
SYBEX Sample Chapter

Mastering™ Visual Basic® .NET
Database Programming
Evangelos Petroutsos; Asli Bilgin

Chapter 6: A First Look at ADO.NET

Copyright © 2002 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to
photocopy, photograph, magnetic or other record, without the prior agreement and written permission of the publisher.

ISBN: 0-7821-2878-5

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the USA and other
countries.

TRADEMARKS: Sybex has attempted throughout this book to distinguish proprietary trademarks from descriptive terms
by following the capitalization style used by the manufacturer. Copyrights and trademarks of all products and services
listed or described herein are property of their respective owners and companies. All rules and laws pertaining to said
copyrights and trademarks are inferred.

This document may contain images, text, trademarks, logos, and/or other material owned by third parties. All rights
reserved. Such material may not be copied, distributed, transmitted, or stored without the express, prior, written consent
of the owner.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release
software whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software
manufacturers. The author and the publisher make no representation or warranties of any kind with regard to the
completeness or accuracy of the contents herein and accept no liability of any kind including but not limited to
performance, merchantability, fitness for any particular purpose, or any losses or damages of any kind caused or alleged
to be caused directly or indirectly from this book.

Sybex Inc.
1151 Marina Village Parkway
Alameda, CA 94501
U.S.A.
Phone: 510-523-8233
www.sybex.com

Chapter 6

A First Look at ADO.NET
� How does ADO.NET work?

� Using the ADO.NET object model

� The Connection object

� The Command object

� The DataAdapter object

� The DataReader object

� The DataSet object

� Navigating through DataSets

� Updating Your Database by using DataSets

� Managing concurrency

It’s time now to get into some real database programming with the .NET Framework compo-
nents. In this chapter, you’ll explore the Active Data Objects (ADO).NET base classes. ADO.NET,
along with the XML namespace, is a core part of Microsoft’s standard for data access and storage.
As you recall from Chapter 1, “Database Access: Architectures and Technologies,” ADO.NET com-
ponents can access a variety of data sources, including Access and SQL Server databases, as well as
non-Microsoft databases such as Oracle. Although ADO.NET is a lot different from classic ADO,
you should be able to readily transfer your knowledge to the new .NET platform. Throughout this
chapter, we make comparisons to ADO 2.x objects to help you make the distinction between the
two technologies.

For those of you who have programmed with ADO 2.x, the ADO.NET interfaces will not
seem all that unfamiliar. Granted, a few mechanisms, such as navigation and storage, have changed,
but you will quickly learn how to take advantage of these new elements. ADO.NET opens up a
whole new world of data access, giving you the power to control the changes you make to your
data. Although native OLE DB/ADO provides a common interface for universal storage, a lot of

2878c06.qxd 01/31/02 2:14 PM Page 227

the data activity is hidden from you. With client-side disconnected RecordSets, you can’t control how
your updates occur. They just happen “magically.” ADO.NET opens that black box, giving you
more granularity with your data manipulations. ADO 2.x is about common data access. ADO.NET
extends this model and factors out data storage from common data access. Factoring out functional-
ity makes it easier for you to understand how ADO.NET components work. Each ADO.NET com-
ponent has its own specialty, unlike the RecordSet, which is a jack-of-all-trades. The RecordSet could
be disconnected or stateful; it could be read-only or updateable; it could be stored on the client or on
the server—it is multifaceted. Not only do all these mechanisms bloat the RecordSet with function-
ality you might never use, it also forces you to write code to anticipate every possible chameleon-like
metamorphosis of the RecordSet. In ADO.NET, you always know what to expect from your data
access objects, and this lets you streamline your code with specific functionality and greater control.

Although a separate chapter is dedicated to XML (Chapter 10, “The Role of XML”), we must
touch upon XML in our discussion of ADO.NET. In the .NET Framework, there is a strong syn-
ergy between ADO.NET and XML. Although the XML stack doesn’t technically fall under
ADO.NET, XML and ADO.NET belong to the same architecture. ADO.NET persists data as
XML. There is no other native persistence mechanism for data and schema. ADO.NET stores data
as XML files. Schema is stored as XSD files.

There are many advantages to using XML. XML is optimized for disconnected data access.
ADO.NET leverages these optimizations and provides more scalability. To scale well, you can’t main-
tain state and hold resources on your database server. The disconnected nature of ADO.NET and
XML provide for high scalability.

In addition, because XML is a text-based standard, it’s simple to pass it over HTTP and through
firewalls. Classic ADO uses a binary format to pass data. Because ADO.NET uses XML, a ubiqui-
tous standard, more platforms and applications will be able to consume your data. By using the
XML model, ADO.NET provides a complete separation between the data and the data presentation.
ADO.NET takes advantage of the way XML splits the data into an XML document, and the
schema into an XSD file.

By the end of this chapter, you should be able to answer the following questions:

� What are .NET data providers?

� What are the ADO.NET classes?

� What are the appropriate conditions for using a DataReader versus a DataSet?

� How does OLE DB fit into the picture?

� What are the advantages of using ADO.NET over classic ADO?

� How do you retrieve and update databases from ADO.NET?

� How does XML integration go beyond the simple representation of data as XML?

Let’s begin by looking “under the hood” and examining the components of the ADO.NET stack.

Chapter 6 A FIRST LOOK AT ADO.NET228

2878c06.qxd 01/31/02 2:14 PM Page 228

How Does ADO.NET Work?
ADO.NET base classes enable you to manipulate data from many data sources, such as SQL Server,
Exchange, and Active Directory. ADO.NET leverages .NET data providers to connect to a database,
execute commands, and retrieve results.

The ADO.NET object model exposes very flexible components, which in turn expose their own
properties and methods, and recognize events. In this chapter, you’ll explore the objects of the
ADO.NET object model and the role of each object in establishing a connection to a database and
manipulating its tables.

Is OLE DB Dead?

Not quite. Although you can still use OLE DB data providers with ADO.NET, you should try to use the man-
aged .NET data providers whenever possible. If you use native OLE DB, your .NET code will suffer because
it’s forced to go through the COM interoperability layer in order to get to OLE DB. This leads to performance
degradation. Native .NET providers, such as the System.Data.SqlClient library, skip the OLE DB layer
entirely, making their calls directly to the native API of the database server.

However, this doesn’t mean that you should avoid the OLE DB .NET data providers completely. If you are
using anything other than SQL Server 7 or 2000, you might not have another choice. Although you will expe-
rience performance gains with the SQL Server .NET data provider, the OLE DB .NET data provider compares
favorably against the traditional ADO/OLE DB providers that you used with ADO 2.x. So don’t hold back
from migrating your non-managed applications to the .NET Framework for performance concerns. In addi-
tion, there are other compelling reasons for using the OLE DB .NET providers. Many OLE DB providers are
very mature and support a great deal more functionality than you would get from the newer SQL Server
.NET data provider, which exposes only a subset of this full functionality. In addition, OLE DB is still the way
to go for universal data access across disparate data sources. In fact, the SQL Server distributed process
relies on OLE DB to manage joins across heterogeneous data sources.

Another caveat to the SQL Server .NET data provider is that it is tightly coupled to its data source. Although
this enhances performance, it is somewhat limiting in terms of portability to other data sources. When
you use the OLE DB providers, you can change the connection string on the fly, using declarative code such
as COM+ constructor strings. This loose coupling enables you to easily port your application from an SQL
Server back-end to an Oracle back-end without recompiling any of your code, just by swapping out the con-
nection string in your COM+ catalog.

Keep in mind, the only native OLE DB provider types that are supported with ADO.NET are SQLOLEDB for
SQL Server, MSDAORA for Oracle, and Microsoft.Jet.OLEDB.4 for the Microsoft Jet engine. If you are so
inclined, you can write your own .NET data providers for any data source by inheriting from the Sys-
tem.Data namespace.

At this time, the .NET Framework ships with only the SQL Server .NET data provider for data access within
the .NET runtime. Microsoft expects the support for .NET data providers and the number of .NET data
providers to increase significantly. (In fact, the ODBC.NET data provider is available for download on
Microsoft’s website.) A major design goal of ADO.NET is to synergize the native and managed interfaces,
advancing both models in tandem.

229HOW DOES ADO.NET WORK?

2878c06.qxd 01/31/02 2:14 PM Page 229

You can find the ADO.NET objects within the System.Data namespace. When you create a new
VB .NET project, a reference to the System.Data namespace will be automatically added for you, as
you can see in Figure 6.1.

To comfortably use the ADO.NET objects in an application, you should use the Imports state-
ment. By doing so, you can declare ADO.NET variables without having to fully qualify them. You
could type the following Imports statement at the top of your solution:

Imports System.Data.SqlClient

After this, you can work with the SqlClient ADO.NET objects without having to fully qualify the
class names. If you want to dimension the SqlClientDataAdapter, you would type the following short
declaration:

Dim dsMyAdapter as New SqlDataAdapter

Otherwise, you would have to type the full namespace, as in:

Dim dsMyAdapter as New System.Data.SqlClient.SqlDataAdapter

Alternately, you can use the visual database tools to automatically generate your ADO.NET code
for you. As you saw in Chapter 3, “The Visual Database Tools,” the various wizards that come with
VS .NET provide the easiest way to work with the ADO.NET objects. Nevertheless, before you use
these tools to build production systems, you should understand how ADO.NET works program-
matically. In this chapter, we don’t focus too much on the visual database tools, but instead concen-
trate on the code behind the tools. By understanding how to program against the ADO.NET object
model, you will have more power and flexibility with your data access code.

Figure 6.1

To use ADO.NET,
reference the
System.Data
namespace.

Chapter 6 A FIRST LOOK AT ADO.NET230

2878c06.qxd 01/31/02 2:14 PM Page 230

Using the ADO.NET Object Model
You can think of ADO.NET as being composed of two major parts: .NET data providers and data
storage. Respectively, these fall under the connected and disconnected models for data access and
presentation. .NET data providers, or managed providers, interact natively with the database. Managed
providers are quite similar to the OLE DB providers or ODBC drivers that you most likely have
worked with in the past.

The .NET data provider classes are optimized for fast, read-only, and forward-only retrieval of
data. The managed providers talk to the database by using a fast data stream (similar to a file stream).
This is the quickest way to pull read-only data off the wire, because you minimize buffering and
memory overhead.

If you need to work with connections, transactions, or locks, you would use the managed
providers, not the DataSet. The DataSet is completely disconnected from the database and has no
knowledge of transactions, locks, or anything else that interacts with the database.

Five core objects form the foundation of the ADO.NET object model, as you see listed in Table 6.1.
Microsoft moves as much of the provider model as possible into the managed space. The Connection,
Command, DataReader, and DataAdapter belong to the .NET data provider, whereas the DataSet is
part of the disconnected data storage mechanism.

Table 6.1: ADO.NET Core Components

Object Description

Connection Creates a connection to your data source

Command Provides access to commands to execute against your data source

DataReader Provides a read-only, forward-only stream containing your data

DataSet Provides an in-memory representation of your data source(s)

DataAdapter Serves as an ambassador between your DataSet and data source, proving the mapping
instructions between the two

Figure 6.2 summarizes the ADO.NET object model. If you’re familiar with classic ADO, you’ll
see that ADO.NET completely factors out the data source from the actual data. Each object exposes
a large number of properties and methods, which are discussed in this and following chapters.

.NET data provider

Command

Connection

DataReader

DataAdapter

Data storage

DataTable

DataSet

The ADO.NET Framework

XMLDB

Figure 6.2

The ADO
Framework

231USING THE ADO.NET OBJECT MODEL

2878c06.qxd 01/31/02 2:14 PM Page 231

Note If you have worked with collection objects, this experience will be a bonus to programming with ADO.NET.
ADO.NET contains a collection-centric object model, which makes programming easy if you already know how to work
with collections.

Four core objects belong to .NET data providers, within the ADO.NET managed provider archi-
tecture: the Connection, Command, DataReader, and DataAdapter objects. The Connection object is the
simplest one, because its role is to establish a connection to the database. The Command object exposes a
Parameters collection, which contains information about the parameters of the command to be exe-
cuted. If you’ve worked with ADO 2.x, the Connection and Command objects should seem familiar
to you. The DataReader object provides fast access to read-only, forward-only data, which is reminiscent
of a read-only, forward-only ADO RecordSet. The DataAdapter object contains Command objects that
enable you to map specific actions to your data source. The DataAdapter is a mechanism for bridging
the managed providers with the disconnected DataSets.

The DataSet object is not part of the ADO.NET managed provider architecture. The DataSet
exposes a collection of DataTables, which in turn contain both DataColumn and DataRow collec-
tions. The DataTables collection can be used in conjunction with the DataRelation collection to
create relational data structures.

First, you will learn about the connected layer by using the .NET data provider objects and
touching briefly on the DataSet object. Next, you will explore the disconnected layer and examine
the DataSet object in detail.

Note Although there are two different namespaces, one for OleDb and the other for the SqlClient, they are quite
similar in terms of their classes and syntax. As we explain the object model, we use generic terms, such as Connection, rather
than SqlConnection. Because this book focuses on SQL Server development, we gear our examples toward SQL Server data
access and manipulation.

In the following sections, you’ll look at the five major objects of ADO.NET in detail. You’ll
examine the basic properties and methods you’ll need to manipulate databases, and you’ll find
examples of how to use each object. ADO.NET objects also recognize events, which we discuss
in Chapter 12, “More ADO.NET Programming.”

The Connection Object
Both the SqlConnection and OleDbConnection namespaces inherit from the IDbConnection object.
The Connection object establishes a connection to a database, which is then used to execute commands
against the database or retrieve a DataReader. You use the SqlConnection object when you are working
with SQL Server, and the OleDbConnection for all other data sources. The ConnectionString property
is the most important property of the Connection object. This string uses name-value pairs to specify
the database you want to connect to. To establish a connection through a Connection object, call its
Open() method. When you no longer need the connection, call the Close() method to close it. To find
out whether a Connection object is open, use its State property.

Chapter 6 A FIRST LOOK AT ADO.NET232

2878c06.qxd 01/31/02 2:14 PM Page 232

What Happened to Your ADO Cursors?

One big difference between classic ADO and ADO.NET is the way they handle cursors. In ADO 2.x, you have
the option to create client- or server-side cursors, which you can set by using the CursorLocationproperty
of the Connection object. ADO.NET no longer explicitly assigns cursors. This is a good thing.

Under classic ADO, many times programmers accidentally specify expensive server-side cursors, when
they really mean to use the client-side cursors. These mistakes occur because the cursors, which sit in the
COM+ server, are also considered client-side cursors. Using server-side cursors is something you should
never do under the disconnected, n-tier design. You see, ADO 2.x wasn’t originally designed for disconnected
and remote data access. The CursorLocationproperty is used to handle disconnected and connected access
within the same architecture. ADO.NET advances this concept by completely separating the connected and
disconnected mechanisms into managed providers and DataSets, respectively.

In classic ADO, after you specify your cursor location, you have several choices in the type of cursor to
create. You could create a static cursor, which is a disconnected, in-memory representation of your data-
base. In addition, you could extend this static cursor into a forward-only, read-only cursor for quick
database retrieval.

Under the ADO.NET architecture, there are no updateable server-side cursors. This prevents you from
maintaining state for too long on your database server. Even though the DataReader does maintain state on
the server, it retrieves the data rapidly as a stream. The ADO.NET DataReader works much like an ADO read-
only, server-side cursor. You can think of an ADO.NET DataSet as analogous to an ADO client-side, static
cursor. As you can see, you don’t lose any of the ADO disconnected cursor functionality with ADO.NET;
it’s just architected differently.

Connecting to a Database
The first step to using ADO.NET is to connect to a data source, such as a database. Using the Con-
nection object, you tell ADO.NET which database you want to contact, supply your username and
password (so that the DBMS can grant you access to the database and set the appropriate privileges),
and, possibly, set more options. The Connection object is your gateway to the database, and all the
operations you perform against the database must go through this gateway. The Connection object
encapsulates all the functionality of a data link and has the same properties. Unlike data links, how-
ever, Connection objects can be accessed from within your VB .NET code. They expose a number of
properties and methods that enable you to manipulate your connection from within your code.

Note You don’t have to type this code by hand. The code for all the examples in this chapter is located on the companion
CD that comes with this book. You can find many of this chapter’s code examples in the solution file Working with
ADO.NET.sln. Code related to the ADO.NET Connection object is listed behind the Connect To Northwind button on
the startup form.

Let’s experiment with creating a connection to the Northwind database. Create a new Win-
dows Application solution and place a command button on the Form; name it Connect to
Northwind. Add the Imports statement for the System.Data.SqlClient name at the top of
the form module. Now you can declare a Connection object with the following statement:

Dim connNorthwind As New SqlClient.SqlConnection()

233THE CONNECTION OBJECT

2878c06.qxd 01/31/02 2:14 PM Page 233

As soon as you type the period after SqlClient, you will see a list with all the objects exposed by
the SqlClient component, and you can select the one you want with the arrow keys. Declare the
connNorthwind object in the button’s click event.

Note All projects on the companion CD use the setting (local) for the data source. In other words, we’re assuming
you have SQL Server installed on the local machine. Alternately, you could use localhost for the data source value.

The ConnectionString Property
The ConnectionString property is a long string with several attributes separated by semicolons. Add
the following line to your button’s click event to set the connection:

connNorthwind.ConnectionString=”data source=(local);”& _
“initial catalog=Northwind;integrated security=SSPI;”

Replace the data source value with the name of your SQL Server, or keep the local setting if you
are running SQL Server on the same machine. If you aren’t using Windows NT integrated security,
then set your user ID and password like so:

connNorthwind.ConnectionString=”data source=(local);”& _
“initial catalog=Northwind; user ID=sa;password=xxx”

Tip Some of the names in the connection string also go by aliases. You can use Server instead of data source to
specify your SQL Server. Instead of initial catalog, you can specify database.

Those of you who have worked with ADO 2.x might notice something missing from the connec-
tion string: the provider value. Because you are using the SqlClient namespace and the .NET Frame-
work, you do not need to specify an OLE DB provider. If you were using the OleDb namespace, then
you would specify your provider name-value pair, such as Provider=SQLOLEDB.1.

Overloading the Connection Object Constructor

One of the nice things about the .NET Framework is that it supports constructor arguments by using over-
loaded constructors. You might find this useful for creating your ADO.NET objects, such as your database
Connection. As a shortcut, instead of using the ConnectionString property, you can pass the string right
into the constructor, as such:

Dim connNorthwind as New SqlConnection _
(“data source=localhost; initial catalog=Northwind; user ID=sa;password=xxx”)

Or you could overload the constructor of the connection string by using the following:

Dim myConnectString As String = “data source=localhost; initial
catalog=Northwind; user ID=sa;password=xxx”

Chapter 6 A FIRST LOOK AT ADO.NET234

2878c06.qxd 01/31/02 2:14 PM Page 234

You have just established a connection to the SQL Server Northwind database. As you remember
from Chapter 3, you can also do this visually from the Server Explorer. The ConnectionString prop-
erty of the Connection object contains all the information required by the provider to establish a
connection to the database. As you can see, it contains all the information that you see in the Con-
nection properties tab when you use the visual tools.

Keep in mind that you can also create connections implicitly by using the DataAdapter object.
You will learn how to do this when we discuss the DataAdapter later in this section.

In practice, you’ll never have to build connection strings from scratch. You can use the Server
Explorer to add a new connection, or use the appropriate ADO.NET data component wizards, as
you did in Chapter 3. These visual tools will automatically build this string for you, which you can
see in the properties window of your Connection component.

Tip The connection pertains more to the database server rather than the actual database itself. You can change the database
for an open SqlConnection, by passing the name of the new database to the ChangeDatabase() method.

The Open () Method
After you have specified the ConnectionString property of the Connection object, you must call the
Open() method to establish a connection to the database. You must first specify the ConnectionString
property and then call the Open() method without any arguments, as shown here (connNorthwind is
the name of a Connection object):

connNorthwind.Open()

Note Unlike ADO 2.x, the Open() method doesn’t take any optional parameters. You can’t change this feature
because the Open() method is not overridable.

The Close () Method
Use the Connection object’s Close() method to close an open connection. Connection pooling pro-
vides the ability to improve your performance by reusing a connection from the pool if an appropri-
ate one is available. The OleDbConnection object will automatically pool your connections for you.
If you have connection pooling enabled, the connection is not actually released, but remains alive in
memory and can be used again later. Any pending transactions are rolled back.

Note Alternately, you could call the Dispose() method, which also closes the connection: connNorthwind.Dispose()

You must call the Close() or Dispose() method, or else the connection will not be released back
to the connection pool. The .NET garbage collector will periodically remove memory references for
expired or invalid connections within a pool. This type of lifetime management improves the per-
formance of your applications because you don’t have to incur expensive shutdown costs. However,
this mentality is dangerous with objects that tie down server resources. Generational garbage collec-
tion polls for objects that have been recently created, only periodically checking for those objects that
have been around longer. Connections hold resources on your server, and because you don’t get deter-
ministic cleanup by the garbage collector, you must make sure you explicitly close the connections
that you open. The same goes for the DataReader, which also holds resources on the database server.

235THE CONNECTION OBJECT

2878c06.qxd 01/31/02 2:14 PM Page 235

The Command Object
After you instantiate your connection, you can use the Command object to execute commands that
retrieve data from your data source. The Command object carries information about the command to
be executed. This command is specified with the control’s CommandText property. The CommandText
property can specify a table name, an SQL statement, or the name of an SQL Server stored procedure.
To specify how ADO will interpret the command specified with the CommandText property, you must
assign the proper constant to the CommandType property. The CommandType property recognizes the
enumerated values in the CommandType structure, as shown in Table 6.2.

Table 6.2: Settings of the CommandType Property

Constant Description

Text The command is an SQL statement. This is the default CommandType.

StoredProcedure The command is the name of a stored procedure.

TableDirect The command is a table’s name. The Command object passes the name of the table
to the server.

When you choose StoredProcedure as the CommandType, you can use the Parameters property to
specify parameter values if the stored procedure requires one or more input parameters, or it returns
one or more output parameters. The Parameters property works as a collection, storing the various
attributes of your input and output parameters. For more information on specifying parameters with
the Command object, see Chapter 8, “Data-Aware Controls.”

Executing a Command
After you have connected to the database, you must specify one or more commands to execute
against the database. A command could be as simple as a table’s name, an SQL statement, or the
name of a stored procedure. You can think of a Command object as a way of returning streams of
data results to a DataReader object or caching them into a DataSet object.

Command execution has been seriously refined since ADO 2.x., now supporting optimized execu-
tion based on the data you return. You can get many different results from executing a command:

� If you specify the name of a table, the DBMS will return all the rows of the table.

� If you specify an SQL statement, the DBMS will execute the statement and return a set of
rows from one or more tables.

� If the SQL statement is an action query, some rows will be updated, and the DBMS will
report the number of rows that were updated but will not return any data rows. The same is
true for stored procedures:

� If the stored procedure selects rows, these rows will be returned to the application.

� If the stored procedure updates the database, it might not return any values.

Chapter 6 A FIRST LOOK AT ADO.NET236

2878c06.qxd 01/31/02 2:14 PM Page 236

Tip As we have mentioned, you should prepare the commands you want to execute against the database ahead of time and,
if possible, in the form of stored procedures. With all the commands in place, you can focus on your VB .NET code. In
addition, if you are performing action queries and do not want results being returned, specify the NOCOUNT ON option in
your stored procedure to turn off the “rows affected” result count.

You specify the command to execute against the database with the Command object. The
Command objects have several methods for execution: the ExecuteReader() method returns a
forward-only, read-only DataReader, the ExecuteScalar() method retrieves a single result value, and
the ExecuteNonQuery() method doesn’t return any results. We discuss the ExecuteXmlReader()
method, which returns the XML version of a DataReader, in Chapter 7, “ADO.NET Programming.”

Note ADO.NET simplifies and streamlines the data access object model. You no longer have to choose whether to exe-
cute a query through a Connection, Command, or RecordSet object. In ADO.NET, you will always use the Command
object to perform action queries.

You can also use the Command object to specify any parameter values that must be passed to the
DBMS (as in the case of a stored procedure), as well as specify the transaction in which the com-
mand executes. One of the basic properties of the Command object is the Connection property,
which specifies the Connection object through which the command will be submitted to the DBMS
for execution. It is possible to have multiple connections to different databases and issue different
commands to each one. You can even swap connections on the fly at runtime, using the same Com-
mand object with different connections. Depending on the database to which you want to submit a
command, you must use the appropriate Connection object. Connection objects are a significant
load on the server, so try to avoid using multiple connections to the same database in your code.

Why Are There So Many Methods to Execute a Command?

Executing commands can return different types of data, or even no data at all. The reason why there are sep-
arate methods for executing commands is to optimize them for different types of return values. This way,
you can get better performance if you can anticipate what your return data will look like. If you have an
AddNewCustomer stored procedure that returns the primary key of the newly added record, you would use
the ExecuteScalar() method. If you don’t care about returning a primary key or an error code, you
would use the ExecuteNonQuery(). In fact, now that error raising, rather than return codes, has become
the de facto standard for error handling, you should find yourself using the ExecuteNonQuery() method
quite often.

Why not use a single overloaded Execute() method for all these different flavors of command execution?
Initially, Microsoft wanted to overload the Execute() method with all the different versions, by using the
DataReader as an optional output parameter. If you passed the DataReader in, then you would get data
populated into your DataReader output parameter. If you didn’t pass a DataReader in, you would get no
results, just as the ExecuteNonQuery()works now. However, the overloaded Execute()method with the
DataReader output parameter was a bit complicated to understand. In the end, Microsoft resorted to using
completely separate methods and using the method names for clarification.

237THE COMMAND OBJECT

2878c06.qxd 01/31/02 2:14 PM Page 237

Selection queries return a set of rows from the database. The following SQL statement will return
the company names for all customers in the Northwind database:

SELECT CompanyName FROM Customers

As you recall from Chapter 4, “Structured Query Language,” SQL is a universal language for
manipulating databases. The same statement will work on any database (as long as the database con-
tains a table called Customers and this table has a CompanyName column). Therefore, it is possible to
execute this command against the SQL Server Northwind database to retrieve the company names.

Note For more information on the various versions of the sample databases used throughout this book, see the sections
“Exploring the Northwind Database,” and “Exploring the Pubs Database” in Chapter 2, “Basic Concepts of Relational
Databases.”

Let’s execute a command against the database by using the connNorthwind object you’ve just cre-
ated to retrieve all rows of the Customers table. The first step is to declare a Command object vari-
able and set its properties accordingly. Use the following statement to declare the variable:

Dim cmdCustomers As New SqlCommand

Note If you do not want to type these code samples from scratch as you follow along, you can take a shortcut and load
the code from the companion CD. The code in this walk-through is listed in the click event of the Create DataReader but-
ton located on the startup form for the Working with ADO.NET solution.

Alternately, you can use the CreateCommand() method of the Connection object.

cmdCustomers = connNorthwind.CreateCommand()

Overloading the Command Object Constructor

Like the Connection object, the constructor for the Command object can also be overloaded. By overloading
the constructor, you can pass in the SQL statement and connection, while instantiating the Command
object—all at the same time. To retrieve data from the Customers table, you could type the following:

Dim cmdCustomers As OleDbCommand = New OleDbCommand _
(“Customers”, connNorthwind)

Then set its CommandText property to the name of the Customers table:

cmdCustomers.CommandType = CommandType.TableDirect

The TableDirectproperty is supported only by the OLE DB .NET data provider. The TableDirect is equiv-
alent to using a SELECT * FROM tablename SQL statement. Why doesn’t the SqlCommand object support
this? Microsoft feels that when using specific .NET data providers, programmers should have better knowl-
edge and control of what their Command objects are doing. You can cater to your Command objects more
efficiently when you explicitly return all the records in a table by using an SQL statement or stored proce-
dure, rather than depending on the TableDirect property to do so for you. When you explicitly specify
SQL, you have tighter reign on how the data is returned, especially considering that the TableDirectprop-
erty might not choose the most efficient execution plan.

Chapter 6 A FIRST LOOK AT ADO.NET238

2878c06.qxd 01/31/02 2:14 PM Page 238

The CommandText property tells ADO.NET how to interpret the command. In this example, the
command is the name of a table. You could have used an SQL statement to retrieve selected rows
from the Customers table, such as the customers from Germany:

strCmdText = “SELECT ALL FROM Customers”
strCmdText = strCmdText & “WHERE Country = ‘Germany’”
cmdCustomers.CommandText = strCmdText
cmdCustomers.CommandType = CommandType.Text

By setting the CommandType property to a different value, you can execute different types of com-
mands against the database.

Note In previous versions of ADO, you are able to set the command to execute asynchronously and use the State prop-
erty to poll for the current fetch status. In VB .NET, you now have full support of the threading model and can execute
your commands on a separate thread with full control, by using the Threading namespace. We touch on threading and
asynchronous operations in Chapter 11, “More ADO.NET Programming.”

Regardless of what type of data you are retuning with your specific Execute() method, the Com-
mand object exposes a ParameterCollection that you can use to access input and output parameters
for a stored procedure or SQL statement. If you are using the ExecuteReader() method, you must
first close your DataReader object before you are able to query the parameters collection.

Warning For those of you who have experience working with parameters with OLE DB, keep in mind that you must
use named parameters with the SqlClient namespace. You can no longer use the question mark character (?) as an indi-
cator for dynamic parameters, as you had to do with OLE DB.

The DataAdapter Object
The DataAdapter represents a completely new concept within Microsoft’s data access architecture. The
DataAdapter gives you the full reign to coordinate between your in-memory data representation and
your permanent data storage source. In the OLE DB/ADO architecture, all this happened behind the
scenes, preventing you from specifying how you wanted your synchronization to occur.

The DataAdapter object works as the ambassador between your data and data-access mechanism.
Its methods give you a way to retrieve and store data from the data source and the DataSet object.
This way, the DataSet object can be completely agnostic of its data source.

The DataAdapter also understands how to translate deltagrams, which are the DataSet changes
made by a user, back to the data source. It does this by using different Command objects to reconcile
the changes, as shown in Figure 6.3. We show how to work with these Command objects shortly.

The DataAdapter implicitly works with Connection objects as well, via the Command object’s
interface. Besides explicitly working with a Connection object, this is the only other way you can
work with the Connection object.

The DataAdapter object is very “polite,” always cleaning up after itself. When you create the
Connection object implicitly through the DataAdapter, the DataAdapter will check the status of
the connection. If it’s already open, it will go ahead and use the existing open connection. How-
ever, if it’s closed, it will quickly open and close the connection when it’s done with it, courteously
restoring the connection back to the way the DataAdapter found it.

239THE DATAADAPTER OBJECT

2878c06.qxd 01/31/02 2:14 PM Page 239

The DataAdapter works with ADO.NET Command objects, mapping them to specific database
update logic that you provide. Because all this logic is stored outside of the DataSet, your DataSet
becomes much more liberated. The DataSet is free to collect data from many different data sources,
relying on the DataAdapter to propagate any changes back to its appropriate source.

Populating a DataSet
Although we discuss the DataSet object in more detail later in this chapter, it is difficult to express
the power of the DataAdapter without referring to the DataSet object.

The DataAdapter contains one of the most important methods in ADO.NET: the Fill() method.
The Fill() method populates a DataSet and is the only time that the DataSet touches a live data-
base connection. Functionally, the Fill() method’s mechanism for populating a DataSet works
much like creating a static, client-side cursor in classic ADO. In the end, you end up with a discon-
nected representation of your data.

The Fill() method comes with many overloaded implementations. A notable version is the one
that enables you to populate an ADO.NET DataSet from a classic ADO RecordSet. This makes
interoperability between your existing native ADO/OLE DB code and ADO.NET a breeze. If you
wanted to populate a DataSet from an existing ADO 2.x RecordSet called adoRS, the relevant seg-
ment of your code would read:

Dim daFromRS As OleDbDataAdapter = New OleDbDataAdapter
Dim dsFromRS As DataSet = New DataSet
daFromRS.Fill(dsFromRS, adoRS)

Warning You must use the OleDb implementation of the DataAdapter to populate your DataSet from a classic
ADO RecordSet. Accordingly, you would need to import the System.Data.OleDb namespace.

Updating a Data Source from a DataSet by Using the DataAdapter
The DataAdapter uses the Update() method to perform the relevant SQL action commands against
the data source from the deltagram in the DataSet.

SqlCommand (SelectCommand)

SqlCommand (UpdateCommand)

SqlCommand (InsertCommand)

SqlCommand (Delete Command)

SqlDataAdapter

SqlConnection

SqlParameterCollection

SqlCommand

Figure 6.3

The ADO.NET
SqlClient
DataAdapter
object model

Chapter 6 A FIRST LOOK AT ADO.NET240

2878c06.qxd 01/31/02 2:14 PM Page 240

Tip The DataAdapter maps commands to the DataSet via the DataTable. Although the DataAdapter maps only one
DataTable at a time, you can use multiple DataAdapters to fill your DataSet by using multiple DataTables.

Using SqlCommand and SqlParameter Objects to Update the Northwind Database

Note The code for the walkthrough in this section can be found in the Updating Data Using ADO.NET.sln solu-
tion file. Listing 6.1 is contained within the click event of the Inserting Data Using DataAdapters With Mapped Insert
Commands button.

The DataAdapter gives you a simple way to map the commands by using its SelectCommand,
UpdateCommand, DeleteCommand, and InsertCommand properties. When you call the Update() method,
the DataAdapter maps the appropriate update, add, and delete SQL statements or stored procedures
to their appropriate Command object. (Alternately, if you use the SelectCommand property, this
command would execute with the Fill() method.) If you want to perform an insert into the Cus-
tomers table of the Northwind database, you could type the code in Listing 6.1.

Listing 6.1: Insert Commands by Using the DataAdapter Object with Parameters

Dim strSelectCustomers As String = “SELECT * FROM Customers ORDER BY CustomerID”
Dim strConnString As String = “data source=(local);” & _
“initial catalog=Northwind;integrated security=SSPI;”

‘ We can’t use the implicit connection created by the
‘ DataSet since our update command requires a
‘ connection object in its constructor, rather than a
‘ connection string
Dim connNorthwind As New SqlConnection(strConnString)
‘ String to update the customer record - it helps to
‘ specify this in advance so the CommandBuilder doesn’t
‘ affect our performance at runtime
Dim strInsertCommand As String = _
“INSERT INTO Customers(CustomerID,CompanyName) VALUES (@CustomerID,

@CompanyName)”
Dim daCustomers As New SqlDataAdapter()
Dim dsCustomers As New DataSet()
Dim cmdSelectCustomer As SqlCommand = New SqlCommand _

(strSelectCustomers, connNorthwind)
Dim cmdInsertCustomer As New SqlCommand(strInsertCommand, connNorthwind)
daCustomers.SelectCommand = cmdSelectCustomer
daCustomers.InsertCommand = cmdInsertCustomer
connNorthwind.Open()
daCustomers.Fill(dsCustomers, “dtCustomerTable”)
cmdInsertCustomer.Parameters.Add _
(New SqlParameter _
(“@CustomerID”, SqlDbType.NChar, 5)).Value = “ARHAN”
cmdInsertCustomer.Parameters.Add _
(New SqlParameter _

241THE DATAADAPTER OBJECT

2878c06.qxd 01/31/02 2:14 PM Page 241

(“@CompanyName”, SqlDbType.VarChar, 40)).Value = “Amanda Aman Apak Merkez Inc.”
cmdInsertCustomer.ExecuteNonQuery()
connNorthwind.Close()

This code sets up both the SelectCommand and InsertCommand for the DataAdapter and executes
the insert query with no results. To map the insert command with the values you are inserting, you
use the Parameters property of the appropriate SqlCommand objects. This example adds parameters
to the InsertCommand of the DataAdapter. As you can see from the DataAdapter object model in
Figure 6.3, each of the SqlCommand objects supports a ParameterCollection.

As you can see, the Insert statement need not contain all the fields in the parameters—and it
usually doesn’t. However, you must specify all the fields that can’t accept Null values. If you don’t,
the DBMS will reject the operation with a trappable runtime error. In this example, only two of the
new row’s fields are set: the CustomerID and the CompanyName fields, because neither can be Null.

Warning In this code, notice that you can’t use the implicit connection created by the DataSet. This is because the
InsertCommand object requires a Connection object in its constructor rather than a connection string. If you don’t have
an explicitly created Connection object, you won’t have any variable to pass to the constructor.

Tip Because you create the connection explicitly, you must make sure to close your connection when you are finished with
it. Although implicitly creating your connection takes care of cleanup for you, it’s not a bad idea to explicitly open the con-
nection, because you might want to leave it open so you can execute multiple fills and updates.

Each of the DataSet’s Command objects have their own CommandType and Connection properties,
which make them very powerful. Consider how you can use them to combine different types of com-
mand types, such as stored procedures and SQL statements. In addition, you can combine com-
mands from multiple data sources, by using one database for retrievals and another for updates.

As you can see, the DataAdapter with its Command objects is an extremely powerful feature of
ADO.NET. In classic ADO, you don’t have any control of how your selects, inserts, updates, and
deletes are handled. What if you wanted to add some specific business logic to these actions? You
would have to write custom stored procedures or SQL statements, which you would call separately
from your VB code. You couldn’t take advantage of the native ADO RecordSet updates, because
ADO hides the logic from you.

In summary, you work with a DataAdapter by using the following steps:

1. Instantiate your DataAdapter object.

2. Specify the SQL statement or stored procedure for the SelectCommand object. This is the only
Command object that the DataAdapter requires.

3. Specify the appropriate connection string for the SelectCommand’s Connection object.

4. Specify the SQL statements or stored procedures for the InsertCommand, UpdateCommand, and
DeleteCommand objects. Alternately, you could use the CommandBuilder to dynamically map
your actions at runtime. This step is not required.

Chapter 6 A FIRST LOOK AT ADO.NET242

2878c06.qxd 01/31/02 2:14 PM Page 242

5. Call the Fill() method to populate the DataSet with the results from the SelectCommand
object.

6. If you used step 4, call the appropriate Execute() method to execute your command objects
against your data source.

Warning Use the CommandBuilder sparingly, because it imposes a heavy performance overhead at runtime. You’ll
find out why in Chapter 9, “Working with DataSets.”

The DataReader Object
The DataReader object is a fast mechanism for retrieving forward-only, read-only streams of data. The
SQL Server .NET provider have completely optimized this mechanism, so use it as often as you can
for fast performance of read-only data. Unlike ADO RecordSets, which force you to load more in
memory than you actually need, the DataReader is a toned-down, slender data stream, using only the
necessary parts of the ADO.NET Framework. You can think of it as analogous to the server-side,
read-only, forward-only cursor that you used in native OLE DB/ADO. Because of this server-side
connection, you should use the DataReader cautiously, closing it as soon as you are finished with it.
Otherwise, you will tie up your Connection object, allowing no other operations to execute against it
(except for the Close() method, of course).

As we mentioned earlier, you can create a DataReader object by using the ExecuteReader() method
of the Command object. You would use DataReader objects when you need fast retrieval of read-only
data, such as populating combo-box lists.

Listing 6.2 depicts an example of how you create the DataReader object, assuming you’ve already
created the Connection object connNorthwind.

Listing 6.2: Creating the DataReader Object

Dim strCustomerSelect as String = “SELECT * from Customers”
Dim cmdCustomers as New SqlCommand(strCustomerSelect, connNorthwind)
Dim drCustomers as SqlDataReader
connNorthwind.Open()
drCustomers = cmdCustomers.ExecuteReader()

Note The code in Listing 6.2 can be found in the click event of the Create DataReader button on the startup form for
the Working with ADO.NET solution on the companion CD.

Notice that you can’t directly instantiate the DataReader object, but must go through the Com-
mand object interface.

Warning You cannot update data by using the DataReader object.

243THE DATAREADER OBJECT

2878c06.qxd 01/31/02 2:14 PM Page 243

The DataReader absolves you from writing tedious MoveFirst() and MoveNext() navigation. The
Read() method of the DataReader simplifies your coding tasks by automatically navigating to a posi-
tion prior to the first record of your stream and moving forward without any calls to navigation meth-
ods, such as the MoveNext() method. To continue our example from Listing 6.2, you could retrieve the
first column from all the rows in your DataReader by typing in the following code:

While(drCustomers.Read())
Console.WriteLine(drCustomers.GetString(0))

End While

Note The Console.WriteLine statement is similar to the Debug.Print() method you used in VB6.

Because the DataReader stores only one record at a time in memory, your memory resource load is
considerably lighter. Now if you wanted to scroll backward or make updates to this data, you would
have to use the DataSet object, which we discuss in the next section. Alternately, you can move the
data out of the DataReader and into a structure that is updateable, such as the DataTable or DataRow
objects.

Warning By default, the DataReader navigates to a point prior to the first record. Thus, you must always call the
Read() method before you can retrieve any data from the DataReader object.

The DataSet Object
There will come a time when the DataReader is not sufficient for your data manipulation needs. If
you ever need to update your data, or store relational or hierarchical data, look no further than the
DataSet object. Because the DataReader navigation mechanism is linear, you have no way of travers-
ing between relational or hierarchical data structures. The DataSet provides a liberated way of navi-
gating through both relational and hierarchical data, by using array-like indexing and tree walking,
respectively.

Unlike the managed provider objects, the DataSet object and friends do not diverge between the
OleDb and SqlClient .NET namespaces. You declare a DataSet object the same way regardless of
which .NET data provider you are using:

Dim dsCustomer as DataSet

Realize that DataSets stand alone. A DataSet is not a part of the managed data providers and
knows nothing of its data source. The DataSet has no clue about transactions, connections, or even a
database. Because the DataSet is data source agnostic, it needs something to get the data to it. This is
where the DataAdapter comes into play. Although the DataAdapter is not a part of the DataSet, it
understands how to communicate with the DataSet in order to populate the DataSet with data.

DataSets and XML
The DataSet object is the nexus where ADO.NET and XML meet. The DataSet is persisted as
XML, and only XML. You have several ways of populating a DataSet: You can traditionally load
from a database or reverse engineer your XML files back into DataSets. You can even create your own

Chapter 6 A FIRST LOOK AT ADO.NET244

2878c06.qxd 01/31/02 2:14 PM Page 244

customized application data without using XML or a database, by creating custom DataTables and
DataRows. We show you how to create DataSets on the fly in this chapter in the section “Creating
Custom DataSets.”

DataSets are perfect for working with data transfer across Internet applications, especially when
working with WebServices. Unlike native OLE DB/ADO, which uses a proprietary COM protocol,
DataSets transfer data by using native XML serialization, which is a ubiquitous data format. This
makes it easy to move data through firewalls over HTTP. Remoting becomes much simpler with
XML over the wire, rather than the heavier binary formats you have with ADO RecordSets. We
demonstrate how you do this in Chapter 16, “Working with WebServices.”

As we mentioned earlier, DataSet objects take advantage of the XML model by separating the
data storage from the data presentation. In addition, DataSet objects separate navigational data
access from the traditional set-based data access. We show you how DataSet navigation differs from
RecordSet navigation later in this chapter in Table 6.4.

DataSets versus RecordSets
As you can see in Figure 6.4, DataSets are much different from tabular RecordSets. You can see that
they contain many types of nested collections, such as relations and tables, which you will explore
throughout the examples in this chapter.

What’s so great about DataSets? You’re happy with the ADO 2.x RecordSets. You want to know
why you should migrate over to using ADO.NET DataSets. There are many compelling reasons.
First, DataSet objects separate all the disconnected logic from the connected logic. This makes them
easier to work with. For example, you could use a DataSet to store a web user’s order information for
their online shopping cart, sending deltagrams to the server as they update their order information.
In fact, almost any scenario where you collect application data based on user interaction is a good
candidate for using DataSets. Using DataSets to manage your application data is much easier than
working with arrays, and safer than working with connection-aware RecordSets.

Tables (as DataTableCollection)

Rows (as DataRowCollection)

Columns (as DataColumnCollection)

Constraints (as DataConstraintCollection)

Relations (as DataRelationsCollection)

DataSetFigure 6.4

The ADO.NET
DataSet object
model

245THE DATASET OBJECT

2878c06.qxd 01/31/02 2:14 PM Page 245

Another motivation for using DataSets lies in their capability to be safely cached with web appli-
cations. Caching on the web server helps alleviate the processing burden on your database servers.
ASP caching is something you really can’t do safely with a RecordSet, because of the chance that the
RecordSet might hold a connection and state. Because DataSets independently maintain their own
state, you never have to worry about tying up resources on your servers. You can even safely store the
DataSet object in your ASP.NET Session object, which you are warned never to do with RecordSets.
RecordSets are dangerous in a Session object; they can crash in some versions of ADO because of
issues with marshalling, especially when you use open client-side cursors that aren’t streamed. In
addition, you can run into threading issues with ADO RecordSets, because they are apartment
threaded, which causes your web server to run in the same thread

DataSets are great for remoting because they are easily understandable by both .NET and non-
.NET applications. DataSets use XML as their storage and transfer mechanism. .NET applications
don’t even have to deserialize the XML data, because you can pass the DataSet much like you would
a RecordSet object. Non-.NET applications can also interpret the DataSet as XML, make modifica-
tions using XML, and return the final XML back to the .NET application. The .NET application
takes the XML and automatically interprets it as a DataSet, once again.

Last, DataSets work well with systems that require tight user interaction. DataSets integrate
tightly with bound controls. You can easily display the data with DataViews, which enable scrolling,
searching, editing, and filtering with nominal effort. You will have a better understanding of how this
works when you read Chapter 8.

Now that we’ve explained how the DataSet gives you more flexibility and power than using the ADO
RecordSet, examine Table 6.3, which summarizes the differences between ADO and ADO.NET.

Table 6.3: Why ADO.NET Is a Better Data Transfer Mechanism than ADO

Feature Set ADO ADO.NET ADO.NET’s Advantage

Data persistence format RecordSet Uses XML With ADO.NET, you don’t have data
type restrictions.

Data transfer format COM marshalling Uses XML ADO.NET uses a ubiquitous format
that is easily transferable and that
multiple platforms and sites can read-
ily translate. In addition, XML strings
are much more manageable than
binary COM objects.

Web transfer protocol Uses HTTP ADO.NET data is more readily transfer-
able though firewalls.

Let’s explore how to work with the various members of the DataSet object to retrieve and manip-
ulate data from your data source. Although the DataSet is designed for data access with any data
source, in this chapter we focus on SQL Server as our data source.

You would need to
use DCOM to tunnel
through Port 80 and
pass proprietary COM
data, which firewalls
could filter out.

Chapter 6 A FIRST LOOK AT ADO.NET246

2878c06.qxd 01/31/02 2:14 PM Page 246

Working with DataSets
Often you will work with the DataReader object when retrieving data, because it offers you the best
performance. As we have explained, in some cases the DataSet’s powerful interface for data manipula-
tion will be more practical for your needs. In this section, we discuss techniques you can use for
working with data in your DataSet.

The DataSet is an efficient storage mechanism. The DataSet object hosts multiple result sets
stored in one or more DataTables. These DataTables are returned by the DBMS in response to the
execution of a command. The DataTable object uses rows and columns to contain the structure of a
result set. You use the properties and methods of the DataTable object to access the records of a
table. Table 6.4 demonstrates the power and flexibility you get with ADO.NET when retrieving data
versus classic ADO.

Table 6.4: Why ADO.NET Is a Better Data Storage Mechanism than ADO

Feature Set ADO ADO.NET ADO.NET’s Advantage

Storing multiple result sets is
simple in ADO.NET. The result sets
can come from a variety of data
sources. Navigating between these
result sets is intuitive, using the
standard collection navigation.

DataSets never maintain state,
unlike RecordSets, making
them safer to use with n-tier,
disconnected designs.

ADO.NET’s DataTable collection
sets the stage for more robust rela-
tionship management. With ADO,
JOINs bring back only a single
result table from multiple tables.
You end up with redundant data.
The SHAPE syntax is cumbersome
and awkward. With ADO.NET,
DataRelations provide an object-
oriented, relational way to manage
relations such as constraints and
cascading referential integrity, all
within the constructs of ADO.NET.
The ADO shaping commands are in
an SQL-like format, rather than
being native to ADO objects.

Continued on next page

Uses the DataRelation
object to associate
multiple DataTables
to one another.

Uses JOINs, which
pull data into a single
result table. Alter-
nately, you can use
the SHAPE syntax
with the shaping OLE
DB service provider.

Relationship
management

Uses DataSets that
store one or many
DataTables.

Uses disconnected
RecordSets, which
store data into a
single table.

Disconnected data
cache

247THE DATASET OBJECT

2878c06.qxd 01/31/02 2:14 PM Page 247

Table 6.4: Why ADO.NET Is a Better Data Storage Mechanism than ADO (continued)

Feature Set ADO ADO.NET ADO.NET’s Advantage

Navigation mechanism DataSets enable you to traverse the
data among multiple DataTables,
using the relevant DataRelations to
skip from one table to another. In
addition, you can view your rela-
tional data in a hierarchical fashion
by using the tree-like structure
of XML.

There are three main ways to populate a DataSet:

� After establishing a connection to the database, you prepare the DataAdapter object, which
will retrieve your results from your database as XML. You can use the DataAdapter to fill
your DataSet.

� You can read an XML document into your DataSet. The .NET Framework provides an
XMLDataDocument namespace, which is modeled parallel to the ADO.NET Framework.
You will explore this namespace in Chapter 7.

� You can use DataTables to build your DataSet in memory without the use of XML files or a
data source of any kind. You will explore this option in the section “Updating Your Database
by Using DataSets” later in this chapter.

Let’s work with retrieving data from the Northwind database. First, you must prepare the DataSet
object, which can be instantiated with the following statement:

Dim dsCustomers As New DataSet()

Assuming you’ve prepared your DataAdapter object, all you would have to call is the Fill()
method. Listing 6.3 shows you the code to populate your DataSet object with customer information.

Listing 6.3: Creating the DataSet Object

Dim strSelectCustomers As String = “SELECT * FROM Customers ORDER BY CustomerID”
Dim strConnString As String = “data source=(local);” & _
“initial catalog=Northwind;integrated security=SSPI;”

Dim daCustomers As New SqlDataAdapter(strSelectCustomers, strConnString)
Dim dsCustomers As New DataSet()
Dim connNorthwind As New SqlConnection(strConnString)

daCustomers.Fill(dsCustomers, “dtCustomerTable”)
MsgBox(dsCustomers.GetXml, , “Results of Customer DataSet in XML”)

DataSets have a
nonlinear navigation
model.

RecordSets give you
the option to only view
data sequentially.

Chapter 6 A FIRST LOOK AT ADO.NET248

2878c06.qxd 01/31/02 2:14 PM Page 248

Note The code in Listing 6.3 can be found in the click event of the Create Single Table DataSet button on the startup
form for the Working with ADO.NET solution on the companion CD.

This code uses the GetXml() method to return the results of your DataSet as XML. The rows
of the Customers table are retrieved through the dsCustomers object variable. The DataTable object
within the DataSet exposes a number of properties and methods for manipulating the data by using
the DataRow and DataColumn collections. You will explore how to navigate through the DataSet
in the upcoming section, “Navigating Through DataSets.” However, first you must understand the
main collections that comprise a DataSet, the DataTable, and DataRelation collections.

The DataTableCollection
Unlike the ADO RecordSet, which contained only a single table object, the ADO.NET DataSet
contains one or more tables, stored as a DataTableCollection. The DataTableCollection is what
makes DataSets stand out from disconnected ADO RecordSets. You never could do something like
this in classic ADO. The only choice you have with ADO is to nest RecordSets within RecordSets
and use cumbersome navigation logic to move between parent and child RecordSets. The ADO.NET
navigation model provides a user-friendly navigation model for moving between DataTables.

In ADO.NET, DataTables factor out different result sets that can come from different data
sources. You can even dynamically relate these DataTables to one another by using DataRelations,
which we discuss in the next section.

Note If you want, you can think of a DataTable as analogous to a disconnected RecordSet, and the DataSet as a
collection of those disconnected RecordSets.

Let’s go ahead and add another table to the DataSet created earlier in Listing 6.3. Adding tables is
easy with ADO.NET, and navigating between the multiple DataTables in your DataSet is simple and
straightforward. In the section “Creating Custom DataSets,” we show you how to build DataSets on
the fly by using multiple DataTables. The code in Listing 6.4 shows how to add another DataTable
to the DataSet that you created in Listing 6.3.

Note The code in Listing 6.4 can be found in the click event of the Create DataSet With Two Tables button on the startup
form for the Working with ADO.NET solution on the companion CD.

Listing 6.4: Adding Another DataTable to a DataSet

Dim strSelectCustomers As String = “SELECT * FROM Customers ORDER BY CustomerID”
Dim strSelectOrders As String = “SELECT * FROM Orders”
Dim strConnString As String = “data source=(local);” & _

“initial catalog=Northwind;integrated security=SSPI;”
Dim daCustomers As New SqlDataAdapter(strSelectCustomers, strConnString)
Dim dsCustomers As New DataSet()
Dim daOrders As New SqlDataAdapter(strSelectOrders, strConnString)
daCustomers.Fill(dsCustomers, “dtCustomerTable”)
daOrders.Fill(dsCustomers, “dtOrderTable”)
Console.WriteLine(dsCustomers.GetXml)

249THE DATASET OBJECT

2878c06.qxd 01/31/02 2:14 PM Page 249

Warning DataTables are conditionally case sensitive. In Listing 6.4, the DataTable is called dtCustomerTable.
This would cause no conflicts when used alone, whether you referred to it as dtCustomerTable or dtCUSTOMERTABLE.
However, if you had another DataTable called dtCUSTOMERTABLE, it would be treated as an object separate from
dtCustomerTable.

As you can see, all you had to do was create a new DataAdapter to map to your Orders table,
which you then filled into the DataSet object you had created earlier. This creates a collection of two
DataTable objects within your DataSet. Now let’s explore how to relate these DataTables together.

The DataRelation Collection
The DataSet object eliminates the cumbersome shaping syntax you had to use with ADO RecordSets,
replacing it with a more robust relationship engine in the form of DataRelation objects. The DataSet
contains a collection of DataRelation objects within its Relations property. Each DataRelation
object links disparate DataTables by using referential integrity such as primary keys, foreign keys, and
constraints. The DataRelation doesn’t have to use any joins or nested DataTables to do this, as you
had to do with ADO RecordSets.

In classic ADO, you create relationships by nesting your RecordSets into a single tabular Record-
Set. Aside from being clumsy to use, this mechanism also made it awkward to dynamically link dis-
parate sets of data.

With ADO.NET, you can take advantage of new features such as cascading referential integrity.
You can do this by adding a ForeignKeyConstraint object to the ConstraintCollection within a
DataTable. The ForeignKeyConstraint object enforces referential integrity between a set of columns
in multiple DataTables. As we explained in Chapter 2, in the “Database Integrity” section, this will
prevent orphaned records. In addition, you can cascade your updates and deletes from the parent
table down to the child table.

Listing 6.5 shows you how to link the CustomerID column of your Customer and Orders
DataTables. Using the code from Listing 6.3, all you have to do is add a new declaration for
your DataRelation.

Listing 6.5: Using a Simple DataRelation

Dim drCustomerOrders As DataRelation = New DataRelation(“CustomerOrderRelation”,
dsCustomers.Tables(“Customers”).Columns(“CustomerID”),
dsCustomers.Tables(“Orders”).Columns(“CustomerID”))
dsCustomers.Relations.Add(drCustomerOrders)

Note The code in Listing 6.5 can be found in the click event of the Using Simple DataRelations button on the startup
form for the Working with ADO.NET solution on the companion CD.

As you can with other ADO.NET objects, you can overload the DataRelation constructor. In this
example, you pass in three parameters. The first parameter indicates the name of the relation. This is
similar to how you would name a relationship within SQL Server. The next two parameters indicate

Chapter 6 A FIRST LOOK AT ADO.NET250

2878c06.qxd 01/31/02 2:14 PM Page 250

the two columns that you wish to relate. After creating the DataRelation object, you add it to the
Relations collection of the DataSet object.

Warning The data type of the two columns you wish to relate must be identical.

Listing 6.6 shows you how to use DataRelations between the Customers and Orders tables of the
Northwind database to ensure that when a customer ID is deleted or updated, it is reflected within
the Orders table.

Listing 6.6: Using Cascading Updates

Dim fkCustomerID As ForeignKeyConstraint
fkCustomerID = New ForeignKeyConstraint
(“CustomerOrderConstraint”, dsCustomers.Tables
(“Customers”).Columns(“CustomerID”),

dsCustomers.Tables(“Orders”).Columns(“CustomerID”))
fkCustomerID.UpdateRule = Rule.Cascade
fkCustomerID.AcceptRejectRule = AcceptRejectRule.Cascade
dsCustomers.Tables(“CustomerOrder”).Constraints.Add
(fkCustomerID)
dsCustomers.EnforceConstraints = True

Note The code in Listing 6.6 can be found in the click event of the Using Cascading Updates button on the startup form
for the Working with ADO.NET solution on the companion CD.

In this example, you create a foreign key constraint with cascading updates and add it to the
ConstraintCollection of your DataSet. First, you declare and instantiate a ForeignKeyConstraint
object, as you did earlier when creating the DataRelation object. Afterward, you set the properties
of the ForeignKeyConstraint, such as the UpdateRule and AcceptRejectRule, finally adding it
to your ConstraintCollection. You have to ensure that your constraints activate by setting the
EnforceConstraints property to True.

Navigating through DataSets
We already discussed navigation through a DataReader. To sum it up, as long as the DataReader’s
Read() method returns True, then you have successfully positioned yourself in the DataReader. Now
let’s discuss how you would navigate through a DataSet.

In classic ADO, to navigate through the rows of an ADO RecordSet, you use the Move() method
and its variations. The MoveFirst(), MovePrevious(), MoveLast(), and MoveNext() methods take you
to the first, previous, last, and next rows in the RecordSet, respectively. This forces you to deal with
cursoring and absolute positioning. This makes navigation cumbersome because you have to first
position yourself within a RecordSet and then read the data that you need.

251NAVIGATING THROUGH DATASETS

2878c06.qxd 01/31/02 2:14 PM Page 251

In ADO 2.x, a fundamental concept in programming for RecordSets is that of the current row: to
read the fields of a row, you must first move to the desired row. The RecordSet object supports a
number of navigational methods, which enable you to locate the desired row, and the Fields prop-
erty, which enables you to access (read or modify) the current row’s fields. With ADO.NET, you no
longer have to use fixed positioning to locate your records; instead, you can use array-like navigation.

Unlike ADO RecordSets, the concept of the current row no longer matters with DataSets.
DataSets work like other in-memory data representations, such as arrays and collections, and use
familiar navigational behaviors. DataSets provide an explicit in-memory representation of data in
the form of a collection-based model. This enables you to get rid of the infamous Do While Not
rs.EOF() And Not rs.BOF() loop. With ADO.NET, you can use the friendly For Each loop to iter-
ate through the DataTables of your DataSet. If you want to iterate through the rows and columns
within an existing DataTable named tblCustomers, stored in a dsCustomers DataSet, you could use
the following loop in Listing 6.7.

Listing 6.7: Navigating through a DataSet

For Each tblCustomer In dsCustomers.Tables
Dim rowCustomer As DataRow
For Each rowCustomer In tblCustomer.Rows

Dim colCustomer As DataColumn
For Each colCustomer In thisTable.Columns

Console.WriteLine (rowCustomer (colCustomer))
Next colCustomer

Next rowCustomer
Next tblCustomer

This will print out the values in each column of the customers DataSet created in Listing 6.3. As
you can see, the For Each logic saves you from having to monitor antiquated properties such as EOF
and BOF of the ADO RecordSet.

DataTables contain collections of DataRows and DataColumns, which also simplify your naviga-
tion mechanism. Instead of worrying about the RecordCount property of RecordSets, you can use the
traditional UBound() property to collect the number of rows within a DataTable. For the example in
Listing 6.7, you can calculate the row count for the customer records by using the following statement:

UBound(rowCustomer)

DataTable Capacities
In classic ADO, you could specify paged RecordSets—the type of RecordSets displayed on web pages
when the results of a query are too many to be displayed on a single page. The web server displays 20
or so records and a number of buttons at the bottom of the page that enable you to move quickly to
another group of 20 records. This technique is common in web applications, and ADO supports a
few properties that simplify the creation of paged RecordSets, such as the AbsolutePage, PageSize,
and PageCount properties.

Chapter 6 A FIRST LOOK AT ADO.NET252

2878c06.qxd 01/31/02 2:14 PM Page 252

With ADO.NET, you can use the MinimumCapacity property to specify the number of rows you
wish to bring back for a DataTable. The default setting is 25 rows. This setting is especially useful if
you want to improve performance on your web pages in ASP.NET. If you want to ensure that only
50 customer records display for the Customers DataTable, you would specify the following:

dtCustomers.MinimumCapacity = 50

If you have worked with paged RecordSets, you will realize that this performance technique is
much less involved than the convoluted paging logic you had to use in ADO 2.x.

Navigating a Relationship between Tables
ADO.NET provides a navigation model for navigating through DataTables by using the relation-
ships that connect them. Keep in mind that relations work as separate objects. When you create the
relationship between the Customers and Orders tables, you can’t directly jump from a customer
DataRow to the related order DataRows. You must open the DataRelation separately and then pull
the related rows. This is fine with one-to-many relationships; however, if you are using one-to-one
relationships, you should stick with SQL JOIN statements.

You will explore the many techniques you can do with your retrieved data later in this chapter.
First, let’s review basic ways of updating your data sources by using DataSets.

Updating Your Database by Using DataSets
The two connected and disconnected models of ADO.NET work very differently when updating
the database. Connected, or managed, providers communicate with the database by using command-
based updates. As we showed you in “The DataSet Object” section earlier, disconnected DataSets
update the database by using a cached, batch-optimistic method. DataSets work independently from
a connection, working with the deltagram of data on the disconnected DataSet and committing the
changes only after you call the Update() method from the DataAdapter. The separation between the
command-based model used with managed providers and the optimistic model carried out by the
DataSet objects enables the programmer to make a distinction between server-side execution and
cached execution.

Warning In ADO 2.x, there was a good amount of confusion regarding client-side cursors. Some implementations
mistakenly used server-side cursors when they meant to use client-cursors on the application server. Don’t confuse discon-
nected, cached DataSets as user-side data. The DataSets can also be stored on your middle tier, which you should consider as
a client-side cache, even though it is stored on your application server. You’ll explore how to use DataSets within your
ASP.NET code in Part IV, “Data Access from the Web.”

To update data, you make changes to your DataSet and pass them up to the server. Obviously, you
can’t use the DataReader, because its forward-only, read-only nature can’t be updated. There are many
ways that you can make updates to a DataSet:

� Make changes to an existing DataSet which was retrieved from a query executed on your data-
base server(s). Pass the changes to the data source via the Data Adapter.

253UPDATING YOUR DATABASE BY USING DATASETS

2878c06.qxd 01/31/02 2:14 PM Page 253

� Load data from an XML file by using the ReadXml() method. Map the resulting DataSet to
your data source by using the DataAdapter.

� Merge multiple DataSets by using the Merge() method, passing the results to the data source
via the DataAdapter.

� Create a new DataSet with new schema and data on the fly, mapping it to a data source by
using the DataAdapter.

As you can see, all these options have one thing in common: your changes are not committed back
to the server until the DataAdapter intervenes. DataSets are completely unaware of where their data
comes from and how their changes relate back to the appropriate data source. The DataAdapter takes
care of all this.

Realize that updating a record is not always a straightforward process. What happens if a user
changes the record after you have read it? And what will happen if the record you’re about to update
has already been deleted by another user? In this chapter, you will learn the basics of updating data-
bases through the ADO.NET DataSet, assuming no concurrency is involved. However, we discuss
the implications of concurrency at the end of this chapter. In the meantime, let’s set up your
ADO.NET objects to insert a customer row into the Northwind database.

Updating Your DataSet by Using the DataTable and DataRow Objects
Earlier in this chapter, we showed you how to update your database by using parameterized stored
procedures. Although this is efficient for making single row changes, it isn’t quite useful when you
have a significant number of changes to pass to the server. What happens when you want to apply
changes in bulk? Consider an e-commerce application that uses an online shopping cart. The shop-
ping cart could have multiple rows of data that would be inserted and updated as the user browsed
through the site. When it comes time to push these changes to the server, it would be much easier to
pass them in one single batch, rather than call the stored procedure multiple times for each row that’s
modified.

In ADO 2.x, you use disconnected RecordSets along with the UpdateBatch() method to pass
your changes on to the server. In ADO.NET, you pass the disconnected deltagram from the DataSet
object to the DataAdapter Update() method. Once again, ADO.NET clearly draws the line between
your data and your data source. The DataSet object doesn’t directly contact the data source.

First, let’s see how you can manage changes within a DataSet. As the user edits the in-memory
cache, the changes are stored into a buffer and not yet committed to the DataSet. You can commit
modifications to a DataSet by using the AcceptChanges() method of the DataSet, DataTable, or
DataRow objects. If you execute this method on the parent object, it will propagate down onto the
children. For example, if you call AcceptChanges() on the DataSet object, it will cascade down
onto the DataTables within the DataSet’s Table collection (likewise for a DataTable to its relevant
DataRow collection).

When you insert a row into a DataTable, you can monitor the “dirtiness” of a row by examining
the RowState property. Let’s go ahead and add a new row to your dsCustomers DataSet. In Figure 6.5,
we continue the logic that we used in Listing 6.3 to populate your dsCustomers DataSet.

Note Until you call the Update() method, your DataSet changes will not be committed to your data source.

Chapter 6 A FIRST LOOK AT ADO.NET254

2878c06.qxd 01/31/02 2:14 PM Page 254

First, let’s look at the code that pulls down the data that you want to work with from your data-
base into a DataSet. Using the existing DataSet, you will add a new row directly to the DataSet by
using the DataTable and DataRow collections of the DataSet.

Note The code depicted in Figure 6.5 can be found in the Updating Data using ADO.NET.sln solution file,
within the click event of the Inserting Data With DataSets and DataTables button.

As you see in Figure 6.5, DataSet updates are very straightforward. All you have to do is fill your
DataSet, as we’ve shown you earlier in the chapter. Then you set up a new DataRow object with the
DataTable’s NewRow() method. The Add() collection of the Rows collection will add your new row to
the collection. Finally, you call the AcceptChanges() method of the DataSet, which will automati-
cally cascade all changes down to its inner DataTables and DataRows. Alternately, you could call the
AcceptChanges() method specifically on the inner object you wish to update because the DataTable
and DataRow also support the AcceptChanges() method.

As the note indicates, the source code for this example is available on the accompanying CD. Go
ahead and load the code into Visual Studio .NET and place a breakpoint on the Add() method. Exe-
cute the code by pressing F5. When you get to your breakpoint, type the following in the Command
window:

?dtcustomer.rows.count

Warning If you have difficulty working with the Command window, it might be because you are not in Immediate
mode. If you see a > prompt, then this is most likely the case. Toggle the mode from Command mode to Immediate mode by
typing immed at the prompt and pressing Enter. Now you should be able to debug your code.

Figure 6.5

Updating your
DataSet object

255UPDATING YOUR DATABASE BY USING DATASETS

2878c06.qxd 01/31/02 2:14 PM Page 255

You will see the number of rows in your Customers table, within your DataSet, prior to making
changes. Hit F11 to step into the Add() method. This will update your DataSet with the newly added
row. Go back to the Command window and hit the Up arrow key and Enter to re-execute the row
count statement. The results will show that the Add() method increments your row count in your
DataRow by one record. However, if you compare the result to the data in the database, you will see
that your data still has the same number of original rows. This is an important point. None of your
changes will be committed to the data source until you call the Update() method of the DataAdapter
object. Finish the execution of the code to commit the changes in your DataSet.

In summary, all you have to do is execute the following steps to commit updates to your DataSet:

1. Instantiate your DataSet and DataAdapter objects.

2. Fill your DataSet object from the DataAdapter object.

3. Manipulate your DataSet by using the DataRow objects.

4. Call the AcceptChanges() method of the DataSet, DataTable, or DataRow object to commit
your changes to your DataSet.

Updating Your Data Source by Using the DataSet and DataAdapter
In this section, we show you how to insert a new row into your DataSet with the DataRow and
DataTable objects. After you’ve updated your DataSet, we show you how you can commit those
changes to the DataSet. Committing changes to a DataSet doesn’t mean that they are committed to
the database. To commit your changes to the database, you use the Update() method, which is similar
to the Fill() method, only it works in reverse, updating your data source with the deltagram from
the DataSet. Listing 6.8 contains the code that enables you to update a database with changes from a
DataSet object.

Note The code in Listing 6.8 can be found in the Updating Data Using ADO.NET solution on the companion CD,
within the click event of the Committing Changes From Your DataSet To Your Database button.

Although the Update() method is the only method you need to call to commit your changes back
to the database, you must do some preparation work in advance. You must set up the appropriate
action-based Command objects before you call the DataAdapter’s Update() method. These Com-
mand objects map to the relevant insert, update, and delete stored procedures or SQL statements.
Alternately, you can use the CommandBuilder object to dynamically generate the appropriate SQL
statements for you.

Listing 6.8: Committing DataSet Changes to a Database

Dim strSelectCustomers As String = “SELECT * FROM Customers ORDER BY CustomerID”
Dim strConnString As String = “data source=(local);” & _
“initial catalog=Northwind;integrated security=SSPI;”

Dim connNorthwind As New SqlConnection(strConnString)
Dim daCustomers As New SqlDataAdapter(strSelectCustomers, connNorthwind)

Chapter 6 A FIRST LOOK AT ADO.NET256

2878c06.qxd 01/31/02 2:14 PM Page 256

Dim dsCustomers As New DataSet()
Dim dtCustomer As DataTable
Dim drNewCustomer As DataRow
Dim custCB As SqlCommandBuilder = New SqlCommandBuilder(daCustomers)
connNorthwind.Open()
daCustomers.Fill(dsCustomers, “dtCustomerTable”)
connNorthwind.Close()
dtCustomer = dsCustomers.Tables(“dtCustomerTable”)
Try
drNewCustomer = dtCustomer.NewRow()
drNewCustomer(0) = “OTISP”
drNewCustomer(1) = “Otis P. Wilson Spaghetti House.”
dtCustomer.Rows.Add(drNewCustomer)

Dim drModified As
DataRow() = dsCustomers.Tables(“dtCustomerTable”).Select(Nothing,Nothing,_
DataViewRowState.Added)
connNorthwind.Open()
daCustomers.Update(drModified)

Catch eInsertException As Exception
MsgBox(eInsertException.Message)
Throw eInsertException

Finally
connNorthwind.Close()

End Try

In summary, all you have to do is execute the following steps to update your data source from
your DataSet, after you’ve made your changes to the DataSet:

1. Create a new row object that contains all the modified rows. You can use the DataViewRowState
property to extract the appropriate rows. In our case, we used the DataViewRowState.Added
value.

2. Call the Update() method of the DataAdapter object to send your changes back to the appro-
priate data source(s). Pass a copy of the DataRow containing your changes.

That’s it. As you see, it’s quite simple to add new rows to your database. Updates and deletes work
the same way.

Managing DataSet Changes
Because the DataSet is inherently disconnected from the data source, it must manage its changes by
itself. The DataSet supports several “dirty” flags that indicate whether changes have occurred. These
flags come in the form of the GetChanges() and HasChanges() methods, which enable it to reconcile
changes back to its data source via the DataAdapter object. These methods are used in conjunction
with the RowState property, which we discuss next.

257UPDATING YOUR DATABASE BY USING DATASETS

2878c06.qxd 01/31/02 2:14 PM Page 257

The RowState Property

The RowState property enables you to track the condition of your rows. It works hand in hand
with the AcceptChanges() method, which we discuss next. Until the AcceptChanges() method is
called, the row state will be dirty. After AcceptChanges() has been called on the row, the row state
will reflect a committed record that is no longer in flux. The RowState depends on what type of
modification was made on the row, such as an insert, update, or delete. Table 6.5 shows you the pos-
sible values that the RowState might contain and why.

Table 6.5: Values of the RowState Property

Constant Description

Added Occurs when a new row is first added to the DataRowCollection

Deleted Indicates that the row was marked for deletion

Detached Indicates that the row is “floating” and not yet attached to a DataRowCollection

Modified Indicates that the row is “dirty”

Unchanged Indicates that either the row was never touched in the first place, or the
AcceptChanges()method was called, committing the changes to the row

If you want advanced information on how the RowState property works, please refer to Chapter 11,
where we show you its importance with event-based programming.

The AcceptChanges () Method

Until you call this method, all the modified rows in your DataSet will remain in edit mode. The
AcceptChanges() commits your modifications to a DataSet. The DataTable and DataRow objects
also support this method. Keep in mind that this will not update your database, just your DataSet
and friends. AcceptChanges() works incrementally, updating the DataSet with the modifications
since the last time you called it. As we noted earlier, you can cascade your changes down to children
objects. If you wanted to automatically accept changes for all the DataRows within a DataTable, you
would need to call only the AcceptChanges() method on the DataTable, which automatically com-
mits the changes for all its member DataRows.

The RejectChanges () Method

If you decide not to commit the new row to the DataSet, call the RejectChanges() method. This
method doesn’t require any arguments. It simply deletes the newly added row or reverses the changes
you made to an existing row.

The HasChanges () Method

The HasChanges() method queries whether a DataSet contains “dirty” rows. Generally, you would call
this method before you called the GetChanges() method, so you don’t unnecessarily retrieve changes
that might not exist. This method can be overloaded by passing in the RowState as a parameter. By

Chapter 6 A FIRST LOOK AT ADO.NET258

2878c06.qxd 01/31/02 2:14 PM Page 258

doing this, you can filter out specific change types. If you only wanted to query if the DataSet had any
deletions, you would type:

If dsCustomers.HasChanges(DataRowState.Deleted)Then
‘ Do some logic to get the changes

End If

The GetChanges () Method

The GetChanges() method creates a DataSet containing the changes made to it since the last time
you called the AcceptChanges() method. If you haven’t called AcceptChanges(), then it will retrieve a
copy of the DataSet with all your changes. You can optionally use the overloaded version of this
method, which accepts the DataRowState as a parameter. This way, you can get only the changes
based on a certain state. If you wanted to get only the deletions for a DataSet, you would first call
the HasChanges() method to see if any deletions occurred and then retrieve the changes:

dsCustomers = dsCustomers.GetChanges(DataRowState.Deleted)

Merging
Another technique for working with DataSets uses the ability to merge results from multiple
DataTables or DataSets. The merge operation can also combine multiple schemas together. The
Merge() method enables you to extend one schema to support additional columns from the other,
and vice versa. In the end, you end up with a union of both schemas and data. This is useful when
you want to bring together data from heterogeneous data sources, or to add a subset of data to an
existing DataSet. The merge operation is quite simple:

dsCustomers.Merge (dsIncomingCustomers)

Typed DataSets
There are many data typing differences between ADO and ADO.NET. In classic ADO, you have more
memory overhead than ADO because the fields in a RecordSet are late-bound, returning data as the
Variant data type. ADO.NET supports stricter data typing. ADO.NET uses the Object, rather than
the Variant data type for your data. Although Objects are more lightweight than Variants, your code
will be even more efficient if you know the type ahead of time. You could use the GetString() method
to convert your column values to strings. This way, you avoid boxing your variables to the generic
Object type. You can use similar syntax for the other data types, such as GetBoolean() or GetGuid().
Try to convert your values to the native format to reduce your memory overhead.

When you work with classic ADO, you experience performance degradation when you refer to
your fields by name. You would type the following:

strName = rsCustomers.Fields(“CustomerName”).Value

Now, with ADO.NET, you can use strong typing to reference the fields of a DataSet directly by
name, like so:

strName = dsCustomers.CustomerName

259UPDATING YOUR DATABASE BY USING DATASETS

2878c06.qxd 01/31/02 2:14 PM Page 259

Because the values are strictly typed in ADO.NET, you don’t have to write type-checking code.
ADO.NET will generate a compile-time error if your have a type mismatch, unlike the ADO run-
time errors you get much too late. With ADO.NET, if you try to pass a string to an integer field, you
will raise an error when you compile the code.

Creating Custom DataSets
You don’t need a database to create a DataSet. In fact, you can create your own DataSet without
any data at all. The ADO.NET DataSet enables you to create new tables, rows, and columns from
scratch. You can use these objects to build relationships and constraints, ending up with a mini-
database into which you can load your data.

Listing 6.9 contains code that enables you to build a simple three-column online shopping cart
DataSet on the fly. First, let’s create a BuildShoppingCart() method that will create your table
schema.

Listing 6.9: Creating a DataSet on the Fly

Public Function BuildShoppingCart() As DataTable
Dim tblCart As DataTable = New DataTable(“tblOrders”)
Dim dcOrderID As DataColumn = New
DataColumn(“OrderID”, Type.GetType(“System.Int32”))
Dim dcQty As DataColumn = New
DataColumn(“Quantity”,Type.GetType(“System.Int32”))
Dim dcCustomerName As DataColumn = New _
DataColumn(“CustomerName”,
Type.GetType(“System.String”))
tblCart.Columns.Add(dcOrderID)
tblCart.Columns.Add(dcQty)
tblCart.Columns.Add(dcCustomerName)
Return tblCart

End Function

Now, all you have to do is set a DataTable variable to the results of your method and populate it. If
you load the code from the companion CD, place a breakpoint on the Add() method of the DataRow
collection, as shown in Figure 6.6. This way, you can use the Immediate mode of the Command win-
dow to see if your custom DataSet was successfully updated. With ADO.NET, it’s easy to use array-like
navigation to return the exact value you are looking for. In this example, you query the value of the cus-
tomer name in the first row by using the tblCart.Rows(0).Item(2)statement. Figure 6.6 shows you the
results.

Tip Again, you can see the power of constructors. In this sample, you see how you can set your constructor to a method
result.

Chapter 6 A FIRST LOOK AT ADO.NET260

2878c06.qxd 01/31/02 2:14 PM Page 260

Being able to create your own DataSet from within your code enables you to apply many of the
techniques discussed in this book. You can use these custom DataSets to store application data, with-
out incurring the cost of crossing your network until you need to commit your changes.

Managing Concurrency
When you set up your DataSet, you should consider the type of locking, or concurrency control,
that you will use. Concurrency control determines what will happen when two users attempt to
update the same row.

ADO.NET uses an optimistic architecture, rather than a pessimistic model. Pessimistic locking locks
the database when a record is retrieved for editing. Be careful when you consider pessimistic locking.
Pessimistic locking extremely limits your scalability. You really can’t use pessimistic locking in a sys-
tem with a large number of users. Only certain types of designs can support this type of locking.

Consider an airline booking system. A passenger (let’s call her Sam) makes a request to book a
seat and retrieves a list of the available seats from the database. Sam selects a seat and updates the
information in the database. Under optimistic locking, if someone else took her seat, she would see a
message on her screen asking her to select a new one. Now let’s consider what happens under pes-
simistic locking. After Sam makes a request for the list of available seats, she decides to go to lunch.
Because pessimistic locking prevents other users from making changes when Sam is making edits,
everyone else would be unable to book their seats. Of course, you could add some logic for lock
timeouts, but the point is still the same. Pessimistic locking doesn’t scale very well. In addition, dis-
connected architecture cannot support pessimistic locking because connections attach to the database
only long enough to read or update a row, not long enough to maintain an indefinite lock. In classic
ADO, you could choose between different flavors of optimistic and pessimistic locks. This is no
longer the case. The .NET Framework supports only an optimistic lock type.

Figure 6.6

Populating your
custom DataSet
object

261MANAGING CONCURRENCY

2878c06.qxd 01/31/02 2:14 PM Page 261

An optimistic lock type assumes that the data source is locked only at the time the data update com-
mitment occurs. This means changes could have occurred while you were updating the disconnected
data cache. A user could have updated the same CompanyName while you were making changes to the
disconnected DataSet. Under optimistic locking, when you try to commit your CompanyName changes
to the data source, you will override the changes made by the last user. The changes made by the
last user could have been made after you had retrieved your disconnected DataSet. You could have
updated the CompanyName for a customer, after someone else had updated the Address. When you
push your update to the server, the updated address information would be lost. If you expect concur-
rency conflicts of this nature, you must make sure that your logic detects and rejects conflicting
updates.

If you have worked with ADO 2.x, you can think of the Update() method of the DataAdapter
object as analogous to the UpdateBatch() method you used with the RecordSet object. Both models
follow the concept of committing your deltagram to the data source by using an optimistic lock type.

Understanding how locking works in ADO.NET is an essential part of building a solid architec-
ture. ADO.NET makes great strides by advancing the locking mechanism. Let’s take a look at how it
changes from classic ADO in order to get an idea of how much power ADO.NET gives you.

In ADO 2.x, when you make changes to a disconnected RecordSet, you call the UpdateBatch()
method to push your updates to the server. You really don’t know what goes on under the covers and
you hope that your inserts, updates, and deletes will take. You can’t control the SQL statements that
modify the database.

When you use optimistic concurrency, you still need some way to determine whether your server
data has been changed since the last read. You have three choices with managing concurrency: time-
date stamps, version numbers, and storing the original values.

Time-date stamps are a commonly used approach to tracking updates. The comparison logic
checks to see if the time-date of the updated data matches the time-date stamp of original data in
the database. It’s a simple yet effective technique. Your logic would sit in your SQL statements or
stored procedures, such as:

UPDATE Customers SET CustomerID = “SHAMSI”,
CustomerName = “Irish Twinkle SuperMart”
WHERE DateTimeStamp = olddatetimestamp

The second approach is to use version numbers, which is similar to using the time-date stamp, but
this approach labels the row with version numbers, which you can then compare.

The last approach is to store the original values so that when you go back to the database with your
updates, you can compare the stored values with what’s in the database. If they match, you can safely
update your data because no one else has touched it since your last retrieval. ADO.NET does data rec-
onciliation natively by using the HasVersion() method of your DataRow object. The HasVersion()
method indicates the condition of the updated DataRow object. Possible values for this property are
Current, Default, Original, or Proposed. These values fall under the DataRowVersion enumeration. If
you wanted to see whether the DataRow changes still contained original values, you could check to see
if the DataRow has changed by using the HasVersion() method:

If r.HasVersion(datarowversion.Proposed) Then
‘ Add logic
End if

Chapter 6 A FIRST LOOK AT ADO.NET262

2878c06.qxd 01/31/02 2:14 PM Page 262

Summary
This concludes our discussion of the basic properties of the ADO.NET objects. After reading this
chapter, you should be able to answer the questions that we asked you in the beginning:

� What are .NET data providers?

� What are the ADO.NET classes?

� What are the appropriate conditions for using a DataReader versus a DataSet?

� How does OLE DB fit into the picture?

� What are the advantages of using ADO.NET over classic ADO?

� How do you retrieve and update databases from ADO.NET?

� How does XML integration go beyond the simple representation of data as XML?

Although you covered a lot of ground in this chapter, there is still a good amount of ADO.NET
functionality we haven’t discussed. We use this chapter as a building block for the next few chapters.
In the next chapter, we show you how to search and filter ADO.NET DataSets. You will learn about
such things as data binding and data-aware controls in Chapter 8.

263SUMMARY

2878c06.qxd 01/31/02 2:14 PM Page 263

	2878front.pdf
	Evangelos Petroutsos; Asli Bilgin

