0}^{2 \pi}$
$=\mu \int_{0}^{2 \pi}$

129
3 lines after
$\Psi=\frac{3}{2}$
$\Psi=-\frac{3}{2}$
Eq 4.3-19
145 Prob 4B.7a
Add at the end of part (a): "Is this flow irrotational?"

149 Eq. 4C.3-5
$\nabla^{2} p$
$\nabla^{2} \boldsymbol{p}$

150 Prob 4C. 4 ans
P_{2} / P_{1}
R_{2} / R_{1}

151
Prob 4D. 4 title flows. ${ }^{10}$
flows.
151 Prob 4D.4(a) ...solution.
...solution. ${ }^{10}$
151 Prob 4D. 5 (problem title)

151 Prob 4D.5(a) compressible flow. steady flow.
151 Prob 4D.5(b) Replace by:
"Show that the expression $\mathbf{A} / \rho=\mathbf{d}_{3} \psi / h_{3}$ reproduces the velocity components for the four incompressible flows of Table 4.2-1. Here h_{3} is the scale factor for the third coordinate (see §A.7). (Read the general vector \mathbf{v} of Eq. A.7-18 here as A.)

151 Prob 4D.5(c) corresponding to of $\left[\left(\nabla \psi_{1}\right) \times\left(\nabla \psi_{2}\right)\right]$
Eq. 4.3-2
154 Eqs 5.1-4 \& 5
$v_{z, \text { max }}$
$\bar{v}_{z, \text { max }}$
155 Eq 5.1-6
0.198
0.0198

1572 lines above 5.5-2
5.2-2 Eq 5.2-3

167 Eq 5.5-7
$\bar{\tau}_{r z}^{(t)}$
$\bar{\tau}_{r z}$
175 Line 5a
$r<b$
$r<b R$
$r>b$
$r>b R$

175 Eq 5C.2-3
$\frac{(r-a R) v_{*}^{>}}{v}$
$\frac{(R-r) v_{*}^{>}}{v}$

175 Eq 5C.2-4 $\left(1-a^{2}\right) \sqrt{1-b^{2}} \quad\left\{\frac{\left(b^{2}-a^{2}\right)^{3 / 2}}{\sqrt{a}}+\left(1-b^{2}\right)^{3 / 2}\right\}$

180 Eq 6.2-6
1845 lines after Eq 6.2-23

185 Eq 6.3-5
P
p

186	1 line below Eq 6.3-13	defintition	definition
186	5 lines above Eq 6.3-14	6.1-2	6.2-2
193	Prob 6A.1, ans	10^{2}	10^{3}
193	Prob 6A.3, ans	gal/hr	$\mathrm{gal} / \mathrm{min}$
193	Prob 6A. 4	liquid in centipoises.	liquid.
194	Prob 6A.9, ans	679	480
195	Eq 6B.4-3	\mathfrak{J}	T_{z}
201	Eq 7.2-5	$\frac{5.5}{\pi(0.025)^{2}}$	$\frac{5.5}{\pi(0.025)^{2}(1000)}$
207	Example 7.5-1 (line 2b)	The water...	Water at $68^{\circ} \mathrm{F}$...
208	Eq 7.5-18	$\hat{W}_{m}=w \hat{W}_{m}$	$W_{m}=w \hat{W}_{m}$
213	Eq 7.6-28	$\begin{aligned} & 234 \\ & 1041 \end{aligned}$	$\begin{aligned} & -234 \\ & -1041 \end{aligned}$
224	Prob 7A.1, ans	$\begin{aligned} & 1.64 \\ & 1.13 \times 10^{4} \end{aligned}$	$\begin{aligned} & 0.157 \\ & 1.08 \times 10^{3} \end{aligned}$
229	Prob 7B. 12 title	Criterion for VaporFree Flow in a Pipeline	Criterion for vaporfree flow in a piping system
271	Table 9.1-5	$\begin{aligned} & 63 \\ & 92 \end{aligned}$	$\begin{aligned} & 0.63 \\ & 0.92 \end{aligned}$

273 Line 14a and the proceed and then proceed
274 Line 5a is it customary to use it is customary to use
278 Line 6a from Eq. 1.4-18 from Eq. 1.4-14

278 Eq 9.3-20 Add on to the last line of the equation:

$$
=0.0257 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K}
$$

2781 line after
6.35 ... K
$0.02657 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$
Eq 9.3-20
278 Ex 9.3-1 (last
9.1-1
9.1-2 line)

278 Line 10b
Eqs. 9.3-17 and 18 Eq. 9.3-17
278 Line 9b
Example 1.5-2
Example 1.4-2
280 Ex 9.4-1
given in Table 9.1-2 as interpolated from
is 0.103
Table 9.1-3 is 0.101
282 Eq 9.6-4
$\kappa_{\text {eff,zz }}$
$\kappa_{\text {eff }, x x}$
287 Prob 9A.1(b)
9.1-1
9.1-2

288 Prob 9A.11(a) Add at the end of part (a) The latter g_{i} values closely approximate the fitted ones ${ }^{6}$ for the present sample. The right-hand member of Eq. $9 \mathrm{~A} .11-1$ is to be multiplied by 1.25 for completely dry sand. 6

288 Prob 9A.11,Ans Answers in cal/cm $\cdot \mathrm{s} \cdot \mathrm{K}$ for wet and dry sand respectively: (a) Eq. 9A.11-1 gives $k_{\text {eff }}=6.3 \times 10^{-3}$ and 0.38×10^{-3} with

$$
\begin{aligned}
& g_{1}=g_{2}=g_{3}=\frac{1}{3}, \text { vs. } 6.2 \times 10^{-3} \text { and } 0.54 \times 10^{-3} \\
& \text { with } g_{1}=g_{2}=\frac{1}{8} \text { and } g_{3}=\frac{3}{4} . \text { (b) Eq. } 9.6-1 \\
& \text { gives } k_{\text {eff }}=5.1 \times 10^{-3} \text { and } 0.30 \times 10^{-3} .
\end{aligned}
$$

288 Prob 9A.11(b) The particle...0.712 (Delete that sentence)

289 Eq 9C.1-4

$$
y=\frac{\tilde{V}}{R T}\left[T\left(\frac{\partial p}{\partial T}\right)_{\tilde{V}}-1\right] \quad y=\frac{\tilde{V}}{R}\left(\frac{\partial p}{\partial T}\right)_{\tilde{V}}-1
$$

289 Eq 9C.1-5

$$
\begin{aligned}
& y=Z \frac{1+\left(\partial \ln Z / \partial \ln T_{r}\right)_{p_{r}}}{1-\left(\partial \ln Z / \partial \ln p_{r}\right)_{T_{r}}} \\
& y=Z \frac{1+\left(\partial \ln Z / \partial \ln T_{r}\right)_{p_{r}}}{1-\left(\partial \ln Z / \partial \ln p_{r}\right)_{T_{r}}}-1
\end{aligned}
$$

298 Eqs 10.3-20 and 10.3-21

298 Fig 10.4-1

300 Eq 10.4-10

301 Eq 10.5-4

301 Line 2b
302 Eq 10.5-15
302 Eq 10.5-16
303 Eq 10.5-17
303
Eq 10.5
,
$0<z<L$
$0<Z<1$
$z>L$
Z>1
Fig 10.5-2 $\quad \Theta_{\mathrm{I}}, \Theta_{\text {II }}, \Theta_{\text {III }}$
$+\rho \hat{H}^{\circ} v_{z}-2 \mu v_{z} \frac{d v_{z}}{d z}$
first and fourth
first, fourth, and fifth gap between the two cylinders Delete the last term in this equation, (x / b)
z
Z of the equation

The quantity b should be the thickness of the
$-\mu v_{z} \frac{d v_{z}}{d z}$

The third term in the denominator should be

$$
\frac{\ln \left(r_{2} / r_{1}\right)}{k_{12}}+\frac{\ln \left(r_{3} / r_{2}\right)}{k_{23}}
$$

[That is, a plus sign needs to be inserted.]

310	Eq 10.7-17	102	120
312	Eq 10.8-10	In the second line of this equation, $+\rho \hat{H}^{0} v_{z}$ needs to be added to the right side	
317	After Eq 10.9-5	Move the right parenthesis from just after "10.B-11" to just after "viscosity"	
318	Eq 10.9-12	$\frac{B^{2}}{12 \mu}$	$\frac{B^{2}}{2 \mu}$
319	Eq 10.9-17	$\frac{1}{2}$	$\frac{1}{12}$
323	Eq 10B.5-1	$T_{b}-T_{0}$	$\left(T_{b}-T_{0}\right)$
325	Prob 10B.8 ans	T_{1}	T_{κ}
326	Prob 10B.11	Use...§10.9	Use the \breve{y}, \breve{v}_{z}, and Gr defined in $\S 10.9$ (but with $\bar{\mu}$ in lieu of $\mu)$

326 Eq 10B.11-2 Insert: $b_{T}=\frac{1}{2} \bar{\beta} \Delta T$, before $b_{\mu}=\cdots$
326
Eq 10B.11-4
Gr
$\frac{1}{2} \mathrm{Gr}$

326	1 line after	second... b_{μ}.	third and higher Eq 10B.11-4
326	2 lines after	$P=\frac{2}{15} \mathrm{Gr}_{\mu}$	$P=\frac{1}{30} \mathrm{Gr}_{T}+\frac{1}{15} \mathrm{Gr} b_{\mu}$

326 Eq 10B.11-5Replace the entire equation by

$$
v_{z}=\frac{1}{12} \operatorname{Gr}\left(\breve{y}^{3}-\breve{y}\right)+\frac{1}{60} \operatorname{Gr} b_{T}\left(\breve{y}^{2}-1\right)-\frac{1}{80} \operatorname{Gr} b_{\mu}\left(\breve{y}^{2}-1\right)\left(5 \breve{y}^{2}-1\right)
$$

326 Prob 10B. 13
Eq. 10.5-1
327
328
Prob 10B. 16
Answer
328 Prob 10B. $16 \quad \frac{\cosh \sqrt{4 h / D} z}{\cosh \sqrt{4 h / D} L} \quad \frac{\cosh \sqrt{4 h / k D} z}{\cosh \sqrt{4 h / k D} L}$
Answer (a)
3342 lines above conservation energy conservation of Eq 11.1-1

345 Fig 11.4-1
Extend the vertical line indicating the right end of the double arrow for R until it becomes tangent with the inner surface of the outer sphere

$$
\left[\frac{d}{d r}\left(\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} v_{r}\right)\right)\right] \quad\left(\frac{1}{r^{2}} \frac{d^{2}}{d r^{2}}\left(r^{2} v_{r}\right)\right)
$$

345 Eq 11.4-24
w_{r}
$11.4-44$ to 4
11.4-44 to 49

349 Line 2a

Omit... $r=R$. Prob 11.B-2

363 Eq 11B.2-3
$\langle T\rangle$
Multiply Eq. 11B.2-1
by $r d r$ and integrate from $r=0$ to $r=R$.

363 Eq 11B.2-5 The bracket on the right side of the equation should read:

$$
\left\lfloor\left(\frac{r}{R}\right)^{2}-\frac{1}{2}\left(\frac{r}{R}\right)^{4}-\frac{1}{4}\right\rfloor
$$

363 After Eq Replace the sentences by: 11B.2-5 after determining the integration constant by an energy balance over the tube from $z=0$ to $z=z$. Keep in mind that Eqs. 11.2-2 and 5 are valid solutions only for large z. The complete solutions for small z are discussed in Problem 11D.2.

367 Line 12a freezing of the solid freezing of the liquid
367 Prob 11B.12(b) Just before the period, insert the following: ; here A is a constant

369 Prob 11B.15(c) three dimensionless dimensionless
370 Prob 11C.2, ans $\left(x^{2}-B^{2}\right) y$
$\left(B^{2}-x^{2}\right) y$

377 Eq 12.1-25
$\exp \left[\left(n+\frac{1}{2}\right)^{2} \pi^{2} \tau\right]$
$\exp \left[-\left(n+\frac{1}{2}\right)^{2} \pi^{2} \tau\right]$
383 Line 6a
with time
with ζ

384
Eq 12.2-15
$\psi=\frac{q_{s}}{q_{0}}$

$$
\psi=\frac{q_{y}}{q_{0}}
$$

384 Line 4b
$\chi \rightarrow \infty, \psi \rightarrow 1$
$\chi \rightarrow \infty, \psi \rightarrow 0$
386 2nd paragraph Moreover...equation
Moreover, both the velocity components (in Cartesian coordi-
nates!) of $\S 4.3$ and the temperature profiles of this section satisfy the Laplace equation.

396 Prob 12A. 5 Ans 0.111
396 Prob 12B. 1 Ans 7.9
0.19

420 Eq 13.6-24
423 Fn 1
425 Eq 14.1-9
434 Eq 14.3-14 $\quad L / D$
$435 \begin{aligned} & \text { Before and af- } \\ & \text { ter Eq 14.3-16 }\end{aligned}$
451 Prob 14B. 2
oil temperature
451 Prob 14B. 5
$d T$
455 §15.1, line 7a To these we add:

Q
480 2nd line of table 1242
483 Prob 15C.1(d) Eq. 15C.1-3
507 Eq 16.6-6
$q^{(r)}$
$0.111 \mathrm{~cm}^{2} / \mathrm{s}$
8.2
0.20
a_{2}
1882-1957
k_{01}
z / D

Re
oil bulk temperature
$d T_{b}$
To these we add (also at the entry and exit planes):
Q_{c}

1245

Eq. 15C.1-4
$q_{z}^{(r)}$

509 Prob 16B. 3 The second part (a) should be relabeled (b)
509 Prob 16B. 3 Replace opening paragraph by: A Schedule 40 two-inch horizontal Steel pipe (inside diameter 2.067 in ., wall thickness 0.154 in.; $k=$ $26 \mathrm{Btu} / \mathrm{hr} \cdot \mathrm{ft} \cdot \mathrm{F}$) carrying steam is insulated with 2 in. of 85% magnesia ($k=0.35 \mathrm{Btu} / \mathrm{hr} \cdot \mathrm{ft} \cdot \mathrm{F}$) and tightly wrapped with a layer of clean aluminum foil ($e=0.05$). The pipe is surrounded by air at 1 atm and 80 F , and its inner surface is at 250 F .
523 Ex 17.2-1, table $T(\mathrm{~K}) \quad T_{c}(\mathrm{~K})$

527 After Eq 17.3-17 ...over a wide of... ...over a wide range of

529 Line 3b (in text) ...process here... ...process there...
530 Ex 17.4-1, soln $0.705 \quad 0.705 \mathrm{cp}$
531 Eq 17.4-9 $1.40 \quad 140$
536 Eq 17.8-4 $x_{A} \quad x_{\alpha}$
538 Fn $5 \quad$ Insert after (1999): ; 40, 1791 (2001)
$\begin{array}{llrr}540 & \text { Prob 17A. } 7 & \text { self-diffusion at } & \text { self-diffusion } \\ \text { Title } & \text { high density } & \end{array}$

542 Eq 17C.2-3
544 Fn
3nd edition
$\nabla \omega_{A}$
3rd edition

The z axis should extend downward from the oxygen- SiO_{2} interface.

607 Prob 19B. 6 which it undergoes which A undergoes
608 Eq 19B.6-2 Eq. 19B.6-2 should read as follows:

$$
\sqrt{\frac{k_{1}^{\prime \prime \prime}}{D_{A B}}}\left(R-R_{0}\right)-\ln \frac{1+\sqrt{k_{1}^{\prime \prime \prime} / D_{A B}} R}{1+\sqrt{k_{1}^{\prime \prime \prime} / D_{A B}} R}=-\frac{k_{1}^{\prime \prime \prime} c_{A 0} M_{A}}{\rho_{\mathrm{sph}}}\left(t-t_{0}\right)
$$

[Note: In a previous list of corrigenda, Eq. 19B.6-2 was given incorrectly]

6171 line after is given by now depends on $x_{A 0}$, Eq 20.1-23
$x_{A \infty}$, and the ratio
$N_{B z 0} / N_{A z 0}$:
617
Eq 20.1-24 $\quad \varphi\left(x_{A 0}\right)$
φ

617 Example 20.1-1, ...calculations.
...calculations last line
(see §22.8).
618 Line 3b of text shown in Fig. 20.1-2 shown in Figure 20.1-2 (for $a=b$)

618 Fig 20.1-2
by Eqs. 20.1-36 to 38 by Eqs. 20.1-35 to 37
(for $a=b$)

620 Eq 20.1-59
$\omega_{A}^{(2)}$
$\bar{\omega}_{A}^{(2)}$
[Make the same change one line above the equation as well as two lines above the equation]

631 Line 4b
Figures 22.8-6 and $7 \quad$ Figures $22.8-5$ to 7

643 Footnote 2
P. C. Chatwin...(1985) H. B. Fisher, Ann. Rev. Fluid Mech., 5, 59-78, (1973)

649 Prob 20A.5(a) Eq. 20.1-38
649 Prob 20A. 6 ...and $\mathrm{Sc}=2.0$.

Eq. 20.1-37
$\ldots n_{B 0}(x)=0$, and $\mathrm{Sc}=$ 2.0.

649 Prob 20A. 6 Replace the last 2 sentences by: Use Fig. 22.8-5, with R calculated as R_{ω} from Eq. 20.2-51, to find the dimensionless mass flux ϕ (denoted by ϕ_{ω} for diffusional calculations with mass fractions). Then use Eq. 20.2-1 to calculate K, and Eq. 20.2-48 to calculate $n_{A 0}(x)$

649 Prob 20A. 7 title forced convection forced-convection
649 Prob 20A. 7 ...accuracy. ...accuracy against that of Eq. 20.2-47

649 Prob 20A.7(c) Table 20.2-2
650 Prob 20B. 2 with α constant line 1a

650 Prob 20B. 2 line 1a
provided that
$=$ constant. line 1a

650 Eq 20B.2-2 $\frac{1-\operatorname{erf}\left(Z_{T}-\varphi_{T}\right)}{1-\operatorname{erf} \varphi_{T}} \quad \frac{\operatorname{erf}\left(Z_{T}-\varphi_{T}\right)+\operatorname{erf} \varphi_{T}}{1+\operatorname{erf} \varphi_{T}}$

650 Prob 20B. 6 Delete part (a) of the problem, and relabel (b) and (c) as (a) and (b)

651 Prob 20B. 7 ...to obtain equations ...to obtain implicit equations

651 Prob 20B. 7 ...cases: ...steady-state operations:

651 Prob 20B.7(b) (incorrect in book) $K=\frac{1}{\mathrm{Sc}} \omega_{A \infty} \Pi^{\prime}(0, \mathrm{Sc}, K)$ solution

652 Prob 20B 8
$n=1,2, \ldots$
$n=0,1,2, \ldots$
652 Prob 20C.1(a) a spherical bubble the spherical bubble of Problem 20A.2(a)

656 Prob 20D.5,title embedded
interfacially embedded
668 Prob 21A.1(a) $\ln s c \quad \ln s c$

681 Line 10b The heat transfer
... are
...in §22.8. heading

707 Eq 22.8-11
707 Eq 22.8-12
φ
φ
...in §22.8. Mass-
based versions appear in $\S 20.2$ and §22.9.
$\varphi_{x} \quad$ (3 times!)
$\varphi_{T} \quad$ (3 times!)

707 Line above
Eq 22.3-13

Eq 22.3-13
both formulas is the dimensionless
each formula is a dimensionless

$$
\begin{equation*}
\varphi_{x}=\frac{N_{A 0}+N_{B 0}}{c} \sqrt{\frac{t}{D_{A B}}} \tag{22.8-13}
\end{equation*}
$$

subsection, subsection:

3 lines after

$$
\varphi_{T}=\frac{N_{A 0}+N_{B 0}}{c} \sqrt{\frac{t}{\alpha}}
$$

707 Eq 22.3-13

Eq 22.3-13
7073 lines after
Eq 22.8-13
which...model
(delete this phrase)
715 Eq 22.8-53
Insert the coefficient 0.6205 on the r.h.s.
722 Prob 22A. 3 Add at end of problem statement:
See $\$ 14.5$ for forced-convection heat transfer coefficients in fixed beds.

722 Prob 22A.3, title air temperature
737 Line 4b

738 Line 1a
$t \gg t_{\text {res }} \ldots t_{\text {obs }}$
duration of an
observation, $t_{\text {obs }}$.
$t_{\text {obs }} \gg t_{0} \gg t_{\text {res }}$
Eq 21.3-66
738

756
inlet air temperature
$t_{\text {res }} / t_{0} \ll 1$ and t
, $t_{\text {obs }}$, the time at which the observations of the effluent concentration begin.
$t_{0} \gg t_{\text {res }}$ and $t_{\text {obs }} \geq t_{\text {res }}$
nonzero

757 After Eq 23.6-37 at any other cross at every point section

757 After Eq 22.6-39 very short
finite
7573 lines before Eq. 23.6-31
Eq. 23.6-32
Eq 23.6-41
758 Line 1a
or
or, if $I^{(n)}$ is assumed constant over a crosssection,

758 Eq 23.6-44 $\quad\left[I^{(0)}\right]_{\text {ol av }}$
$I^{(0)}$

758 Eq 23.6-46 Change lower limit of integral from 0 to $-\infty$
758 After Eq 23.6-46 usually commonly
758 After Eq 23.6-46 Thus
Then
766 After Eq 24.1-6 $q^{(h)}$
$\mathbf{q}^{(h)}$
$769 \quad$ Eq 24.2-8 $\quad \nabla \ln a_{\alpha} \quad\left(\nabla \ln a_{\alpha}\right)_{T, p}$
[Make same change in Eqs. 24.2-9 and 10 and in Eq. 24.4-1]
773 Eq 24.2-21 (rhs) x
776 Eq 24.4-5
g +
g -
7771 line above Eq 24.4-11

Fick's first law for the protein flux the protein

777 After Eq 24.4-11 since....zero.
which somewhat resembles Fick's first law.

777 Eq 24.4-12 subscript $M \quad$ subscript W
777 After Eq 24.4-12 Actually....solution. Note that the radial molar flux of water greatly exceeds that of protein, and that the convective protein flux $c_{P} v_{\text {migr }}$ is very small.

779 Just above fns. electromotive
781 line 1a

781 Eq 24.4-26 Replace the last term by:
we

781 Eq 24.4-26 Replace the last term by:

$$
+\frac{1}{c R T}\left(\rho_{M^{+}} \mathbf{g}_{M^{+}}-\omega_{M^{+}} \sum_{\beta} \rho_{\beta} \mathbf{g}_{\beta}\right)
$$

781 Eq 24.4-27 Replace the last term by:

$$
+\frac{1}{c R T}\left(\rho_{X^{-}} \mathbf{g}_{X^{-}}-\omega_{X^{-}} \sum_{\beta} \rho_{\beta} \mathbf{g}_{\beta}\right)
$$

781 1 line after
Eq 24.4-27
Next we use the expression

800 Prob 24B. 3 ans 0.653
electromagnetic
use Eqs. 24.4-24 and 5 to

Next...get: for \mathbf{g}_{α} in Eq. 24.4-5, as well as Eqs. 24.4-24 and 25, to get:

$$
+\left(\frac{x_{S}}{R T}\right) F \nabla \phi
$$

Fig. 24.3-1
$-\left(\frac{x_{S}}{R T}\right) F \nabla \phi$
Fig. 24.2-1
0.064

801	Prob 24C. 3 table	0.507	1.507
803	Prob 24C. 6	...surface	...surface (s and c indicate "sphere" and "continuum")
803	Prob 24C. 6	Here...respectively.	Develop expressions for ϕ_{c} and ϕ_{s}, if $\phi_{c} \rightarrow A r \cos \theta$ for large r.
804	Prob 24D. 1	it is	it may be
808	2 lines after table	vw	vw
808	3 lines after table	[v×w]	[$\mathbf{v} \times \mathrm{w}$]
810	Eq A.1-14	Note	Not
810	Ex 5	W	W
813	3 lines after Eq A.2-20	magnitude of v	magnitude of \mathbf{v}
815	Line 2 of \S A. 3	write a vector v	write a vector \mathbf{v}
815	Eq A.3-4	$\left\{\boldsymbol{\delta}_{i} \boldsymbol{\delta}_{j} \cdot \boldsymbol{\delta}_{k} \boldsymbol{\delta} \mathrm{k}_{l}\right\}$	$\left\{\boldsymbol{\delta}_{i} \boldsymbol{\delta}_{j} \cdot \boldsymbol{\delta}_{k} \boldsymbol{\delta}_{l}\right\}$
817	Line 3a	vo	vw
820	2 lines above Eq A.4-6	if the vector v	if the vector \mathbf{v}
820	3 lines above Eq A.4-10	and the vector v	and the vector \mathbf{v}

821	Footnote 1	∇v	$\nabla \mathbf{v}$
822	Line 4a	the vecto [That is, between	the vector function needs to be inserted ssions]
822	Eq A.4-30	$[\mathbf{t} \cdot v]$	[$\mathbf{t} \cdot \mathrm{v}$]
822	Eq A.4-32	v_{j}	$v_{j}=$
823	Ex 2	0	0
823	Ex 6	0	0
823	Ex. 7(b)	0	0
825	Eq A.5-6	S	s
825	Ex 3	Eq. A.5-6	Eq. A.5-5
828	2nd equation in Exercise 1	$\frac{4}{3} \delta$	$\frac{4}{3} \pi \delta$
829	Eqs A.7-1 to 3	0	0
829	Eqs A.7-6 to 8	0	0
848	Eq B.6-9	g_{θ}	g_{ϕ}
886	Curl operator	832	831,832
887	Dissipation function	847	849
887	Divergence	832	830,832

	operator		
887	Energy equation	847	849
888	Gamma function 853	855	
890	Lennard-Jones potential	864	864,866
892	Products of vectors ...	$813,817,827$	$810,813,817,818,827$
893	Temperature, equation of change for	859	850
893	Tensor, unit	815	19,817
895	Wenzel-...	Krames	Kramers

