
International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011

DOI : 10.5121/ijnsa.2011.3406 59

A NOVEL HEADER MATCHING ALGORITHM FOR

INTRUSION DETECTION SYSTEMS

Mohammad A. Alia

1
,

Adnan A. Hnaif

1
, Hayam K. Al-Anie

1
, Khulood Abu

Maria
1,

 Ahmed M. Manasrah
2
, M. Imran Sarwar

3

1

Faculty of Science and Information Technology – Al Zaytoonah University of

Jordan, P.O.Box: 130 Amman (11733) Jordan
dr.m.alia, dr.adnan_hnaif, drhayam, khulood@alzaytoonah.edu.jo

2
Al Yarmouk University , Irbed(21163) – Jordan

ahmad.a@yu.edu.jo
3
National Advanced IPv6 - Universiti Sains Malaysia, 11800 Penang, Malaysia

Imran@nav6.org

ABSTRACT

The evolving necessity of the Internet increases the demand on the bandwidth.

Therefore, this demand opens the doors for the hackers’ community to develop new

methods and techniques to gain control over networking systems. Hence, the intrusion

detection systems (IDS) are insufficient to prevent/detect unauthorized access the

network. Network Intrusion Detection System (NIDS) is one example that still suffers

from performance degradation due the increase of the link speed in today’s networks.

In This paper we proposed a novel algorithm to detect the intruders, who’s trying to

gain access to the network using the packets header parameters such as;

source/destination address, source/destination port, and protocol without the need to

inspect each packet content looking for signatures/patterns. However, the “Packet

Header Matching” algorithm enhances the overall speed of the matching process

between the incoming packet headers against the rule set. We ran the proposed

algorithm to proof the proposed concept in coping with the traffic arrival speeds and

the various bandwidth demands. The achieved results were of significant

enhancement of the overall performance in terms of detection speed.

KEYWORDS

Intrusion Detection System (IDS), Network Intrusion Detection System (NIDS), SNORT, Packet

Detection and Packet Header Matching (PHM)

1. INTRODUCTION

Due to the increasing demand on the internet, the traditional boundary

security systems (i.e. firewalls) that concerns swapping information between

the internet and the intranet are no more efficient in providing a robust and

secured network environments [1]. Hence, the firewalls only provide the first

level of defense for the network that achieved by blocking unauthorized

access to the network. Therefore, the need for better security systems to cover

the loophole behind is also demanding. Examples of these demanding

systems are: Intrusion Detection system (IDS) and Network Intrusion

Detection system (NIDS).

The Intrusion Detection System (IDS) is a system that detects the intrusions in

it is early stages while they are trying to steal information and/or

reporting/hiding their existence to the network administrator [2]. Furthermore,

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011

60

IDS is also can be defined as a process of determining the status and the stage

of the attack (attempt to attack or the attack is taking place) [3].

However, IDS use two techniques to achieve it is main functionality in

detecting and identifying intruders: Misuse detection IDS and anomaly

detection IDS. The misuse detection IDS is the simplest type of detection, as it

looks for a specific signature/pattern in the data part of the network traffic.

This signature is known as a rule. These kinds of anomaly detection systems

are widely used to monitor and identify special types of events in the network.

This involves generating alerts when there are some changes to the normal

system behavior under normal traffic circumstances [4]. Therefore, the

misuses based detection IDS has an advantage in it is simplicity of adding

known attacks to the defined rule set where on the other hand, Its

disadvantage is its inability to recognize unknown attacks. In this work we

will consider the performance factor of the misused detection based IDS.

On the other hand, the anomaly based IDS is for detecting intrusions and

misuses by monitoring the system activities and classifying these activities as

either normal or anomalous. In general, this classification is based on specific

rules, rather than patterns or signatures, as well to detect any type of

undefined misuse to the normal system operation [5]. However, in order to

analyze the system activity from the underlying traffic, the IDS system must

be able to learn how to recognize the normal system activity from the

abnormal system activities that can be accomplished with the use of artificial

intelligence and neural networks techniques. Even though, these kinds of IDS

still require processing all types of traffic for a better detection process which

is not considered as a feasible solution due to some hardware limitations such

as the bus speed and the TCP/IP overhead. Therefore, some researchers have

been conducted to speed up the detection process such as [6] who classifies

each packet into two fields: Header and Payload (content). The Header

contains the main information of the packet such as source/destination

address, source/destination port, and protocol. Also they defined a rule sets

that is used to determine which packets are allowed to pass to the network.

However, this technique was taken from snort IDS [7] and the researchers

used this technique as a design only, the researchers applied this technique on

different tools, but they employ different intrusion detection algorithms.

2. RELATED WORKS

Snort NIDS [7] depends on the pattern matching based on the defined rule set

against the captured packet to identify or recognize the intruder. Since, the

number of the rules can grow over time, snort divides its rule sets into two

dimensional linked lists as portrayed in Figure 1.

Figure 1. Structure of snort rule sets [8]

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011

61

The first link list is the Rule Tree Nodes (RTNs) that hold the main

information from each rule such as: source/destination address,

source/destination port and protocols type (TCP, ICMP, UDP). The second

link list is the Option Tree Nodes (OTNs) that hold other information not

exists in the RTNs such as: TCP flags, ICMP codes and types, packet payload

size and a major bottleneck for efficiency and packet contents. These two data

structures are chained together, having the RTNs are the main nodes (chain

header) starting from left to right and the OTN's as the leave node for the

RTNs (chain Leave). This design increased the efficiency for the intrusion

detection process as it requires checking only one RTN for multi OTN.

With regards to the rule set creation, some researchers work focuses in

employing the Artificial Intelligence (AI) and the Genetic Algorithm (GA)

techniques in automating the rule set generation in order to enhance the

overall detection performance of the IDS or the NIDS. For example, [9]

utilize the GA to automatically create a rule set from the captured network

traffic. These rules are stored in the rule data base that takes the following

form:

{ } { }actThenconditionIF

Where, the condition refers to the matching case between the current network

traffic flow and the current rule from the defined rule set (e.g.

source/destination address, source/destination ports, protocol, etc...), while,

act refers to the predefined set of actions controlled by the security policies

within the organization (e.g. reporting an alert, stopping the connection,

etc...). However, the rule set will grow exponentially as well as considering all

the new rules as intrusion thus, increasing the false positive ratio.

From the other point of view, few work have been done concerning the

structure of the network traffic (packets) to maximize the matching

performance during the process of intrusion detection [10], they developed a

new rule matching process for the intrusion detection systems that splits the

packets header into chunks of buffers. Also, they categorized the intrusion

rule set based on the packet content, into two categories: header rule set

without content, and header rule set with content. The former category known

as the Early Filtering (EF) rule set. The EF starts matching the packet header

chunks one at the time (packet without content) against it is rule set. If the

chunk matches with one of the EF rules, the packet will be discarded. On the

other hand, if the packet is with content, the EF will match its chunks against

its rule set, if it matches with one of the EF rules, the packet will be discarded,

and otherwise, the packet content will be further inspected by another module.

Even though the above technique, shows an interesting results towards the

efficiency of the intrusion detection, but at the same time it requires more

processing time for the searching and matching process with the rule set in

real time.

Therefore, some of the research work focuses on the searching and matching

algorithms to enhance the overall detection speed in real time as well as

increasing the detection accuracy. These searching algorithms basically look

for special packets within a fixed time interval. However, the special packets

are set of sent/received packets from a specific IP address, specific port

number, or a specific subject that might exist in the payload itself [11].

However, this gives a complete flexibility to the user to search through the

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011

62

range of packets that have been transmitted through the network. Therefore,

[11] developed a network traffic analysis tool that mainly search for special

packets within a fixed time interval as well as combining the searching results

to a visualization function to interpret the result. They also design a Pre-

processing function to convert the numeric and continuous data into a discrete

format that can be used by different algorithms and visualization techniques.

However, the above model impose a challenge on the system to cope with the

packet arrival speeds in order to process all the captured traffic headers and

payloads in a fast, reliable and efficient way as the whole process requires a

full packet inspection.

Therefore, other researcher’s focuses on enhancing the filtering process

looking to speed up the matching and detection process such as [12], who

propose a classification process that consists of two sequential procedures: the

first procedure is to classify the incoming packets into one of the three groups:

{Accept group, Drop group, Forward group}, where the second procedure is

the action that should be taken as a filtering process to the packets grouped by

the first classification procedure as follows:

Receive packets();

Classify_packets(;)

result = filter (i);

action (result);

The authors stated that, all incoming packets at a very high speed arrival (e.g.

DoS attacks) are received by the Receive packets () function and stored in the

receiving buffer for continuous processing. Therefore, they suggest executing

the processing loop in shorter time by applying code optimization techniques

to speed up the processing rate.

From the above example, the function filter consists of only logical and

arithmetic operations. Thus, it is easy to optimize this function with various

code optimization techniques. The Function Action () hosts a packet to an

upper layer and send a packet to another ports and so on. This means that it is

impossible to apply the optimization techniques to this part. Thus, to make the

loop optimization, they divided the loop into two loops:

For (i = 0; I < n_packets; i ++)

 {

 result[i] = filter (i);

 }

For (i = 0; I < n_packets; i ++)

 {

 action (result [i]);

 }

The first loop processes multiple consecutive packets together utilizing a

software pipelined procedure. This pipelining procedure is considered a

highly sophisticated aggressive instruction scheduling technique for loops that

occupy the whole CPU time and thus waste it is processing time for other

functions to be executed.

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011

63

3. PHM DESIGN

The current packets header detection engines use any exact string matching

algorithms to detect the intrusions. These string matching algorithms deal

with decimal, hexadecimal, and characters values. The PHM algorithm deals

with binary values, because in the proposed methodology, the headers rule set

is converted into 8 weights. On the other hand, PHM algorithm saves

memory, because only 12-bits are reserved from the total memory size.

The rule sets are classified into two sections: headers rule set, and payloads

rule set. Headers rule set contains the main information of the packet such as:

source/destination address, source/destination port, and protocol. Payloads

rule set contains the real data of the packet. Each rule represents one different

type of the intruders. To commensurate the headers rule set with the proposed

design and methodology, the headers rule set is converted into binary as

depicted by Figure 2.

Figure 2. Design of the header rule sets

The aim of the PHM algorithm is to enhance the speed of the detection engine

for packets header of any NIDS. The PHM algorithm consists of the following

steps:

1- Converting headers rule sets into weight, as the energy function is

required.

2- Matching process.

3- Learning process that can be used to increase the performance of PHM

algorithm.

3.1. Converting The Rule Set Into Weight

In order to evaluate the matching process between two values, we will apply

the energy Function [13] that requires the conversion of the rule set into

weights. Therefore, we divided each header rule set into 3-bit at the time, then

we converted each 3-bit (823
= possibilities) into a symmetric matrix of

weight. However, to avoid memory exhaustion, this matrix of weights

requires only 24 bits of memory (2483 =x).

On the other hand, the proposed algorithm uses a neural network with a multi-

connect architecture [14] to learn the header rule sets that is described as an

associative memory and a single-layer neural network. The neural network

with the multi-connect architecture will learn the set of pattern pairs

(associations) and store the patterns set in the memory. These memory values

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011

64

will be activated during the retrieval process with the key pattern that contains

a portion of the information related to a particular stored pattern set. The

learning process creates eight learning weights for all possibilities of the

patterns matrices (of the size 3*3) as portrayed in Figure 3.

Figure 3. NN with multi-connect architecture [14]

As shown in Figure 3, each path represents one learning weight

(m, 80 <≤∀ m), thus, a matrix of these paths by the size of the net path

value∑
=

7

0i

im is constructed. The learning process will be a one-time only

process.

For instance, suppose that we have the header rule in a binary format as follows:

)8,0[],1,0[][],[∈∈∀ iiRiR

1 1 0 1 1 1 0 0 1 0 1 0 …

To convert the header rule sets into a matrix of weight we will apply the

Hopfield nets [15] into the rule set. The Hopfield nets requires the units to

binary threshold units, i.e. the units only take on two different values for their

states and the value is determined by whether or not the units' input exceeds

their threshold. Hopfield nets can either have units that take on values of 1 or

-1, or units that take on values of 1 or 0. We choose 1 or -1 value because we

will be applying the “energy function” [13] on the result in a later stage. The

energy function should results in – 3 values to indicate stability. However, the

conversion process is discussed as follows:

A. Convert each 0 into -1 as follow:

=

≠

=−

0][],[

0][,1

][

iRiR

iR

iR

1 1 -1 1 1 1 -1 -1 1
-

1
1

-

1
…

B. From the first three bits (from the left) assemble column vector () jir ,

matrix and multiply it by ji

T
r ,)(recursively to produce the matrix jiS ,)(, as

follows:

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011

65

() ()

,31,31

,)()()(
3

,,,,,

≤≤≤≤

=×= ∑
=

ji

rrrrS
ji

ijjiji

T

jiji

For instance,

()

[]111)(

,

1

1

1

,

,

−=

−

=

ji

T

ji

r

r

 Therefore,

and so on.

The connections in a Hopfield net typically have the following restrictions:

• No unit has a connection with itself },...2,1{,0)(, niS ii ∈∀= .

• Connections are symmetric, and thus, jiS ,)(
= ji

T
S ,)(

C. Zero diagonal:

Since there is no unit has a connection with itself, then

−−

−

−

=

=∀=

011

101

110

,0)(, jiS ji

As a result, the three bits located above the diagonal ijs
ji

>∀
,

)(, represents

the weight for the first three bits (1 -1 -1) from the rule set. and Since we

represent each 0 value with -1, a backward substitution (0 instead of -1) will

result in decimal value equal to 4 (1 0 0). Therefore, we can replace the 3 bits

with 4.

D. If the following 3 bits i.e. (1 1 1) weight is calculated previously, the

same weight value will be assigned to them, otherwise, the weight calculation

process (as in B) will be performed again. There is no need to save another

matrix, because it is already exist in the memory, because only 8 matrices of

3x3 need to be saved into memory.

There are some cases where conflict between two dimensional arrays ()
jir ,

weight calculation may occur (i.e. []000 and []111). These two

different arrays will have the same results when they are multiplied by

their ()
ji

Tr , . Figure 4 depicts the same results matrices for values in identical

colored boxes.

()

−−

−

−

=×=

111

111

111

)()(,,, ji

T

jiji rrS

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011

66

Figure 4. The same results matrices for values in identical colored boxes

Consequently, 24 bit of memory can be minimized to only 12 bit as depicted in Figure 5.

Figure 5. Storing process

As shown in Figure 5, it can be noted that each two same results matrices

have difference in their summation index. Thus, the problem of inconsistency

is solved.

Table 1 depicts the header rule set after the conversion into weight, where

each row represents one header rule from the original header rule set. For

efficient processing, and especially dealing with intrusions, the calculated

weights will be rearranging in a descending order having an index of each

group in the first column.

Table 1. Weight of the headers rule set

Group # W1 W2 W3 W4 W5 W6 W7 W8

7

7 7 6 4 2 1 0 7

7 6 5 1 5 3 7 2

7 6 4 6 3 5 4 0

7 0 7 3 4 5 6 2

6
6 4 5 3 6 7 5 1

6 3 6 2 7 3 5 1

5 5 7 3 5 2 5 3 1

4
4 7 1 6 3 5 4 2

4 5 3 2 6 7 4 3

3
3 7 4 3 2 1 5 4

3 4 2 1 7 4 2 5

2 2 6 3 4 1 0 4 3

1
1 6 4 7 2 5 4 3

1 1 2 3 4 4 4 4

0
0 5 3 2 5 4 3 7

0 2 5 7 3 6 1 3

Where W is: weight for each 3-bit

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011

67

3.2. Matching Phase

Most of the previous work exists in the literature, uses an exact string

matching algorithms such as Boyer-Moore and Horspool algorithm [16] to

find a specific pattern in a given text. Therefore, in this paper we applied a

different algorithm called PHM algorithm to match the header rule set with

the incoming packet header. This algorithm works as follows:

a- For every incoming packet header, convert each 0 into -1.

b- From left to right, take the first three bits.

c- Apply “Lyapunov function” or “Energy function” [13]:

EF=LF = - (∑∑
= =

n

i

n

j

ijji wxx
1 1

) = -3

Where,

n: the number of elements in the each matrix ()
jir , (which is equal to 3),

wij: is the calculated weight from the 3-bit in () jir , .

For instance, suppose the incoming packet header as follows:

1 0 0 1 0 1 1 0 1 0 0 …

From step a, convert each 0 into -1.

1 -1 -1 1
-

1
1 1 -1 1 -1 -1 …

From step b, the first three incoming bits are kept in () jir ,
 to be multiplied by it is ()

ji

Tr , to

construct the () jiS ,
matrix as follows:

() ()

,31,31

,)()()(
3

,,,,,

≤≤≤≤

=×= ∑
=

ji

rrrrS
ji

ijjiji

T

jiji

The matching process starts by applying the “energy function” on the

calculated weights from the incoming packet header. The matching process

will start the matching with each weight group from the rule set weight matrix

(starting from group-7 to group-1). If there is a match (energy function returns

-3) the algorithm identifies the matching group from the header rule set to

search within. Otherwise, the energy function will be applied to the next

group (i.e. group-6) and so on.

The matching process continues the matching process until group-1, if there

are no matches yet; the matching process will assume that there is a matching

with the group-0 (zero). This matching considered a trigger to evaluate the

second three bits from the incoming packet header by applying the energy

function on them in group-0.

I = 1 2 3

J = 1 2 3

1 -1 -1

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011

68

For instance, with Group-7 the weight matrix will be:

and the incoming packet header is ,

Therefore, EF= 1, and since EF , that there is no rule from the rule set

matches with the header. As a result, the matching will proceed to group-6,

and so on until group-4 where the weight matrix is:

And the incoming packet header is , therefore, EF = -3, which

indicates a match with the rule set under group-4, and the search in others

group should not continues. In this case, the second three bits from incoming

packet header will be matched with the second weight from group-4, until all

the incoming packet header matches to one rule from group-4, otherwise, until

any mismatch; which indicate no possibilities to find the incoming packet

header within the rule set.

3.3. The Learning Process

Since all incoming packet header matched with group-4, therefore, the three

bits []111 −− is always matching with group- 4. Thus, a matching link

list can be created that contains the matched bits and the group number to

where the bits are matched as depicted in Figure 6.

Three Bits Group

1 -1 -1 4

Figure 6. Matching Link List

This is a very important step towards speeding up the searching and matching

process. Therefore, in the next matching process, the algorithm will first

check the current 3 bits in the link list (no need to apply the energy function),

because the algorithm learned the system in advance for the expected three

bits with its corresponding group, otherwise, the energy function will be

applied until a matched group found the result will be added to the link list.

This process continuous until the 8 possibilities is included in the link list.

4. PERFORMANCE ANALYSIS OF THE PROPOSED ALGORITHM

We compared the performance of the proposed PHM algorithm against the

well known SNORT Algorithm. Table 2 shows the performance for both

approaches. Both algorithms were coded in C++ on a computer with 1.6 GHz

Intel® M Pentium processor and 1 GB RAM.

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011

69

Table 2. Performance evaluation between PHM and SNORT algorithms

4.1. Evaluation Process

Based on the hardware and software architecture, we read 450 to 10000 packets from the file. The

header rule sets had a size of 50 KB. In order to evaluate the effectiveness of PHM algorithm, a

comparison is made with SNORT which uses Boyer-Moore algorithm. The comparison results

can be viewed in Figure 7.

Figure 7. Overall time comparison between PHM and SNORT algorithms

From Figure 7, it can be seen that the performance of PHM algorithm and Boyer-Moore algorithm

are very close for the first 1200 packets. After this point, it seems that the PHM algorithm has

learnt all the header rule sets. However, it is clear that the PHM algorithm is faster after 1200

packets as compared to Boyer-Moore algorithm. This is a very encouraging enhancement. The

achieved improvement was between 10% - 58%.

of packets PHM SNORT

450 0.28 0.60

500 0.28 0.67

550 0.37 0.73

600 0.38 0.85

650 0.42 0.84

700 0.58 0.91

900 0.82 1.23

1200 1.14 1.64

2500 2.33 3.22

3000 3.40 3.80

4500 4.71 5.93

5500 5.83 7.20

8000 7.82 10.47

10000 10.78 13.08

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011

70

5. CONCLUSION

In this work we have presented a novel algorithm to speed up the detection engine for packets

header. We divided the work into three phases, namely: classification of rule sets, matching

process, and the learning process. As the result, the proposed Packet Header Matching (PHM)

algorithm is more efficient than SNORT algorithm. It requires a much lower cost of execution

time and performs at a high level of detection compared to the exiting SNORT algorithm.

ACKNOWLEDGMENT

The researchers would like to thank Al- Zaytoonah University of Jordan

for supporting this study.

REFERENCES

[1] Wu Yang, Bin-Xing Fang, Bo Liu, and Hong-Li Zhang, (2004) “Intrusion detection system

for high-speed network”, Computer Communications, Vol 27, No. 13, pp 1288-1294.

[2] Li W., (2004) “Using Genetic Algorithm for Network Intrusion Detection”, In Proceedings of

the United States Department of Energy Cyber Security Group, Training Conference.

[3] S. Antonatos, K. G. Anagnostakis, E. P. Markatos, M. Polychronakis, (2004) “Performance

Analysis of Content Matching Intrusion Detection Systems”, In Proceedings of the International

Symposium on Applications and the Internet (SAINT2004).

[4] Zhou Chunyue, L.Y., (2006) “A Pattern Matching Based Network Intrusion Detection

System”, IEEE, 9th International Conference on Control, Automation, Robotics and Vision,

2006, 5-8 Dec, ICARCV '06, Singapore.

[5] Lu Huijuan, Chen Jianguo and Wei Wei, (2008) “Two Stratum Bayesian Network Based

Anomaly Detection Model for Intrusion Detection System”, International Symposium on

Electronic Commerce and Security, pp.482-487.

[6] Lambert Schaelicke, T. Slabach, B. moore, and C. freeland, (2003) “Characterizing the

Performance of Network Intrusion Detection Sensors”, in proceeding of recent advanced in

intrusion detection, RAID, 03.

[7] Snort – The Open Source Network Intrusion. Detection System, Available

at:\http://www.snort.org.

[8] C. J. Coit, S. Staniford and J. Mchlerney, (2001) “Towards Faster String Matching for

Intrusion Detection or Exceeding the Speed of Snort”, IEEE, DARPA Information Survivability

Conference & Exposition II, DISCEX '01. Vol.1, Anaheim, CA , USA, pp.367-373.

[9] Chris Sinclair, Lyn Pierce, Sara Matzner,(1999) “An Application of Machine Learning to

Network Intrusion Detection”, IEEE, Proceedings of the 15th Annual Computer Security

Applications Conference, Phoenix, AZ , USA, pp 371-377.

[10] I. Charitakis, K. Anagnostakis, E. Markatos, (2003) “An Active Traffic Splitter Architecture

for Intrusion Detection”, In proceedings of the ACM Symposium on Modeling Analysis and

Simulation of Computer Telecommunications Systems.

[11] F. Sun and H. Tzeng, (2006) “A Software Tool for Network traffic Analysis ”, IEEE,

Proceedings of the Seventh ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06), Las Vegas, NV, pp

190-196.

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011

71

[12] Yamashita, Y. and Tsuru, M., (2007) “Code Optimization for Packet Filters”, IEEE

Computer Society, Proceeding of the 2007 International Symposium applications and the Internet

Workshops, (SAINTW’07) 0-7695-2757-4/07, Hiroshima, pp.86-86.

[13] Hiskens I.A. and Davy R.J., (1996) “Lyapunov Function Analysis of Power System with

Dynamic Loads”, IEEE, Conference on Daoision end Control, Koba, Japan, pp. 3870-3875.

[14] E. Kaream,(2004) “Alternative Hopfield Neural Network With Multi-Connect

Architecture”, Journal of College of Education, Computer Department, Al-mustansiryah

university, Baghdad, Iraq.

[15] Hsinchun Chen, Yin Zhang, and Andrea L. Houston (1998) “Semantic Indexing and

Searching Using a Hopfeild Net”, Journal of Information Science, Vol. 24, No., pp 3-18.

[16] Christian Charras and Thierry Lecroq, “Exact String Matching Algorithms”, Laboratoire

d'Informatique de Rouen Université de Rouen, France, Available at: http://www-igm.univ-

mlv.fr/~lecroq/string/.

AUTHORS

Dr. Mohammad Alia is an Assistance professor at the

computer information systems department, Faculty of science

Computer and information technology, Al Zaytoonah

University of Jordan. He received the B.Sc. degree in Science

from the Alzaytoonah University, Jordan, in 1999. He

obtained his Ph.D. degree in Computer Science from

University Science of Malaysia, in 2008. During 2000 until

2004, he worked at Al-Zaytoonah University of Jordan as an

instructor of Computer sciences and Information Technology.

Then, he worked as a lecturer at Al-Quds University in Saudi Arabia from

2004 - 2005. Currently he is working as a Chair of Computer Information

Systems dept. at Al Zaytoonah University of Jordan. His research interests are

in the field of Cryptography, and Network security.

Dr. Adnan Hnaif is an Assistance professor at the computer

information systems department, Faculty of Science

Computer and information technology, Al Zaytoonah

University of Jordan. Dr. Hnaif received his PhD degree in

Computer Science from University Sains Malaysia - National

Advanced IPv6 Centre and Excellence (NAV6) in 2010. He

received his MSc degree of Computer Science from

department of Computer Science- Alneelain University in

2003, and obtained his Bachelor degree of Computer Science

from the department of Computer Science, Mu’tah University in 1999/2000.

His researches focus on the network security and parallel processing.

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011

72

Dr. Hayam Al-Anie is an Assistance professor at the

computer information systems department, Faculty of Science

Computer and Information Technology, Al Zaytoonah

University of Jordan. She received the B.Sc. degree in

Computer Science from the University of Technology, Iraq,

in 1988. She obtained her Ph.D. degree in Computer Science

from University of Technology, Iraq in 2004. During 1988

until 1996, she worked at University of Baghdad, College of

Administration and Economic, as programmer assistance.

Then she worked as an instructor of Computer Science and

Information Technology at University of Baghdad, College of Administration

and Economic from 1996-2004. Currently she is working as an Assistance

professor at Al Zaytoonah University of Jordan. Her research interests are in

the field of Cryptography, and Software Engineering.

Dr. Khulood Abu Maria is an Assistance professor at the

computer information systems department, Faculty of science

Computer and information technology, Al Zaytoonah

University of Jordan. She received the B.Sc. degree in

Science from Mut’ah University, Jordan, in 1992. She

obtained her Ph.D. degree in Computer Information System

from Arab Academy for Banking and Financial Sciences,

Jordan, in 2008. During 1992 until 2006, she worked at Petra

Engineering Industries Co. as analyst, programmer, Network

Administrator, Quality Assurance and IT manager. Then, she worked as a

part-time instructor at AL-ISRA Private University, Jordan from 2008 - 2009.

Currently she is working as an instructor at Al Zaytoonah University of

Jordan. Her research interest is in the fields of AI, Agent-Based Application,

Information System, Software Engineering, E-applications, m-commerce,

Security, and Network.

Dr. Ahmed obtained his Bachelor of Computer Science from

Mu'tah University, al Karak, Jordan in 2002. He obtained his

Master of Computer Science and doctorate from Universiti

Sains Malaysia in 2005 and 2009 respectively, he was the

Deputy Director (Research and Innovation) and the Head of

iNetmon project at the National Advanced IPv6 Centre of

Excellence (NAV6) in Universiti Sains Malaysia. He started

his career as a web developer at Telaterra LLC from 2003

until 2004. Between 2005 until 2008, Dr. Ahmed worked as

senior research officer in NRG, Universiti Sains Malaysia. Upon his

graduation, he worked as a senior Vice President in iNetmon Sdn. Bhd. from

2005-2008. Currently he is working as an Assistance professor at Al Yarmouk

University. His research interests are in the field of network monitoring.

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.4, July 2011

73

Mr. Muhammad Imran Sarwar is currently Ph. D fellow

and researcher in National Advance IPv6 Centre (NAv6),

Universiti Sains Malaysia. He received his M.Sc degree from
School of Computer Sciences, Universiti Sains Malaysia in

2009. His research interest are in IPv6 multicast networks,

wireless mesh networks, WiMAX networks, network security,
location-based services etc.

