
CHAPTER 1

Laying Your
Visual Basic .NET Foundation

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 /
Blind Folio xxvi

TIPS IN THIS CHAPTER

þ Creating Your First Console Application 2

þ Building a Windows-Based Application 4

þ Choosing the Correct Visual Basic Types 6

þ Declaring Variables in a Visual Basic .NET Program 7

þ Displaying Screen Output Using Console.Write and Console.WriteLine 9

þ Formatting Program Output Using Console.WriteLine 11

þ Concatenating Characters to the End of a String 13

þ Forcing Programs to Specify a Variable’s Type 15

þ Beware of Variable Overflow and Precision 17

þ Performing Numeric Operations 19

þ Casting a Value of One Variable Type to Another 22

þ Making Decisions Using Conditional Operators 24

þ Taking a Closer Look at the Visual Basic .NET Relational and
Logical Operators 27

þ Handling Multiple Conditions Using Select 29

þ Repeating a Series of Instructions 31

þ Avoiding Infinite Loops 34

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Over the past ten years, Visual Basic has emerged as the programming language of choice for
the vast majority of programmers. Many programmers site Visual Basic’s ease of use as the

key to its success. Others claim that the ability to drag and drop controls onto a form to quickly build
a program’s user interface lead to Visual Basic’s widespread use.

While masses of programmers have used Visual Basic to implement solutions for a wide range of
programming tasks, a large group of developers, many of whom have been programming with languages
such as C and C++ for years, have refused to acknowledge Visual Basic’s suitability as a professional
programming language. Many such programmers have stated that while Visual Basic provides a
convenient way to build a prototype, programmers should later rewrite the code using a language
such as C++ to achieve better performance.

1

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

þ Executing a Loop Prematurely 34

þ Visual Basic .NET Supports Lazy Evaluation to Improve Performance 35

þ Wrapping Long Statements 36

þ Taking Advantage of the Visual Basic Assignment Operators 37

þ Commenting Your Program Code 38

þ Reading Keyboard Input Using Console.Read and Console.ReadLine 39

þ Displaying a Message in a Message Box 40

þ Prompting the User for Input Using an Input Box 41

þ Breaking a Programming Task into Manageable Pieces 43

þ Passing Parameters to a Function or Subroutine 47

þ Declaring Local Variables in a Function or Subroutine 49

þ Changing a Parameter’s Value in a Subroutine 51

þ Using Scope to Understand the Locations in a Program Where a Variable
Has Meaning 52

þ Storing Multiple Values of the Same Type in a Single Variable 55

þ Grouping Values in a Structure 58

þ Improving Your Code’s Readability Using Constants 60

þ Summarizing the Differences Between Visual Basic and Visual Basic .NET 62

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

With the release of the .NET environment, Microsoft has included two new key programming
languages, Visual Basic .NET and C# (Microsoft also included Visual C++ .NET as a part of the .NET
environment). As you will learn, the .NET environment provides programming-language independent
classes and routines that are used by both C# and Visual Basic .NET. This means whether a programmer
is using Visual Basic .NET or C#, the programmer has the same .NET capabilities available for use.
From a performance perspective, Visual Basic .NET applications will run neck and neck with identical
programs written using C#. Although the .NET environment provides C# programmers with the ability
to drag and drop controls onto a form to quickly build a user interface, the sheer number of Visual Basic
programmers who migrate to Visual Basic .NET will make Visual Basic .NET the .NET programming
language of choice.

Throughout this book’s 18 chapters, you will examine Visual Basic .NET and the .NET environment
in detail. This chapter exists to provide programmers who are new to Visual Basic with a foundation
from which they can build their knowledge and understanding of the capabilities Visual Basic .NET
and the .NET environment provide. If you are an experienced Visual Basic programmer, you may
want to simply scan the titles of the Tips this chapter provides in search of topics you may find new
and then turn to the chapter’s final Tip, which summarizes key differences between Visual Basic and
Visual Basic .NET. In either case, it’s time to get started.

Creating Your First Console Application
Using Visual Basic .NET, you can create a variety of application types, such as a console-based program
that displays its output in an MS-DOS-like window, as shown here, a Windows-based program that
often displays a form-based interface, an ASP.NET page, and more.

Because of the console-based application’s ease of use (you can quickly create programs to display
simple output without having to place controls onto a form), many of the Tips this book presents use
console-based applications.

To create a console application using Visual Studio, perform these steps:

1. In Visual Studio, select File | New | Project. Visual Studio will display the New Project
dialog box.

2 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2. In the New Project dialog box, click the Console Application icon. In the Name field, type a
project name that describes the program you are building, such as DemoProgram (do not type
an extension). Then, in the Location field, type the name of the folder in which you want Visual
Studio to place the project’s folder and files. Click OK. Visual Studio will display a code window,
as shown in Figure 1-1, in which you can type your program statements.

In the code window, type the following statements in the Main subroutine:

Sub Main()
Console.WriteLine("My first VB.NET Program!")
Console.ReadLine()

End Sub

Next, to run the program, select Debug | Start. Visual Studio will display your program’s output in
a console window. To end the program, which will direct Visual Studio to close the window, pressENTER.

As you type program statements in a Visual Basic .NET program, you must type the statements
exactly as they appear in this book, making sure you include the quotes, commas, periods, and so on.
Otherwise, your programs may violate one or more of the Visual Basic .NET syntax rules (the rules
that define the language structure and the format you must use as you create programs). When a syntax

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 3

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Figure 1-1 Displaying the code window in Visual Studio

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

error occurs, Visual Studio will display an error message that describes the error and the line number
in your code where the error occurs. Before Visual Studio will build your program, you must locate
and correct the syntax error.

Each time you make a change to your program code, you must direct Visual Studio to rebuild your
program to put your change into effect. To rebuild your program, select Build | Build Solution. For
example, in the previous program statements, change the code to display the message “Hello, user”
by changing the Console.WriteLine method as follows:

Console.WriteLine("Hello, user")

Next, rebuild your program and then select Debug | Start to view your new output.

Building a Windows-Based Application
Using Visual Studio, you can create a variety of application types. Normally, to create a Windows-
based application, programmers will drag and drop one or more controls onto a form to provide the
user interface, as shown in Figure 1-2.

4 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Figure 1-2 Placing controls on a form in Visual Studio to build a Windows-based application

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11 examines in detail the controls you can place onto a form. To create a simple
Windows-based application using Visual Studio, perform these steps:

1. In Visual Studio, select File | New | Project. Visual Studio will display the New Project
dialog box.

2. In the New Project dialog box, click the Windows Application icon. In the Name field, type
a project name that describes the program you are building, such as DemoProgram (do not
type an extension). Then, in the Location field, type the name of the folder in which you want
Visual Studio to place the project’s folder and files. Click OK. Visual Studio will display a design
window, similar to that previously shown in Figure 1-3, in which you can drag and drop controls
onto your form.

3. To display the toolbox that contains the controls you can drag and drop onto the form, select
View | Toolbox. Visual Studio will open the Toolbox window.

4. In the Toolbox window, locate the Label control. Drag and drop the control onto the form.

5. In the form, right-click the Label control and choose Properties. Visual Studio will display the
Label control’s properties in the Properties window.

6. In the Properties window, locate the Text property and typeHello, user.

To build your program, select Build | Build Solution. Then, to run your program, select Debug |
Start. Visual Studio, in this case, will display your program’s form in its own window as shown in
Figure 1-3.

If you make changes to the program’s form, a control that resides on the form, or your program
code, you must direct Visual Studio to rebuild your program to put your changes into effect.

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 5

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Figure 1-3 Creating and running a simple Windows-based application using Visual Studio

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Choosing the Correct Visual Basic Types
To store information as they execute, programs place data into named storage locations that programmers
refer to as variables—so named because the data a variable stores can change (vary) as the program
executes. A program might use one variable to store a user’s name, a second to store a user’s e-mail
address, and a third to store the user’s age.

Each variable you create in your programs must be of a specific type. A variable’s type defines the
set of values a variable can store, such as counting or floating-point numbers (a number with a decimal
point), or alphanumeric characters (such as the letters of the alphabet that make up a name). A variable’s
type also defines the set of operations a program can perform on a variable. It makes sense, for example,
that a program can multiply two floating-point numbers, but it would not make sense to multiply two
strings (such as two names). Table 1-1 briefly describes the Visual Basic data types. For each type, the
table lists the range of values the type can store, along with the number of bytes of memory Visual
Basic .NET must set aside to store the variable’s value.

As you select a data type for use in your programs, choose a type that best matches
your data. Assume your program must store values in the range –10,000 to 20,000. The

Visual Basic .NET data types Integer, Long, and Short can each store values in this range. However,
by using the type Short, your programs will allocate less memory to store the value—which means
your program can store and retrieve the value faster than it could with a larger data type. More importantly,
however, by selecting the Short type, you provide another programmer who reads your code with
insight into the variable’s use. In the case of a variable defined as the type Short, another programmer
who reads your code immediately knows the variable will store values in the range –32,768 to 32,767.
Visual Basic .NET has “retired” (no longer supports) the Currency and Variant data types that existed
in previous versions of Visual Basic.

6 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Type Values Size

Boolean Represents a True or False value. 2 bytes

Byte Represents an 8-bit value in the range 0 to 255. 1 byte

Char Represents a 16-bit Unicode character. 2 bytes

DateTime Represents a date and time value. 8 bytes

Decimal Represents a value with 28 significant digits in the range
+/–79,228,162,514,264,337,593,543,950,335 with no
decimal point to 7.9228162514264337593543950335
with 28 places to the right of the decimal point.

12 bytes

Double Represents a floating-point value using 64 bits. 8 bytes

Integer Represents a value in the range –2,147,483,648 to 2,147,483,647. 4 bytes

Long Represents a value in the range –9,223,372,036,854,775,808 through
9,223,372,036,854,775,807.

8 bytes

Short Represents a value in the range –32,678 to 32,677. 2 bytes

Single Represents a floating-point value using 32 bits. 4 bytes

Table 1-1 The Visual Basic .NET Types

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 7

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Declaring Variables in a Visual Basic .NET Program
Variables exist to let programs easily store and later retrieve information as the program executes.
Programmers often describe a variable as “a named location in RAM” (a storage container) that holds
a value. The size of the variable’s storage container depends on the variable’s type.

To declare a variable in a Visual Basic .NET program, you use the Dim statement to
specify the variable’s name and type. The Dim statement is so named because it specifies

the dimensions of the variable’s storage container. The following Dim statement declares a variable
named EmployeeNumber of type Integer:

Dim EmployeeNumber As Integer

In this case, by declaring the variable as type Integer, you direct Visual Basic .NET to allocate
4 bytes to store the variable’s value, for which the type Integer can be in the range –2,147,483,648 to
2,147,483,647. Often, programs must declare several variables at one time. The following statements
declare variables to store an employee’s name, ID, salary, and phone number:

Dim EmployeeName As String

Dim EmployeePhoneNumber As String

Dim EmployeeNumber As Integer

Dim EmployeeSalary as Double

In the previous variable declarations, the first two statements declare variables of type String,
which can store alphanumeric characters. When you declare variables of the same type, Visual Basic
.NET lets you place the declarations in the same statement, as shown here:

Dim EmployeeName, EmployeePhoneNumber As String

The following statement is equivalent to that just shown—each declares two String variables:

Dim EmployeeName As String, EmployeePhoneNumber As String

In general, you should consider declaring variables on individual lines, so you can place a comment
to the right of the declaration that describes the variable’s purpose:

Dim EmployeeName As String ' Employee first and last name

Dim EmployeePhoneNumber As String ' 10 digits in the form ###-###-####

When you name variables, choose names that meaningfully describe the information the variable
stores. In that way, another programmer who reads your code can better understand the variable’s purpose
and your code’s processing simply by reading the variable’s name. If you consider the following variable
declarations, the first variable’s name provides you with the variable’s implied use, whereas the
second variable does not:

Dim CityName As String

Dim X As String

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

After you declare a variable in Visual Basic .NET, you can then use the assignment operator (the
equal sign) to assign a value to the variable, as shown here:

CityName = "Houston"

EmployeeName = "Smith"

EmployeeSalary = 60000

Often, programmers must assign an initial value to a variable. To do so, some programmers choose
to declare the variables on one line and then initialize the variable on the next, as shown here:

Dim EmployeeName As String ' Employee first and last name

EmployeeName = "Bill Smith"

Dim EmployeePhoneNumber As String ' 10 digits in the form ###-###-####

EmployeePhoneNumber = "281-555-1212"

Visual Basic .NET, however, lets you combine these two operations into one statement,
as shown here:

Dim EmployeeName As String = "Bill Smith"

Dim EmployeePhoneNumber As String = "281-555-1212"

Visual Basic .NET is a case-independent programming language, which means it treats upper- and
lowercase letters the same in a variable name. The following statements each assign the value 50000
to the variable named EmployeeSalary:

EmployeeSalary = 50000

employeesalary = 50000

EMPLOYEESALARY = 50000

eMpLoYeEsAlArY = 50000

If you do not assign an initial value to a variable, Visual Basic .NET will initialize your variables
for you during compilation. Visual Basic .NET will use the initial values listed in Table 1-2 based on
the variable’s type.

8 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Type Value

Boolean False

Date 12:00:00AM

Numeric types 0

Object Nothing

Table 1-2 Default Values Visual Basic .NET Assigns to Variables of Specific Data Types

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following program, DeclareVariables.vb, declares and initializes several variables. The program
then displays each variable’s value using the Console.WriteLine method:

Module Module1

Sub Main()

Dim EmployeeName As String

Dim EmployeePhoneNumber As String

Dim EmployeeSalary As Double

Dim NumberOfEmployees As Integer

EmployeeName = "Buddy Jamsa"

EmployeePhoneNumber = "555-1212"

EmployeeSalary = 45000.0

NumberOfEmployees = 1

Console.WriteLine("Number of employees: " & NumberOfEmployees)

Console.WriteLine("Employee name: " & EmployeeName)

Console.WriteLine("Employee phone number: " & EmployeePhoneNumber)

Console.WriteLine("Employee salary: " & EmployeeSalary)

Console.ReadLine() ' Pause to view output

End Sub

End Module

After you compile and execute this program, your screen will display the following output:

Number of employees: 1

Employee name: Buddy Jamsa

Employee phone number: 555-1212

Employee salary: 45000

þ NOTE

In previous versions of Visual Basic, programmers used the LET statement to assign a value to
a variable. Visual Basic .NET does not support the LET statement.

Displaying Screen Output Using Console.Write
and Console.WriteLine
When you create a console-based application, your programs display their output to an MS-DOS
window similar to that shown in Figure 1-4.

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 9

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To write output to the console window, your programs use the Console.Write and the
Console.WriteLine methods. The difference between two methods is that Console.WriteLine
will send a carriage-return and linefeed combination following your program output to advance
the cursor to the start of the next line, whereas Console.Write will not.

To display a string message using Console.WriteLine, you simply pass the message as a parameter,
placing the text in double quotes, as shown here:

Console.WriteLine("Hello, Visual Basic World!")

Similarly, to display a number or a variable’s value, you pass the number or variable name to the
method (without quotes) as shown here:

Console.WriteLine(1001)

Console.WriteLine(EmployeeName)

Often, programmers will precede a value with a text message, such as “The user’s age is:”. To
display such output, the code will normally use the Visual Basic .NET concatenation operator (&)
to append the value to the end of the string as shown here:

Console.WriteLine("The user's age is: " & UserAge)

The following program, OutputDemo.vb, illustrates the use of the Console.Write and
Console.WriteLine methods:

Module Module1

Sub Main()

Dim A As Integer = 100

Dim B As Double = 0.123456789

Dim Message As String = "Hello, VB World!"

Console.WriteLine(A)

Console.WriteLine("The value of A is " & A)

Console.WriteLine(B)

1 0 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Figure 1-4 Displaying program output to a console window

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Console.WriteLine(B & " plus " & A & " = " & B + A)

Console.WriteLine(Message)

Console.ReadLine()

End Sub

End Module

After you compile and execute this program, your screen will display the following output:

100

The value of A is 100

0.123456789

0.123456789 plus 100 = 100.123456789

Hello, VB World!

Note that the program places the Console.ReadLine() statement as the last statement in the program.
When you run a console application in Visual Studio, the console window will immediately close
after the program completes its processing. By placing the Console.ReadLine() statement at the end
of the code, the program will pause, waiting for the user to press theENTERkey, before the program
ends and the window closes.

Formatting Program Output Using Console.WriteLine
In the previous Tips, you used the Console.WriteLine and Write functions to display messages to the
console window. In each example, your application simply wrote the character string:

Console.WriteLine("Hello, world!")

Using the Console.WriteLine and Write functions, you can display values by using placeholders in
the method’s text output in the form {0}, {1}, and so on, and then passing parameters for each placeholder.
The following statement uses placeholders in the Console.WriteLine function:

Console.WriteLine("The number is {0}", 3 + 7)

In this case, the WriteLine function will substitute the value 10 for the placeholder {0}. The following
statement uses three placeholders:

Console.WriteLine("The result of {0} + {1} = {2}", 3, 7, 3+7)

In this case, the function will substitute the value 3 for the placeholder {0}, the value 7 for the
placeholder {1}, and the value 10 for the placeholder {2}.

Using placeholders such as {0} and {1}, you can display values and variables using the
Console.WriteLine and Write functions. When you specify placeholders, you must make sure

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 1 1

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

that you include values the function is to substitute for each placeholder. If you specify the
placeholders {0} and {1}, for example, and only provide one value, the function will generate an
exception. If your program does not handle the exception, your program will immediately end.

When your programs use the Console.WriteLine and Write functions to display output, your
programs can place a format specifier after the placeholder number, such as {1, d} or {2, 7:f}. The
format specifier can include an optional width value, followed by a colon and a character that specifies
the value’s type. Table 1-3 briefly describes the type specifiers.

In the previous Tip, you learned to use several different format specifiers in the
Console.WriteLine and Console.Write functions. When your program displays floating-point values,
there will be times, such as when the value represents currency, when you will want to specify the
number of digits the functions display to the right of the decimal point. Assume your program must
display the variable Amount, which contains the value 0.123456790. To control the number of digits
the WriteLine and Write functions display, you specify the placeholder, width, format specifier, and
number of digits, as shown here:

Console.WriteLine("See decimals {0, 12:f1}", _

0.123456789) ' 0.1

Console.WriteLine("See decimals {0, 12:f9}", _

0.123456789) ' 0.123456789

In addition to the width and format specifiers, the functions also let you use the pound sign (#) to
format your data. The following statement directs Console.WriteLine to display a floating-point value
with two digits to the right of the decimal point:

Console.WriteLine("The value is {0, 0:###.##}", Value)

1 2 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Specifier Value Type

C or c Local currency format.

D or d Decimal value.

E or e Scientific notation.

F or f Floating point.

G or g Selects scientific or floating point depending on which is most compact.

N or n Numeric formats which include commas for large values.

P or p Percentage formats.

R or r Called the “round-trip” specifier. Used for floating-point values to ensure that a value
that is converted to a string and then back to floating point yields the original value.

X or x Hexadecimal formats.

Table 1-3 Format Specifiers You Can Use with Console.WriteLine and Console.Write

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 1 3

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

When you use the pound-sign character to specify an output format, the WriteLine function will
not display leading zeros. In other words, the function would output the value 0.123 as simply .123.
When you want to display leading zeros, you can replace the pound sign with a zero, as shown here:

Console.WriteLine("The value is {0, 0:000.00}", Value)

The following program, ConsoleWriteLineDemo.vb, illustrates the use of the various
Console.WriteLine formatting capabilities:

Module Module1

Sub Main()

Dim A As Double = 1.23456789

Console.WriteLine("{0} {1} {2}", 1, 2, 3)

Console.WriteLine("{0, 1:D} {1, 2:D} {2, 3:D}", 1, 2, 3)

Console.WriteLine("{0, 7:F1} {1, 7:F3} {2, 7:F5}", A, A, A)

Console.WriteLine("{0, 0:#.#}", A)

Console.WriteLine("{0, 0:#.###}", A)

Console.WriteLine("{0, 0:#.#####}", A)

Console.ReadLine()

End Sub

End Module

After you compile and execute this program, your screen will display the following output:

1 2 3

1 2 3

1.2 1.235 1.23457

1.2

1.235

1.23457

Concatenating Characters to the End of a String
In Visual Basic .NET programs, the String type lets variables store alphanumeric characters (the
upper- and lowercase letters of the alphabet, the digits 0 through 9, and punctuation symbols).
To assign a value to a String variable, you must place the value in double quotes, as shown here:

Dim Name As String = "John Doe"

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following program, UseStrings.vb, assigns values to several different String variables, which
the program later displays using Console.WriteLine:

Module Module1

Sub Main()

Dim Book As String = _

"Visual Basic .Net Programming Tips & Techniques"

Dim Author As String = "Jamsa"

Dim Publisher As String = "McGraw-Hill/Osborne"

Console.WriteLine(Book)

Console.WriteLine(Author)

Console.WriteLine(Publisher)

Console.ReadLine()

End Sub

End Module

After you compile and execute this program, your screen will display the following output:

Visual Basic .Net Programming Tips & Techniques

Jamsa

McGraw-Hill/Osborne

When your programs use String variables, a common operation your code will perform is to append
characters to a String variable’s existing contents. Programmers refer to operations that append characters
to a String as concatenation operations.

To concatenate one string to another, you use the ampersand (&), which is the Visual
Basic .NET concatenation operator. The following statement assigns an employee’s first

name and last name to a variable called EmployeeName, by concatenating the FirstName and LastName
variables and assigning the result to the EmployeeName variable:

Dim FirstName As String = "Bill"

Dim LastName As String = "Gates"

Dim EmployeeName As String

EmployeeName = FirstName & " " & LastName

As you can see, the code separates the first and last names with a space by concatenating the space
to the end of the string the FirstName variable contains. Throughout this book, you will encounter
Console.WriteLine statements that use the concatenation operator to append a value to a string:

Console.WriteLine("The result is " & SomeVariable)

1 4 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 1 5

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

The following program, ConcatenateDemo.vb, illustrates the use of the concatenation operator:

Module Module1

Sub Main()

Dim WebSite As String

Dim Publisher As String = "Osborne"

Console.WriteLine("This book's publisher: " & Publisher)

WebSite = "www." & Publisher & ".com"

Console.WriteLine("View their books at " & WebSite)

Console.ReadLine()

End Sub

End Module

After you compile and execute this program, your screen will display the following output:

This book's publisher: Osborne

View their books at www.Osborne.com

Forcing Programs to Specify a Variable’s Type
To reduce possible errors that result from misspelled variable names, you should force programs to
declare each variable the code uses to store data. By declaring a variable, your program specifies the
variable’s type, which, in turn, limits the range of values the program can assign to the variable and
the operations the program can perform on the variable.

The following program, BadVariables.vb, does not declare the variables it uses. The program assigns
values to several employee-based variables and then displays the employee’s name:

Option Explicit Off ' Lets the program use variables without

' declaring the variables

Module Module1

Sub Main()

EmployeeName = "Buddy Jamsa"

EmployeePhoneNumber = "555-1212"

EmployeeSalary = 45000.0

NumberOfEmployees = 1

Console.WriteLine("Number of employees: " & NumberOfEmployees)

Console.WriteLine("Employee name: " & EmployeName)

Console.WriteLine("Employee phone number: " & EmployeePhoneNumber)

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Console.WriteLine("Employee salary: " & EmployeeSalary)

Console.ReadLine() ' Pause to view output

End Sub

End Module

Unfortunately, when you execute this program, the program does not display the employee’s name.
Instead, the program displays blank output for the name, as shown here:

Number of employees: 1

Employee name:

Employee phone number: 555-1212

Employee salary: 45000

If you examine the program statements closely, you will find that the Console.WriteLine statement
that displays the employee’s name misspells the variable name (it omits the endinge in Employee).
Normally, Visual Studio requires that you declare each variable your program uses. By forcing the
program to declare each variable, you eliminate such errors. In this case, the statement Option Explicit
Off directs the compiler to let the program use a variable without first declaring the variable (an option
you should not enable).

To force a program to declare variables, you place the following statement at the start of
your program:

Option Explicit On

If you insert the statement at the start of the BadVariables.vb program, the Visual Basic .NET
compiler will generate a syntax error message similar to those shown in Figure 1-5, that tells you

1 6 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Figure 1-5 Syntax-error messages that correspond to undeclared variables

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the variables are not declared. As you declare variables to remove the syntax errors, you will likely
discover the misspelled variable name.

Beware of Variable Overflow and Precision
As you learned, a variable’s type specifies the range of values a variable can store and a set of operations
a program can perform on the variable. If you assign a value to a variable that exceeds the range of
values the variable can store, an overflow error occurs. Assume that your program is using a variable
of type Short to store a value in the range –32,678 to 32,767. Further, assume that the variable contains
the value 32,767 and your program adds the value 1 to the variable as shown here:

Dim Value As Short = 32767

Value = Value + 1

When the program executes this statement, the value 32,768 will fall outside of the range of values
the variable can store. When the overflow error occurs, your program will generate an exception and
will end, displaying an error message similar to that shown in Figure 1-6. Chapter 9 discusses exceptions
and how your programs should respond to such errors.

Just as a variable’s type limits the range of values a variable can store, it also limits the
accuracy (or precision) of the value a variable can represent. Variables of type Single are

generally precise to 7 digits to the right of the decimal point, whereas variables of type Double are precise
to 15 digits. The following program, ShowPrecision.vb, illustrates the accuracy of single- and
double-precision variables:

Module Module1

Sub Main()

Dim A As Single = 0.123456789012345

Dim B As Double = 0.123456789012345

Console.WriteLine("Single: " & A)

Console.WriteLine("Double: " & B)

Console.ReadLine()

End Sub

End Module

After you compile and execute this program, your screen will display the following output:

Single: 0.1234568

Double: 0.123456789012345

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 1 7

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As your programs manipulate floating-point numbers, a type’s limited precision can lead to errors
that are difficult to detect. The following program, PrecisionError.vb, uses a For loop to move through
the values 0.01, 0.02, 0.03 up to 0.1. When the variable A contains the value 0.05, the program displays
a message so stating:

Module Module1

Sub Main()

Dim A As Single

For A = 0.01 To 0.1 Step 0.01

If (A = 0.05) Then

Console.WriteLine("Reached 0.05")

End If

Next

Console.WriteLine("Done with loop")

Console.ReadLine()

End Sub

End Module

After you compile and execute the program, your screen will display the following output:

Done with loop

As you can see, the program does not display the message “Reached 0.05.” That’s because the
computer’s limited precision prevents the computer from exactly representing the value 0.05. For
the loop to display the message, you must change the If statement to take the limited precision into
account and test for the value being a few digits from 0.05, as shown here:

If (Math.Abs(A – 0.05) < 0.00001) Then

1 8 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Figure 1-6 An exception (error) that occurs when the value a program assigns exceeds a type’s
acceptable range of values

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Performing Numeric Operations
To accomplish meaningful work, a program must perform operations on its variables. A program
might multiply a variable that contains a user’s total purchases by a sales tax amount, in order to
determine the amount of tax the user must pay. Then the code may add the sales tax and shipping
costs to the purchase amount in order to determine the total amount of money the user owes for his
or her purchase of two items:

Purchases = 10.0 + 20.0

SalesTax = Purchases * 0.05

TotalDue = Purchases + SalesTax

To perform such operations, programs use arithmetic operations. Table 1-4 briefly describes the
Visual Basic .NET arithmetic operators.

The following program, OperatorDemo.vb, illustrates the use of the various Visual Basic
.NET arithmetic operators:

Module Module1

Sub Main()

Console.WriteLine("1 + 2 = " & 1 + 2)

Console.WriteLine("3 - 4 = " & 3 - 4)

Console.WriteLine("5 * 4 = " & 5 * 4)

Console.WriteLine("25 / 4 = " & 25 / 4)

Console.WriteLine("25 \ 4 = " & 25 \ 4)

Console.WriteLine("25 Mod 4 = " & 25 Mod 4)

Console.WriteLine("5 ^ 2 = " & 5 ^ 2)

Console.ReadLine()

End Sub

End Module

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 1 9

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Operator Purpose

+ Addition

- Subtraction

* Multiplication

/ Division (standard)

\ Division (integer)

Mod Modulo (remainder)

^ Exponentiation

Table 1-4 The Visual Basic .NET Arithmetic Operators

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

After you compile and execute this program, your screen will display the following output:

1 + 2 = 3

3 - 4 = -1

5 * 4 = 20

25 / 4 = 6.25

25 \ 4 = 6

25 Mod 4 = 1

5 ^ 2 = 25

When your programs perform arithmetic operations, you must understand that Visual Basic .NET
assigns a precedence to each operator, which controls the order in which the program will perform
the operations. Assume that your program must calculate the result of the following expression:

Result = 5 + 3 * 2

If Visual Basic .NET were to perform the operations from left to right, it would calculate the result
16, which is not correct. Instead, Visual Basic .NET will first perform the multiplication operation,
because the multiplication operator has a higher precedence than addition:

Result = 5 + 3 * 2

Result = 5 + 6

Result = 11

Table 1-5 illustrates the precedence of Visual Basic .NET arithmetic operators.
If based only on operator precedence, the order in which Visual Basic .NET performs arithmetic

operations often will not match the order you need. Assume that your program needs to determine the
sales tax (using 5% for this example) for two items priced at $10 and $20. Consider the following
expression:

SalesTax = 10 + 20 * 0.05

2 0 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Arithmetic Operator Purpose

^ Exponentiation.

- Negation.

*, / Multiplication and division.

\ Integer division.

Mod Remainder.

+, - Addition and subtraction. Note that string concatenation using + has equal precedence
to addition and subtraction, whereas concatenation using & has lower precedence.

And, Or, Not, Xor Bitwise operators.

Table 1-5 Operator Precedence with Visual Basic .NET

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Because the multiplication operator has a higher precedence than the addition operator, Visual
Basic .NET will perform the multiplication first, which results in the following incorrect result:

SalesTax = 10 + 20 * 0.05

= 10 + 10

= 20

To control the order in which Visual Basic .NET performs operations, you must group
operations in parentheses. When Visual Basic .NET evaluates an expression, Visual Basic

.NET will perform operations that appear in parentheses first. In the previous sales tax example, you
can use parentheses as follows to ensure that the program adds the first two items and then performs
the multiplication on the result:

SalesTax = (10 + 20) * 0.05

In this case, the program would calculate the sales tax as follows:

SalesTax = (10 + 20) * 0.05

= (30) * 0.05

= 1.50

The following program, PrecedenceDemo.vb, illustrates how using parentheses to force the order
of an expression’s evaluation can change the result:

Module Module1

Sub Main()

Dim Expression1 As Double

Dim Expression2 As Double

Dim Expression3 As Double

Dim Expression4 As Double

Expression1 = 5 ^ 2 + 1 * 3 – 4

Expression2 = 5 ^ (2 + 1) * 3 – 4

Expression3 = 5 ^ (2 + 1) * (3 - 4)

Expression4 = 5 ^ ((2 + 1) * (3 - 4))

Console.WriteLine(Expression1)

Console.WriteLine(Expression2)

Console.WriteLine(Expression3)

Console.WriteLine(Expression4)

Console.ReadLine()

End Sub

End Module

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 2 1

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

After you compile and execute this program, your screen will display the following output:

24

371

-125

0.008

Casting a Value of One Variable Type to Another
A variable’s type specifies a range of values a variable can store and a set of operations a program
can perform on a variable. In your programs, there will be times when you must assign a value of one
type of variable to a variable of a different type. Programmers refer to such operations as “casting”
the variable’s type.

When you assign a value of a “smaller type,” such as a value of type Short, to a larger type, such
as a variable of type Integer, Visual Basic .NET can perform the assignment because the smaller
variable’s value can fit into the larger variable’s storage capacity. Programmers refer to an assignment
operation that casts the value of a variable of a smaller type to a variable of a larger type as an
implicit cast.

In contrast, if you reverse the assignment and assign a value of a larger type to a smaller type,
Visual Basic .NET must discard bits that represent the larger variable’s value. If you assign an
Integer value (which Visual Basic .NET represents using 32 bits) to a variable of type Short (which
uses 16 bits), Visual Basic .NET will discard the value’s upper 16 bits, which obviously can lead to
erroneous results.

For such cases when your code must assign the value of a larger type to a variable of a
smaller type and you do not care that Visual Basic .NET may discard part of the larger

value, your code must perform an operation that programmers call an explicit cast. To perform an
explicit cast, your program must use one of the built-in functions listed in Table 1-6.

2 2 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Function Purpose

ToBoolean Converts a value to a Boolean (True or False).

ToByte Converts a value to an 8-bit Byte in the range 0 to 255.

ToChar Converts a value to a 2-byte Unicode character.

ToDateTime Converts a value to a DateTime object.

ToDecimal Converts a value to a 12-byte Decimal.

ToDouble Converts a value to an 8-byte Double.

ToInt16 Converts a value to a 2-byte Short.

ToInt32 Converts a value to a 4-byte Integer.

Table 1-6 Type Conversion Routines Provided in the System.Convert Namespace

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 2 3

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

The following program, CastDemo.vb, performs two simple cast operations. The first assigns a
value of type Integer to a value of type Short. The second casts a value of type Double to a value of
type Single:

Module Module1

Sub Main()

Dim BigInteger As Integer = 10000

Dim LittleInteger As Short

Dim BigFloat As Double = 0.123456789

Dim LittleFloat As Single

LittleInteger = BigInteger

LittleFloat = BigFloat

Console.WriteLine(LittleInteger)

Console.WriteLine(LittleFloat)

Console.ReadLine()

End Sub

End Module

After you compile and execute this program, your screen will display the following output:

10000

0.1234568

In the case of the floating-point value 0.123456789, you can see that the assignment caused the
operation to lose significant digits. The Integer to Short assign, in this case, was successful because

Function Purpose

ToInt64 Converts a value to an 8-byte Integer.

ToSByte Converts a value to an 8-bit signed value in the range –128 to 127.

ToSingle Converts a value to a 4-byte Single.

ToString Converts a value to its String representation.

ToUInt16 Converts a value to a 2-byte unsigned Short in the range 0 to 65,535.

ToUInt32 Converts a value to a 4-byte unsigned Integer in the range 0 to 4,294,967,295.

ToUInt64 Converts a value to an 8-byte unsigned long Integer in the range 0 to
18,446,744,073,709,551,615.

Table 1-6 Type Conversion Routines Provided in the System.Convert Namespace (continued)

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the Integer variable contained a value in the range a variable of type Short can store. If, for example,
you change the program to use the value 40000, the assignment will cause the program to generate an
overflow exception. So, depending on the value that the Integer variable contains, this program may
or may not work.

To reduce potential errors that can occur when your programs assign a value from a larger type to
a smaller type, your code can demand that the Visual Basic .NET compiler not allow such assignments
by placing the following statement at the start of your programs:

Option Strict On

After you enable strict type-conversion processing, the following assignment statement would
cause the Visual Basic .NET compiler to generate a syntax error:

LittleInteger = BigInteger

Making Decisions Using Conditional Operators
A program is simply a set of instructions the CPU executes to perform a specific task. The programs
this chapter has presented thus far have begun their execution with the first statement and then have
continued to execute statements one following another, up to and including the last statement.

As your programs perform more complex operations, your code will often perform one set of
operations for a given condition and a second set for a different condition. For example, a program
that implements a Web-based shopping cart would use one sales tax for customers in Texas and
another for customers in New York.

Programmers refer to the process of a program making decisions about which statements to execute
as conditional processing. To perform conditional processing, programs make extensive use of the
If and If-Else statements.

To use an If statement, programs must specify a condition that Visual Basic .NET evaluates to either
True or False. A condition might, for example, use an If statement to determine whether a user’s name
is “Smith” or a student’s test score was greater than or equal to 90:

If (Username = "Smith") Then

' Statements to execute

End If

If (TestScore > 90) Then

' Statements to execute

End If

When Visual Basic .NET encounters the If statement, Visual Basic .NET will evaluate the corresponding
condition. If the condition evaluates to True, your program will execute the statements that appear
between the If and End If statements. If, instead, the condition evaluates to False, your program will
not execute the statements, continuing its execution at the first statement following the End If.

2 4 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Often, programs must perform one set of statements when a condition is true and a second when
the condition is false. In such cases, the programs can use the If-Else statement. The following statement
displays a message that tells a student that he or she passed an exam (the student passes if his or her
score is greater than or equal to 70). If the student did not pass the test, the code displays a message
telling the student that he or she failed:

If (TestScore >= 70) Then

Console.WriteLine("You passed!")

Else

Console.WriteLine("You failed")

End If

To improve a program’s readability, programmers normally indent the statements that appear in
constructs, such as the If and Else statements. Using indentation, a programmer, at a glance, can determine
which statements relate. To simplify the indentation process, Visual Studio will automatically indent
the statements you type in an If statement.

Many times, a program must evaluate a variety of conditions. For example, rather than simply telling
the student whether he or she passed or failed the exam, a better program would display the student’s
grade based on the following. One way to display a message that corresponds to the student’s grade is
to use several If statements, as shown here:

If (TestScore >= 90) Then

Console.WriteLine("You got an A")

End If

If (TestScore >= 80) And (TestScore < 90)

Console.WriteLine("You got a B")

End If

If (TestScore >= 70) And (TestScore < 80)

Console.WriteLine("You got a C")

End If

If (TestScore < 70) Then

Console.WriteLine("You failed")

End If

The problem with the previous series of If statements is that regardless of the user’s test score, the
program must evaluate each If statement, which adds unnecessary processing. A better solution is to
use a series of If-Else statements as shown here:

If TestScore >= 90 Then

Console.WriteLine("Test grade: A")

ElseIf TestScore >= 80 Then

Console.WriteLine("Test grade: B")

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 2 5

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:40:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 6 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

ElseIf TestScore >= 70 Then

Console.WriteLine("Test grade: C")

Else

Console.WriteLine("Test grade: F")

End If

The following program, IfDemo.vb, illustrates the use of several different If and If-Else
statements:

Module Module1

Sub Main()

Dim TestScore As Integer = 80

If TestScore >= 90 Then

Console.WriteLine("Test grade: A")

ElseIf TestScore >= 80 Then

Console.WriteLine("Test grade: B")

ElseIf TestScore >= 70 Then

Console.WriteLine("Test grade: C")

Else

Console.WriteLine("Test grade: F")

End If

Dim Language As String = "English"

If (Language = "English") Then

Console.WriteLine("Hello, world!")

ElseIf (Language = "Spanish") Then

Console.WriteLine("Hola, mundo")

End If

If (Now.Hour < 12) Then

Console.WriteLine("Good morning")

ElseIf (Now.Hour < 18) Then

Console.WriteLine("Good day")

Else

Console.WriteLine("Good evening")

End If

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 2 7

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Console.ReadLine()

End Sub

End Module

After you compile and execute this program, your screen will display output similar to the
following:

Test grade: B

Hello, world!

Good morning

Take time to experiment with this program by changing the values the program assigns to the
TestScore and Language variables.

Taking a Closer Look at the Visual Basic .NET
Relational and Logical Operators
In a condition, such as the test for an If or While statement, programs use relational operators to compare
one value to another. Using relational operators, an If statement can test if one value is greater than,
equal to, or less than another value. The result of the condition’s test is always a Boolean (True or
False) result. Table 1-7 briefly describes the Visual Basic .NET relational operators.

Depending on the condition a program examines, there are many times when a program must test
two or more relationships. An If statement might test if a user’s age is greater than or equal to 21 and

Operator Relational Comparison

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

= Equal

<> Not equal

Like Tests whether a string matches a specified pattern

Table 1-7 The Visual Basic .NET Relational Operators

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 8 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

if the user lives in the United States. To test two more or conditions, programs use logical operators.
Visual Basic .NET supports the And, Or, Xor, and Not relational operators.

The following program, ConditionDemo.vb, illustrates the use of the And, Or, and Not
logical operators:

Module Module1

Sub Main()

Dim OwnsAPet As Boolean = False

Dim OwnsADog As Boolean = True

Dim OwnsACat As Boolean = True

If (Not OwnsAPet) Then

Console.WriteLine("You need a pet")

End If

If (OwnsADog Or OwnsACat) Then

Console.WriteLine("Dogs and Cats are great")

End If

If (OwnsADog And OwnsACat) Then

Console.WriteLine("Do the dog and cat get along?")

End If

Console.ReadLine()

End Sub

End Module

After you compile and execute this program, your screen will display the following output:

You need a pet

Dogs and Cats are great

Do the dog and cat get along?

Take time to experiment with this program by changing the True and False values the program
assigns to each variable and then run the program to see how the change affects each condition.

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 2 9

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Handling Multiple Conditions Using Select
When programmers discuss conditional processing, they often focus their solutions on If
and If-Else statements. Visual Basic .NET, however, provides the Select control structure

(construct) that your programs can use to simplify the code you must write to handle complex conditions.
At first glance, the Select statement looks quite similar to a series of If-Else statements. For example,
the following Select statement displays a message based on the current day of the week:

Dim DayOfWeek As Integer

DayOfWeek = Now.DayOfWeek

Select Case DayOfWeek

Case 0

Console.WriteLine("Sunday")

Case 1

Console.WriteLine("Monday")

Case 2

Console.WriteLine("Tuesday")

Case 3

Console.WriteLine("Wednesday")

Case 4

Console.WriteLine("Thursday")

Case 5

Console.WriteLine("Friday")

Case 6

Console.WriteLine("Saturday")

End Select

Using a Select statement, you can also specify a condition and a series of possible matching
results. The following Select statement determines and displays a user’s grades:

Dim TestScore As Integer

TestScore = 84

Select Case TestScore

Case Is >= 90

Console.WriteLine("Grade: A")

Case Is >= 80

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Console.WriteLine("Grade: B")

Case Is >= 70

Console.WriteLine("Grade: C")

Case Else

Console.WriteLine("Grade: F")

End Select

As you can see, when you specify a condition in a Select statement, you must use the Is keyword.
Also note that the Select statement supports an Else case that it executes when none of the specified
cases match the selected value. In addition to using a condition in a Select statement as just shown,
you can also specify a range of matching values, as shown here:

Dim TestScore As Integer

TestScore = 84

Select Case TestScore

Case 90 To 100

Console.WriteLine("Grade: A")

Case 80 To 89

Console.WriteLine("Grade: B")

Case 70 To 79

Console.WriteLine("Grade: C")

Case Else

Console.WriteLine("Grade: F")

End Select

In the first example, you learned how to use a Select statement to match one value. Depending on
the processing your program performs, there may be times when you want to perform the same processing
for a range of values. The following Select statement displays messages based on the current day. For
several days of the week, the code displays the same message:

Dim DayOfWeek As Integer

DayOfWeek = Now.DayOfWeek

Select Case DayOfWeek

Case 0, 6

Console.WriteLine("Enjoy the weekend")

Case 1, 2, 3

Console.WriteLine("Too many days until the weekend")

Case 4, 5

Console.WriteLine("Almost the weekend!")

End Select

3 0 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Repeating a Series of Instructions
Just as there may be times when your programs must perform conditional processing in order to make
decisions, there will also be times when your programs must perform one or more statements as long
as a specific condition is true, or you may want the statements to execute a specific number of times.
Programmers refer to such repetitive processing as iterative processing. Visual Basic .NET provides
four iterative constructions your programs can use to repeat one or more statements: the For, While,
For Each, and Do While loops.

The For loop exists to let your programs repeat one or more statements a specific number of
times. The following statement uses a For loop to display the numbers 1 to 5 on the screen using
Console.WriteLine:

Dim I As Integer

For I = 1 To 5

Console.WriteLine(I)

Next

When this loop executes, your screen would display the following output:

1

2

3

4

5

The For loop consists of three parts. The first part of the statement initializes the loop’s control
variable. The second part compares the control variable to an ending condition. The third part is
optional and specifies the amount by which the loop increments or decrements the control variable
with each iteration. The following loop displays the numbers 0, 10, 20, … to 100 by incrementing
the control variable by 10 with each iteration:

For I = 0 To 100 Step 10

Console.WriteLine(I)

Next

When your programs use a For loop, Visual Basic .NET does not restrict you to using only counting
numbers. You can also use variables of type Single and Double as a loop’s control variable. The
following statements use a For loop to display values 0.0 to 1.0 by incrementing the loop’s control
variable by 0.1 with each iteration:

Dim X As Double

For X = 0.0 To 1.0 Step 0.1

Console.WriteLine(X)

Next

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 3 1

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

By using a negative step value, a For loop can move downward through a range of values. The
following statements loop through the values 100 down to 0, decrementing the step value by 10 with
each iteration:

For I = 100 To 0 Step -10

Console.WriteLine(I)

Next

In contrast to the For loop, which repeats one or more statements a specific number of times, the
While loop repeats statements as long as a specific condition is true. In your programs, you might use
a While loop to read and display lines of a file. In this case, the statements in the loop would continue
to read and display the file’s content while (as long as) the file contains content the program has not
yet read and displayed (meaning, you have not yet reached the end of the file). Or you might use a
While loop to display and respond to a user menu’s option selections until the user chooses the Quit
option. The format of the While loop is as follows:

While (Condition)

' Statements to repeat

End While

Note that unlike previous versions of Visual Basic that used the Wend statement to mark the end
of a While loop, Visual Basic .NET uses End While.

The For Each statement lets you repeat one or more statements for each element of an array.
The following statements use a For Each statement to display the names of files that reside in the
current directory:

Dim Files As String() = Directory.GetFiles(".")

Dim Filename As String

For Each Filename In Files

Console.WriteLine(Filename)

Next

Finally, the Do loop is similar to the While loop in that it lets your programs repeat one or more
statements while a specific condition is met. However, unlike the While loop, which places the test
at the start of the loop, the Do loop places the test at the end of the loop. This means the statements
a Do loop contains will always execute at least one time:

Do

' Statements to repeat

Loop While (Condition)

The following program, LoopDemos.vb, uses the For, While, and Do While loops to
iterate through a range of values. Then the code uses the For Each loop to display the

names of files in the current directory:

3 2 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Imports System.IO

Module Module1

Sub Main()

Dim I As Integer

For I = 0 To 10

Console.Write(I & " ")

Next

Console.WriteLine()

Dim X As Double = 0.0

While (X < 100)

Console.Write(X & " ")

X = X + 25

End While

Console.WriteLine()

Do

Console.Write(X & " ")

X = X – 10

Loop While (X < 0)

Console.WriteLine()

Dim Files As String() = Directory.GetFiles(".")

Dim Filename As String

For Each Filename In Files

Console.WriteLine(Filename)

Next

Console.ReadLine()

End Sub

End Module

After you compile and execute this program, your screen will display the following output:

0 1 2 3 4 5 6 7 8 9 10

0 25 50 75

100

.\LoopDemo.exe

.\LoopDemo.pdb

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 3 3

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 4 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Avoiding Infinite Loops
Iterative constructs such as the For and While statements exist to let your programs repeat a series of
statements a specific number of times or as long as a specific condition is true. When your program
uses iterative constructs, there may be times when a loop does not end (normally because of a
programming error). Programmers refer to unending loops as infinite loops, because unless you can
end the program by closing the program window, the loop will continue to execute forever. The goal
of the following While loop, for example, is to display the values 0 through 99. However, if you
examine the loop, you will find that it does not increment the variable I. As a result, after the loop
starts, the loop will reach its ending condition (I equal to 100), so the code will repeat forever:

Dim I As Integer = 0

While I < 100

Console.WriteLine(I)

End While

To reduce the possibility of an infinite loop in your programs, you should examine each
loop to ensure that the loop correctly performs the following four steps:

1. Initializes a control variable

2. Tests the control variable’s value

3. Executes the loop’s statements

4. Modifies the control variable

You can remember these four steps using the ITEM (Initialize, Test, Execute, Modify) acronym.
Consider the previous While loop. The code initializes the variable I when it declares the variable.
Then the first statement of the While loop tests the control variable. In the While loop, the code executes
the Console.WriteLine statement. However, the code does not modify the control variable in the loop,
which leads to the infinite loop.

Executing a Loop Prematurely
In a Visual Basic .NET program, loops let your code repeat a set of instructions a specific number of
times or while a specific condition is met. Ideally, a loop should have one condition that determines if
the code will perform (and later repeat) the loop’s statements. In a For loop, the loop’s processing ends
when the loop’s control variable’s value is greater than the loop’s ending value.

That said, there may be times when your code must terminate a For loop’s (or a For Each
loop’s) processing prematurely. In such cases, your code can use the Exit For statement,

which directs Visual Basic .NET to end the loop’s processing and to continue the program’s execution
at the first statement that follows the For statement (the first statement that follows Next). In a similar
way, to exit a While loop prematurely, your code can execute the Exit While statement.

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 3 5

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

þ NOTE

Later in this chapter, you will examine subroutines that let you group a set of related statements that
perform a specific task. Normally, a subroutine will execute its statements in succession, from the
first statement to the last. However, there may be times when you must end a subroutine’s processing
prematurely. In such cases, your code can issue the Exit Sub statement. However, as is the case of the
For and While loops, to improve the readability of your code, you should avoid using Exit statements
whenever possible.

Visual Basic .NET Supports Lazy Evaluation to
Improve Performance
When your programs perform conditional and iterative processing, you can improve your program’s
performance by changing the way that Visual Basic .NET handles conditions that use the logical And
and Or operators. In statements such as the If, Select, and While statements, your programs can use
the logical And operator to specify two conditions that must evaluate to True before the program will
perform the corresponding statements. The following statement uses the logical And operator to test
if the employee is a programmer and if the programmer knows how to program using Visual Basic .NET:

If (UserIsProgrammer) And (UserKnowsVB) Then

' Statements

End If

Normally, when your code uses logical operators to evaluate a condition, Visual Basic will examine
each part of the condition and then determine whether the condition is true. However, in the case of
the And operator, if the first half of a condition evaluates to False, you know the entire condition will
be False. In a similar way, in the case of the Or operator, if the first part of a condition evaluates to
True, you know the entire condition will be True. To improve performance, you can take advantage
of the AndAlso and OrElse operators. The AndAlso operator directs Visual Basic .NET to only evaluate
the second part of a condition if the first part evaluates as a True. The OrElse operator directs Visual
Basic .NET to evaluate the second part of a condition that uses OrElse should the first part of the
condition evaluate to False.

The following program, LazyEvaluation.vb, illustrates the use of AndAlso and
OrElse operators:

Module Module1

Sub Main()

Dim OwnsDog As Boolean = True

Dim OwnsCat As Boolean = False

If OwnsDog AndAlso OwnsCat Then

Console.WriteLine("Owns both a dog and a cat")

End If

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If OwnsDog OrElse OwnsCat Then

Console.WriteLine("Owns a dog or cat--maybe both")

End If

Console.ReadLine()

End Sub

End Module

You may be wondering why Visual Basic .NET does not simply use lazy evaluation all the time.
The reason is that there may be times when not executing the second half of a condition can introduce
errors. Consider the following If statement that calls a function in each of the conditions:

If (IsAfterBusinessHours() And BuildingIsSecure()) Then

Depending on the processing the BuildingIsSecure function performs, you may not want the
program to skip the function’s execution simply because the IsAfterBusinessHours function returns
a False result (which would end the statement’s execution if you use lazy evaluation).

Wrapping Long Statements
As you examine the programs this book’s Tips present, there will be many times when the code wraps a
long statement onto two or more lines because of the limitations of the printed page. As you program,
there may be times when you will want to wrap a long statement onto the next line so you do not have to
continually scroll horizontally to see the program statements.

To wrap a statement to the next line, you must place a space followed by an underscore
(_) character at the end of the line, as shown here:

SomeVeryLargeVariableName = SomeLongSubroutineName(ParameterOne, _

ParameterTwo, ParameterThree, ParameterFour)

Often, programmers will wrap long character strings over two or more lines. To wrap a character
string, you must break the string into multiple strings, so that one string ends at the point you want to
wrap the line and a new string begins at the location you want on the following line. Between each of
the strings, you place the concatenation operator (&) as shown here:

Console.Writeline("The title of the book is: Visual Basic .Net" & _

" Programming Tips and Techniques")

When you wrap a string in this way, you must remember to place a space character at either the
end of one string or at the start of the new string if the strings were originally separated by a space.

3 6 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 3 7

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Taking Advantage of the Visual Basic Assignment
Operators
In programs, it is common to perform an arithmetic operation that uses a variable’s current value and
then assigns the result of the operation back to the variable. The following statement adds the value 1
to the variable Counter:

Counter = Counter + 1

To simplify operations that use a variable’s value in an expression and then assign the
result back to the variable, Visual Basic .NET provides the set of assignment operators

listed in Table 1-8.
The following statement uses the addition assignment operator to increment the value of the

Counter variable by 1:

Counter += 1

The following program, AssignmentDemo.vb, illustrates the use of the Visual Basic .NET
assignment operators:

Module Module1

Sub Main()

Dim A As Integer

A = 0

A += 10

Console.WriteLine("A += 10 yields " & A)

A -= 5

Console.WriteLine("A -=5 yields " & A)

A *= 3

Console.WriteLine("A *= 3 yields " & A)

A /= 5

Console.WriteLine("A /= 5 yields " & A)

A ^= 2

Console.WriteLine("A ^= 2 yields " & A)

Console.ReadLine()

End Sub

End Module

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

After you compile and execute this program, your screen will display the following output:

A += 10 yields 10

A -=5 yields 5

A *= 3 yields 15

A /= 5 yields 3

A ^= 2 yields 9

Commenting Your Program Code
As you program, you should place comments throughout your code that explain the processing your
program performs or a specific variable’s use. Later, you or another programmer who is reviewing
the code can read the comments to quickly understand the processing. To place a comment in a Visual
Basic .NET program, you place a single quote on a line followed by the comment text. The Visual Basic
.NET compiler will ignore any text that appears to the right of the single quote, treating the text as
a comment.

In a program, you can place comments on their own lines or to the right of a statement:

' The following subroutine displays the current date and time

Sub ShowDateTime()

Console.WriteLine(Now()) 'Now returns the current date and time

End Sub

As you test your programs, there may be times when you will want to disable one or more statements.
Rather than removing the statements from your code, you can simply place the single-quote character
in front of the statement. When Visual Basic .NET compiles your program, it will ignore the statement,

3 8 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Operator Purpose

+= Adds the specified expression to a variable’s current value.

-= Subtracts the specified expression from a variable’s current value.

*= Multiplies a variable’s current value by the specified expression and assigns the result back to
the variable.

/= and \= Divides a variable’s value contents by the specified expression and assigns the result back to
the variable.

^= Raises a variable’s current value to the power of the specified expression and assigns the
result back to the variable.

&= Concatenates the String to a variable’s value and assigns the result back to the variable.

Table 1-8 The Visual Basic .NET Assignment Operators

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

which it will treat as a comment. If you later want the program to execute the statement, you can
simply remove the single quote:

Console.WriteLine("This line will appear")

' Console.WriteLine("This line will not")

Reading Keyboard Input Using Console.Read and
Console.ReadLine
When you create a console application, your programs can read keyboard input from the user using
the Console.Read and Console.ReadLine methods. The difference between the methods is that
Console.ReadLine returns all the characters up to theENTERkey, whereas Console.Read reads characters
up to the first whitespace character, such as a space or tab. To assign the value a user types to a variable,
you use the assignment operator as follows:

VariableName = Console.ReadLine()

Many of the Tips this book presents place the statement Console.ReadLine() at the end of the
program code. When you run a console application in Visual Studio, the console window will
immediately close after the program completes its processing. By placing the Console.ReadLine()
statement at the end of the code, the program will pause, waiting for the user to press theENTER

key, before the program ends and the window closes.

The following program, KeyboardInputDemo.vb, illustrates the use of the Console.Read
and Console.ReadLine methods:

Module Module1

Sub Main()

Dim Age As Integer

Dim FirstName As String

Dim Salary As Double

Console.Write("Age: ")

Age = Console.ReadLine()

Console.Write("Name: ")

FirstName = Console.ReadLine()

Console.Write("Salary: ")

Salary = Console.ReadLine()

Console.WriteLine(Age & " " & FirstName & " " & Salary)

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 3 9

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 0 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Console.Write("Enter Age, Name Salary: ")

Age = Console.Read()

FirstName = Console.Read()

Salary = Console.ReadLine()

Console.WriteLine(Age & " " & FirstName & " " & Salary)

End Sub

End Module

Take time to experiment with the program. You will find that if you type a value that does not
correspond to the data type the program expects (such as if the program prompts for an age and you
type your name instead), the program will generate an exception and will end. Chapter 9 examines
exception processing in detail. To avoid such errors, many programs will read all keyboard input into
character strings and then convert the string to an Integer or Double value as required.

Displaying a Message in a Message Box
Normally, console-based applications will display output to the console window using the Console.Write
and Console.WriteLine methods. Likewise, a Windows-based program will display output using one
or more controls that appear on a form. Both console- and Windows-based applications, however, can
use a message box, similar to that shown here, to display a message to the user and to get a user’s
button response (such as OK or Cancel).

For years, Visual Basic programmers have used the MsgBox function to display a message box
to the user:

MsgBox("Hello, User")

Although Visual Basic .NET supports the MsgBox function, most newer Windows-based programs
will use the MessageBox class Show method to display a message box (as it turns out, behind the
scenes, the MsgBox function itself calls MessageBox.Show):

MessageBox.Show("Hello, User")

To determine which message-box button a user selects, you assign the result of the MessageBox.Show
(or MsgBox) method to a variable, as shown here:

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 4 1

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

VariableName = MessageBox.Show("Message", "Title", _

MessageBoxButtons.OKCancel)

The following program, MsgBoxDemo.vb, illustrates the use of the MsgBox function in
a console application:

Module Module1

Sub Main()

MsgBox("Message")

MsgBox("Message", MsgBoxStyle.AbortRetryIgnore, "Title")

End Sub

End Module

The following program, MessageBoxDemo.vb, illustrates the use of the various message box types:

Public Class Form1

Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

' Code not shown

#End Region

Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

MessageBox.Show("Message")

MessageBox.Show("Message", "Title")

MessageBox.Show("Message", "Title", MessageBoxButtons.OKCancel)

MessageBox.Show("Message", "Title", _

MessageBoxButtons.AbortRetryIgnore, MessageBoxIcon.Warning)

Me.Close()

End Sub

End Class

Prompting the User for Input Using an Input Box
Normally, console-based applications will get keyboard input from the user using the Console.Readline
method. Likewise, Windows-based applications usually get input using one or more form-based controls.
That said, both application types can use the InputBox function to prompt the user for input, as shown in
Figure 1-7. Using the InputBox function, your code can assign the value the user enters to a variable, as
shown here:

VariableName = InputBox("Enter name")

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using the InputBox function, you can pass parameters that specify the prompt the box
displays, the box title, as well as the x and y offsets (from the upper-left corner of the

screen) at which the box appears. The following program, InputBoxDemo.vb, illustrates the use of
the InputBox function:

Module Module1

Sub Main()

Dim Name As String

Dim Age As Integer

Dim Salary As Double

Name = InputBox("Enter name")

Age = InputBox("Enter age", 21)

Salary = InputBox("Enter salary")

Console.WriteLine(Name)

Console.WriteLine(Age)

Console.WriteLine(Salary)

Console.ReadLine()

End Sub

End Module

Again, when you use the InputBox function, the user must enter the value in the format that matches
the type to which you are assigning a result. If, for example, you assign the result to an Integer value
and the user enters a nonnumeric value, the program will generate an exception. Chapter 9 examines
exceptions in detail. To avoid such errors, programs normally assign the InputBox result to a String
variable and then convert that value to the format that matches the target variable’s type.

4 2 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Figure 1-7 Using an input box to prompt the user for input

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Breaking a Programming Task into Manageable Pieces
As programs become larger and more complex, programmers often break the program into smaller,
more manageable pieces of code, each of which performs a specific task. To organize the program
statements by task, programmers use functions and subroutines.

The difference between a function and a subroutine is that after a function performs its processing,
the function returns a value (a result) and a subroutine does not. For example, the MessageBox.Show
function displays a dialog box and then returns a value that corresponds to the user’s button selection.
To use the function’s return value, your code normally assigns the result to a variable, as shown here:

Variable = SomeFunctionName(OptionalParameters)

To create a subroutine, your code uses the keyword Sub, followed by a unique name (that should
correspond to the processing the subroutine performs), followed by parentheses that contain optional
variables that will store values the program passes to the subroutine (which programmers call parameters).
If the subroutine does not use parameters, you will simply place empty parentheses after the subroutine
name. Next, you place the statements that correspond to the processing the subroutine performs
followed by the End Sub statement, as shown here:

Sub SubroutineName()

' Statements here

End Sub

The following statements create a subroutine named GreetUser that displays messages to the user
using the Console.WriteLine method:

Sub GreetUser()

Console.WriteLine("Hello, user")

Console.WriteLine("The current date and time is: " & Now())

Console.WriteLine("Have a nice day.")

End Sub

To use a subroutine in your program, you place the subroutine name, followed by the parentheses
in your program code, as shown here:

GreetUser()

Programmers refer to the process of using a subroutine as “calling the subroutine.” When your
program encounters a subroutine call, your program will jump to the statements the subroutine contains.
After the program completes the subroutine’s processing, your program will resume its processing
with the statement in your code that follows the subroutine call.

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 4 3

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

þ NOTE

Visual Basic .NET no longer supports the GoSub statement which programmers used for many years
to call a subroutine.

As your programs become larger, it is likely that they will contain many subroutines. A word
processing program, for example, might use one subroutine to spell-check a document, another to
save the document’s contents to a file on disk, and yet another to print the document. In a console-based
application, the program’s execution will always begin with the first statement that appears in the
subroutine called Main. (You can think of the Main subroutine as containing your main or primary
program statements). From within the Main subroutine, your code can call other subroutines.

The following program, SubDemo.vb, creates and calls several subroutines:

Module Module1

Sub ShowBookInformation()

Console.WriteLine("Title: Visual Basic .Net " & _

"Programming Tips & Techniques")

Console.WriteLine("Author: Jamsa")

Console.WriteLine("Publisher: McGraw-Hill/Osborne")

Console.WriteLine("Price: 49.99")

End Sub

Sub GreetInEnglish()

Console.WriteLine("Hello, world")

End Sub

Sub GreetInSpanish()

Console.WriteLine("Hola, mundo")

End Sub

Sub ShowTime()

Console.WriteLine("Current time is: " & Now)

End Sub

Sub Main()

ShowTime()

GreetInEnglish()

GreetInSpanish()

ShowBookInformation()

Console.ReadLine()

End Sub

End Module

4 4 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As you can see, the program defines four subroutines, placing the statements for each between the
Sub and End Sub statements. When the program runs, Visual Basic .NET will begin the program’s
execution in the subroutine named Main—a console application will always begin its execution in
Main. When the program encounters the ShowTime subroutine call, the program will jump to the
statements the ShowTime subroutine contains, which in this case is the Console.WriteLine statement
that displays the current date and time. Then, after the subroutine completes its processing, the program
will resume its execution back in Main at the first statement that follows the ShowTime subroutine
call—the call to the GreetInEnglish subroutine. Again, the program will branch its execution to the
statements the subroutine contains. The program will continue this process of calling a subroutine
and then returning to Main until the program completes its statements.

After you compile and execute this program, your screen will display the following output:

Current time is: 4/9/2002 10:46:47 AM

Hello, world

Hola, mundo

Title: Visual Basic .Net Programming Tips & Techniques

Author: Jamsa

Publisher: McGraw-Hill/Osborne

Price: 49.99

As briefly discussed, a function differs from a subroutine in that, after the function completes its
processing, the function will return a value that your programs can assign to a variable or use in an
expression. In Chapter 5, you will examine the arithmetic functions provided by the Math class. The
following statements illustrate the use of several of the Math class functions:

Dim SomeValue, SomeAngle As Double

SomeValue = Math.Sqrt(100)

SomeAngle = Math.Acos(2.225)

When the program encounters the Math.Sqrt function call, the program will branch its execution
to the corresponding program statements. After the function completes its processing, the program
will assign the value the function returns to the SomeValue variable. Then the program will continue
its execution with the next statement, which in this case, calls the Math class Acos function.

To create a function, you use the Function keyword followed by a unique function name and
parentheses that optionally declare variables to hold values the program passes to the function. You
must also then specify the Returns keyword followed by the type (such as Integer or String) of the
value the function returns. You place the function statements between the function header (which
programmers also refer to as the function signature) and the End Function statement, as shown here:

Function UniqueFunctionName(OptionalParameters) As FunctionReturnType

' Function statements go here

End Function

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 4 5

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following statements create a function named GetBookPrice, which returns a value of
type Double:

Function GetBookPrice() As Double

' Function statements go here

End Function

To return a value, a function can use the Return statement, or the function can assign the value to
its own name. In a function named GetBookPrice, the following statements both return the value 49.99:

Return 49.99

GetBookPrice = 49.99

To call a function in your program code, you must specify the function name followed by the
parentheses and optional parameters. Normally, your code will assign the function’s result to a variable
as shown here:

Dim Price As Double

Price = GetBookPrice()

However, you can use the value a function returns in any expression, such as A = B + SomeFunction(),
or in a call to Console.WriteLine, as shown here:

Console.WriteLine("The price is: " & GetBookPrice())

The following program, FunctionDemo.vb, creates two functions, one that returns value of type
Double and one that returns a String. The program first calls each function, assigning the value the
function returns to a variable. Then the program calls each function from within a Console.WriteLine
statement, displaying the value the function returns. Finally, the code uses the GetBookPrice function
in an If statement:

Module Module1

Function GetBookPrice() As Double

GetBookPrice = 49.99

End Function

Function GetBookTitle() As String

GetBookTitle = "Visual Basic .Net Programming Tips & Techniques"

End Function

Sub Main()

Dim Price As Double

Dim Title As String

4 6 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 4 7

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Price = GetBookPrice()

Title = GetBookTitle()

Console.WriteLine(Price)

Console.WriteLine(Title)

Console.WriteLine(GetBookPrice())

Console.WriteLine(GetBookTitle())

If (GetBookPrice() = 49.99) Then

Console.WriteLine("The book is 49.99")

End If

Console.ReadLine()

End Sub

End Module

After you compile and execute this program, your screen will display the following output:

49.99

Visual Basic .Net Programming Tips & Techniques

49.99

Visual Basic .Net Programming Tips & Techniques

The book is 49.99

þ NOTE

As you read Visual Basic .NET books, you will often find that books use the terms function, subroutine,
and method interchangeably. Keep in mind that a function differs from a subroutine in that the function
returns a result. The term method is a general term that describes functions and subroutines that
appear in a class. Chapter 3 discusses class variables in detail.

Passing Parameters to a Function or Subroutine
In a program, functions and subroutines exist to organize statements that perform a specific task.
Often, to perform its processing, a function or subroutine will require that program pass it one or
more values. The values a program passes to a function or subroutine are called parameters. Earlier
in this chapter, for example, you passed values to the Console.WriteLine method for display:

Console.WriteLine("Values are {0}, {1}, {3}", 100, 200, 300)

Console.Writeline("The price is: " & GetBookPrice())

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Similarly, your programs have passed values to the MessageBox.Show method:

MessageBox.Show("Hello, World")

To pass values to a subroutine or function, you must place the values in the parentheses that
follow the routine’s name, separating the values with a comma. Before a function or subroutine can
use the values, the routine must declare variables in which Visual Basic .NET will place the values
when the program calls the routine. You declare the variables between the parentheses that follow
the function or subroutine name when you create the routine. The following statements create
a subroutine called Greeting that lets programs pass a message (a parameter) to the routine that
the subroutine will display:

Sub Greeting(ByVal Message As String)

Console.WriteLine("Hello, user")

Console.WriteLine("Today's message is: " & Message)

End Sub

To support parameters, you must declare a variable in the subroutine or function header that will
hold the parameter’s value as the function executes. In this case, the subroutine declares a Variable
named Message of type String. For now, you can ignore the ByVal keyword, which you will examine
in the following Tip. In the program code, you would call the Greeting subroutine as follows:

Greeting("Have a great day")

When a function or subroutine supports parameters, your program must pass the correct number
and type of parameters to the routine. If a function expects a parameter of type Double, and your
program passes a String value to the function, an error will occur. Likewise, if a routine expects three
parameter values, your program must pass three parameters to the routine in the order the parameter
expects the values.

The following program, ThreeSubs.vb, declares different subroutines, each of which uses a
different number and type of parameter:

Module Module1

Sub OneValue(ByVal Name As String)

Console.WriteLine("Hello, " & Name)

End Sub

Sub TwoValues(ByVal Age As Integer, ByVal Name As String)

Console.WriteLine("Age: " & Age)

Console.WriteLine("Name: " & Name)

End Sub

Sub ThreeValues(ByVal Name As String, ByVal Age As Integer, _

ByVal Salary As Double)

Console.WriteLine("Name: " & Name)

Console.WriteLine("Age: " & Age)

4 8 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 4 9

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Console.WriteLine("Salary: " & Salary)

End Sub

Sub Main()

OneValue("Mr. Gates")

Console.WriteLine()

TwoValues(50, "Mr. Gates")

Console.WriteLine()

ThreeValues("Mr. Gates", 50, 250000.0)

Console.ReadLine()

End Sub

End Module

After you compile and execute this program, your screen will display the following output:

Hello, Mr. Gates

Age: 50

Name: Mr. Gates

Name: Mr. Gates

Age: 50

Salary: 250000

Declaring Local Variables in a Function or Subroutine
Depending on the processing a function or subroutine performs, there will be many times when the
routine will require one or more variables to store values as the routine’s statements execute. In a
function or subroutine, you can declare variables, which programmers refer to as local variables,
following the subroutine or function heading, as shown here:

Sub SomeFunction()

Dim I As Integer

Dim Sum As Double

' Statements go here

End Sub

Programmers refer to a subroutine or function’s variables as “local” because the fact that the variables
exist and the values the variables contain are known only to the function or subroutine. The code
outside of the function or subroutine does not know about the routine’s local variables, nor can the
code use them. Because the variables are local, the names you use for the variables will not conflict
with variables you have defined in other functions or subroutines.

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following program, LocalVarDemo.vb, defines local variables in a subroutine and function.
Although the variables use the same names in each routine, the local variables are distinct and the values
your code assigns to the variables in one routine do not affect the values of the variables in another:

Module Module1

Sub YahooInfo()

Dim Name As String = "Yahoo"

Dim Price As Double = 17.45

Dim I As Integer = 1001

Console.WriteLine("In YahooInfo")

Console.WriteLine("Name: " & Name)

Console.WriteLine("Price: " & Price)

Console.WriteLine("I: " & I)

End Sub

Sub BookInfo()

Dim Name As String = "C# Programming Tips & Techniques"

Dim Price As Double = 49.99

Dim I As Integer = 0

Console.WriteLine("In BookInfo")

Console.WriteLine("Name: " & Name)

Console.WriteLine("Price: " & Price)

Console.WriteLine("I: " & I)

End Sub

Sub Main()

YahooInfo()

Console.WriteLine()

BookInfo()

Console.ReadLine()

End Sub

End Module

After you compile and execute this program, your screen will display the following output:

In YahooInfo

Name: Yahoo

Price: 17.45

I: 1001

In BookInfo

5 0 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Name: C# Programming Tips & Techniques

Price: 49.99

I: 0

Changing a Parameter’s Value in a Subroutine
In the Tip titled “Passing Parameters to a Function or Subroutine,” you learned how to pass a parameter
to a function or subroutine. In each of the examples the Tip presented, the routines used, but did not
change, the values of the parameters the routines received. Depending on the processing a subroutine
or function performs, there may be times when you will want the subroutine to change a parameter’s
value. If you examine the previous functions and subroutines, you will find that each routine preceded
its parameter declarations with the ByVal keyword:

Sub SomeSubroutineName(ByVal A As Integer)

The ByVal keyword specifies that Visual Basic .NET will pass the parameter to the function by
value which means, when your program calls the routine, Visual Basic .NET will make a copy of the
value the parameter contains. Then Visual Basic .NET will pass the copy of the value to the routine
as opposed to the original variable. When you pass a parameter by value in this way, a subroutine or
function cannot make a change to the parameter value that remains in effect after the routine ends.
Consider the following program, ByValueDemo.vb, that passes the value of the Number parameter to
a subroutine. In the subroutine, the code changes and displays the parameters value. After the subroutine
ends and the program’s execution resumes in the Main subroutine, the value of the variable number is
unchanged from its original value of 100. That’s because changes to a parameter that a program passes
to a subroutine or function by value only remain in effect for the duration of the routine’s processing:

Module Module1

Sub NoChangeToParameter(ByVal A As Integer)

A = 1001

Console.WriteLine("Value of A in subroutine " & A)

End Sub

Sub Main()

Dim Number As Integer = 100

Console.WriteLine("Number before function call: " & Number)

NoChangeToParameter(Number)

Console.WriteLine("Number before function call: " & Number)

Console.ReadLine()

End Sub

End Module

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 5 1

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 2 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

After you compile and execute this program, your screen will display the following output:

Number before function call: 100

Value of A in subroutine 1001

Number before function call: 100

In order for a subroutine or function to change the value of a variable you pass to the routine
as a parameter, the routine must know the variable’s memory location (so the routine can

use the memory location to replace the value the variable stores). To provide the routine with the address
of the parameter, you must pass the parameter to the routine by reference. To do so, you precede the
parameter variable name with the ByRef keyword. The following program, ByRefDemo.vb, passes
a parameter by reference to the subroutine named ParameterChange. In the subroutine, the code changes
and then displays the parameter’s value. However, because the program passes the value by reference,
the change to the value remains in effect after the subroutine ends:

Module Module1

Sub ParameterChange(ByRef A As Integer)

A = 1001

Console.WriteLine("Value of A in subroutine " & A)

End Sub

Sub Main()

Dim Number As Integer = 100

Console.WriteLine("Number before function call: " & Number)

ParameterChange(Number)

Console.WriteLine("Number before function call: " & Number)

Console.ReadLine()

End Sub

End Module

After you compile and execute this program, your screen will display the following output:

Number before function call: 100

Value of A in subroutine 1001

Number before function call: 1001

Using Scope to Understand the Locations
in a Program Where a Variable Has Meaning
In a Visual Basic .NET program, you can declare variables in functions and subroutines, as parameters
to a function or subroutine, or in a construct such as an If or While statement. Depending on where

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

you declare a variable, the location in your program where the variable has meaning (in other words,
the statements in your program where you can use the variable) will differ. Programmers refer to the
program areas where a variable is known to the program as the variable’s scope.

Assume that you have two subroutines that each use a variable named Counter, as shown here:

Sub BigLoop()

Dim Counter As Integer

For Counter = 1000 To 10000

Console.WriteLine(Counter)

Next

End Sub

Sub LittleLoop()

Dim Counter As Integer

For Counter = 0 To 5

Console.WriteLine(Counter)

Next

End Sub

When you declare a local variable in a subroutine (or function), the variable’s scope (the locations
where that variable is known) is limited to the subroutine. Outside of each of the subroutines, the program
does not know that the subroutine uses a variable named Counter. In this case, the two variables named
Counter each have different scope. If one subroutine changes the value of its Counter variable, the
change has no effect on the second subroutine’s variable. Because of each variable’s limited scope,
using the same variable name in different subroutines does not create a conflict.

When you create a console-based application, you can declare a variable outside of your subroutines
and functions. The following statements declare a variable named Counter outside of the two
subroutines:

Dim Counter As Integer

Sub BigLoop()

For Counter = 1000 To 10000

Console.WriteLine(Counter)

Next

End Sub

Sub LittleLoop()

For Counter = 0 To 5

Console.WriteLine(Counter)

Next

End Sub

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 5 3

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5 4 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

When you declare a variable outside of the routines in this way, the variable has global scope—
that is, the variable is known throughout your program code. Any function or subroutine in your
program can change the value of a global variable (which can lead to errors that are very difficult
to detect when you are not expecting a subroutine to change the variable’s value). Because global
variables can lead to such errors, you should not use (or you should severely limit the use of)
global variables.

When a local variable has the same name as a global variable, the code will always use the local
variable (ignoring the global variable). In this case, any changes the routines make to their local variables
named Counter will not affect the global variable named Counter, and vice versa. However, because
such conflicts can confuse a programmer who is reading your code, you should avoid the use of global
variables. If a subroutine or function must change a variable’s value, your code should pass the variable
to the routine by reference (using the ByRef keyword in the routine’s parameter declaration). That
way, another programmer who reads your code can better track the fact that the routine changes the
parameter’s value.

The following program, ScopeDemo.vb, illustrates how scope affects variables in a
program. The program uses a global variable named Counter, a local variable in a subroutine

named Counter, and a variable named Counter whose scope corresponds to an If statement:

Module Module1

Dim Counter As Integer

Sub BigLoop()

For Counter = 1000 To 1005 ' Use global Counter

Console.Write(Counter & " ")

Next

Console.WriteLine()

End Sub

Sub LittleLoop()

Dim Counter As Integer

For Counter = 0 To 5 ' Use local Counter

Console.Write(Counter & " ")

Next

Console.WriteLine()

End Sub

Sub Main()

Counter = 100

Console.WriteLine("Starting Counter: " & Counter)

BigLoop()

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Console.WriteLine("Counter after BigLoop: " & Counter)

LittleLoop()

Console.WriteLine("Counter after LittleLoop: " & Counter)

If (Counter > 1000) Then

Dim Counter As Integer = 0

Console.WriteLine("Counter in If statement: " & Counter)

End If

Console.WriteLine("Ending Counter: " & Counter)

Console.ReadLine()

End Sub

End Module

After you compile and execute this program, your screen will display the following output:

Starting Counter: 100

1000 1001 1002 1003 1004 1005

Counter after BigLoop: 1006

0 1 2 3 4 5

Counter after LittleLoop: 1006

Counter in If statement: 0

Ending Counter: 1006

Storing Multiple Values of the Same Type in
a Single Variable
In a program, variables let the program store and later retrieve values as the program executes. Normally,
a variable stores only one value at a time. Many programs, however, must work with many related
values of the same type. For example, a program many need to calculate the average of 50 test scores,
or changes in the prices of 100 stocks, or the amount of disk space consumed by files in the current
directory. To store multiple values of the same type (such as 50 Integer values) in one variable, your
programs can use an array data structure.

To create an array, you declare a variable of a specific type and then specify the number of elements
the variable will store. The following statement declares an array named TestScores that can store
50 Integer values (the first array entry is at offset 0 in the array and the 50th is at offset 49):

Dim TestScores(49) As Integer

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 5 5

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To access values in an array, you use an index value to specify the array element (the specific
value’s location) you desire. The first value in an array resides at location 0. The following statement
assigns the test score 91 to the first element in the array:

TestScores(0) = 91

The following statements assign values to the first five elements of the TestScores array:

TestScores(0) = 91

TestScores(1) = 44

TestScores(2) = 66

TestScores(3) = 95

TestScores(4) = 77

Normally, to access the values in an array, a program uses a For loop that increments a variable the
code uses to specify array locations. The following For loop would display the values previously
assigned to the first five array elements:

For I = 0 To 4

Console.WriteLine(TestScores(I))

Next

As discussed, the first element in an array resides at location 0. Likewise, the last element resides
at the array size. In the case of the 50-element TestScores array, the last element would reside at
TestScores(49). If your program tries to assign a value to an element outside of the array bounds
(such as TestScores(100) = 45), the program will generate an exception. Chapter 9 examines exceptions
and exception handling in detail.

To assign values to an array, a program might read the values from a file, prompt the user for the
values, or calculate the values based on program-specific processing. In addition, a program can initialize
an array by placing the values in left and right braces, as shown here (when you initialize an array in
this way, you do not specify the array size in the parentheses that follow the array name):

Dim Values() As Integer = {100, 200, 300, 400, 500}

Dim Prices() As Double = {25.5, 4.95, 33.4}

As your programs execute, there may be times when you find that an array does not provide enough
storage locations to hold the values you require. In such cases, your program can use the ReDim statement
to increase or decrease the array’s size.

The following program, ArrayDemo.vb, creates an array that stores ten values. The program then
uses a For loop to display the array’s contents. In Chapter 3, you will examine classes that let you
group information, functions, and methods in a data structure. When you create an array in Visual
Basic .NET programs, the array is actually a class object that stores information about the array (such
as the number of elements the array contains) and provides methods programs can use to manipulate
the array. This program illustrates several of the properties and methods the class provides:

5 6 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 5 7

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

Module Module1

Sub Main()

Dim Values() As Integer = {100, 200, 300, 400, 500}

Dim MyValues(5) As Integer

Dim Prices() As Double = {25.5, 4.95, 33.4}

Dim I As Integer

For I = 0 To 4

Console.Write(Values(I) & " ")

Next

Console.WriteLine()

' Copy one array to another

Values.CopyTo(MyValues, 0)

For I = 0 To 4

Console.Write(MyValues(I) & " ")

Next

Console.WriteLine()

Values.Reverse(Values)

For I = 0 To 4

Console.Write(Values(I) & " ")

Next

Console.WriteLine()

Console.WriteLine("Array length: " & Values.Length)

Console.WriteLine("Array lowerbound: " & _

Values.GetLowerBound(0))

Console.WriteLine("Array upperbound: " & _

Values.GetUpperBound(0))

For I = 0 To Prices.GetUpperBound(0)

Console.Write(Prices(I) & " ")

Next

Console.WriteLine()

Console.ReadLine()

End Sub

End Module

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

After you compile and execute this program, your screen will display the following output:

100 200 300 400 500

100 200 300 400 500

500 400 300 200 100

Array length: 5

Array lowerbound: 0

Array upperbound: 4

25.5 4.95 33.4

Grouping Values in a Structure
In the Tip titled, “Storing Multiple Values of the Same Type in a Single Variable,” you learned how
to group multiple values of the same type into an array. In an array, you can only store values of the
same type, such as all Integer values, all Double values, and so on. Depending on the processing your
programs perform, there may be times when your programs can use a program-defined data type called
a structure to group related pieces of information. Unlike an array, which can only store values of the
same type, a structure can store several values of different types.

Assume that your program must store information about a book, such as the title, author, publisher,
and price. To do so, your programs can declare the following variables:

Dim Title As String

Dim Author As String

Dim Publisher As String

Dim Price As Double

Next, assume that your program creates several functions and subroutines that use the book
information. In your code, you can pass the variables to a subroutine or function as parameters:

ShowBook(Title, Author, Publisher, Price)

Although passing the variables as parameters in this way lets the subroutines and functions work
with the book information, assume that the user changes the program’s requirements and you must
now also track the number of pages and chapters in each book. In such cases, you could declare two
new variables to store the page and chapter information and then change each and every function and
subroutine to accept the information as parameters:

Dim PageCount As Integer

Dim ChapterCount As Integer

ShowBook(Title, Author, Publisher, Price, PageCount, ChapterCount)

As an alternative, your program can define a Book data structure in which you specify the
information the structure must hold:

5 8 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Structure Book

Dim Title As String

Dim Author As String

Dim Publisher As String

Dim Price As Double

End Structure

A structure is simply a type that groups related information. After you define the Book structure,
your program can declare a variable of the Book type:

Dim BookInfo As Book

Next, your program can use the dot operator (which separates the variable name from a member
variable) to assign values to each member variable:

BookInfo.Title = "Visual Basic .NET Programming Tips & Techniques"

Book.Author = "Jamsa"

Book.Publisher = "McGraw-Hill/Osborne"

Book.Price = 49.99

Then, rather than passing the individual variables to the function or subroutine, your code can
instead pass the structure variable:

ShowBook(BookInfo)

Should the user change the program’s requirement in the future, so that the program must also
track the book’s copyright date and weight, you can simply add the variables to the Book definition
without having to change the subroutine calls:

Structure Book

Dim Title As String

Dim Author As String

Dim Publisher As String

Dim Price As Double

Dim Copyright As String

Dim Weight As Double

End Structure

The following program, StructureDemo.vb, creates the Book structure and then uses the
structure to create a variable named BookInfo. Using the dot operator, the program then

assigns values to each of the structure’s members. Finally, the code passes the structure variable to
a subroutine that uses the dot operator to display the member’s values:

Module Module1

Structure Book

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 5 9

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Dim Title As String

Dim Author As String

Dim Publisher As String

Dim Price As Double

End Structure

Sub ShowBook(ByVal SomeBook As Book)

Console.WriteLine(SomeBook.Title)

Console.WriteLine(SomeBook.Author)

Console.WriteLine(SomeBook.Publisher)

Console.WriteLine(SomeBook.Price)

End Sub

Sub Main()

Dim BookInfo As Book

BookInfo.Title = "Visual Basic .Net Programming Tips & Techniques"

BookInfo.Author = "Jamsa"

BookInfo.Publisher = "McGraw-Hill/Osborne"

BookInfo.Price = 49.99

ShowBook(BookInfo)

Console.ReadLine()

End Sub

End Module

After you compile and execute this program, your screen will display the following output:

Visual Basic .Net Programming Tips & Techniques

Jamsa

McGraw-Hill/Osborne

49.99

Improving Your Code’s Readability Using Constants
In most programs, you must often use numeric values in a variety of ways. You might use a numeric
value to control a For loop’s processing, as shown here:

For I = 0 To 50

Console.WriteLine(I)

Next

Or you might use a numeric value in an If statement to perform a comparison:

6 0 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 6 1

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

If (I = 50) Then

Console.WriteLine("Processing the last value")

End If

Further, you might use a numeric constant to define the size of an array variable (which stores
multiple values of the same type in the same variable):

Dim Students(50) As Integer

The following program, UseNumbers.vb, uses numeric constants throughout the source code. If
you examine the program statements, you will find that the code makes extensive use of the value 50:

Module Module1

Sub Main()

Dim Students(50) As Integer

Dim I As Integer

For I = 0 To 50

Students(I) = I

Next

For I = 0 To 50

Console.WriteLine(Students(I))

Next

Console.ReadLine() ' Pause to view output

End Sub

End Module

Rather than use numeric values in this way, your programs should take advantage of constants that
assign a meaningful name to the value, such as a constant named NumberOfStudents.

To create a constant, place a Const statement in your code similar to the following:

Const NumberOfStudents As Integer = 50

Then, in your program, use the constant name everywhere you would normally use the numeric
constant. For example, you might declare arrays as follows:

Dim Students(NumberOfStudents) As Integer

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Likewise, in the For loop, you would use the constant to express the loop’s ending value as
shown here:

For I = 0 To NumberOfStudents

Students(I) = I

Next

If you compare the For loops, you will find that the use of the constant gives another programmer
who reads your code more insight into the program’s processing. With a glance at the loop, the
programmer knows that the array will iterate (loop) through each of the students.

Using constants also simplifies your program should the number of students change from 50 to
100. In the first program, you would need to change each occurrence of the value 50 to the value 100.
Each time you make a change to a program, you increase the likelihood of introducing an error (such
as a typo that places the value 10 instead of 100 in the code). If your code uses a constant, you need
only change the following statement:

Const NumberOfStudents As Integer = 100

Behind the scenes, the Visual Basic .NET compiler as it compiles your source code will perform
the constant substitution for you.

Summarizing the Differences
Between Visual Basic and Visual Basic .NET
If you are an experienced Visual Basic .NET programmer, you may have skipped many of the
foundation Tips this chapter provides. This Tip will summarize many of the key differences between
Visual Basic and Visual Basic .NET.

• Visual Basic .NET does not support the Variant data type. In Chapter 4, you will learn that all
.NET classes inherit the System.Object type.

• Visual Basic .NET does not support the Currency data type. Instead, programs should use the
Decimal type.

• Visual Basic .NET does not support the use of the LET statement to assign a value to a variable.
Instead, your programs should simply use the assignment operator.

• Visual Basic .NET does not support the DefType statement that previous versions of Visual
Basic used to define the program’s default data type. As a matter of good programming practices,
your programs should declare each and every variable.

• Visual Basic .NET does not support user-defined types. Instead, your programs should use
a Structure (or class) to group related information.

• Visual Basic .NET no longer supports the IsMissing function. Instead, your programs should
use IsNothing to determine whether an object contains a value.

6 2 V i s u a l B a s i c . N E T T i p s & T e c h n i q u e s

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• Visual Basic .NET does not support the use of the GoSub statement to call a subroutine. Instead,
your program should simply call the subroutine by referencing the subroutine name followed
by parentheses, which may contain optional parameters.

• Visual Basic .NET does not support Static subroutines or functions. If a variable in a subroutine
or function must maintain its value from one invocation to the next, the routine should declare
the variable as Static.

• Visual Basic .NET does not let programmers declare fixed length String variables.

• Visual Basic .NET changes the type Integer to 32 bits, which lets Integer variables store values
in the range –2,147,483,648 to 2,147,483,647.

• Visual Basic .NET uses the type Short to represent 16-bit values, which can store numbers in
the range –32,768 to 32,767.

• Visual Basic .NET changes the lower bound of an array to element 0 (as opposed to element 1).
A Visual Basic .NET program cannot use the Option Base statement to specify the default array
base. Visual Basic .NET does not let you specify an array’s lower and upper bounds when you
declare an array. All Visual Basic .NET arrays use the lower bound 0.

• Visual Basic .NET uses Math class methods to perform arithmetic and trigonometric operations
such as calculating a value’s square root or an angle’s sine or cosine.

• When a Visual Basic .NET program calls a function or subroutine, the program must specify
parentheses after the routine’s name, even if the routine does not use parameters.

• By default, Visual Basic .NET passes variables to functions and subroutines by value (using
the ByVal keyword), which means the routine cannot change the original variable’s value. If
a subroutine or function must change a variable, you must pass the variable to the routine by
reference (using the ByRef keyword).

• Although Visual Basic .NET supports the MsgBox function, most newer programs will use
the MessageBox class Show method.

• Visual Basic .NET replaces the Wend statement that indicates the end of a While loop with
the End While statement.

• Visual Basic .NET replaces the Debug.Print statement with Debug.Writeline.

• Visual Basic .NET lets a program declare variables in a construct, such as a While loop
or If statement. The variable’s scope, in turn, corresponds to the construct.

• Visual Basic .NET uses the value Nothing to indicate that an object does not contain
a value. Visual Basic .NET does not support Null or Empty.

C h a p t e r 1 : L a y i n g Y o u r V i s u a l B a s i c . N E T F o u n d a t i o n 6 3

Tip&Tec / Visual Basic .NET Tips & Techniques / Jamsa / 222318-9 / Chapter 1

P:\010Comp\Tip&Tec\318-9\ch01.vp
Tuesday, May 07, 2002 3:41:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

	Tips in This Chapter
	Creating Your First Console Application 2
	Building a Windows-Based Application 4
	Choosing the Correct Visual Basic Types 6
	Declaring Variables in a Visual Basic .NET Program 7
	Displaying Screen Output Using Console.Write and Console.WriteLine 9
	Formatting Program Output Using Console.WriteLine 11
	Concatenating Characters to the End of a String 13
	Forcing Programs to Specify a Variable™s Type 15
	Beware of Variable Overflow and Precision 17
	Performing Numeric Operations 19
	Casting a Value of One Variable Type to Another 22
	Making Decisions Using Conditional Operators 24
	Taking a Closer Look at the Visual Basic .NET Relational and Logical Operators 27
	Handling Multiple Conditions Using Select 29
	Repeating a Series of Instructions 31
	Avoiding Infinite Loops 34
	Executing a Loop Prematurely 34
	Visual Basic .NET Supports Lazy Evaluation to Improve Performance 35
	Wrapping Long Statements 36
	Taking Advantage of the Visual Basic Assignment Operators 37
	Commenting Your Program Code 38
	Reading Keyboard Input Using Console.Read and Console.ReadLine 39
	Displaying a Message in a Message Box 40
	Prompting the User for Input Using an Input Box 41
	Breaking a Programming Task into Manageable Pieces 43
	Passing Parameters to a Function or Subroutine 47
	Declaring Local Variables in a Function or Subroutine 49
	Changing a Parameter™s Value in a Subroutine 51
	Using Scope to Understand the Locations in a Program Where a Variable Has Meaning 52
	Storing Multiple Values of the Same Type in a Single Variable 55
	Grouping Values in a Structure 58
	Improving Your Code™s Readability Using Constants 60
	Summarizing the Differences Between Visual Basic and Visual Basic .NET 62

