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ABSTRACT 
This paper explains the use of a sharpening filter to calculate the depth of an object from a 
blurred image of it. It presents a technique which is independent of edge orientation. The 
technique is based on the assumption that a defocused image of an object is the convolution of a 
sharp image of the same object with a two-dimensional Gaussian function whose spread 
parameter (SP) is related to the object depth. A sharp image of an object is obtained from a 
defocused image of the same object by applying sharpening filters. The defocused and sharp 
images of the object are used to calculate the SP which is then related to the object depth. The 
paper gives experimental results which show the feasibility of employing sharpening filters for 
depth computation. 
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1. Introduction 
The depth of a visible surface of a scene is 
the distance between the surface and the 
sensor. Recovering depth information from 
two-dimensional images of a scene is an 
important task in computer vision that can 
assist numerous applications such as object 
recognition, scene interpretation, obstacle 
avoidance, inspection and assembly. 

Various passive depth computation 
techniques have been developed for 
computer vision applications [1]. They can 
be classified into two groups. The first group 
operates using just one image. The second 
group requires more than one image which 
can be acquired using either multiple 
cameras or a camera whose parameters and 
positioning can be changed. 

Several monocular Depth from 
Defocusing (DFD) techniques have been 
developed and demonstrated [2-11]. These 
techniques assume that the scene contains 
either sharp edges (step edges) or edges with 
a known form and the defocused image is 
the result of convolving the focused image 
of those edges with the point-spread function 
(PSF) of the camera. Most of these 
techniques are also based on the PSF of the 
camera being either a Gaussian or a 

circularly symmetric function to obtain a 
relation between the SP of the PSF and 
depth.  

Edge orientation is critical to the 
estimation of depth in most monocular DFD 
techniques. This paper describes a more 
general technique, which is independent of 
edge orientation. A defocused image of an 
object is defined as the convolution of a 
sharp image of the same object with a two-
dimensional Gaussian function whose SP is 
related to the object depth. The sharp image 
of an object is estimated from the defocused 
image of the same object by applying the 
sharpening filter. The defocused and sharp 
images of the object are used to estimate the 
SP of the Gaussian function. The parameter 
is then related to the object depth. 

The technique described in this paper 
does not require special scene illumination 
and needs only a single camera. Therefore, 
there are no correspondence and occlusion 
problems as found in stereo vision and 
motion parallax or intrusive emissions as 
with active depth computation techniques. 

The remainder of the paper comprises 
five sections. Section 2 gives the theory 
underlying the proposed technique. Section 
3 discusses different ways of obtaining sharp 
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images. Section 4 explains the collection of 
data to evaluate the developed technique. 
Section 5 presents the results obtained. 
Section 6 concludes the paper. 

 
 

2. Problem Formulation 
The transformation effected by an optical 
system can be modelled as a convolution 
operation [12]. The image of a blurred object 
may then be written as: 

∫ ∫ −−= ηξηξηξηξ ddSdyxHyxI  ),()),(,,(),( (1)

where x and y are image coordinates, ξ and η 
are two spatial variables, S(x,y) and I(x,y) are 
the sharp and defocused images of the 
source object respectively, d(x,y) is the 
distance from the object to the plane of best 
focus (PBF) and H(x,y,d) is the PSF. If the 
distance from the object to the PBF is 
constant, then the PSF H(x,y,d) can be 
written as H(x,y) and the defocusing process 
is defined as a convolution integral: 

∫ ∫ −−= ηξηξηξ ddSyxHyxI  ),(),(),(  (2)

The convolution operation is usually 
denoted by the symbol ⊗. Therefore, 
Equation (2) can be abbreviated as:  

),(),(),( yxSyxHyxI ⊗=  (3)

In the Fourier domain, Equation (3) can 
be expressed as: 

),(),(),( vuSvuHvuI =  (4)

where {I(x,y), I(u,v)}, {H(x,y), H(u,v)} and 
{S(x,y), S(u,v)} are Fourier pairs. Most of the 
focus based techniques assume that the 
distance function d(x,y) is slowly varying, so 
that it is almost constant over local regions. 
The defocus is then modeled by the 
convolution integral over these regions. 
2.1 Form of Point-Spread Function 
Figure 1 shows the basic geometry of image 
formation. Each point in a scene is projected 
onto a single point on the focal plane, 
causing a focused image to be formed on it. 
However, if the sensor plane does not 
coincide with the focal plane, the image 
formed on the sensor plane will be a circular 

disk known as a "circle of confusion" or 
"blur circle" with diameter 2R, provided that 
the aperture of the lens is also circular. 
According to geometrical optics, the 
intensity distribution within the blur circle is 
assumed to be approximately uniform i.e., 
the PSF is a circular "pillbox". In reality, 
however, diffraction effects and 
characteristics of the system play a major 
role in forming the intensity distribution 
within the blur circle. After examining the 
net distribution of several wavelengths and 
considering the effects of lens aberrations  
the net PSF is best described by a 2D 
Gaussian function [3, 4]:  
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Figure 1. Basic image formation geometry 
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where σ is the SP which is proportional to 
the radius R of the blur circle.  

σkR =  (6)
The proportionality constant k depends on 

the system and can be determined through 
calibration. The optical transfer function 
H(u,v) for geometrical optics can be 
obtained by taking the Fourier transform 
(FT) of H(x,y): 
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By substituting Equation (7) into 
Equation (4) and solving for σ, Equation (4) 
can be rewritten as: 
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In principle, it is sufficient to calculate σ 
at a single point (u,v) by employing 



Equation (8). However, a more accurate 
value can be obtained by averaging σ over 
some domain in the frequency space: 
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where P is a region in the (u,v) space 
containing points where (I(u,v)/S(u,v)>0  and 
A is the area of P [5]. 
2.2 Relating Depth to Camera Parameters 

and Defocus  
The object may be either in front of or 
behind the PBF on which points are sharply 
focused on the focal plane. From Figure 1, 
by using similar triangles, a formula for a 
camera with a thin convex lens of focal 
length F can be derived to establish the 
relationship between the radius R of the blur 
circle and the distance DOL from a point in a 
scene to the lens [3,13]: 
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where DLS is the distance between the lens 
and the sensor plane, f is the f-number of a 
given lens. When the object is in front of the 
PBF, Equation (10) becomes: 
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Equations (10) and (11) relate the object 
distance DOL to σ. 

 

3. Obtaining Sharp Images  
As can be observed from Equation (9), a 
blurred image and a sharp image of the same 
scene are needed to compute σ. A sharp 
image of a scene can be achieved in either an 
optical or a computational way. These two 
methods will be explained in the following 
sections. 
3.1 Optical Method for Obtaining Sharp 

Images 
A sharp image of an object can be obtained 
optically by setting the diameter of the 
aperture to a very small value. In this case, 
the camera effectively acts like a pin-hole 
camera. σ  is proportional to aperture 
diameter L. Therefore, when L is very small, 

σ is also very small. Consequently, the 
captured image closely resembles the 
focused image. 

However, setting the aperture diameter to 
a very small value causes some serious 
practical problems. First, as the aperture 
diameter decreases, the diffraction effects 
increase. Therefore, the observed image is 
distorted. Second, a small aperture gathers 
only a small amount of light. Consequently, 
the period of exposure of the sensor has to 
be lengthened and the light intensity must be 
increased to take advantage of the sensor's 
full dynamic range. This increases the time 
required. Also, the scene must be stationary 
not only while each of the two images (one 
obtained with a large aperture and the other 
with a small aperture) is captured but also in 
the interval between the acquisitions of those 
images. 

In the computational method of obtaining 
a sharp image, there is no need to take more 
than one image of the scene. A sharp image 
of a scene can be obtained from a blurred 
image of the same scene by employing 
sharpening filters. Therefore, in this study 
the second approach has been utilized to 
obtain the sharp image from its blurred 
version. The employed sharpening filter is 
explained in the following section. 
3.2 The Laplacian Sharpening Filter 
Averaging of pixels over an area blurs detail 
in an image. As the averaging or blurring 
operation is similar to the integration 
operation, the differentiation operation can 
be expected to have the opposite effect. 
Therefore, a blurred image can be sharpened 
by performing differentiation operations 
[14]. 

Because blurred features which are to be 
sharpened (such as lines and edges) can have 
any orientation in an image, it is important to 
employ a derivative operator whose output is 
not biased by a particular feature orientation. 
Therefore, the operator should be isotropic, 
i.e. rotation invariant. The Laplacian is a 
linear derivative operator that is rotationally 
invariant. The Laplacian of an image is a 
second-order spatial derivative defined as: 
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How the Laplacian is used for sharpening 
a blurred image can be shown by assuming 
that the blur in the image is the result of a 
diffusion process which satisfies the well-
known partial differential equation: 
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(13)

where c is a constant and I is a function of x, 
y and t (time). I(x,y,0) is the sharp image 
S(x,y) at t = 0. The blurred image I(x,y,t) is 
obtained at some t=τ >0. Then, I(x,y,t) is 
approximated at  t=τ  by the following 
Taylor polynomial: 
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By ignoring the quadratic and higher-
order terms and substituting S for I(x,y,0), 
I(x,y) for I(x,y,) and c∇2I for ∂I /∂ t , a 
mathematical expression can be derived for 
S(x, y) as: 

),(),(),( 2 yxIcyxIyxS ∇−= τ  (15)

The above equation indicates that the 
sharp image S can be obtained by subtracting 
from the blurred image I a positive multiple 
of its Laplacian. If higher-order 
approximations based on the Taylor series 
expansion are used, better results can be 
achieved. However, this will increase the 
computational cost. The aim of this paper is 
to find a relation between blur and depth 
rather than restoring the exact sharp image 
and the above first-order approximation is 
sufficient to derive that relation. 

Although diffusion may not be an 
appropriate model for image blur, it is 
possible that the sharp image can be 
computed by a subtractive combination of 
the blurred image and its Laplacian. 
According to the diffusion model, a point 
source blurs into a spot with a brightness 
distribution whose SP is proportional to c. 
Therefore, c can be estimated by fitting a 
Gaussian to the PSF [15]. By convolving 
both sides of Equation (15) with the PSF 
H(x,y) and substituting σ for cτ, the 
following formula is obtained: 

( ) ),(),(),(),(),( 2 yxHyxIyxIyxHyxS ⊗∇−=⊗ σ (16)

Substituting Equation (3) into Equation 
(16) gives: 

( ) ),(),(),(),( 2 yxHyxIyxIyxI ⊗∇−= σ  (17)

H(x,y) can be searched iteratively to 
minimise the difference between the left and 
right hand sides of Equation (17) over a 
region P, namely: 

[ ]∑ ∑ ⊗∇+−⊗P yxHyxIyxHyxI
2

2 ),(),()),(1(),(min σ  
(18)

As stated in Section 2, H(x,y) is the 
unique indicator of the depth of a scene. 
Thus, when the H(x,y) that minimises the 
above expression is obtained, the depth can 
be computed using the SP of that H(x,y). 

By taking the Laplacian of the blurred 
edge and subtracting the result from the 
blurred edge (c = 1), the sharpened edge is 
obtained. However, it also produces 
overshoot or “ringing” on either side of the 
edge. This problem can be solved by 
“clipping” the extreme low and high grey 
level values. 

 

4. Data Collection 
Eight 64x64 images of a step edge with 
different orientations were obtained for 31 
distances ranging from 150 to 450mm at 
intervals of 10mm from the CCD camera 
(three of the pictures taken at distances of 
150, 300 and 450mm are shown in Figure 2). 
A PULNIX TMC 76S RGB camera was 
used. Images from the camera were acquired 
by a frame grabber board (model DT2871 
from Data Translation). A colour camera 
was employed because of its availability 
although all the computations were 
performed on the intensity buffer of the 
frame grabber board. The focal length and f-
number of the lens used were set to 20mm 
and 2.8 respectively. The distance of the step 
edge from the camera varied for different 
images but the camera parameters were the 
same for all images. The camera was set 
such that the PBF was at infinity (thus the 
object would always be between the PBF 
and the lens). For each distance, fifteen 



images were employed for averaging to 
minimize the effects of noise. 

distance = 150mm distance = 300mm distance = 450mm  
Figure 2. Pictures of blurred step edge 
 

5. Results 
Laplacian mask was applied to a blurred 
image to compute its Laplacian image. For 
each image, a Gaussian PSF was searched 
iteratively to minimize Expression (18). The 
SPs of the computed PSFs are shown in 
Figure 3(a). The estimated SPs are inexact 
and yielded incorrect depth values when 
used with Equation (10). However, as can be 
seen from Figure 3(a), there is a relation 
between the depth and the estimated SP. A 
polynomial curve was fitted to the data 
which is given by: 

61.56224.1001.35 2 ++−= σσOLD  (19)

Equation (19) can be used for edges with 
different heights provided that they have 
been taken using the same camera 
parameters as given in the previous section. 
Figure 3(b) shows the depth values 
estimated from Equation (19). The 
percentage error achieved was 1.64%. 
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Figure 3. Estimated a) σ  b) depth 
 

6. Conclusion 
The work developed in this paper has shown 
that it is possible to use sharpening filters for 
computing depth using a single defocused 
image. 

If the images are acquired with camera 
parameters other than those used in the 
experiments, a new polynomial curve should 
be fitted to the data obtained with the new 
camera parameters to express the correct 
relation between depth and SP. 

The technique does not require special 
scene illumination and needs only a single 
camera. Therefore, there are no 
correspondence and occlusion problems as 
found in stereo vision and motion parallax or 
intrusive emissions as with active depth 
computation techniques. 

The technique presented in the paper 
inherently have the advantage of being able 
to handle edges running in any direction due 
to the rotationally invariant property of the 
filters used. 
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