
 

91 

Inheriting Windows 
Forms 
Now we’re ready for the really fun stuff. 
The ability to have multiple levels of 
inheritance for our training form will 
literally revolutionize training development. 
Many training creators today use templates to try to speed up the process and enforce commonality. But 
in almost all cases, changing the template has no effect on the screens that are already completed. 
Inheritance is much different, as you will see. 

Visual Inheritance: Tailor-made for Training Applications 
We use the term Visual Inheritance to describe what is possible with Windows Forms, namely that the 
user interface and the methods, properties, and events can be inherited. With Web Forms, the code part 
(methods, properties, and events) can be inherited but not the user interface. On both the Windows and 
Web side, you can use visual inheritance with controls, but we’ll wait for that topic until a later chapter. 

The reason this capability is so exciting is that you can create both your user interface and functionality 
in layers. When you need a new type of training form, you just inherit from the most appropriate layer 
and go from there. You can then change any layer and any children will all be updated the minute you 
rebuild.  

The Mechanics 
To use the IDE to inherit from an existing form, go to the Project menu 
→ Add Inherited Form as shown in Figure 54. You then give the form 
a name as shown in Figure 55. To avoid having to change the properties 
of the form later, it is a good idea to make it something understandable 
(QuestionForm in our example) rather than the default Form2. The next 
step is to use the Inheritance Picker to choose from which form to 
inherit. This can be a form in the current project or a form contained in 
an assembly (use the browse button). In the latter case, the browse 
dialog defaults to .dll files but you can select .exe files as well. Figure 
56 shows this situation with forms listed in the current project 
(LMTraining namespace) and another assembly (DatabaseSample1 
namespace). We then select the form from which we want to inherit. 
We choose NavigationForm since we are implementing the hierarchy 
shown in Figure 1.  

The IDE then adds QuestionForm to the Solution Explorer and displays 
its Design view in the main window. It looks exactly like 
NavigationForm (Figure 2) of course since that is what we inherited. If 
we switch to the Code view, it looks like this: 
 

Figure 54. Inheriting a Form



VBTrain.Net™: Creating Computer and Web Based Training with Visual Basic® .NET 

 92

Public Class QuestionForm 
 Inherits LMTraining.NavigationForm 
 
' Windows Form Designer generated code here 
 
End Class 

This tells us that 
another way we could 
have done all that is 
just added a normal 
form and go to the line 
directly below the class 
declaration and type in 
the Inherits part. Note 
that IntelliSense will 
help us with both the 
namespace and the 
form name. 

Inheritance 
Example 1 
Our first example is the 
DatabaseSample1 
application (part of the 
Database Connectivity 
solution of the 
downloadable sample 
applications). We’ll 
cover the database 
aspects of this later in the book, so 
for now let’s concentrate on its 
use of inheritance. This 
application has a login form and 
then a series of training forms. 
These training forms can be 
grouped into two categories. The 
first set of forms has a unique 
form for each record in the 
database. This is to demonstrate 
the situation where you want to 
move content around the screen or 
perhaps even have the content 
displayed in different types of 
objects. The second set of forms 
demonstrates “binding” to a series 
of records. This is for the situation 

Figure 55. Naming an Inherited Form 

Figure 56. Inheritance Picker 



Inheriting Windows Forms 

 93

where a series of forms has the same “look and feel.” Whenever we need a form with this design, we just 
use the same one over and over. To allow for multiple forms in each category, we have two “master”1 
forms from which we inherit. 

MasterNewForm 
In the MasterNewForm shown in Figure 57, we define the elements of the user interface we want to be 
common to all the children forms. These include: 

• BackColor property (“Wheat”) 

• FormBorderStyle property (“Fixed3D2”) 

                                                           
1 Or, in object-oriented programming terminology, “base.” 
2 This is an important setting, particularly if you use a graphic as a BackgroundImage. The reason is that .NET automatically tiles 
your image when you make the size of your form bigger than the image size. This is not a good thing if you use a “sculpted” image 
created in PhotoShop like that of the “Sample Windows Training” application. A Fixed3D style along with the MaximizeBox set to 
False keeps the user from making your form bigger (and causing this to happen). 

Figure 57. Master New Form 



VBTrain.Net™: Creating Computer and Web Based Training with Visual Basic® .NET 

 94

• Text (caption) property (“Sample Training: New Form Each Time”) 

• Size (width and height) property (672, 440) 

• StartPosition property (“CenterScreen”) 

• MaximizeBox property (False) 

• nextButton button control 

• previousButton button control 

On the code side, we implement as much of the functionality here as possible so that we don’t have 
duplicate code in forms that inherit from this one. Listing 26 shows the code with the exception of 
Implementation Methods, which we leave for later in the book. 
 
Option Explicit On  
Option Strict On 
Imports System.Data.OleDb 
Imports System.ComponentModel 
Imports System.Reflection 
 
Public Class masterNewForm 
 Inherits System.Windows.Forms.Form 
 
 ' Windows Form Designer generated code here 
 
 ' Variables 
 Private c_nextFormName As String 
 Private c_previousFormName As String 
 
 ' Base Events 
 Private Sub masterNewForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) _ 
  Handles MyBase.Load 
  Call initializeNewForm() 
 End Sub 
 
 Private Sub masterNewForm_Closing(ByVal sender As Object, ByVal e As _ 
  System.ComponentModel.CancelEventArgs) Handles MyBase.Closing 
  If g_allowClose = True Then 
   Call closeApplication() 
  End If 
 End Sub 
 
 Private Sub nextButton_Click(ByVal sender As System.Object, ByVal e As _ 
  System.EventArgs) Handles nextButton.Click 
  Dim nextFormName As String = Me.NextForm 
 
  If nextFormName <> "" Then 
   Call ReferenceAndShowNextForm(nextFormName) 
  End If 
 End Sub 
 
 Private Sub previousButton_Click(ByVal sender As Object, ByVal e As _ 
  System.EventArgs) Handles previousButton.Click 
  Dim previousFormName As String = Me.PreviousForm 
 
  If previousFormName <> "" Then 



Inheriting Windows Forms 

 95

   Call ReferenceAndShowNextForm(previousFormName) 
  End If 
 End Sub 
 
 ' Implementation Methods  
 Private Sub initializeNewForm() 
 ' Code shown later 
 End Sub 
 
Private Sub ReferenceAndShowNextForm(ByVal nextFormName As String) 
' Code shown later 
 End Sub 
 
 ' Properties 
 <Description("The name of 'next' form to open."), Category("Extended")> _ 
  Public Property NextForm() As String 
  Get 
   Return c_nextFormName 
  End Get 
  Set(ByVal Value As String) 
   c_nextFormName = Value 
  End Set 
 End Property 
 
 <Description("The name of 'previous' form to open"), Category("Extended")> _ 
  Public Property PreviousForm() As String 
  Get 
   Return c_previousFormName 
  End Get 
  Set(ByVal Value As String) 
   c_previousFormName = Value 
  End Set 
 End Property 
End Class 

Listing 26. MasterNewForm Code 

We start with our familiar Option and Imports lines at the top of the class. The private variables are used 
to implement the NextForm and PreviousForm properties. The nextButton_Click and 
previousButton_Click subroutines use these properties to go forwards and backwards. We cover this in 
detail in our next inheritance example as well as in the Hyperlinks and Navigation chapter. The key point 
here is that we implement the properties, the objects (buttons in this case), event handlers (the two Click 
subroutines), and the implementation methods all as part of this class. They are then inherited by all the 
children of this class. The same goes for the Load event and its corresponding initializeNewForm 
subroutine. 

The other interesting thing about the code in Listing 26 is how we deal with closing the form. We want to 
call closeApplication when the user closes the application but not every time a form closes, so we add 
logic to distinguish between these two events. The module for this project is shown in Listing 20. In it, 
we started the application, showed a “startup form,” and declared the public g_allowClose variable. 
When we are navigating to another form, we set g_allowClose to False. The rest of the time we ensure it 
is True. We then handle the Closing event and close the application (implementation in Listing 20) if 
g_allowClose is True. This closes the application when the user clicks the “x” at the top of the window 
but leaves it open when she navigates to the next page. Without this logic, we could get a situation where 



VBTrain.Net™: Creating Computer and Web Based Training with Visual Basic® .NET 

 96

the application is still running but there are no visible forms, or a situation where we shut down the entire 
application when the user is trying to just navigate to another form3. 

We can inherit from this master NewForm as shown in Figure 58. The code simply has the inheritance 
line plus any functionality specific to the inheriting form. 
 
Public Class NewForm1 
 Inherits _ 
 DatabaseSample1.masterNewForm 

Notice that the inherited user 
interface elements (the buttons to the 
bottom right) have an arrow on their 
upper left to show that they are 
inherited. The control marked 
“Label1” is the same on both forms 
(and could thus be placed on the 
master if we decided to keep it for all 
forms), but the other (non-inherited) 
objects are of different types, 
locations, and sizes. 

MasterBindForm 
In our other master form, we set the 
same list of properties as we did on 
the first form. So why didn’t we 
inherit both from a third form? The 
answer is that only the 
FormBorderStyle, Size, StartPosition, 
and MaximizeBox properties have 
identical values. And most of the 
implementation code differs. The 
only common code needed between 
the two master forms is also needed 
by the login form, which looks 
completely different. So we put that 
code in the module instead. We 
certainly could have had another 
inheritance layer, however; we do this 
in the next example. Both the 
MasterBindForm and its single 4 
inheriting form (class) are shown in 

                                                           
3 Remember that we must explicitly call Application.Exit because we started it via Application.Run in the Main subroutine. 
4 I only did a single binding form in this example project, but it would be easy to generate other looks and feels from the 
MasterBindForm. 

Figure 58. MasterNewForm Class 



Inheriting Windows Forms 

 97

Figure 59. Notice how we have a 
different background color and text 
for the MasterBindForm than we had 
for the MasterNewForm. The 
nextButton and previousButton 
objects, while in the same position 
and so forth, have totally different 
implementations. The form’s code is 
similar to that in Listing 26, so we 
won’t show it here. The key 
differences are: 

1. There are no NextForm or 
PreviousForm properties. 
Instead, this information is 
stored in the database. 

2. The “Implementation 
Methods” vary between the 
two forms. 

Inheritance Example 2 
In our second example (“Sample 
Windows Training”), we implement 
the user interface and core 
capabilities that are part of our 
commercial Learning & Mastering 
ToolBook... series (Figure 51 show an 
example screen from this training). 
How could inheritance be applied to 
this situation? The first step was to 
outline the various potential classes to 
figure out how many inheritance 
levels we would need. The criterion 
for a level was when the interface 
diverged and multiple forms would 
use this diverged interface. Figure 1 
shows the basic design. I’ll go through each level in turn, explaining why I chose to make it a level and 
the functionality included in that level. I encourage you to download and start up the project so you can 
follow along. Figure 22 shows an enlightening Class View of this sample. 

Figure 59. MasterBindForm and Its Instance 



VBTrain.Net™: Creating Computer and Web Based Training with Visual Basic® .NET 

 98

CommonCode Module 
The module in this example has one key function. It provides a Sub Main that the application calls on 
startup5. We also declare and initialize a global6 variable that defines the path from which we will read 
our graphics. As we have seen previously, we then create an instance of our StartForm class and show it. 
We run the application so that it will stay open until we manually shut it down. See Listing 27 for a 
complete listing of this code. 
 
Option Explicit On  
Option Strict On 
 
Module CommonCode 
 Public graphicsPath As String 
 
 Sub Main() 
  graphicsPath = Application.StartupPath & "\graphics\" 
  Dim startUpForm As New LMTraining.StartForm() 
  startUpForm.Show() 
  Application.Run() ' must close manually 
 End Sub 
End Module 

Listing 27. Sample Windows Training 
Module Code 

Master Form 
As its name implies, all other 
training 7  forms inherit from Master 
Form (Figure 60). We define these 
“visual” properties to be different 
from the default: 

• FormBorderStyle 
(“Fixed3D”) 

• Text (“VBTrain.Net: Using 
VB.NET to Make Training”) 

• Size (806, 598) 

• StartPosition 
(“CenterScreen”) 

                                                           
5 Since we set Sub Main as the project’s startup object. Notice that this allows us to easily implement a “return to where you left 
off” bookmarking function simply by reading a database or other storage for the user’s last form. If we assigned a particular form as 
the startup object, that form would of course always be the first one shown. 
6 Public variables of a module are effectively global variables since any object in the project can access it. 
7 There may be other forms in a real project that don’t inherit from this form. These might include forms to logon, change your 
settings, search for text or keywords, run simulations, etc. 

Figure 60. Master Form 



Inheriting Windows Forms 

 99

• KeyPreview8 (True) 

• Icon (set to the icon file that we want to use) 

• MaximizeBox (False) 

Note that we don’t define the BackColor property since all forms have a background image. We don’t 
define the BackgroundImage property either, however, since that is set further down the hierarchy. There 
are also no controls or other user interface elements at this level. The code for Master Form contains 
common functionality as show below. Note that Figure 29 shows how this code can be collapsed into 
various “regions.” 
 
Option Explicit On  
Option Strict On 
Imports System.ComponentModel 
Imports System.Reflection 
 
Public Class MasterForm 
 Inherits System.Windows.Forms.Form 
 
' Windows Form Designer generated code here 
 
#Region "Variables" 
 Private c_stopCloseMessage As Boolean 
 Private c_nextFormName As String 
 Private c_previousFormName As String 
#End Region 
 
#Region "Base Events" 
 Private Sub MasterForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) _ 
  Handles MyBase.Load 
  c_stopCloseMessage = False 
 End Sub 
 
 Private Sub MasterForm_Closing(ByVal sender As Object, ByVal e As _ 
  System.ComponentModel.CancelEventArgs) Handles MyBase.Closing 
  If c_stopCloseMessage = False Then 
   If queryExit() = True Then 
    Application.Exit() 
   Else 
    e.Cancel = True 
   End If 
  End If 
 End Sub 
 
 Private Sub MasterForm_KeyDown(ByVal sender As Object, ByVal e As _ 
  System.Windows.Forms.KeyEventArgs) Handles MyBase.KeyDown 
  Select Case e.KeyCode.ToString 
   Case "Next" 
    Call goNextPage(Me, Me.NextForm) 
   Case "Prior" 
    Call goPreviousPage(Me, Me.PreviousForm) 

                                                           
8 Setting this to true allows the form to receive any KeyPress, KeyDown, and KeyUp events in addition to whatever control might 
have the focus. We use this so that the “Page Down” key goes forward, the “Page Up” key goes backwards, and “F1” brings up 
help. 



VBTrain.Net™: Creating Computer and Web Based Training with Visual Basic® .NET 

 100

   Case "F1" 
    Call ShowHelp() 
  End Select 
 End Sub 
#End Region 

Listing 28. Master Form Class Definition, Variables, and Base Events Code 

We inherit from System.Windows.Forms.Form in this case since this is the “highest level” form. All our 
other training forms will inherit from this form or its children. The variables are private as we only use 
them internally. The c_stopCloseMessage9 variable is used to determine whether the user is closing the 
application or just navigating to the next page. The two “formName” variables store the value of the 
NextForm and PreviousForm properties (See Listing 30). The only thing we do upon loading the form is 
set our c_stopCloseMessage variable to False. We then handle the Closing event (generated both when 
the user clicks the “x” on the window and when navigating to another form) to see if 
c_stopCloseMessage is still False. If so, the user didn’t click a navigation button (see the 
ReferenceAndShowNextForm method in Listing 29) and hence is trying to close the application. We call 
our queryExit function to ask if they are sure. If so, we exit the application. If not, we set the Cancel 
property of the e parameter (here of type System.ComponentModel.CancelEventArgs) to prevent the form 
from closing. The last “Base Event” that we handle is KeyDown. This event is sent each time the user 
presses a key on the keyboard10. If the user presses “Page Down,” we call our goNextPage method. 
Similarly, we call goPreviousPage when she presses “Page Up.” Finally, we call ShowHelp for F1. The 
implementation of each of these is shown below. As always, I used the drop-down list boxes shown in 
Figure 27 and Figure 28 to create the shells of these event handlers. 
 
#Region "Implementation Methods" 
 Protected Sub goNextPage(ByRef formObj As Form, Optional ByVal nextFormName As _ 
  String = "") 
  If nextFormName <> "" Then 
   Call ReferenceAndShowNextForm(formObj, nextFormName) 
  End If 
 End Sub 
 
 Protected Sub goPreviousPage(ByRef formObj As Form, Optional ByVal prevFormName As _ 
  String = "") 
  If prevFormName <> "" Then 
   Call ReferenceAndShowNextForm(formObj, prevFormName) 
  End If 
 End Sub 
 
 Private Sub ReferenceAndShowNextForm(ByRef formObj As Form, ByVal nextFormName As _ 
  String) 
  Dim nextForm As Object 
  Dim nextFormReference As String = String.Concat(Application.ProductName.ToString, _ 
   ".", nextFormName) 
 
  If nextFormName <> "" Then 
   Dim nextFormType As Type = Type.GetType(nextFormReference) 
   nextForm = System.Activator.CreateInstance(nextFormType) 

                                                           
9 The c_ is a naming convention that indicates the variable is class-level only. 
10 This is a good example of how the e parameter comes in useful. Here, e is of type System.Windows.Forms.KeyEventArgs. It has a 
KeyCode property that we can read to find out which key the user pressed. 



Inheriting Windows Forms 

 101

 
   c_stopCloseMessage = True ' so not prompted if want to exit 
   nextForm.GetType().InvokeMember("Show", BindingFlags.InvokeMethod, Nothing, _ 
    nextForm, New Object() {}) 
   formObj.Close() 
  End If 
 End Sub 
 
 Private Sub ShowHelp() 
  MessageBox.Show(String.Concat("Show online help for form '", Me.Name, "'.")) 
 End Sub 
 
 Protected Function findObjectByName(ByRef formObj As Form, Optional ByVal objectName _ 
  As String = "help") As Object 
  Dim obj As Control 
  Dim returnObj As Control 
 
  returnObj = Nothing 
  For Each obj In formObj.Controls 
   If obj.Name = objectName Then 
    returnObj = obj 
    Exit For 
   End If 
  Next 
  Return returnObj 
 End Function 
 
 Protected Sub ExitTraining() 
  If queryExit() = True Then 
   Application.Exit() 
  End If 
 End Sub 
 
 Protected Function queryExit() As Boolean 
  Dim answer As System.Windows.Forms.DialogResult 
  Dim dialogReturn As Boolean 
 
  answer = MessageBox.Show("Are you sure that you want to exit?", "Exit?", _ 
   MessageBoxButtons.YesNo, MessageBoxIcon.Question, MessageBoxDefaultButton.Button2) 
  If answer = dialogResult.Yes Then 
   dialogReturn = True 
  Else 
   dialogReturn = False 
  End If 
  Return dialogReturn 
 End Function 
#End Region 

Listing 29. Master Form Implementation Methods 

The first thing to note about the implementation methods is that a number of them are marked as 
Protected rather than Private. As explained in Table 6, this allows forms inheriting from this class to call 
the methods directly. For example, this allows us to have one button on the StartForm (next section) call 
the goNextPage method and another call the ExitTraining method. Let’s look at each method in turn. We 
use the goNextPage and goPreviousPage methods, as the names imply, to move forward or backward in 
the training. Notice that the parameters, nextFormName or prevFormName, are optional so that we can 
call the methods without generating an error if there is not a next or previous form. Both methods then 



VBTrain.Net™: Creating Computer and Web Based Training with Visual Basic® .NET 

 102

call a third method (which is Private since it doesn’t need to be called directly from an inheriting class) 
called ReferenceAndShowNextForm. This uses our old friend, Reflection11, to generate a reference to and 
then show a form based on simply its name. Since this is such an important capability when writing 
training, let’s look at the key lines in detail: 
 
Dim nextFormReference As String = String.Concat(Application.ProductName.ToString, ".", _ 
 nextFormName) 

This line creates the complete namespace reference to the form, LMTraing.StartForm for example. 
 
Dim nextFormType As Type = Type.GetType(nextFormReference) 

This line creates the Type object that we need to use for Reflection. Notice that we pass in the complete 
namespace reference. 
 
nextForm = System.Activator.CreateInstance(nextFormType) 

This uses the Activator class to create an instance of the form. In non-technical terms, it finds the form in 
the assembly, verifies that it is a valid object, and references it. 
 
nextForm.GetType().InvokeMember("Show", BindingFlags.InvokeMethod, Nothing, nextForm, _ 
 New Object() {}) 

This is similar to the syntax that we saw in Listing 24. We call the InvokeMember method to call the 
Show method of the form. The BindingFlags.InvokeMethod flag tells .NET to search for only methods in 
the assembly. Nothing is the normal “default binder,” nextForm refers to the object that we want to act on 
(show in this case), and New Object() {} is an optional array of parameters.  

Another (easier) implementation would be: 
 
Dim formID As Form = CType(nextForm, Form) 
formID.Show() 

We then just close the current form12. 

The findObjectByName function is a general-use function for determining an object reference based on 
its name. We include it here so that it is available for all training forms in the project13. 

The ExitTraining and queryExit methods work together. The first is similar to the code in the Closing 
handler but allows it to be called from a button or menu within other forms. The queryExit function 
demonstrates how to ask the user for input, in this case whether he really wants to exit. The answer 
variable is a good example of an Enum (enumeration). There are various possible answers to the message 
box (Yes, No, Cancel, etc.) and this set of values is defined as an Enum, 
System.Windows.Forms.DialogResult. We then declare a variable of this enum type and use it as the 
return value of the MessageBox.Show method. This allows us to use the If answer = dialogResult.Yes 
syntax. 
 

                                                           
11 This method is why we have the Imports System.Reflection line at the top of the class. 
12 Showing the new form first eliminates a flash that you will see if you close the first form before showing the second one. 
13 Like including it in a system book in ToolBook. 



Inheriting Windows Forms 

 103

#Region "Properties" 
 <Description("The name of 'next' form to open."), _ 
  Category("Extended"), Bindable(True)> _ 
  Public Property NextForm() As String 
  Get 
   Return c_nextFormName 
  End Get 
  Set(ByVal Value As String) 
   c_nextFormName = Value 
  End Set 
 End Property 
 
 <Description("The name of 'previous' form to open."), _ 
  Category("Extended"), Bindable(True)> _ 
  Public Property PreviousForm() As String 
  Get 
   Return c_previousFormName 
  End Get 
  Set(ByVal Value As String) 
   c_previousFormName = Value 
  End Set 
 End Property 
#End Region 
End Class 

Listing 30. Master Form Properties 

We saw some of this code in Listing 
25 when we were talking about 
attributes. The <Description>, 
<Category>, and <Bindable> are 
attributes of the properties, 
determining their descriptive text, 
category of the Properties window, 
and whether they can be bound to a 
database respectively. These property 
definitions in the MasterForm class 
make the NextForm and 
PreviousForm properties available in 
the Properties window (and via code 
if desired) for each inheriting training 
form in the project. Notice how we 
store the value of the properties in the 
private variables declared in Listing 
28. 

Start Form 
The starting form of the training inherits directly from MasterForm because it is a unique user interface 
not repeated elsewhere in the training (Figure 61). Here are properties and controls that we add at this 
level: 

Figure 61. Start Form 



VBTrain.Net™: Creating Computer and Web Based Training with Visual Basic® .NET 

 104

• BackgroundImage property (set to background no cutouts.bmp but then stored inside the 
assembly) 

• NextForm14 property (“TableOfContents”) 

• PictureBox control displaying the “Learning & Mastering…” graphic 

• Two platteGraphicalButtonLarge controls15: one for starting the training and the other for 
exiting 

Notice that any properties (Size, KeyPreview, etc.) that we don’t change take on the value they have in 
the MasterForm. The only significant code in StartForm is for the graphical buttons as shown in Listing 
31. 
 
Option Explicit On  
Option Strict On 
 
Public Class StartForm 
 Inherits LMTraining.MasterForm 
 
' Windows Form Designer generated code here 
 
#Region "Base Events" 
 Private Sub leaveButton_Click(ByVal sender As System.Object, ByVal e As _ 
  System.EventArgs) Handles leaveButton.Click 
  Call ExitTraining() 
 End Sub 
 
 Private Sub startButton_Click(ByVal sender As System.Object, ByVal e As _ 
  System.EventArgs) Handles startButton.Click 
  goNextPage(Me, Me.NextForm) 
 End Sub 
#End Region 
End Class 

Listing 31. Start Form Code 

The key line here is the Inherits LMTraining.MasterForm. This gives us both the visual side and the code 
side of MasterForm as we have been discussing. The leaveButton_Click subroutine calls the ExitTraining 
method while the startButton_Click subroutine calls the goNextPage method (See Listing 29 for both 
methods). Notice how we send Me as the first parameter (so the method knows which form to operate on) 
and Me.NextForm as the second parameter (the name of the form to navigate to). 

Navigation Form 
The rest of the forms in the training have buttons for moving forwards and backwards. So we create 
another layer and name it NavigationForm. We showed this form back in Figure 2 and include the 
“Component Tray” (which holds components without a user interface) and the Menu Editor in Figure 62. 
We inherit from MasterForm and keep all the form properties the same. We don’t add a 

                                                           
14 We defined this property in MasterForm. 
15 I used a custom control here so that these would be graphical buttons. This means that they highlight when you move your mouse 
over them and depress when you click them. As we will see later, we do this by swapping out graphics. 



Inheriting Windows Forms 

 105

BackgroundImage in this case since there are different images that we need to use on forms that inherit 
NavigationForm (and thus we don’t want to assign this property here). We do add the following controls, 
however: 

• Three graphicalButtonSmall custom controls16, one for going forward, one for going backwards, 
and one for displaying a popup menu 

• A platteProgressBar custom control17 to display the student’s percentage completed as she goes 
through the training 

• A ToolTip control that allows us to add tooltips18 to the graphicalButtonSmall controls 

• A ContextMenu control that allows us to create and display a popup menu 

As on the previous form, we use a custom control to give us graphical buttons that highlight and depress. 
We cover how to build these controls later in the book. When we add the ToolTip control to the form, 
every other control (i.e., 
the navigation buttons) 
on the form gets a 
“ToolTip on ToolTip1” 
property in which we 
can enter the text that 
we want displayed. 
When we click on the 
ContextMenu control, 
we get a nice editor as 
shown in Figure 62, 
where we can enter the 
various menu items 
(including cascaded 
menus if desired) right 
in the editor. When we 
select a menu item, the 
Properties window has 
additional properties 
like “Checked” and 
“Shortcut.” The code for 
NavigationForm is 
shown below. 
 
Option Explicit On 
Option Strict On 

                                                           
16 This is a special control where we store (and allow the developer to set as properties) the up, down, hilite, and disabled graphic of 
each button. The control then swaps the graphics on the MouseEnter and MouseDown events to make the button work correctly. 
17 This is the rectangle at the upper right of Figure 62. 
18 The yellow “labels” that you see when you hover over a Toolbar button or other items in most Windows applications. 

Figure 62. Navigation Form within the IDE 



VBTrain.Net™: Creating Computer and Web Based Training with Visual Basic® .NET 

 106

Imports System.ComponentModel 
 
Public Class NavigationForm 
 Inherits LMTraining.MasterForm 
 
' Windows Form Designer generated code here 
 
#Region "Variables" 
 Private c_numSteps As Integer = 0 
 Private c_nextPageDisabled As Boolean = False 
 Private c_previousPageDisabled As Boolean = False 
#End Region 
 
#Region "Base Events" 
 Private Sub nextPage_Click(ByVal sender As System.Object, ByVal e As _ 
  System.EventArgs) Handles nextPage.Click 
  Call goNextPage(Me, Me.NextForm) 
 End Sub 
 
 Private Sub previousPage_Click(ByVal sender As System.Object, ByVal e As _ 
  System.EventArgs) Handles previousPage.Click 
  Call goPreviousPage(Me, Me.PreviousForm) 
 End Sub 
 
 Private Sub exitMenu_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) 
Handles exitMenu.Click 
  Call ExitTraining() 
 End Sub 
 
 Private Sub CBTMenu_Click(ByVal sender As System.Object, ByVal e As _ 
  System.EventArgs) Handles CBTMenu.Click 
  CBTContextMenu.Show(Me, Me.PointToClient(Me.MousePosition)) 
 End Sub 
 
 Private Sub NavigationForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) _ 
  Handles MyBase.Load 
  If Me.NextForm = "" OrElse Me.nextPageButtonDisabled = True Then 
   nextPage.Enabled = False 
  Else 
   nextPage.Enabled = True 
  End If 
  If Me.PreviousForm = "" OrElse Me.previousPageButtonDisabled = True Then 
   previousPage.Enabled = False 
  Else 
   previousPage.Enabled = True 
  End If 
 End Sub 
#End Region 

Listing 32. Navigation Form Class, Variables, and Base Events Code 

After the familiar Option statements, we import System.ComponentModel, which we use for our property 
definitions. We inherit from MasterForm as discussed above. Our variables store the values of the three 
properties described below. The nextPage_Click, previousPage_Click, and exitMenu_Click19 handlers 

                                                           
19 Notice how this is the handler of the menu item from our ContextMenu. We create subroutine shells with menu items just like we 
do for other objects. 



Inheriting Windows Forms 

 107

call the corresponding methods located in MasterForm. Notice how the startButton on the StartForm 
(Listing 31) calls the same goNextPage method. See how inheritance gives us code reuse?  

The CBTMenu_Click handler calls the Show method of our CBTContextMenu object20. The Me refers to 
the object with which the menu is associated. The second parameter is the position at which to show the 
menu. Notice how we need the PointToClient method to properly convert the mouse coordinates. 

In response to the Load event, we determine whether to enable the “forward” and “back” buttons. Notice 
how we look both at the NextForm property (defined in MasterForm) and the nextPageDisabled property 
(defined here). Notice how we refer to the property (nextPageDisabled) rather than the private variable 
(c_nextPageDisabled). We do this to make the code more readable and to allow inheriting forms to 
override this property if desired. 
 
#Region "Properties" 
 <Description("Set this to the number of interactive steps on the training form."), _ 
  Category("Extended"), DefaultValue(0), Bindable(True)> _ 
  Public Property numSteps() As Integer 
  Get 
   Return c_numSteps 
  End Get 
  Set(ByVal Value As Integer) 
   c_numSteps = Value 
  End Set 
 End Property 
 
 <Description("Set this to TRUE if you want the next page button disabled."), _ 
  Category("Extended"), DefaultValue(False), Bindable(True)> _ 
  Public Property nextPageButtonDisabled() As Boolean 
  Get 
   Return c_nextPageDisabled 
  End Get 
  Set(ByVal Value As Boolean) 
   c_nextPageDisabled = Value 
  End Set 
 End Property 
 
 <Description("Set this to TRUE if you want the previous page button disabled."), _ 
  Category("Extended"), DefaultValue(False), Bindable(True)> _ 
  Public Property previousPageButtonDisabled() As Boolean 
  Get 
   Return c_previousPageDisabled 
  End Get 
  Set(ByVal Value As Boolean) 
   c_previousPageDisabled = Value 
  End Set 
 End Property 
#End Region 

Listing 33. Navigation Form Properties Code 

                                                           
20 Buttons, TextBoxes, and some other controls have a ContextMenu property that you can set to a ContextMenu object such as 
CBTContextMenu as in this example. .NET will then display the menu when you right-click on the object. We needed to write code 
in this case, though, since we wanted to display the menu on the normal click. 



VBTrain.Net™: Creating Computer and Web Based Training with Visual Basic® .NET 

 108

The property definitions are probably fairly familiar by now. We define the “number of steps” to be 
completed on the form as well as whether the “forward” and “back” buttons should be disabled. Notice 
how we add a DefaultValue attribute. This allows the developer to right-click on the property value and 
select “reset.”21 Any value that is not the default value will appear bolded in the Properties window. The 
default value is distinct from the initial value of the property, which is controlled by the initialization of 
the private variables (Listing 32). 

Table of Contents 
We’ve already looked at the TableOfContents form in detail (Figure 49, Listing 17, Listing 18, and 
Listing 19) as part of our discussion on handling events. We inherit it directly from NavigationForm 
since we need the navigation buttons and progress bar but don’t need the training or question elements 
that we will add to later levels. Here are properties and controls that we add to make up this form: 

• BackgroundImage property (set to backHOME.bmp and then stored inside the assembly) 

• NextForm property (“playingMedia”) 

• PreviousForm property (“”) 

• Two platteTransparentPictureBox custom controls22 

• Six platteBitmapButtonFromFile custom controls23 

• A plattePicture custom control24 

Note that setting the PreviousForm property to “” has the effect of disabling the “backwards” button so 
they can’t go back to the starting form. 

Training Form 
For our actual training, we want another set of user interface buttons, another progress bar showing 
completion within a section, and a title box. We also want all forms of this type to have the same 
BackgroundImage, so we can add that at this level as well. We inherit the rest of the user interface from 
NavigationForm with the result shown in Figure 63. Here are the properties and controls that we add: 

• BackgroundImage property (set to back7c.bmp and then stored inside the assembly) 

• Another platteProgressBar custom control (section completion) 

                                                           
21 Accomplishing this with other data types often requires more than just a DefaultValue as we will see later. 
22 This is yet another custom control that displays a graphic with a transparent (chromakey) area. We use this to show both the 
cutout around the progress bar and the cutout around the light. 
23  This control is similar to the graphicalButtonSmall custom control that we used on the NavigationForm. However, that 
implementation only works with smaller graphics since it uses ImageList controls to store them. For larger graphics, we read them 
directly from their files, hence the control name. More on this in the Graphics chapter. 
24 This is where we show the various light graphics. As we discuss later in the chapter on graphics, we have to pick the control we 
inherit from carefully so that other objects will be transparent to a graphic shown in this control rather than just to the 
BackgroundImage of the form itself. 



Inheriting Windows Forms 

 109

• Four more graphicalButtonSmall custom controls (the buttons to the lower left of the form) 

• A Label control (to display the title)25 

• Another ToolTip control (for showing tooltips on the four graphicalButtonSmall controls 

Listing 34 and Listing 35 show the implementing code for TrainingForm. 
 
Option Explicit On  
Option Strict On 
Imports System.ComponentModel 
 
Public Class TrainingForm 
 Inherits LMTraining.NavigationForm 
 
' Windows Form Designer generated code here 
 
#Region "Variables" 
 Private c_expertInfoEnabled As Boolean = True 
 Private c_codeTipsEnabled As Boolean = True 
 Private c_showMeEnabled As Boolean = True 
 Private c_letMeTryEnabled As Boolean = True 
 Private c_formTitle As String = "Put Title Here" 
#End Region 
 
#Region "Base Events" 
 Private Sub TrainingForm_Load(ByVal sender As Object, ByVal e As System.EventArgs) _ 
  Handles MyBase.Load 
  expertInfo.Enabled = Me.expertInfoEnabled 
  codeTips.Enabled = Me.codeTipsEnabled 
  showMe.Enabled = Me.showMeEnabled 
  letMeTry.Enabled = Me.letMeTryEnabled 
  pageTitle.Text = Me.formTitle 
 End Sub 
 
 Private Sub expertInfo_Click(ByVal sender As System.Object, ByVal e As _ 
  System.EventArgs) Handles expertInfo.Click 
  MessageBox.Show(System.String.Concat("Expert Info for form ", Me.Name)) 
 End Sub 
 
 Private Sub codeTips_Click(ByVal sender As System.Object, ByVal e As _ 
  System.EventArgs) Handles codeTips.Click 
  MessageBox.Show(System.String.Concat("Code Tips for form ", Me.Name)) 
 End Sub 
 
 Private Sub showMe_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) _ 
  Handles showMe.Click 
  MessageBox.Show(System.String.Concat("Show Me for form ", Me.Name)) 
 End Sub 
 

                                                           
25 Notice that we set the BackColor of the Label to Color.Transparent (the first choice under the “Web” tab of the Color dialog), so 
that we see the background graphic showing through. 



VBTrain.Net™: Creating Computer and Web Based Training with Visual Basic® .NET 

 110

 Private Sub letMeTry_Click(ByVal sender As System.Object, ByVal e As _ 
  System.EventArgs) Handles letMeTry.Click 
  MessageBox.Show(System.String.Concat("Let Me Try for form ", Me.Name)) 
 End Sub 
#End Region 

Listing 34. Training Form Class Definition, Variables, and Base Events Code 

The variables hold the 
“enabled” state of the new 
interface buttons as well as the 
title of the form. As with 
NavigationForm, we set the 
Enabled of each of the buttons 
based on the corresponding 
form property. We use a slightly 
different syntax here since it is 
more likely that these buttons 
will be disabled on various 
individual forms. We also set 
the Text of the pageTitle Label 
control based on the FormTitle 
property. Each of the interface 
buttons then has its own Click 
handler. We just show a 
message box at the moment, but 
in actual implementation we 
would display information, 
simulations, or animations 
based on the actual form being 
displayed. That’s why Me.Name 
is in the message. This shows 
that we are able to grab the 
name of the actual instance rather than the name of this class. 
 
#Region "Properties" 
 <Description("Set this to True to enable the 'Expert Info' button on this form."), _ 
  Category("Extended"), DefaultValue(True), Bindable(True)> _ 
  Public Property expertInfoEnabled() As Boolean 
  Get 
   Return c_expertInfoEnabled 
  End Get 
  Set(ByVal Value As Boolean) 
   c_expertInfoEnabled = Value 
  End Set 
 End Property 
 
 <Description("Set this to True to enable the 'Code Tips' button on this form."), _ 
  Category("Extended"), DefaultValue(True), Bindable(True)> _ 
  Public Property codeTipsEnabled() As Boolean 
  Get 
   Return c_codeTipsEnabled 
  End Get 

Figure 63. Training Form 



Inheriting Windows Forms 

 111

  Set(ByVal Value As Boolean) 
   c_codeTipsEnabled = Value 
  End Set 
 End Property 
 
 <Description("Set this to True to enable the 'Show Me' button on this form."), _ 
  Category("Extended"), DefaultValue(True), Bindable(True)> _ 
  Public Property showMeEnabled() As Boolean 
  Get 
   Return c_showMeEnabled 
  End Get 
  Set(ByVal Value As Boolean) 
   c_showMeEnabled = Value 
  End Set 
 End Property 
 
 <Description("Set this to True to enable the 'Let Me Try' button on this form."), _ 
  Category("Extended"), DefaultValue(True), Bindable(True)> _ 
  Public Property letMeTryEnabled() As Boolean 
  Get 
   Return c_letMeTryEnabled 
  End Get 
  Set(ByVal Value As Boolean) 
   c_letMeTryEnabled = Value 
  End Set 
 End Property 
 
 <Description("Enter the descriptive title of this form."), _ 
  Category("Extended"), DefaultValue("Put Title Here"), Bindable(True)> _ 
  Public Property FormTitle() As String 
  Get 
   Return c_formTitle 
  End Get 
  Set(ByVal Value As String) 
   c_formTitle = Value 
  End Set 
 End Property 
#End Region 

Listing 35. Training Form Properties 
Code 

These property definitions are similar 
to what we’ve seen before. Notice that 
we again initialize the corresponding 
private variables and then have a 
DefaultValue that allows developers 
to select “Reset” to set each property 
back to its default. 

Individual Training 
Forms 
All the forms in the training that need 
this user interface can now inherit Figure 64. Sample Media Form (Training Form Instance) 



VBTrain.Net™: Creating Computer and Web Based Training with Visual Basic® .NET 

 112

from TrainingForm. We saw one example back in Figure 3. We show another one in Figure 64. In this 
latter case, we set each of the user interface buttons to be enabled and set a NextForm and PreviousForm 
property value. The form itself has remarkably little code, as it inherits all the hard parts! 
 
Option Explicit On  
Option Strict On 
 
Public Class playingMedia 
 Inherits LMTraining.TrainingForm 
 
' Windows Form Designer Code 
 
#Region "Base Events" 
 Private Sub playingMedia_Load(ByVal sender As Object, ByVal e As System.EventArgs) _ 
  Handles MyBase.Load 
  AxShockwaveFlash1.Movie = String.Concat(graphicsPath, "icbt.swf") 
  AxMediaPlayer1.FileName = String.Concat(graphicsPath, "radar.avi") 
 End Sub 
#End Region 
End Class 

Listing 36. Sample Media Form Code 

The most important point to make once again is how this form inherits from TrainingForm (which in turn 
inherits from NavigationForm 
which in turn inherits from 
MasterForm). This might be a 
good time to glance at Figure 1 
once again. The only other code 
is to initialize our Windows 
Media Player and Flash Player26 
with the runtime location of 
their media files. Notice how we 
use the public graphicsPath 
variable that we defined when 
loading the application (Listing 
27). 

Question Form 
The last part of our training 
example deals with review 
questions. We want our trusty 
navigation buttons but not the 
other user interface buttons that 
we added in TrainingForm. We 
therefore want to inherit from 
NavigationForm and our 

                                                           
26 The AxShockwaveFlash1 and AxMediaPlayer1 syntax reflects that these are ActiveX/COM components. We will cover this in 
detail in the Media chapter. 

Figure 65. Question Form 



Inheriting Windows Forms 

 113

question-specific elements to make the QuestionForm class shown in Figure 65.  

To do this, we add the following properties and controls: 

• BackgroundImage property (set to quiz backdrop 2.bmp and then stored inside the assembly) 

• Another platteProgressBar custom control (section completion) 

• Two platteBitmapButtonFromFile custom controls for the “Check Your Work” and “Start 
Over” graphical buttons 

• Two Label controls (one to display the question text and the other to display feedback) 

Listing 37shows the implementing code for QuestionForm. 
 
Option Explicit On 
Option Strict On 
 
Public Class QuestionForm 
 Inherits LMTraining.NavigationForm 
 
' Windows Form Designer Code 
 
#Region "Events" 
 Protected Event CheckQuestion(ByVal formID As Form) 
 Protected Event ResetQuestion(ByVal formID As Form) 
#End Region 
 
#Region "Base Events" 
 Private Sub QuestionForm_Load(ByVal sender As System.Object, ByVal e As _ 
  System.EventArgs) Handles MyBase.Load 
 
  questionFeedback.Text = "" ' So no feedback initially 
 End Sub 
 
 Private Sub checkWorkBtn_Click(ByVal sender As Object, ByVal e As System.EventArgs) _ 
  Handles checkWorkBtn.Click 
 
  RaiseEvent CheckQuestion(Me) 
 End Sub 
 
 Private Sub resetQuestionBtn_Click(ByVal sender As Object, ByVal e As _ 
  System.EventArgs) Handles resetQuestionBtn.Click 
 
  RaiseEvent ResetQuestion(Me) 
 End Sub 
#End Region 
End Class 

Listing 37. Question Form Code 

The inheritance and Load part of the code is straightforward. We simply clear the feedback when the user 
enters the question. The design diverges at this point, however. Rather than variables and properties, we 
have events. The reason is that we don’t know anything at this level about the actual question objects that 
will be used. So rather than try to call methods of these unknown objects, we define and raise events that 
the inheriting forms can then handle to perform the desired actions. So when the user clicks the “Check 
Your Work” button, we raise the CheckQuestion event and include a reference to the current form as a 



VBTrain.Net™: Creating Computer and Web Based Training with Visual Basic® .NET 

 114

parameter. Similarly with the “Start 
Over” button, we raise the 
ResetQuestion event. The inheriting 
form then can handle these events if 
desired to actually perform the 
appropriate action(s). 

Individual Question 
Forms 
All the review questions in the 
training now inherit from 
QuestionForm. To implement the 
individual forms, we add a question 
object and anything else (screen 
captures for example) that we might 
need. Figure 66 shows an example. In 
addition to a PreviousForm property 
for navigation, we added a 
MultipleChoiceButtons custom 
object27 to actually handle the question task. Here’s the form’s code: 
 
Option Explicit On  
Option Strict On 
 
Public Class Question1 
 Inherits LMTraining.QuestionForm 
 
' Windows Form Designer Code 
 
#Region "Base Events" 
 Private Sub Question1_Load(ByVal sender As System.Object, ByVal e As _ 
  System.EventArgs) Handles MyBase.Load 
 
  questionText.Text = MultipleChoiceButtons1.QuestionText 
 End Sub 
 
 Private Sub Question1_CheckQuestion(ByVal formID As System.Windows.Forms.Form) _ 
  Handles MyBase.CheckQuestion 
 
  Call MultipleChoiceButtons1.Score() 
 End Sub 
 
 Private Sub Question1_ResetQuestion(ByVal formID As System.Windows.Forms.Form) _ 
  Handles MyBase.ResetQuestion 
 
  MultipleChoiceButtons1.Reset() 
  questionFeedback.Text = "" 
 End Sub 
#End Region 

                                                           
27 More on this object in the Interactions and Questions chapter. 

Figure 66. Individual Question Form 



Inheriting Windows Forms 

 115

 
#Region "Question Events" 
 Private Sub MultipleChoiceButtons1_AnswerSelected(ByVal AnswerText As String, ByVal _ 
  AnswerFeedback As String, ByVal AnswerCorrect As Boolean) Handles _ 
  MultipleChoiceButtons1.AnswerSelected 
 
  questionFeedback.Text = String.Concat("You answered: ", AnswerText, ". Feedback: ", _ 
   AnswerFeedback) 
 End Sub 
 
 Private Sub MultipleChoiceButtons1_QuestionScored(ByVal AnswerText As String, ByVal _ 
  AnswerFeedback As String, ByVal QFeedback As String, ByVal QuestionScore As _ 
  Decimal, ByVal TryNum As Integer) Handles MultipleChoiceButtons1.QuestionScored 
 
  questionFeedback.Text = String.Concat("Question Feedback: ", QFeedback, _ 
   ". Question Score: ", QuestionScore.ToString, ". Try Number: ", TryNum.ToString) 
 End Sub 
#End Region 
End Class 

Listing 38. Individual Question Form Code 

When we load the form, we set the Text of the questionText Label (inherited from QuestionForm) to the 
QuestionText property of the MultipleChoiceButtons1 question object. We then handle the events raised 
by QuestionForm. Recall that clicking the “Check Your Work” button (as has just happened in Figure 
66) raises the CheckQuestion event. We handle this in the form and in turn call the Score method of the 
question object. See Listing 10 for some of the implementation code for this method. Note that another 
type of question object might have a different method to call. Similarly, we call the question object’s 
Reset method in response to the ResetQuestion event. Notice that we also clear the Text of the 
questionFeedback Label since the question object has no idea that this Label exists. At the end of the 
code, we handle events of the question object itself. The AnswerSelected event is sent each time the user 
clicks on an answer. We list the answer and the feedback for that answer in the feedback object. The 
QuestionScored event is sent in response to our calling the question object’s Score method. We show the 
desired information once more in our feedback object. 

 


