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Worked Examples In Electromagnetism Preface

Preface

This is a companion volume to Electromagnetism for Electronic Engineers (3™ edn.) (Ventus, 2009). It
contains the worked examples, together with worked solutions to the end of chapter examples, which
featured in the previous edition of the book. I have discovered and corrected a number of mistakes in

the previous edition.

I hope that students will find these 88 worked examples helpful in illustrating how the fundamental laws
of electromagnetism can be applied to a range of problems. I have maintained the emphasis on examples
which may be of practical value and on the assumptions and approximations which are needed. In many
cases the purpose of the calculations is to find the circuit properties of a component so that the link

between the complementary circuit and field descriptions of a problem are illustrated.

Richard Carter
Lancaster 2010
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1 Electrostatics in free space

1.1 Introduction

Electrostatic problems in free space involve finding the electric fields and the potential distributions of
given arrangements of electrodes. Strictly speaking ‘free space’ means vacuum but the properties of air
and other gases are usually indistinguishable from those of vacuum so it is permissible to include them
in this section. The chief difference is that the breakdown voltage between electrodes depends upon the
gas between them and upon its pressure. The calculation of capacitance between electrodes in free space

is deferred until Chapter 2.

The other problems included in this chapter involve the motion of charged particles (electrons and ions)
in electric fields in vacuum. This topic remains important for certain specialised purposes including
high power radio-frequency and microwave sources, particle accelerators, electron microscopes, mass

spectrometers, ion implantation and electron beam welding and lithography.

1.2 Summary of the methods available

Note: This information is provided here for convenience. The equation numbers in the companion

volume Electromagnetism for Electronic Engineers are indicated by square brackets.

Symbol Signifies Units

€ (epsilon) The primary electric constant 8.854 x 10" F.m™
0 Electric charge C

q Electric line charge C.m’

o (sigma) Surface charge density C.m”

p (rho) Volume charge density C.m”

E Electric field V.m'

vV Electric potential A%

V (del) The vector differential operator

rLX,y,2 Unit vectors

Inverse square law of force between charges in free space

_ 00, .

F r [1.1]

drg,r’

 Definition of the electric field of a charge in free space

dre,r
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 Force acting on a charg0e placed in an electric field
F=QFE [1.3]

o Gauss Theorem
The flux of E out of any closed surface in free space is equal to the charge enclosed by the surface
divided by &0.

« The integral form of Gauss’ Theorem

|
f] Eda=—[[] pav [1.5]
S 80 V
o The differential form of Gauss’ Theorem
OE OF E
VE= Xy y+8 ) [1.9]
ox oy Oz &,

 Electrostatic potential difference

B
V,~V,=-] E-dl [1.13]

B

o Calculation of electric field from the electrostatic potential

oV ov .oV
E:—[f(—+§7—+ia—]=—gradV=—VV [1.22]

L .
« Poisson’s equation

2 2 2
:8V oV 6V:_£ [1.24]

v —t——+——
ox" 0y Oz &

« Laplace’s equation
oV oV oV

\ 4 + +
ox* 9y’ o7

0 [1.27]

o The Principle of Superposition and the method of images
o The Principle of conservation of energy

o The finite difference method

Example 1.1

Find the force on an electron (charge -1.602 x 10" C) which is 1 nm from a perfectly conducting plane.

What is the electric field acting on the electron?
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Solution

Using the method of images the conducting plane is replaced by an image charge of +1.602 x 10 C

which is 1 nm behind the position of the conducting plane

The force acting on the electron is found using the inverse square law [1.1] noting that the charges are
2 nm apart.

0,0, —(1.602x10719)2 12

F:4 5 = = 5 7 =-577x10 "“ N (1.1)
TEWVT 4 rx8.854%10 x(2><10_ )

Force is a vector quantity so a complete answer must specify its direction. The negative sign indicates
that the electron is attracted to the image charge. The force is therefore acting towards the plane and at

right angles to it.

The electric field acting on the electron is found by substituting its charge and the force acting on it
into [1.3]

-12
F  =57.7x10 _
=L _ 200 360 MVem ! (1.2)

0 _1.602x10"19

The electric field is a vector quantity and the positive sign indicates that it is acting away from the plane.

Example 1.2

The surface charge density on a metal electrode is 0. Use Gauss’ theorem to show that the electric field

strength close to the surface is E = o/s,.

Solution

Consider a small element of area of the surface dA such that the surface around it can be considered to
be a plane. The local charge density can be considered to be constant and, from symmetry considerations,
the electric field must be normal to the conducting surface. Now construct a Gaussian surface dS, as
shown in fig. 1.1, such that it encloses the element dA and has sides which are normal to the surface

and top and bottom faces which are parallel to the surface.

dA

I

Fig. 1.1 A Gaussian surface for calculating the electric field of a surface charge.
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Since E is parallel to the sides of dS the flux of E through the sides is zero. Also, because the electric field
within a conducting material is zero when the charges are stationary, the flux of E through the bottom
of dS is zero. The flux of E through the top of dS is

d® = E dA (1.3)

where E is the magnitude of E (since E is normal to the top of dS). The total charge enclosed by dS is

By Gauss’ theorem
do
d® =— (1.5)
€
Substituting in (1.5) from (1.3) and (1.4) gives
=2 (1.6)
g

0

Note: Because a conducting surface is always an equipotential surface when the charges are stationary
E must always be normal to it. If the surface is curved the electric field varies over it (1.6) shows that,

locally, the charge density is always proportional to the electric field.

Example 1.3

Figure 1.2 right shows a charged wire which is equidistant from a pair of earthed conducting planes

which are at right angles to each other.

a) Where should image charges be placed in order to solve this problem by the method of
images?

b) What difference would it make if the planes were at 60° to each other?

¢) Could the method be used when the planes were at 50° to each other?

H

d I

Fig. 1.2 A charged wire close to the intersection of two conducting planes
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Solution

a) If Cartesian co-ordinates are used to describe the positions of the wire and of its images in
the plane then the image line charges are -q at (- d, d) and (d, - d) and +q at (- d, - d) as
shown in fig. 1.3.

b)

Fig. 1.3 Image charges for planes intersecting at 90°

c) When the planes are at 60° to each other five image charges are equally spaced on a circle as

shown in fig. 1.4.

/ '\‘ / \
® N/ @
\ /
! \ 7/ \
e Mol 4.
\ /N I
/ \
Q /N O
\. / \ 7

Fig. 1.4 Image charges for planes intersecting at 60°

d) No. The method can only be used when the angle between the planes divides an even
number of times into 360°. Thus it will work for planes at angles of 1/4, 1/6, 1/8, 1/10 of

360° and so on.

Example 1.4

A wire l mm in diameter is placed mid-way between two parallel conducting planes 10 mm apart. Given
that the planes are earthed and the wire is at a potential of 100 V, find a set of image charges that will

enable the electric field pattern to be calculated.
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Solution

If we were to put just one image charge on either side of the wire the field pattern could be calculated
by superimposing the fields of the original wire and the image wires. The results would be as shown
in fig.1.5. None of the equipotential surfaces is a plane. The solution is to use an infinite set of equally
spaced wires charged alternately positive and negative, as shown in Fig. 1.6. The symmetry of this set of

wires is such that there must be equipotential planes mid-way between the wires.

Fig. 1.5 The field pattern around a positively charged wire flanked by a pair of negatively charged
wires.
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etc.

Fig. 1.6 The field pattern around a set of equispaced parallel wires charged alternately positive and negative.

Example 1.5

An air-spaced coaxial line has inner and outer conductors with radii a and b respectively as shown in

fig.1.7. Show that the breakdown voltage of the line is highest when In(a/b)=1.

a8

Fig. 1.7: The arrangement of an air-spaced coaxial line

Solution

For most practical purposes the properties of air are indistinguishable from vacuum. From the symmetry
of the problem we note that the electric field must everywhere be radial. The field between the conducting

cylinders is identical to that of a long, uniform, line charge g placed along the axis of the system.

To find the electric field of a line charge we apply the integral form of Gauss’ equation to a Gaussian
surface consisting of a cylinder of unit length whose radius is r and whose ends are normal to the line
charge as shown in fig.1.8. We note that, from considerations of symmetry, the electric field must be

acting radially outwards and depend only on the radius r.
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Fig. 1.8 A Gaussian surface for calculating the electric field strength around a line charge.

Let the radial component of the electric field at radius r be Er(r). On the curved surface of the cylinder
the radial component of the electric field is constant and the flux is thus the product of the electric field

and the area of the curved surface.
[ﬂE-dA=27rrxler(r) (1.7)
S

The flux of the electric field through the ends of the cylinder is zero because the electric field is parallel

to these surfaces.

We apply Gauss’ theorem [1.5] to find the relationship between the electric field, radius (r) and the
unknown line charge g. Since S has unit length the total charge contained within it, which is denoted

by the right-hand side of [1.5] is just q. Thus

277, (r) =+ (L8)

2

which can be rearranged to give

1
E,(r)=—1—= (1.9)
2me, v

Since the electric field is inversely proportional to r, it must be greatest when the radius is least, i.e.

when r = a.
E = 2;0 é (1.10)
The potential difference between the cylinders is found from the electric field using [1.13]
h ¢ (1 g (b

a
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The negative sign tells us that if the charge on the inner cylinder is positive then the electrostatic potential

of the outer cylinder is negative with respect to the inner cylinder.

The unknown charge g can be eliminated between (1.10) and (1.11) to give the potential difference in

terms of the maximum permitted electric field and the dimensions of the line.

b
V,-V,=-E,aln— (1.12)

a
The condition that the potential difference should be maximum is found by differentiating the potential
difference with respect to the ratio of the dimensions of the conductors and setting the result to zero. If

we set R = b/a the condition can be expressed as

d (1 In(R) 1
)=
or
ln(R)zln(b/a)zl (1.14)
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Example 1.6

An air-spaced transmission line consists of two parallel cylindrical conductors each 2 mm in diameter
with their centres 10 mm apart as shown in fig. 1.9. Calculate the maximum potential difference which

can be applied to the conductors assuming that the electrical breakdown strength of air is3 MV -m .

Fig. 1.9 A cross-sectional view of a parallel-wire transmission line.

Solution

Since the diameters of the wires are small compared with their separation it is reasonable to assume
that close to the surface of each wire the field pattern is determined almost entirely by that wire. The
equipotential surfaces close to the wires take the form of coaxial cylinders, as may be seen in Fig. 1.10.
This is equivalent to assuming that the two wires can be represented by uniform line charges + g along
their axes. Note that this approximation is only valid if the diameters of the wires are small compared

with the spacing between them.

Fig. 1.10 The field pattern around a parallel-wire transmission line
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The electric field of either wire is then given by Equation (1.9) (for » 21 mm) with the appropriate sign
for q. Since the strength of the electric field of each line charge is inversely proportional to the distance
from the charge, the greatest electric field must occur on the plane passing through the axes of the two
conductors. Using the notation of Fig. 1.9 and Equation (1.9) the electric field on the x axis between the

wires is found by superimposing the fields of the two wires.

o q ~ q
Y 27, (td-x) 27, (Ld+x)

(1.15)
It is easy to show that this expression is a maximum on the inner surfaces of the wires (as might be
expected from Fig. 1.10), that is, when x = i(%d - a) . The maximum permissible charge is therefore
given by

(1.16)

The potential at points on the x axis between the wires is found from (1.15) using [1.13]

q q q q 29+
Vix)= dx = 1 C 1.17
(x) 27[30J[(;d—x)+(§d+x)j ) 27e, n(;d—xj " (17

where C is a constant of integration. It is convenient to choose C = 0 so that the potential is zero at the

origin.

The maximum permissible potential at A is obtained by substituting the maximum charge from (1.16)

into (1.17) and setting x = (%d - a) to give

yop “d-a) 1n(d_aj (1.18)

A max
d a

The potential at B is - VA so the maximum potential difference between the wires is 2VA. Substituting

the numbers gives the maximum voltage between the wires as 5.9 kV.

When the wires are not thin compared with their separation the method of solution is similar but, as
can be seen from the equipotentials in Fig. 1.10, the equivalent line charges are no longer located at the

centres of the wires.

Example 1.7

A metal sphere of radius 10 mm is placed with its centre 100 mm from a flat earthed sheet of metal.
Assuming that the breakdown strength of air is 3 MV.m", calculate the maximum voltage which can be
applied to the electrode without breakdown occurring. What is then the ratio of the maximum to the

mean surface-charge density on the sphere?
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Solution

This problem is solved using the same procedure as the previous one. It is necessary to assume that the
field is equivalent to that of a pair of point charges placed at the centre of the sphere and of its image
in the plane as shown in fig.1.11. Since the diameter of the sphere is 20% of its distance from the plane
this assumption should not be seriously in error. We note that the attraction between the surface charges
will ensure that the charge density and the electric field are greatest at the point on each sphere lying

closest to the other one.

2a
I I
' 0

2 a .
N N
D e (. ——

d d

Fig. 1.11 The arrangement of the sphere and its image in the plane.
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The first step is to use Gauss’ theorem to find the electric field at a distance r from a point charge Q.
The problem has spherical symmetry and therefore the electric field must be constant on the surface of
a sphere of radius r centred on the charge and directed radially outwards. The surface area of a sphere

of radius r is 47 7 so that from [1.5]

471’ Er(r)zg (1.19)
gO
so that
E(r)= Q - (1.20)
dre,r
Next we use [1.13] to find the potential at a distance r from the charge.
V(r)=—J‘Er(r)dr=—J Q ~dr = Q + C (1.21)
dre,r dre,r
where C is a constant of integration. Now
r=d-x (1.22)
so that the potential due to the first charge is
0
Vi(x)=—F + C 1.2
(%) 4o, (d =) 1 (1.23)
Similarly the potential due to the other charge is
)=+ C (1.24)

B 4re,(d +x)

Superimposing the potentials of the two charges gives

0 1 1 0 x
V = — = .
(x) 4rs, (d -x d +x] 27g, (d—x)(d+x) i

At the surface of the first sphere x =d —a and

V(d-a)= Q[ d—a j (1.27)

27e,\ a(2d —a)

The electric field at the surface of the sphere is found by superimposing the fields of the two charges
using (1.20)

E(d-a)= 4 (%+;] (1.28)

dre, | a (2d—a)2
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Eliminating Q between (1.27) and (1.28) gives the relationship between the breakdown field and the

breakdown voltage
-1
d- 1 1
Vo =2E,, | —— 2 |. — (1.29)
a(2d—a) a (2d—a)

Substituting the numerical values of the quantities we find that the maximum voltage is 28.3 kV.
From example 1.2 we know that the maximum surface charge density is

O = E0E . =8.854x1077 x3x10° =26.6x10°C-m (1.30)

max 0" max

The total charge on the sphere can be computed from (1.28)

-1
1 1
O=E A4re | —+—— (1.31)
a (2d - a)
so the average charge density is
—1 ) -1
4 1 1
O-av = Emax 7[8(; ) + 2 = gOEmax 1+ - 2 (132)
4za’\ a®  (2d-a) (2d -a)
and the ratio of peak to average charge density is
o a’
max _ 1 + 2 = 1003 (1.33)
o, (2d - a)
Example 1.8

An electron starts with zero velocity from a cathode which is at a potential of -10 kV and then moves

into a region of space where the potential is zero. Find its velocity.

Solution

The principle of conservation of energy requires that the sum of the kinetic energy and the potential

energy of the electron must be constant. Thus
L
Emv +gV =0 (1.34)

where g is the charge on the electron and V is the potential relative to the cathode. The charge to mass
ratio of an electron ¢ /m =-1.759x10" C.kg™' and the region of zero potential has a potential relative

to the cathode +10 kV so that, rearranging (1.34) we obtain

y= /ﬁ =\/2><1.759><1011 x10* =59.3x10° m.s" (1.35)
m
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Note: For accelerating voltages much above 10 kV relativistic effects become important because the
electron velocity is comparable with the velocity of light (0.2998 x 10° m s*). It is then necessary to
use the correct relativistic expression for the kinetic energy of the electron, but the principle of the

calculation is unchanged.

Example 1.9

An electron beam originating from a cathode at a potential of -10 kV has a current of 1 A and a radius
of 10 mm. The beam passes along the axis of an earthed conducting cylinder of radius 20 mm as shown
in fig. 1.12. Use Gauss’ theorem to find expressions for the radial electric field within the cylinder, and

calculate the potential on the axis of the system.

Tb

E: ...... >
X

B o

beam

Fig. 1.12 The arrangement of an electron beam within a concentric conducting tunnel
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Note: Electron beams like this are found in the high power microwave vacuum tubes used in transmitters
for radar, TV broadcasting and satellite communications and for powering particle accelerators such as
the Large Hadron Collider at CERN.

Solution

The velocity of the electrons is given by (1.35). The charge per unit length in an electron beam with

current I and electron velocity v is given by

I y .
g=—-—=-169x10" C.m" (1.36)
v
The negative sign arises because the direction of the conventional current is opposite to that of the
electron velocity. If the radius of the beam is b and it is assumed that the current density p is uniform

within the beam then

p=—T_ —_537x10° Cm’ (1.37)

b

Between the electron beam and the conducting cylinder (region 2) the problem is identical to that in

Example 1.5 and the radial electric field is given by (1.8)

qg 1
E, (r)= o (1.38)
0

Within the electron beam (region 1) Gauss’ Theorem can be applied in exactly the same way but the

charge enclosed in unit length of a Gaussian surface of radius r is now
q(r)=nr’p (1.39)

This expression replaces g (1.38) in to give the radial field in region 1

Ez(r)=£r (1.40)

The potential in each region is found using [1.13]. In region 1 the result is

V=

Inr+C
27, 1 (1.41)

The value of C, is chosen by requiring V| to be zero when r = a so that

q r
In— (1.42)
2re, a
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In region 2 we have

v,=—L (rar=—"L-1 1+, (1.43)

’ 2¢, de,

The value of C, is chosen by setting V, = V, when r = b.

P (2 2 q a
V,=—b"—r" |+ In| — 1.44
: 450( ) 2re, [bj ( )

On the axis r = 0 and

Vz(O)zib2+Lln(£)=—362V (1.45)

4, 2re,
Note: This means that the electrons on the axis have a velocity slightly less than that calculated in (1.35)
and electron velocity increases with radius. To obtain an accurate result it would be necessary to re-
compute the electron velocities and the charge density (which now depends on r) to obtain mutually

consistent values.

Example 1.10

Figure 1.13 shows a simplified form for the deflection plates for a low current electron beam. Given
that the electron beam is launched from an electrode (the cathode) at a potential of -2000V and passes
between the deflection plates as shown, estimate the angular deflection of the beam when the potentials

of the plates are +50 V.

120 mm

X

50 mm

C)

Fig. 1.13 The arrangement of a pair of electrostatic deflection plates for an electron beam.
Note: The original use of electrostatic deflection systems in cathode ray tubes for oscilloscopes is now

obsolete but the same system can be used in machines for electron beam lithography, electron beam

welding and scanning electron microscopes.
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Solution

To make the problem easier we assume that the electric field is constant everywhere between the plates
and falls abruptly to zero at the ends. Then the field between the plates is found by dividing the potential
difference between the plates by their separation to be Ey = -5000V m™.

Because there is no x-component of E, the axial velocity of the electrons is constant and found using

the principle of conservation of energy as in Example 1.8.
v, =4/2nV =26.5x10° m.s’ (1.46)

where 7 is the charge to mass ratio of the electron. The time taken for an electron to pass along the

length of the plates (L) is then

L
t=—=1.89ns (1.47)

X

The equation of motion in the y direction for an electron is

(1.48)

Z ——\
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where g is the magnitude of the electronic charge. The transverse acceleration of the electrons is constant

and the y-component of velocity as they leave the plates is

qE,

m

t=1.66x10° m.s™ (1.49)

v, o=—

y

The angle of deflection is found from the ratio of the y and x components of the velocity

6 = arctan (V—}j =3.6° (1.50)

1%

x

Note: It is, of course, unrealistic to assume that the field between the plates has the idealized form
chosen above. To obtain a more accurate estimate of the deflection it would be necessary to find the field
distribution between the plates by solving Laplace’s equation. Equation (1.48) could then be integrated

using a more realistic expression for Ey.

Example 1.11

A simple thermionic diode consists of two plane parallel electrodes: the cathode and the anode. Electrons
are emitted from the surface of the cathode with zero velocity and accelerated towards the anode which is
maintained at a potential Va with respect to the cathode. If the density of electrons between the electrodes
is great enough the space charge alters the distribution of the electric field. Show that, in the limit of
high space-charge density, the current through the diode is proportional to Vj/ * and independent of
the rate at which electrons are supplied by the cathode.

Solution

The problem as stated is a one-dimensional problem in which the electron velocity, charge density and
potential depend only on the position x. The motion of the electrons is governed by three equations: the

non-relativistic velocity is found from (1.46) with the difference that V is now a function of x.
x=y2nV(x) (1.51)
The current density is related to the charge density and the velocity by
J=pi (1.52)

The relationship between the charge density and the potential is given by the 1-dimensional form of

Poisson’s equation [1.24]

v p
=—— 1.53
a’ g, (1.33)
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Eliminating the velocity and the charge density between these equations yields

av__J
e N (1.54)
This equation can be integrated by multiplying both sides by 2(dV/dx) to give
P 4 5
(_j __ 72 . ¢ (1.55)
dx 80\/%

where C is a constant.

To determine C we consider the effect of the electronic space-charge on the potential as shown in fig.
1.14. If no electrons are present in the space between the electrodes the potential varies linearly with
position as shown by the dashed line. When electrons are emitted from the cathode (at x = 0) they are
drawn towards the anode gaining velocity as they go. Because the electrons are negatively charged they
depress the electrostatic potential locally as shown by the solid curve. The limit to this process arises
when the slope of the solid curve is zero at the origin because the electric field is zero there and no
more electrons are drawn from the cathode. The current cannot be increased beyond this limit given
by setting C = 0 in (1.55).

Fig. 1.14 The potential distribution in a space-charge limited diode

Equation (1.55) can then be written

1

a _ 4 a4 (1.56)

dx 80\/%
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which can be integrated by writing

o7

Performing the integration we get

(1.58)

Now V = 0 when x = 0 and therefore the constant of integration C is zero. At the anode V = Va and

x = d so that

V2=—2= J 1.59
i (159)

as required.

The total current flowing in the diode is obtained by multiplying the current density by the area of the
cathode surface. This equation, known as the Child-Langmuir Law, is of fundamental importance in
the theory of vacuum electron devices which remain the dominant technology for generation of radio

waves at high power levels.
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Example 1.12

Find the potential distribution between a long thin conducting strip and a surrounding rectangular

conducting tube, as shown in fig. 1.15, when the potential difference between them is 100 V.

4a V =100

2a v=0

2a

Fig. 1.15 The arrangement of conductors for this problem.

Solution

The problem may be simplified by observing that the solution is the same in each quadrant, subject to
appropriate reflections about the planes of symmetry. One quadrant of the diagram is redrawn on an

enlarged scale in Fig. 1.17 with a square mesh added to it. In this example we discuss the solution by hand.
To start the solution we first write down the potentials on the electrodes and estimate them at all the
interior mesh points. An easy way to do this is to assume that the potential varies linearly with position.

These potentials are written along-side the mesh points as shown. Next we choose a starting point such

as A and work through the mesh, generating new values of the potentials with Equation [1.30].
1
V0=Z(V1+V2+V3+V4) [1.30]

where the definitions of the potentials are as shown in fig. 1.16

AL
o
V4 ! vﬂ | Vi
* ! *- I ? A
I [
L_.___._._.JB h
Y JF
T-q-—h—b-

Fig.1.16 Basis of the finite difference calculation of potential.
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As each new value is calculated it is written down and the previous estimate crossed out. Figure 1.17
shows the results of the first pass through the mesh working along each row from right to left. Along the
lines PQ and RS we make use of the symmetry of the field to supply the potentials at the mesh points
outside the figure (i.e. V, = V, on PQ and V, = V| on RS). Check the figures for yourself and carry the
process on for one more pass through the mesh to see how the solution develops. It is not necessary
to retain many significant figures in the early stages of the calculation because any errors introduced
do not stop the method from converging. If we work to two significant figures we can avoid the use of
decimal points by choosing the electrode potentials at 0 and 100 V. The final values of the potentials can

be scaled to any other potential difference if required.

Fl
100 100 100 100 100 100 100 100 100
A
ol ] » ] ’ »® w » 100
75 75 75 75 75 76 78 as
i_
50 50 50 0 0 5 56 » 100
50 50 50 50 L 54 64 78
» #® » *® # » 50 ¥ 100
25 25 25 26 29 40 54 76
Q 0 0 0 0 100
Q A 3 50 ® $
33 52 76

la)

Fig.1.17. The finite difference solution for one quadrant of the problem: The initial stages.

The process is continued until no further changes are observed in the figures to the accuracy required.

The final result is shown in fig. 1.18. Evidently the accuracy could be improved by using a finer mesh.

100 100 100 100 100 100 100 100 100
100
75.9 76.1 76.9 78.6 81.6 86.1 91.0 95.6
51.3 51.6 52.9 55.8 61.7 71.9 823 91.6 100
259 26.2 213 30.1 375 57.6 747 88.3 100
0 0 0 0 0 46.5 70.7 86.8 100
{b)

Fig.1.18. The finite difference solution for one quadrant of the problem: The final solution.
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Worked Examples In Electromagnetism Electrostatics in free space

Example 1.13

Figure 1.19 shows a square coaxial arrangement of electrodes. If the potential of the inner electrode is
5V above that of the outer electrode estimate the maximum and minimum values of the electric field

in the space between the electrodes.

10 mm

& mm

6 mm 10 mm

Fig.1.19. A square coaxial arrangement of electrodes.

Solution

The finite difference method can be used to find the fields around two-dimensional arrangements
of electrodes on which the potentials are specified. In this example we show how the method can be

implemented on a spreadsheet.

/
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A uniform square mesh is defined such that the electrodes coincide with mesh lines. The mesh spacing
is chosen so that it is small enough to provide a reasonably detailed approximation to the fields whilst

not being so small that the computational time is very large.

Cells of the spreadsheet are marked out such that one cell corresponds to each mesh point. The symmetry
of the problem can be used to reduce the number of cells required. Thus, for the geometry shown above
it is sufficient to find the solution for one quadrant of the problem. Special care is needed to ensure that
the correct numbers of cells are used. Remember that the cells correspond to intersections between mesh

lines and not to the cells enclosed by them.

The electrode potentials are entered into the cells corresponding to the electrodes and the formula in
Equation [1.30] is entered into all the other cells. It is convenient to take the electrode potentials as 0 and
100 to reduce the number of digits displayed. When symmetry has been used to reduce the size of the
problem the formulae in the cells along symmetry boundaries make use of the fact that the potentials

on either side of the boundary are equal.

The formulae in the cells are then applied repeatedly (a process known as iteration) until the numbers
in the cells cease to change. To do this the calculation options of the spreadsheet must be set to permit
iteration. It is best to set the iteration to manual and to limit the number of iterations so that the
evolution of the solution can be observed. The final numbers in the cells are then approximations to the

potentials at the corresponding points in space.

From this solution the equipotential curves can be plotted and the field components can be calculated
at any mesh point by taking the ratio of the potential difference to the mesh step. Figure 1.20 shows the
final result obtained in this way. An active version of this figure is available for download as an EXCEL
file. Clicking on the Potential Map tab will show you the potential map plotted using the results of the

calculations. The electric field lines could be sketched in at right angles to the equipotential lines.
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11876  87.6 876 87.7 87.7 878 879 88.1 884 888 893 899 90.7 916 927 93.8 950 96.3 97.5 98.8
2/ 752 752 752|753 754 756 758 762 76.7 774 784 79.6 81.2 83.1|853 87.6 90.1 925 95.0 975
3/ 62.7 627 62.8 629 63.0 63.3 636 641 648 658 672 69.0 714|744 77.7 81.3 850 888 925 96.3
4/ 60.2 | 50.3 50.3 50.4 50.6 50.8 51.2 51.8 526 53.8 555 579 61.1 652 69.9 749 79.9 85.0 90.1 95.0
5/ 87.7  37.7 37.8 379 38.0 383 386 39.2 40.0 41.3 43.1 459 50.0 555 61.8 68.3 749 813 87.6 93.8
6/ 262 252 252|253 254 256 259 263 270 28.1 298 327 375 450|534 61.8 699 77.7 853 927
45.0 | 55.5 65.2 744 83.1 916
37.5 50.0 611 71.4 81.2 90.7
32.7 459 | 57.9 69.0 79.6 89.9
29.8 43.1 | 55.5 67.2 784 89.3
28.1 41.3 | 53.8 65.8 77.4 88.8
27.0 40.0 | 52.6 64.8 76.7 88.4
26.3  39.2  51.8 64.1 | 76.2 88.1
259 38.6 | 51.2 63.6 758 87.9
25.6  38.3 | 50.8 63.3 75.6 87.8
25.4  38.0 | 50.6 63.0 75.4 87.7
25.3 | 37.9 504 629 753 87.7
25.2 | 37.8 50.3 62.8 75.2 87.6

25.2 | 37.7 50.3  62.7 75.2 87.6

252 37.7 50.2 627 752 876

Fig.1.20. Finite difference calculation of the problem. Mesh step = 0.25 mm. The red and blue areas contain fixed potentials. The white
area contains the standard formula and the green areas use formulae which assume symmetry at the boundaries.

The method can be applied to more complicated problems including those with curved electrodes which

do not fit the mesh and three-dimensional problems. Further information can be found in the literature.
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2 Dielectric materials and
capacitance

2.1 Introduction

This chapter provides examples of the solution of problems involving dielectric materials and the
calculation of capacitance. The methods can also be used for air-spaced and vacuum capacitors. The
introduction of materials also makes it possible to discuss problems in the theory of semi-conductor

devices.

2.2 Summary of the methods available

Note: This information is provided here for convenience. The equation numbers in the companion

volume Electromagnetism for Electronic Engineers are indicated by square brackets.

Symbol Signifies Units
¢ (epsilon) Permittivity F.m"

& Relative permittivity Dimensionless
D Electric flux density C.m™

C Capacitance F

w Stored energy J

« Relationship between permittivity and relative permittivity

E=6)8,
o Definition of electric flux density D

D=¢E [2.4]
o The integral form of Gauss’ theorem (all materials)

U’j D-dS= m o dv [2.5]

o The differential form of Gauss theorem (all materials)

V-D=p [2.6]

« Boundary conditions
The tangential component of E is continuous at a boundary

The normal component of D is continuous at a boundary
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Worked Examples In Electromagnetism Dielectric materials and capacitance

The definition of capacitance

o=Cr [2.14]
o The energy stored in a capacitor

2
W:lCVZ le_:lQV [2.16]
2 2C 2

« Energy stored in an electric field

|
W:EﬂjD.Edv 218

o Finite difference method

« Estimation of capacitance using energy methods

Example 2.1

A MOS transistor is essentially a parallel-plate capacitor comprising a silicon substrate, a silicon dioxide
insulating layer, and an aluminium gate electrode as shown in fig. 2.1. The silicon dioxide has relative
permittivity 3.85 and dielectric strength 6.0 x 10® V.m, the insulating layer is 0.1 um thick, and the area

of the gate electrode is 0.02 mm?. Estimate the capacitance between the gate and the substrate and the

maximum voltage which can be applied to the gate electrode.
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Aluminium gate

i / electrode

...................... Siloon dioxide
insulator

Silicon substrate

Fig. 2.1 Arrangement of layers in a MOS transistor.

Solution

When fringing fields are ignored the capacitance of a parallel plate capacitor can be calculated by using
(1.5) in the form

D=o¢ (2.1)

If the potential difference between the electrodes is V and their separation is d then

V
D=¢ e L=¢.¢ ’ (2.2)

The total charge on either plate of the capacitor is

Q:AJ:AD:%V (2.3)

where A is the area of one plate. The capacitance of a parallel plate capacitor is therefore, from [2.14]

C &£.60A

=6.8 pF (2.4)
when the numbers given in the question are inserted. The maximum permissible voltage difference
between the gate and the substrate is the product of the dielectric strength (breakdown field) of the
silicon dioxide and the thickness of the insulating layer (see [1.13]). The result is 60 V.

Example 2.2

Using the results of Example 2.1 calculate the maximum charge per unit area which can be induced
in the semiconductor material. If there are 2.0 x 10'® atoms per square metre in the first layer of the
silicon crystal, what proportion can be ionized by applying a voltage to the gate which is one sixth of

the breakdown voltage?
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Solution

The maximum charge per unit area is obtained from (2.3) by setting A =1 m*and V=60V

_ §,%x3.85x60

2
O == =002 Cm (2.5)

If the applied voltage is 10 V then the number of electrons per square metre corresponding to the surface

charge is

Imax 5 13%10'° m2 (2.6)

o
n=—=
q 6q

where q is the charge on an electron. If we assume that this charge is represented by ionisation of atoms
in the first layer of the silicon substrate then, dividing n by the number of atoms per square metre, we
find that 1.06% of them are ionised

Example 2.3

A variable capacitor comprised a set of fixed plates, A, and a set of moving plates, B, as shown in Fig. 2.2.
The capacitor is used to tune the frequency of a resonant circuit which varies inversely as the square root
of the capacitance. Assuming that the effects of fringing fields can be neglected, find the shape which
the moving plates must have if the frequency is to be proportional to the angle 8 in the range 20-160°
and 500-1500 kHz.

Fig. 2.2 Schematic diagram of a variable capacitor. A set of moving plates B rotates within a
parallel set of fixed plates A.

Solution

This capacitor is a special example of a parallel plate capacitor. The separation between the plates is fixed
so we know from (2.4) that the capacitance is proportional to the area of overlap between the plates if

fringing effects are neglected. Since the frequency must be linearly related to the angle let

f=a+bl (2.7)
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Dielectric materials and capacitance

If fis in kHz and 6 is in degrees then, substituting the extreme values given

500=a+20bh and 1500=a+160b

(2.8)

The solution of the pair of simultaneous equations (2.8) is b = a/50 so (2.7) becomes

0
fza(l—k%]

(2.9

Now the capacitance, and therefore the overlap of the plates, is proportional to the inverse square of the

frequency so we may write the area of overlap as

A 0 =¢2
(1+6/50)

(2.10)

where A is a constant. If the plates are moved through a small angle d6 then the change in the area of

overlap is

dA =—lr2d9
2
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so that

_ |44 | 5y T24,/50
r_\/ 2d9_\/( 2)(1+9/50)3 212)

Therefore the dependence of r on 6 which is required is
roc(1+6/50) " (2.13)
where 0 is in degrees.

Example 2.4

Show that the capacitance per unit length between the parallel wires shown in Fig. 2.3 is given by
&,

C=——"%___ _ifd>> a. Calculate the capacitance per unit length if d = 20 mm and a = 1 mm.
In((d/a)-1)
?E.{ ]._ _.1 I.ZE
~q . 0 G9+q »
8%« A X
l da |
I |
]
Fig. 2.3 Cross-sectional view of a parallel-wire transmission line
Solution

From Example 1.6 we know that the electric field on the x-axis is given by

__ q _ q
27, (1d —x) 2me,(Ld +x)

(1.15)

The electrostatic potential difference between the wires is found using [1.13]

td-a
2 ld-a

IRt
Ay =-—1 LIPS pF SR Y
27e, ({d-x) (fd+x) 27e, \3d+x

—%d+a
—td+a

=i1n(1—1) (2.14)
a

e,
Then from the definition of capacitance [2.14] we obtain the result required. This result is only valid if d
>> g because we have assumed that the equipotential surfaces are circles centred on the wires. Substituting
