
W. Fellin · H. Lessmann · M. Oberguggenberger · R. Vieider (Eds.)

Analyzing Uncertainty in Civil Engineering



Wolfgang Fellin · Heimo Lessmann

Michael Oberguggenberger · Robert Vieider (Eds.)

Analyzing Uncertainty
in Civil Engineering

With 157 Figures and 23 Tables



Editors
a.o. Univ.-Prof. Dipl.-Ing. Dr. Wolfgang Fellin
Institut für Geotechnik und Tunnelbau
Universität Innsbruck
Technikerstr. 13
6020 Innsbruck
Austria

em. Univ.-Prof. Dipl.-Ing. Heimo Lessmann
Starkenbühel 304
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Preface

This volume addresses the issue of uncertainty in civil engineering from design
to construction. Failures do occur in practice. Attributing them to a residual
risk or a faulty execution of the project does not properly cover the range of
causes. A closer scrutiny of the design, the engineering model, the data, the
soil-structure-interaction and the model assumptions is required. Usually, the
uncertainties in initial and boundary conditions as well as material parameters
are abundant. Current engineering practice often leaves these issues aside,
despite the fact that new scientific tools have been developed in the past
decades that allow a rational description of uncertainties of all kinds, from
model uncertainty to data uncertainty.

It is the aim of this volume to have a critical look at current engineering
risk concepts in order to raise awareness of uncertainty in numerical compu-
tations, shortcomings of a strictly probabilistic safety concept, geotechnical
models of failure mechanisms and their implications for construction manage-
ment, execution, and the juristic question as to who has to take responsibility.
In addition, a number of the new procedures for modelling uncertainty are ex-
plained.

Our central claim is that doubts and uncertainties must be openly ad-
dressed in the design process. This contrasts certain tendencies in the engi-
neering community that, though incorporating uncertainties by one or the
other way in the modelling process, claim to being able to control them.

In our view, it is beyond question that a mathematical/numerical for-
malization is needed to provide a proper understanding of the effects of the
inherent uncertainties of a project. Available information from experience, in
situ measurements, laboratory tests, previous projects and expert assessments
should be taken into account. Combining this with the engineering model(s)
- and a critical questioning of the underlying assumptions -, insight is gener-
ated into the possible behavior, pitfalls and risks that might be encountered
at the construction site. In this way workable and comprehensible solutions
are reached that can be communicated and provide the relevant information
for all participants in a complex project.

This approach is the opposite of an algorithm that would provide single
numbers pretending to characterize the risks of a project in an absolute way
(like safety margins or failure probabilities). Such magic numbers do not exist.
Instead of seducing the designing engineer into believing that risks are under
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control, we emphasize that understanding the behavior of the engineering
system is the central task and the key to responsible decisions in view of risks
and imponderables.

The book is the result of a collaborate effort of mathematicians, engineers
and construction managers who met regularly in a post graduate seminar at
the University of Innsbruck during the past years. It contains contributions
that shed light on the central theme outlined above from various perspectives
and thus subsumes the state of discussion arrived at by the participants over
those years. Except for three reprints of foundational papers, all contributions
are new and have been written for the purpose of this collection.

The book starts with three papers on geotechnics. The first two articles by
Fellin address the problem of assessment of soil parameters and the ambigu-
ity of safety definition in geotechnics. The third paper by Oberguggenberger
and Fellin demonstrates the high sensitivity of the failure probability on the
choice of input distribution. This sets the stage for the theoretically oriented
paper by Oberguggenberger providing a survey of available models of uncer-
tainty and how they can be implemented in numerical computations. The
mathematical foundations are complemented by the following paper of Fetz
describing how the joint uncertainty in multi-parameter models can be in-
corporated. Next, Ostermann addresses the issue of sensitivity analysis and
how it is performed numerically. This is followed by a reprint of a paper by
Herle discussing the result of benchmark studies. Predictions of deformations
obtained by different geotechnicians and numerical methods in the same prob-
lem are seen to deviate dramatically from each other. Lehar et al. present an
ultimate load analysis of pile-supported buried pipelines, showing the exten-
sive interplay between modelling, laboratory testing and numerical analysis
which is necessary to arrive at a conclusive description of the performance of
the pipes. The paper by Lessmann and Vieider turns to the implications of
the geotechnical model uncertainty to construction management. It discusses
the type of information the construction manager would need as well as the
question of responsibility in face of large model uncertainties. The following
paper by Oberguggenberger and Russo compares various uncertainty models
(probability, fuzzy sets, stochastic processes) at the hand of the simple exam-
ple of an elastically bedded beam, while the article by Oberguggenberger on
queueing models ventures into a similar comparison of methods in a theme
relevant for project planning. The book is completed by a reprint of a survey
article showing how fuzzy sets can be used to describe uncertainty throughout
civil engineering.

Innsbruck, Wolfgang Fellin
May 2004 Heimo Lessmann

Michael Oberguggenberger
Robert Vieider
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Assessment of characteristic shear strength
parameters of soil and its implication in
geotechnical design

Wolfgang Fellin

Institut für Geotechnik und Tunnelbau, Universität Innsbruck

Summary. The characteristic shear strength parameters of soil are obviously de-
cisive for the geotechnical design. Characteristic parameters are defined as cautious
estimates of the soil parameters affecting the limit state. It is shown how geotech-
nical engineers interpret this cautious estimate. Due to the inherent lack of data in
geotechnical investigations there is always a certain degree of subjectivity in assess-
ing the characteristic soil parameters. The range of characteristic shear parameters
assigned to the same set of laboratory experiments by 90 geotechnical engineers has
been used to design a spread foundation. The resulting geometrical dimensions are
remarkably different. It is concluded that geotechnical calculations are rather esti-
mates than exact predictions. Thus for intricate geotechnical projects a sensitivity
analysis should be performed to find out critical scenarios. Furthermore a continuous
appraisal of the soil properties during the construction process is indispensable.

1 Characteristic values of soil parameters

1.1 Definition

European geotechnical engineers proposed a definition of the characteristic
value of soil or rock parameters given in EC 7:

”The characteristic value of a soil or rock parameter shall be selected
as a cautious estimate of the value affecting the occurrence of the limit
state.” [4, 2.4.3(5)]

Failure in soils is generally related with localisation of strains in shear bands.
Therefore, simple geotechnical limit state analyses are based on assuming
shear surfaces, e.g., the calculation of stability of slopes using a defined shear
surface, see Fig. 2. Thus the value affecting the limit state is the shear strength
of the soil. The shear strength in the failure surfaces is usually modelled by
the Mohr-Coulomb failure criterion τf = c+σ · tanϕ, with the stress σ acting
normal to the shear surface. The validity of this model will not be discussed
here, it should only be mentioned that it is not applicable in all cases.
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Assuming that the Mohr-Coulomb failure criterion is an appropriate
model, the parameters whose distributions we have to analyse are the fric-
tion coefficient µ = tanϕ and the cohesion c.

In the limit state1 the shear strength is mobilised over the whole length
of the shear surface. Accounting for this is usually done in the way as EC 7
proposes:

”The extent of the zone of ground governing the behaviour of a
geotechnical structure at a limit state is usually much larger than
the extent of the zone in a soil or rock test and consequently the
governing parameter is often a mean value over a certain surface or
volume of the ground. The characteristic value is a cautious estimate
of this mean value. . . . ” [4, 2.4.3(6)]

1.2 Intuitive Model

A very instructive model to explain this idea was presented in [6]. We consider
the base friction of n equally weighted blocks on a horizontal soil surface, see
Fig. 1. The blocks are pushed by the horizontal force H . The total weight of
the blocks is W . Each block has the weight of W/n and the friction coefficient
µi.

H

i

2 3 n1

µ

Fig. 1. Equally weighted blocks pushed by a horizontal force on a horizontal soil
surface.

Each block i contributes to the resistance µiW/n. For a constant pushing
force H all blocks act together. Thus the total resisting force is

n∑

i=1

µi
W

n
= W

1
n

n∑

i=1

µi = Wµ .

The limit state function for slip is therefore

g := µW − H .

1 Strictly spoken this is only true in critical state.
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Slip occurs when g ≤ 0. We see clearly, that in this example the mean value
of the friction coefficient µ is affecting the limit state.

Extending this idea to general geotechnical design raises at least three
obvious difficulties:

Do all blocks act together? Consider that the blocks are pulled and not pushed.
If the blocks are not glued together, the crucial value for the limit state is
the friction coefficient of the right block and not the (spatial) mean value.

Equally weighted? The normal stress in the shear planes is usually not con-
stant, e.g. in the case of a slope stability calculation in Fig. 2. A mean
value is therefore only approximately valid for a specific stress range, i.e.
depth.

Defined shear surface? The model of a defined shear surface is of course a
very simple one. In reality the shear surface tends to find its way through
the weakest zones. Therefore, the shape of the real shear surface in an
inhomogeneous soil is different from that in the model. This increases the
uncertainties, e.g., the bearing capacity is lower in inhomogeneous soil
than in homogeneous soil [5].

Fig. 2. Stability of slope.

Simple geotechnical limit state models use a predefined shear surface, e.g.,
in the calculation of slope stability a circular shear surface is used to find the
circle with the minimum global safety, see Fig. 2. This implies that we can
model certain regions of the soil as homogeneous materials with characteristic
shear parameters. When using (spatial) mean values in these regions, one has
to check carefully if the assumed failure mechanism in such simple models
is really valid or if, e.g., a series of weak layers changes the presumed shear
surface considerably, and therefore the mechanical behaviour of the whole
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system, e.g. Fig. 3. In other words, mean values of the shear strength pa-
rameters are appropriate for being used for a soil region if the defined shear
surface of the geotechnical model in this region is not significantly changed
by inhomogeneities.

silt

plastic

(a) (b)

silty gravel
silty gravel

Fig. 3. Change of the shear surface, due to a weak layer:
(a) In homogeneous conditions the shear surface (dashed line) can be assumed as a
circular slip curve.
(b) A weak layer attracts the shear surface.

1.3 Basic statistical methods

In geotechnical investigations the number of samples is mostly very small.
Therefore, statistical methods cannot be used in a straightforward manner.
Thus choosing a characteristic value requires subjective judgement, as we will
see in the example below. However, knowing the statistical background gives
a better understanding of what a cautious estimate could mean. Furthermore,
using statistical methods as a basis of determining characteristic values struc-
tures the decision making process and makes it therefore clearer and, maybe,
more exchangeable between different individuals.

In EC 7 statistical methods are explicitly allowed:

”. . . If statistical methods are used, the characteristic value should be
derived such that the calculated probability of a worse value governing
the occurrence of a limit state is not grater than 5%.” [4, 2.4.3(6)]

This is in agreement with EC 1:

”Unless otherwise stated in ENVs 1992 to 1999, the characteristic
values should be defined as the 5% fractile for strength parameters
and as the mean value for stiffness parameters.” [3, 5(2)]
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Pure statistics

As discussed above, we assume in the following that the mean values of the
shear parameters are decisive for the limit state. An estimate of the mean
value of the population X (cohesion or friction coefficient) is the sample mean
value of the n sample members

x̄ =
1
n

n∑

i=1

xi . (1)

We can further estimate a confidence interval for the mean value. The mean
value of the population lies in this interval with a probability of (1-α). Thus
that the probability of a mean value lower than the lower bound of the con-
fidence interval is α/2, because there are also values higher than the upper
bound with a probability of α/2. We can therefore define the characteristic
value (5% fractile) as lower bound of the confidence interval using α/2 = 0.05.
This means a 90% confidence interval, compare [13, 15]. Using the Student’s
t distribution to estimate the confidence interval the characteristic value can
be calculated

xk = x̄ − tn−1, α
2

sx√
n

, (2)

with the sample variance s2
x

s2
x =

1
n − 1

n∑

i=1

(xi − x̄)2 . (3)

Values of the (1-α/2)-quantile of the Student’s t distribution with n−1 degrees
of freedom tn−1,α/2 can be found in standard text books, e.g. [11].

Note that if certain weak zones trigger the failure, it first has to be checked
whether the used simplified geotechnical model is able to capture this be-
haviour. There are cases in geotechnical problems in which the 5% fractile of
the distribution of the soil parameters have to be used as characteristic values,
as it is common for materials in structural engineering, see e.g. [1]. Remember
the intuitive model in Sec. 1.2. If the blocks are pulled, one would use the 5%
fractile of the distribution of the friction coefficient µ as characteristic value,
and not the lower bound of the 90% confidence interval of the mean value of
µ.

Incorporation of engineering experience

It is obvious that using only one to four specimens, as it is common in geotech-
nical engineering, a purely statistically determined characteristic value tends
to be very low, due to the high uncertainty expressed by the wide confidence
interval (large tn−1,α/2 and sx).
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There are several methods to incorporate a priori information about the
soil — the so called engineering experience — into the determination of the
characteristic value, e.g. [1, 12, 7], which are often based on Bayesian methods.
They all bring additional subjectivity into the estimation of the characteristic
value, and their rigorous (and sometimes complicated) formulas only pretend
to be more accurate.

The simplest method is just to use the knowledge of the scatter of the
properties of soils classified to be of the same soil type, e.g. from a laboratory
database [1]. Some widely used values are summarised in Table 1.

Table 1. Coefficient of variation V for shear properties of soil

V V
Soil property typical range mean [8]

(recommended [12])
ϕ 0.06 – 0.14 [8] 0.1

0.05 – 0.15 [12]
0.02 – 0.13 [2]

c 0.3 – 0.5 [8, 12] 0.4

Assuming from experience that these variations can be applied in the case
under investigation we ”know” the coefficient of variation, and therefore (2)
changes to (see [1])

xk = x̄ − t∞, α
2

sx√
n

= x̄ − 1.645
sx√
n

, (4)

with

sx = x̄Vx ,

and α/2 = 0.05 as before to get the lower bound of the 90% confidence interval.
Note that adjusting the variation and/or the mean value of the sample is a

very subjective decision, which must be justified by the responsible engineer.
This requires usually a database [1] and local experience.

Moreover, when estimating the characteristic shear parameters, one should
never try to be more accurate than the underlying mechanical model. The
Mohr-Coulomb failure criterion is a very simplified model, e.g., the friction
angle is actually pressure dependent and therefore not a material constant or
a soil property.

2 Example

The results of classification and ring shear tests of glacial till of northern
Germany are listed in Table 2 [13].
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Table 2. Classification and ring shear tests, glacial till (marl), northern Ger-
many [13]

specimen fines sand gravel Ip γ ϕ c
No . % % % kN/m3 ◦ kN/m2

1 55 45 0 0.25 20.7 23 55
2 28 67 5 0.17 19.7 27 15
3 47 52 1 0.20 21.3 29 16
4 40 60 0 0.17 21.9 33 13

Using (1) and (3) with xi = tanϕi we end up with the sample mean and
standard deviation of the friction coefficient and angle

tanϕ = 0.5344 , stan ϕ = 0.0937
ϕ = 28.1◦ , sϕ = 5.4◦ .

The same procedure with xi = ci yields

c̄ = 24.8 kN/m2 , sc = 20.2 kN/m2 .

The characteristic values taken as lower bounds of the 90% confidence intervals
(2) with tn−1,α/2 = t3,5% = 2.353 are

ϕk = 23◦

ck = 1 kN/m2
.

Statistical information from the small sample (n = 4) gives rather low
characteristic values due to the high uncertainty expressed by the large Stu-
dent’s t quantile and the large standard deviation.

A database for glacial till from the same geographical region (131 shear
box tests) gives additional regional experience [1]

tanϕ = 0.627 , Vtan ϕ = 0.09

c̄ = 9 kN/m2
, Vc = 0.95 .

If we decide that these values of Vtan ϕ and Vc are the coefficients of varia-
tions of the population of our laboratory tests, we can use (4) to estimate the
characteristic values

ϕk = 26◦

ck = 4 kN/m2
.

All of a sudden we end up with two different sets of characteristic values.
This seems to be an intrinsic problem in geotechnical engineering, due to the
persistent lack of data. There is no purely mathematical justification which
values are the best. The engineer has to decide which information is used,
either the results of laboratory tests only, or additional information from a
database or experience, see Fig. 4. Therefore (among other uncertainties) the
level of safety in geotechnical problems will never be known (exactly).
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c , ϕ c , ϕ

tests
laboratory

database

Fig. 4. Different information leads to different characteristic values.

2.1 Geotechnical engineers’ opinions

In a survey the set of experimental data of Table 2 was given to 90 geotechnical
engineers in Germany [13]. They were asked to determine the characteristic
shear parameters for using them in a slope stability problem. The wide range
of answers is illustrated in Fig. 5 and Fig. 6.
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Fig. 5. Frequency of given characteristic friction angles [13]

The recommended values for the characteristic friction angle ϕk are in
between 25◦ and 35◦, where 27◦ was most frequently given. The range of the
characteristic cohesion is much wider, from 0 to 27 kN/m2, with 10 kN/m2

as the most common value. The method of estimating these values remains
unclear.
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Fig. 6. Frequency of given characteristic cohesions[13]

3 Influence on design

The influence of the range of given characteristic values on geotechnical design
is illustrated using the simple example of the bearing capacity of a square
spread foundation, see Fig. 7.

plan view

cross section

���� ����

Q

t γ ϕ
c

b

Qa=b

Fig. 7. Vertically and centrically loaded quadratic footing: t = 1 m, Qk = 1000 kN,
γk = 20.9 kN/m3 (mean value from Table 2).

The bearing capacity is calculated according to [9]. The design value of
the long term bearing capacity (drained conditions) is

Qf,d = A′(γ′
u,db

′Nγ + γ′
o,dtNq + cdNc) ,

with the bearing capacity factors for vertical load, horizontal surface and base
plate
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Nq = sq
1 + sinϕd

1 − sinϕd
eπ tan ϕd ,

Nγ = sγ(Nq − 1) tanϕd ,

Nc = sc(Nq − 1)ϕd ,

and the shape factors

sγ = 1 − 0.3
b′

l
, sq = 1 +

b′

l
sin ϕd , sc =

Nqsq − 1
Nq − 1

.

In our simple example b′ = b, l = a, A′ = b2 and the unit weight γ′
u,d =

γ′
o,d = γd.

The design values of the soil parameters are ([9]; regular loading):

cd =
ck

1.3
,

ϕd = arctan
(

tan ϕk

1.3

)
,

γd =
γk

1.0
.

The design value of the load is according to [9]: Qd = Qk · 1.0.
We search for the minimal dimensions a = b of the footing, i.e. a = b such

that the design bearing capacity Qf,d is equal to the design load Qd. This
yields

b3γdNγ + b2(γdtNq + cdNc) − Qd = 0 .

The bearing capacity factors Nγ , Nq and Nc for a quadratic footing are func-
tions of the design friction angle only. We assume the unit weight as constant,
because its variability is comparably small. Thus the width b is only a function
of the characteristic shear parameters

b = f(ϕk, ck) .

Of course, the geotechnical engineers determined the values ϕk and ck

simultaneously. Unfortunately, the information about which ϕk corresponds
to which ck is not accessible from [13]. Therefore, we deal in the following
with all possible combinations.2

The resulting variation of the width of the spread foundation is assembled
in Figs. 8–10. The width ranges between b = 0.85 m und b = 2.08 m for
all combinations of recommended characteristic values. For the most common
values ϕk = 27◦ and ck = 10 kN/m2 the footing dimension is a = b = 1.50 m.
2 This is synonymous with assuming that the friction angle and the cohesion are

not correlated, which is obviously not true. But in this qualitative study this
simplification should be appropriate, as it gives an upper limit of the range of the
footing dimensions.



Assessment of characteristic shear strength parameters of soils 11

25

30

35
0

10

20

30

0.8

1

1.2

1.4

1.6

1.8

2

2.2

c
k
 [kN/m2] ϕ

k
 [°]

a=
b 

[m
]

Fig. 8. Dimension of the footing (Fig. 7) for the recommended characteristic values
(Fig. 5 and Fig. 6). The label • refers to the most common values ϕk = 27◦ and
ck = 10 kN/m2.

A calculation with the characteristic values statistically determined from the
sample, ϕk = 23◦ and ck = 1 kN/m2, gives even a result outside this range
b = 2.71.

The relative frequency of the footing dimension can be calculated directly
from the frequency distribution of the recommended characteristic values
(Figs. 5 and 6) assuming again uncorrelated shear parameters, see Fig. 11.
As above the most common value is b = 1.5 m, but also values of b = 1.3 m
and b = 1.6 m would result with similar frequency. Extreme values of the
dimensions are predicted very seldom.

Which footing dimension is correct? This answer can only be given in a
model experiment. Assuming that all footings are loaded below the limit state,
the actual safety level is drastically different. Note, that the area a · b of the
largest footing is approximately six times greater than the area of the smallest
footing. This would lead to very different construction costs.
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Fig. 9. Dimension of the footing (Fig. 7) for the recommended characteristic values
(Fig. 5 and Fig. 6). The label • refers to the most common values ϕk = 27◦ and
ck = 10 kN/m2.
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Fig. 10. Dimension of the footing (Fig. 7) for the recommended characteristic values
(Fig. 5 and Fig. 6). The label • refers to the most common values ϕk = 27◦ and
ck = 10 kN/m2.

Is the world black and white?

Let’s try to compare geotechnical engineering with the simple problem of
lifting a black bowl with a crane operated by a myopic driver. The operator
sees the bowl fuzzy, like geotechnical engineers that cannot exactly determine
the soil parameters. The operator will open his gripper as wide as he estimates
the diameter of the bowl. This can be compared with his estimation of the
confidence interval. Depending on his experience with his myopic view, there
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Fig. 11. Relative frequency of the the footing dimension.

is a certain possibility that gripping the bowl fails. This is something like a
failure probability.

Defining a single characteristic value is comparable to wearing spectacles
which cut off the light grey zones at the border of the operators’ fuzzy view
of the bowl and fill the rest in black. In such a way, the operator will have the
illusion of a sharp (deterministic) view and tend to be sure that gripping the
bowl would work. He has no chance to bring in his personal experience and is
behaving like a ”blind” robot.

Codes tend to offer engineers such spectacles. By fixing characteristic val-
ues and partial safety factors they cut away the intrinsic fuzziness of geotech-
nical design. This seems to make decisions easier but it pretends a not existing
safety level.

4 Conclusions

Obviously the determination of the characteristic values as an input value for
geotechnical calculations is decisive for the numerical result. The usual lack of
data in geotechnical investigations leads to an ambiguous assessment of these
input data. As seen in the example above this ambiguity leads to significantly
different characteristic values given by different geotechnical engineers and
therefore to considerable differences in geotechnical design.

The main point which has to be kept in mind is that the input of a geotech-
nical calculation — whatever method is used to determine the parameters —
is a cautious estimate. Combined with other uncertainties, e.g. a crude me-
chanical model, the result of the calculation is therefore also an estimate. In
1936 Therzaghi stated:



14 Wolfgang Fellin

”In soil mechanics the accuracy of computed results never exceeds that
of a crude estimate, and the principal function of the theory consists
in teaching us what and how to observe in the field.” [14]

One has to face the fact that regardless of the enormous developments in
geotechnical theories and computational engineering since 1936, the variability
of the soil will never vanish, and geotechnical engineers will always suffer
from a lack of information. Thus even the result of the highest sophisticated
numerical model will be more or less a crude estimate.

Therefore, an additional crucial information from a calculation is the sen-
sitivity of the output with respect to the input. That provides a linearised
estimation of the design variability at the considered design point due to a
possible scatter of all input parameters, among them the characteristic soil
properties. Input parameters with the highest output sensitivity are the cru-
cial ones. Their values should be determined either with higher accuracy or
more caution or both.

A better solution would be to take into account the uncertainties as fuzzi-
ness and end up with a fuzzy result, which provides the whole band width of
the design variability due to scattering input parameters. To extract a deter-
ministic dimension of the building from the fuzzy result is not easy either, but
the responsible engineer will have much more information about the behaviour
of the construction than from a single calculation.

In spite of all numerical predictions it is indispensable for sensitive geotech-
nical projects to appraise the soil properties and to observe the construction
behaviour continuously during the construction process. A proper use of the
observational method is a must [10].
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Ambiguity of safety definition in geotechnical
models

Wolfgang Fellin

Institut für Geotechnik und Tunnelbau, Universität Innsbruck

Summary. The design state of buildings and structures should be far from failure.
To achieve this, engineers define a number called safety factor. Safety factor equal
one defines the limit state. Safety factor greater than one identifies safe conditions.
This paper shows with the help of a simple example that the value of the safety
number depends on the used mechanical model and the definition of safety within
this model. This means that the value of the safety is not an absolute measure of
the distance to failure.

Recently safety has often been described by the failure probability. This failure
probability can vary by orders of magnitude depending on the inevitable assumptions
due to some typical unknowns in geotechnical engineering. It provides therefore just
another qualitative indicator for failure.

In conclusion it is recommended to perform an additional sensitivity analysis to
find the unfavourable variations and combinations of the input parameters. There-
with the worst case scenario can be found and a minimal (worst case) safety can be
estimated.

1 Slope stability of a vertical slope

The simplest geotechnical model for a stability analysis of the vertical slope
in Fig. 1 is to assume that failure occurs due to a concentration of the shear
deformation in a planar shear band inclined with the angle ϑ, which is for
the present unknown, see Fig 2.1 The slope will fail if the shear strength τf is
reached along the entire shear band. In a design situation we want to be far
away from this state. Thus, only the so called mobilised shear strength τf,m

is activated in the failure plane

τf,m = cm + σ tan ϕm < τf , (1)

which is the usually used Mohr-Coulomb criterion for the shear strength.
1 For the sake of simplicity we do not want to include any shrinking cleavage, which

would drastically change the model and reduce the safety.
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Fig. 1. Vertical slope: h = 3 m, unit
weight γ = 16 kN/m3.
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Fig. 2. Geotechnical model: planar
failure surface.

In other words, we calculate an artificial equilibrium (limit) state using
reduced shear parameters, namely the mobilised friction angle ϕm < ϕ and
the mobilised cohesion cm < c.

ϕm+90°

90° − ϑ

ϕmϑ −

G

Q

C

Fig. 3. Equilibrium state.

The wedge in Fig. 2 will not slide down, if the weight G (load) is in
equilibrium with the cohesion force C and the friction force Q (resistance),
see Fig. 3.

The weight of the wedge is

G =
1
2
γhl cosϑ . (2)

The mobilised cohesion force is

C = cml. (3)

The mobilised friction force Q acts with the angle ϕm to the geometric normal
of the failure plane.

From Fig. 3 we can deduce

C

sin(ϑ − ϕm)
=

G

cosϕm
. (4)
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Using (2) and (3) in (4) we end up with

cm

γh
=

1
2

sin(ϑ − ϕm) cosϑ

cosϕm
. (5)

The critical angle of the failure plane ϑ will be such that a maximal mo-
bilised cohesion is needed to establish equilibrium for any given mobilised
friction angle. Thus we can get from

d cm

γh

dϑ
= 0 (6)

the angle of the critical failure plane

ϑ =
π

4
+

ϕm

2
= 45◦ +

ϕm

2
. (7)

We can also find the maximal mobilised friction angle for any given mobilised
cohesion by reformulating (5) in terms of ϕm(ϑ) and setting dϕm/dϑ = 0.
This leads to the same angle of the failure plane (7).

Substituting ϑ in (5) using (7) provides the limit state function

g = 4cm tan
(π

4
+

ϕm

2

)
− γh , (8)

where g < 0 indicates failure; g = 0 is called limit state.

2 Various safety definitions

2.1 Reducing shear parameters

The limit state g = 0 can be reached by reducing the shear parameters. Two
safety factors, one for the cohesion and another for the friction angle, can be
defined

ηc =
c

cm
, ηϕ =

tan ϕ

tan ϕm
. (9)

Generally, they may have different values, i.e. the cohesion and the friction
are reduced differently. We will subsequently use the following definitions

ηc =
c

cm
with ϕm = ϕ , (10)

ηϕ =
tan ϕ

tan ϕm
with cm = c . (11)

By introducing (10) and (11) in the limit state function (8) and setting g = 0
we obtain

ηc =
4c

γh
tan

(π

4
+

ϕ

2

)
(12)
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and

ηϕ = tanϕ · tan
[
2 arctan

(
γh

4c

)]
, (13)

respectively.
A third safety factor can be defined by applying the same reduction to the

cohesion and the friction, which is generally known as the Fellenius rule.
We set

cm =
c

η
and tanϕm =

tan ϕ

η
(14)

in the limit state function (8), and from g = 0 follows

η =
2
√

2c(γh tanϕ + 2c)
γh

. (15)

2.2 Increasing loads

Another idea to reach the limit state is to increase the load with fixed shear
parameters. In our example we can increase the gravity to obtain a modified
unit weight

γm = ηγγ . (16)

Replacing γ by γm in the limit state function (8), setting ϕm = ϕ, cm = c
and g = 0 yields

ηγ =
4c

γh
tan

(π

4
+

ϕ

2

)
= ηc . (17)

2.3 Disturbing forces compared with resistance forces

G

Nϑ

N

ϕ

C

T R

90°

ϑ

Fig. 4. Disturbing force T and resistance force R + C.

A safety factor can also be defined by dividing the shear resistance forces
by the disturbing forces in the failure plane. This is according to Fig. 4

ηFS =
C + R

T
=

cl + G cosϑ tan ϕ

G sin ϑ
. (18)
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With cm = c/ηFS , tanϕm = tanϕ/ηFS , (2) and (3) this can be rewritten

cm

γh
=

1
2
(cos ϑ sinϑ − cos2 ϑ tan ϕm) =

1
2

sin(ϑ − ϕm) cosϑ

cosϕm
. (19)

This is the same equation as (5) and therefore

ηFS = η . (20)

2.4 Comparison of the different safety definitions

All aforementioned safety definitions give the same value for a slope in limit
state: η = ηc = ηϕ = ηγ = 1. If the shear parameters are higher than required,
all safety factors are bigger than one but different! This is illustrated in Figs. 5
and 6.

6 7 8 9 10 11
0.5

1

1.5

2

c [kN/m2]

η 
[−

]

ϕ = 30°

ηϕ
η

c

η

Fig. 5. Factors of safety for the slope in Fig. 1 for ϕ = 30◦ and varying cohesion;
η < 1 indicates failure.

In geotechnical calculations mostly the Fellenius definition η (14) and
sometimes ηc are used; ηϕ is rather unusual. One method for limit state anal-
yses in finite element calculation is to increase the gravity until the structure
fails, i.e. ηγ is used in such simulations.

The Fellenius definition gives in our example the lowest value of safety.
This safety η is plotted in Fig. 7 as function of the cohesion and the friction
angle.

2.5 Distance to failure?

Geotechnical engineers desire to know how far their structures are from col-
lapse. This is a kind of distance to failure. Let us assume that the soil of the
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Fig. 6. Factors of safety for the slope in Fig. 1 for c = 11 kN/m2 and varying
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Fig. 7. Factor of safety due to Fellenius rule for the slope in Fig. 1.

slope in Fig. 1 has a cohesion of c = 11 kN/m2 and a friction angle of ϕ = 30◦.
How far is this from limit state?

One measure of the distance is (c − cm) with ϕm = ϕ, which appears as
vertical distance in Fig. 8. This distance is represented by the safety factor
ηc: c − cm = c(1 − 1/ηc). Another measure is the distance (tan ϕ − tan ϕm)
with cm = c, which is a horizontal distance in Fig. 8. An expression for this
distance is ηϕ. Using the Fellenius definition we measure a third distance,
which is represented by η. Obviously all three distances – and therefore the
safety factors – are different, although they are measures of the same state
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Fig. 8. Distance to limit state (8): c = 11 kN/m2, ϕ = 30◦; ηc = 1.59, ηϕ = 6.63,
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difference. Using the Euclidean metric the minimal distance can be found
perpendicular to the curve defined by the limit state g = 0, which is lower
than the distance obtained by η, see Fig. 8. The direction and the value of the
minimal distance will change, if the coordinates are changed, e.g. if we plot g
in a c–ϕ coordinate system, instead of a c–tanϕ system. All these underlying
conventions make the distance interpretation ambiguous.

One has to keep in mind that any safety definition is kind of arbitrary.
Therefore values higher than one are no absolute measure of a distance to
failure.

2.6 Design according to European codes

Based on the semi-probabilistic safety concept the new codes EC 7 [2] and
DIN 1054-100 [1] are using partial safety factors for load and resistance. The
characteristic values of load and resistance are increased and decreased to the
design values by partial factors γ, respectively:

γd = γGγk , (21)

cd =
ck

γc
, (22)

tan ϕd =
tan ϕk

γϕ
, (23)

with the characteristic values of the shear parameters ck and ϕk (resistance),
the characteristic value of unit weight γk (load), the partial factors for the
shear parameters γc and γϕ, and the partial factor for persistent loads γG.
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Fig. 9. Distance to limit state (8) measured with partial safety factors: ck =
11 kN/m2, ϕk = 30◦, design values according to (21)-(23) and Table 1.

Table 1. Partial factors in EC 7 [2] and DIN 1054-100 [1].

EC 7 DIN 1054-100
case C case GZ 1C, load class LF 1

γG 1.0 1.0
γϕ 1.25 1.3
γc 1.6 1.3

In a calculation using the design values the structure must not fail: g > 0.
The partial factors given in the two codes are different, see Table 9. This

causes different design states, see Fig. 9. In our particular case a calculation
based on EC 7 would predict unsafe conditions, whereas a calculation accord-
ing to DIN 1054-100 would state safe conditions. Not only the value of the
distance between characteristic and design state is different, also the direction
of the distance is changing when using different codes. Again, the definition
of safety is kind of arbitrary.

2.7 Probabilistic approach

The safeties η, ηc and ηϕ generally do not measure the shortest distance
between the actual state of the structure to the limit state g = 0, see Fig 10.
In addition, such safety definitions do not account for the curvature of the
limit state function, see Fig 11.

A more objective assessment of the risk of failure is desired. Soil varies
from point to point, results of experiments scatter and there is generally a
lack of site investigations. Provided that one accepts that such uncertainties
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η (14) and different limit state func-
tions g1 and g2: The distance to g2 is
shorter.
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Fig. 11. Two situations with equal η
(14) and different limit state functions
g1 and g2: more combinations of c and
ϕ exist with failure conditions in the
case of g2 (area below the limit state
g2 = 0 is larger than the area below
g1 = 0).

can be modelled with random fields, the probabilistic safety concept seems to
offer such an objective measure. The idea sounds simple: If a unique and well
defined limit state function exists, we just have to calculate the probability of
g < 0, which is called failure probability pf .

Let us try to estimate the failure probability of the vertical cut in Fig. 1.
First we have to determine the probability distribution functions of the shear
parameters and the unit weight. The type of these functions is usually un-
known, and the choice of different types and parameter fittings has a strong
influence on the resulting failure probability, especially for such small failure
probabilities as required in the codes [6]. To stay simple, we assume that the
unit weight does not scatter and choose normal distributions for the shear
parameters, with the distribution parameters mean value µ and standard de-
viation σ.

The afore used characteristic values ck = 11 kN/m2 and ϕk = 30◦ are
cautious estimates of the mean values [3]. Thus, the mean value µ lies within
an interval, of which the lower boundary is the characteristic value. Typical
intervals may be

µc = [11 . . .23] kN/m2 (24)
µϕ = [30 . . .35] ◦ . (25)

If statistical data were available (24) and (25) would be chosen as confidence
intervals.

We estimate the standard deviation using coefficients of variations of soil
properties proposed in [5, 8]: Vϕ = 0.1, Vc = 0.4; σ = µV . We further assume
that Vϕ = Vtan ϕ.
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Monte-Carlo simulations applied to the limit state function (8) with de-
terministic γ = 16 kN/m3, normally distributed c ∼ N(µc, σ

2
c ) and tanϕ ∼

N(µtan ϕ, σ2
tan ϕ) results in the solid line in Fig. 12. In such a simple calcula-

tion the shear parameters are assumed to be equal over the whole length l
of the shear band, no spatial averaging of the shear parameters is taken into
account. Therefore the resulting failure probability pf is an upper bound.
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p f

δ > l
δ = 1 m

Fig. 12. Failure probability for the slope in Fig. 1 with correlation length δ > l and
δ = 1 m: µc = [11 . . . 23], µϕ = 30◦.

If we want to account for a spacial averaging, we have to model the shear
parameters as random fields [7]. For this we have to introduce a correlation
function. This is another unknown in our calculations. A list of possible choices
of the correlation function is given in [7]. We want to use the simplest correla-
tion function, where the correlation is one within the correlation length δ and
zero outside. With this simple rectangular function the coefficient of variation
of the averaged parameter in the shear band of length l is

Vµ = V

√
δ

l
with δ < l , (26)

compare [4].
We set δ = 1 m and calculate l = h/ sinϑ. This l would change for every

realisation of tanϕ due to (7). We use the same length l in every realisation
by setting ϕm = µϕ = 30◦ in (7). This error is small compared with other
uncertainties. With l = 3.46 m the coefficients of variations are: Vµϕ = 0.054,
Vµc = 0.21.

Monte-Carlo simulations with c ∼ N(µc, σ
2
µc

) and tanϕ ∼ N(µtan ϕ, σ2
µtan ϕ

)
lead to the dashed curve in Fig. 12. Depending on the actual choice µc the
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calculations with and without spacial averaging differs up to two orders of
magnitude. In addition, different choices of the cohesion µc – all inside the
confidence interval, and therefore with the same probability – also change pf

drastically.
At first glance the probabilistic approach looks like an objective way to

measure the distance to failure. Assuming that soil parameters can be mod-
elled in the probabilistic framework, and provided that the probability distri-
bution functions of load and resistance, as well as the correlation functions
of the shear parameters are known, the failure probability could be a good
measure for the distance to failure. However, there are too many unknowns
and crude estimations in such calculations, so that the failure probability is
just another qualitative indicator for safety.

3 Different geotechnical models

Up to now we studied variations of safety definitions using the same mechani-
cal model, i.e. we used the same limit state function g. But the slope stability
can be analysed with different models, each of which has its certain degree of
simplification. We compare four models:

• the afore presented planar shear surface;
• Bishop’s method for slope stability calculation (circular shear surface);
• a wedge analysis with two rigid bodies, forces between the bodies due to

fully mobilised friction and cohesion;
• a finite element calculation with reduction of the shear parameters down

to collapse.

The limit state functions of these models are different in each case.

Fig. 13. Finite element calculation
with Plaxis, contour plot of the to-
tal shear deformation, bright regions
indicate large deformations.

Fig. 14. Wedge analysis with GGU,
shape of the rigid bodies for minimal
safety η.
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The standard slope stability analyses, Bishop’s method and the wedge
analysis were performed with the software GGU 2. The finite element program
Plaxis 3, which provides a shear parameter reduction according to Fellenius
for a Mohr-Coulomb elasto-plastic constitutive model, was used with the
parameters: E = 20 MN/m2, ν = 0.3, c = [6 . . . 11] kN/m2, ϕ = 30◦, ψ = 10◦.

6 7 8 9 10 11
0.5

1

1.5

c [kN/m2]

η 
[−

]

ϕ = 30°

η wedge
η plane
η Plaxis
η Bishop

Fig. 15. Factor of safety η (14) for the slope in Fig. 1 calculated with different me-
chanical models: η wedge: wedge analysis with rigid bodies; η plane: planar shear sur-
face; η Plaxis: finite element calculation, reduction of the shear parameters; η Bishop:
Bishop’s method, circular shear surface

The results are plotted in Fig. 15. They differ remarkably. From the col-
lapse theorems of plasticity theory we know that the wedge analysis gives
an upper bound for η, which is clearly represented in Fig. 15. For the val-
ues c = 11 kN/m2 and ϕ = 30◦ the obtained safeties are listed in Table 2.
This additional uncertainty enlarges the fuzziness of the safety assessment,
see Fig. 16.

4 Sensitivity analysis

As seen before, the safety factor is sensitive to the input parameters, compare
Figs. 5, 6, 12 and 15. We restrict our attention to the study of the sensitivity
of η with respect to the shear parameters. The variation of the safety due to
variations of the shear parameters can be found by differentiation
2 Civilserve GmbH: http://www.ggu-software.de
3 http://www.plaxis.nl
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Table 2. Factors of safety η (14) for the slope in Fig. 1 calculated with different
mechanical models; c = 11 kN/m2 and ϕ = 30◦.

model / method η
wedge analysis with rigid bodies 1.48
planar shear surface 1.38
finite element calculation 1.35
Bishop’s method 1.21

tan ϕ

g =0

c, tan ϕ )(

c

Fig. 16. Uncertainties in geotechnical safety assessment: Additional to the uncer-
tainty of the mean values of the shear parameters (rectangular area bounded with
dashed line with (c, tan ϕ) the lower bounds of the confidence intervals) there is
a possible range of limit state function due to different mechanical models (area
between solid curves).

∆η ≈ ∂η

∂c

∣∣∣∣
c,ϕ

∆c +
∂η

∂ϕ

∣∣∣∣
c,ϕ

∆ϕ . (27)

We bring this in dimensionless form

∆η

η
≈ ∂η

∂c

∣∣∣∣
c,ϕ

c

η
︸ ︷︷ ︸

=: kc

∆c

c
+

∂η

∂ϕ

∣∣∣∣
c,ϕ

ϕ

η
︸ ︷︷ ︸

=: kϕ

∆ϕ

ϕ
. (28)

and define the dimensionless gradients kc and kϕ. These gradients expose the
most decisive parameters. The sign of k indicates if a cautious estimate of
a parameter is gained by reducing (if k > 0) or increasing (if k < 0) the
mean value. Furthermore one can easily estimate variations of the safety due
to variations of the input.

Example:

We calculate the safety factor η for the slope in Fig. 1 with a planar failure
surface. Using (15) with c = 11 kN/m2 and ϕ = 30◦ gives η = 1.38. The
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partial derivatives of η are numerically evaluated at the values c = 11 kN/m2

and ϕ = 30◦

∂η

∂c

∣∣∣∣
c,ϕ

=
∂η

∂c

∣∣∣∣
11,30

= 0.0904 ,
∂η

∂ϕ

∣∣∣∣
c,ϕ

=
∂η

∂ϕ

∣∣∣∣
11,30

= 0.0155 . (29)

With this we obtain the dimensionless gradients

kc =
∂η

∂c

∣∣∣∣
c,ϕ

c

η
= 0.0904 · 11

1.38
= 0.72 (30)

kϕ =
∂η

∂ϕ

∣∣∣∣
c,ϕ

ϕ

η
= 0.0155 · 30

1.38
= 0.34 . (31)

From this we see immediately that the safety η is more sensitive to the
cohesion than to the friction angle, compare Figs. 5 and 6. For a 10% variation
of the cohesion we can estimate a kc ·10% = 7.2% variation in safety: η−∆η ≈
1.38 · (1 − 7.2/100) = 1.28.

5 Conclusion

The wish of an engineer to know (exactly) how far a structure is from collapse
cannot be fulfilled, at least in geotechnical engineering. The calculated safety
of a structure depends on the used mechanical model and the definition of
safety within this model. The value of this safety is therefore no absolute
measure for a distance to failure. When a certain value of safety is required,
e.g. in codes, it should be stated for which model and safety definition it is
valid.

In addition to the calculation of a single safety value a sensitivity analysis
should be done. This helps to find the unfavourable variations and combina-
tions of parameters. Input parameters with a strong influence on the safety
should either be estimated very cautiously or investigated more intensively.

It is further recommended to do at least two calculations. First perform a
standard calculation with the parameters determined as cautious estimates,
which are in a statistical sense bounds of the 90% confidence intervals. In
this calculation the safety should be greater than the required one η > ηreq,
or the design resistance should be larger than the design load Rd > Sd. In
addition a second calculation, with the worst parameters one can think of,
should be performed. In a statistical sense one can chose e.g. a bound of a
99% confidence interval for each parameter. For these worst parameters the
safety should be at least larger than one ηw > 1, or the worst resistance should
be larger than the worst load Rw > Sw (no partial factors applied). Last but
not least it should not be forgotten that not only the shear parameters scatter,
there can also be a variation in the geometry of soil layers, the groundwater
table and much more. A worst case scenario must also take account of such
variations.
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Summary. In this article, we scrutinize basic issues concerning the interpretation
of probability in the probabilistic safety concept. Using simple geotechnical design
problems we demonstrate that the failure probability depends in an extremely sen-
sitive way on the choice of the input distribution function. We conclude that the
failure probability has no meaning as a frequency of failure. It may supply, how-
ever, a useful means for decision making under uncertainty. We suggest a number
of alternatives, as interval probability, random and fuzzy sets, which serve the same
purpose in a more robust way.

1 Introduction

This paper addresses the role of probabilistic modeling in geotechnical problems.
There is a general awareness of the uncertainties in all questions of geotechnical
engineering; by now, it has also become clear that the uncertainties themselves have
to be modeled. Common practice is to use a probabilistic set-up to achieve this task.
The probabilistic format should be seen as supporting the decision process under
uncertainty, as formulated e. g. by Einstein [6]. It helps structuring the problem
and aids in obtaining qualitative judgments.

The numerical values thus obtained, like failure probabilities and safety factors,
play an important role in comparative and qualitative studies. The point we wish to
make, however, is that these numerical values do not allow quantitative assertions
about reality.

In particular, contrary to common language, the failure probability cannot be
interpreted as a frequency of failure. This fact was already pointed out by Bolotin
[2] as early as 1969. To support our claims, we start off with a general discussion
of the probabilistic format and its underlying assumptions in the second section.
In the third section we present two examples that dramatically exhibit the sen-
sitivity of the failure probability to the choice of probabilistic model. We first fit
different distributions (normal, lognormal, triangular) to the same input data ob-
tained from laboratory experiments. All fits are verified as acceptable by means of
standard statistical tests. This defines a probabilistic model of the data. Then we
apply this model in safety assessments according to the procedures prescribed by
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the European and Austrian codes. The first example concerns slope stability. There
the failure probabilities are seen to vary by a factor of 100 and more when the type
of fitted distribution is changed, depending on the safety class employed for the de-
sign. In the second example, we consider the bearing capacity of a centrically loaded
square footing. In this case we demonstrate that the failure probability may vary by
even higher orders of magnitude: they are seen to range between 10−11 and 10−3,
depending on the choice of fitted distribution. The required design dimensions of the
footing are less sensitive to the input distribution, but still vary by a factor of 1.5
to 1.9. The sensitivity of the tail probabilities in engineering applications has been
observed by other authors as well [7]. In the last section we discuss alternative con-
cepts that are currently under investigation in reliability theory. We start with lower
and upper failure probabilities obtained from interval valued probabilistic parame-
ters, then demonstrate how random set theory can be used to assess the plausibility
of the computed failure probabilities, and finally suggest the possible usefulness of
fuzzy set theory in modeling expert estimates.

2 Probabilistic modeling

To set the stage, we briefly recall the format of the probabilistic safety concept. The
vector R lumps together all variables describing the resistance of a structure, while
S signifies the loads. An engineering model incorporating the structure as well as its
geotechnical environment supplies the limit state function g(R,S). Negative values
of g(R,S) correspond to failure. Modeling R and S as random variables, we can
compute the failure probability

pf = P
�
g(R,S) < 0

�

provided the probability distributions of R and S and their parameters are known.
However, the current codes employ critical values Rk and Sk (certain percentiles of
R and S) and partial safety factors γR and γS, so that the designing engineer has
to verify a relation of the type

Rk/γR ≥ γSSk. (1)

In theory, the critical values and the partial safety factors are computed in such a
way that (1) holds if and only if pf attains a certain required value pfr. For example,
in the case of normally distributed resistance and loads and g(R,S) = R − S one
must choose

γR =
1 − QpVR

1 − βαRVR
, αR =

σR�
σ2

R + σ2
S

, VR =
σR

µR

where µR, σR are the mean and standard deviation of R, pfr = Φ(−β), Qp = Φ(1−
p), Rk is the (1− p) · 100% - percentile of R, and Φ the cumulative standard normal
distribution. In practice, γR and γS are not computed but rather prescribed in the
codes, where they entered as results of negotiations of the respective committees.

For a general description of the uncertainties involved in geotechnical modeling
we refer e.g. to [6]. Here we wish to emphasize a few aspects that are important for
interpreting the results of the probabilistic method.

Uncertainty of non-probabilistic input. At the foremost place, the soil model
has to be mentioned. Is it a continuum model with an elasto-plastic, a hypoplastic
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or another constitutive law, or is it a discrete model? Completely different sets of
influence variables may arise in this way. Second, what is the failure mechanism?
Is it assumed that failure occurs when averages of the parameters exceed certain
values, or is failure assumed to be due to localized disturbances?

Uncertainty of probabilistic input. The probabilistic input in the model consists in
specifying the types of probability distributions of the variables under consideration
as well as the parameters of the distributions. We first point out that probability
plays several roles here. It has to describe as diverse things as

• measurement errors,
• spatial data fluctuations,
• model deficiencies,
• lack of information.

While measurement errors can be considered as approximately random, there are
strong arguments against the presumption of randomness of spatial data fluctua-
tions. The fact that the soil in situ has a definite history contradicts the assumption
of a random character. Major model deficiencies arise from the fact that parame-
ters which vary spatially or actually depend on the state of the system are treated
as constants in models that neglect precisely this variability. There is a notorious
lack of data in geotechnics which often leads to insufficient information. One should
also mention the often enormous deviation of parameter values obtained in com-
parative studies (experiments with the same soil specimen in different laboratories).
Further, there are systematic errors in the choice of model; but the soil properties
and reactions are interpreted through the filter of the chosen model. In addition, soil
samples are necessarily disturbed when extracted, and thus the initial and boundary
conditions applied in laboratory experiments may be different from the correspond-
ing conditions in situ, or even unsuitable to reproduce them. In short, laboratory
experiments introduce systematic (and at the same time unknown) errors in the
determination of the parameter values. When applying a probabilistic formulation,
the probabilistic model has to carry the burden of accounting for the data variability
that comes from all these sources in an unknown mix.

Second, what is probability? In engineering modeling, at least three interpre-
tations can be identified. There is classical probability which assigns probabilities
from combinatorial considerations (for example, the assertion that the number k
of successes in a sequence of n trials has a binomial distribution). Then there is
the frequentist interpretation in which probability is an approximation to relative
frequencies of outcomes in large samples. For the practical purpose of determining
confidence intervals and performing statistical tests for the parameters of a single
random variable “large” means n ≥ 20. This sample size is rarely available in en-
gineering practice, and this makes subjective probability attractive in engineering:
in this interpretation, probability is just a subjective measure of confidence in the
available information. Using prior knowledge and Bayes’ rules, even the information
of a sample of size n = 1 may be incorporated in the assessment of a certain param-
eter. It should be pointed out that frequentist probability, in its applications, has two
facets: there is individual and collective frequency. For example, there were 75.000
large dams (more than 7.7 m high) in operation in the United States in 1999. In the
preceding decade, 440 dam failures (loss of pool) of large dams had been recorded
(data according to [1]; current statistics can be found in [11]). That translates into
a collective frequency of failure of about 1/1700 per year. Does that mean that a
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specific dam under consideration will fail once in the next 1700 years? Of course, for
an assessment of the individual failure rate, individual data like local yearly precip-
itation averages etc. are needed. If these data are lacking, the collective frequency
is a highly questionable estimate for the individual frequency. Often only a mixture
of individual and collective data is available.

The necessity of estimating the individual risk from the collective risk is a well
known problem for insurance premium calculations, especially in property and ca-
sualty insurance. It is known as the insurance dilemma. As stated, for example, by
Bühlmann [4, Sect. 4.2], the “collective premium is essentially derived from sta-
tistical observation data”, while “the [individual] risk premium will simply remain
unknown in most cases”.

Summarizing, we note that the failure probability in the engineering safety con-
cept is an amalgam of classical, subjective and frequentist bits of information. That
observation does not diminish its importance and usefulness for comparative stud-
ies of scenarios. However, the failure probabilities obtained in different engineering
projects cannot be related to each other, as they depend on many individual choices
that had to be made along the way. All the more, they do not have a meaning as an
expected frequency of failure for an individual project. They are what Klingmüller
and Bourgund have termed operational probabilities [10]. There is one more point
which emphasizes these assertions: The probability distributions of the input data
have to be chosen as part of the modeling procedure. It is common statistical prac-
tice to fit them by some likelihood principles and accept them if they pass a number
of statistical tests (Chi-square test of fit, Kolmogorov-Smirnov-test). It is the aim
of this paper to show that the choice of probability distribution, even among the
standard types in use, has dramatic effects on the failure probability. Thus keeping
the limit state model as well as all data fixed, while slightly changing the input
distributions may (and usually does) completely change the value of pf .

3 Sensitivity of failure probabilities: two examples

3.1 Soil parameters and fitting of probability distributions

For the purpose of demonstration, we choose a soil which was very well tested. The
data stem from twenty direct shear tests [3] with disturbed samples of silt that
had been performed with equal initial conditions. Note that this is much more than
usually available on construction site. In each experiment, the water content of the
specimen was near the liquid limit of the silt; the unit weights were nearly identical:
γ = 19.8 kN/m3. The shear velocity was constant and equal in each experiment.
The cohesion resulted to c = 0 for all tests. The obtained friction angles are listed
in Tab. 1.

The Eurocode EC 7, part 1, 2.4.3.(5) suggests the following definition of the
characteristic soil parameters:

The characteristic value of a soil or rock parameter shall be selected as a
cautious estimate of the value effecting the occurrence of the limit state.

The value effecting the limit state is the shear strength of the soil τf = c +σ · tan ϕ,
with the normal stress σ. Therefore, the parameter whose distribution we analyze
is the friction coefficient
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ν = tan ϕ .

The mean value and the standard deviation of the sample are

ν̄ =
1

n

n�
i=1

νi = 0.474 , sν =

���� 1

n − 1

n�
i=1

(νi − ν̄)2 = 0.0452 .

Table 1. n = 20 direct shear tests

friction angle ϕ [◦]

25.6 25.5 24.0 26.0 24.1 24.0 28.5 25.3 23.4 26.5

23.2 25.0 22.0 24.0 24.9 30.0 27.0 24.4 24.3 29.5

There is some discussion in the literature, but no decisive conclusion, what dis-
tribution is appropriate for the friction coefficient. We consider some of those that
have been proposed.

Normal distribution: The simplest and most common choice is the Gaussian
normal distribution ν ∼ �(µν , σ2

ν), with the estimations µν = ν̄ and σ2
ν = s2

ν . This
distribution has the disadvantage that the friction coefficient can be negative, which
is physically impossible. Though this happens only with low probability, a better
choice may be the following lognormal distribution with two parameters, which is
strictly non-negative. Nevertheless, the normal distribution is often used, and can
be seen as providing a conservative (high) estimate of the failure probability.

Lognormal distribution with two parameters: In this case the natural logarithm
of the friction coefficient is assumed to be normally distributed: ln ν ∼ �(µln ν , σ2

ln ν),
with the estimations for the parameters

µln ν = ln ν =
1

n

n�
i=1

ln νi , σ2
ln ν =

1

n − 1

n�
i=1

(ln νi − ln ν)2 .

This distribution is sometimes criticized to give too high probabilities for high fric-
tion coefficients.

When fitted to the data of Tab. 1, both distributions, normal and lognormal,
pass the standard statistical tests (Kolmogorov-Smirnov and χ2, see Tab. 3), but as
we see in Fig. 1, they do not match the peak of the histogram and its asymmetry
very well. A better statistical fit is given by the two following distributions.

Lognormal distribution with three parameters: We shift the lognormal distribu-
tion by the lower limit of the friction coefficient ν0: ln(ν−ν0) ∼ �(µln(ν−ν0), σ

2
ln(ν−ν0)).

The distribution parameters are chosen by maximizing the likelihood function of the
given sample (maximum likelihood method). This distribution fits the histogram
very well, see Fig. 2.

Triangular distribution: The triangular distribution is seldom used in engineer-
ing, but it is simple and matches the histogram also well (Fig. 2): ν ∼ �(lν, mν , uν).
The lower boundary lν , modal value mν and upper boundary uν were fitted with
the maximum likelihood method.
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Table 2. Parameters of the distributions

normal: µν = 0.474 σν = 0.0452

two parameter lognormal: µln ν = −0.749 σln ν = 0.0923

three parameter lognormal: µln(ν−ν0) = −2.192 σln(ν−ν0) = 0.3601 ν0 = 0.355

triangular: lν = 0.394 mν = 0.445 uν = 0.598
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As pointed out above, all four fitted distributions pass the Kolmogorov-Smirnov
as well as the χ2-test at the 95%-level (see Tab. 3). The fact that the goodness of
fit is quite reasonable in all cases can also be observed visually in Fig. 3.

Table 3. Statistical tests of the distributions: computed values are below the 95%-
percentile

Kolmogorov-Smirnov Chi-square

computed 95%-percentile computed 95%-percentile

normal 0.162 0.294 5.12 5.99

two parameter lognormal 0.142 0.294 3.71 5.99

three parameter lognormal 0.113 0.294 1.99 3.84

triangular 0.154 0.294 3.48 3.84

Characteristic values: When statistical data are available (as in our case), it
is commonly agreed upon [19, 20] that the lower boundary of a (1-α)-confidence
interval for the mean value of ν = tan ϕ should be taken as the “cautious estimate”
of the friction coefficient νk = tan ϕk: νk = ν̄− tn−1,α/2sν/

√
n, where tn−1,α/2 is the

(1-α/2)-percentile of the Student t-distribution with (n − 1) degrees of freedom.
Usually α = 0.1 is used, that is a 90% confidence interval. Here we want to use a
slightly more conservative estimate, namely α = 0.05, which gives a 95% confidence
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interval. For (1−α/2)·100% = 97.5% and n = 20 we have tn−1,α/2 = 2.09. Therefore,
the characteristic friction coefficient is νk = tan ϕk = 0.454.

3.2 Spatial and local variation

We mention briefly the well-known geotechnical spatial versus local variation prob-
lem. On the one hand the strength of the material cannot be measured exactly at
each point, and on the other hand the soil is usually spatially inhomogeneous. Both
effects contribute to the variability of the data. For the sake of simplicity we assume
in this example tan ϕ to be homogeneously distributed in space, but otherwise a
random variable with statistical fluctuations.

Griffiths and Fenton [9] showed in the case of a bearing capacity problem in
an undrained soil, that the spatial distribution of the undrained cohesion cu leads to
a reduced capacity factor Nc, because the failure plane tends to find its way through
the weakest zones. The failure mechanism becomes asymmetric. The characteristic
value of the cohesion effecting the occurrence of the limit state is therefore not
the spatial mean value, it is somewhat less, depending on the practically unknown
spatial correlation length.

The results in [9] let us presume that a calculation with spatially homogeneous
soil but allowing statistical variation of the soil strength leads to an upper bound of
the failure probability for small values of pf (<0.05). Introducing a spatial variabil-
ity of the soil parameters would bring additional unknown probability parameters
into the calculation. It would not show new effects for this presentation, except a
prolongation of our list of failure probabilities.

3.3 Example 1: slope stability

We are going to investigate what effect the choice of probability distribution (fitted
to the same data) has on the failure probability. Our first example addresses the
stability of a slope with angle β of inclination, excavated in the type of soil described
in Section 3.1, see Fig. 4.

Angle of inclination: Failure of the slope occurs when

tanϕ − tan β < 0.
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β

Fig. 4. Example of a slope

We choose the (deterministic) angle β as

tan β = tan ϕd =
tanϕk

γϕ

with various coefficients γϕ as commonly used: 1.3 (persistent design situation); 1.2
(transient design situation) and 1.1 (accidental design situation). These are either
the global safety factors according to Austrian code B 4433 [14] for safety class 3,
or else the partial safety factors from Austrian code B 4435-2 [15].

Failure probability: In this simple example, the failure probability is given by
pf = P (tan ϕ < tan β) - thus it is nothing but the cumulative distribution function
of the friction coefficient ν = tan ϕ, evaluated at the tangent of the slope angle
β. For example, in case of a normally distributed friction coefficient it is pf =
Φ (−(µν − tan β)/σν). The failure probabilities corresponding to the different types
of fitted distributions are displayed in Tab. 4. In the standard case γϕ = 1.3, the

Table 4. Failure probabilities pf of slope

pf

distribution γϕ = 1.3 γϕ = 1.2 γϕ = 1.1

normal 2.7 × 10−3 1.6 × 10−2 8.4 × 10−2

2 parameter lognormal 4.9 × 10−4 7.6 × 10−3 6.9 × 10−2

3 parameter lognormal 0 3.9 × 10−6 3.0 × 10−2

triangular 0 0 3.2 × 10−2

failure probability pf differs by one order of magnitude, depending on whether the
friction coefficient is assumed to follow a normal or a two parameter lognormal
distribution. For a three parameter lognormal and a triangular distribution, absolute
safety (pf = 0) is predicted. Only for a slope near its limit (failure) state (accidental
situation: γϕ = 1.1), pf reacts less sensitively.

It is also interesting to compare the failure probabilities for different values of
γϕ when the type of distribution is fixed. In its traditional interpretation, the global
safety factor of γϕ = 1.3 means that the actual friction coefficient of the soil on site
is 30% higher than the one required to guarantee stability. Intuitively, this means
that there is a 30% safety margin for the slope stability. The failure probability
changes from γϕ = 1.1 to 1.3 by a factor of about 100 and more. This suggests a –
possibly misleading – quantitatively much higher gain in safety as in the traditional
interpretation using the global safety coefficient, for which the safety margin changes
only from 10% to 30%.
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3.4 Example 2: bearing capacity of a square footing

The second example concerns a centrically loaded square footing with the dimensions
a = b = 1.0 m and t = 0.5 m in silt (Fig. 5). In this section, we will again demonstrate

plan view

cross section

���� ������

Q

t γ ϕ
c

b

Qa=b

Fig. 5. Bearing capacity example

that the failure probability depends decisively on the chosen probability distribution
for the friction coefficient, even more dramatically than in Section 3.2. But we will
also show here that the design dimensions of the footing, when computed according
to Austrian code B4435-2 [15], will vary significantly when the type of probability
distribution is changed. Thus the sensitivity of the failure probability may have
considerable economic effects in practice.

We use the design bearing capacity due to [15] as loading of the footing. The
design values of the soil parameters are tan ϕd = tan ϕk/γϕ, γd = γk/γγ , with
γγ = 1.0 and γϕ = 1.3. The design bearing capacity results to Qf,d = 101.93 kN. The
characteristic load is Sk = Qf,d/γS with γS = 1.0 according to [15]. We interpret this
characteristic load as 95%-percentile of a normally distributed load with a coefficient
of variation VS = 0.1 according to EC 1, part 1, 4.2 (4): Sk = µS + kNσS , with
kN = 1.645. Thus the mean value and the standard deviation of the load is

µS =
Qk

1 + 1.645VS
= 87.53 kN , σS = VSµS = 8.75 kN . (2)

Numerical simulation: A conceptually simple method for computing the failure
probability is Monte-Carlo simulation, with which we begin our elaboration. In this
special example, the failure probabilities actually can be expressed analytically by
a single integral; this will be presented in a later paragraph. The Monte-Carlo sim-
ulations were done with the aid of a Fortran-program using the random number
generators for a uniform distribution �(l, u) (for high number of calls N > 108)
and a normal distribution �(0, 1) published in [18]. The realizations of the friction
coefficient for the various distributions were calculated as follows:

normal distribution: ν = µν + σν ·�(0, 1)

two parameter lognormal distribution: ν = exp
�
µln ν + σln ν ·�(0, 1)

�

three parameter lognormal distribution:

ν = exp
�
µln(ν−ν0) + σln(ν−ν0) ·�(0, 1)

�
+ ν0
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triangular distribution:

ν =

�
lν +

�
�(0, 1) · (uν − lν) · (mν − lν) if �(0, 1) ≤ mν−lν

uν−lν

uν −�(1 − �(0, 1)) · (uν − lν) · (uν − mν) if �(0, 1) > mν−lν
uν−lν

A series of numerical simulations were carried out. In each simulation N independent
realizations of the friction coefficient and the load

S = µS + σS ·�(0, 1)

were computed. With each realization of the friction coefficient ν = tan ϕ a realiza-
tion of the resistance

R = Qf = ab(γbNγsγ + γtNqsq) (3)

with
Nq = 1+sin ϕ

1−sin ϕ
eπ tan ϕ , Nγ = (Nq − 1) tan ϕ,

sq = 1 + b
a

sin ϕ, sγ = 1 − 0.3 b
a

was calculated. In Fig. 6 we show histograms of z = r−s for various distributions of
the friction coefficient, each for a simulation with N = 105 number of realizations.
The number of failure events Z = R − S < 0 was counted in Hf . The relative
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Fig. 6. Simulations with various distributions for tan ϕ

frequency provides an estimate for the failure probability pf ≈ Hf/N . The approx-
imative failure probabilities are listed in Tab. 5. The value of pf varies in between
10−3 and 10−11 for different distributions of tan ϕ. These variations of several orders
of magnitude are confirmed by direct numerical integration below.

For curiosity we mention that transforming the data for tan ϕ in Table 1 into a
histogram for R via (3) and fitting a normal distribution to R, we get an even larger
failure probability of pf = 2 × 10−2.
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Table 5. Failure probabilities pf in m simulations with N realizations

distribution pf N × m

normal 0.81 × 10−3 108 × 4

two parameter lognormal (ν0 = 0) 1.1 × 10−4 108 × 4

three parameter lognormal (ν0 > 0) 1.0 × 10−9 1011 × 5

triangular 1 × 10−11 1011 × 9

Design dimensions: If we design the dimension a = b of the footing with the
given failure probability pf = 10−6 (probability index β = 4.7, EC 1, Table A.2) we
get the varying areas of the footing in Tab. 6. The minimal and the maximal footing
area differ by a factor of 1.9. For a failure probability of pf = 10−4 this factor is 1.5.

Table 6. Dimensions of the footing for fixed failure probability pf = 10−6

distribution a = b difference A = a · b difference

[m] [%] [m2] [%]

normal 1.26 35 1.59 85

two parameter lognormal (ν0 = 0) 1.11 19 1.23 43

three parameter lognormal (ν0 > 0) 0.95 2 0.90 5

triangular 0.93 – 0.86 –

Direct computation of failure probabilities: In this example, the failure proba-
bilities can be analytically expressed as a single integral involving the distribution
functions FS of the load and the probability density fν of the friction coefficient.
Indeed, we have that

pf = P
�
g(R,S) < 0

�
= P

�
Qf (ν) < S

�

=

��
Qf (ν)<S

fS(s)fν(ν) ds dν =

∞�
−∞

∞�
Qf (ν)

fS(s) ds fν(ν) dν

=

∞�
−∞

�
1 − FS

�
Qf (ν)

��
fν(ν) dν .

In our case, we had assumed that the load was normally distributed according to
S ∼ �(µS, σ2

S). Thus

pf =

∞�
−∞

�
1 − Φ

�
Qf (ν) − µS

σS

��
fν(ν) dν . (4)
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The function Qf (ν) is given by formula (3). The integral can be evaluated numer-
ically. The values computed in this way are listed in Tab. 7 and coincide with the
ones obtained by Monte-Carlo simulation (see Tab. 5).

Table 7. Failure probabilities for the footing

distribution pf

normal 0.811 × 10−3

two parameter lognormal (ν0 = 0) 1.11 × 10−4

three parameter lognormal (ν0 > 0) 1.03 × 10−9

triangular 0.96 × 10−11

4 Robust alternatives

4.1 Interval probabilities

As demonstrated in Sections 3.3 and 3.4, the failure probability is highly sensitive
to changes in the input distribution parameters. A more robust measure as a basis
for decisions appears desirable, in particular, a measure that would allow to account
for model dependence and non-probabilistic uncertainties as well. Current trends
in reliability and decision theory aim at relaxing some axioms of probability the-
ory. This goes under the heading of “imprecise probability” and subsumes interval
probability, convex sets of probability measures, random sets, plausibility and belief
functions, fuzzy sets, and more (see [5] for a review as well as [13]). We exemplify
three of these concepts in the case of the footing from Section 3.4. First, the most
conservative estimate for the failure probability is obtained by admitting all proba-
bility distributions that could feasibly produce the data from Table 1. These could
e.g. be modeled by the set of all probability distributions concentrated in the interval
[ϕ, ϕ] = [20◦, 32◦]. Still assuming that the load S is normally distributed according
to (2), it follows that the lower and upper failure probabilities are obtained by

p
f

= inf{P (Qf (ϕ) < S) : ϕ ∈ [20◦, 32◦]} = P (S > Qf (ϕ)) = 0,

pf = sup{P �
Qf (ϕ) < S

�
: ϕ ∈ [20◦, 32◦]} = P (S > Qf (ϕ)) = 0.00235.

The correspondence of lower and upper probabilities with interval estimates is
proved, e.g., in [8]. The computations are aided by the fact that the failure proba-
bilities depend antitonically on the friction angle. Thus one simply has to compute
Qf using formula (3) and then evaluate the complementary distribution function of
an �(µs, σ

2
S)-distribution with µs, σS from (2) at Qf . Fig. 7 illuminates the situa-

tion. The numerical values are Qf (20◦) = 112.26 kN which, after centering of the
normal distribution, leads to pf = 1 − Φ(2.83) ≈ 0.00235, while Qf (32◦) = 543.11

kN, leading to p
f

= 1 − Φ(52.07) ≤ 10−589 ≈ 0. Less conservative estimates would

be obtained by restricting the set of admitted input distributions.
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4.2 Random sets

The second idea is to get some valuation of the plausibility of the computed fail-
ure probability (cf. (Tab. 7) by means of random set theory. We demonstrate the
concepts under two modeling assumptions: we assume that the load is normally dis-
tributed according to (2), and we postulate that the friction coefficient ν = tanϕ
has a normal distribution �(µν , σ2

ν). This is not mandatory, but leads to the conve-
nient fact that the Student t-distribution is applicable when computing confidence
intervals, as will be needed below. The starting point of our analysis is the idea that
the parameters of the probability distributions are random themselves. However, we
will not describe them as probabilistic random variables (this would just lift the
difficulties with the choice of type of distribution to the second level), but rather
model their randomness in a more robust way as random sets. To be specific, we
exemplify the approach by means of the parameter µν . The point estimate inferred
from the sample (Tab. 1) resulted in µν = ν̄ = 0.474 with the corresponding fail-
ure probability pf = 0.81 × 10−3. What further evidence can be deduced from the
sample for the plausibility of this estimate? The random variable

T =
ν̄ − µν

sν/
√

n

has a Student t-distribution with (n−1) degrees of freedom, where s2
ν = 0.04522 is

the sample variance and n = 20 the sample size. Denote by tq the q ·100%-percentile
of this t-distribution. Then the q · 100%-right sided confidence interval for µν is
the interval [lq ,∞) with lq = ν̄ − tqsν/

√
n. The confidence intervals are displayed

in Fig. 8. We construct a random set whose plausibility function corresponds to
the significance levels as follows (Tab. 8): We take 10 focal sets Ai, i = 1, . . . , 10,
each with basic probability weight mi = 0.1, such that A1 = (−∞, l0.9], A2 =
(l0.9, l0.8], A3 = (l0.8, l0.7], . . . , A10 = (l0.1,∞). According to the concepts of random
set theory [13], the plausibility η of the event µν ≥ l is

η(µν ≥ l) =
�

[l,∞)∩Ai �=∅
mi

and this equals q precisely when l belongs to the q · 100%-right sided confidence
interval [lq,∞) (see Fig. 9).

The friction coefficient ν was assumed to be normally distributed according to
�(µν , s2

ν). Formula (4) assigns to each value of µν a failure probability pf = pf (µν)
(observe that the probability density function fν in (4) depends on µν). Similarly,
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each focal set Ai is mapped into a corresponding interval Bi = [inf{pf (µν) : µν ∈
Ai}, sup{pf (µν) : µν ∈ Ai}) of failure probabilities. These constitute a random set
of failure probabilities (Tab. 8), from which the plausibility of the event pf ≤ p can
be computed as follows:

η(pf ≤ p) =
�

[0,p]∩Bi �=∅
mi .

The results are shown in Fig. 10 and state, for example, that pf ≤ 0.002 has a
plausibility degree of 0.9, while pf ≤ 0.0005 has a plausibility degree of only 0.3.
Taking the sample mean ν̄ as a point estimate for µν leads to the failure probability
of 0.81× 10−3 computed earlier. This estimate carries a degree of plausibility of 0.5
(dotted lines in Figs. 9 and 10).

Table 8. Random sets for µν an for pf

weight focal sets Ai focal sets Bi

0.1 (−∞, 0.461] [0.00205, 1]

0.1 (0.461, 0.466] [0.00150, 0.00205)

0.1 (0.466, 0.469] [0.00119, 0.00150)

0.1 (0.469, 0.472] [0.00098, 0.00119)

0.1 (0.472, 0.475] [0.00081, 0.00098)

0.1 (0.475, 0.477] [0.00067, 0.00081)

0.1 (0.477, 0.480] [0.00055, 0.00067)

0.1 (0.480, 0.483] [0.00043, 0.00055)

0.1 (0.483, 0.488] [0.00030, 0.00043)

0.1 (0.488,∞] [0, 0.00030)

The results in Figs. 9 and 10 may change quantitatively, but will be the same
qualitatively if other types of distributions are assumed for the load S or the friction
coefficient ν.
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4.3 Fuzzy sets

An even more robust non-probabilistic approach would employ fuzzy sets to de-
scribe the parameter uncertainties. The construction of a fuzzy set describing input
variability may be based on an expert’s risk assessment of possible ranges of the
angle of internal friction, say. A detailed discussion of the interpretation and the
construction of fuzzy sets can be found in [13] and the references therein. An ex-
ample of a triangular fuzzy number is given in Figure 11. This says, e.g., that the
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expert had assigned the degree of possibility α = 0.5 that ν = tanϕ is in the range
of [0.415, 0.52] and possibility α = 1 that it has the value 0.44. The computation
of the fuzzy set describing the resistance is done according to the rules of fuzzy set
theory (intervals of equal possibility α in input and output correspond to each other
- this just means that Eq. (3) has to be evaluated on the level intervals of the fuzzy
input data). The result is depicted in Figure 12 and allows, e.g., to estimate the
degree of possibility that R < S for any given value of S (even fuzzy S as well).

Leaving the interpretation of a fuzzy set as describing the degree of possibility of
an outcome aside, one can view Figures 11 and 12 as showing interval computations,
performed on each level α. This way a picture of the total sensitivity of the model -
the variability of the output depending on the variability of the input - is obtained.
Such an information is equally useful as a framework for decision making under
uncertainty.



48 Michael Oberguggenberger and Wolfgang Fellin

5 Conclusion

The computational outcome of a probabilistic model is the failure probability. It
reacts highly sensitively to the choice of the input parameters and thus cannot
be taken as an absolute measure of safety, in general. A reduction of the fuzzy
input data to characteristic values, as suggested in the new semi-probabilistic safety
concept, makes sense only for the simplest design problems, because the variability
of geotechnical parameters is generally very high and largely unknown at the same
time. The failure probability is a poor basis for the final assessment of the safety of
a structure. When dealing with complex geotechnical problems, the engineer should
give extensive consideration to modeling the data uncertainty and study how it
propagates through the model. For this task, methods extending the probabilistic
framework, like random sets or fuzzy sets, provide simple additional tools. The
responsibility for interpreting the uncertainty of the result case by case rests with
the designing engineer.
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The mathematics of uncertainty: models,
methods and interpretations

Michael Oberguggenberger

Institut für Technische Mathematik, Geometrie und Bauinformatik, Universität
Innsbruck

Summary. This article discusses various mathematical theories that have been
put forth as tools for modelling uncertainty, among them probability, interval arith-
metic, random sets, and fuzzy sets. After recalling the definitions, we stress their
interpretations (semantics), axioms, interrelations as well as numerical procedures
and demonstrate how the concepts are applied in practice.

1 Introduction

An adequate understanding of the influence of input parameter variability on the
output of engineering computations requires that the uncertainty itself is captured
in mathematical terms. This section serves to present a number of mathematical
approaches, focused around generalizations of probability theory, that are able to
formalize the state of knowledge about parameter uncertainty.

Scientific modelling in engineering has to deal with three facets. First, there is
reality (with soils, materials etc.). Second, there is the model of reality (formulated
in mathematical terms and containing physical laws and constitutive equations).
Third, correspondence rules (prescribing how to translate one into the other) are
needed. It is important to note that theory is prior to observation [77, Sect. 30]. In
this context this simply means that the physical model decides what are the state
variables and what are the material constants, the parameters to be observed. Once
this has been decided, the values of the parameters have to be determined from
information extracted from the real world and will serve as input in the physical
model. This input in turn is processed numerically and should deliver an output
describing the behavior of the structure under investigation plus an assessment of
the output uncertainty. Thus, models of the data uncertainty should reflect and
incorporate the level of information available on the data and, second, must be
able to propagate it through numerical computations and deliver an output whose
uncertainty is formulated in the same terms. In addition, the uncertainty models
need correspondence rules themselves, that is, well-defined semantics.

There is one more aspect to be taken into account, and that is how the infor-
mation on the uncertainty of different parameters is combined – this refers to the
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axiomatics of the underlying approach. For example, in a sum A + B of two pa-
rameters A and B, will the joint uncertainty be the smallest interval containing all
realizations a+b, or do we believe that extreme combinations of realizations a+b are
less probable than those near the standard values? The first choice implies adherence
to the axiomatics of interval arithmetic, the second to the axiomatics of probability
theory. As we will see, many more axiomatic systems exist in between these two
extremal viewpoints.

Thus three aspects of the modelling of uncertainty are isolated:

• Definition and axiomatics: How is uncertainty described and what are the
combination rules?

• Numerics: How is uncertainty propagated through the computational model?
• Semantics: What is the meaning of the results - what do they say about our

conception of reality?

In this paper, we will first introduce a number of theories that are in use in
engineering risk assessment, in a section entitled definitions. We will touch upon the
corresponding axiomatics, viewed from the perspective of set functions, in the section
on axiomatics, which will reveal a certain hierarchical order of the approaches we
present. Big emphasis will be laid on a discussion of the different semantics, while the
computational aspects will be briefly discussed in the section on numerics. Finally,
we will comment on multiple parameter models, notions of independence, and on
incorporating spatial or temporal parameter variability.

The need for a proper understanding of semantics is illustrated by the use and
notorious public abuse of the concept of failure probability. For example, in an in-
terview an expert on nuclear power plants claimed on Austrian public television [45,
in 2001] that Western European nuclear power plants are 100 times safer than the
Czech plant Temelin. Asked why, he answered that in a risk analysis, Czech scientists
had computed a probability of 10−4 for a major nuclear accident in Temelin, while
the Western European plants are designed so that such an accident may occur only
once in 106 years. By nature, failure probabilities are clearly subjective probabilities
which can only and actually do play a useful rule in studying scenarios. However,
no absolute (that is, non-contextual) meaning can be attached to their numerical
values, as already pointed out by the founders of the probabilistic safety concept in
engineering [12, Chap. 2]. In the context of a particular risk analysis, given knowl-
edge about the premises, the number 10−4 has a well-defined interpretation. On
the other hand, the number 10−6 has the character of a normative computational
design value in the European codes [48]. It is devoid of any real-world meaning, and
in particular, can never have a rational - verifiable - interpretation as a frequency
of failure. It is regrettable that in public statements about safety the different inter-
pretations of probability theory are frequently mixed in an unjustified and possibly
misleading way. For a similar, historical discussion of the evolvement of the numeri-
cal values of reliability assessments in the aerospace-, nuclear- and chemical process
sectors we refer to [8].

Putting these delicate general questions aside (an excellent overview of the dif-
ferent interpretations of probability is [33]), we shall pursue the more modest goal
of capturing parameter variability in this article. Prior to parameter variability, ma-
jor aspects that have to be addressed in the analysis of uncertainty are: the choice
of structural model, the adequate selection of state variables and constants, and
the proper limit state function (failure mechanism). Some of these questions are
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addressed in the contributions [27, 44, 53] in this volume. It seems probable that
the only road to understanding these kinds of uncertainties is through case studies,
studies of scenarios, simulations, and developing an appreciation of what the under-
lying structural theory says. A promising new approach to building models of the
model uncertainty can be found in [54].

The question of parameter variability is intricate enough. It can be attributed
to a number of causes. There are random fluctuations, lack of information, random
measurement errors, but also systematic measurement errors (e.g. in soil mechanics,
when the laboratory test destroys the history of a material with memory). There are
fluctuations due to spatial inhomogeneity, errors made by assigning parameter status
to state variables; and variability arising from the fact that parameters have to carry
the burden of model insufficiency. The available information on data uncertainty may
range from frequency distributions obtained from large samples, values from small
samples or single measurements, interval bounds, to experts’ point estimates and
educated guesses from experience.

Probabilistic models of these kinds of parameter uncertainty may require the
engineer to supply more stringent information than he has at his hands. In such a
case it may be preferable to formalize uncertainty in one of the alternative ways that
have been developed in the past decades, that may be better adapted to the type of
available data and that do not require unwarranted assumptions (thereby avoiding
the law of decreasing credibility, according to which the credibility of inference de-
creases with the strength of assumptions maintained [59]). We shall now present a
spectrum of approaches ranging from interval analysis, probability theory, random
sets to fuzzy sets and possibility theory. All these theories come with appropriate
correspondence rules (interpretations) and can be correctly and consistently entered
in numerical computations.

Additional theoretical background and references to further approaches not dis-
cussed here can be found at the end of Section 2.

2 Definitions

In this section we shall focus on describing the main theories of uncertainty in
the univariate case of a single parameter. The following convention will be in use
throughout the paper: parameters will be denoted by upper case letters, e.g. A,
while corresponding lower case letters, as a, will be reserved for their realizations.
The description of the semantics is deferred to the next section, except for the
straightforward first two cases.

a. Deterministic values: The simplest approach is what in engineering ter-
minology usually is called deterministic description, that is, the parameter A is
described by a single value a, see Figure 1.

a
A

Fig. 1. Deterministic value a of parameter A
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The semantics is simply that a is an expert estimate (or educated guess). Clearly,
possible variations are not modelled in this approach, though their influence can be
assessed to some extent by a classical sensitivity analysis. This will be elaborated a
bit more in the section on numerics; a detailed exposition is in [75].

b. Intervals: The next level in modelling uncertainty is interval analysis. The
uncertainty of the input A is described by an interval [aL, aR], signifying bounds in
terms of a worst/best case assumption. This way, the total variability is captured,
but no detailed information on the uncertainty is provided (Figure 2).

a
L

a
R

A

Fig. 2. Interval bounds for parameter A

c. Probability: The most informative, but also most stringent description of the
uncertainty of a parameter A is by means of probability. If the probability distribution
is given by a density pλ(a), the probability that the realizations of the parameter A
lie in a set S is

P (A ∈ S) =

�
S

pλ(a) da ,

see Figure 3. The notation pλ indicates that, usually, the probability distributions

S
A

Fig. 3. Probability distribution

arise as members of a class of distributions which in turn are parametrized by param-
eters λ. For example, the class of Gaussian normal distributions �(µ,σ2) is given by
the Gaussian densities pλ(a) with parameters λ = (µ, σ). Thus the complete spec-
ification of a probability distribution requires determination of the type it belongs
to as well as the values of its parameters.

d. Sets of probability measures: A central idea in relaxing the precision in-
herent in a probabilistic model is to replace the single measure by a set of probability
measures, say a family

� = {pλ : λ ∈ Λ}
where the parameter λ ∈ Λ specifies each participating single measure. A set of
probability measures defines lower and upper probabilities according to the rules
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P (A ∈ S) = inf{P (A ∈ S) : P ∈�}, P (A ∈ S) = sup{P (A ∈ S) : P ∈�}.
The idea of sets of probability measures is inherent in Bayesian statistics, where the
distribution parameters λ are considered to be random variables themselves. In the
frequentist interpretation, there is the notion of sample statistics with its confidence
intervals for certain sample parameters. Convex sets of probability measures play
an important role in Choquet’s theory of capacities [14], see [46]. A new axiomatic
approach of interval probability has been introduced by [94]. We will say more about
the role of sets of probability measures in the section on semantics.

As most of the models of uncertainty, the two subsequent theories - random
and fuzzy sets - can be seen as special prescriptions for obtaining sets of probability
measures.

e. Random sets: A random set, sometimes also referred to as a Dempster-Shafer
structure, is given by finitely many subsets Ai, i = 1, . . . , n of a given set X, called the
focal sets, each of which comes with a probability weight mi = m(Ai),

�
m(Ai) = 1.

An example of a random set is shown in Fig. 4. The general case of an infinite
number of focal sets can be treated as well; the concept of a set-valued random
variable being the defining notion. For this general case we refer e.g. to [36].

(A
1
, m

1
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(A
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, m
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(A
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, m

3
)

A

Fig. 4. A random set

In the Dempster-Shafer approach [16, 85], the random set allows to define a de-
gree of belief γ(S) and a degree of plausibility η(S), respectively, that the realizations
of the parameter A lie in S by

γ(S) =
�

Ai⊂S

m(Ai) , η(S) =
�

Ai∩S �=∅
m(Ai).

A random set can also be interpreted as a prescription for a set of probability
distributions. Denote by �(Ai) the totality of all probability measures supported
by Ai, that is, a probability measure P on the underlying set X belongs to �(Ai)
iff P (Ai) = 1. The set of probability measures induced by the given random set is

� = {P : P =
�

m(Ai)Pi, Pi ∈�(Ai)}.
One can show [30, 32] that the corresponding lower and upper probabilities coincide
with the degrees of belief and plausibility, respectively. That is, for any subset1 S of

1 When considering sets of probability measures a common framework is needed.
Full mathematical precision can be achieved, for example, by requiring that X is
a topological space, probability measure is interpreted as regular Borel measure
of mass one, and subset means Borel-measurable subset, cf. [40].
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X, it holds that
P (S) = γ(S) , P (S) = η(S).

f. Fuzzy sets: Fuzzy sets can be viewed as ordered families of sets or as mem-
bership functions. It is simplest to describe the ideas by means of the special case of
a fuzzy real number A. From the first point of view, A is a family of parametrized
intervals. The parametrization is done in terms of levels α, 0 ≤ α ≤ 1. Each level
α has a corresponding interval Aα so that Aβ ⊂ Aα if α ≤ β. Thus the intervals
are stacked and can be depicted by their left/right contour functions, see Figure 5.
More generally, one could allow the Aα to be arbitrary, stacked subsets of a given
set of objects under investigation (complex numbers, vectors, matrices, functions or
the like).

α
β

1

Aα

Aβ

A

Fig. 5. Fuzzy set as family of intervals

In the second approach, the contour function is taken as the primary object, and
a fuzzy set A (over the real numbers) is just a map from the real line to the interval
[0, 1], assigning to each real number a a value πA(a) ∈ [0, 1]. This value may be
interpreted as the membership degree to which a belongs to the fuzzy set A, or in
the language of parameters, as the degree of possibility that the parameter A takes
the value a, see Figure 6. In classical set theory, the membership degree is either
0 or 1; fuzzy set theory allows gradual membership as well. The intervals from the
first interpretation are now the α-level sets Aα = {a : πA(a) ≥ α}.

π
A
(a)

1

a
A

Fig. 6. Fuzzy set as degree of possibility
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In analogy to the situation in probability theory, one can introduce a possibility
measure on the underlying set, defining a degree of possibility for each subset by

πA(S) = sup{πA(a) : a ∈ S},
giving the degree of possibility that the parameter A takes a value in S. The pos-
sibility measure is monotone, i.e., πA(S) ≤ πA(T ) if S ⊂ T . Possibility measures
are actually in one-to-one correspondence with fuzzy sets; given a possibility mea-
sure π, its evaluation on singletons defines the membership function of a fuzzy set:
πA(a) = π({a}).

For additional theoretical background on the concepts discussed here we re-
fer the interested reader to the following sources: interval analysis [64], fuzzy sets
[6, 11, 20, 47, 49, 95, 96], possibility theory [20, 98], random sets [28, 37, 67, 85, 95],
random sets and possibility theory in engineering [1, 3, 7, 9, 11, 29, 31, 35, 38, 39,
61, 72, 88, 89], probability in geotechnics [2, 23, 69, 78], comparative studies and
further concepts [15, 25, 26, 49, 57, 63, 70, 71, 73, 83, 86, 87, 91, 92]; see also the
unifying concept of clouds, recently proposed by [66].

3 Semantics

As outlined in the introduction, the interpretation of a theory is an essential ingredi-
ent for achieving an adequate translation from model into reality and back. Needless
to say that the assertions made by a model become meaningful only in the context
of the underlying semantics. Different semantics imply different meanings. One has
to be aware of the interpretations used when comparing assertions made by different
authors, all the more so as often the same vocabulary is employed for notions that
differ in the various interpretations.

a. Probability: The interpretation of probability has been the subject of scien-
tific dispute for centuries. We mentioned [33] as a recommendable reference in the
Introduction. The most prevalent and important semantics in engineering practice
are:

1. Classical probability, based on principles like the principle of non-sufficient rea-
son would, in colloquial terms, determine the probability of an event S as the
fraction of favorable cases among the possible cases.

2. Frequentist probability, based on the idea of random occurrence of an event in a
sequence of independent trials, would approximate the probability of an event
S by its relative frequency.

3. Subjective probability is meant to be a measure of personal confidence. It can be
assessed by introspection and/or elicitation through experts.

In its applications, classical probability often takes the form of combinatorial prob-
ability. Aside from the trivial application in computing the chances in a lottery, it
is often the means by which the standard probability distributions are derived, like
the binomial or geometric distributions. Another example would be the exponential
distribution for the survival time of a radioactive particle which is an immediate
combinatorial consequence of the law of radioactive decay.
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The central idea of frequentist probability is the sample with its statistical pa-
rameters. It is viewed or designed as a sequence of independent realizations of the
random variable whose distribution parameters have to be determined - keeping
the boundary conditions constant. The relative frequencies of the realizations of an
event are taken as estimates for the probability of the event. The sample parameters
like sample mean or sample variance correspond to moments of the random variable
- expectation value and variance in this case. From there, the parameters of the
distribution of the random variable can be estimated. This is one of the wide-spread
procedures for fitting models based on the frequentist interpretation.

Going one step further and allowing the notion of samples of samples, criteria
for decision making about the quality of a frequentist estimate are obtained: confi-
dence intervals or tests of fit, and so on. From the viewpoint of the philosophy of
science, the frequentist interpretation carries a number of problems, among them
the question whose probability is realized in the sample (of the random variable, or
of the experiment which was designed to measure it - a clear answer to this question
has been given by [76]). A pragmatic approach with a cautious and critical attitude
has proven to provide a successful basis for probabilistic models in many sciences,
including physics.

A further issue of debate has been the fact that the decision aids mentioned
above provide meaningful evaluations only if the sample size is sufficiently large,
a condition which remains vague, and in civil engineering with sample sizes of 0,
1, 2 or 3 is often lacking. This is the point where subjective probability enters
engineering. When such a switch of interpretation is undertaken, we believe that it
is the responsibility of the engineer to put it in the open. Otherwise the meaning of
probability in the final result is lost or at least obscured.

Turning to subjective probability, we first mention that schemes have been de-
veloped that allow to deduce it from decision theoretic principles, assuming rational
behavior of the agent. This has been done to obtain operational ways of extracting
the personal probability assessment of an agent quantitatively. One way promoted
by [80] has been the notion of indifference price. To determine a probability of an
event S, the decision maker is required to imagine a gamble which pays one mone-
tary unit if event S occurs and zero otherwise. The decision maker surely would buy
the gamble at the price of zero units, but surely not for more than one unit. Raising
the lower bound for the price and lowering the upper bound should eventually lead
to a price at which the decision maker is indifferent to buying the gamble or not.
This indifference price is the probability P (S) of the event. It is argued that the
indifference price also equals the minimal price P (S) at which the decision maker is
willing to sell the gamble, as well as the maximal buying price P (S).

This has been a point of critique, because real world persons do not behave
strictly rational in this sense and often lack the information to decide about the
minimal selling and maximal buying price, see e.g. the discussions in [18, 24]. Thus
an interval [P (S), P (S)] appears to be a more accurate description of a decision
maker’s information. This line of argument directly leads to imprecise probability,
probability intervals, and lower and upper probabilities [15, 91, 94].

In practical engineering applications, elicitation of probabilities from experts is
the paradigm for obtaining subjective probabilities quantitatively. We refer e.g. to
[24, 60, 79]. For the purpose of demonstration, we exemplify an elicitation proce-
dure for a continuous probability distribution, as suggested in [74], from which the
numerical data are taken.
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Example: To determine the distribution of a random variable S, may be the
monetary value of the damage associated with a certain risk, experts are first asked
to determine a lower bound L, an upper bound U and a modal value M . Next, they
are required to assign probabilities to the following intervals:

(a) [L, M ],
(b) [L, (L + M)/2],
(c) [(M + U)/2, U ],
(d) [L, (L + 3M)/4],
(e) [(3M + U)/4, U ]. L M U

(M+U)/2(L+M)/2

(L+3M)/4 (3M+U)/4

For example, the following bounds might have been given:

L = 165, M = 190, U = 250,

together with the following elicited probabilities:

(a) [165, 190] : P = 0.500,
(b) [165, 177.5] : P = 0.175,
(c) [220, 250] : P = 0.050,
(d) [165, 183.75] : P = 0.330,
(e) [205, 250] : P = 0.250.

This implies the following probabilities for the non-overlapping subintervals:

bin bin center zj probability pj height of bin

[165, 177.5] 171.250 0.175 0.0140
[177.5, 183.75] 180.625 0.155 0.0248
[183.75, 190] 186.875 0.170 0.0272
[190, 205] 197.500 0.250 0.0167
[205, 220] 212.500 0.200 0.0133
[220, 250] 235.000 0.050 0.0017

The next step consists in fitting a probability distribution. For the sake of sim-
plicity, we demonstrate the procedure with a lognormal distribution �og�(µ, σ2)
which is easily fitted using the mean and variance of the logarithms of the bin cen-
ters: µ ≈�j log zj pj ≈ 5.2609 , σ2 ≈�j(log zj−µ)2 pj ; σ ≈ 0.0853 . Displaying the
histogram together with the fitted lognormal distribution would reveal a somewhat
unsatisfactory fit near the modal value. Thus the elicitation procedure incorporates
a second turn, stepping back and trying to get a distribution which more accurately
reflects the experts’ assessment of the probabilities. It turns out that a three param-
eter lognormal distribution (with origin shifted to the right by 150 units) shows a
satisfactory representation of the original histogram. The result is depicted in Figure
7; for a more detailed discussion of the actual eliciting procedure we refer to [74].

Finally, we should not fail to mention the Bayesian approach to assessing prob-
ability distributions. From the Bayesian viewpoint, everything is a random variable,
including the parameters, say Θ, of the distributions of the original variables, say
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Fig. 7. Histogram and fit after step-back

X, to be assessed. The Bayesian approach has interpretations both in the frequen-
tist as well as the subjective setting. In the civil engineering literature, it has been
found useful for combining expert knowledge with sample data [19, 41, 78, 81]. The
expert knowledge may be based on known frequencies or on subjective estimates
and is encoded in the a priori distribution of the parameter θ. Sample data x (or
again expert estimates obtained in situ) are then used to produce an a posteriori
distribution of the distribution parameter θ according to Bayes’ rule, loosely stated
as

p(θ|x) =
p(x|θ)p(θ)

p(x)
.

The data vector x may have length 1, or may consist in a large sample of size n,
so that the Bayesian procedure may accommodate single estimates up to sample
sizes satisfying frequentist requirements. The assessment of the distribution of the
original variable X is completed by the Bayes estimate of its distribution parameter

θ̂ =

� ∞

−∞
θ p(θ|x) dθ .

Further powerful concepts start out from here, like odds ratios, high density regions,
posterior predictive distributions, and so on. We refer e.g. to [8, 34, 42, 90] for further
information on Bayesian methods.

b. Sets of probability measures: Sets of probability measures can arise both
in a frequentist as well as in a subjectivist approach. In a frequentist setting, sets of
probability measures arise as sets of fitted distributions: in fact, confidence regions
for the distribution parameters imply that parametrized families of distributions are
employed. As we have just seen above, sets of probability distributions are inherent
in Bayesian statistics (each parameter value θ defines a distribution of the original
variable). In order to avoid implausible determinations due to the choice of an a
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priori distribution, families of a priori distributions have been employed, as well as
fuzzy a priori distributions [90].

Further, referring to the decision theoretic foundation of probability, an interval
[P (S), P (S)] replacing the indifference price and signifying incomplete knowledge
leads to interval valued probabilities, which again imply that a set of probabilities
is considered.

c. Random sets: In a frequentist interpretation, this might correspond to a
sample of size n of interval data for a parameter A, the probability weight being
approximated by the relative frequency. The difference to a histogram then is that
the focal sets Ai may overlap. In geotechnical engineering, for example, interval data
arise as ranges of rock parameters associated with certain rock classes. These rock
classes in turn may be the outcomes, obtained with a certain frequency from in situ
measurements. This approach has been proposed and elaborated by [88, 89]. In a
subjectivist interpretation, the focal sets Ai may be (possibly conflicting) estimates
given by different experts and the weights might correspond to each expert’s relative
credibility.

Random sets have turned out to be useful for bracketing probability estimates
given by different sources [52, 86] as well as for combining information of different
type, due to the observation that every histogram, every interval and every fuzzy set
can be viewed as a random set, without a need for artificial transformations [36, 51].

d. Fuzzy sets: In engineering and in risk analysis applications, probabilistic
models have been criticized as requiring more input from the designing engineer or
the decision maker than could be plausibly provided - or that would be reasonably
required for a rough estimate. In particular, the requirement that probabilities have
to add up to 1 causes the problem that probabilities of events change when additional
events are taken into consideration. Further, probabilities have to be set up in a
consistent way, e.g. satisfying the rule p(S ∪ T ) = p(S) + p(T ) − p(S ∩ T ) and thus
do not admit incorporating conflicting information. From the current perspective,
fuzzy set theory appears to provide a resolution of these difficulties in as much as it
admits much more freedom in modelling. Further, fuzzy sets may be used to model
vagueness and ambiguity.

The notion of possibility provides an interpretation for a fuzzy set and an opera-
tional method of constructing it, as we wish to argue here. We imagine that a fuzzy
set describing the uncertainty of a real valued parameter has to be designed. The
procedure proposed below is based on a scale 0 ≤ α ≤ 1. The linguistic meaning of
the α-values is specified verbally by the designing engineer or the decision maker in
advance, but then remains fixed during the whole modelling process (for example,
α = 1 signifies the standard value of the parameter, α = 2/3, 1/3, 0 might indicate
high, medium, and low degree of possibility).

One would start by specifying the standard value aS of the parameter, in engi-
neering terminology often referred to as the deterministic approximation and assign
degree of possibility α = 1 to it. Next, possible deviations of the parameter from the
standard value are taken into account, corresponding to decreasing degree of pos-
sibility, until the minimal and maximal values, which are assumed with very small
degree of possibility, are reached at level α = 0, see Figure 8.
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Fig. 8. Construction of a fuzzy set

To counter the criticism that the notion of possibility has no operational meaning,
one might argue that it is intended to encode subjective risk assessments. Thereby,
it is envisaged that the risks leading to parameter fluctuations at the corresponding
possibility level are established in an analysis of scenarios. We refer to [55] where
the procedure has been demonstrated in the case of network analysis of a civil
engineering project. Similar procedures have been proposed by [4]. There is also a
normative approach which uses pre-shaped, parametrized membership functions as
well as the suggestion to use elicitation procedures; see [5, 20, 79, 99, 100] for further
details.

An alternative way of establishing the semantics of possibility is to start from
the notion of potential surprise and define possibility as its complementary notion
[84] or as a transformed quantity [65] thereof. For a decision-theoretic foundation,
see [21], for possibility as a transformation of probability, see [22].
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Finally, the contour function of a random set is the function a → P ({a}) =
η({a}), assigning each singleton a its plausibility. It is simply obtained by adding
the probability weights m(Ai) of those focal sets Ai to which a belongs. Figure 9
shows a random set and the resulting contour function where weights have been
chosen as m(A1) = 1/2, m(A2) = 1/3, m(A3) = 1/6. The contour function may be
viewed as the membership function defining a fuzzy set and thus in turn provides
a further interpretation for fuzzy sets. In the case of nested focal sets, possibility
equals plausibility in this interpretation.
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Fig. 9. Contour function of a random set

4 Axiomatics

Referring to probability theory, it has been emphasized by [77, Sect. 71] that a formal
mathematical system of axioms and postulates is required in order to approach the
problem of relations between the different interpretations of probability. All the more
so, this applies to the problem of comparing the different theories of uncertainty. By
now, all these theories can be based on appropriate axioms, the most well known
being the Kolmogorov [50] axioms of probability (though criticized by [77]) and the
Choquet [14] axioms of capacities.

We do not wish to give a detailed exposition of the axioms here, but just highlight
a few of them, showing that they lead to different combination rules in the various
models of uncertainty. This may serve as a means of distinguishing the models as well
as a guiding criterion to decide which model should be selected for what purpose.

The axioms fix the algebraic properties of the corresponding set functions. For
example, probability measures p define additive set functions, that is,

p(S ∪ T ) = p(S) + p(T ) − p(S ∩ T )

for sets S, T . This is not true of possibility measures π, which in turn satisfy
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π(S ∪ T ) = max{π(S), π(T )} .

Both probability measures and possibility measures are special cases of plausibility
measures η which enjoy the more general property

η(S ∪ T ) ≤ η(S) + η(T ) − η(S ∩ T ) .

All these set functions are contained in the largest class of monotone set functions
µ, characterized by the property

µ(S ∪ T ) ≥ max{µ(S), µ(T )} .

Suitably completing these algebraic properties to full systems of axioms, it is actually
possible to characterize all these type of measures (and many more). The following
hierarchical relations obtain:

probability → plausibility
possibility → plausibility
plausibility → monotonicity.

This means that every probability measure is a plausibility measure, and so on (thus
plausibility theory is more general than probability theory). Probability measures
and possibility measures are in no implication relation in either direction.

Alternatively, if one starts from the notion of random sets, probability would
correspond to singletons as focal sets, possibility to nested focal sets, and plausi-
bility to arbitrary focal sets. These short indications may suffice; a discussion of
the complete axiomatic systems as well as much more elaborated hierarchies can be
found in [17, 49, 92, 93].

5 Numerics

Most engineering models are input-output systems. Given certain input values
(model parameters, initial conditions, dimensions, etc.) the model produces output
values (displacements, stresses, costs, etc.). In other words, the model is a function
F that assigns to the input data A certain output values F (A). Both A and F (A)
may be multidimensional (for simplicity, we shall consider F (A) as one-dimensional
in the sequel - corresponding to a a single component of a multidimensional out-
put). Often, the function F is a computer code, in which case the output is obtained
as a numerical approximation. If the input data consist of a single, deterministic
data set, then the model produces a uniquely determined output. If the input data
fluctuate, so does the output. If the fluctuation of the input is described by one
or the other theories of uncertainty discussed so far, the fluctuation of the output
should be captured on the same terms. This is the issue of this section: how is data
uncertainty propagated through an input-output system?

a. Deterministic values: If a is an expert estimate of some input parameter
A, the output is just the value F (a) of the function F at a. In this framework, the
effects of the uncertainty of the input parameters can still be assessed by performing
a sensitivity analysis. In its classical form, sensitivity analysis means the study of
the derivatives of the function F at the fixed value a of interest, that is, the linear
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approximation to the change in output when the input parameter a is changed to a
nearby value b:

F (b) ≈ F (a) +
dF

da
(a)(b − a)

or in case the parameter a = (a1, . . . , an) is n-dimensional,

F (b) ≈ F (a) +

n�

i=1

∂F

∂ai
(a)(bi − ai)

where the approximation error is of order |b − a|2. The sign and size of the partial
derivative ∂F

∂ai
(a) is an indicator of the influence of the i-th component of the pa-

rameter a on the output. For more details on classical sensitivity analysis and its
numerical aspects we refer to [75].

In case A = (A1, . . . , An) is a vector of n independent random variables and a
is its expectation value, the variance σ2 of F (A) can be approximated by

σ2 ≈
n�

i=1

� ∂F

∂ai
(a)

�2

σ2
i

where σ2
i is the variance of Ai. Then ∂F

∂ai
(a)σi/σ is an indicator of the fractional

contribution of Ai to the total standard deviation σ, and thus another indicator
of the influence of the uncertainty of the i-th component on the output. For more
details, we refer to [43]. When the input-output function F is not differentiable, one
may still use fuzzy sets to assess the partial influence of the components of the input
parameters (see below) or study the change of variance when all but one component
are kept fixed (see e.g. [8]).

b. Intervals: If A is an interval, the functional evaluation F (A) results in a
set of values (an interval, if F is continuous and one-dimensional). In general, both
A and F (A) could be sets of arbitrary geometry. In interval arithmetic, one would
bound these sets by the smallest multidimensional intervals (boxes) that contain
them (see [64]). In any case this approach represents the full range of the possible
output values without further fine structure.

c. Probability measures and random sets: Given a single probability mea-
sure and a (measurable [40]) map F , the output probabilities are determined through
the induced image measure, that is, P (F (A) ∈ S) = P (A ∈ F−1(S)). Though the
distribution of the random variable F (A) can be computed by this prescription in
principle, this is practically impossible as soon as F attains a rather moderate com-
plexity. The numerical method for approximating the output distribution by means
of an artificially created sample is Monte Carlo simulation. We refer e.g. to [8] as
well as the survey articles [43, 82].

In case the uncertainty of the input is modelled by a set � of probability mea-
sures, the map F induces a set of probability measures as well, namely the collection
of all image measures, obtained from � under this map. The computation of lower
and upper probabilities turns into an optimization problem.

If the input is described by a random set with focal sets Ai, i = 1, . . . , n and
probability weights m(Ai), the output is again a random set which consists of the
focal sets F (Ai), i = 1, . . . , n, supplied with the original weights m(Ai). In case
the sets F (Ai) are intervals, their boundaries can be found by optimization. The
determination of lower and upper probabilities is then a combinatorial task involving
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the formulas for belief and plausibility. For further details on computational methods
with random sets, see [30, 32].

d. Fuzzy sets: The question of propagating the uncertainty of a fuzzy input A
through a function F needs some more explication. If the input is a fuzzy set with
membership function πA(a), say, the output will also be a fuzzy set, described by a
membership function πF (A)(b). According to the Zadeh extension principle [97], it
is given by

πF (A)(b) = sup
�
πA(a) : F (a) = b

�
.

In case the input consists of a vector of parameters A = (A1, . . . , Am), the extension
principle takes the form

πF (A)(b) = sup
�

min
�
πA1(a1), . . . , πAm(am)

�
: F (a1, . . . , am) = b

�
.

Note that this comes naturally from the possibility-theoretic interpretation: to com-
pute the degree of possibility that F (A) takes the value b, one has to look for all
combinations a1, . . . , am producing the value b; each single combination gets the
smallest possibility among its participants, while b gets the supremum of all pos-
sibility degrees that can be obtained in this way. In case F is continuous and the
α-level sets of A1, . . . , Am are compact (0 < α ≤ 1), this corresponds exactly to
computing the range of the function F on each α-level set,

F (A)α = F (Aα) , respectively, F (A1, . . . , Am)α = F (Aα
1 , . . . , Aα

m) .

When the Aα
j are intervals, in addition, the set F (A1, . . . , Am)α is an interval as well.

The computation of its boundaries is then a task of global optimization: finding the
minimum and maximum value of F on the set Aα. In any case, the procedure is
consistent: if the input data are structured as stacked intervals, so is the output.

Fuzzy sets can be used to assess the partial influence of each component Ai of
the input. One may keep all components Aj , j �= i, at a fixed value and model Ai by
means of a triangular shaped fuzzy number, say. Then the distortion and spread of
the output (as a fuzzy number), compared with the resulting fuzzy numbers when
other components are allowed to vary, give a good impression of how (smaller and
bigger) changes of Ai effect the output.

6 The multivariate case

In principle, the multivariate case, that is, the case when the input A has several
components A1, . . . , An, has been covered by what has been said above - all applies
to multidimensional intervals, random sets, fuzzy sets and multivariate distribution
functions. However, the issue is how to model mutual dependence, correlation, inter-
action, influence of the different components. In addition, the task remains to model
infinitely many components, as arising in spatial fields or temporal processes, when
the parameters are functions of space and/or time.

There is a rather well established notion of independence in probability theory:
two random variables are independent when their joint distribution function is the
product of the individual (marginal) distribution functions. The situation is also
clear in interval analysis: two parameters taking interval values are non-interactive
when their joint behavior is described by the product of the two intervals (a rectan-
gle), and interactive when their joint range is a proper subset of the product interval.
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This idea extends to fuzzy sets: Two fuzzy sets are non-interactive, when all their
α-level sets are rectangles.

Switching to random sets, the situation becomes more complicated. The con-
cept of independence splits into a number of different concepts, all coinciding when
the focal sets are singletons (i.e. when the random set is actually a probability).
Random set independence is characterized by two properties: the joint focal sets are
product intervals, and the joint weights are the products of the corresponding in-
dividual (marginal) weights. Strong independence is obtained when the underlying
set of joint probability measures is required to consist of product measures only.
Going deeper into the structure of the underlying set of probability measures, many
more notions of independence can be considered, one of the more prominent being
epistemic independence. For further details on this, see [30, 32].

What concerns spatial fields or temporal processes, there is the fully developed
probabilistic theory of stochastic processes, see e.g. [58]. Processes involving ran-
dom sets have been considered in [38]. A fully intrinsic theory of processes of fuzzy
sets (with interactivity replacing dependence) has not yet been developed. A use-
ful substitute has been the notion of a fuzzy random process, either obtained as a
stochastic process with fuzzy parameters or as a process of fuzzy numbers whose
α-level sets are made up by imbedded stochastic processes. For more references on
both approaches, see [10, 13, 56], for engineering applications, see [62, 68].

For the sake of introduction, these indications may suffice. Research on stochas-
tic processes constitutes a very active branch of probability theory and stochastic
analysis. In the other approaches to uncertainty, the theory of processes has been
developed to a lesser degree and constitutes an important topic for future research.
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[7] A. Bárdossy, L. Duckstein. Fuzzy Rule-Based Modeling with Applications to
Geophysical, Biological and Engineering Systems. CRC Press, Boca Raton
1995.

[8] T. Bedford, R. Cooke. Probabilistic Risk Analysis. Cambridge University Press,
Cambridge 2001.

[9] A. Bernardini. Qualitative and quantitative measures in seismic damage assess-
ment and forecasting of masonry buildings. In: A, Bernardini (Ed.). Seismic
Damage to Masonry Buildings. A. A. Balkema, Rotterdam 1999, 169–177.



68 Michael Oberguggenberger
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[62] B. Möller. Fuzzy randomness - a contribution to imprecise probability.

Zeitschrift f. Angewandte Mathematik u. Mechanik, to appear.
[63] P.-A. Monney. A Mathematical Theory for Statistical Evidence. Physica-Verlag,

Heidelberg 2003.
[64] A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univer-

sity Press, Cambridge 1990.
[65] A. Neumaier. Fuzzy modeling in terms of surprise. Fuzzy Sets and Systems

135, 21–38 (2003).
[66] A. Neumaier. Clouds, fuzzy sets and probability intervals. Reliable Computing,

10 (2004), 249–272.
[67] H. T. Nguyen, T. Wang. Belief functions and random sets. In: J. Goutsias,

R. P. S. Mahler, H. T. Nguyen (Eds.). Random Sets. Theory and Applications.
Springer-Verlag, New York 1997.

[68] M. Oberguggenberger. Queueing models with fuzzy data in construction man-
agement. In this volume.

[69] M. Oberguggenberger, W. Fellin. The fuzziness and sensitivity of failure prob-
abilities. In this volume.

[70] M. Oberguggenberger, F. Russo. Fuzzy, probabilistic and stochastic modelling
of an elastically bedded beam. In this volume.
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Multi-parameter models: rules and
computational methods for combining
uncertainties

Thomas Fetz

Institut für Technische Mathematik, Geometrie und Bauinformatik, Universität
Innsbruck

Summary. This paper is devoted to the construction of sets of joint probability
measures for the case that the marginal sets of probability measures are generated by
random sets. Different conditions on the choice of the weights of the joint focal sets
and on the probability measures on these sets lead to different types of independence
such as strong independence, random set independence, fuzzy set independence and
unknown interaction. As an application the upper probabilities of failure of a beam
bedded on two springs are computed.

1 Introduction

Precise probability theory alone often does not suffice for modelling the un-
certainties arising in civil engineering problems such as the reliability analysis
of structures and much more in soil mechanics. The goal is to have practicable
measures for the risk of failure in the case where the material properties are
not or only partly given by precise values or probability measures. One should
also have the possibility to assess subjective knowledge and expert estimates.

It is usually easy for the planning engineer to provide such information
by using random sets (weighted focal sets) to model the fluctuations of the
parameters involved. In most cases intervals are used for the focal sets which
has the advantage that the computations can be performed by interval anal-
ysis. This leads, if the intervals are nested, to fuzzy numbers and possibility
measures or, if not nested, to plausibility measures and evidence theory. Fuzzy
numbers or possibility measures [18, 19] have been applied in civil engineering
problems in [4, 7, 8, 12, 13, 14] and plausibility measures [18] in [10, 15, 16].
Using the more general plausibility measures has the advantage that one can
mix e.g. fuzzy numbers with histograms or probability measures directly with-
out transforming the probability measures into fuzzy numbers and neglecting
information. For the engineer it is often more practicable to use the semantics
of probability and interpret these measures as upper probabilities as done in
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[5, 10, 15, 16] rather than dealing with the meaning of different new measures
of risk.

In general the uncertainty of the parameters has to be propagated through
a numerical model. Therefore, the joint uncertainty of the parameters is
needed, but in many cases the random sets are given for each uncertain pa-
rameter separately. So first we have to model the joint uncertainty by means
of the given marginal random sets. As in classical probability theory this pro-
cedure is not uniquely determined; even the notion of independence is not
uniquely defined.

If the marginal focal sets are nested, we can generate a joint possibility
measure and a joint plausibility measure. Unfortunately these two measures
are not the same in general, which leads to ambiguities in interpreting both
measures as upper probabilities. In this article we model the uncertainty by
random sets (and by their special cases fuzzy sets and histograms) and we
assume that the uncertain parameters are “independent”.

The plan is as follows: First we give definitions of random sets, the cor-
responding measures of plausibility and possibility and the joint measures
generated by marginal random sets. As a civil engineering example a beam
bedded on two springs with uncertain spring constants given by random sets,
fuzzy sets or histograms is considered. Then we introduce the different notions
of independence and construct sets of joint probability measures by means of
random sets. We list different conditions on choosing the weights of the joint
focal sets and the probability measures on these sets. Depending on these con-
ditions we get different sets of joint probability measures and different types
of independence, respectively. We show that some of these cases lead to types
of independence as described in [1] such as strong independence, random set
independence and unknown interaction. For these types of independence the
upper probabilities of failure of the beam will be computed.

2 Random sets and sets of probability measures

In this article we consider two uncertain values or parameters λ1 and λ2. The
possible realizations ωk of an uncertain parameter λk belong to a set Ωk. The
uncertainty of a parameter λk is always modelled by a random set.

2.1 Random Sets

A random set (Fk, mk) consists of a finite class Fk = {F 1
k , . . . , Fnk

k } of focal
sets and of a weight function

mk : Fk −→ [0, 1] : F �→ mk(F )

with
∑|Fk|

i=1 mk(F i
k) = 1 where |Fk| is the number of focal sets. Then the

plausibility measure of a set Ak ∈ Ωk is defined by
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Plk(Ak) =
∑

F i
k∩Ak �=∅

mk(F i
k) (1)

and the belief measure by

Belk(Ak) =
∑

F i
k⊆Ak

mk(F i
k). (2)

Three important special cases:

1. The focal sets are singletons: Then the plausibility measure Plk is a clas-
sical probability measure defined by the weights mk.

2. The random set is consonant: That means that the focal sets are nested,
e.g. F 1

k ⊇ F 2
k ⊇ · · · ⊇ F

|Fk|
k . Then the contour ωk �→ Plk({ωk}) of the

random set is the membership function µÃk
of the corresponding fuzzy

set Ãk. On the other hand a fuzzy set can be represented by a consonant
random set. If in addition the focal sets are intervals in R, we get a fuzzy
number.

3. The focal sets F i
k are disjoint intervals [ai, bi) in R: Then the random set

is a histogram with bins [ai, bi) and heights mk([ai, bi))/(bi − ai).

For more information and references concerning random sets and fuzzy
sets we refer to the article “Mathematics of uncertainty: models, methods
and interpretations” in this volume.

2.2 Sets of probability measures generated by random sets

If the uncertainty of a parameter λk is modelled by a set of probability mea-
sures Mk, then the upper probability P k and the lower probability P k are
defined in the following way:

P k(Ak) = sup{Pk(Ak) : Pk ∈ Mk},

P k(Ak) = inf{Pk(Ak) : Pk ∈ Mk}.

Here we want to generate the set Mk of probability measures by a random
set (Fk, mk). Let Mi

k = {P i
k : P i

k(F i
k) = 1} be the set of probability measures

P i
k “on” the corresponding focal set F i

k. Then

Mk =

⎧
⎨

⎩Pk =
|Fk|∑

i=1

mk(F i
k)P i

k : P i
k ∈ Mi

k

⎫
⎬

⎭ =
|Fk|∑

i=1

mk(F i
k)Mi

k

is the set of probability measures generated by (Fk, mk).
The upper probability P k(Ak) is obtained by solving the following opti-

mization problem (c.f. [3]):
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P k(Ak) = max{Pk(Ak) : Pk ∈ Mk} =
|Fk|∑

i=1

mk(F i
k)P i∗

k (Ak)

with certain P i∗
k ∈ Mi

k. Such an optimal P i∗
k can be chosen in the following

way: P i∗
k = δωi∗

k
with

ωi∗
k ∈

{
F i

k ∩ Ak, if F i
k ∩ Ak �= ∅,

F i
k arbitrary, if F i

k ∩ Ak = ∅

where δωk
is the Dirac measure at ωk ∈ Ωk. Then P i∗

k (Ak) = 1 for F i
k∩Ak �= ∅

and 0 otherwise which leads to the same result as in formula (1). The lower
probability P k(Ak) is obtained by:

P k(Ak) = min{Pk(Ak) : Pk ∈ Mk} =
|Fk|∑

i=1

mk(F i
k)δωi∗∗

k
(Ak)

with

ωi∗∗
k ∈

{
F i

k \ Ak, if F i
k �⊆ Ak,

F i
k arbitrary, otherwise.

Then δωi∗∗
k

(Ak) = 1 for F i
k ⊆ Ak and 0 otherwise and we get the same result

as in formula (2).
If the random set is consonant, e.g. F 1

k ⊇ F 2
k ⊇ · · · ⊇ F

|Fk|
k , then the

plausibility measure is also a possibility measure Posk with possibility density
µk(ωk) = Posk({ωk}) which is the membership function of the corresponding
fuzzy number or the contour of the random set.

Thus we have for arbitrary random sets:

P k = Plk, P k = Belk

and for consonant random sets:

P k = Plk = Posk, P k = Belk = Neck

where Neck is the necessity measure (Neck(Ak) = 1 − Posk(Ωk \ Ak)).

2.3 Combining random sets

Let two random sets (F1, m1) and (F2, m2) be given. Then the joint random
set (F, m) is defined by joint focal sets

F i
1 × F j

2 ∈ F = F1 × F2

and joint weights
m(F i

1 × F j
2 ) = m1(F i

1)m2(F
j
2 ).
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And for the joint plausibility Pl measure we have

Pl(A) =
∑

i,j: A∩F i
1×F j

2 �=∅

m1(F i
1)m2(F

j
2 ).

If the above random sets (F1, m1) and (F2, m2) are consonant, then the
two random sets are also fuzzy sets Ã1 and Ã2. The membership function µÃ

of the joint fuzzy set Ã is defined by

µÃ(ω1, ω2) = min(µÃ1
(ω1), µÃ2

(ω2))

which is the possibility density of the joint possibility measure Pos. Ã again
defines a random set (Ff , mf ) with plausibility measure Plf .

Then in general we have

Pl �= Pos = Plf and (F, m) �= (Ff , mf).

If we now reinterpret Pl and Pos = Plf as upper probabilities we get different
results depending on the generation of the joint random sets which depends
on the notion of independence.

3 Numerical example

As a numerical example we consider a beam of length 3 m supported on both
ends and additionally bedded on two springs, see Fig 1. The values of the beam
rigidity EI = 10 kNm2 and of the equally distributed load f(x) = 1 kN/m
are assumed to be deterministic. But the values of the two spring constants
λ1 and λ2 are uncertain. We also assume that λ1 and λ2 are independent.

λ
1

λ
2

3 m

1 kN/m

Fig. 1. Beam bedded on two springs.
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We want to compute measures for the risk of failure of the beam. The
criterion of failure is here

max
x∈[0,3]

|M(x)| ≥ Myield,

where M(x) is the bending moment at a point x ∈ [0, 3] and Myield the elas-
tic limit moment. The bending moment M also depends on the two spring
constants. We define a map

g : Ω1 × Ω2 −→ R : (ω1, ω2) �→ max
x∈[0,3]

|M(x, ω1, ω2)|,

which is the maximal bending moment of the beam depending on values ω1

and ω2 for the two spring constants. In Fig. 2 the function g is depicted as a
contour plot for values (ω1, ω2) ∈ [20, 40] × [20, 40].
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Fig. 2. Function g on [20, 40] × [20, 40].

In the following four examples the uncertainty about the values of the
spring constants λ1 and λ2 is modelled by

• random intervals,
• fuzzy numbers and
• histograms.
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3.1 Example 1

Uncertainty of λ1:

The uncertainty of parameter λ1 is modelled by a consonant random interval
with focal sets

F 1
1 = [20, 40], F 2

1 = [30, 40], F 3
1 = {30}, F 1

1 ⊇ F 2
1 ⊇ F 3

1

and weights

m1(F 1
1 ) = 0.2, m1(F 2

1 ) = 0.3, m1(F 3
1 ) = 0.5.

In Fig. 3 the focal sets are plotted as a stack where the height is determined
by the cumulative sum of the weights. Since the focals are nested the stack
can be interpreted as a fuzzy number. Then the membership function is the
contour of the stack of focals (light gray line).

Uncertainty of λ2:

A consonant random set with focal sets

F 1
2 = [20, 40], F 2

2 = [28, 38], F 3
2 = {31}, F 1

2 ⊇ F 2
2 ⊇ F 3

2 ,

and weights

m2(F 1
2 ) = 0.3, m2(F 2

2 ) = 0.3, m2(F 3
2 ) = 0.4.

See Fig. 4.

20 25 30 35 40

0

0.5

1
F 3

1

F 2
1

F 1
1

λ1 [kN/m]

Fig. 3. Example 1: Uncertainty of λ1.
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20 25 30 35 40
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0.5

1
F 3

2

F 2
2

F 1
2

λ2 [kN/m]

Fig. 4. Example 1: Uncertainty of λ2.

3.2 Example 2

Uncertainty of λ1:

The same consonant random interval as in example 1.

Uncertainty of λ2:

The histogram depicted in Fig. 5. The focal sets of the corresponding random
interval are

F 1
1 = [20, 25], F 2

1 = [25, 33], F 3
1 = [33, 40]

and the weights are

m2(F 1
1 ) = 0.1, m2(F 2

1 ) = 0.7, m2(F 3
1 ) = 0.2

which are the areas of the three bins. See Fig. 5.

3.3 Example 3

Uncertainty of λ1 and λ2:

Again a consonant random interval, but with more focals to approximate a
triangular fuzzy number. See Fig. 6.
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0

0.05

0.1
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Fig. 5. Example 2: Uncertainty of λ2.

25 30 35
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0.5

1

λ1 [kN/m]

Fig. 6. Example 3: Uncertainty of λ1 and λ2.

3.4 Example 4

Uncertainty of λ1:

The same consonant random interval or triangular fuzzy number as in Exam-
ple 3.

Uncertainty of λ2:

The histogram depicted in Fig. 7.
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20 25 30 35 40
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λ2 [kN/m]

Fig. 7. Example 4: Uncertainty of λ2.

4 Types of independence

Assume the two parameters λ1, λ2 are random variables defined by the prob-
ability measures P1 and P2 and the sets of possible values for the parameters
are Ω1 and Ω2. If λ1 and λ2 are stochastically independent, then the joint
probability measure is the product measure P = P1 ⊗ P2. In this case the
conditional probabilities satisfy

P (· × Ω2| Ω1 × {ω2}) = P1 and
P (Ω1 × ·| {ω1} × Ω2) = P2

for all ω1 ∈ Ω1 with P1({ω1}) > 0 and for all ω2 ∈ Ω2 with P2({ω2}) > 0.
That means:

If we learn the value ω1 of parameter λ1, our knowledge about the proba-
bility measure for parameter λ2 does not change.

This will be our motivation for the notions of independence for sets of
probability measures we subsequently discuss. For an introduction to inde-
pendence for sets of probability measures see [1, 17].

Now assume that the uncertainty of the parameters λk is modelled by
sets of probability measures Mk, k = 1, 2. For our general introduction of
the notions of independence the sets Mk will be arbitrary sets of probability
measures. Later on we will consider Mk generated by ordinary sets, by random
sets and fuzzy numbers.

4.1 Unknown interaction

We start with the case where nothing is known about dependence or indepen-
dence of λ1 and λ2.
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Definition 1 The set MU is the set of all probability measures P for which
the following conditions hold:

P (· × Ω2) ∈ M1 and P (Ω1 × ·) ∈ M2. (U)

MU is the set of all probability measures with marginals in M1 and M2. So MU

is a good choice if it is not known what probability measure of M1 and M2 has
to be combined and if the interaction or correlation between the probability
measures is unknown. The subscript U indicates unknown interaction.

4.2 Epistemic independence

Definition 2 Let Ω1 and Ω2 be finite sets. Then ME is the set of all prob-
ability measures which satisfy condition (U) and for which the conditional
probabilities satisfy

P (· × Ω2| Ω1 × {ω2}) ∈ M1,
(E’)

P (Ω1 × ·| {ω1} × Ω2) ∈ M2

for all ω1 ∈ Ω1 with marginal probability P1({ω1}) > 0 and ω2 ∈ Ω2 with
P2({ω2}) > 0.

Using the formula of Bayes the conditions (E’) can be rewritten in the
following way: Let P ∈ ME and P1 ∈ M1, P2 ∈ M2, respectively, the marginal
probability measures. Then P must satisfy

P (· × {ω2}) = P
|ω2
1 P2({ω2}),

(E”)
P ({ω1} × ·) = P1({ω1})P |ω1

2

for all (ω1, ω2) ∈ Ω1 × Ω2 with probability measures P
|ω2
1 ∈ M1 and P

|ω1
2 ∈

M2. In the case where P2({ω2}) > 0, P
|ω2
1 is the conditional probability

P (·×Ω2|Ω1×{ω2}). So the superscript |ω2 indicates conditioning with respect
to {ω2}.

For singletons Mi = {Pi}, i = 1, 2, the condition (E”) leads to stochastic
independence, because we always have P

|ω2
1 = P1 and P

|ω1
2 = P2 since there

is only one probability measure in M1, M2, respectively. So epistemic inde-
pendence is a sort of generalization of the notion of independence to sets of
probability measures.

Epistemic independence means:
If we have learned the value ω1 of λ1, then the probability measure for the

parameter λ2 is again one of the probability measures in M2 (but in general not
always the same for different ω1), because the conditional probability measures
have to be in M2, and vice versa.

Condition (E”) can be generalized to infinite sets Ωk in the following way:
The set ME is the set of probability measures P for which the following holds:
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There is a family (P |ω2
1 )ω2∈Ω2 and (P |ω1

2 )ω1∈Ω1 of probability measures with
P

|ω2
1 ∈ M1 and P

|ω1
2 ∈ M2 such that for all P -measurable sets A

1. ω1 �→ P
|ω1
2 (Aω1) is P1-measurable,

2. ω2 �→ P
|ω2
1 (Aω2) is P2-measurable and

3. P (A) =
∫

Ω1
P

|ω1
2 (Aω1) dP1(ω1) =

∫
Ω2

P
|ω2
1 (Aω2) dP2(ω2)

holds where Aω1 = {ω2 : (ω1, ω2) ∈ A} and similarly for Aω2 .

4.3 Strong independence

Definition 3 The set

MS = {P = P1 ⊗ P2 : P1 ∈ M1, P2 ∈ M2}
is the set of all product measures which can be generated by probability mea-
sures in M1 and M2.

This is a stronger generalization of stochastic independence. We also get
the set MS if we add the following conditions

∀ω2 ∈ Ω2 : P
|ω2
1 = P1 and ∀ω1 ∈ Ω1 : P

|ω1
2 = P2 (S)

to the conditions for epistemic independence. This type of independence is
called strong independence [1] or type-1 extension [17].

Strong independence is an appropriate choice, if the following assumptions
are satisfied [1]:

1. The values of parameter λ1 and λ2 are random, each described by a unique
but unknown probability distribution.

2. These probability distributions belong to the sets M1, M2, respectively.
3. The parameters λ1 and λ2 are stochastically independent.
4. It is not known which P1 ∈ M1 is allowed to be combined with P2 ∈ M2.

4.4 Relations between the above types of independence

Summarizing we recall that

• MU is the set of probability measures P subject to condition (U).
• ME is the set of probability measures P subject to conditions (U)+(E”).
• MS is the set of probability measures P subject to conditions (U)+(E”)+(S).

Since the conditions are successively added we get for the sets

MU ⊇ ME ⊇ MS

and therefore for the lower and upper probabilities

PU ≤ PE ≤ P S ≤ P S ≤ PE ≤ PU.

where the subscripts indicate the type of independence.
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5 Sets of joint probability measures generated by
random sets

5.1 Sets of joint probability measures generated by ordinary sets

Given a subset Fk ⊆ Ωk, we denote by M(Fk) = {P : P (Fk) = 1} the set
of probability measures on Fk. Letting Mk = M(Fk) we have that MU =
M(F1 × F2) where MU := MU(M(F1), M(F2)) is the set of joint probability
measures generated by the two sets M(F1) and M(F2) of probability measures
according to condition (U). To get the upper and lower probability PU(A) and
PU(A) with A ⊆ Ω = Ω1 × Ω2 we simply have to put a Dirac measure into
(F1 × F2) ∩ A for PU(A) or into (F1 × F2) ∩ (Ω \ A) for PU(A). Since a Dirac
measure is a product measure conditions (E”) and (S) are satisfied as well. So
we get PS(A) = PE(A) = PU(A) and PU(A) = PE(A) = PS(A).

5.2 General formulation of the generation of sets Mk of joint
probability measure for random sets

Let the random set (Fk, mk) be given with focals Fk = {F 1
k , . . . , Fnk

k } and
weight function mk. The set of probability measures Mk is generated as fol-
lows:

Mk := M(Fk, mk) :=
|F1|∑

i=1

mk(F i
k)M(F i

k) :=

=

⎧
⎨

⎩P : P =
|F1|∑

i=1

mk(F i
k)P i

k, P i
k ∈ M(F i

k)

⎫
⎬

⎭ .

We write a joint probability measure P in the following way:

P =
|F1|∑

i=1

|F2|∑

j=1

m(F i
1 × F j

2 )P ij

where F i
1 × F j

2 , i = 1, . . . , n1, j = 1, . . . , n2, are the joint focal sets and where
P ij ∈ M(F i

1 × F j
2 ) are probability measures on F i

1 × F j
2 . We assume that

there are no interactions between the marginal focal sets themselves. We have
to choose the joint weights m, the probability measures P ij and the type
how the P ij interact. This leads to three groups of conditions which will be
indicated by a triple (A,B,C). The notation is explained in Fig. 8.

We emphasize that the choice of the Cartesian products F i
1 × F j

2 as joint
focals is no restriction of generality. Joint focal sets V ⊆ F i

1 × F j
2 of arbitrary

shape can be subsumed in our approach by restricting sets of joint probability
measures on F i

1 × F j
2 to those whose support lies in V . Such subsets would

describe specific types of dependence and thus will not enter our investigation
of independence.
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Fig. 8. Marginal focal sets F i
1 , F j

2 and joint focal set F i
1 × F j

2 , marginal weights
m1(F

i
1), m2(F

j
2 ) and joint weight m(F i

1 × F j
2 ), joint probability measure P ij and

marginal probability measures P i,ij
1 , P j,ij

2 . The superscripts ij after the comma
indicate that the marginal probability measure results from focal set F i

1 × F j
2 .

5.3 The choice of the joint weights m(F i
1 × F j

2 )

The weights m1 and m2 for the parameters λ1 and λ2 are probability measures
on the sets of focal sets {F 1

1 , . . . , Fn1
1 }, {F 1

2 , . . . , Fn2
2 } respectively. So if we

want to choose the joint focal sets in a stochastically independent way, then
m = m1 ⊗ m2 which means m(F i

1 × F j
2 ) = m1(F i

1)m2(F
j
2 ) for all i, j. If we

do not know how m1 and m2 interact, we choose unknown interaction.

Case (U−−):

Unknown interaction, m must satisfy condition (U). That means

m1(F i
1) =

|F2|∑

j=1

m(F i
1 × F j

2 ), i = 1, . . . , |F1|,

m2(F
j
2 ) =

|F1|∑

i=1

m(F i
1 × F j

2 ), j = 1, . . . , |F2|.

Case (S−−):

Stochastic independence: m(F i
1 × F j

2 ) = m1(F i
1)m2(F

j
2 ).
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Case (F−−):

m1 and m2 are correlated in such a way that the joint upper probability
coincides with the joint possibility measure.

5.4 The choice of P ij , Mij , respectively

P ij ∈ Mij is a probability measure on the joint focal set F i
1 × F j

2 , Mij ⊆
M(F i

1 × F j
2 ). How a P ij looks like depends on how Mij is constructed from

M(F i
1) and M(F j

2 ).

Case (−U−):

Mij := MU(M(F i
1), M(F j

2 )) = M(F i
1 × F j

2 ) which is the set of all joint proba-
bility measures generated by the sets M(F i

1) and M(F j
2 ) according to condition

(U).

Case (−S−):

Mij := MS(M(F i
1), M(F j

2 )) which is the set generated according to strong
independence.

5.5 The choice of interaction between the P ij

Case (−−1):

Row- and columnwise equality conditions on the marginals of the probability
measures on the joint focal sets:

P i
1 := P i,i1

1 = · · · = P i,in2
i , i = 1, . . . , n1,

P j
2 := P j,1j

2 = · · · = P j,n1j
i , j = 1, . . . , n2.

The notation is explained in Fig. 8.

Case (−−0):

No interactions, this means that we can choose a P ij ∈ Mij on F i
1 × F j

2

irrespective of the probability measures chosen on other joint focal sets.

6 The different cases

Now we will discuss combinations of the above cases which lead to random
set independence, unknown interaction, strong independence, fuzzy set inde-
pendence and epistemic independence.
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6.1 The cases (SU0) and (SS0), random set independence

Let MSU0 be the set of probability measures generated according to case
(SU0). A probability measure P ∈ MSU0 can be written as

P =
|F1|∑

i=1

|F2|∑

j=1

m(F i
1 × F j

2 )P ij =
|F1|∑

i=1

|F2|∑

j=1

m1(F i
1)m2(F

j
2 )P ij .

MSU0 is the set of probability measures generated by the random set (F, m)
with F = F1 × F2 and weights m(F i

1 × F j
2 ) := m1(F i

1)m2(F
j
2 ) for all i, j.

This type of independence is called random set independence [3]. For MSU0

we have

MR := MSU0 =
|F1|∑

i=1

|F2|∑

j=1

m1(F i
1)m2(F

j
2 )M(F i

1 × F j
2 )

where R indicates random set independence.
The upper probability PR := P SU0 is the corresponding joint plausibility

measure
Pl(A) =

∑

i,j:

F i
1×F j

2∩A �=∅

m1(F i
1)m2(F

j
2 )

or the solution of the optimization problem:

Find P ij(A) such that

|F1|∑

i=1

|F2|∑

j=1

m1(F i
1)m2(F

j
2 )P ij(A) = max!

subject to P ij ∈ M(F i
1 × F j

2 ). It is sufficient to search for appropriate Dirac
measures for optimal P ij which amounts to searching for points in F i

1 × F j
2 ∩A.

Since for Dirac measures condition (−S−) is satisfied we get PR = Pl =
P SU0 = P SS0. For the lower probability we get analogous results: PR = Bel =
P SU0 = P SS0.

Computational method to obtain P R for our examples:

Let A = {(ω1, ω2) : y = g(ω1, ω2) ≥ Myield}. Then

PR(y ≥ Myield) =
∑

i,j:

F i
1×F j

2∩A �=∅

m1(F i
1)m2(F

j
2 ) =

=
∑

i,j:

g(F i
1×F j

2 )∩[Myield,∞) �=∅

m1(F i
1)m2(F

j
2 ) =

=
∑

i,j: yij≥Myield

m1(F i
1)m2(F

j
2 )
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with
yij = max

(ω1,ω2)∈F i
1×F j

2

g(ω1, ω2).

So for each joint focal set F i
1 × F j

2 an optimization problem has to be solved
to get yij .

Result for Example 1: The upper probability of failure for random set
independence as a function of Myield is depicted in Fig. 9.

0.09 0.1 0.11 0.12

0

0.5

1

PR

Myield [kNm]

Fig. 9. Example 1: Upper probability PR(y ≥ Myield).

6.2 The cases (UU0) and (US0), unknown interaction

Let MUU0 be the set of probability measures generated according to case
(UU0). A computational method for PUU0 is obtained in the following way:

PUU0(A) = max
{
P (A) : P ∈ MUU0

}
= (3)

=
|F1|∑

i=1

|F2|∑

j=1

m∗(F i
1 × F j

2 )P ij∗(A) =
∑

i,j:

F i
1×F j

2∩A �=∅

m∗(F i
1 × F j

2 ),

where P ij∗ are the same Dirac measures as for PR. The weights m∗ are ob-
tained by solving the following linear optimization problem:

∑

i,j:

F i
1×F j

2∩A �=∅

m(F i
1 × F j

2 ) = max! (4)

subject to



90 Thomas Fetz

m1(F i
1) =

|F2|∑

j=1

m(F i
1 × F j

2 ), i = 1, . . . , |F1|, (5)

m2(F
j
2 ) =

|F1|∑

i=1

m(F i
1 × F j

2 ), j = 1, . . . , |F2|. (6)

Minimization instead of maximization in (3) and (4) leads to the lower prob-
ability PUU0(A).

The set MUU0 is just the set of probability measures which is generated
by the least restrictive conditions on m and P ij . It is proved in [5, 6] that

MUU0 = MU :=
{
P : P (· × Ω2) ∈ M(F1, m1), P (Ω1 × ·) ∈ M(F2, m2)

}
;

this is precisely the case of unknown interaction. By the same arguments as
in the previous case we get PU = PUU0 = PUS0 and PU = PUU0 = PUS0.

Computational method to obtain P U(A):

The set A determines the linear objective function, which is in our examples:
∑

i,j: yij≥Myield

m(F i
1 × F j

2 ) = max!

The linear conditions (5) and (6) are always the same and have to be generated
only once.

Result for Example 1: The upper probability PU(y ≥ Myield) for unknown
interaction is depicted in Fig. 10.
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Fig. 10. Example 1: Upper probability PU(y ≥ Myield).
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6.3 The case (SS1), strong independence

We write a probability measure PSS1 ∈ MSS1 in the following way:

PSS1(A) =
|F1|∑

i=1

|F2|∑

j=1

m(F i
1 × F j

2 )P ij(A) =

=
|F1|∑

i=1

|F2|∑

j=1

m1(F i
1)m2(F

j
2 ) (P i

1 ⊗ P j
2 )(A) =

=

( |F1|∑

i=1

m1(F i
1)P i

1

)
⊗
( |F2|∑

j=1

m2(F
j
2 )P j

2

)
(A) =

= (P1 ⊗ P2)(A)

with P1 ∈ M(F1, m1) and P2 ∈ M(F2, m2). This leads to

MSS1 = MS =
{
P1 ⊗ P2 : P1 ∈ M(F1, m1), P2 ∈ M(F2, m2)

}

which is the case of strong independence.

Computational method:

We obtain a computational method for P S(A) and P S(A) from the following
theorem.

Theorem 1 The upper probability P S(A) is the solution of the following
global optimization problem:

|F1|∑

i=1

|F2|∑

j=1

m(F i
1 × F j

2 )χA(ωi
1, ω

j
2) = max!

subject to

ωi
1 ∈ F i

1, i = 1, . . . , |F1|,
ωj

2 ∈F j
2 , j = 1, . . . , |F2|,

where χA is the indicator function of the set A. The lower probability P S(A)
is obtained by minimization.

Proof: see [5, 9].
In general it is very hard to solve the above optimization problem because

there may be many local maxima (or minima) and because the objective func-
tion is not continuous. Here we have adapted a branch and bound algorithm
(c.f. [11]) to find the global optima.

For our example we have the set
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A = {(ω1, ω2) ∈ Ω : y = g(ω1, ω2) ≥ Myield}

and therefore

χA(ω1, ω2) =

{
1, y = g(ω1, ω2) ≥ Myield,

0, otherwise.

Result for Example 1: The upper probability P S(y ≥ Myield) of failure for
strong independence is depicted in Fig. 11 as a function of Myield.
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Fig. 11. Example 1: Upper probability P S(y ≥ Myield).

6.4 The cases (FU0) and (FS0), fuzzy set independence

Consonant random sets (Fk, mk) can be interpreted as fuzzy sets Ãk or as
possibility measures with density µÃk

(ωk) =
∑

i: ωk∈F i
k
mk(F i

k). The joint pos-
sibility measure has the density

µÃ(ω1, ω2) = min(µÃ1
(ω1), µÃ2

(ω2))

which can again be transformed back into a joint random set.
We exemplify this for the consonant focal sets in Example 1: Recalling

that the focal sets for parameter λ1 and λ2 are given as the intervals

F 1
1 = [20, 40], F 2

1 = [30, 40], F 3
1 = [30, 30], F 1

1 ⊇ F 2
1 ⊇ F 3

1

with weights m1 = (0.2, 0.3, 0.5) and for parameter λ2

F 1
2 = [20, 40], F 2

2 = [28, 38], F 3
2 = [31, 31], F 1

2 ⊇ F 2
2 ⊇ F 3

2
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with weights m2 = (0.3, 0.3, 0.4).
Summing up the weights leads to α-values at which the density function

has a jump. These α-levels are for λ1:

α1 = (α1
1, α

2
1, α

3
1) = (0.2, 0.5, 1)

and for λ2:
α2 = (α1

2, α
2
2, α

3
2) = (0.3, 0.6, 1).

The “joint” α-values

α = (α1
1, α

1
2, α

2
1, α

2
2, α

3
1) = (0.2, 0.3, 0.5, 0.6, 1)

are just the values at which the density of the joint possibility measure has a
jump.

The corresponding random set (F, m) has focal sets F k = Ãαk
1 × Ãαk

2 ,
αk ∈ α, with weights m(F k) = αk − αk−1 (α0 = 0), k = 1, . . . , 5:

F 1 = Ã0.2
1 × Ã0.2

2 = [20, 40] × [20, 40], F 2 = Ã0.3
1 × Ã0.3

2 = [30, 40] × [20, 40],

F 3 = Ã0.5
1 × Ã0.5

2 = [30, 40] × [28, 38], F 4 = Ã0.6
1 × Ã0.6

2 = [30, 30] × [28, 38],

F 5 = Ã1
1 × Ã1

2 = [30, 30] × [31, 31],

with weights
m = (0.2, 0.1, 0.2, 0.1, 0.4).

The nested joint focal sets F 1, . . . , F 5 form a subset of the family of all
product sets F i

1 × F j
2 , i, j = 1, 2, 3. If we take all of them and set the weights

of the “unused” sets to 0, then we get a random set with the same focals as for
random set independence, but with different weights. This is the case (FU0)
which we call the case of fuzzy set independence (or possibilistic independence
[2]) in analogy to random set independence, and we let MF = MFU0. By
similar arguments as in case (SU0) we get PFU0 = Pos = PFS0 and PFU0 =
Nec = PFS0.

Result for Example 1: The upper probability PF(y ≥ Myield) of failure for
fuzzy set independence is depicted in Fig. 12.

6.5 ME is a subset of MR in the finite case

Theorem 2 Let Ω1 and Ω2 be finite sets, ME = ME(M(F1, m1), M(F2, m2))
the set of probability measures generated by two random sets according to epis-
temic independence and MR = MR(M(F1, m1), M(F2, m2)) the set generated
according to random set independence. Then ME ⊆ MR.

Proof: see [6, 9].
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Fig. 12. Upper probability PF(y ≥ Myield) of failure.

6.6 Relations between the different cases

Fig. 13 depicts the relations between the sets of joint probability measures.
For the upper probabilities and lower probabilities see Fig. 14 and 15. The
results for epistemic independence have been proven only for finite sets Ω1

and Ω2 (indicated by the dash box).

MFS0⊇MF = MFU0

⊇⊇

MUS0⊇MU = MUU0

⊆⊆

MSS0⊇MR = MSU0

⊆⊆

MS = MSS1⊇ME

Fig. 13. Relations between the different sets of joint probability measures.

6.7 Computational effort

To obtain PF, PR and PU we have to solve a global optimization problem
for each joint focal set because we need the images g(F i

1 × F j
2 ) of the focals.
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PFS0=PF = Pos = PFU0

≥≥

PUS0=PU = PUU0

≤≤

P SS0=PR = Pl = P SU0

≤≤
PS = P SS1≥PE

Fig. 14. Relations between the upper probabilities for the different cases.

PFS0=PF = Nec = PFU0

≤≤

PUS0=PU = PUU0

≥≥

P SS0=PR = Bel = P SU0

≥≥

PS = P SS1≤PE

Fig. 15. Relations between the lower probabilities for the different cases.

Therefore it is very important to use all properties of the function g such as
monotonicity and convexity to minimize the effort. The computation of the
images of the focals can be parallelized, that means that each computation of
g(F i

1 × F j
2 ) can be done on a separate CPU or on a separate computer (grid

computing).
The effort for the computation of PF, PR or PU depends on the number of

joint focals generated. For PF it is very low but in general for PR and PU it is
high. In addition to compute PU we have to solve a linear optimization prob-
lem to get the joint weights m. As already mentioned the computational effort



96 Thomas Fetz

for P S is very high, but if the function g is monotonic, the result coincides
with PR, see [6].

7 Numerical results for Examples 1, 2, 3, 4 and
Conclusion

First we show the results for Example 1 in one picture so that we can see
the relations between the different types of independence. Since the results
for different types of independence partly coincide, we have to recall the rule
P S ≤ PR ≤ PU. So if the curve for P S or PU partly disappears, then such a
curve is “under” the graph of PR, see Fig. 16. In this Figure we can also see
that sometimes PR is greater than PF and sometimes smaller. So especially
the choice between fuzzy set and random set independence should depend on
which type of independence is appropriate for the current problem and not
on the computational effort.
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Fig. 16. Results for example 1.

In Fig. 17 the results P S, PR and PU are depicted for Example 2. Of
course there is no result for fuzzy set independence, because the random set
of parameter λ2 is not consonant.

In Fig. 18 the results PF, PR and PU for two smoother fuzzy numbers are
depicted. We can see that for PR the steps are very small, because there are
a lot of joint focal sets (in contrary to fuzzy set independence). In Fig. 19 the
results PR and PU for Example 4 are plotted. For Example 3 and 4, we did
not compute P S because of the large number of joint focal sets, but it can be
bounded by PR.
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Fig. 17. Results for example 2.
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Fig. 18. Results for example 3.

Summarizing, we have considered models of parameter uncertainty using
intervals, random sets, histograms and fuzzy sets. In our approach, we have
shown that sets of probability measures provide a unifying interpretation for
all these models and allow the propagation through numerical algorithms.
One advantage of this interpretation is that it admits using the semantics
of probability theory for interpreting the data. Another advantage is that
it makes it possible to analyze and give a meaning to various concepts of
dependence or independence of multivariate data, whose differences are not
visible when one remains on the basic level of random sets or fuzzy sets.

In solving our examples, we have shown that the type of independence
chosen crucially influences the lower and upper probabilities of the outcome
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Fig. 19. Results for example 4.

in general. For computational purposes, it is not necessary to go down to the
level of sets of probability measures. The computations of the upper probabil-
ities can be reduced to optimization problems taking into account the special
structures of the different types of independence considered here.
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[13] B. Möller, M. Beer, W. Graf, and A. Hoffmann. Possibility theory based
safety assessment. Computer-Aided Civil and Infrastructure Engineering,
14:81–91, 1999.

[14] R. L. Muhanna and R. L. Mullen. Formulation of fuzzy finite-element
methods for solid mechanics problems. Computer Aided Civil and Infras-
tructure Engineering, 14:107–117, 1999.

[15] F. Tonon and A. Bernardini. A random set approach to the optimization
of uncertain structures. Comput. Struct., 68(6):583–600, 1998.

[16] F. Tonon and A. Bernardini. Multiobjective optimization of uncertain
structures through fuzzy set and random set theory. Computer-Aided
Civil and Infrastructure Engineering, 14:119–140, 1999.

[17] P. Walley. Statistical reasoning with imprecise probabilities. Chapman
and Hall, London, 1991.

[18] Z. Wang and G. J. Klir. Fuzzy Measure Theory. Plenum Press, New
York, 1992.

[19] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets
and Systems, 1:3–28, 1978.



Sensitivity analysis

Alexander Ostermann

Institut für Technische Mathematik, Geometrie und Bauinformatik, Universität
Innsbruck

Summary. When studying a mathematical model it is not enough to compute in-
dividual solutions. It is equally important to determine systematically the influence
of parameter variations on these solutions. This is particularly true in engineering
applications where parameters of the underlying model are often only imprecisely
known. The main task of sensitivity analysis is to identify critical parameter de-
pendences. In this short article, we review the basic ideas of sensitivity analysis
for deterministic models. We emphasize the use of internal numerical differentiation
which is a reliable and robust method. A greater part of the paper is devoted to
typical applications, illustrated by numerical examples.

1 Introduction

Sensitivity analysis is concerned with the propagation of uncertainties in
mathematical models. Its main task is to assess the influence of parameters
on the state of the system. The term parameter is used here in a broad sense.
For example, if the underlying problem consists in calculating the shape of
a rod under loading, then the length of the rod itself can be considered as a
parameter and the purpose of sensitivity analysis could be to determine the
influence of the length on the deformation of the rod.

In this paper we will model parameter dependent systems with the help of
nonlinear functions. Within this framework, sensitivity can be defined as the
Fréchet derivative of the function with respect to the parameters. It thus de-
scribes the variations of the output values for small parameter changes. Very
often, however, the underlying function is not known explicitly, but only de-
fined as the result of a possibly involved numerical calculation. This leads to
some minor complications. In Sect. 2 we introduce the mathematical frame-
work and recall the definition of differentiability of a function in several vari-
ables. We further discuss the relations between sensitivity and condition. The
latter is a common concept in numerical analysis.

Since sensitivity is closely related to derivatives, we discuss in Sect. 3
some computational issues of differentiation. We emphasize here the concept
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of numerical differentiation which goes well together with the fact that the
modelling function is often known numerically only.

The main part of this paper is devoted to numerical examples. In Sect. 4
we will discuss five typical applications from engineering: systems of linear
equations, eigenvalue problems, systems of nonlinear equations, ordinary dif-
ferential equations, and elliptic boundary value problems. A straightforward
method for computing sensitivities would be external differentiation. This ap-
proach relies on the approximation of derivatives by finite differences. It only
requires a few evaluations of the underlying function. In practice, however, it
is often preferable to solve the so-called sensitivity equations instead. The ap-
proach based on sensitivity equations is sometimes also called the method of
internal differentiation. It gives much better results than external differentia-
tion, if the underlying functions are evaluated with low accuracy only. Since
the sensitivity equations have a structure that is similar to the underlying
function, the computational costs of this method are comparable to exter-
nal differentiation. For each of the five problems in Sect. 4, we will derive
the corresponding sensitivity equations. Further, we will give some numeri-
cal examples in order to illustrate our theoretical considerations. Some final
conclusions are given in Sect. 5.

For engineers, sensitivity analysis can mean much more than estimating
derivatives. In a stochastic framework, for example, it might be interesting
to model the parameters by probability distributions and to ask for the cor-
responding probabilities of the output values of the model. Answering this
question requires much more computational effort than our above described
methods. An illustrative example from electrical engineering can be found
in [9, Sect. 2.7]. To obtain the desired probability distribution there, one has
to solve the underlying problem 10 000 times. Such extensions to sensitivity
analysis, however, will not be discussed here.

2 Mathematical background

Consider a system with m output values u = [u1, . . . , um]T, depending on n
input parameters p = [p1, . . . , pn]T. We model this system mathematically by
a function

F : D ⊂ R
n → R

m : p �→ u = F(p), (1)

defined on an open domain D. The properties of the model are thus fully
determined by F. A pitfall of the approach, however, is that F is not always
known explicitly. In finite element calculations, for example, F(p) might be
the calculated strains at m predefined points of a tunnel during excavation for
assumed soil parameters p. An evaluation of F then corresponds to a possibly
involved computation on a computer, typically with low accuracy.

Since sensitivity analysis is concerned with the influence of parameters on
the output of the system, we are led to investigate the behavior of F in a ball
BR(q) of radius R around the point q ∈ D
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BR(q) = {p ∈ R
n : ‖p − q‖ ≤ R}.

Here, ‖ · ‖ denotes an arbitrary norm on R
n. After a possible reduction of R,

we can always assume that this ball lies in the domain D of F. Assume that
F is Fréchet differentiable at q, i.e. there exists a m × n matrix J such that
for p ∈ BR(q) \ {q}

lim
p→q

‖F(p) − F(q) − J · (p − q)‖
‖p − q‖ = 0. (2)

Obviously, the existence of all partial derivatives of F at q is a necessary
condition for Fréchet differentiability. Therefore, the above matrix J is just
the Jacobian matrix of F at q

J = F′(q) =

⎡

⎢⎢⎢⎢⎣

∂F1

∂p1
(q) . . .

∂F1

∂pn
(q)

...
...

∂Fm

∂p1
(q) . . .

∂Fm

∂pn
(q)

⎤

⎥⎥⎥⎥⎦
.

We further recall that F is Fréchet differentiable at q, if all partial derivatives
of F exist in BR(q) and are continuous at q, see [7, Chap. 5.2].

2.1 Sensitivity

Let the behavior of the system be characterized by a Fréchet differentiable
function u = F(p). Its sensitivity with respect to the parameter pj at the
point q is defined as

z =
∂u
∂pj

=
∂F
∂pj

∣∣∣
p=q

(3)

and is thus given by the jth column of the Jacobian matrix F′(q). It is some-
times convenient to collect these partial sensitivities in the m × n matrix

Z = F′(q).

The sensitivity matrix Z describes the variation of the output values for small
changes in the parameters, viz.

F(p) − F(q) ≈ Z · (p − q) (4)

for ‖p − q‖ sufficiently small.

2.2 Condition numbers

The concept of condition is common in numerical analysis. It is a means to
classify whether the solution of a problem depends sensitively on its input
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data. Since this concept is very close to sensitivity analysis, we will shortly
comment on it.

The problem p �→ F(p) is called well-posed in BR(q) if and only if there
exists a constant L(R) ≥ 0 such that for all p ∈ BR(q)

‖F(p) − F(q)‖ ≤ L(R) · ‖p − q‖.

Without loss of generality, the Lipschitz constant L(R) may be chosen here
minimal. It is called condition number of problem (1) in BR(q) and describes
the maximum amplification of parameter variations in BR(q). Under appro-
priate regularity assumptions, it can be shown that

lim
R→0

L(R) = ‖F′(q)‖,

see [9, Chap. 2.6]. The operator norm of the sensitivity matrix is thus the
limit of the corresponding condition numbers. This shows that condition is
only a coarse means to estimate sensitivity.

3 Analytic vs. numerical differentiation

Since differentiation plays a prominent role in sensitivity analysis, we recall
some algorithmic facts about it.

3.1 Analytic differentiation

If the function F is given explicitly, then its partial derivatives can be ob-
tained in a straightforward way by applying the standard rules of differenti-
ation. However, if F is made up of involved expressions, this could be quite
a tedious and error-prone task. Alternatively, the derivatives can by obtained
symbolically with the help of computer algebra systems like MAPLE or even
with automatic differentiation tools, see [5]. We propose here still another
possibility, namely numerical differentiation.

3.2 Numerical differentiation

Let ϕ denote a sufficiently smooth scalar function in one variable, defined
in some neighborhood of q ∈ R. We approximate its first derivative at q
numerically by the one-sided difference scheme

ϕ′(q) ≈ ϕ(q + δ) − ϕ(q)
δ

. (5)

Note that in practical calculations, the function ϕ is only evaluated up to a
relative accuracy ACC. Let ϕ∗ denote the numerical evaluation of ϕ, hence
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ϕ∗(p) = (1 + ε)ϕ(p) with |ε| ≤ ACC.

In engineering applications like finite element calculations, we typically have
ACC ≈ 10−3 only. On the other hand, whenever ϕ is explicitly known, evalu-
ation in double precision IEEE arithmetic yields ACC ≈ 10−16.

The accuracy of (5) obviously depends on δ. On the one hand, Taylor
series expansion of the right-hand side of (5) shows that the discretization
error is proportional to δ. On the other hand, since ϕ is only evaluated up
to a relative accuracy ACC, the finite difference contains an additional error
term proportional to ACC/δ, hence

ϕ′(q) =
ϕ∗(q + δ) − ϕ∗(q)

δ
+ O(δ) + O

(
ACC

δ

)
. (6)

Best results for (5) are expected if both error terms in (6) are of the same
magnitude, viz. δ ≈ √

ACC. With this choice, the error of (5) is
√

ACC, too.
More accurate results can be achieved with central differences

ϕ′(q) ≈ ϕ(q + δ) − ϕ(q − δ)
2δ

. (7)

An error analysis similar to the one above shows that

ϕ′(q) =
ϕ∗(q + δ) − ϕ∗(q − δ)

2δ
+ O(δ2) + O

(
ACC

δ

)
.

Best results for (7) are expected if both of the above error terms are of the
same magnitude. For the choice δ ≈ 3

√
ACC, the error of (7) is proportional

to ACC 2/3.
The partial derivatives of a vector-valued function F in several variables

are approximated in a similar way. Let j ∈ {1, . . . , n} and let ej = [δjk]nk=1

denote the standard basis vector, defined with the Kronecker symbol

δjk =

{
1 if j = k,

0 else.

The jth column of the Jacobian matrix can be approximated by one-sided
differences

∂F
∂pj

(q) =

⎡

⎢⎢⎢⎣

∂F1

∂pj
(q)

. . .
∂Fm

∂pj
(q)

⎤

⎥⎥⎥⎦ ≈ F(q + δej) − F(q)
δ

. (8)

An approximation of the whole Jacobian requires n + 1 evaluations of the
function F at most. Taking central differences in (8) yields again a slightly
higher accuracy at the price of more function evaluations.



106 Alexander Ostermann

4 Examples

In engineering applications, many interesting systems are, in general, not given
in explicit form (1). Nevertheless, the above ideas can be applied to compute
sensitivities. In this section, we will illustrate this with five typical examples:
systems of linear equations, eigenvalue problems, systems of nonlinear equa-
tions, ordinary differential equations, and elliptic boundary value problems.

4.1 Systems of linear equations

Let our problem first take the form of a linear system of equations

A(p)u = b(p). (9)

For simplicity, we assume that the matrix A and the vector b possess
continuous partial derivatives in a neighborhood of q. If A(q) is regular,
i.e. detA(q) �= 0, then

u = F(p) = A(p)−1b(p) (10)

for all p in a neighborhood of q. This proves that F and thus u are Fréchet
differentiable with respect to p at q. Applying the chain rule further shows
that

∂A
∂pj

(q)u + A(q)
∂u
∂pj

=
∂b
∂pj

(q)

and thus

∂u
∂pj

(q) = A(q)−1

(
∂b
∂pj

(q) − ∂A
∂pj

(q) · A(q)−1b(q)
)

. (11)

Note that the numerical evaluation of this formula requires only one decom-
position of A, but it needs the partial derivatives of A and b, or at least some
numerical approximations thereof.

An alternative way would be to differentiate (10) numerically, i.e.

∂u
∂pj

(q) ≈ 1
δ

(
A(p + δej)−1b(p + δej) − A(p)−1b(p)

)
. (12)

This approach does not need the partial derivatives of A and b. On the other
hand, it requires two decompositions of A, one at q and one at q + δej.

To illustrate the above ideas, we consider

A =
[
1 + p p2

1 − p 2 − p

]
, b =

[
p2 − 1

2p

]
. (13)

For this simple example, the exact solution u = [u1, u2]T of Au = b can be
calculated easily and is given by
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u1 = −2 − p − 2p2 + 3p3

2 + p − 2p2 + p3
, u2 =

1 + p + p2 + p3

2 + p − 2p2 + p3
.

At p = 1, the solution and its sensitivity are thus

u(1) =
[−1

2

]
,

∂u
∂p

(1) =
[−2

3

]
.

We compare these exact values with numerically obtained approximations
based on methods (11) and (12). We work in IEEE double precision arithmetic
with ACC ≈ 10−16 and approximate the partial derivatives that are required
in (11) numerically with one-sided differences. The errors of the corresponding
methods as a function of the discretization parameter δ are given in Table 1.
As expected, both methods yield best results for δ ≈ 10−8.

δ 10−4 10−6 10−8 10−10 10−12

errors of (11) 5.000 · 10−5 4.998 · 10−7 2.191 · 10−8 2.983 · 10−7 3.205 · 10−4

errors of (12) 3.162 · 10−4 3.162 · 10−6 2.082 · 10−8 2.983 · 10−7 3.205 · 10−4

Table 1. Numerical approximation of the sensitivity of problem (13) with respect
to p. The errors of methods (11) and (12) are displayed for different values of δ,
respectively. With one-sided differences, best results are obtained for δ ≈ 10−8.

4.2 Eigenvalue problems

Let A(p) = AT(p) be a symmetric matrix that depends smoothly on a parame-
ter p ∈ R and consider the eigenvalue problem

Au = λu, uTu = 1. (14)

Further, for fixed q, let µ = λ(q) be a simple eigenvalue of (14) with a corre-
sponding eigenvector v = u(q) of unit length. Differentiating (14) with respect
to p at q gives the sensitivity equations

A′ (q)v + A(q)u′(q) = λ′(q)v + µu′(q), vTu′(q) = 0. (15)

Here, primes denote differentiation with respect to the argument p. Multiply-
ing the first equation from the left-hand side with vT and using (14) shows
that

λ′(q) = vTA′ (q)v. (16a)

The sensitivity u′(q) is then given as the unique solution of the linear system
[
A(q) − µ I

vT

]
u′(q) =

[
λ′(q)v − A′ (q)v

0

]
. (16b)
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For the purpose of numerical illustration, we consider the matrix

A(p) =
[

1 − p (1 + p)−1

(1 + p)−1 1 + p

]
.

At p = 0, it has the eigenvalues 0 and 2. The latter takes the form

λ(p) =
1 + p +

√
1 + p2 + 2p3 + p4

1 + p
.

for p near 0. A straightforward calculation from this explicit representation
gives the sensitivities

λ′(0) = −1, u′(0) =
√

2
4

[−1
1

]
=
[−0.3535533905932738...

0.3535533905932738...

]
.

In general, however, an explicit representation of λ as a function of p is not
available. Then (16) combined with a numerical differentiation of A is a good
alternative to calculate the sensitivities. Choosing δ = 10−8 we obtain in IEEE

arithmetic the following numerical approximations

λ′(0) ≈ −0.9999999883714141, u′(0) ≈
[−0.3535533904071787

0.3535533904071790

]
.

Since we used one-sided differences, the accuracy is about 8 digits.

4.3 Systems of nonlinear equations

Let us next discuss the case when our problem takes the form of a system of
nonlinear equations

G(u,p) = 0. (17)

For this we assume that G has continuous partial derivatives in a neighbor-
hood of (v,q) and that G(v,q) = 0 . If

det
∂G
∂u

(v,q) �= 0,

then the implicit function theorem provides the existence of a function
u = u(p) which uniquely solves (17) in a neighborhood of q with u(q) = v.
Further, this function is differentiable with respect to p and

∂u
∂pj

(q) = −
(

∂G
∂u

(v,q)
)−1

∂G
∂pj

(v,q). (18)

Note that the implicit function theorem actually holds under slightly weaker
assumptions on G, see [7, Chap. 5.2].

For an evaluation of (18) we can employ numerical differentiation to ap-
proximate the partial Jacobians

∂G
∂u

(v,q) and
∂G
∂pj

(v,q),

and then solve a linear system of equations.
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4.4 Ordinary differential equations

Suppose that we have to solve the following system of time dependent differ-
ential equations for t > 0

dy
dt

= f(t,y,p), y(0) = a. (19)

If the right-hand side f is Lipschitz continuous with respect to y, the solution
at time t is a function of the parameters and the initial data

y(t) = F(t,p,a).

In general, however, this function F is not known explicitly.
We are again interested in obtaining the sensitivities of the solution y(t)

with respect to the parameters p. Note that the sensitivity of the solution
with respect to initial data can be studied in a similar way. One possibility
is to consider v(t) = y(t) − a which transforms initial data into parameters.
Applying this transformation to (19) results in the equivalent problem

dv
dt

= f(t,v + a,p) =: g(t,v,a,p), v(0) = 0

with a parameter dependent right-hand side g and zero initial data.
We will explain two strategies for computing the sensitivity of y(t) with

respect to the parameter pj . External differentiation enjoys great popular-
ity in engineering, but it may suffer from a loss of accuracy. Our method of
choice is therefore internal differentiation, which is based on solving sensi-
tivity equations. It gives more accurate results for a comparable amount of
computational effort.

External differentiation

In view of Sect. 3.2, the sensitivity of y(t) with respect to pj can be approxi-
mated by numerical differentiation

z(t) =
∂y(t)
∂pj

≈ F(t,p + δej ,a) − F(t,p,a)
δ

.

In practice, each evaluation of F corresponds to solving (19) numerically for
a given tolerance TOL. Let yn and ỹn denote the numerical solutions of (19)
at time t with parameters p and p̃ = p + δej, respectively, and let

ẑn =
ỹn − yn

δ
. (20)

An analysis along the lines of Sect. 3.2 then shows that

‖z(t) − ẑn‖ = O(δ) + O

(
TOL

δ

)
. (21)

For large tolerances, which are typical in engineering applications, the attain-
able accuracy of the numerical approximation ẑn can thus be quite poor. This
is a severe drawback of external differentiation.
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Internal differentiation

If the partial derivatives of f with respect to y and p are continuous in a
neighborhood of the exact solution, then the sensitivity

z(t) =
∂y(t)
∂pj

, j ∈ {1, . . . , n}

is continuous and fulfils the so-called variational equations

dz
dt

=
∂f
∂y

(t,y,p) · z +
∂f
∂pj

(t,y,p), z(0) = 0. (22)

This well-known result goes back to Gronwall [4]. For a modern presentation,
we refer to the monograph [6, Chap. I.14].

The variational equations are formally obtained by differentiating (19)
with respect to the parameters. Note that the explicit calculation and imple-
mentation of the expressions appearing on the right-hand side of (22) can be
a tedious task. We therefore strongly recommend to replace (22) by the fol-
lowing approximation that is obtained from (19) by numerical differentiation

dẑ
dt

=
f(t,y + δẑ,p + δej) − f(t,y,p)

δ
, ẑ(0) = 0. (23)

The variational equations (23) together with the original problem (19) form a
coupled system of differential equations which has to be solved simultaneously
for y and ẑ. Let ẑn denote the numerical solution of (23) at time t, obtained
with a prescribed tolerance TOL. An analysis along the lines of Sect. 3.2 shows
that

‖z(t) − ẑn‖ = O(TOL) + O(δ) + O

(
ACC

δ

)
. (24)

Here, ACC denotes the accuracy of the function evaluations in (19) and (23).
Comparing (21) with (24) reveals the superiority of internal differentiation.

Most accurate results are obtained for the choice

δ ≈ √
ACC ≈ TOL, (25)

when the three error terms in (24) are of the same order of magnitude.

Applications

The sensitivity of the solution of a differential equations with respect to ini-
tial values or parameters is frequently needed in combination with Newton’s
method. For example, in finite element calculations with a nonlinear constitu-
tive equation, a consistent tangent operator is required to achieve quadratic
convergence in Newton’s method. If the constitutive equation consists of a
system of ordinary differential equations, this requires the sensitivity of the
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solution with respect to parameters, namely the derivative of the computed
stresses with respect to the prescribed strain increments. In [3], we have used
internal differentiation for a successful implementation of a hypoplastic con-
stitutive equation in a finite element code.

Further applications are encountered in computational dynamical systems.
A typical problem there is the numerical computation of periodic orbits which
requires the derivative of the solution with respect to the initial data, see [2].

4.5 Elliptic boundary value problems

When elliptic boundary value problems are formulated in the language of
functional analysis, they take the form of linear or nonlinear equations. At
first glance, the sensitivity analysis is therefore quite close to that of Sects. 4.1
and 4.3. The mathematical framework, however, is much more involved since
the analysis takes now place in abstract function spaces. The technical details
are well explained in the monograph [8] and need not be repeated here.

On the other hand, the applied engineer should not be deterred by the
above mentioned abstract framework. Although the mathematical analysis
cannot be done without it, numerical examples nevertheless can be handled
to some extent without going into the intricacies of functional analysis.

To be more specific, we consider a nonlinear model for the buckling of an
elastic rod, see [1, Chap. 1.3]. We describe the shape of the rod in problem
adapted coordinates by a parameterized curve [x(s), u(s)]T in the (x, u)-plane.
As parameter s, we choose the arc length of the curve. One end of the rod is
kept fixed at the origin whereas the other one is allowed to move along the
x-axis, subject to a horizontal force p = [p, 0]T applied at this end, see Fig. 1.

p x

u

ϕ

[x(s), u(s)]T

Fig. 1. The deformed rod [x(s), u(s)]T under constant axial loading p from the
right. The oriented angle between the positive x-axis and the tangent of the curve
is denoted by ϕ.

Let ϕ denote the oriented angle between the positive x-axis and the tangent
of the curve [x(s), u(s)]T. We then have the following relations

dx

ds
= cosϕ(s),

du

ds
= sin ϕ(s), x(0) = u(0) = 0. (26)
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In standard elasticity, the curvature dϕ
ds is assumed to be proportional to the

moment p·u(s) of the force. Due to (26), the deformation of the rod is therefore
described by the following integro-differential equation

dϕ

ds
(s) + λ

∫ s

0

sin ϕ(σ) dσ = 0, (27)

where the constant λ is proportional to p. We differentiate (27) with respect
to s to obtain a second-order nonlinear boundary value problem for ϕ

d2ϕ

ds2
(s) + λ sinϕ(s) = 0,

dϕ

ds
(0) =

dϕ

ds
(1) = 0. (28)

This is exactly the same equation that models the mathematical pendulum.
For any positive integer k and (k − 1)2π2 < λ < k2π2, problem (28) has k
different solutions which are all locally unique, see [1]. Let

ψ(s, λ) =
∂ϕ

∂λ
(s, λ)

denote the sensitivity of ϕ with respect to λ. Then ψ satisfies the sensitivity
equation

d2ψ

ds2
(s) + λ cosϕ(s) · ψ(s) = − sin ϕ(s),

dψ

ds
(0) =

dψ

ds
(1) = 0, (29)

which is obtained from (28) by formal differentiation. For the numerical so-
lution of (28) and (29), we use standard finite differences on an equidistant
grid with 200 meshpoints. The resulting nonlinear system for (28) is solved
by Newton’s method. We set λ = 72 and look for the unique solution with
two buckles. The linearization of (28) motivates to start the iteration with
ϕ(s) = β cos(2πs). Taking β = 2, the method converges to machine preci-
sion after five steps. In order to obtain second-order approximations for the
positions and their sensitivities, we use (26) and discretize the integrals

x(s) =
∫ s

0

cosϕ(σ) dσ, ξ(s) =
∂x(s)
∂λ

= −
∫ s

0

sin ϕ(σ)ψ(σ) dσ,

u(s) =
∫ s

0

sin ϕ(σ) dσ, z(s) =
∂u(s)
∂λ

=
∫ s

0

cosϕ(σ)ψ(σ) dσ

with the trapezoidal rule. The numerical results are displayed in Figs. 2 and 3.
In this example, the information on the Jacobian matrix is needed in the

Newton iterations for solving (28). The additional costs for solving the sensi-
tivity equations (29) are therefore negligible. This situation is quite typical of
nonlinear problems.
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Fig. 2. The locally unique solution ϕ(s) of (28) for λ = 72 (left) and the deformed
rod [x(s), u(s)]T with two buckles (right).
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Fig. 3. The sensitivity ψ(s) of the angle ϕ(s) (left) and the sensitivity [ξ(s), z(s)]T

of the deformed rod [x(s), u(s)]T (right) for λ = 72.

We close this section with a simple but yet important remark. We illus-
trate with a simple example how shape parameters can be transformed to
parameters of the right-hand side function. For this, let

uxx(x) = f
(
x, u(x), ux(x)

)
, 0 < x < �, u(0) = u(�) = 0

be a nonlinear second-order boundary value problem on the interval [0, �].
Here subscripts denote corresponding differentiations. In order to determine
the sensitivity of the solution u with respect to the length �, one might consider
the new coordinates

x = �ξ,
d2

dx2
=

1
�2

d2

dξ2
, z(x) = w(ξ).

This transformation yields the equivalent boundary value problem

wξξ(ξ) = �2f
(
�ξ, w(ξ), �−1wξ(ξ)

)
=: g

(
ξ, w(ξ), wξ(ξ), �

)
, 0 < ξ < 1

with homogeneous boundary conditions w(0) = w(1) = 0 on the constant in-
terval [0, 1]. The transformed problem, however, has a right-hand side function
g that depends on the parameter �.
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5 Conclusions

In this article, we discussed sensitivity analysis for deterministic mathemat-
ical models. For approximating the sensitivities of a particular solution, we
emphasized the method of internal differentiation. This corresponds to differ-
entiating the underlying model first analytically with respect to the parame-
ters and then approximating the arising derivatives numerically. The resulting
equations, which define the sensitivities, are linearizations of the underlying
equations. In particular, they possess a structure similar to that of the under-
lying equation which in turn allows for an efficient implementation.

When dealing with nonlinear problems, some information on the Jacobian
matrix is typically needed in Newton-type iterations. The additional costs for
solving the sensitivity equations for a few parameters are then often negligible.

Acknowledgement. I am most grateful to Ernst Hairer who introduced me to sensi-
tivity analysis during my postdoc in the late eighties at the University of Geneva.
I will always remember his wonderful lectures on computational dynamical systems
where he emphasized the advantages of internal differentiation.
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Difficulties related to numerical predictions of
deformations

Ivo Herle

Institut für Geotechnik, Technische Universität Dresden

1 Introduction

Outputs of numerical calculations are rather impressive today. Contour plots
of stresses and deformations contribute to the fast interpretation of results
and create the impression of being perfect and reliable. Nevertheless, many of
the end-users overlook the complicated process leading to such results. This
process can be divided into several basic steps:

1. Simplification of the reality
(choosing important variables, geometry, selection of substantial aspects
of the problem and disregarding minor ones)

2. Discretization
(space and time discretization — element size, time step, boundary con-
ditions, construction details)

3. Constitutive model
(framework for calculation of strains, selection of the appropriate material
description, model for interfaces, calibration of the parameters, determi-
nation of the initial state)

4. Mathematical and numerical aspects
(type of time integration, equation solver, iteration scheme, well-posedness).

All steps are equally important. If one step is not correctly implemented,
the whole result may become wrong. All steps compose a chain which fails
at the weakest link. The outlined steps are valid for any calculation. It is not
possible to distinguish seriously between calculations of deformation and limit
states. Even in problems related to deformation the material usually reaches
the limit state of stress at several points! Moreover, we need deformations in
order to calculate limit states since the subsoil and structure interact and we

Published originally in: S. Springman (ed.), Constitutive and Centrifuge Mod-
elling: Two Extremes, Workshop in Monte Verita, Switzerland. A. A. Balkema
Publishers, 2002, pp. 239–248.
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cannot distinguish between action and reaction (although it is a wish of code
designers). The necessity of an overall approach was already discussed e.g. in
the Rankine lecture by Roscoe: ”Influence of strains in soil mechanics” [22].

2 Predictions vs. measurements

The only way to evaluate numerical simulations is to compare them with
measurements and observations. However, opportunities to compare measure-
ments with true predictions (so-called class A predictions [15]) are very rare.
They teach us that in most cases our predictions are rather far away from
measured values.

It is useful briefly to review some competitions on predictions in geotechni-
cal engineering, with emphasis on deformation calculations (all competitions
were designed as plane strain problems):

1. MIT trial embankment [34]
A normally consolidated soft clay layer beneath a trial embankment con-
trolled the deformation behaviour. Laboratory experiments and field mea-
surements for the first construction stage up to 12.2 m height were done
prior to the prediction calculations. Predictions of deformations, pore pres-
sures and maximum additional height of the embankment at subsequent
rapid filling to failure were received from ten groups. There was a large
scatter of the numerical results: e.g. additional height of fill at failure
ranged between 2.4 m and 8.2 m (measured: 6.4 m), additional settlement
at the ground surface in the centre of the embankment due to 1.8 m of
fill — between 1.9 cm and 34.8 cm (measured: 1.7 cm), additional hor-
izontal movement beneath the middle of the embankment slope due to
1.8 m of fill ranged between 0.4 cm and 21.8 cm (measured: 1.3 cm), etc.
One of the best predictions, based on the Modified Cam Clay model [34],
was very good with respect to pore pressures but still less accurate for
deformations.

2. Excavation in sand [33]
A 5 m deep excavation in a homogeneous sand layer above the ground-
water level in Germany near Karlsruhe was supported by a sheet pile
wall. Struts were installed at 1.5 m depth. An additional surcharge was
placed at the ground surface after the excavation and finally the struts
were loosened. In situ and laboratory soil investigations were performed
prior to the excavation. Results from 43 predictions concerned horizontal
displacements of the wall, vertical displacements at the ground surface,
earth pressures on the wall and bending moments in the wall. The com-
parison with measured values was very disappointing. Especially worrying
was that displacements were often predicted wrong in a qualitative sense
(i.e. in the opposite direction).
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3. Excavation in clay [16]
A 7 m deep excavation in soft clay and peat with a high groundwater level
was located in the Netherlands near Rotterdam. The purpose of this field
test was to complement the field test in Karlsruhe with another type of
soil. Again, predicted values were often far away from the measured ones.

4. Tunnel and deep excavation [24]
Both benchmark calculations were intended to check only the numerical
aspects and were not accompanied by any measurements. Geometry, con-
stitutive model (Mohr-Coulomb), model parameters and boundary and
initial conditions were specified. Still the results diverge in a consider-
able manner: In case of the tunnel excavation, most calculations predicted
nearly the same surface settlement only for one step excavation. Applying
two steps, the maximum surface settlement ranged from 3.3 cm to 5.8 cm
(10 calculations). Even worse was the case of a deep excavation supported
by a diaphragm wall with two rigid struts. Vertical displacement of the
surface behind the wall ranged between 1.3 cm and 5.2 cm and the hor-
izontal displacement of the head of wall oscillated between −1.3 and 0.5
cm (12 calculations).

5. Excavation with a tied back diaphragm wall [25]
A geometrical specification of the 30 m deep excavation in Berlin sand
supported by a diaphragm wall anchored at three levels was accompanied
by a detailed specification of the simulation stages and basic laboratory
experiments (index tests, oedometer and triaxial tests). Even after ”fil-
tering out” the most extreme and questionable results, the values of the
maximum horizontal displacements ranged between 0.7 cm and 5.7 cm,
and the surface settlements between 5.0 cm and −1.5 cm. Large scatter
was obtained even for results from the same code using the same material
model.

6. Vertically loaded small model footings on sand [10, 27, 30]
Small model strip footings (B = 1.0, 2.5, 5.0 and 10 cm) were placed on the
surface of a dense sand and loaded vertically. Load-displacement curves
were calculated prior to the experiments. Due to small dimensions of the
footings, a pronounced scale effect was involved. The overall results of
the prediction competition [29] have never been published. However, a
personal communication to the organizer1 confirmed that the predicted
load-displacement curves [10], based on the polar hypoplastic model, were
the best ones. Although the scale effect and the strains at the peak of the
load-displacement curve were reproduced very well, the maximum load
was overpredicted by almost 40%.

The above overview of several prediction competitions shows an unsatis-
factory state of the art. It seems that we are not able to predict reliably the
behaviour even of the simplest geotechnical structures.
1 Personal communication from Professor F. Tatsuoka at the IS-Nagoya, 1997.
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Leaving aside the question as to why there are, in reality, only a few
geotechnical structures which fail (probably due to very high values of safety),
I will try to analyze in more detail the steps No. 3 and 4 of Section 1, which
describes the process of the creation of a numerical model.

3 Constitutive model

From the point of view of a geotechnical engineer, the question of the con-
stitutive model and of its calibration is the crucial one. A large number of
soil models exist but still no general agreement on their quality (and how
the quality can be defined [13]) and on the range of their applicability. The
second criterion is probably more important since every model has some lim-
itations which are unfortunately usually hidden by the designer of the model.
Moreover, the complexity of advanced models often prevents other potential
users from implementing and checking them2. This results in applying but
very simple models in most practical cases.

It is not the aim of this contribution to evaluate the suitability of particular
soil models in describing the soil behaviour. Alongside prediction competitions
on boundary value problems (BVP), prediction competitions on soil behaviour
in element tests have also been performed [6, 23]. Nevertheless, there are
several topics closely related to constitutive models which become obvious
first in calculations of BVP.

3.1 Calculation of strains

Constitutive models use strains instead of displacements in order to be scale
independent. However, there is no unique definition of strain. In soil mechan-
ics, we usually consider small strains which refer to a very small change of
lengths and angles: in 1-D we write ε = (l − l0)/l0 with l0 being the initial
length and l the actual length. This approach is the simplest one, but mostly
it cannot be justified. Using small strains, we refer to a reference (initial)
geometrical configuration without taking into account geometrical effects. Al-
though it may often seem that the overall deformations are small, local strains
2 The question of checking the models is extremely important. There is a useful

analogy with the open source software e.g. under the GNU license. This software
is accessible to everyone who is interested and can read the source code. Conse-
quently, a large number of people test the software and report the bugs as well
as propose improvements. It is a public secret that many open source codes are
today better and more reliable than commercial software which can be supported
only by limited financial means on development and testing. Unfortunately, the
situation in the development of constitutive models resembles more of a strug-
gle between advertisement agencies. Users are merely convinced on superiority of
each particular model even without understanding it and having a possibility to
check it.
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can reach high values in some cases, consider e.g. cavity expansion problem
or shear zones. Another class of problems sensitive to the strain calculation
refers to situations where the stiffness moduli are comparable with the stress
level. We should always bear in mind that using highly non-linear constitutive
models, which correspond better to the soil behaviour than the linear ones,
even a small change in strains can yield a substantial change in stresses.

3.2 Strain decomposition

The vast majority of constitutive models assumes the strain decomposition
into elastic and plastic parts thus implicitly assuming the existence of an elas-
tic range. Elastic strains are recoverable (reversible) after so-called unloading.
Usually linear elasticity is assumed. But it is not simple to detect an elastic
range even in highly sophisticated laboratory experiments in the range of very
small deformations [28].

One often argues that this decomposition is not so important for monotonic
deformation processes where only one loading direction appears. However, if
the strain decomposition is not important, so why do we do it? Do we want to
forget the basic rule ,,Keep the model as simple as possible (but not simpler)”?
Moreover, the argument mentioned above is not true. Practically all boundary
value problems involve regions of simultaneous loading and other regions of
unloading. Probably no BVP exist which include only one loading direction.
A classical demonstration can be a tunnel excavation or a deep excavation
[8, 31]. Both, loading and unloading is also present in coupled problems with
the generation and the subsequent dissipation of pore water pressures [14].

The problem of the elastic range is closely related to the non-linearity
of the soil behaviour. Although, according to experimental results, the elastic
strain range is almost vanishing, many models presuppose quite a large domain
of (linear) elastic strains (except for very sophisticated elasto-plastic models
which, on the one hand can reproduce the soil behaviour in such a small elastic
range, but on the other hand are extremely complex and remain a topic of
the academic research of few specialists). Even rather advanced models can
suffer from the effect of an unrealistic elastic range, see Figure 1 [7].

An example of failing to reproduce the observed deformation pattern by
applying linear elasticity may be the class A prediction of displacements due
to the excavation for the underground car park at the palace of Westminster
[3]. Although the horizontal displacements at the surface behind the wall were
in a tolerable range, the predicted vertical displacements had the opposite sign
to the measured values. This resulted in the wrong prediction of the direction
of rotation of the Big Ben Tower. An additional calculation using a bilinear
model with ten times higher initial stiffness yielded a substantial improvement
[26].
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Figure 1. Elastic range of di Prisco model yields an unrealistic oedometer stress
path during unloading (right)

3.3 Hypoplasticity

Let me give an example of a non-linear constitutive model without strain
decomposition. There is a class of so-called hypoplastic models which abandon
the strain decomposition and consequently do not use notions of yield and
potential surfaces, flow rules etc. [12, 5]. The basic idea can be explained for
a 1-D case. The stress rate follows from

σ̇ = E1ε̇ + E2|ε̇| (1)

where E1 > E2 > 0 are the stiffness moduli. Defining ”loading” as ε̇ < 0, we
have |ε̇| = −ε̇ and therefore

σ̇ = (E1 − E2) ε̇ (2)

whereas for ”unloading”, |ε̇| = ε̇ > 0 and

σ̇ = (E1 + E2) ε̇ . (3)

Obviously, the stiffness for loading is smaller than for unloading, as usually
observed.

Considering two stress components, σ and τ , and the corresponding strain
components, ε and γ, a hypoplastic equation can be written as

{
σ̇

τ̇

}
=

[
Lσσ Lστ

Lτσ Lττ

] {
ε̇

γ̇

}
+

{
Nσ

Nτ

}
√

ε̇2 + γ̇2 (4)

with Lij and Ni being components of the tangent stiffness matrix. A particular
representation of this equation [9] may be

σ̇ = c2σ

(
ε̇ + c2

1

σε̇ + τ γ̇

σ2
σ − c1

√
ε̇2 + γ̇2

)
(5)

τ̇ = c2σ

(
γ̇ + c2

1

σε̇ + τ γ̇

σ2
τ − 2c1

τ

σ

√
ε̇2 + γ̇2

)
(6)
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with c1 (=1/tanϕ, ϕ is a friction angle) and c2 being the model parame-
ters. With such a very simple model one can obtain many features of the
soil behaviour, including non-linearity, shear-volumetric coupling or stress-
dependent stiffness.

In the general case, the hypoplastic model includes an objective stress rate
tensor T̊ instead of σ̇ and the stretching tensor D instead of ε̇. The modulus
|ε̇| is replaced by ‖D‖ =

√
D : D. The matrices Lij and Ni become tensors

of the fourth and the second order, respectively, and depend on the effective
stress tensor (and its invariants) and on the void ratio [32].

3.4 Model calibration

Quality of experiments

Calibration of the model parameters is mostly based on laboratory experi-
ments. Nowadays, the quality of test results is considered to be high (although
the precision of measurements is limited) and consequently many researchers
try to check constitutive equations by reproducing the experimental curves
numerically as closely as possible. However, looking more in detail at basic
element tests performed in different apparatuses, substantial scatter of experi-
mental results can be observed [2, 18]. This is not a point against experiments
(!), it merely suggests that the development and the validation of constitutive
models should be based mainly on the qualitative aspects of the soil behaviour.
The realistic solution of boundary value problems does not depend only on
the reproduction of calibration curves.

Oversimplified models

Material parameters are always linked to a particular constitutive model. In
other words, if the constitutive model does not describe particular aspects of
the material behaviour properly, one cannot determine corresponding model
parameters.

A classical example of this problem is the calibration of the Mohr-Coulomb
model. Non-linear stress-strain curves are approximated by a straight line un-
derpredicting thus the initial stiffness and overpredicting the tangential stiff-
ness at higher strains. Moreover, one often does not inspect the volumetric
behaviour which is uniquely linked to the stress-strain curve. Such an inspec-
tion would show that the initial (elastic) volumetric compression is grossly
overpredicted (Figure 2).

Recognizing the above mentioned problem, some people try to fit the pa-
rameters of a constitutive model directly to in situ measurements, referring
to the observational method [20]. Beside the fact that this approach disables
a class A prediction, it usually fails to reproduce the realistic pattern of de-
formation. Regarding e.g. a tunnel excavation, one manages to fit the surface
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Figure 2. Questionable calibration of the Mohr-Coulomb model from the outputs
of triaxial tests (Young modulus adjusted to the stress level)

settlement but departs from the measured tunnel deformation and vice versa
[4].

The situation is even worse with respect to the subgrade reaction model.
In many countries this model is standard for modelling the soil-structure in-
teraction (design of excavation or tunnel support) in spite of its doubtful
parameter, modulus of subgrade reaction. This parameter cannot be a soil
constant since it is system dependent and thus it cannot be measured (except
in a real 1:1 prototype in the same soil conditions).

Complex models

The calibration of complex models is a hard task since they usually have many
material parameters. Nevertheless, the number of parameters is of a minor
importance if a reliable calibration procedure is at the disposal. Unfortunately,
this is rarely true.

Most model developers claim that one should be able to determine the
model parameters from standard types of laboratory tests and they recom-
mend usually triaxial and oedometer tests. Still, the majority of parameters
are interrelated because they represent coefficients in highly non-linear func-
tions which cannot be uniquely determined from experimental output. It is
difficult to define a measure of an optimum approximation of the experimen-
tal data with such models which are also sensitive to the initial conditions in
calibration tests.

A robust calibration should be based preferably on asymptotic states.
Asymptotic states are e.g. critical states, proportional compression with con-
stant ratio of the components of the stretching tensor or states with pressure-
dependent minimum density due to cyclic shearing with a small amplitude.
Such states are insensitive to initial conditions, eliminating thus the influence
of sample preparation. They can be usually described by relatively simple
equations with a low number of parameters. These parameters can be con-
sidered as true material constants because they do not depend on the actual
state of soil.
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Novel ways of model calibration seem to be optimization procedures in-
cluding artificial neural networks. However, they are still under development
and are thus not suitable for routine applications.

3.5 Initial state

It is astonishing how often an appropriate determination of the initial state is
neglected in numerical simulations of BVP. It is standard to start calculations
with a K0 stress state, taking K0 = 1 − sin ϕ, although the geological history
of the site can be reproduced at least qualitatively [17]. The initial state
can be influenced even more dramatically by construction processes, e.g. old
excavations, compaction or wall installation [33, 19].

The situation becomes worse with unsuitable constitutive models which
usually do not distinguish between soil constants (i.e. material parameters)
and state variables. An approximation of non-linear stress-strain curves with
straight lines inevitably yields material ”constants” which depend on the cur-
rent state of soil and thus contradict the notion of a material parameter.

4 Mathematical and numerical aspects

Mathematical and numerical aspects in simulations of BVP are certainly
linked to constitutive models. The general rule — the more complicated model,
the more serious numerical problems — is valid.

Mathematicians have known for a long time that satisfactory results can be
expected only in the case of a well-posed BVP, for which existence, uniqueness
and stability of solution is guaranteed. It is not possible to perform such
proofs in practical cases but one should be aware that there is sophisticated
mathematics behind the contour plots and that to obtain a realistic solution is
by no means obvious. According to the classification by Belytschko [1], most
of the geotechnical calculations would still fall into the category computer
games!

On the other hand, one cannot consider numerical difficulties as mere
obstacles in applications. Reality is neither unique nor fully deterministic [21].
Bifurcation points in our equations often coincide with instabilities in the
material response, which are far away from the limit states of stress, and
a slight change in the initial conditions may result in a different material
response. An instructive demonstration of this fact is obtained by analyzing
the controllability of laboratory tests [11]. Some stress paths, which become
out of control in laboratory apparatuses (e.g. behaviour after the peak of the
stress-strain curve from undrained triaxial compression of water-saturated
sand), cannot be controlled in numerical simulations as well.
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5 Concluding remarks

I gave some hints on several pitfalls of numerical methods in calculation of
deformations. In particular, we should be aware of

1. correct calculation of strains from displacements,
2. simultaneous loading and unloading in most cases,
3. absence of linear elasticity in the soil behaviour,
4. scatter in experimental results,
5. unsatisfactory deformation patterns calculated with simple models,
6. ambiguous calibration procedures,
7. considerable role of initial state,
8. difference between material parameters (constants) and state variables,
9. indeterministic components in the soil behaviour resulting in ill-posed

BVP.

There are other important factors which have not been discussed here but
which can significantly affect results of numerical calculations, among them

• scatter of soil conditions in situ,
• averaging procedures in multiphase continua,
• inertial and damping effects,
• drawbacks of iterative solution of the set of equations and of time integra-

tion.

The inability to get reliable numerical predictions could seem almost hope-
less. So why do we sometimes succeed in obtaining realistic results? Is it just
because we look only at particular curves we want to see? In the most cases we
do not perform true predictions. We rather apply the observational method
in the sense of the adaptation of numerical results to measured data. If we
do not have data, we try at least to adapt the numerical results from ana-
logical cases from our experience or intuition. The prediction competitions
teach us that in unknown (new) situations the reliability of our predictions
is poor. Consequently, questions may arise: Should we stop with the develop-
ment of constitutive models and numerical tools since they do not bring us
desired results? Should we rely only on experiments (model tests, centrifuge,
prototypes) and observations?

I think that the opposite is true. We should abandon the tradition that a
soil is characterized by E, ϕ and c, and intensify further research. We cannot
proceed only based on physical modelling since most geotechnical construc-
tions can be considered as prototypes and model tests with granular materials
bring even more questions (e.g. how to scale the sand grains, how to eliminate
systematic and random errors or how to measure stresses at small scale).
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FE ultimate load analyses of pile-supported
pipelines - tackling uncertainty in a real design
problem
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Summary

This study addresses the prediction of the behavior of pile-supported buried
pipelines when they are considered as shell structures. Results, obtained on
the basis of the numerical model are compared with experimental results,
conducted both in the laboratory and on-site. Special attention is paid to
the scatter of geometrical, material and loading parameters. The experimen-
tal and numerical investigations served as the basis for the development of a
design table for pile-supported buried pipelines.

1 Introduction

Pile-supported buried pipelines, made of ductile cast iron, represent a techni-
cally reliable and economic solution for sewage disposal in regions with poor
soil conditions. Such a pipeline consists of individual pipes put together in
sleeves and supported at discrete points, i.e. at the piles. The span between
two adjacent piles is equal to the length of the individual pipes of 5 or 6 m,
respectively. Typical pipe diameters range between 200 and 600 mm with wall
thicknesses from 5 to 11 mm. A pile-supported pipeline can be viewed as a
statically determinate beam structure with internal hinges (Fig. 1), consist-
ing of several pipes, each of which is supported by a pile, except the first and
the last one. The first pipe has two supports, one at the sewer shaft and a
second on a pile. The last pipe is only supported by the sewer shaft at the
other endpoint of the pipeline. The sleeve connections of adjacent pipes act
as hinges. A pipe is supported on a pile by means of a saddle made of ductile
cast icon (Fig. 2). The loads on the pipes mainly consist of earth pressure,
resulting from dead load of the soil, surface loads and traffic loading.

From the reliability point of view, pipelines are series systems which are
characterized by a poor redundancy, especially in the case of statically deter-
minate structures. E.g., in a pipeline of 1 km length, consisting of 200 pipes,
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Fig. 1. Structural system and loading of a pile-supported pipeline.

just one single defective pipe may cause progressive failure of the system. Due
to the severe possible consequences in terms of both property and environ-
mental damage and resulting repair costs, pipeline designers are placing more
emphasis on providing adequate resistance against failure. Nonlinear material
behavior due to stress concentrations in the vicinity of the supports and oval-
ization of the pipes, known as Brazier’s effect [3], result in strongly non-linear
structural behavior. These effects require the use of a non-linear shell model,
whereas the application of beam theory would lead to a severe overestimation
of the load carrying capacity. Hence, in order to simplify the design of such
pile-supported buried pipelines, a design table [13] was developed. It relies
on non-linear finite element analyses, conducted for many available diameters
and wall thicknesses of such pipes. The consideration of both geometrical and
material non-linearity allows to simulate accurately the structural behavior
up to failure by means of the numerical model.

The accuracy of the employed model is verified by laboratory tests and
by in-situ measurements. The former consist of experiments, simulating the
transmission of the pile force to the pipe. Strain gages, applied at several lo-
cations of the pipe, allow to measure the strains with increasing pile force and
thus provide a thorough check of the numerical model for this most important
part of the pipeline. The measurements on site focus on the determination of
the pile forces and of the strains in the pipeline in the vicinity of the supports

a) b)

Fig. 2. Schematic diagram of a) the pipe trench and the pile-supported pipeline
and b) the support of a pipe on a pile.
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on the piles as well as midway between both ends of a pipe. These measure-
ments serve as a means to check the assumptions for the design loads of buried
pipelines, contained in the codes.

2 Pilot study

First of all, in order to determine the most critical regions of pile-supported
pipelines and to gain better insight into the collapse mechanism of such struc-
tures, a three-dimensional FE-analysis was carried out using the general pur-
pose program ABAQUS [11]. Taking advantage of symmetry, two adjacent
pipe segments are modelled with solid and beam elements, respectively. To
model the coupling, a beam-to-solid submodelling technique was used. The
loading on the pipes was assumed to be equally distributed in axial direction.
Fig. 3 shows the assumed distribution of the loading in the circumferential
direction. For a given load qv, contained for instance in codes [20], acting on

p0cos�

p0

qv

�
R

Fig. 3. Assumed circumferential distribution of the loading.

the pipes per unit length in axial direction, one obtains the pressure p0, acting
at the crown of the pipes, as follows:

p0 =
qv

R

∫ π/2

−π/2

cos2 φdφ

=
2 qv

R π
. (1)

The non-linear material behavior was approximated by a trilinear stress-strain
relation. The contact between the saddle and the pipe and between the sleeve
and the rubber sealing and the rubber sealing and the pipe, respectively, was
accounted for in the numerical model. Three distinct locations were considered
for a potential collapse:

• the pipe in the vicinity of the support,
• the sleeve connection,
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• the section of the pipe with the largest bending moment.

Summarizing briefly the key results of the pilot study, it can be concluded that
the pipe collapses due to ovalization and wrinkling in the vicinity of support.
Fig. 4 shows that the maximum equivalent stress according to the v. Mises
yield criterion occurs in the horizontal midplane section above the saddle and
in the vicinity of the edges of the saddle. The equivalent stresses at the sleeve
connection (Fig. 5) and at the cross-section of the largest bending moment
are smaller and do not attain critical values.

7 69 132 194 257 319 382 444 506 569 631

Fig. 4. Contour plot of the v.Mises equivalent stress [N/mm2] of the pipe in the
vicinity of the support on the pile.

5 38 71 104 137 169 202 235 268 301 333

Fig. 5. Contour plot of the v.Mises equivalent stress [N/mm2] of the pipe in the
vicinity of the sleeve
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3 Laboratory tests

3.1 Test set-up

For the validation of the numerical model two series of tests were carried out in
a load frame investigating the behavior of a pipe segment in the region close to
the support on the pile (Fig. 6). Regarding the assessment of geometric imper-

DN300s m e

o

u

1 2 3 4 5 6 7

A

E

CG

H B

F D

Test specimen

Fig. 6. Pipe segments and test set-up.

fections, the wall thickness and the thickness of the casting skin, respectively,
were measured at cross-sections 1-7 (Fig. 6) prior to testing. Taking cutouts
from cross-sections s, m and e at locations o and u, six specimens per pipe
with standard geometries according to DIN standards were prepared to de-
termine stress-strain curves for tension and compression loading. Strain gages
were installed at the outer surface of the pipe segment to measure longitudinal
as well as circumferential strains. Inductive pickups were used to measure the
change of diameter and the deflection of the pipe during the experiment. The
force applied by the piston of the hydraulic press, simulating the pile force
transmitted from the pile to the pipe, was increased in a displacement con-
trolled manner. Note that in the lab tests the pile is simulated by the piston
of the load frame. Hence, the test set-up is rotated by 180◦ with respect to a
pile-supported pipeline. The data acquisition system was a low speed scanner
with a rate of 1 sample per second. The total number of channels was 20,
each channel corresponding to a displacement transducer and a strain gage,
respectively.

Tests were conducted for two different pipe classes specified as DN300/K9
and DN500/K9. The first one had a nominal outer diameter of 326 mm and
a nominal wall thickness of 7.2 mm, the respective values for the second were
532 mm and 9 mm. Each of the test series involved the testing of three pipe
segments. The following results refer to the pipe class DN300/K9.
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3.2 Material tests

Grey cast iron is a material with a microstructure consisting of distributed
graphite flakes embedded in a steel matrix (Fig. 7a). For tensile loading, the

a) b)

Fig. 7. Microstructure of a) grey cast iron and b) spheroidal graphite cast iron;
(REMx700).

flakes are the source of stress concentrations, resulting in yielding as a func-
tion of the maximum principal stress, followed by brittle behavior. In the
case of compressive loading, the graphite flakes do not have an appreciable
effect on the macroscopic response, which is characterized by ductile behavior
similar to that of steel [9, 10]. In contrast to grey cast iron, the spheroidal
graphite cast iron with ball-shaped graphite particles, which is employed for
the pipes, shows a different material behavior (Fig. 7b). In order to determine
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Fig. 8. Standard specimens for: a) tensile tests; b) compression tests; c) stub-column
tests.

the required material parameters for the numerical analyses, tension and com-
pression tests according to the standards DIN EN 10002-1 [21] and DIN 50106
[22] were performed. Fig. 8 shows the geometric properties of the specimens.

Comparing the experimental stress-strain curves for uniaxial tension and
compression loading (Fig. 9 and Tab. 1), the following properties are observed:

• large scatter in the elastic region of the stress-strain curves for compression
loading,

• relatively large deviations from the mean tensile response for some tensile
tests,
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• Young’s modulus in tension, Et, almost twice as large as Young’s modulus
in compression, Ec,

• yield stress in compression, σcy, exceeds the yield stress in tension, σty , by
17 %,

• different hardening behavior in tension and compression,
• considerable differences between the ultimate stresses in compression and

tension, σcu and σtu, respectively, and
• ductile behavior, characterized by a relatively large value of the ultimate

strain εf .

a) b)

Fig. 9. True stress-strain curves from a) tension and b) compression tests.

Table 1. Material parameters (nominal values)

Parameter unit µ δ max min

Et MPa 160 491 11.5 % 202 280 134 100
σty MPa 361 3.09 % 383 348
σtu MPa 498 1.97 % 515 483
εf % 21.1 13.1 % 23.61 12.05
Ec MPa 86 757 33.6 % 136 540 53 546
σcy MPa 424 13.0 % 451 413
σcu MPa 903 5.00 % 942 853

Most of these phenomena can be explained by the microstructure of the
spheroidal graphite cast iron (Fig. 7) and are in close agreement with re-
sults published in the literature [9, 10] on grey cast iron. However, the large
differences of Young’s modulus in tension and compression are not plausible
(moreover, grey cast iron behaves quite conversely).
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Concluding that test conditions and test specimens according to DIN
50106 are inadequate for compression tests in the present case, compres-
sion tests on two stub-column specimens (Fig. 10), which were cut out be-
tween sections m and e (Fig. 6) of the pipe segments, were performed to
check the elastic modulus in compression. In order to measure circumfer-
ential and longitudinal strains, four equidistant strain gages were installed
at the outer surface as well as at the inner surface of the pipe speci-
men. The measured elastic stress-strain curves in compression are shown in
Fig. 11a. Determination of the slopes of the regression lines in the straight

Fig. 10. Axially loaded pipe with L/D=1 after testing.

parts of the loading and unloading branches of the stress-strain curves
(Fig. 11b) yields the elastic modulus in compression. The statistical eval-
uation of the elastic moduli for compressive loading and unloading, Ecl

and Ecu, respectively, and Poisson’s ratio ν, is summarized in Tab. 2.
Fig. 12a shows the stress-strain curve obtained from an individual tension
test. The evaluation of the elastic modulus by means of the above described
procedure, yields the values of 161 695 MPa, 140 875 MPa and 150679 MPa
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Fig. 11. Compressive stress-strain curves from stub-column tests; a) loading
branches; b) individual loading and unloading branch.
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Table 2. Material parameters from stub-column tests

Parameter unit µ δ max min

Ecl MPa 162 356 7.68 % 159 351 133 790
Ecu MPa 149 637 7.40 % 172 277 147 377
ν 0.3918 6.51 % 0.4280 0.3720

for the loading, unloading and reloading branches, respectively. These val-
ues correlate very well with the corresponding values from stub-column tests
according to Tab. 2.

In Fig. 9a the averaged tensile stress-strain curve (bold line with circular
tickmarks) is shown, computed from the individual stress-strain curves by
a procedure outlined in the following. The most convenient curve fit for a
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Fig. 12. Material behavior in tension: a) true stress-strain curve for loading, un-
loading and reloading; b) logarithmic diagram of plastic strains.

non-linear stress-strain curve is a power function. The resulting stress-strain
equation is known as the Ramberg-Osgood equation:

ε = εel + εpl =
σ

E
+

σn

F
. (2)

The first term of Eq. 2 represents the linear part of the stress-strain curve. As
already outlined, the modulus E is determined as the slope of the linear part of
the stress-strain curve. In the plastic domain, the plastic strain is represented
in Eq. 2 by

εpl =
σn

F
. (3)

For a given stress the plastic strain is obtained from the measured total strain
as εpl = ε − σ/E. Taking the logarithm in Eq. 3 yields:

log εpl = n logσ − log F. (4)
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Hence, in the logarithmic scale, experimental data should be represented by
a straight line. However, as can be seen in (Fig. 12), this is not the case
for the present material. Consequently, the constitutive relation according to
Ramberg-Osgood cannot be applied.

Thus, the plastic region of the experimental stress-strain diagrams was
subdivided into two parts, fitting a cubic polynomial for each part. Averaging
the coefficients of the individual polynomials provided the averaged function
for the plastic strain in terms of the stress.

It remains to determine the material behavior in the plastic compression
range. At a first glance, it seams reasonable to use averaged stress-strain curves
from axisymmetric stub-column tests. However, as depicted in Fig. 10, these
tests show a characteristic behavior, also documented in [15, 16], characterized
by the

• development of a single wrinkle over a small part of the specimen length,
• softening of the load-displacement relationship due to wrinkling,
• decrease of the compressive strain in regions remote from the wrinkle,
• increase of the compressive strain in the vicinity of the wrinkle.

Stresses calculated by the overall equilibrium condition from σ = F/A, F being
the force and A being the sectional area, and strains measured by strain
gages vary over the specimen length and hence do not represent material
properties. Making use of the latter would result in a misinterpretation of
experimental data. Hence, further experiments would have been necessary to
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Fig. 13. Adopted true stress-strain curve of ductile cast iron.

eliminate this uncertainty. Nevertheless, because of economic reasons, it was
decided to model the ductile cast iron as an elastic-plastic material assuming
isotropic strain-hardening, i.e., identical behavior in tension and compression.
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This simplification can be justified by the restriction to monotonic loading. It
follows from Fig. 13, showing the averaged true stress-strain curve obtained
from tensile tests (rectangular tickmarks) as well as the averaged stress-stain
curve obtained from compression tests according to DIN 50106 [22] (triangular
tickmarks), that this assumption seems to be conservative, at least for the
plastic compression range. Furthermore, no experiments were performed to
investigate the material behavior under cyclic tension-compression loading
leading to kinematic hardening due to the Bauschinger effect.

3.3 Wall thickness measurements

Ductile cast iron pipes are manufactured in an inclined rotating chill-mold.
As a result of this specific manufacturing process, the wall thickness is varying
both in circumferential and longitudinal direction of the pipe. Thus, prior to
testing, the wall thickness and the thickness of the casting skin of the pipes
were measured for the cross-sections 1-7 at the locations A-E (Fig. 6) by an
ultrasonic device. The measured thicknesses are summarized in Tab. 3 and

Fig. 14. Measured wall thicknesses at different cross sections of three pipes.

are illustrated in Fig. 14. Each octagon represents the measured wall thick-
nesses at one of the cross-sections 1-7 (Fig. 6). Hence, octagons lying closely
together represent a small scatter of the wall thickness in axial direction and
regular octagons indicate a small scatter of the wall thickness in circumferen-
tial direction.

Analyzing the data in Tab. 3, it is recognized that the wall thickness
correlates with the cylindrical coordinates of the measurement point x and φ,
x being the distance measured from some reference section to the measuring
point and φ being the angle between the normal to the outer surface and a
reference normal at a chosen origin. The distribution of the wall thickness s
can be approximated by

s(x, φ) = a0 + a1x + a2 cos(φ − φ0) + a3x cos(φ − φ0) , (5)
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Table 3. Measured wall thicknesses

location sect. 1 sect. 2 sect. 3 sect. 4 sect. 5 sect. 6 sect. 7 mean

A 7.30 7.15 7.10 7.00 6.80 6.80 6.45 6.94
p B 7.50 7.25 7.20 7.05 6.95 7.00 6.50 7.06
i C 7.65 7.50 7.30 7.30 7.15 7.25 6.70 7.26
p D 7.70 6.95 7.55 7.55 7.20 7.10 6.85 7.27
e E 7.85 7.40 7.20 7.35 7.15 7.05 6.80 7.26

F 7.90 7.45 7.45 7.30 7.10 6.95 6.70 7.26
I G 7.70 7.20 7.20 6.95 7.00 6.80 6.65 7.07

H 7.40 7.20 7.25 7.00 6.90 6.85 6.55 7.02

mean 7.63 7.26 7.28 7.19 7.03 6.98 6.65 7.14

A 7.40 7.20 7.20 7.15 7.10 6.75 6.55 7.05
p B 7.70 7.45 7.40 7.35 7.20 6.80 6.65 7.22
i C 7.65 7.40 7.55 7.35 7.10 6.90 6.60 7.22
p D 7.65 7.45 7.40 7.20 6.95 6.85 6.65 7.16
e E 7.40 7.40 7.30 7.00 6.85 6.75 6.65 7.05

F 7.25 7.15 7.10 6.80 6.85 6.65 6.50 6.87
II G 7.30 7.10 7.00 6.70 6.85 6.65 6.50 6.87

H 7.30 7.20 7.20 6.90 6.80 6.75 6.50 6.95

mean 7.46 7.29 7.27 7.06 6.96 6.76 6.58 7.05

A 7.20 7.35 7.30 7.05 7.25 7.15 6.90 7.17
p B 7.40 7.35 7.25 7.20 7.40 7.30 6.90 7.26
i C 7.60 7.50 7.60 7.50 7.60 7.50 7.30 7.51
p D 7.65 7.70 7.65 7.75 7.50 7.35 7.25 7.55
e E 7.50 7.50 7.50 7.50 7.20 7.20 7.40 7.40

F 7.30 7.30 7.40 7.50 7.15 7.20 7.10 7.28
III G 7.30 7.20 7.20 7.00 7.15 7.20 7.00 7.15

H 7.30 7.15 7.05 7.00 7.25 7.20 7.15 7.16

mean 7.41 7.38 7.37 7.31 7.31 7.26 7.13 7.31

where φ0 denotes the angle between the reference normal and the normal given
by the diametrically opposed points of extreme thickness and the coefficients
ai and the angle φ0 are random variables.

The variation of the wall thickness results from the inclined and, due to
imperfections, slightly curved chill-mold in connection with both the gravita-
tional and centrifugal forces. Because of the varying thickness, strictly speak-
ing, the pipe loses its axisymmetric geometry. This can be seen in Fig. 15,
where the measured thickness, averaged in longitudinal direction, is plotted
for the three pipes of Table 3. The variation of the wall thickness in both
longitudinal and circumferential direction of a pipe is checked by the quality
management of the manufacturer. Pipes with wall thickness smaller than a
specified minimum value are rejected.

In a final step, the effective thickness was determined. The outer surface
of the pipe is wavy and the inner surface exhibits a casting skin. Extensive
measurements with an ultrasonic device, verified by measurements with a mi-
crometer screw, showed that the total thickness has to be reduced by 0.38 mm
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Fig. 15. Wall thickness in circumferential direction for three pipe segments, obtained
from averaging in longitudinal direction.

to obtain the effective wall thickness of the pipe segments for the structural
analysis.

After these preliminary studies, the bulk of statistical information for the
random variables such as elastic modulus, Poisson’s ratio, yield stress and
uniaxial ultimate tensile stress and the corresponding strain was available.

However, there are further open questions. They refer for instance to the
problem of localized imperfections, whose statistical distribution remains un-
known, e.g. sinkholes which have been detected in some tests. They may
trigger localized rupture or wrinkling (Fig. 16).

a) b)

Fig. 16. Fracture at the a) outer surface of a stub-column test specimen due to b)
a sinkhole at the inner surface of the specimen.

3.4 Pipe tests

For the validation of the numerical model three tests on pipe segments were
conducted. They were loaded in the middle section by the piston of the hy-
draulic press (Fig. 6). The test results served for a comparison with the nu-
merical predictions and for the confirmation of the employed boundary con-
ditions. Strain gages were applied at 18 locations on the outer surface of the



142 Hermann Lehar, Gert Niederwanger and Günter Hofstetter

pipe, two inductive pickups were used to measure both horizontal and vertical
deflections of the pipe in the symmetry plane normal to the pipe axis. The
measurement points are shown in Fig. 21.

I
II
III

Fig. 17. Load-displacement curves.

Fig. 17 shows the measured load-displacement diagrams of the pipe seg-
ments. The load and the displacement refer to the force and to the vertical
displacement of the piston. Excellent correspondence of the curves can be no-
ticed. The ultimate loads of 405.6 kN for pipe I, 391.7 kN for pipe II and
408.9 kN for pipe III, correlate with the mean values of the wall thicknesses of
the respective pipes of 7.14 mm, 7.05 mm and 7.31 mm, respectively (Tab. 3).
The longitudinal strains, measured at points MP1 to MP4 at the pipe crown,
as well as the circumferential strains, measured at points MP5 to MP9 in a
horizontal plane containing the pipe axis, are depicted in Fig. 18.

a) b)

Fig. 18. Measured a) longitudinal and b) circumferential strains.

Fig. 19 shows the longitudinal and circumferential strains at points which
are symmetric with respect to the symmetry planes normal and parallel to
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the pipe axis. Up to a load level of 300 kN, the curves lie closely together.
The subsequent deviations, especially for the circumferential strains, may be
attributed to the observed scatter of the wall thickness.
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Fig. 19. a) Longitudinal strains and b) circumferential strains at symmetric mea-
surement points.

The structural behavior can be interpreted from the shape of the strain
curves shown in Fig. 18 and Fig. 19. Up to a load of about 250 kN, the struc-
ture shows linear elastic behavior. Upon further loading, ovalization increases
considerably, leading to pronounced contact stress concentrations nearby the
edges of the saddle extending parallel to the pipe axis. This in turn results
in a decrease of the circumferential strains in the saddle area (Fig. 19a) at
the expense of increasing circumferential strains above (Fig. 19b). Due to the
reduction of the lever arm of the internal forces, caused by ovalization of the
pipe, the longitudinal stresses increase. At a load level of 330 kN, wrinkling
starts (see the longitudinal strains at MP3 and MP4 in Fig. 18a). Finally, the
pipe fails (Fig. 20) due to the combined action of longitudinal compressive
stresses and circumferential tensile stresses nearby the saddle. This is exactly
the failure mechanism predicted in the pilot study by the distribution of the
v. Mises equivalent stress (Fig. 4). Note, that in the laboratory tests, the pile
is replaced by the piston of the load frame. Thus, the test set-up is rotated
by 180◦ with respect to a pile-supported pipeline.

Fig. 20. Pipe segment after failure.
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3.5 Validation of the numerical model by means of the pipe tests

The FE-mesh used for the numerical analysis of the pipe tests in order to
validate the numerical model is shown in Fig. 21. Due to twofold symme-
try, only one quarter of the test set-up, consisting of the pipe segment, the
end-diaphragms, the saddle and the intermediate compressible layer, was dis-
cretized with shell elements. The saddle was modelled as rigid cylindrical
surface with a modified pressure-contact relation in order to account for the
soft contact between the saddle and the pipe due the intermediate compress-
ible layers. The mean values of Young’s modulus, the tensile strength and
the ultimate tensile strain of the ductile cast iron according to Tab. 1, were
used for the FE-analyses. The averaged stress-strain relation, consisting of
the linear-elastic region and the elastic-plastic region, approximated by two
cubic polynomials, was provided in tabular form. The observed scatter of the

�

x

Fig. 21. FE-mesh for the pipe segment.

wall thickness was not taken into account in the computational model. Rather
the mean value of 7.19 mm obtained from the mid-section of the three pipe
segments (Tab. 3) was used in the first analysis. In a second run, the averaged
thickness was reduced by 0.38 mm to account for the casting skin and the
wavy surface.

In Tab. 4, the ultimate loads, determined from both experiments and FE-
analyses, are listed. Excellent correspondence between the mean value of the
measured ultimate loads and the computed ultimate load can be observed on
the condition that the effective wall thickness is employed in the analysis. In
Fig. 22, a contour plot of the equivalent stresses is depicted for the deformed
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Table 4. Measured (pipe I, II and III) and computed (analysis I and II) ultimate
loads

wall thickness [mm] ultimate load [kN]

pipe I 7.19 405.6
pipe II 7.06 391.7
pipe III 7.31 408.9

mean 7.19 402.1

analysis I 7.19 440.0
analysis II 6.81 409.1

mesh. The maximum values occur near the saddle edges. The computed defor-
mation pattern is close to the experimental one, e.g. ovalization and wrinkling
observed in the experiments are also predicted by the computational model.

0 47 94 141 188 235 282 328 375 422 469

Fig. 22. Contour plot of the v.Mises equivalent stress for the pipe segment.

The accuracy of the numerical model is further confirmed by comparing
the strains, measured at selected points, with the respective computed values.
For the measurement points MP2 and MP6, shown in Fig. 21, both the mea-
sured and the computed longitudinal and circumferential strains are plotted
in Fig. 23.

By contrast to Fig. 23, the correspondence between the computed and the
measured displacements, shown in Fig. 24, is not as good. At a first glance, this
seems to be a contradiction with the observed correspondence of the strains
which are computed by differentiating the displacement field. However, the
difference can be attributed to the fact that the measured displacement refers
to the displacement of the piston whereas the computed displacement refers
to the crown of the pipe beneath the piston. Because of the compressible
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Fig. 23. Comparison of measured and computed a) longitudinal and b) circumfer-
ential strains.

layers between the saddle and the pipe as well as between the piston and the
saddle, the vertical displacement of the pipe is smaller than the one of the
piston. Concluding this section, a close correspondence of the results of the
laboratory experiment and the FE-analysis can be stated. The shell model
is perfectly adequate to predict the behavior of the pipe in the most critical
region in the vicinity of the saddle provided that all non-linear effects are taken
into account. Neglecting the geometrical non-linearity for instance would lead
to an overestimation of the ultimate load by 30%.

Fig. 24. Measured and computed load-displacement curve for pipe I.

Whereas for laboratory experiments the loads and boundary conditions are
well-defined, additional uncertainties associated with the latter are introduced
in engineering reality. The step from the validation of the FE-model by means
of laboratory tests to the application of the numerical model in engineering
practice will be performed subsequently.
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4 Numerical model of the pile-supported pipeline

4.1 FE-discretization

In order to accurately reflect the structural behavior of a pile-supported
pipeline in a numerical model, two adjacent pipes are discretized by second-
order shear flexible shell elements, whereas the remaining pipes are discretized
by second-order shear flexible beam elements (Fig. 25). The shell elements
are quadrilateral elements with five degrees of freedom per node. Use of nine-
noded shell elements was restricted to the contact zone of the pipe in the
support region. Both shell elements and beam elements are formulated for
large rotations but small strains. The shell elements are coupled with the
adjacent beam elements by formulating suitable kinematic constraints. The
features of the numerical model (Fig. 26) can be summarized as follows:

shell elementsbeam elements beam elements

Fig. 25. Numerical model of a pile-supported pipeline.

• the solid elements, used in the pilot study, are replaced by shell elements,
• the sleeve is modelled in an approximate manner by shell elements with

variable thickness combined with eccentric beam elements,
• the rubber sealing ring is discretized by spring elements, whereas the in-

teraction between the sleeve and the sealing ring is modelled by simple
gap elements,

• the support on the saddle is modelled as rigid cylindrical surface,
• the non-linear behavior of those pipes, which are represented by beam

elements, is considered by a non-linear moment-curvature relation.

The latter is determined by means of a non-linear shell model of a pipe seg-
ment subjected to pure bending (Fig. 27). Taking advantage of symmetry, this
model consists of six eight-noded shell elements in circumferential direction.
It remains to prescribe appropriate boundary conditions.

Referring to Fig. 27, for the nodes in the plane of symmetry z = 0, the
boundary conditions

uz = ϕx = ϕy = 0 (6)

hold. In pure bending the deformation is symmetric with respect to any ro-
tated sectional plane. To prevent rigid body rotations about the z-axis, the
boundary conditions

ux = ϕy = ϕz = 0 (7)

are prescribed for the plane x = 0. Hence, the latter is considered as a plane
of symmetry. Identical boundary conditions have to be prescribed for the
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beam elements with nonlinear
moment-curvature relation

modelling of the saddle
support as contact problem
between rigid surface and
deformable pipe

coupling between shell
and beam elements with
constraint equations

modelling of the
sleeve connection
with spring and
gap elements

Fig. 26. FE-mesh for two adjacent pipes.

plane x = le, however, they have to be formulated with respect to the rotated
coordinate system. To this end, a beam node, representing the motion of the
plane x = le, is introduced with the degrees of freedom consisting of the
displacement components ub

x, ub
y and the rotation ϕb

z . Pure bending of the
shell model is simulated in a deformation controlled manner by prescribing
the rotation ϕb

z of the beam node. Referring to [12], the following constraints

0z x yu � �= = =

0x y zu � �= = =

(x
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- x =a) 0
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Fig. 27. Kinematic boundary conditions for a pipe segment in pure bending.

for the shell nodes in the rotated section plane x = le can be written in terms
of the tangent vectors of the undeformed pipe axis and the rotated pipe axis
at x = le, denoted as A and a, respectively:

• The shell nodes in the rotated plane at x = le must remain in a plane
normal to the pipe axis. This constraint is expressed by

(x − xb) · a = 0 (8)

with x denoting the position vector of an arbitrary point of the rotated
section plane and xb representing the position vector of the mentioned
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beam node. The rotation ϕb
z of the beam node must be equal to the rotation

of the sectional plane x = le. Hence

C(ϕb
z) · A = a (9)

holds, where C is the rotation matrix associated with the rotation ϕb
z .

Since these constraints involving finite rotations are non-linear they have
to be linearized in the context of the employed incremental-iterative FE
solution strategy.

• In order to remove the rigid body mode in the direction of the y-axis
a constraint is formulated, requiring that the averaged y-displacement of
the shell nodes in the rotating cross-section at x = le is equal to the
y-displacement of the beam node, ub

y. Thus, it follows that

1
S

∫

S

uy dS = ub
y (10)

with S being the centerline of the cross section. ub
y is then set to zero.

These non-linear multi-point constraint equations must be programmed in a
FORTRAN user subroutine. From Eq. 8 it is evident, that the best position for
the coupling node in the computational model of the pile-supported pipeline
is the point of the largest bending moment midway between the piles.
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Fig. 28. Moment-curvature relations for a) pipe classes DN200 - DN500 and b) for
the pipe class DN400/K9.

Fig. 28 contains the computed moment-curvature relations for different
pipe diameters. Since the analysis was conducted in a displacement controlled
manner, also the descending part of the moment curvature relation beyond
the ultimate bending moment is obtained. For comparison, the elastic bending
moment at first yield, M (y), and the fully plastic bending moment, M (p),
both determined by a geometric linear beam theory, are shown in Fig. 28b
for a particular pipe. It is emphasized that the ultimate bending moment,
obtained on the basis of the shell model, is considerably smaller than the
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ultimate bending moment, predicted by beam theory. The overestimation of
the ultimate bending moment by beam theory can be attributed to the neglect
of the deformation of the pipe section.

4.2 Loading

Pile-supported pipelines consist of three different structural members, namely
the piles, the pipes and the subsoil. The soil pressure distribution acting on
the pipe reflects the complex interaction between the soil and the pipe. It
depends on the soil parameters, the ratio of the stiffness of the surrounding
soil over the stiffness of the pipe and the dimensions and geometry of the
pipe trench. Additionally, the soil pressure on the pipe may change with time
due to environmental influences such as an unsteady groundwater table or
freezing and thawing of the soil. According to [14, 17] and referring to Fig. 29,
the pressure distribution in some pipe cross-section can be subdivided into
three parts, the pressure p1 acting on the upper half of the pipe, the pressure
p2 acting on the lower half of the pipe and the lateral pressure p3. Each of
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Fig. 29. Circumferential soil pressure distribution.

them could be approximated by:

pi(φ) = pj cos
π(π − φ)
2(π − φj)

, i = 1, 2, 3, j = t, b, s. (11)

From equilibrium, the following relation between the pressure amplitudes pt,
pb and ps and the resulting line loads qt, qb and qs, holds:

pj = qj
π2 − 4(π − φj)2

4Rπ(π − φj) cos φj
. (12)

In a continuously supported pipeline, assuming homogeneous soil conditions,
the amplitudes pt, pb and ps and the angles φt, φb and φs are constant along



FE ultimate load analysis of pile-supported pipelines 151

the pipe length. By contrast, in a pile-supported pipeline, these parameters
vary periodically with the axial coordinate x (Fig. 30). Hence, they may be
represented by a Fourier series as

pj(x) = pj0 +
∞∑

1

pjn cosαnx , αn =
2nπ

l
. (13)

It should be noticed that Eq. 13 is only valid for normal pressure components
pr with a symmetric distribution both in circumferential and longitudinal
direction neglecting friction between the pipe and the surrounding soil. In the
most general case, accounting also for frictional effects, the pressures acting
on the outer surface of the pipe must be represented by a double Fourier series
[5]:

px =
∞∑

m=0

∞∑
n=0

pxmn cosmφ cos nπx
l ,

pφ =
∞∑

m=1

∞∑
n=1

pφmn sin mφ sin nπx
l ,

pr =
∞∑

m=0

∞∑
n=1

prmn cosmφ sin nπx
l .

(14)

The coefficients of the Fourier series could be determined, at least hypothet-
ically, either by a numerical analysis, modelling the soil-pipe interaction as
contact problem or by experiments. However, the result of such an analysis
or experiment reflects the pressure distribution only for a particular case in
a deterministic manner. This is in contradiction to the aims of a design ta-
ble allowing the determination of the load-carrying capacity of pile-supported
pipelines in different soils and at different depths. In order to assess the dis-
tribution of the line load qb, acting along the bottom of the pipes, a pile-
supported pipeline is modelled as an elastic beam on an elastic foundation of
the Winkler type, fixed at discrete locations at a distance of l, representing the
span between two adjacent piles. Due to repeated symmetry and neglecting
for simplicity the hinge representing the sleeve connection, it is sufficient to
consider a single span between two piles (Fig. 31). Let EI denote the flexural
stiffness and b the effective width of the pipe, c the bearing coefficient of the

p(x)
t

p(x)
b

x

l/2 l/2 l/2

Fig. 30. Soil pressure distribution in axial direction.
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Fig. 31. Beam on elastic foundation.

subsoil and qt the loading exerted by the soil above the pipe due to refilling
the pipe trench. The solution of the differential equation for the deflection w

EI
d4w

dx4
+ bc w = qt (15)

yields for a beam with fixed ends, subjected a uniformly distributed load qt

[8]:

w(x) =
qt

bc

[
1 − 1

sinh λl + sin λl
(f1 + f2 + f3 + f4)

]
, λ = 4

√
bc

4EI
,

f1(x) = sinh λx cosλ(l − x) , f2(x) = sin λx cosh λ(l − x) ,
f3(x) = sinh λ(l − x) cos λx , f4(x) = sin λ(l − x) cosh λx .

(16)

Making use of the relation for the shearing force

Q(x) = −EI
d3w

dx3
, (17)

the pile force P is computed from P = Q(0) + Q(l) as

P = 2
qt

λ

coshλl − cosλl

sinh λl + sinλl
. (18)

Here, the reaction force of the subsoil per unit length qb = bc w and the pile
force P are compared for two pipelines with different pipe diameters: the
first one is denoted as DN200/K9 with an outer diameter of d = 222 mm,
a bending stiffness of EI = 3 933 kNm2 and a span of l = 5 m, the second
one is denoted as DN400/K9 with d = 429 mm, EI = 37 140 kNm2 and l =
6 m. The outer diameter d is taken as the effective width b. For each pipeline
two different soil types, namely a freshly poured sand with a bearing capacity
of c1 = 3000 kN/m3 and a densely packed sand with a bearing capacity of
c2 = 60 000 kN/m3, are taken into account. The distributions of qb, resulting
from Eq. 16, are presented in Fig. 32. The diagram shows that the maximum
value of qb for the pipe DN400/K9 and poor soil conditions, only amounts to
about 11% of the line load qt. In contrast, the respective value of qb for a pipe
DN200/K9 with a significant lower bending stiffness and good soil conditions
reaches about 100% of qt.
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Computing the pile forces P according Eq. 18 and relating them to the
respective pile forces P0 of a pile-supported pipeline without elastic foundation
(Tab. 5), allows to conclude that neglect of the soil bedding is fully justified,
since pile-supported pipelines are solely used in poor soil.

Table 5. Ratio of the pile forces P and P0 with and without elastic foundation of
the pipes.

pipe class span [m] c [kN/m3] P/P0 [%]

DN200/K9 5 3 000 87.85
DN200/K9 5 60 000 42.34
DN400/K9 6 3 000 94.25
DN400/K9 6 60 000 54.78

Without doubt, some lateral pressure p3 (Fig. 29) will be present. However,
its magnitude depending on the soil parameters and on the compaction of the
backfilled soil, remains uncertain. Keeping in mind that the lateral pressure
has a rather beneficial effect on the pipes, diminishing the ovalization effect,
neglect of the lateral pressure is a conservative assumption.

Because of the above mentioned reasons, for the computation of the design
table only the pressure distribution p1, acting on the upper half of the pipe
from φ = −π/2 to φ = π/2 with the amplitude pt at φ = 0 is taken into
account.
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4.3 Benchmarks

As benchmark test for the performance of the computational model and, in
particular, for the beam-to-shell submodelling technique, two pipelines, de-
noted as DN200/K9 and DN600/K8, with diameters of 222 and 635 mm, wall
thicknesses of 4.8 and 6.9 mm and pipe lengths of 5 and 6 m, respectively, were
analyzed. The vertical line loads according to Figs. 1 and 3 of qv = 30.8 kN/m
and qv = 83.8 kN/m, respectively, were chosen close to the ultimate loads.
As expected, the structural behavior of pipes with small diameters strongly

-477 -393 -309 -225 -141 -56 28 112 196 280 365

Fig. 33. Axial stress [N/mm2] for a pile-supported pipe DN200/K9.

differs from that of pipes with large diameters. Fig. 33 and Fig. 34 show the
deformed pipes with contour plots of the axial stress. Only the part of the pipe
between the sleeve and the coupling node, containing the support on the pile,
is shown. The shape of deflections, obtained for the pipe with a diameter of
222 mm (Fig. 33) is similar to predictions made on the basis of beam theory.
A similar argument holds for the distribution of the axial stress, except for the
regions in the vicinity of the support on the pile. This region is characterized
by severe stress concentrations, resulting in a significant decrease of the load
carrying capacity. Fig. 34 shows a very different structural behavior for a pipe
with a diameter of 635 mm. Because of the considerably increased ratio of
the diameter over the length of the pipe, the latter does not behave like a

-468 -382 -297 -211 -126 -40 45 131 216 302 388

Fig. 34. Axial stress [N/mm2] for a pile-supported pipe DN600/K8.
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beam but like a shell. In this case the ovalization of the pipe is by far more
important than the vertical deflection of the pipe axis.

Referring to Figs. 33 and 34 it is apparent, that the application of a non-
linear shell model is mandatory in order to correctly predict the complex stress
and deformation state in the vicinity of the support. These special structural
features are essential for the design, even for pipes with small ratios of the
diameter over the span.

5 On-site measurements

The laboratory tests, described in subsection 3.4, are complemented by mea-
surements on a construction site of a pile-supported sewer line in an Alpine
valley with very poor soil conditions (Fig. 35). The specific weight of the soil
can be assumed as 20 kN/m3. The pipes are characterized by a length of 6 m,
a diameter of 429 mm and a wall thickness varying between 7 and 10 mm.
Supported on piles by means of a saddle, which is also made of ductile cast
iron, they are placed 4 m below the ground surface (Fig. 2). The groundwa-
ter table is located close to the ground surface. During construction the side
walls of the pipe trench were secured by sheet piles. The on-site measure-

b)

Fig. 35. On-site measurements: a) site plan; b) installation of a pipe.

ments allow to check the assumptions for the loads exerted from the ground
on the pile-supported pipeline. Such loading assumptions can be found in rec-
ommendations [20] and codes for continuously supported buried pipelines. In
addition, the influences of different construction stages were studied in the
experimental program. In particular, the changes of the pile forces, caused by
removing the sheet piles after refilling the pipe trench and by heavy traffic
loading, were measured.

Strain gages were applied for the cross-section of a pipe, directly above the
axis of the pile, as well as for the cross-section located midway between both
ends of the pipe. The strain gages and the wiring were protected carefully
from humidity and from mechanical damage during refilling the pipe trench.
The pile forces of three adjacent piles, denoted as F1, F2 and F3 in Fig. 35a,

a)
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and the strains in two piles, denoted as pipe I and pipe II in Fig. 35a, were
measured.

Fig. 36 shows the forces, measured for the three adjacent piles from the
beginning of refilling the pipe trench until completion of the construction work
by restoring the original shape of the ground surface. The differences of the
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Fig. 36. Forces measured in three adjacent pipes.

measured pile forces are relatively small. Immediately after refilling the pipe
trench the average pile force is 175 kN. The difference between the smallest
and the largest pile force is 20%. Assuming an equally distributed loading in
the longitudinal direction of the pipes, a line load qv = 29.2 kN/m yields the
average pile force of 175 kN. Removal of the sheet piles, 8 days after refilling
the pipe trench, results in an increase of the average pile force to 225 kN.
The reason for the further increase of the sheet piles to the final average
value of 283 kN, measured 18 days after removal of the sheet piles, cannot be
identified completely. It is attributed to the restoration of the original shape
of the ground surface and to possible changes of the groundwater level. At
this point of time the difference between the smallest and the largest pile
force is reduced to 14%. The average pile force of 283 kN yields an equally
distributed line load qv = 47.2 kN/m. Between the last two measurements,
no further increase of the pile force was observed. It is noted that the linear
increase of the pile forces between two measurements, as shown in Fig. 36, is
only obtained from connecting measured values at consecutive points of time.
Hence, it does not necessarily reflect the actual time-dependent evolution of
the pile forces. The removal of sheet piles causes a redistribution of the soil
stresses, which may result in a considerable increase of pile forces.

Fig. 37a shows the short-term increase of a pile force of about 35 kN,
measured during removal of a sheet pile close to the respective pile. After
completion of removing the sheet piles, a permanent increase of the pile force
of about 23 kN remains.
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Fig. 37. Changes of the pile force due to a) removal of a sheet pile b) surface loads
heavy truck.

Since the pipeline is located 4 m below the ground surface, the effect of
a slowly moving heavy truck of 30 tons on the pile forces is relatively small.
As can be seen in Fig. 37b, the maximum increase of the pile force does not
exceed 8 kN.

Tab. 6 contains a comparison of the strains in a pipe, measured after
completion of the construction work, with the respective computed values.
The latter have been obtained on the basis of an uniformly distributed line
load qv = 47.2 kN/m, which corresponds to the measured average pile force
of 283 kN.

Table 6. Comparison of measured and computed strains (* ∼ failure of strain gage).

measurement point strain component measured [µm/m] computed [µm/m]

mid cross-section
crown longitudinal -612 -646
crown circumferential -117 -199
bottom longitudinal +531 +667
bottom circumferential -445

support cross-section
crown longitudinal +185
crown circumferential -718

According to Tab. 6, the largest deviations between measured and com-
puted strains are noticed for the circumferential strains. This shortcoming
of the computational model can be attributed to the neglect of the lateral
pressure p3 as pointed out in subsection 4.2.

Taking into account the difficult conditions for measurements on a con-
struction site and the uncertainties of the assumptions with respect to the
loads, acting on the pipes, the correspondence of the computed strains and
the respective strains, measured on site, can be viewed as satisfactory.
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The validation of the computational model by in-situ experiments closes
the last open gap before the preparation of the design-table, which will be
outlined in the last section.

6 Design

6.1 Probabilistic design approach

Probabilistic methods for the analysis and design of structures taking into ac-
count uncertainties of the geometry, the material behavior, the loading and,
consequently, of the structural response, disclose possibilities for a theoreti-
cal foundation of existing standard design methods and the development of
new, more economic design methods [1, 2, 6, 18]. Commonly, the design of a
structure requires the consideration of the following limit states:

• ultimate limit states corresponding to collapse or other types of structural
failure and

• serviceability limit states corresponding to specified service requirements
for a structure (e.g. deformations affecting the use of a structure).

In the context of this study, the ultimate limit state is identified as failure
of the pile-supported pipeline, which is induced by failure of the pipe in the
vicinity of the support on the pile. The serviceability limit state is defined by
an allowable limit of the ovalization of the pipe.

The design problem is usually formulated in the form of a critical inequal-
ity:

S ≤ R , (19)

where S and R are two random variables which represent a generalized action
and a generalized resistance. In other words, the probability of failure Pfail is
given by the probability of violating the critical inequality

Pfail = Prob[S > R] . (20)

The basic design condition is to verify

Pfail ≤ Pf , (21)

Pf being a sufficiently small number which is established in the codes (for
sewer systems usually 10−5 ≤ Pf ≤ 10−3 holds).

In geotechnical engineering it is often difficult to clearly distinguish be-
tween action and resistance. E.g., for pile-supported pipelines the pressure
exerted by the soil on the outer surface of the pipe, i.e. the loading, is not
known a priori but depends on a number of parameters, such as the material
parameters of the surrounding soil, the stiffness of the pipe and the installa-
tion procedure. In addition, as can be seen in Fig. 36 and Fig. 37, the loading
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is time-dependent. Hence, the action is a random process. The same applies
to the resistance. For instance, due to corrosion effects during the design life
of the pipeline, a decrease of the wall thickness may have to be taken into ac-
count. Thus, the exact determination of the failure probability is not feasible.

Hence, having in mind Bolotin’s [2] position: ’Two dangers exist here: the
danger of overestimating the role of statistical methods in structural mechanics
as a whole or in individual applications, and the danger of underestimating
them’, which appears like a decision between Scylla and Charybdis, the design
table for pile-supported pipelines was based on codes, following the semi-
probabilistic approach.

6.2 Reliability in a code framework (Level 1 methods)

Level 1 reliability methods require to subdivide the relevant variables into ac-
tion quantities Wi and resistance quantities χj . The performance requirement
is expressed by

G1[γ
i
F , Wki] ≤ G2[γ

j
M , χkj ] , (22)

where G1 and G2 are appropriate functions and γi
F and γj

M are partial safety
factors which are specified by the codes. Wki and χkj are the characteristic
values of the corresponding action and resistance parameters, respectively.
The characteristic values are defined as appropriate fractiles of the relevant
random variables by the relations

Prob [Wi < Wki] = 1 − p ,
Prob [χj < χkj ] = p ,

(23)

where the value of p is usually 0.05. Hence, Wki is the 95% fractile of Wi and
χkj the 5% fractile of χj . The structural reliability is controlled by the values
of the partial safety factors, which are available in Level 1 codes. They were
determined by taking into account probabilistic information.

6.3 Design according to DIN 18800

Specific codes of practice for the design of pile-supported pipelines, made of
ductile cast iron, do not exist. For this reason the design was based on the
German code DIN 18800 [23] for the design of structural steelwork.

The verification of the ultimate limit state according to DIN 18800 basi-
cally follows a Level 1 method. To this end, in Eq.(22) the characteristic values
of the actions and of the resistance are factorized by partial safety factors, each
of them reflecting the degree of confidence in the particular contributing ef-
fect. Depending of the load type, the partial safety factors, referring to the
actions are, in general,

• for dead loads γG
F = 1.35 and

• for variable loads γQ
F = 1.50 .
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The respective value of the partial safety factor, referring to the resistance,
i.e. to strength and stiffness, amounts to γM = 1.10. According to DIN 18800,
it is permitted to account for γM in the context to the actions, resulting in

γG
F = 1.1 × 1.35 ≈ 1.5 , γM = 1.1 × 1.50 ≈ 1.7 . (24)

The ultimate state can be verified in terms of the line load, which is exerted
by the soil on the pipes, by requiring

qu
v

qv
≥ 1.7, (25)

with qu
v as the ultimate vertical line load, at which the bearing capacity of

the pipeline is attained, and qv denoting the respective line load under normal
operating conditions. The latter is contained in recommendations and codes
for continuously supported pipelines [20, 26]. The ultimate line load qu

v was
computed by means of the FE-model presented in section 4 for 25 different
pipe classes [13].

Table 7. Material parameters for ductile cast iron from EN 598

parameter unit value

yield point σy [MPa] 300
ultimate tensile strength σtu [MPa] 420
ultimate strain εf [%] 10
elastic modulus Ecl [MPa] 170 000

Thereby, the characteristic values of strength and stiffness were replaced by
the respective guaranteed minimal values, which are contained in the code EN
598 [24] and are checked by the quality management of the manufacturer of the
pipes. They are summarized in Tab.7. Deviating from the code specifications,
an elastic modulus of 156 000 MPa was employed in the numerical analysis.
The latter represents the mean value obtained from the lab tests. The averaged
true stress-strain curve determined from tests was scaled according to the code
values. The latter, representing nominal values, were then converted to true
(Cauchy) stresses and natural (logarithmic) strains (Fig. 38).

The characterstic value of the wall thickness was replaced by the guaran-
teed minimal wall thickness, given as

emin = K(0.5 + 0.001 DN) − (1.3 + 0.001 DN) (26)

according to EN 545 [25], with K denoting the pipe class and DN the nominal
outer diameter.

The design table, which was drawn up on the basis of the FE ultimate
load analyses for 25 different types of pipes, contains the vertical line load qo

v,
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at which the allowable limit of ovalizazion is attained as well as the vertical
line load qu

v , at which the bearing capacity of the pipeline is attained. Hence,
the design table allows to verify both the serviceability limit state and the
ultimate limit state of pile-supported buried pipelines, made of ductile cast
iron, in an efficient manner.

7 Conclusions

An approach for the development of a design table for pile-supported buried
pipelines was presented, which is characterized by evaluating uncertainties
of the geometric properties, the material behavior and the loading of such
structures by means of a synthesis of numerical modelling and experimental
investigations. The material and geometric non-linear finite element model
for ultimate load analyses of pile-supported buried pipelines was validated by
laboratory experiments for a few selected types of pipes and by measurements
on-site. Excellent correspondence of the experimental results, obtained in the
laboratory and the respective computed values was achieved. Taking into ac-
count the difficult conditions for measurements on a construction site, even
the correspondence of the computed strains in the pipes and the measured
strains on site is rather good.

The close correspondence of the experimental and numerical results was
achieved by the approach of conducting measurements and tests accompa-
nying the development of the numerical model. The relatively close corre-
spondence between the strains in the pipe measured on-site and the respec-
tive computed strains can at least partly be attributed to the fact that the
line load qv employed in the FE-analysis was determined from the pile forces
measured on-site. The latter reflect in a broad sense the averaged actual soil-
structure interaction, i.e. the loading. Such a favorable situation, characterized
by the elimination of some of the uncertainties, associated with the loading,
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is only encountered in geotechnical engineering, if on-site measurements are
conducted.

Following [19], describing the design as a decision process in which ’var-
ious uncertainties have to be accounted for in assessing the design variables
in order to obtain an acceptable failure probability’, the presented synthesis
of numerical modelling and experimental investigations turned out as a valu-
able design approach. It represents an alternative to the traditional way of
gaining experience, which was expressed by Mark Twain by the well-known
statement ’Good judgement comes from experience, experience comes from bad
judgement’ [Mark Twain].
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The Implications of Geotechnical Model
Uncertainty for Construction Management

Heimo Lessmann and Robert Vieider

Institut für Baubetrieb, Bauwirtschaft und Baumanagement, Universität Innsbruck

1 The “last”

The “last” turns off the light.
In the long chain of responsibilities for a building project, the actual execu-

tion represents the last link. She can turn off the light, but only if everything
has run smoothly.

However, if failures occur, like for example the damage in Munich’s Trud-
ering on 20th, September 1994, the “last” can easily find himself under the
harsh spotlight of the law, see Fig. 1. [9].

Fig. 1. Munich Trudering collapse, Subway line 2 - East Section 2 [9]

It’s therefore understandable that the executors want to know what can
come to light under scrutiny.
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A responsible site engineering will always (not just in the event of failure)
want to know how the building system will behave in the various phases of
construction and what has been assumed as being the cause of a particular
failure pattern.

Fig. 2. The site engineer in front of the face [5]

Fig. 2. symbolises the site engineer’s situation in front of his construction
work and at the same time the responsibility that he bears [5].

The following worrying questions always remain [5]

• How will the soil respond to technical intrusion?
• How can the prediction – made as early as when the design decisions are

taken – correctly cover the interaction between the soil and building?
• What has been overlooked?
• Will the planned work pass the test of reality?

2 The soil / building interaction

Critical patterns of behaviour can arise in these areas in particular.
Special attention should be paid to such situations in the case of shallow

tunnels in soil, both in terms of construction as well as of course carrying out
the work.

The approved plan with all the necessary documentation is the basis for
carrying out every construction project.
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Fig. 3. Critical area in front of the face caused by weakening of the marl roof [3]

In critical areas, for example as shown graphically in Fig. 3. and Fig. 4.,
we can find that the actual behaviour of the system may differ significantly
from the prediction of the planning and computation [3, 12].

It seems almost obvious, to look at first for the cause of such a deviation
in the execution that does not go according to plan, because it is simple to
believe that the computational model corresponds with the real behaviour and
that the cause of the deviation can therefore only lie in divergent execution.

It is simply assumed that the computation (the mathematical model) cor-
responds to reality (the physical truth).

However, H. Duddeck pointed out two results for the examples listed in
Fig. 5. of possible collapses in the case of large tunnel cross sections that were
built using shotcrete construction method and driven in partial excavations:

1 Almost all collapses occur due to soil influences and happen while the
tunnel is being driven.

2 Many of the hazardous situations are very difficult to record with the
usual methods of statics and geotechnical engineering or are beyond even
computational analysis [5].

The references below are intended to show just how questionable the ap-
plication of the model assumptions to real problems can be.
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Fig. 4. Statutory Planning, Munich Trudering [12]
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Fig. 5. Possible cases of collapse in tunnels built with the shotcrete construction
method [5]

According to M. Wehr, in the field of pure mathematics the mechanisms of
theorising are comparatively easy to recognise, since the complicated problem
of applying the formulae to the measurement results is not a factor. “Despite
this, it has recently become apparent that even that which is held to be math-
ematically true includes a subjective component, which means that everything
is anything but evident”.
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“Even in modern mathematics, a theory is only that for what the scientists
think of it. If we really ask in detail why certain attributes can be assigned to
this while others cannot be assigned to it, it becomes apparent that here too
we very quickly enter into a sphere of personal belief. Of course, this applies
to the same extent to theories in which, like in chaos theory, mathematics is
applied within the framework of a modelling process” [20].

Although the deviations between the measured data in the execution and
the prediction of the computation can be significant, we derive the necessary
conclusions from this only rarely. In his article “Difficulties related to geotech-
nical calculations“ I. Herle clearly points out the possible deviations and in
so doing arrives at the following result: “An overview of several prediction
competitions shows an unsatisfactory state of the art” [11].

K. Poppers’s demand that the theoretical model be called into question in
the event of a lack of correspondence between assumption (prediction) and the
experiment is, if necessary, replaced by adjusting the model assumption that
does not apply. To draw an analogy here, the design computation represents
the assumption (prediction) and the construction site represents reality and
therefore the experiment.

Recognising fallibility and refuting the knowledge derived from assump-
tions are exactly the things that open up the possibility of making progress
in our hypotheses.

This enables us to learn from our mistakes and come closer to the truth
[10].

This enables us to draw up better theories and compare which theories
contain more truth than others [10].

However, K. Poppers’s opinion implies that scientific theories (unless they
are falsified) will forever remain hypotheses and assumptions. No theory can
claim to be the final truth, no matter how strong an explanation it provides.

We are looking for the truth but we do not possess it.
Science is the search for the truth: not the possession of truth, but the

search for truth. Every theory is only a hypothesis [10].
Finally, we sometimes forget that some critical situations – for example

in the area of the driven face – cannot be sufficiently comprehended, neither
via computation based on the current state of the art nor by the current
standards.

According to H. Duddeck, the main challenges faced by engineers when
building tunnels lie in correctly understanding the soil. There is also the prob-
lem that the hazards arising from the soil properties for the construction work
are so multi-faceted and complex that EURO Code safety rules and Finite El-
ement Methods are barely able to cover them all [5].

G. Spaun used several examples of tunnel collapses to illustrate just how
important or how dangerous various geological details can be and what con-
sequences can arise from not recognising or not paying attention to different
geological factors.
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Fig. 6. Municipal railway tunnel, Bochum. Diagram of the tunnel collapse (after L.
Müller 1978) [16]

Fig. 6. shows the pattern of tunnel collapse from excavation work for the
arch invert during construction of the contract sections A2 of the Bochum
municipal railway [16].

“The entire discussion in the regulations about safety coefficients and prob-
abilities ignores the much more important question: how do we even find the
potential risks and how can we estimate them correctly? In underground con-
struction in particular, it becomes apparent that the computed safety is not
the most important thing, but that which comes before, namely the hazardous
situations to which attention must be paid“ [5].

Although the efficiency of structure computations has increased greatly in
recent years along with the further development of numerical methods[5], the
continuum models (for example the Finite Element - and Boundary Element
Methods) are hardly capable of determining states of collapse or complicated
failure mechanisms, because this requires simulating the changeover to discrete
discontinua which must first of all be found via the computation [5].

Using the example of the Krieberg tunnel collapse shown in Fig. 7., H.
Duddeck has illustrated the main aspects of the crucial importance of the
soil. The very specific soil conditions involved in the interaction between clay,
sand, water and unannounced failure mechanisms were not incorporated into
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Fig. 7. Krieberg tunnel collapse [5]

the static computations. The convergence measurements carried out during
the execution also did not illustrate the acute danger.

It was not the concrete (for which there are standards, a Euro Code and
safety factors) that finally failed, but the soil with its unannounced sudden
failure mechanisms [5].

3 The computational model

Many aspects of the present model assumptions can be called into question.
The diaphragm used as a computational model for a tunnel, as shown

in Fig. 8. (whether two-dimensional or extended to a three-dimensional rep-
resentation) is only an assumption, in the case of which it is not possible
to conclusively examine whether this would enable the real behaviour to be
described correctly [15].

Why are current model assumptions questionable?

• The soil is not a continuum [13].
• The soil parameters provide no complete information about the exposed

soil. It is hardly possible to accurately determine the parameters, because
the model reflects the soil behaviour only approximately [13].When exam-
ined in the laboratory, the soil samples provide a wide scatter of results
and the choice of characteristic soil parameters has a crucial influence on
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the result of the design. Due to the precise computation rules in the stan-
dards, the scatter of the soil parameters and their effects on the design
tend to be forgotten [7].

• The various constitutive models are only approximations, something that
seems to be undisputed [13]. The model / reality distance of approximation
is largely unknown here.

Fig. 8. Computational model for tunnel driving in soil, Farchant tunnel [15]

The fact that critical situations – for example in the area of the driven face
– can be sufficiently detected neither by a computation based on the current
state of the art nor by the applicable standards, cannot be ignored.

R. P. Feynman described this situation of approximating knowledge as
follows: “The touchstone of all knowledge is the experiment. Experimentation
is the sole measure of scientific “truth” [8].

Fig. 9. shows the experiment conducted in Munich in 1979 with compressed-
air for the shotcrete construction method. As required by K. Popper and R.
P. Feynman, the correspondence between assumption (prediction) and exper-
iment was tested using a measurement program [1].

As Fig. 10. and Fig. 11. below show, a useable excavation system was only
developed from the structural model after the experiment - and that is still
the case today [6].
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Fig. 9. Experiment – Compressed-air tunnel driving in the shotcrete construction
method, 1979 Line5/9 Munich Odeonsplatz [1]

Fig. 10. Single sidewall drift station excavation, Metro de Santiago, Chile 2003 [6]

4 Safety

Under the conditions outlined above, even the most careful discrete compu-
tation with Finite Elements cannot provide a deterministic prediction that is
certain to apply.

This computation model provides no indication as to how close a situation
is to a state of collapse, and we also obtain no indication as to what conclusions
the executor is supposed to derive from the deviations of the measurement
results and the prediction.

However, this would be a necessary indication for carrying out an execution
carefully.
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Fig. 11. Double sidewall drift station excavation, Metro de Santiago, Chile 2003 [6]

The damage that occurred on 20th/ 21st October, 1994 at London Heathrow
Airport is shown in Figure 12 as an example of the consequences that can arise
from a lack of reaction indication to the deviations between the measurement
results and the prediction [18].

Fig. 12. Pattern of tunnel collapse, London Heathrow Airport; Damage on 20th /
21st October, 1994 [18]

Because of the responsibility for the safety of people at the construction
site, the responsibility for the quality of the construction work and also be-
cause of the consequences of a criminal prosecution, a “critical” attitude to-
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wards deterministic predictions derived from the computational models is ap-
propriate.

In the final analysis, the deviations that occur can also be an indication
of an incorrect computational model theory, because K. Popper’s demands
concerning the need for an experimental examination are in most cases not
met.

Under these conditions, the meaning of some safety concepts is – if the
veracity of the model is not examined – very questionable.

The question arises as to what importance can be attached to a failure
probability statement if it is not possible to derive any clear distribution
function from the soil parameters.

5 The probabilistic approach

Newer computation models that adopt a probabilistic approach attempt to
give the impression that this mathematical method would be able to remedy
the uncertainty in the description of the soil as a building material. It must
not be forgotten here that probability theory by itself provides no information
about the numerical values that can be assigned to concrete events [2].

What use (regarding his building) to the person responsible for a particular
construction work is a statement that only applies if the law of large numbers
is valid?

To this end, Fig. 13. shows as an example of a material collapse from an
unknown gravel channel, which despite careful and tight exploratory drilling
cannot always be detected. Due to the marl covering of less than 1.50 m, the
hazard assessment stipulated securing with tube halls. A collapse occurred on
the steep slope of the gravel channel when the halls were set [19].

In the event of the collapse of the gravel / water mixture, the hole in the
excavation funnel was sealed with additional material such as timbering and
wood wool. This enabled a collapse on the surface to be prevented [19].

Even the standards with the semi-probabilistic approach – a concept that
does not exist in probability theory – cannot be helpful.

A statement according to which a geological formation can be “compre-
hensively covered” by a probabilistic model and tunnel driving in a particular
“geological formation can be understood completely, comprehensibly and ob-
jectively” using the computational approach by a legal point of view outlined
therein should be thought over after all [17].

In the probabilistic field in particular, the application of mathematics to
physical phenomena is due to certain considerations of usefulness, which in
turn are orientated towards special targets. This tool character which is sub-
ordinate to mathematics and which is well supported historically, is supposed
to keep us from subordinating “nature” in a fatal Pythagorean Reverse (“the
world of the number”) to properties that are merely an expression of the
systems of symbols used to describe them (Gericke 1993) [20].
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Fig. 13. Munich 1989 – 1994 subway line Candidplatz section, Compressed-air
tunnel driving [19]

Probability theory is a mathematical branch that is just as precise as ge-
ometry, algebra or analysis, and it must not be mixed up with the conclusions
derived from the application of the probabilistic model to the world in which
we live [2].

It is the apparent weakness, but in reality the actual strength of the Kol-
mogoroff probability concept that it provides no information about the nu-
merical values that can be assigned to concrete events. This is not a question
of probability definition, but one of probability interpretation for the actual
area of application. It is in fact advisable to differentiate between probability
terms, primarily between the mathematical one and the one for describing the
world. Countless discussions have been held about whether probabilities exist
in nature or not [2].

It is entirely possible to observe the validity of the model for a large number
of phenomena and to thereby obtain for it empirical confirmation [2]. However,
if we consider that every construction work represents a unique item, the
question arises as to how far probability theory is then valid at all.

The facts of the case, known as the law of large numbers after J. Bernoulli,
allow still unknown probabilities to be inferred from relative frequencies. “The
law of large numbers is therefore a limit value statement and calls for partic-
ular caution to be exercised when drawing conclusions” [2]. It must be noted
here that even the precondition of the law of large numbers cannot be met,
since it is known that every construction work is a unique thing.
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“We are concerned with understanding and not just the knowledge or a
description or a prediction. Yet theories that enable us to understand can
display a high degree of general validity” [4].

“Theories are explanations, not just prediction” [4].

6 Information for the site engineer

In the case of some extremely complex theories relating to computational
models, one can get the impression that they are an end in themselves and
regard the main task – namely providing the necessary information for the
executors – as negligible.

Executors require less deterministic predictions, and instead more under-
standable interval statements about possible measurable deformations, more
statements about understandable behaviour patterns and, in particular, state-
ments on possible collapse criteria and situations of collapse.

The intention should be to outline these statements in such a way that
they can also be acted on later at the construction site.

Site engineer information as shown in Fig. 15., including the necessary
explanations, is urgently required for the situation in the cross section shown
in Fig. 14. [12].

7 Conclusion

The primary concern is the legal and contractual responsibility borne in the
first instance by the site engineer. It appears too simple to assume that the
computation (the mathematical model) corresponds with reality (the physical
truth) and therefore to look first for the cause of such deviations possibly lying
in the execution not having been carried out according to plans. Rather, it is
the correspondence between the computation model and real behaviour that
should be examined.

For the purpose of criminal law and economic assessment of failures, it will
no longer be possible to assume that the computation model theory represents
the sole criterion for assessment.

Particularly not if the evidence – based on K. Popper – of its usability
cannot be furnished to a sufficient degree.

Too much is known and has also been written about the limits of many
computation models.

However, the responsibility for failure is only part of the problem.
The much more important task is to consider how progress can be made

with the uncertainties in the mechanical behaviour.
The potential possibility of failures should be further restricted. Undis-

puted here is the need to describe the existing uncertainties with mathematical
model examinations and to show the effects in the model. However, it would
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Fig. 14. Munich Trudering station – cross section

not be constructive to mask existing uncertainties. The strategy institute of
the Boston Consulting Group has issued information about how one should
handle uncertainties. They refer to historical knowledge like C. v. Clausewitz
has it acquired in his famous book “About the War”.

C. v. Clausewitz explains basic ideas on how to strategically deal with
existing uncertainties: “Decisions that are made with the awareness of doubt
are in most cases better than decisions in the case of which the doubt is
pushed into the background. Pushing doubt into the background will back-
fire; correctly fostered doubt on the other hand can be used to support well
thought-through actions” [14].
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Fig. 15. Site engineer information that SHOULD be provided about the critical
area, Munich Trudering [12]
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The idea of particularly emphasising doubt and uncertainties could also be
helpful to achieve comprehensible and useable solutions in the case of complex
tasks, for example in geotechnics.

In the event of uncertainties, one should refrain from claiming mastery.
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Summary. This article sets out to compare the effects of modelling uncertainty
using fuzzy sets, random variables and stochastic analysis. With the aid of an ex-
ample from civil engineering - the bending equation for an elastically bedded beam
- we discuss what each model is or is not capable of capturing. All models may be
adequately used for variability studies, but may fail to detect the effect of localized
parameter fluctuations on the response of the system. In the stochastics setting, we
show an instance of the linearization effect of large noise which says that under large
stochastic excitations, the contributions of nonlinear terms may be annihilated.

1 Introduction

This article addresses the question of how to model parameter uncertainties in en-
gineering problems. Among the many possibilities we wish to compare three ap-
proaches: fuzzy, probabilistic and stochastic. The question which approach is the
most adequate can only be decided by looking at the consequences of using one or
the other model - in particular, whether the desired or exptected effects are ade-
quately captured. This we intend to demonstrate in a typical application in civil
engineering - the computation of the displacement of an elastically bedded beam.

Suppose the response of an engineering structure is described e. g. by a differ-
ential equation. Apart from the design dimensions, certain parameters describing
exterior and material properties enter as input data. These parameters exhibit vari-
ations and are only imprecisely known. The question is how the variability of the
data affects the response and consequently the safety of the structure. To be more
specific, assume that a certain soil parameter c has been measured or estimated
from a geological assessment at various locations on a construction site, so that a
list of values c1, . . . , cn is available. This could be interpreted as n realizations of a
constant parameter c, or as realizations of a spatially variable field c(x), where x de-
notes a spatial coordinate. Commonly, in civil engineering, the size of the sample is

Published originally in: G. de Cooman, T. Fine, T. Seidenfeld (eds.), ISIPTA’01,
Proceedings of the Second Symposium on Imprecise Probabilities and Their Ap-
plications. Shaker Publ BV, Maastricht, 2001, pp. 293–300.
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small and the data are augmented by prior expert knowledge. In the first, spatially
constant case, the parameter c might thus be modelled either as a fuzzy number
or as a random variable in the sense of subjective probability (a frequentist inter-
pretation appears inappropriate with data as described above). In the second case,
c(x) might be modelled as a stationary random field, where the choice of correlation
function depends on prior knowledge with possible adaptation using the data. We
will address the following issues:

• What is the solution concept appropriate to the fuzzy, probabilistic or stochastic
approach?

• Is the variability and the sensitivity of the response of the system adequately
predicted?

• Can the model describe localization effects, that is, the possibly deviating re-
sponse due to a localized, rapid change in the parameter c, even though within
the boundaries given by its fuzzy or random range?

• How are nonlinear terms in the differential equation affected by a stochastic
input?

Our principal findings which we wish to report here are: the fuzzy, probabilistic
and stochastic approach all can - in their respective terms - describe the variability
of the outcome and admit a study of its sensitivity. However, the response due
to localization may considerably exceed the boundaries predicted by the fuzzy or
probabilistic model. What concerns the stochastic model, we wish to point out the
nonlinear trivialization effect of large noise: if the stochastic excitation is derived
from a multiple of white noise which becomes larger and larger, the response of the
nonlinear system may tend to the response of the linear part of the system in the
mean.

The plan of the paper is as follows: In Section 2 we present the engineering
example underlying our investigation and collect its properties when the parameters
are deterministic. Section 3 is devoted to the fuzzy and probabilistic approach.
Section 4 contains a typical stochastic model. We prove existence and uniqueness
of the solution and show that the mentioned nonlinear triviality effect occurs in the
example. In the last section we summarize the conclusions for engineering design
suggested by our observations.

In the current engineering literature, especially in geotechnics, the problems
addressed here are of high concern. The mechanisms of failure have been investi-
gated, for example, in [3, 9, 22] using a fuzzy, probabilistic, and stochastic approach,
whereas questions of modelling uncertainty in engineering problems are addressed
e. g. in [8, 11, 12, 15, 21]; for the localization phenomenon we refer to [6, 7, 13].
The nonlinear trivialization effect was discoverd by [1, 2] and has been studied in a
number of papers by the authors [17, 18, 19, 23]. For an exposition of various models
of uncertainty in connection with fuzzy sets we refer to [14].

2 The elastically bedded beam

The displacement w(x), x ∈ � of an infinite beam on a linear elastic bedding is
described by the bending equation

EI wIV (x) + bc w(x) = q(x), −∞ < x < ∞ ,
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see e. g. [5, Section 61]. Here EI is the flexural rigidity of the beam, b its effective
width, c the bearing coefficient of the foundation and q(x) the loading. One may
imagine that the beam describes a buried pipeline, the loading q(x) resulting from
the covering soil. The parameters EI and b of the beam may be considered as
precisely known, whereas the soil properties c and q vary in an imprecisely known
fashion. A more refined model would allow for a nonlinear elasto-plastic response of
the founding soil, say

EI wIV (x) + bc w(x) + F (w(x)) = q(x) .

In this situation, a typical nonlinear function would be antisymmetric and mono-
tonically increasing with limits ±L at ±∞. The terms bc w(x) + F (w(x)) together
would signify a hardening property of the foundation. We will study the singular
boundary value problem for the standardized equation

uIV (x) + 4k4u(x) = p(x), −∞ < x < ∞ (1)

requiring that the solution should remain bounded at ±∞. In case k is a constant
and p(x) is an integrable function, both deterministic, its unique classical solution
is given by

u(x) =

� ∞

−∞
G(x, y) p(y) dy

in terms of its Green function

G(x, y) =
1

8k3
e−k|x−y|� sin k|x − y| + cos k|x − y|� .

In case the standardized load p(x) ≡ p is constant, the displacement is constant as
well and simply given by

u(x) ≡ p

4k4
.

For the computational examples to follow we let the parameters vary around central
moduli of k = 10−2, p = 10−8. Approximately, this corresponds to the case of a
buried steel pipeline with an effective diameter of 6 [cm], covered by about 100 [cm]
of top soil and bedded in loosely packed sand. The resulting overall displacement
would amount to u(x) ≡ 0.25 [cm] in the deterministic case.

3 Fuzzy and probabilistic modelling

The collection of fuzzy subsets of a set X will be denoted by �(X). A fuzzy set A ∈
�(X) is determined by its membership function mA(x), 0 ≤ mA(x) ≤ 1, describing
the degree of membership of the value x in A, respectively the degree of possibility
that the object described by A assumes the value x. The sets [A]α = {x : mA(x) ≥ α}
are the α-level sets of A. Given a function f : X → Y , the Zadeh extension principles
allows to extend it to a function f : �(X) → �(Y ) by

mf(A)(y) = sup
�
mA(x), x ∈ f−1(y)

�
.

An element A ∈ �(�d ) is called a fuzzy vector, if each of its α-level sets is convex
and compact (0 < α < 1), and [A]1 contains exactly one point. In the case of
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d = 1 we refer to A as a fuzzy number. If f : �d → � is continuous and A a fuzzy
vector, the function value f(A) is a fuzzy number. In addition, its level sets are
obtained as the images of the level sets of the data A under the function f , that is,
[f(A)]α = f([A]α). For more details on this and on fuzzy sets in general we refer to
[4, 10].

We return to the model (1) of the elastically bedded beam, assuming that the
parameter k is described by a fuzzy number K, whereas the load p(x) =

�n
i=1 aipi(x)

is given by a combination of fixed shape functions pi(x) with parameters ai, which
in turn will be interpreted as fuzzy numbers Ai, i = 1, . . . , n. We model the data as
a non-interactive fuzzy vector in �

(1+n) . This notion corresponds to independence
in probability theory and signifies that the joint membership function is given by
the formula m(K,A1,...,An)(k, a1, . . . , an) = min{mK(k), mA1(a1), . . . , mAn(an)}. We
shall compute the fuzzy point values of the fuzzy response u(x) by applying the
Zadeh extension principle to the solution operator

(k, a1, . . . , an) −→ u(x) = Lx(k, a1, . . . , an) . (2)

By the discussion above, an α-level sets of Lx(K, A1, . . . , An) is computed as the
collection of the values of the solutions attained when the parameters vary in the
respective level sets [K]α, [A1]

α, . . . , [An]α.
In fact, the Zadeh extension principle allows to derive a fuzzy solution concept

for which this is the unique fuzzy solution. To achieve this, equation (1) is rewritten
as a prolongued system for the variables (u, h, b1, . . . , bn),

uIV (x) + 4h4u(x) −
n�

i=1

bipi(x) = 0 , (3)

h′ = 0, b′1 = 0, . . . , b′n = 0 , (4)

h(0) = k, b1(0) = a1, . . . , bn(0) = an . (5)

The parameters h = k, bi = ai, i = 1, . . . , n are actually constants. The device in-
corporated in (4), (5) allows to interpret them as variables, so formally equation
(3) contains no “parameters”. This is important, because substitution of a func-
tion with fuzzy parameters in a term depending on the same parameters need not
preserve equalities (see e. g. the discussions in [10, 16]). The equation operator
E : (�4

b(�))2+n → (�0
b(�))2+n is defined by the left hand sides of (3), (4) on the

space of bounded and four times differentiable functions, the restriction operator
R : (�4

b(�))2+n → �
1+n by the left hand sides of (5). The solution operator is

L : �1+n → (�4
b(�))2+n ,

(k, a1, . . . , an) → (u, h, b1, . . . , bn),

where, by construction, h = k and bi = ai. An element X = (U,H, B1, . . . , Bn) ∈
�
�
(�4

b(�))2+n
�

is called a fuzzy solution of system (3), (4), (5), if

E(X) = 0 in �
�
(�0

b(�))2+n
�
,

R(X) = (K, A1, . . . , An) in �(�1+n ) .

Here 0 denotes the crisp zero function; note that the derivatives of the fuzzy function
X occurring in E(X) are defined by means of the extension principle, as are the
other operations performed on it.
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Proposition 1 Given (K, A1, . . . , An) ∈ �(�1+n ), problem (3), (4), (5) has a
unique solution X = (U,H, B1, . . . , Bn) ∈ �

�
(�4

b(�))2+n
�
. It is given by U =

L(K, A1, . . . , An).

The proof follows by adapting the arguments given in [16] for the pure initial value
problem. In addition, one can show that the restriction of the fuzzy solution X
to a spatial point x is simply given by fuzzifying (2), thus by the fuzzy number
Lx(K, A1, . . . , An).
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Fig. 1. Fuzzy parameters K and P .

In the example to follow, we assume that p is constant. For the sake of exposition,
we take both K and P as triangular fuzzy numbers, centered around the values
indicated in Section 1, namely

K = 〈 1
2
, 1, 2〉 · 10−2, (6)

P = 〈0, 1, 2〉 · 10−8, (7)

see Figure 1. Then the (constant) fuzzy solution is simply given by the fuzzy number
Lx(K, P ) = P/4K4. It is depicted in Figure 2.

We observe that the fuzzy model correctly describes the fluctuations of the
response in dependence of the data variability. In addition, the α-level structure
provides a good picture of the sensitivity of the result.

On the other hand, assume now that the parameter p varies in the range given
by its fuzzy description, in the example its support [0, 2 · 10−8], but its realization
is not actually constant. For example, it might jump from 0 to 2 · 10−8 at the point
x = 0. This means that we have to solve equation (1) with a load

p(x) =

�
0, x < 0,
p = 2 · 10−8, x > 0.
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Fig. 2. Fuzzy displacement u.

The corresponding displacement is

w(x) =

�
p

8k4 ekx cos kx, x < 0,
p

8k4

�
2 − e−kx cos kx

�
, x > 0.

Taking the admissible value k = 1
2
· 10−2, it is seen that the the graph of w exceeds

the band described by the fuzzy displacement with constant parameters. This is
an example of the effect, observed in other circumstances as well, that a localized
parameter fluctuation may produce a response not predicted by the fuzzy model.
In Figure 3, the 0-level set of the fuzzy displacement is indicated by the horizontals
u = 0 and u = 8, the curve is the graph of w, and the other horizontals indicate
level sets of the fuzzy displacement u for α = 0.2, 0.4, 0.6, 0.8. Degree of possibility
equal to one occurs at u = 0.25.

We now turn to a probabilistic modelling of system (1). We assume again that
the load is of the form p(x) =

�n
i=1 aipi(x) as before. In the probabilistic approach,

we describe the parameters k, a1, . . . , an as random variables on a probability space
(Ω, Σ, µ). In this case we obtain the solution as a random process

(x,ω) ∈ IR × Ω −→ u(x,ω) .

It is well known and easy to prove that, for almost all ω ∈ Ω, a pathwise solution ex-
ists. These pathwise solutions are almost surely unique and differentiable. The point
values u(x) are random variables. In continuation of the computational example
above, we take p constant with a triangular distribution with defining boundaries as
in (7), and similarly for the parameter k with boundaries as in (6). We approximate
the distribution of the solution u(x) ≡ p/4k4 numerically by simulation (using 105

realizations), the result being depicted in Figure 4.
For reasons of comparison, we have chosen the same shape for the probability

distribution of k and p as for the possibility distribution in the fuzzy case. As
expected, the probabilistic result centers around the probable outcome, whereas
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Fig. 3. Fuzzy solution versus effect of localization.
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the fuzzy result exhibits the possible variation of the outcome. The picture needs no
further explication; it is clear that the probabilistic result fails to cover the response
due to a localized parameter fluctuation all the more.

4 Stochastic modelling

By a stochastic model in the context of the elastically bedded beam we mean that
the parameters are described by spatial random fields or, in one dimension, random
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processes. We begin with the linear case. To fix ideas, we assume that the parameter
k in (1) is constant, and the load is modelled by a multiple of Gaussian white noise,
p(x) = aẆ (x). To adapt the model to real data, one might actually take a more
general diffusion process and add a deterministic mean value. However, this does
not change the effects we want to describe and so we shall use this simpler model,
namely,

vIV (x) + 4k4v(x) = aẆ (x) . (8)

As noted, white noise Ẇ is a stationary Gaussian process. Its mean and covariance
are given by

E
�
Ẇ (x)

�
= 0,

COV
�
Ẇ (x), Ẇ (y)

�
= δ(x − y) ,

where δ(.) denotes the Dirac measure. Thus Ẇ has to be interpreted as a generalized
stochastic process, in fact, it is the generalized derivative of Wiener process W . In
turn, the stochastic differential equation is interpreted as an Itô-differential equation
(see e. g. [20] as a reference). Its (almost surely unique) solution is given by the Itô-
integral

v(x) = a

� ∞

−∞
G(x, y) dW (y) ,

where G(x, y) is the Green function. The Itô-integral can be defined as the mean
square limit

L2 − lim
∆y→0

a
∞�

j=−∞
G(x, j∆y) ∆Wj ,

where ∆Wj = W ((j + 1)∆y) − W (j∆y) denote the increments of Wiener Process.
These are known to be independent and normally distributed according to �(0, ∆y).
This in turn indicates how the solution can be approximated by simulation. An
approximate realization of white noise is shown in Figure 5, a number of sample
paths of the Itô-solution are depicted in Figure 6. The constant a has been fixed
in this computational example so that the standard deviation of the solution v(x)
coincides with the value 0.25 [cm] used for the deterministic displacement in Section
2. For this as well as later use we record the following result; the star denotes
convolution.

Lemma 1. The covariance of the Itô-solution v to problem (8) is

COV
�
v(x), v(z)

�
= a2S ∗ S(|x − z|)

where S(y) = G(0, y) denotes the fundamental solution of equation (1).

Proof: By the isometry property of Itô-integrals and using that G(x, y) = S(x−y) =
S(|x − y|), we have that

E
�
v(x)v(z)

�
= a2

� ∞

−∞

� ∞

−∞
S(x − y)S(z − y) dy

= a2

� ∞

−∞

� ∞

−∞
S(x − z + y)S(y)dy = a2S ∗ S(|x − z|) ,

which proves the result, since E(v(x)) ≡ 0.
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Fig. 6. Three sample paths of the solution v.

In particular,

V
�
v(x)) = a2S ∗ S(0) > COV

�
v(x), v(z)

�
(9)

whenever x �= z. In fact, a little Fourier analysis shows that

S ∗ S(r) =
1

π

� ∞

0

cos rξ
dξ

(ξ4 + 4k4)2
,

whence
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S ∗ S(0) − S ∗ S(r) =
1

π

� ∞

0

�
1 − cos rξ

� dξ

(ξ4 + 4k4)2

is strictly greater than 0 whenever r �= 0.
Our next task is the investigation of the nonlinear, stochastic bending equation

uIV (x) + 4k4u(x) + F (u(x)) = aẆ (x) , (10)

where we assume that F is Lipschitz continuous with a global Lipschitz constant
Lip(F ). We interpret (10) as an integral equation, namely

u(x) = −
� ∞

−∞
G(x, y)F (u(y))dy

+ a

� ∞

−∞
G(x, y) dW (y) . (11)

We shall construct a solution in the space �b = �
0
b(� : L2(Ω)) of stochastic processes

with bounded second moments. This is a Banach space, equipped with the norm

||u|| = sup
x∈�

�
E|u(x)|2�1/2

.

Proposition 2 Under the condition Lip(F ) < 4k4, the integral equation (11) has a
unique solution u in the space �b.

Proof: First, the operator � defined by the right hand side of (11) maps the space �b

into itself. To see this, one has to employ the Lipschitz property of F , the mentioned
isometry property of Itô-integrals, and the fact that the Green function y → G(x, y)
is locally uniformly square integrable due to the inequality e−|x−y| ≤ e|x|−|y|. The
arguments are similar to the ones proving the contraction property which we now
present in more detail:

sup
x∈�

�
E
���u(x) − �ũ(x)

��2�1/2

= sup
x∈�

�
E
� � ∞

−∞
G(x, y)(F (u(y)) − F (ũ(y))) dy

�2�1/2

≤ sup
x∈�

� ∞

−∞
|G(x, y)|Lip(F )

�
E|u(y)) − ũ(y)|2�1/2

dy

=
1

4k4
Lip(F ) sup

y∈�

�
E|u(y)) − ũ(y)|2�1/2

since the integral of the Green function at fixed x equals 1/4k4. Thus � is a con-
traction on �b if the Lipschitz constant is less than 4k4; the integral equation (11)
has a unique fixed point u ∈ �b, as required.

We remark that this fixed point u(x) provides a pathwise solution of the differ-
ential equation (10) in the sense of generalized functions (Schwartz distributions).
For the notions from distribution theory which we need here and below we refer to
[24].

We now turn to the nonlinear trivialization effect of large noise. This refers to a
comparison of the solutions of the nonlinear equation
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uIV (x) + 4k4u(x) + F (u(x)) = aẆ (x) ,

and the linear equation

vIV (x) + 4k4v(x) = aẆ (x) .

as a tends to infinity. We shall prove that - for a large class of nonlinearities F -
the difference u − v tends to zero in the mean. This class of nonlinearities has been
introduced in [23]. For its definition we need the Fourier transform of bounded func-
tions, hence the Schwartz theory of distributions is again required. Recall that �′(�)
denotes the space of tempered distributions, the collection of continuous functionals
on the space �(�) of rapidly decreasing functions. The action of a distribution T on
a function ψ is denoted by 〈T, ψ〉.
Definition 1. A distribution T ∈ �

′(�) is said to be massless at zero, if 〈T, ψ(·/ε)〉
tends to zero as ε → 0 for the function ψ(y) = exp(−y2/2).

We shall be concerned with bounded functions F whose Fourier transform �F is
massless at zero. This is the case if and only if

lim
ε→0

ε

� ∞

−∞
F (y) e−ε2y2/2 dy = 0 .

Here are some examples of functions F whose Fourier transform �F is massless at
zero (see [23] for details and further examples):

(a) Every bounded, continuous function F such that limy→−∞ F (y) = −L and
limy→∞ F (y) = +L;

(b) every continuous, periodic function F whose first derivative is locally square
integrable;

(c) every element F ∈ Lp(�) when 1 ≤ p ≤ 2.
The significance of this notion lies in the following result, the proof of which can

be found in [23] as well.

Proposition 3 Let F be a bounded function whose Fourier transform �F is mass-
less at zero. Let (va, wa), a > 0, be non-degenerate Gaussian vectors and assume that
the variance V(va) tends to infinity as a → ∞. Then

E
�
F (va)F (wa)

� → 0 as a → ∞ .

The nonlinear trivialization effect of large noise is expressed in the following result.

Theorem 1 Assume that the function F is bounded with Fourier transform �F
massless at zero. Further, assume that Lip(F ) < 2k4. Let u be the solution con-
structed above to the nonlinear stochastic differential equation (10) and v the solution
to the linear equation (8). Then

E
��

K

|u(x) − v(x)| dx
�
→ 0 as a → ∞

for every compact interval K ⊂ �.
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Proof: The difference of u and v satisfies the equation

(u − v)IV + 4k4(u − v) + F (u) − F (v) = −F (v) .

Applying the Green function and taking the expectation we get

E
�
u(x)−v(x) +

� ∞

−∞
G(x, y)

�
F (u(y))−F (v(y))

�
dy

�2

= E
�� ∞

−∞
G(x, y)F (v(y))dy

�2

=

� ∞

−∞

� ∞

−∞
G(x, y)G(x, z) E

�
F (v(y))F (v(z))

�
dydz .

Denote the last term by h2(x). Due to Proposition 3, the boundedness of F and
the integrability of the Green function, h2(x) tends to zero as a → ∞ and remains
bounded. By the triangle and Hölder’s inequality it follows that

E |u(x) − v(x)|
≤ E

�� � ∞

−∞
G(x, y)

�
F (u(y)) − F (v(y))

�
dy

�� + h(x) .

Using the fact that G(x, y) ≤ e−|kx−ky|/4k3 and the elementary inequality − |kx|
1+b

−
|kx − ky| ≤ − |ky|

1+b
− b

1+b
|kx − ky| for b > 0, we obtain

E

� ∞

−∞
e−|kx|/(1+b)|u(x) − v(x)|dx

≤ Lip(F ) E
� 1

4k3

� ∞

−∞
e−b|kx−ky|/(1+b) dx

·
� ∞

−∞
e−|ky|/(1+b)|u(y) − v(y)|dydx

�

+

� ∞

−∞
e−|kx|/(1+b)h(x) dx

≤ 1 + b

2bk4
Lip(F )E

� ∞

−∞
e−|ky|/(1+b)|u(y) − v(y)| dy

+

� ∞

−∞
e−|kx|/(1+b)h(x) dx .

Thus if the coefficient in front of the first integral is less than one, which is the case
when Lip(F ) < 2k4 for b chosen large enough, then

E

� ∞

−∞
e−|kx|/(1+b)|u(x) − v(x)| dx → 0 as a → ∞

due to the properties of h(x) derived above. This, in particular, implies the assertion
of the theorem.

The theorem asserts that under quite general conditions on the nonlinear term,
the stochastic solution to the nonlinear equation behaves like the stochastic solution
to the corresponding linear equation in the mean. Thus large noise may annihilate
nonlinearities in the model. This is the trivialization effect. We note that the condi-
tion on the Lipschitz constant of F can be improved by considering other norms. In
addition, if the noise is concentrated on a compact interval, the trivialization effect
occurs for all F as in the theorem with Lip(F )< 4k4.
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5 Summary and Conclusions

We have investigated the assertions of a fuzzy, probabilistic and a stochastic model
in a typical example from civil engineering. The approaches formulate uncertainty
in different ways; the modelling assumptions differ, as do the interpretations of the
results. One may state that all models capture and process the uncertainty and
provide insight into the sensitivity of the system. They highlight different aspects
and neglect others. For example, the fuzzy and the probabilistic approach evaluate
the width of fluctuations quite differently; the stochastic approach may suppress
the effect of nonlinearities (this, by the way, is an example of a certain smoothing
observed otherwise as well). But most importantly, neither of the models - if set up
in the way as done here - fully detects the effects of a localized parameter fluctuation
on the response of the system.

As a consequence for engineering practice and design, we conclude that a safety
analysis must include both a study of the variability, as can be achieved by the mod-
els under discussion, and an investigation into specific failure mechanisms that may
arise from local disturbances. We focused our discussion on the fuzzy, probabilistic
and stochastic approach for reasons of exposition. A similar analysis can be carried
through in the framework of other theories of imprecise probabilities as well.

Acknowledgement. We thank H. Lehar and R. Stark for valuable advice on engi-
neering questions.
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Queueing models with fuzzy data in
construction management

Michael Oberguggenberger

Institut für Technische Mathematik, Geometrie und Bauinformatik, Universität
Innsbruck

Summary. Queueing problems arise in civil engineering, e. g., in earth work at large
construction sites when an excavator serves a number of transport vehicles. Due to
a large number of fuzzy side conditions, it is not plausible that a precise estimate for
the input parameters can be given, as required in standard probabilistic queueing
models. In this article, two alternatives are described that allow to incorporate data
uncertainty: a probabilistic queueing model with fuzzy input and fuzzy probabilities,
and a purely fuzzy queueing model formulated in terms of network theory.

1 Introduction

There is increasing awareness in the engineering community [1, 20, 24, 28] that
probability theory alone does not suffice for modelling the uncertainties arising in
engineering problems. Indeed, the data commonly available, say in soil mechanics
or construction management, are often scarce, vague, ambiguous or in any case in
need of interpretation. This necessitates the development of more flexible tools for
assessing and processing subjective knowledge and expert estimates.

Using risk analysis, it is usually possible for the planning engineer to provide
ranges for the fluctuations of the parameters involved at various risk levels. This
opens the door for employing fuzzy sets, possibility theory or random set theory.
When these types of methods are employed for describing the input data, it is essen-
tial that arithmetical processing is possible in the engineering models and results in
output data of the same type. In probability theory, functions of random variables
are again random variables. In fuzzy set theory, the extension principle (reducing
the computations to evaluating the solution operators on the level sets) guarantees
computability. In random set theory, the evaluation of arithmetic operations can be
performed directly with the focal sets. Thus all these approaches are applicable in
computational models.

The purpose of this contribution is to demonstrate two applications of these
concepts in civil engineering: Both deal with a queueing problem as typically arising
in earth work at larger construction sites, see e. g. [17], demonstrated in Fig. 1. To
set the stage, we briefly describe this situation formally. The problem is a closed
loop transport system, consisting of a single excavator (server) and N transport
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Fig. 1. A waiting queue in earth work.

vehicles (customers). After loading by the server, the vehicles transport and unload
the material and return to the excavator. Due to variations in the service and return
times, a waiting queue will build up in front of the server, see Fig. 2. The engineering
problem is to design the system in a cost efficient way. Having chosen a certain
excavator, this will chiefly be decided by the number of transport vehicles employed:
Too few vehicles will incur costs due to idle time of the server, while too many
will incur costs due to waiting time spent in the queue. The transportation and
excavation costs per unit time given, the essential performance index is the average
time needed by each transport vehicle to complete a full run, or the average number
of completed runs in a given period.

transport   +   unloading

waiting
queue loading

Fig. 2. Scheme of the queueing system.

The input parameters in the system are the service time (loading of a single
transport vehicle by the excavator) and the travel or return time of the transport
vehicles. In the project planning phase, the designing engineer has to determine these
parameters in order to calculate the required capacity of the equipment. The load-
ing time of the excavator depends on a large number of uncontrollable conditions:
soil parameters, like grain structure, angle of internal friction, loosening; accessi-
bility of construction site; effective slewing angle of the excavator; meteorological
conditions, and so on. Similarly, the return time of the transport vehicles depends



Fuzzy queues 199

on road and traffic conditions, conditions at the unloading site, and so on. In the
planning phase, these data are only vaguely known. Statistical data - if collected
from previous projects at all - are not assertive under the always different and only
partially predictable circumstances arising in new building projects.

On the other hand, the standard probabilistic queueing models, like the Markov
(M/M/1):N - model [16], assume certain probability distributions on the service
and return times and require precise estimates for the average service rate and
average return rate as input. Such a model is incapable of dealing with the data
uncertainty as described above, unless augmented by a second level model for the
data uncertainty. It is the aim of the first part of this paper to use fuzzy set theory
to describe the parameter uncertainty in a standard probabilistic queueing model.
This will result in fuzzy state probabilities from which the required performance
measures can be estimated. As the method of computation, we use fuzzy differential
equations here.

In the second part of the paper, we present a queueing model exclusively for-
mulated in terms of fuzzy set theory. Here the input data consist of the service
and return times proper, described by fuzzy numbers. The performance parameters
are computed as fuzzy numbers as well, using a network model for the closed loop
loading and transportation process. For example, the number of completed runs in
a given period will be a discrete fuzzy number.

Two points should be emphasized: First, the phenomenon of queueing is due
to uncontrollable fluctuations in the service and arrival times and thus cannot be
captured in a deterministic model. Therefore, it is mandatory to employ methods
that allow to incorporate the uncertainties. Second, neither a probabilistic, a fuzzy
nor the imprecise probability model we propose here can serve as a quantitative
predictive model in the construction management problem addressed here. The un-
certainties about the side conditions as well as the mechanism producing the queues
are just too big (to be sure, queues do arise in practice!) and it is not plausible that
a stationary state is ever reached. In the situation described here, there is no algo-
rithm on which exact specification of the capacity of the equipment could be based;
all the more so, a search for a cost optimal layout makes no sense. What is gained,
however, is an understanding of how queues may arise, and what system parameters
influence them in which way. These investigations are in alignment with the spirit of
Operations Research, understood as the science that develops and provides aids in
decision making - decision making based on understanding rather than black boxes,
to be sure.

The models we present in this article should be seen in this light: they provide a
framework which allows the designing engineer to describe and to study the relevant
input uncertainties and their effects in a qualitative way (this includes qualitative
sensitivity analysis). They should not be misinterpreted as making conclusive quan-
titative assertions about the system behavior (which is simply an impossible task).

2 The fuzzy parameter probabilistic queueing model

2.1 Setting up the probabilistic model

As outlined in the introduction, we consider a closed loop queueing system, consist-
ing of a single server (excavator) and N customers (transport vehicles). We adopt
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a first-come-first-served queueing discipline. The required input parameters are the
average service time 1/µ (service rate µ) and the average return time 1/ν (driving
rate ν) of each vehicle. We note that the arrival rate λ is not an input variable in a
closed system; it rather establishes itself during the process.

What concerns the theoretical analysis of the behavior of queues, we adopt
the standard Markov (M/M/1):N - queueing model (see e. g. [16]). The model
assumes that the service time and the return time are exponentially distributed
with expectation values 1/µ, 1/ν. The decisive state variables are the probabilities
pk(t), k = 0, . . . , N that k customers are present in the queueing system at time
t. These probabilities give preliminary information on the initial behavior of the
system, but will chiefly be used to compute the stationary state with limiting prob-
abilities qk = limt→∞ pk(t). The stationary state will serve as a good approximation
to the behavior of the system (simulations with actual data from construction man-
agement indicate that it is usually reached within one to two hours).

Following standard arguments (e.g. [16]) one can deduce the system

p′
0(t) = −Nνp0(t) + µp1(t) ,

p′
k(t) = (N − k + 1)νpk−1(t) − (µ + (N − k)ν)pk(t) + µpk+1(t) (1)

for k = 1, · · · , N − 1 ,

p′
N (t) = νpN−1(t) − µpN (t)

with constraint
N�

k=0

pk(t) = 1 . (2)

We normally will assume “deterministic” initial data pj(0) = 1 for some j, pi(0) = 0
for i �= j. We note that (

�
pk(t))′ = 0 so that the constraint (2) is automatically

satisfied for all times iff satisfied initially. There is a unique equilibrium state given
by

q0 =

�
N�

n=0

N !

(N − n)!

�
ν

µ

�n
�−1

(3)

qk = q0
N !

(N − n)!

�
ν

µ

�n

for k = 1, . . . , N . (4)

The convergence of the probabilities pk(t) to the equilibrium probabilities qk is
a well known result in the theory of Markov processes. What we need later will be
the stronger result of uniform convergence with respect to the parameters µ and ν
(when they vary in bounded intervals). This stronger result is proved e. g. in [11].

Once the equilibrium probabilities are found, other performance indicators can
be computed by well known arguments from queueing theory. For instance, the
average number of vehicles in the queue (in the equilibrium state) is L = N −
(µ/ν)(1 − q0). By equating the arrival with the departure rate one gets for the
arrival rate λ = ν(N − L) = µ(1 − q0). Finally, the average total run time (travel
plus waiting time in the queue plus service time) of each vehicle equals T = N/λ.

2.2 Tools from fuzzy set theory

We briefly recall some notions from fuzzy set theory which we need. More details
can be found e. g. in [22]. Let X be a set (of numbers, vectors, matrices, functions
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or the like). A fuzzy set A in X is defined by means of a function πA : X → [0, 1]
which assigns to each a a value πA(a) between 0 and 1. The primary interpretation
is that πA(a) is the membership degree to which a belongs to the fuzzy set A. In
classical set theory, the membership degree is either 0 or 1; fuzzy set theory allows
gradual membership as well.

The level sets of a fuzzy set A are the (classical) subsets of X given by

Aα = {a ∈ X : πA(a) ≥ α},
0 ≤ α ≤ 1. The level sets are nested, that is, Aβ ⊂ Aα if α ≤ β. Knowledge of
the level sets allows to reconstruct the membership function by means of the rule
πA(a) = sup{α : a ∈ Aα}. This leads to the second interpretation of a fuzzy set
as a family of parametrized level sets {Aα : α ∈ [0, 1]}. The notion that reconciles
these two interpretation is the concept of possibility: if we view A as representing the
outcome of a certain variable, then πA(a) is interpreted as the degree of possibility
that the variable takes the value a. Equivalently, the level set Aα is the range of
fluctuation of the variable corresponding to degree of possibility at least α.

The membership function of a fuzzy set defines a possibility measure on X, which
assigns a degree of possibility not only to the individual elements of X, but also to
all subsets S of X by means of the prescription

πA(S) = sup{πA(a) : a ∈ S}. (5)

Occasionally, it will be convenient to use the language of events, especially when A
represents the uncertain outcome of a variable. We then identify a subset S ⊂ X
with the event that the outcome A lies in S and speak of the degree of possibility
of this event, denoted by

π(A ∈ S) = πA(S).

By a fuzzy number R we mean a fuzzy subset of the real numbers � such that its
core R1 consists of a single point and all its level sets Rα as well as its support are
compact intervals (the core of R is the subset R1 = {r ∈ � : πR(r) = 1}; the support
of R is the closure of the subset {r ∈ � : πR(r) > 0}). We will use the distance

d(Q,R) = sup
α∈(0,1]

dH(Qα, Rα) (6)

between fuzzy numbers Q, R where dH denotes the Hausdorff distance (see e. g. [7]
for details).

Finally, we need to explain how the uncertainty of a fuzzy input A is propagated
through a function F . This will be done with the aid of the Zadeh extension principle
[30]. If the input is a fuzzy set with membership function πA(a), say, the output will
also be a fuzzy set. Its membership function πF (A)(b) is given by

πF (A)(b) = sup
�
πA(a) : F (a) = b

�
. (7)

In case the input consists of a vector of parameters A = (A1, . . . , Am), the extension
principle takes the form

πF (A)(b) = sup
�

min
�
πA1(a1), . . . , πAm(am)

�
: F (a1, . . . , am) = b

�
.

In case F is continuous and the level sets of A1, . . . , Am are compact (0 < α ≤ 1),
this corresponds exactly to computing the range of the function F on each level set,
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F (A)α = F (Aα) , respectively, F (A1, . . . , Am)α = F (Aα
1 , . . . , Aα

m) .

When the Aα
j are intervals, in addition, the set F (A1, . . . , Am)α is an interval as

well and the computation of its boundaries is a task of global optimization: finding
the minimum and maximum value of F on the set Aα.

When computing the time dependent state probabilities of the queueing system
with fuzzy input parameters, we will have to solve the system (1) of differential
equations with fuzzy parameters. Thus we briefly recall the basics from the theory
of fuzzy differential equations. For our purpose, it suffices to consider a linear system
of the form

x′(t) = M(γ)x(t) (8)

where M(γ) is an (n × n)-matrix depending smoothly on a parameter γ ∈ �
m

and x(t) ∈ �
n . We fix (crisp) initial data and denote the value of the solution at

time t by x(t) = St(γ). When some of the components of the parameter γ are
fuzzy, we can view it as a fuzzy subset Γ of �m (temporarily denoting the fuzzy
parameters by upper case letters and their realizations by lower case letters). Our
approach will be to apply the Zadeh extension principle (7) to the (continuous) map
γ → St(γ) : �m → �

n , and we will consider St(Γ ) as the fuzzy solution at time t.
In this way, the α-level sets of St(Γ ) are precisely the images of the α-level sets of
Γ under the solution operator St. This approach to fuzzy differential equations is
along the lines of [3] and [25]. It was developed in detail in [23], where it was shown
that this solution is unique (as a solution to an equivalent prolonged system). We
also employ the numerical methods that were developed in [23].

We remark that other - nonequivalent - approaches to fuzzy differential equa-
tions have been undertaken: imbedding fuzzy sets into metric spaces [7, 12, 13, 27],
differentiation of bounding curves of α-level sets [12, 14, 29], parametrized fuzzy
numbers [26]; see also [5, 8, 12] for a study of the interrelations.

2.3 The probabilistic model with fuzzy input and fuzzy output

In this section, we adhere to the probabilistic (M/M/1):N - queueing model con-
structed in Subsection 2.1, but assume that the distribution parameters µ and ν
are fuzzy. In the terminology and spirit of [19], this is an (FM/FM/1):N - queueing
system. In contrast to the Markov chain methods there, our approach is based on
the differential equations for the probabilities pk(t) that k customers are present
in the system at time t. We apply the extension principle to the solution operator
(µ, ν) → St(µ, ν) of system (1) with constraint (2). When µ and ν are given by fuzzy
numbers, the extension principle yields the fuzzy solution

p(t) = St(µ, ν), (9)

consisting of the fuzzy vector of time-dependent state probabilities. The k-th com-
ponent of the solution operator produces the fuzzy probabilities that k vehicles are
in the system at time t:

pk(t) = Sk
t (µ, ν). (10)

We note that the fuzzy equilibrium probabilities qk could be computed from formula
(3) and (4) with the aid of the extension principle. However, having our machinery at
hand, it is simpler to pass to the limit in the expressions (10) for the time-dependent
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Fig. 3. Fuzzy input parameters.

fuzzy marginals as t → ∞. The convergence holds in the sense of the distance (6),
as has been proven in [11].

The performance indicators mentioned at the end of Subsection 2.1 can now eas-
ily be computed, again by the extension principle, from the fuzzy output probability
q0 and the fuzzy service rate. The total time needed by each vehicle on average to
complete a full run is given as the fuzzy number

T = N/µ(1 − q0); (11)

due to the fact that µ and q0 are interactive, this is actually an upper estimate.
Various further information can be extracted from there. First, the total cost per
transported unit mass is proportional to T and CV +CS/N , where CV and CS denote
the cost per unit time of a single vehicle and the server, respectively. Thus estimates
(with their degrees of possibility) of how the total cost emanates depending on the
number N of vehicles can be obtained. The average number of completed runs by
all vehicles together in a given period T0 is T0N/T = T0µ(1 − q0). Thus the degree
of possibility of achieving a certain performance in a given period of time can be
computed as well, giving the basis for assessing the risk of not achieving a required
threshold.

2.4 Example

To illustrate the analysis above we now present a computational example with three
transport vehicles (N = 3). The fuzzy mean serving time is assumed to be given
by a triangular fuzzy number with supporting interval [2, 6] and center at z = 4,
while the average return time is modelled as a triangular fuzzy number with support
[9, 11] and center at z = 10 (see Fig. 3). The initial state is taken deterministic as
described above with p3(0) = 1 (all three transport vehicles present at start). Fig. 4
shows the α-level sets of the fuzzy time-dependent probability p0(t) for 0 ≤ t ≤ 30;
Fig. 5 displays the contour of its membership function as a three-dimensional graph
with the degree of possibility as third axis. One can read off that at time t = 30
the equilibrium state is almost reached; the probability q0 can be approximated by
a triangular fuzzy number with supporting interval [0.13, 0.56] and center at 0.28.
The average total time to complete a full run is given by the fuzzy number depicted
in Fig. 6; the approximate bounds for its support are [6.9, 40.9], while its central
value lies approximately at 16.7. Similarly, the average number of completed runs
in unit time, µ(1 − q0), is roughly computed as the triangular fuzzy number with
supporting interval [0.88, 5.22] and central value at 2.88. Thus the vagueness of the
input data leads to possibly large fluctuations in the performance of the system, in
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the range of ±70% of the central value. Such a range of variation is quite realistic,
as is seen e. g. from the collected project data in [17].
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Fig. 4. α-level sets of p0(t).
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3 Fuzzy service and return times

3.1 Setting up the model

In this section we discuss a direct approach to fuzzy data queueing systems. We do
not presume any probabilistic queueing model, but study a closed loop system with
fuzzy service times Ts and fuzzy return times Tr and N customers. In the language
of [4, 15, 19, 21], this is an (F/F/1):N - queueing system. We are again interested
in the number of completed runs at a given time T0 as the primary performance
measure.

Our basic tool will be the observation that the behavior of a closed loop queueing
system can be represented by a network. The nodes of the network correspond to
the activities

• k-th service,
• i-th travel of vehicle number j.

Here we make the additional simplifying assumption that the vehicles return and
are served in the same order through the whole observation period. This has the
pleasant consequence that standard network techniques, like the critical path method,
suffice to compute the earliest starting and finishing times of the k-th service and
l-th travel. In general, one would have to use Petri-nets instead [2, 6].

It is not difficult to derive a formula for the earliest starting times. We adhere
to the following notation:

• S(k) = earliest starting time of k-th service,
• D[j](i) earliest starting time of i-th travel of vehicle number j,
• R(l) = total duration of l travels.
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Assuming that service and travel times are the same for each vehicle and putting
S(1) = 0 we get:

D[1](1) = Ts, D[2](1) = 2Ts, . . . , D[N ](1) = NTs,

S(N + 1) = sup{S(N) + Ts, D[1](1) + Tr},
D[1](2) = S(N + 1) + Ts,

S(N + 2) = sup{S(N + 1) + Ts, D[2](1) + Tr}
and so on. The general formula is

S(Ni + j) = sup{S(Ni + j − 1) + Ts, D[j](i) + Tr} (12)

for 1 ≤ j ≤ N and i = 1, 2, 3, . . . The total duration of l complete travels is

R(l) = D[j](i + 1) + Tr

when l = Ni + j. The formulas can be easily verified by checking the structure of
the example given in Fig. 7 where N = 3 and l = 12.

We now turn to fuzzy input data. For the sake of presentation, we shall work
with triangular fuzzy numbers. These are defined by a supporting interval [a, b] and
a central value z, a ≤ z ≤ b; we shall use the notation 〈a, z, b〉. We put a partial
order on the set of triangular fuzzy numbers by defining

〈a1, z1, b1〉 ≤ 〈a2, z2, b2〉
iff

a1 ≤ a2, z1 ≤ z2, b1 ≤ b2.

The supremum in formula (12) is understood in the sense of this partial order, that
is, it is given as the smallest triangular number larger than the two given triangular
numbers. The addition of two triangular numbers follows Zadeh’s extension prin-
ciple and is just done by summing the respective values a, z, b, see e.g. [9]. With
these operations as defined above, the earliest starting and finishing times of the
activities in a network can be obtained by the standard forward computation from
network theory. For more details on these methods and applications of fuzzy network
techniques in civil engineering we refer to [10, 18].

The same calculations could be applied with polygonal fuzzy numbers. For gen-
eral fuzzy numbers, the notion of supremum that follows from Zadeh’s extension
principle would have to be used. This introduces some computational complica-
tions, because the comparison must be done on each α-level set, and not only on
the ones defined by the nodes of a polygonal number. From a computational point
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Fig. 7. Network computation of queueing system.

of view, it is therefore recommended to use polygonal approximations which can be
as close as desired to the original fuzzy numbers.

The fuzzy network computation results in the fuzzy total durations R(l) of l
completed runs. The engineer who wants to analyze the capacity of the system is
interested in the number C of completed runs (of all vehicles together) in a given
period T0. We have that

C = l if and only if R(l) ≤ T0 and R(l + 1) > T0.

If πR(l)(r) denotes the membership function of the fuzzy set R(l), the degree of
possibility of the event R(l) ≤ T0 is

π
�
R(l) ≤ T0

�
= πR(l)

�
(−∞, T0]

�
= sup

�
πR(l)(r) : r ∈ (−∞, T0]

�
,
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see (5), and similarly for the event R(l+1) > T0. Defining the degree of possibility of
the intersection of two fuzzy sets by the minimum of the two degrees of possibility,
we arrive at

π
�
C = l

�
= πC

�{l}� = min
�
π
�
R(l) ≤ T0

�
, π

�
R(l + 1) > T0

��
. (13)

This way we obtain C as the discrete fuzzy number of completed runs up to time
T0. This information can then be used by the designing engineer to decide whether
the capacity of the system is sufficient.

3.2 Example

To illustrate the approach, we take an example with three vehicles (N=3) and service
and travel times given by the triangular fuzzy numbers

Ts = 〈2, 3, 4〉, Tr = 〈5, 6, 7〉.
The computation is done in Fig. 7 for l = 1, . . . , 12 runs. The nodes contain the
triangular numbers for the earliest starting and finishing times. The left column
refers to the services, the right three columns to the return travels of vehicles 1,2
and 3. The total durations R(l) can be read off from Fig. 7 for l = 1, . . . , 12 and are
given by the following triangular numbers:

R(1) = 〈 7, 9, 11〉, R(2) = 〈 9, 12, 15〉, R(3) = 〈11, 15, 19〉,
R(4) = 〈14, 18, 23〉, R(5) = 〈16, 21, 27〉, R(6) = 〈18, 24, 31〉,
R(7) = 〈21, 27, 35〉, R(8) = 〈23, 30, 39〉, R(9) = 〈25, 33, 43〉,

R(10) = 〈28, 36, 47〉, R(11) = 〈30, 39, 51〉, R(12) = 〈32, 42, 55〉.
We choose T0 = 30 and ask for the degree of possibility that the number of completed
runs up to time 30 is l. From formula (13) and the computed data above one reads
off (see also Fig. 8) that

π
�
C = 4

�
= min{1, 0} = 0, π

�
C = 5

�
= min{1, 1/7} = 1/7,

π
�
C = 6

�
= min{1, 5/8} = 5/8, π

�
C = 7

�
= min{1, 1} = 1,

π
�
C = 8

�
= min{1, 1} = 1, π

�
C = 9

�
= min{5/8, 1} = 5/8,

π
�
C = 10

�
= min{2/8, 0} = 1/4, π

�
C = 11

�
= min{0, 1} = 0.

The resulting discrete fuzzy number is depicted in Fig. 9 (left picture).
It is interesting to compare the outcome of this calculation with the one that

the model from Section 2 would have produced. In this model, the average number
of completed runs in a given period T0 is T0µ(1 − q0), as stated at the end of
Subsection 2.3, with q0 given by Eq. (3). Taking Ts, Tr as in Example 3.2, we can
compute T0µ(1−q0) by means of the extension principle, observing the relation µ =
1/Ts, ν = 1/Tr . The resulting approximation to the fuzzy number C of completed
runs in the period T0 = 30 is depicted in Fig. 9 (right picture). Due to the nature of
the model of Section 2, it is a real fuzzy number rather than a fuzzy integer and thus
has to be interpreted as a continuous approximation to a discrete fuzzy number.
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Summary. This article is devoted to a variety of applications of fuzzy models in civil
engineering, presenting current work of a group of researchers at the University of
Innsbruck. With fuzzy methods and possibility theory as an encompassing framework,
the following areas are addressed: uncertainties in geotechnical engineering, fuzzy
finite element computation of a foundation raft, fuzzy dynamical systems, processing
uncertainty in project scheduling and cost planning.

1 Introduction

Traditional engineering models are deterministic: sharp inputs are processed in
a structurally determined system to produce a sharp output, which is taken as
an approximate prediction of reality. To account for fluctuations, probability
theory has been introduced. This shifts the emphasis from sharp input data
to sharp probabilities of sharply defined events. Among engineers, there is
increasing discomfort with the observed fact that predictions obtained in this
way may deviate to such an extent from reality as to render them useless.

For example, a case study [17] concerning the design of a sheetpile wall,
in which a number of reputable European engineering companies had agreed
to participate, resulted in a corresponding number of seemingly precise pre-
dictions. These, however, differed drastically from each other and from the
observed behavior of the completed structure.

Conspicuous differences between prediction and reality may arise in many
areas in the course of the realization of an engineering structure: from site
investigations and analysis to scheduling and cost planning. We should be
clear about the facts that

Published originally in: Computer-Aided Civil and Infrastructure Engineering
14(2) (1999), 93–106 (H. Adeli, B. Möller (eds.), Special Issue: Fuzzy Modeling).



212 Fetz, Jäger, Köll, Krenn, Lessmann, Oberguggenberger, Stark

• models are approximations to and conjectures about reality;
• the input parameters are known only imprecisely;
• probabilistic methods may fail to capture the information available about

the deviations.

The inherent vagueness of modelling procedures can be traced to various rea-
sons, for example: lack of knowledge of boundary conditions; simplification in
complex circumstances forcing a single parameter to cover a wider range of
situations; lack of a precisely quantifiable definition of some verbally defined
variable; uncertainty about future dispositions. However, there is clearly no
alternative to employing rational models in the three central activities of en-
gineering: design, construction, and control. Rather, the engineer should face
the limitations of the modelling process, put the range of imprecision into the
open and make it accessible to responsible assessment by all participants in
the construction process. This will involve processing not only data but also
the available objective and subjective information on their uncertainty.

We believe that fuzzy set theory provides a framework for accomplishing
this task. The power of fuzzy set theory is that it allows a formalization
of vague data, a representation of their fuzziness which can be entered into
computations and a possibility theoretic interpretation. Assigning degrees of
possibility as a replacement of probability appears to be more adapted to
formalizing expert knowledge, due to the relaxation of axioms. Working with
fuzzy methods forces and allows the engineer to address the uncertainties, see
and judge the possible range of outputs the fuzzy model predicts, and gain
understanding of the possible behavior of the system, given the imperfect
description formulated initially.

The purpose of this article is to demonstrate that fuzzy formulation and
computation is possible in a number of engineering tasks ranging from geotech-
niques to dynamics to project planning. It presents the ongoing work of a
group of researchers in construction management, strength of materials, math-
ematics and numerics at the University of Innsbruck; we refer to the papers
[4, 5, 9, 11].

The plan of exposition is as follows. After a short account of the basic no-
tions of fuzzy set theory, we address questions of modelling and uncertainties
in geomechanics. This is followed by an investigation of the effect of fuzzy
parameters in a raft foundation, the corresponding fuzzy finite element com-
putation, and a discussion of the interpretation. Next, we exhibit some fuzzy
ideas on dynamical systems. Finally, we turn to project planning: scheduling
and cost estimation. We show that suitable methods of presentation allow a
clear exhibition of fuzziness in a network structure, providing means of control
under risk. The fuzzy approach gives a lucid picture of the complexities in-
volved when duration dependent costs enter into network analysis. It explains
why cost optimization is impossible, but must be replaced by the search for a
satisficing solution.
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A methodological remark seems in order. We use fuzzy set theory to char-
acterize vague data by intervals of variation, supplied with a valuation. This
valuation provides the additional degrees of freedom needed to model uncer-
tainty, to describe and interpret its effects. Numerically, the results are com-
puted by repeated application of deterministic algorithms to all relevant data
combinations. The increased computational effort can currently be handled
in problems of moderate size.

2 Fuzzy sets

This section serves to briefly collect what we need from fuzzy set theory:
definition of and computation with fuzzy quantities.

Given a basic set X of discourse, a fuzzy subset A is characterized by
(and can be identified with) its membership function mA(x), 0 ≤ mA(x) ≤ 1,
defined for each element x of X . The value mA(x) can be interpreted as

• the membership degree of the element x belonging to A;
• the degree of possibility that the variable A takes the value x.

Introducing the α-level sets (0 ≤ α ≤ 1)

[A]α = {x ∈ X : mA(x) ≥ α} (1)

we arrive at the interpretation mentioned in the Introduction:

The variable A fluctuates in the range [A]α with possibility degree α.

A fuzzy real number a is defined as a fuzzy subset of the basic set X of
real numbers with the property that each level set [a]α is a compact interval,
0 < α ≤ 1. See Fig. 1 for an example of a triangular fuzzy real number a;
depicted is the level set [a]1/2.

In general, the graph of the membership function will be curved. However,
as an approximation it often suffices to work with polygonal fuzzy numbers.
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Fig. 1. Triangular fuzzy number.
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Fig. 2. Polygonal fuzzy number.

Their graphs are piecewise linear with corner points at aL0 ≤ aL1 ≤ . . . ≤
aLn ≤ aRn ≤ . . . aR1 ≤ aR0 and corresponding levels 0 = α0 < α1 < . . . <
αn = 1, see Fig. 2.

Polygonal fuzzy numbers are denoted by

a = 〈aL0, aL1, . . . , aLn, aRn, . . . , aR0〉.
Frequently used special cases are triangular fuzzy numbers 〈aL, aM , aR〉 as well
as trapezoidal shapes. Compact intervals [aL, aR] can be viewed as fuzzy num-
bers with rectangular membership function. Among the more general fuzzy
quantitites are fuzzy vectors, in case the basic set X is the n-dimensional
Euclidean space, or even fuzzy functions, in case X is a space of functions.

In scientific computations, parameters have to be inserted in functions.
Thus the necessity arises of evaluating functions on fuzzy numbers (or vectors).
This is achieved by means of the Zadeh extension principle [18], exhibited here
for the case of a function z = f(x, y) of two variables. If a, b are fuzzy numbers,
so will be the result f(a, b). Its fuzzy value is determined by prescribing its
membership function:

mf(a,b)(z) = sup
z=f(x,y)

min {ma(x), mb(y)} . (2)

When using the possibilistic interpretation, the Zadeh extension principle
is especially intuitive: In order to determine the membership degree of the
dependent variable z, one considers all possible combinations (x, y) leading
to z = f(x, y). Each single combination arises with degree of possibility
min{ma(x), mb(y)}. For the final result, the maximal degree of possibility
(the supremum) is decisive.

An essential computational tool is interval analysis on each α-level set:
Indeed, in case f is a continuous function, the α-level set of f(a, b) is obtained
by evaluating the image of the α-level sets of a, b under the function f :

[f(a, b)]α = f([a]α, [b]α). (3)
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In case f is an arithmetic operation, this leads to simple formulae. For ex-
ample, addition f(a, b) = a + b of triangular or polygonal fuzzy numbers is
achieved by simply adding the abscissae of their corner points:

〈aL, aM , aR〉 + 〈bL, bM , bR〉 = 〈aL + bL, aM + bM , aR + bR〉,

the result being again a triangular or polygonal fuzzy number. In the case of
subtraction f(a, b) = a − b, a crosswise interchange is required:

〈aL, aM , aR〉 − 〈bL, bM , bR〉 = 〈aL − bR, aM − bM , aR − bL〉.

For general operations f , the resulting membership function can be curved;
the bounds of the α-level sets are obtained by solving an optimization problem.

In network planning, the need arises to compare two or more fuzzy num-
bers. Here we face the difficulty that there is no total order on fuzzy real
numbers, that is, it cannot be decided in general whether a ≤ b or b ≤ a (in
contrast to the case of usual real numbers). A closer look at network planning
shows that we actually need to compute max(a, b) at nodes where two paths
meet. This can be done by applying the Zadeh extension principle to the func-
tion f(a, b) = max(a, b). In the case of triangular or polygonal fuzzy numbers
we approximate the result by taking the maximal value at each corner point
of the membership function (in order to avoid the introduction of additional
levels):

max(a, b) = 〈max(aL, bL), max(aM , bM ), max(aR, bR)〉
and correspondingly for the minimum needed in the backward computation.

3 An application of fuzzy set theory in geotechnical
engineering

3.1 Preliminary remarks

In foundation engineering the design of mat foundations is just an ordinary
task and it is certainly far from being classed as a special geotechnical job. At
first glance one might be tempted to assume that the result of a raft design
with well defined structural input data will fall into a narrow band of solu-
tions. However, whereas the loading, the material parameter of the foundation
structure and the requirements the foundation should meet, like allowable dif-
ferential settlement, are well defined, there is generally a substantial lack of
information concerning the soil. In some cases this deficiency of information
serves as an excuse for simplified modelling and it is often argued that it is
not worth using a possibly more appropriate and expensive model for the
analysis of the problem at hand. On the other hand, even the most sophis-
ticated model will not guarantee that the solution based on it will correctly
predict all desired aspects of the foundation response. Hence, the decision
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about which model will be appropriate with respect to the importance of the
project and the available soil data will very much depend on the expertise of
the geotechnical engineer. Irrespective of both the vagueness of input data and
the uncertainties with respect to the model, in today’s practice the engineer
will come up with crisp results. Here, fuzzy set theory opens new opportunities
to reflect the lack of information and uncertainties in the results of engineering
computations in a rational manner. In this section we will demonstrate the
application of fuzzy set theory to the analysis of a foundation raft.

3.2 Material modelling

Constitutive equations or inequalities describe the response of materials. To
specify a certain class of material with desired accuracy a sufficient number
of such relations is required. The purpose of engineering constitutive models
is not to give a mirror image of realistic material behavior but rather to
describe the main mechanical properties, which are important for the design
of constructions.

Constitutive relations consist of equations and inequalities which contain
the basic principles of continuum mechanics (conservation of mass, momentum
and energy) and of material theory (principle of frame invariance etc.). They
must be satisfied exactly by the constitutive law. As these principles are not
sufficient for the determination of all the variables involved in the material
model, additional assumptions are required. These assumptions are based on
the interpretation of material test data and thus they introduce an amount
of uncertainty into the material model. For example elasticity, plasticity and
damage characterize properties of idealized material behavior. In reality the
existence of an elastic domain, the transition from elasticity to plasticity or the
initiation of damage cannot be defined exactly. The theory of fuzzy sets offers
a framework to model these various uncertainities in a consistent manner [6].

General constitutive relations are tensor valued functions of stress, strain,
strain-rate and additional variables, which describe the mechanical state of
the material. In order to simplify the constitutive law, material parameters
are introduced replacing complicated functions of the variables by one single
constant. As a consequence the material properties described by the function
which is replaced by the constant will be captured by the numerical value
of one single material parameter. Thus material parameters of simple models
have to cover a larger bandwidth of values than material parameters of more
refined models.

An additional source of uncertainity arises when the numerical values for
material parameters are determined by carrying out material tests. Usually the
constants introduced into the model are identified by minimizing a measure of
error between theoretical (calculated) and experimental (measured) variables.
Due to the mathematical structure of most nonlinear constitutive equations a
global minimum of error is rarely found. In reality several equivalent solutions
exist. Further, considering that experimental data are burdened by scatter
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and errors the results gained by the calibrated model contain some additional
uncertainty.

3.3 Numerical model

It should be emphasized very clearly that using fuzzy set theory will in no way
release the engineer from his job of establishing a correct mechanical model
and using adequate numerical techniques to tackle the problem.

It is common sense that soil behavior is far from being adequately de-
scribed as linear elastic, however, for the analysis of raft foundations it is
usually justified to assume linear elastic soil response within the range of
working loads. Although yielding eventually might occur in some confined re-
gions of the soil they usually remain small compared with the overall area of
the soil-structure interface. In current engineering practice the Winkler model
is probably most widely used to analyze rafts on elastic foundations. This is
based much more on the fact that this model is very easy to handle and in-
expensive both in terms of discretization and computation cost, rather than
due to its mechanical merits. More reliable results are obtained by using a
continuum model. Some of these models may even account for the increasing
stiffness of the soil with depth.

In this example the soil is assumed to be adequately modelled as an
isotropic non-homogeneous elastic medium. We therefore will adopt a con-
tinuum model with a power variation of Young’s modulus E with depth like
the one proposed by Booker et al [2], i.e., the elastic constants of the soil
medium are given by

E(z) = E1z
ρ, 0 ≤ ρ ≤ 1

ν = const. (4)

where E1 is a constant which determines Young’s modulus at the depth z = 1,
ρ is referred to as the non-homogeneity parameter and ν denotes Poisson’s
ratio. Eqn. (4) could be used for sand deposits where E is likely to vary
nonlinearly with the overburden pressure. The raft, which also is assumed to
behave elastically, is modeled by finite elements.

Numerically we are combining the finite element procedure with a bound-
ary element solution. One of the main tasks is to determine the displacements
of the non-homogeneous elastic half-space caused by a constant surface trac-
tion acting on an arbitrarily shaped area. In the context of the applied algo-
rithm the shape of the loaded area depends on the shape of the finite element.
Assuming that the boundary of the loaded domain Ω can be approximated
by a polygon consisting of k segments, as shown in Fig. 3, the vertical dis-
placement uz of a point (x, y, 0) on the soil surface due to a vertical traction
pz is given by

uz(x, y) =
Bpz

E1

k∑

i=1

∫

Li

unξ + vnη

(ρ − 1)Rρ+1
ds. (5)
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In the above equation B is a function of ρ and ν; u, v and R measure the
distance between source point and field point and nξ and nη are the direction
cosines of the actual segment. The integral in (5) can be evaluated numerically
in a standard manner by applying Gauss-Legendre quadrature. Solutions for
other displacement components due to loading in any direction are given by
[15].

For rectangular shaped elements the displacement uz can be found with-
out performing any numerical integration at all making the procedure quite
efficient. In the case of vertical loading within the domain Ω, uz is given by

uz (x, y) =
Bpz

E1
λ (6)

where λ is a function of (x, y) and is determined by evaluating κ for the
boundaries of the loaded rectangle (see Fig. 4), i.e.

λ = κ(x − x1, y − y1) − κ(x − x1, y − y2) +
+κ(x − x2, y − y2) − κ(x − x2, y − y1). (7)

κ is given by

κ =
v sgn(u) |v|−ρ Bζ(a, b) + u sgn(v) |u|−ρ B(1−ζ)(a, b)

2(1 − ρ)
(8)

where Bζ(a, b) is the incomplete Beta function, its parameters given by

ζ =
u2

u2 + v2
, a =

1
2

, b =
ρ

2
. (9)

For a more detailed derivation of all displacement components due to ver-
tical and horizontal loading the reader is referred to [16].
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Fig. 3. Polygonal approximation of the loaded area.
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3.4 Numerical example

A rectangular raft with a flexural rigidity of 20460 kNm and an aspect ratio
of 8 to 4 m on granular soil is considered. The elastic constants E1 and ν
and the exponent ρ determining the degree of non-homogeneity of the soil
are assumed to be fuzzy numbers Ẽ1, ν̃ and ρ̃ shown in Fig. 3.4. The raft is
subjected to a uniform loading of 100 kPa. The interface is assumed to be
smooth, i.e. no shear stresses are transmitted between raft and soil.

3.5 Calculation of the fuzzy solution

The numerical algorithm for crisp data has been presented in Section 3.3. Our
task is to perform it with fuzzy data, producing a fuzzy output. Thus we shall
have to evaluate functions f(x,y)(Ẽ1, ν̃, ρ̃) where

• f represents an output quantity such as displacement, stress or bending
moment,

• (x, y) is a point of the raft under consideration,
• Ẽ1, ν̃ and ρ̃ are the fuzzy parameters.

As shown in Section 2 we can reduce this to a calculation of the image

[f(x,y)(Ẽ1, ν̃, ρ̃)]α = f(x,y)([Ẽ1]α, [ν̃]α, [ρ̃]α) (10)

using the α-cuts. In general the function f(x,y) does not depend monotonically
on the parameters E1, ν and ρ, so it is not sufficient to use only the bounds
of the α-cuts for computing the bounds of [f(x,y)(Ẽ1, ν̃, ρ̃)]α. Instead of this
we have to solve a global optimization problem. This has to be done for each
desired point (x, y) – and also for each desired output quantity f .

To reduce the computional effort we approximate the function f(x,y) on a
3-dimensional grid. The gridpoints are given by the Cartesian product SE1 ×

dξ dη

x

y
(x,y)

x1 x2

y1

y2

Ω

Fig. 4. Uniformly distributed load over a rectangular area.
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Fig. 5. Membership functions of Ẽ1, ν̃ and ρ̃.

Sν × Sρ where SE1 , Sν and Sρ are discretizations of intervals which include
the supports of the fuzzy parameters. For the above example the following
sets are taken:

SE1 = {8000, 10000, 12000, . . . , 20000} (11)
Sν = {0.2, 0.25, 0.3, 0.35, 0.4} (12)
Sρ = {0.0, 0.1, 0.2, . . . , 0.9} (13)

The FE-computation for a crisp triple (E1, ν, ρ) ∈ SE1 ×Sν ×Sρ using the
above method results in f(x,y)(E1, ν, ρ) for all desired points (x, y) and for all
output quantities f . Doing this for all (E1, ν, ρ) ∈ SE1 × Sν × Sρ we get an
approximation f̂(x,y) of f(x,y) using linear interpolation. Using this approxi-
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mation it is easy to compute approximative bounds of [f(x,y)(Ẽ1, ν̃, ρ̃)]α for
all points (x, y).

After performing this for all α-cuts, e.g. α ∈ {0, 0.2, 0.4, . . . , 1}, we get a
fuzzy number f(x,y)(Ẽ1, ν̃, ρ̃) for each point (x, y), e.g. for each point on a grid
on the raft.

Caution: We have to treat each fuzzy number f(x,y)(Ẽ1, ν̃, ρ̃) separately
from fuzzy numbers at other points, because we have neglected the interac-
tions. So in general fuzzy numbers f(x′,y′)(Ẽ1, ν̃, ρ̃) at additional points (x′, y′)
may not be calculated by interpolation, but interpolation can be used at the
stage of the crisp FE-computation.

3.6 Visualizing the fuzzy solution

At single points (x, y)

To represent the value of a single fuzzy quantity at a single point, it suffices
to plot the membership function. See Fig. 6 where the fuzzy bending moment
M̃x at the center of the raft is shown.
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Fig. 6. Membership function of M̃x.

Along a section

Along the section we plot at each point, for which we have calculated the
fuzzy output, the function values indicating the degree of membership by a
gray-scale. White represents 0, light gray lower and dark gray higher degree
of membership and finally black represents 1. See Fig. 7 where the fuzzy
bending moment M̃x on a section in x-direction through the middle of the
raft is plotted. Taking the membership values of the fuzzy bending moment
in Fig. 7 at the location x = 4 leads to Fig. 6.
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Fig. 7. Fuzzy bending moment M̃x along a section.

On the whole raft

To get an overall picture of the stresses or bending moments these quantities
f are visualized on the whole raft using contour plots. Usually areas such as
A = {(x, y) : c1 ≤ f(x,y)(E1, ν, ρ) ≤ c2} for fixed E1, ν and ρ are colored to
indicate lower or higher values of f . Here we use a fuzzy extension of this
visualizing concept. Let f̃(x, y) := f(x,y)(Ẽ1, ν̃, ρ̃) be the fuzzy value at an
arbitrary point (x, y) on the raft. We define the degree of membership of the
fuzzy value f̃(x, y) to the crisp interval C = [c1, c2] by

mC(f̃(x, y)) = sup
a∈C

mf̃(x,y) (a) , (14)

cf. Fig. 8 showing an example with mC(f̃(x, y)) = 0.5.
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Fig. 8. Fuzzy element of a crisp interval.

Performing this for all (x, y) on a grid on the raft we get a fuzzy set or
area which itself is visualized by a contour plot. Fig. 9 and Fig. 10 show the
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degree of membership of the fuzzy bending moment M̃x to the interval [7.5, 10]
kNm/m and [10, 12.5] kNm/m, respectively.
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Fig. 9. M̃x ∈ [7.5, 10] kNm/m.

Remark : The areas plotted black in Fig. 7, 9 and 10 represent the output
with membership degree 1. This corresponds to the crisp output Mx for E1 =
14000 kPa, ν = 0.25 and ρ = 0.5, cf. Fig. 3.4. In Fig. 6 the value Mx = 17.71
kNm/m with membership degree 1 also represents the crisp solution using the
above parameters. This shows the great loss of information if uncertainties are
neglected and the analysis is done just using crisp soil parameters.

3.7 Determining membership functions

In the numerical example of Section 3.4, membership functions of the fuzzy
parameters Ẽ1, ν̃, and ρ̃ have been taken as triangular fuzzy numbers, for the
sake of exposition. In practical applications, the membership functions can be
constructed from sample data obtained from site investigation and laboratory
testing as well as geotechnical judgement provided by the engineer. Various
methods for fuzzy data aggregation have been suggested in the literature (see
e.g. [1, 3]). We are going to elaborate on one of the approaches, say, for the
case of Young’s modulus E1. Assume that in a cross section parallel to the
x-axis of the part of soil in question of length L three measurements have been
taken at points x1, x2, x3, yielding three intervals I1, I2, I3 for the parameter
E1. If no additional information on the distribution of E1 over the length
L is given, one might define the membership function mẼ1

(E′
1) of the fuzzy

parameter Ẽ1, at a given value E′
1, as 1

3 the number of intervals Ij in which E′
1

is contained. Thus, mẼ1
(E′

1) = 1 if E′
1 appears as a value in all measurement

intervals I1, I2, I3, mẼ1
(E′

1) = 2
3 if E′

1 appears in two of the intervals, and so
on, see Fig. 11.

On the other hand, in case more geotechnical information on the approx-
imate distribution of E1 is available or can be estimated from further indica-
tions, one might describe the conjectured distribution over the length L by a
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band in the (x, E1)-plane. A piecewise linear extrapolation is sketched in Fig.
12.

To determine the membership degree mẼ1
(E′

1) of a given value E′
1, the

length of the broken horizontal at height E′
1 cut out by the boundaries of the

shaded band is measured and divided by L. For simplification, the result can
be approximated by a triangular or trapezoidal fuzzy number. For computa-
tional purposes, one could place a rectangular subdivision on the (x, E1)-plane
and just count the number of rectangles met by the shaded region at each
height. Here we have presented the procedure in a one-dimensional case; it
extends in an obvious fashion to the 2- and 3-dimensional situation.

At this point, an important modelling question arises. Namely, in the fuzzy
FE-model, we work with a constant, albeit fuzzy parameter Ẽ1. On the other
hand, measurements of E1 have exhibited fluctuations in certain intervals Ij .
The question is the meaning of the measurements in the context of the model.
There are two possibilities:
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1. The parameter E1 is approximately constant in reality, and the variations
Ij arise from measurement uncertainties. In this case, the use of a constant,
fuzzy Ẽ1 is fully justified. The membership function simply reflects our
information on the measurement uncertainties.

2. The parameter E1 is not constant, and the fluctuations in our measure-
ments indicate physical variations over the length L. In this case, the
actual displacements and stresses might not be covered by a computation
using a fuzzy constant Ẽ1, even on α-level zero. This problem has to be
faced by any modelling procedure, fuzzy or not. It concerns the uncer-
tainty or lack of knowledge about the actual functional dependence of
the parameter E1 on the location along length L, which, in our model,
is absorbed in the fuzziness of the assumed constant Ẽ1. Preliminary re-
sults of a comparative case study under way show that linear variations
of E1 are covered by fuzzy constants, but more drastic fluctuations might
lead to bending moments numerically outside the fuzzy range, yet still
qualitatively predicted.

4 Fuzzy differential equations

In this section we report on work in progress on dynamical problems. We are
concerned with models described by systems of differential equations

dx(t)
dt

= F (t, x(t), b) (15)

x(0) = a.

Here t denotes time, and x = (x1, . . . , xn) is the state vector of the system.
The function F is assumed to be known formally, but may contain fuzzy
parameters b = (b1, . . . , bm); the initial state x(0) = a could be a fuzzy vector
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as well. Typically, these systems arise in structural mechanics, the vector x(t)
comprising displacements and velocities of the nodes of the structure. Further
engineering applications include dynamical problems in continuum mechanics
(subjected to a spatial discretization), problems of heat conduction described
by Newton’s law or the time evolution of Markovian probabilities in queueing,
maintenance and reliability models.

The parameters and data in problem (15) being given by fuzzy vectors,
the solution x(t) at any point of time t will be a fuzzy vector as well and
the trajectory of the system t → x(t) in state space will be a fuzzy function.
Our method of computation is by means of the Zadeh extension principle.
Assuming that the initial value problem (15) can be solved uniquely when the
data and parameters (a, b) are usual numbers, we can assert that the solution
is given as a continuous function of the data and parameters

x(t) = Lt(a, b). (16)

It is this function Lt to which we apply the extension principle. Thus the
α-level set of the fuzzy solution x(t) at time t is given by

[x(t)]α = Lt([a]α, [b]α). (17)

This shows that the solution concept above produces information of engineer-
ing interest: if the data and parameters fluctuate in the sets [a]α, [b]α with
degree of possibility α, then the state of the system at time t is confined to
the level set [x(t)]α. This way the assessment of the variations of the input
parameters is faithfully processed and reflected in the fuzzy output. In addi-
tion, x(t) = Lt(a, b) can be seen as the unique fuzzy solution corresponding
to a fuzzy solution concept for system (15), obtaining further mathematical
justification this way [11].

As a simple illustrative example, consider the displacement x(t) of a mass
m under the influence of a linear spring with stiffness k. It is described by the
second order differential equation

m
d2x(t)

dt2
+ kx(t) = 0. (18)

Assuming that parameters m and k are fuzzy while the initial data x(0) = 0,
dx(0)/dt = 1 are known precisely, the fuzzy solution is given by

x(t) = Lt(m, k) =
k

m
sin(

m

k
t). (19)

Fig. 13 depicts a certain fuzzy parameter m/k, Fig. 14 and 15 the corre-
sponding fuzzy displacement x(8) at time t = 8 (polygonal approximation),
respectively α-level sets for part of the fuzzy trajectory.

The computation proceeds as follows: First, trajectories t → Lt(m.k) are
computed corresponding to an array of values m/k. Next, the bounding curves
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of the level trajectories [t → x(t)]α are constructed as envelopes of the tra-
jectories arising from parameter values in level set [m/k]α. Finally, the mem-
bership function of x(t) at fixed points of time t is obtained by projection.
More efficient numerical algorithms involving interpolation, evolution prop-
erties and piecewise monotonicity of the membership functions are currently
being developed [12].

As a final observation, we note that from the fuzzy trajectory as a primary
object, various secondary quantities of interest can be computed, for example:
maximal displacement at level α, resonance frequency, spectral coefficients and
so on.

5 Fuzzy data analysis in project planning and
construction management

Fuzzy methods can be a valuable help in network planning. They enable the
engineer to incorporate his information on the uncertainties of the available
data and his assessment of future conditions. They provide a tool for moni-
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toring and control, and do not, after all, give the false impression of precision
in the project schedule that can never be kept up in reality.

Basic tools in fuzzy network planning and its application to engineering
projects have been developed in [9]. In this section we shall elaborate on three
additional topics of practical interest: possibilistic modelling of geological data
in a tunnelling project; aids for project monitoring; questions of time/cost
optimization.

5.1 Time estimate for a tunnelling project: an example

Data for the subsequent example come from a preliminary investigation at
the site of a projected road tunnel at the German/Austrian border in geo-
logically challenging terrain. We contrast our approach [7] with a previous
study [13], in which the probabilistic PERT-technique had been employed.
The total extension of the tunnel of approximately 1250 m was divided into
16 sections, according to geological criteria. For each section, a geologist had
provided a verbal description plus estimated percentages of the rock classes
to be expected. For example, section 2 of 340 m length was classified as 80%
slightly fractured rock and 20% fractured rock. A deterministic engineering
estimate yielded driving times for each section and rock class. For example,
completion of section 2 was estimated at 60 days, provided only slightly frac-
tured rock was encountered, and at 81 days under conditions of fractured
rock. In the PERT-analysis, the duration of each section was interpreted as
a discrete random variable with elementary probabilities defined by the given
percentages. For example, this way the expected duration for section 2 was
computed to 0.8 · 60 + 0.2 · 81 ≈ 64 with standard deviation ≈ 8.4. In section
8, risk of tunnel failure was presumed and in sections 7 and 9, risk of water
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inrush. In the PERT-analysis, the corresponding delays were modelled in a
similar probabilistic way.

Tunnelling durations as triangular fuzzy numbers : We argue that possi-
bility theory provides a viable alternative. The key to our approach is the
interpretation of the percentages as fuzzy ratios. In our treatment of the tun-
nelling project, we assigned membership degree 1 to the ratios proposed by
the geologist, that is 80 : 20 in section 2, for example. In the subsequent
analysis, we estimated the ratios defining the bounds for the domain of mem-
bership degree zero; in section 2, 90 : 10 and 50 : 50. This resulted in the
triangular fuzzy number 〈62, 64, 70〉 for the tunnelling duration in section 2,
and similarly for the other 15 sections. Risk of tunnel failure in section 8 was
analyzed separately. In particular, the possible occurence of one major tunnel
failure and up to two minor ones was taken into account, with corresponding
delays modelled by triangular fuzzy numbers as shown in Fig. 16.

1st total3rd 2nd

0 10 20 30 40 50days

tunnel failure

Fig. 16. Delay caused by tunnel failure.

The sum of these prognoses for possible delays was added to the driving
duration of section 2. Further delays due to water inrush in sections 7 and 9
were estimated in a similar way and the respective durations were modified
accordingly.

We would like to point out that the fuzzy approach allows the incorpo-
ration of information going beyond probability distributions. For example,
at each transition of the rock classes, individual delays are due to change of
the cross-sectional area of the tunnel, change in equipment, safety regulations
to be observed and so on. The planning engineer can assess these individual
circumstances from previous experience, from specific enterprise data, from
discussions with experts involved in the construction process. The information
gathered in this way can be subsumed under a formulation by means of fuzzy
numbers.

Total duration: The linear structure of the tunneling process is described
by a serial network consisting of one path only and 16 nodes for the sections.
The total project duration is obtained by simply adding the individual dura-
tions, resulting here in a triangular fuzzy number. In contrast to this, in the
probabilistic approach, expectation values and variances are added, assuming
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stochastic independence of the individual activities. As is customary in the
PERT-technique, the total duration is assumed to be normally distributed.
The two results are contrasted in Fig. 17.
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Fig. 17. Probability/possibility distribution of total duration.

The deviation of the central value (membership degree 1) in the fuzzy
approach from the expectation value in the probabilistic approach is mainly
a consequence of different handling of the exceptional risks in sections 7, 8
and 9. We emphasize that the meaning of the two graphs is totally different;
the determining nodes of the triangular fuzzy number directly reflect the risk
assessment performed in the analysis, the height of the curve representing the
estimated degree of possibility associated with each duration. On the other
hand, the area under the probability distribution curve defines the proba-
bility that the total duration appears in a certain interval. In view of the
various artificial stochastic hypotheses entering in the PERT-algorithm, it is
questionable whether it allows a direct interpretation relevant for managerial
decisions.

As with most construction projects, the underlying uncertainties are not
of a statistical nature. The percentages provided by the geologist are neither
samples from a large number of completed tunnels, nor are they statistical
averages from a large number of exploratory borings along the prospective
tunnel route. They are nothing but subjective estimates based on expertise.
Thus it appears more appropriate to translate them into a possibilistic rather
than a probabilistic formulation.

5.2 Aids for monitoring

In serial networks such as, for example, arise in tunnelling projects, a fuzzy
time/velocity diagram may be taken as a monitoring device for the unfolding
of the construction. It simply describes the fuzzy point of time when a certain
position along the tunnel route should be reached. The diagram in Fig. 18
reflects all uncertainties taken into account when the project starts.



Fuzzy models in geotechnical engineering and construction management 231

0

100

200

300

400

0 250 500 750 1000 1250

tunnelling process  [m]

du
ra

tio
n 

[d
ay

s]

fastest

slowest

most possible

Fig. 18. Time/velocity diagram.

As construction progresses, the uncertainties are narrowed down step by
step. The diagram can be actualized by a simple cancellation of the design
uncertainties, once a definite state has been reached.

In a branching network, a time/velocity diagram might not contain enough
information. Here it is essential to assess the criticality of activities or
branches. In deterministic network planning, the slack time for each activity
is computed by a backward pass through the graph from the desired comple-
tion date, and criticality means slack zero. As explained in detail in [9], the
backward pass with fuzzy durations no longer yields the slack of each activity,
but rather its critical potential. We prefer to call the fuzzily computed slack
range of uncertainty. Negative range of uncertainty implies a certain possibil-
ity that delay of the completion date may be caused at the respective activity.
Numerically, the critical potential is defined as the possibility degree of zero
range of uncertainty.

This opens the way for enhancing the network presentation by shading (or
coloring) areas of different criticality in the network (see Fig. 19, where an
example of a project plan for a sewage plant is presented).

Such a presentation uncovers and emphasizes the uncertainties and can
help the construction manager to assess rapidly which activities may become
critical. In the course of the realization of the project, the diagram can be
updated continually, thereby recording shifts in criticality and making it pos-
sible to recognize trends early. This is the central objective of monitoring and
control, and it is the basis for taking adequate measures in order to avert de-
velopments endangering the timely completion of the project or its economic
success. As opposed to deterministic planning methods, the project uncertain-
ties do not disappear in the “black box” of an algorithm. The fuzzy network
representation may aid all persons concerned with the project in strategic
considerations.
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Fig. 19. Fuzzy network.

5.3 Construction time and cost

In this subsection we address the following: Is it possible to design and imple-
ment a cost optimal project plan? There are many parameters to be varied:
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1. we can change the overall method of construction;
2. given a construction method, we can change its internal structure, the

temporal and causal interdependencies of the individual activities;
3. given a fixed project structure, we can vary the costs of individual activ-

ities by acceleration, deceleration and resource modification.

It is clear right away that possibilities (i) and (ii) allow an infinity of
variations, depending on the inventiveness of the designing engineer. No single
solution can be guaranteed to be optimal; an absolutely optimal construction
method or project structure simply does not exist. For the discussion to follow,
we therefore concentrate on point (iii) which already features all difficulties
(see [8]).

Thus we assume a fixed network structure chosen for the project plan.
We want to optimize costs by changing the duration of the activities. As
a precondition, we must know the effects of resource modification on the
time/cost relation of the activities. This is a major source of uncertainty and
will be discussed below. We first have a look at the standard deterministic
approach to this optimization problem. The basic assumption is that for each
of the activities Ai, i = 1, . . . , n, the time/cost relation is known. We denote
by Ci(Di) the cost of activity Ai when performed at duration Di. Further, the
duration Di of activity Ai ranges between certain upper and lower bounds:

DiL ≤ Di ≤ DiR. (20)

Each choice of duration D1, . . .Dn for the activities results in a total duration
T of the project, determined by the activities on the corresponding critical
paths. The smallest and largest possible project durations Tmin, Tmax are
obtained by performing all activities in minimal time DiL, or maximal time
DiR. There is an external time limit on the total duration T , given by the
required deadline Te and the commencement date Tb: T must be smaller than
the difference Te − Tb. This results in the constraint on the total duration:

TL ≤ T ≤ TR (21)

where TL = Tmin and TR is the smaller of the two values Tmax and Te − Tb.
The standard optimization proceeds in two steps.

Step 1: cost optimization at fixed project duration T . The duration T is
attained by many different combinations of individual durations D1, . . . , Dn.
For each combination, we get a corresponding total cost

CT (D1, . . . , Dn) =
∑

Ci(Di). (22)

The objective is to minimize CT (D1, . . . , Dn) subject to constraint (20): This
results in the minimal cost C(T ) at fixed project duration T .

Step 2: optimizing the total project duration. In this step, we simply choose
the project duration T ∗, subject to constraint (21), such that the correspond-
ing total cost C(T ∗) is the least among all minimized costs C(T ).
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Under various assumptions on the time/cost relationships Ci(Di), this
standard optimization procedure has been extensively dealt with in the lit-
erature (see e.g. [10]). It seems we have solved the problem. However, we
shall see in the simple example below that the combinatorial structure of the
possibilities leading to optimal duration T ∗ becomes tremendously complex
with the increasing size of the project. The construction manager would be
required to control the construction process in such a way that each activity
runs precisely the duration ultimately producing minimal costs C(T ∗). This is
impossible. Therefore, the information obtained by the standard optimization
procedure is useless.

Time/cost analysis: We turn to fuzzy modelling of the duration dependent
costs of a single activity Ai. The costs Ci(Di) required to complete this activity
in a certain time Di are described by a triangular fuzzy number, see Fig. 20.
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Fig. 20. Membership function for cost of activity at fixed duration.

The planning engineer might first arrive at the central value CM with
membership degree 1 by employing the standard deterministic computations
from construction management data. Then a risk analysis might provide the
lowest possible costs CL and a largest bound CR for the estimated costs. Of
course, further subdivision of risk levels can provide a refined analysis (this
was carried through e.g. in [9]), but as a first approximation, a triangular
fuzzy number may satisfactorily reflect the cost fluctuations under risk.

Next, we discuss the cost distribution as the duration Di of activity Ai

varies in its bounds DiL, DiR. An example of such a diagram is shown in Fig.
21, exhibiting 0-level and 1-level curves of the fuzzy cost Ci(Di).

We can distinguish three regimes of the time/cost dependence:

1. Normal area: This is the normal range for completing the activity. Costs
for equipment, labor and material and costs for site overhead are balanced.
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Fig. 21. Fuzzy time/cost dependence.

2. Crash area: The acceleration of the activity causes the costs for equip-
ment, labor and material to predominate. The increase of capacities may
cause interference and unintended obstructions, thereby further raising
costs uneconomically. In any case, a progressive cost development is to be
expected when the activity duration is pushed to its lower limit.

3. Special area: The largest uncertainties arise in this range. Costs for main-
taining the construction site at minimum capacity may be high or low,
depending very much on the specific project and circumstances.

We point out that the diagram in Fig. 21 depicts but one of the many time/cost
relationships that can arise. They typically are nonlinear, but may even have
discontinuities. For example, to achieve a certain acceleration, the construction
process may have to be changed, additional machinery may be required, or
shift-work may have to be introduced.

Example: As an illustrative example, we consider a simple serial network
consisting of the three activities: excavation (A1), foundation (A2) and mat
construction (A3), see Fig. 22.

mat
construction

foundationexcavation

A3A2A1

Fig. 22. Serial network.

The durations Di of each activity vary in an interval [DiL, DiR] and thus
can be described by a rectangular fuzzy number. We choose [D1L, D1R] =
[3, 8], [D2L, D2R] = [D3L, D3R] = [7, 12]. For each activity, a time/cost rela-
tionship as in Fig. 21 is assumed. The resulting total duration is the sum of
the three duration intervals and thus may vary in the interval [17, 32]. For
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computational simplicity, we allow only integer values for each duration. Fol-
lowing the pattern of the deterministic optimization algorithm, we first choose
a fixed duration T in the interval [17, 32] and determine the combinations of
individual durations D1, D2, D3 summing up to T . Each combination requires
a cost of CT (D1, D2, D3) = C1(D1) + C2(D2) + C3(D3), represented by a
triangular number. Superposition of these triangular numbers shows the cost
variations that can arise if the total project duration is T (T = 29 in Fig. 23).
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Fig. 23. Fuzzy cost variations at duration T = 29.

The envelope of these triangular numbers can be approximated by a trape-
zoidal number, see Fig. 24.
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Fig. 24. Risk assessment of range of costs.

We note that the boundaries CML, CMR of the central plateau arise al-
ready from the combinatorial possibilities when all activities run at deter-
ministic costs CiM (membership degree 1). Thus the shaded region can be
considered as an indicator of the economic risk the designing engineer has
to face. To assess the risk of economic failure, the engineer should examine
the combinations of activity durations leading up to the characterizing values
CML, CMR, CR, respectively. The number of these combinations grows fast
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with the project size. Thus in practice this is an impossible task. One must
be content with the indications extractable from the diagram and estimates
from a detailed study of a few extremal cases.

Three-dimensional presentation: To each attainable total duration T in
the interval [TL, TR] there are corresponding costs described by a trapezoidal
fuzzy number as in Fig. 24. We can collect these in a 3-dimensional diagram,
see Fig. 25.
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Fig. 25. Time/cost/possibility diagram.

The height of the resulting surface over a point (T, C) shows the degree of
possibility that the project duration is T with project costs C. The trapezoidal
number in Fig. 24 arises as a cross-section of the surface at fixed duration T .
The plateau area of possibility degree 1 embraces the time/cost combinations
attained when all activities run at deterministic cost CiM . This 3-dimensional
graph puts in evidence the domain in which cost and duration of the project
may vary, when the duration of each single activity has been modeled by a
rectangular fuzzy number, single costs by a triangular fuzzy number and the
time/cost relation by a diagram as in Fig. 21. Accelerating or decelerating
single activities will move the result within the boundaries of this domain.

Final Remark : We realize from these considerations that in a time/cost
analysis with fuzzy data a large variety of possible results with different mem-
bership degrees arise, already in a simple example involving three activities
only. In view of this observation it is clear that the goal of classical optimiza-
tion – the search for and the implementation of a cost optimal project plan
– cannot be achieved. Not only is it legitimate from a modelling perspective
to assume that cost and duration data are fuzzy, but in real life construction
projects the only type of data available are fuzzy data. We may conclude that
with respect to cost and duration of construction projects, one cannot strive
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for optimization, but rather should attempt to achieve a reasonable solution
within the limitations of the given risks and uncertainties.

These considerations also show that text book strategies to accomplish
a certain result do not exist, but every measure and its effects have to be
evaluated in each specific situation. Frequently heard statements such as “Re-
duction of the construction period will reduce costs” have no validity, with
the possible exception of specific projects where they may have resulted from
a thorough investigation of the determining factors. It is essential that the de-
signing engineer consider the data and project uncertainties from the earliest
planning phase onwards, so as to have a firm basis for the assessment of the
risk of economic failure.

As the economist H. A. Simon puts it [14],

“. . . exact solutions to the larger optimization problems of the real
world are simply not within reach or sight. In the face of this com-
plexity the real-world business firm turns to procedures that find good
enough answers to questions whose best answers are unknowable. Thus
normative microeconomics, by showing real-world optimization to be
impossible, demonstrates that economic man is in fact a satisficer, a
person who accepts ‘good enough’ alternatives, not because he prefers
less to more but because he has no choice.”
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