
A Framework for a Session Mobility System

Dan MacCormac, Mark Deegan, Fred Mtenzi, Brendan O’Shea
School of Computing, Dublin Institute of Technology, Ireland.

{dan.maccormac, mark.deegan, fred.mtenzi, brendan.oshea}@comp.dit.ie

ABSTRACT

As the average user interacts with more and more computing devices on a daily basis, the

need for interaction continuity when moving from device to another becomes stronger. Users
are seldom provided with the ability to move a session from one device to another.

Instead, they are often left to manually restore applications to their previous state on each
device encountered. This can be difficult, time consuming and sometimes impossible. This

approach can also lead to varying copies of data and unsynchronised information. We present
an adaptive approach to session mobility which alleviates the need to manually restore

sessions when moving between devices. Moreover, our approach does not tie a user to single
operating system, but rather provides a rich heterogeneous environment consisting of a range

of applications specific to various platforms. Dynamic movement of user sessions across a
broad range of devices from the desktop computer to the mobile phone is supported in a

flexible and adaptive manner.

Key Words: Session mobility, pervasive computing, systems integration, thin client computing

1. Introduction
In both corporate and academic
environments, many users tend to move
between multiple computers running a
range of operating systems and software in
the course their day. Even at the desktop
computer level, the ability to suspend,
resume or move a session is seldom
provided. Terminating the session by
closing all applications, moving to a new
computer, and reopening and restoring
applications to their previous state is the
most common solution in practise. This
can be time consuming and becomes
increasingly frustrating over the time.
Without the ability to move a session from
one device to another, the problem of
unsynchronised information and
communication barriers become apparent.
To address these problems, people
sometimes carry a notebook computer or
PDA, carrying their session and associated
data with them at all times. This solution is
partial at best and presents further barriers

such as limitations imposed by a particular
device or operating system as well as the
physical inconvenience of carrying the
device at all times.

A system which allows sessions to
be suspended, resumed or moved to new
terminals allows users working in public
domains to become more productive. Our
proposed approach does not tie a user to a
particular operating system, as many
existing solutions do, but instead we aim to
provide a heterogeneous environment
comprised of applications specific to a
wide range of platforms and architectures.
This heterogeneous mobile session is
capable of being dynamically moved
across a broad range of client devices
running various systems, from the
traditional desktop computer to the smart-
phone.

The concept of pervasive
computing in addition to the emergence of
new wireless and sensor technologies
presents new and exciting possibilities and
allows the exploration of new concepts in

terms of user tracking, management and
location based facilities. Provision of a
heterogeneous sensor network would
provide an infrastructure in which to
deploy the proposed system. The session
mobility application could be notified of
the movement of users from one room to
another, and this information could then be
used a basis for movement of sessions
from one device to another. Ideally, this
should be completely transparent to the
end user.

From the problems outlined above
we have identified several key objectives
which we aim to address.

• Enable the mobility of legacy
applications
• Avoid modification to existing Operating
Systems
• Support heterogeneous client platforms
• Support seamless integration of mobility
enabled applications where possible
• Enable sharing of workspaces with
multiple users for presentations and
collaborative work
• Support efficient management of network
resources

The remainder of the paper is structured as
follows. In section 2 we discuss related
work in the area. In section 3 we outline
our approach to achieving our objectives,
and in section 4 we present the design of
our system. Having discussed the chosen
technologies for the system, in section 5
we present the system architecture,
discussing the role of each component of
the system. In section 6 we analyse the
effectiveness of our approach and re-
evaluate our chosen approach to building
the system. Finally, in section 7, we
present are concluding remarks and discuss
potential future work.

2. Related Work
The issue of web interface mobility has
been discussed in [1]. The work outlined
supports applications built using a multi-
modal approach, and is capable of
choosing the most appropriate mode for

the current device. However, to take full
advantage of the capabilities of the system,
applications must be built using a
specialised toolkit. Similarly, in [2], the
authors present a ``multibrowsing'' system
which allows the movement of web
interfaces across multiple displays. This
work supports the movement of existing
web applications, broadening its usage
scope. Kim, Baratto and Nieh [3] present
pTHINC, a thin client approach to
supporting wireless web browsing on
various handheld devices. The work takes
into account the limitations of today’s
mobile web browsers in relation to
multimedia content which is of growing
importance to user interaction. As the
interaction with mobile devices becomes
more complex in response to their growing
capabilities, the need to support mobility
of a wider range of applications becomes
apparent. ROAM, a system to support the
movement of Java based applications
between heterogeneous devices is
presented in [4]. This work also requires
developers to build applications using a
specific approach thereby limiting the
applicability of this work. Guyot et al. [5]
investigate smart card performance as a
token for session mobility between
Windows and Linux. This work supports
mobility of a wide range of applications,
and is also capable of remotely fetching
and installing necessary applications which
were available on the previous terminal but
not on the present terminal. The approach
taken in this work involves the restoration
of a session based on a session state file.
Our approach involves the dynamic
movement of an application from one
device to another. Furthermore, this work
does not address the use of mobile devices,
which is central to our work.

The work outlined in this paper
focuses on enabling mobility of legacy
applications across heterogeneous devices.
We aim to provide seamless integration of
the interface of the mobility enabled
application into the users current
environment, allowing both mobile and
stationary applications to work side by
side. Moreover, our approach takes into

consideration the diverse range and
capabilities of various target platforms,
providing adaptive methods of session
mobility. This reduces footprint when
moving sessions to mobile devices with
constrained capabilities. We use a thin
client approach to providing session
mobility. Existing thin client solutions
which display an entire desktop
environment confine users to particular
Operating Systems. This prevents users
from merging the power of applications
which are specific to a variety of
platforms.

3. Approach
The use of thin client computing is a
suitable approach to providing session
mobility. Thin client computing involves
running user applications on a server
machine which direct their output to light-
weight client devices which merely act as
display terminals. All application logic is
executed on the server side and
consequently the duties and requirements
of client devices are minimal. There are
two varieties of thin client computing;
hardware based and software based. The
software based approach involves using a
small client application on a traditional
desktop computer to connect to a remote
session on a thin client server. The
hardware based approach involves much
simpler client hardware which is
specifically designed for the purpose of
connecting to and displaying sessions
running on remote servers. Such devices
are not capable of acting as independent
workstations since they lack the hardware
of their counterparts, running firmware as
opposed to an entire operating system.
Aside from client requirements, the thin
client approach is advantageous in a
number of respects. It simplifies the duties
of system administrators, centralising
management and simplifying deployment
of applications. Thin client software
solutions allow movement of sessions to
existing common devices and are therefore
the focus of this work.

To identify suitable technologies
for this system, we assessed and
considered a number of thin client
software products. Firstly we considered
the underlying protocol of the technology,
and secondly we assessed the performance
of each product in a laboratory
environment. The testing laboratory
consisted of a range of client devices
running operating systems such as
Microsoft Windows, Mac OS X, Linux,
Sun Solaris, Windows Mobile and
Symbian OS. Products tested included
Microsoft's Terminal Services [6], Virtual
Network Computing (VNC) [7], the X
Window System [8], GraphOn GoGlobal
[9], Citrix [10], and Tarantella products
[11].

Using a single thin client protocol
can limit the capabilities of the system.
Merging two suitable protocols together
provides a richer more flexible solution to
the problem of session mobility. From our
technology assessment, we concluded that
the X Window System and VNC were
most suitable for the requirements of this
system.

4. Design
Having identified key objectives and a
suitable approach to achieving these
objectives, we now discuss the role of each
technology in relation to the design of the
system.

4.1 The X Window System
The X Window System is a windowing
environment that forms the basis of the
majority of UNIX-based GUI systems
today. Inherently networked, all X
applications are already capable of remote
display. X is commonly associated with
Linux, but implementations of X are also
present on many systems; for example,
BSD, Sun Solaris and Apple Mac OS X.
Microsoft Windows does not come with
support for X, but many third-party
implementations exist, both free and
proprietary.

X is suitable for development of
this system for a number of reasons.
Primarily, X is freely available under GPL.
This could be crucial for development of
add-on packages to X for the purpose of
session mobility. In addition to remotely
displaying the interface of applications in a
seamless manner, X is also sparing on
bandwidth as well as being widely
supported. There are however some
significant obstacles to consider when
using X. Current implementations of the X
Window system provide no means of
moving the output of an application from
one X server to another [12]. Furthermore,
in the case of bandwidth under 1 Mbps, X
does perform as well as some competitors,
which can lead to slow sessions over low
bandwidth connections. With the help of
additional compression modules [13], X
can be made to work more efficiently on
low bandwidth connections. The fact that
X does not provide a truly thin client
environment is another drawback. The
remote host is responsible for the current
instance of the applications interface,
therefore if the remote host crashes or the
network connection breaks, the state of the
application will be lost. X is supported by
many thin-client hardware manufacturers,
for example as SunRay Terminals [14],
which is useful for environments in which
such devices are present.

4.2 X11 Client Mobility
While the X window system provides the
capability to remotely display applications,
there is no support provided by the X
protocol or the X11R6 implementation for
the dynamic movement of clients between
servers. The low-level C API for
programmers to write X11 applications -
xlib - provides no functions for moving the
client, thus X client mobility must be
provided in the form of an extension to
existing X11 software. There are several
possible approaches to providing X11
client mobility. Solomita [15] outlines and
discusses these approaches to achieving
X11 client movement and the use of a
pseudo-server has been suggested as a

suitable approach. A pseudo-server is an
intermediary positioned between client and
server. This allows for the interception,
interpretation, change, and redirection of
the X protocol messages exchanged
between client and server and hence this
information can be used as a basis for
window movement.

The pseudoserver acts in a similar
manner to a standard X server by listening
for requests from new clients. When a
pseudo-server receives a connection from a
client, it opens a new connection to the real
X server. It then serves as a pipeline,
forwarding and possibly translating
messages between client and server. Any
application started on this pseudo X server
will then be capable of having its output
redirected to any other X server - real or
pseudo. The main advantage of this
approach is that it enables X client
mobility without any modification to the
client applications; therefore it can be used
with the majority of software in existence.
The primary disadvantage of this approach
is that many aspects of client operation
must be deduced at the protocol level.
Another disadvantage of this approach is
that it adds overhead since all messages
must pass through the pseudo-server.

4.3 Supporting Mobile Devices
In order to support non X enabled devices
such as smart phones, VNC can be used.
VNC (Virtual Network Computing)
enables server machines to supply not only
applications and data but also an entire
desktop environment that can be accessed
from any client machine using simple
client software. Regardless of the location
or capabilities of the client machine, the
state and configuration of the VNC
desktop are exactly the same as when it
was last accessed. VNC clients are truly
thin client; they are stateless clients. When
the client disconnects, the session
continues to run on the server, and can be
resumed from any other suitable client.
VNC client software is available for a wide
variety of client platforms, and the
underlying protocol RFB (Remote

Framebuffer Protocol) is much lighter on
client resources than X. VNC client
software is available for PDAs and
smartphones, in addition to all major
operating systems. X and VNC provide
varying levels of remote access. This
allows the adaptation of session delivery,
based upon the capabilities of the current
client device.

4.4 Session Multiplexing
In addition to providing session mobility,
the ability to broadcast a session to
multiple terminals simultaneously could
also be beneficial, especially in academic
environments. Such a facility would allow
lecturers to share their session in a view-
only mode with the students within a
laboratory, as oppose to using projectors.
Groups of students or staff could also work
collaboratively on tasks, increasing
productivity. Several software packages
which are capable of enabling this are
available. Tools which can provide this
feature are sometimes referred to as a mux
utilities since they can multiplex output
onto several remote terminals. Mux
utilities include XMX [16], HP SharedX
[17], RealVNC [18] and xtv [19]. In the
case of multiplexing in view-only mode,
xtv is a suitable choice. xtv allows remote
users to view the contents of an X session
within an xtv client window. The multiplex
client cannot provide any input to the X
session, instead a view only session is
provided. To enable collaborative shared
sessions, multiple users can connect to the
a single VNC desktop from a several
clients simultaneously. This approach
allows us to leverage the already existing
VNC component of the system.

4.5 Security Considerations
X terminals are capable of authenticating a
connection from an X11 client using two
methods - host based or token based
authentication. Host based authentication
relies on the IP address of the X server,
while token based authentication relies on
the provision of an authentication token,

commonly referred to as MIT-MAGIC-
COOKIE-1 scheme. Unwanted content
being displayed within a session can be
prevented by employing either of the
above methods. Moreover, user sessions
often contain potentially private data,
which creates a strong need for protocol
encryption. Neither X nor VNC offer
encryption capabilities by default. Instead
X11 and VNC protocol messages must be
encapsulated in an SSH tunnel, enabling
secure communication.

4.6 System I/O
Communication between this system and
adjacent pervasive computing applications,
for example a Location Based Services
application, is facilitated by use of a
custom built XML schema. This allows
client devices to send requests in the form
of XML strings to the client, which are
then parsed and processed accordingly by
the server. XML parsing is achieved using
custom built XML parsing applications
driven by expat, an open source XML
parsing library. Responses issued by the
system are in XML format. Furthermore,
system databases are structured using
XML, and the query functions are driven
by expat based tools.

5. System Architecture
Having discussed the fundamental
technologies which can be used as building
blocks for the system, we now present a
high level conceptual overview of each
component of the system.

5.1 Client Side
In the case of the initial prototype of the
system, clients can interface with the
server using light weight TCP client
applications. We have created client
applications for Linux, Windows, Mac OS,
BSD and Solaris. Using these simple client
applications, users can push their sessions
to any remote workstation or pull their
session to their current workstation. A

higher level of transparency could be
provided by delegating the task of session
hand-off to a Session Management Server.
This server could handle session
movement from one device to another
based on the physical movement patterns
of a user, supported by appropriate user
tracking applications.

5.2 Server Side
On the Session Mobility Server, a
dedicated TCP server will listen for
incoming requests on a specified port.
These requested are then analysed and
processed accordingly. This is achieved by
invoking necessary modules within the
server framework. Using our custom XML
schema, an appropriate response is then
returned to the client detailing the outcome
of the request. The role of each component
of the server framework is now discussed.

• Request Listener
The Request Listener waits for
incoming requests from clients.
The Request Listener will first
perform fundamental error
checking to ensure that the
incoming data meets minimal
requirements. Having passed
fundamental error checking, the
request is then passed to the
Request Manager module, where
further error checking and analysis
occur.

• Request Manager

The Request Manager is
responsible for processing requests
and carrying out appropriate
actions in addition to notifying the
Response Manager of the outcome
of the request. Conceptually, the
Request Manager has five
functions. These five conceptual
functions are :

1. StartSession()
2. StopSession()
3. MoveSession()
4. MultiplexSession()

5. MultiplexStop()

Starting or stopping sessions can be
achieved via the startSession() and
stopSession() functions. Starting a
session for a user involves starting
a pseudo X server capable of
window movement, as well as a
VNC desktop. Movement of a
session from one device to another
is accomplished by invoking the
moveSession() function. Activating
or deactivating the Multiplex
capability of the system is achieved
by invoking the Multiplex() and
MultiplexStop() functions
respectively. Stopping a session by
calling the stopSession() function
will terminate the VNC desktop,
pseudoserver, any associated
applications and any multiplex
clients.

• Database Manager
The growth of wireless networking
has lead to a change from the
traditional static network model to
a dynamically changing model.
Many environments now provide
wireless networking facilities and
as a result new devices will
continually be added to and
removed from the network. The
database manager must be able to
manage this continuosly changing
network model by dynamically
updating necessary databases to
reflect the current state of the
network.

Entries are created for newly
discovered destination devices and
trimming the database of obsolete
devices can be accomplished by
provision of a TTL (Time to Live)
field for each device. While static
devices have an infinite TTL value,
mobile devices such as laptops and
PDAs are assigned a specified
TTL. Expiration of a TTL field
triggers the removal of the
specified device from the database.

• Device Database

Information about devices, for
example physical location, vacancy
status and operating system details,
are stored in a low level device
database. The database is structured
using XML format. The database
can be queried by the Database
Manager in a case where the
request contains insufficient
information for the Request
Manager to fulfil the request. As an
example, if a request to move a
session from one workstation to
another contains only a zone name
as opposed to an IP address, the
database must be queried in order
to obtain the information necessary
to complete the request.

• Mobility Module
By invoking this function, an
application currently directing its
output to one terminal can
dynamically redirect its output to
an alternative terminal without
interrupting the state of the session.
As specified by the parameters of
the request, a single application,
multiple applications, or the entire
session can be moved. Applications
can be grouped together to form
sub-sessions which can be
displayed on multiple terminals,
effectively creating multiple
sessions or workspaces.
Either the X or RFB protocol will
be used to remotely deliver the
application to the client, depending
on the capabilities of the client.
Either an IP address of specific
device or a zone name can be
provided as a destination. If a zone
name is specified as a destination a
suitable device in that room will be
chosen.

• Multiplex Module
The Multiplex module provides the
ability to share or multiplex a

session to multiple client devices in
either view-only or collaborative
mode. The multiplexing function is
capable of taking one or more IP
addresses of client devices to share
a session with. Alternatively a zone
name can be specified as a
destination. In the case that a zone
name is specified as a multiplex
destination, all devices in the
specified zone will be used. A list
of active devices in specific zones
are retained by the system making
this feature possible. Multiplexing
can be terminated by use of the
multiplexStop() function.

• Response Manager
The Response Manager will always
receive a response from the
Request Manager indicating either
success or failure which is in turn
sent to the client. The response is in
XML format conforming to the
communication standard specified
for this system and supporting
frameworks. The response consists
of a response code as well as a
textual description of the outcome
of the request.

6. Evaluating Our Design
To evaluate our approach, there are several
considerations to be made.

While some thin client protocols aim to
minimise the processing requirements of
the client, X is designed with the goal of
minimising bandwidth by expending
computing resources locally. Both
approaches offer advantages, and the
approach of minimizing local processing
comes at the cost of higher bandwidth
overhead. X is more suited to productivity
applications rather than multimedia based
applications. To address this problem, we
can employ the RFB protocol, which
performs well in relation to multimedia
based applications, as discussed in [20].

We considered the overhead added
by interposing a pseudo-server between X
client and server. In [15], tcpdump (a tool
which captures network packets and
assigns a time-stamp) is used to establish
the latency added by xmove as opposed to
using a standard X server. Test results
showed that xmove is virtually
unnoticeable when communication
between client and server is asynchronous;
for example in the case of a colour page
redraw, a delay time of 4% is added. In a
scenario where communication is
synchronous, meaning the client must wait
for acknowledgement from the server
between each message, the overhead
becomes noticeable. The tests showed that
for communication which involved a series
of synchronous messages sent between
client and server, xmove added an
overhead of approx. 2 ms, bringing the
roundtrip time from 3 ms to over 5 ms.
This is significant, since it accumulates
overtime. However, clients do not
regularly communicate in this fashion;
when they do it is often during start-up
procedures or at other times when the user
is expecting a delay, rather than time
critical periods.

Preliminary tests showed that
connecting to a VNC session via 100 Mbps
LAN takes under 3 seconds, and once
connected, session interaction is fluid. As
discussed in [20], VNC performs well,
maintaining frame rate over low bandwidth
connections such as 1.5Mbps broadband.
Tests showed that in comparison to other
popular thin client protocols, VNC had the
smallest memory footprint (less than
300kb) and an executable file size of just
172kb. The latency of VNC was also
measured, showing that it was capable of
completing tasks such as typing and mouse
motion in under 150ms, making delay time
unnoticeable to the end user.

From our evaluation, we feel that
both VNC and X perform well over
moderate bandwidth and are suitable
protocols for working with thin client
applications. Aside from the performance
of the underlying protocols, the approach
outlined offers the advantage of a rich

heterogeneous environment in comparison
to the alternative methods. When working
with sessions containing a considerable
amount of state, many users have resorted
to saving state of a Virtual machine
(VMWare for example) on portable
storage devices. While users can run
individual systems in parallel using
VMWare's tabbed environment, these
parallel environments lack consolidation
and the task of switching between tabs
quickly becomes cumbersome. The
approach of running several entire
operating systems uses considerable
system resources, and furthermore
resuming a virtual machine on a processor
architecture which differs from the
previous architecture is known to be
problematic.

7. Conclusion and Future Work
There is seldom the ability for users to
move their session from one device to
another. Existing implementations of such
systems tend to focus on homogeneous
devices or lack support for legacy
applications. X can be used to deliver
applications to desktop class terminals. An
advantage of X is that it delivers only a
single application which integrates neatly
in the windowing system of the current
terminal. Many other thin client solutions
(Terminal Services for example) deliver an
entire desktop to the remote terminal,
concealing the underlying operating
system. The seamless integration offered
by X allows remote and native applications
to work side by side in a transparent
manner. Mobile devices with constrained
resources are generally not suitable for use
with X based applications. Microsoft
Windows Mobile does not support X
applications, and there appears to be little
work in the area of adding X support in the
form of an extension to Windows Mobile.
To support mobile devices such as those
running Windows Mobile and Symbian
OS, VNC can be used. VNC uses minimal
client requirements is available for a wide
number of client platforms. Merging these

protocols, we can provide a dynamically
adaptive approach to session mobility.

By merging and extending existing
thin client technologies and adding adding
additional components to the system such
as a knowledge management component,
the ability to move sessions across a broad
range of devices becomes evident. The
ability to share this mobile session with
multiple users provides a useful tool for
presentations, teaching and collaborative
work. Manually managing all of these
technologies to provide such services is
difficult and often impossible. In the past,
such barriers have been a deterrent to the
use of these technologies. By deploying
the framework for session mobility within
the pervasive computing model it is
possible to significantly enhance the
experience of power users while
simplifying the experience of novice users
in an unobtrusive and transparent manner.
Deployment of this framework has proven
that it is possible to provide session
mobility to users across a broad range of
devices in a seamless manner. Before this
system could be deployed in a live
environment, there are several further
aspects which need to be addressed.

The need for load balancing
between multiple servers is a fundamental
issue which must be addressed before
deploying the system in a large
environment. Session transfer over wide
area networks and low bandwidth
connections has yet to be tested.
Compression of X protocol messages
could also significantly improve
performance in such circumstances.
Security is another crucial area of research
which is yet to be explored in further
depth. Adding UNIX style user and group
permissions to the system is one approach.
Other challenges include preventing
dropped sessions due to broken network
connections and the mandatory use of SSH
tunneling on the client side.

References:

1. Bandelloni, R. and F. Paterno.

Flexible interface migration. in IUI

'04: Proceedings of the 9th
international conference on
Intelligent user interfaces. 2004.
Funchal, Madeira, Portugal: ACM
Press.

2. Johanson, B., et al., Multibrowsing:
Moving Web Content across
multiple displays, in 3rd
international conference on
Ubiquitous Computing. 2001,
Springer Verlag. p. 346-353.

3. Baratto, R., J. Nieh, and L. Kim.
THINC: A Remote Display
Architecture for Thin-Client
Computing. 2004 .

4. Chu, H., et al., ROAM, A Seamless
Application Framework. Systems
and Software, 2004. 69(3): p. 209-
226.

5. Guyot, V., N. Boukhatem, and G.
Pujolle, Smart Card performances
to handle Session Mobility.
Internet, 2005.The First IEEE and
IFIP International Conference in
Central Asia on, 2005. 1: p. 5.

6. Microsoft Corporation. Terminal
Services Overview. 2006

7. Richardson, T., et al., Virtual
network computing. Internet
Computing, IEEE, 1998. 2(1): p. 33
- 38.

8. Scheifler, R.W. and J. Gettys, The
X Window System. ACM
Transactions on Graphics, 1986.
5(2): p. 79-109.

9. GoGlobal Inc. GraphOn GoGlobal
for UNIX: Data Sheet. 2006

10. Citrix Systems. Citrix Presentation
Server. 2006.

11. Sun Microsystems. Sun Secure
Global Desktop Data Sheet. 2005.

12. Scheifler, R.W. and J. Gettys. X
Window System: The Complete
Reference to Xlib. 1992: Digital
Press.

13. Danskin, J.M., Q. Zhang, and D.M.
Abrahams-Gessel. Fast Higher
Bandwidth X. in Multimedia and
Networking. 1995.

14. Sun Microsystems. SunRay
Overview. 2004

15. Solomita, E., J. Kempf, and D.
Duchamp, XMOVE: A
Pseudoserver for X Window
Movement. The X Resource, 1994.
11(1): p. 143-170.

16. Bazik, J. Sharing X Applications
With XMX. 1999.

17. Garfinkel, D., HP SharedX: A tool
for real time collaboration.
Hewlett-Packard Journal, 1994.
45(2): p. 23-36.

18. RealVNC Ltd., RealVNC
Documentation. 2006.

19. Adbel-Wahab, H.M. and M.A. Feit.
XTV: A framework for sharing X
window clients in remote
synchronous collaboration. in In
Proceedings, IEEE Tricomm '91:
Communications for Distributed
Applications and Systems. 1991.

20. Nieh, J., S.J. Yang, and N. Novik,
A Comparison of Thin-Client
Computing Architectures. 2000,
Network Computing Laboratory,
Columbia University.

