
Coordination of Application-Level and Job-Flow Scheduling

Techniques in Distributed Computing

Victor V. Toporkov
Computer Science Department, Moscow Power Engineering Institute,

ul. Krasnokazarmennaya 14, Moscow, 111250 Russia

Phone: +7(495)3627145 Fax: +7(495)3625506

E-mail: ToporkovVV@mpei.ru

ABSTRACT
This paper presents an integrated approach for scheduling in distributed computing with

strategies as sets of job supporting schedules generated by a critical works method. The

strategies are implemented using a combination of job-flow and application-level techniques

of scheduling within virtual organizations of Grid. Applications are regarded as compound

jobs with a complex structure containing several tasks co-allocated to processor nodes. The

choice of the specific schedule depends on the load level of the resource dynamics and is

formed as a resource request, which is sent to a local batch-job management system. We

propose scheduling framework and compare diverse types of scheduling strategies using

simulation studies.

Key Words: distributed computing, scheduling, metascheduler, strategy, job, task, work.

1. Introduction
The fact that a distributed computational

environment is heterogeneous and dynamic

along with the autonomy of processor

nodes makes it much more difficult to

manage and assign resources for job

execution at the required quality level [1].

When constructing a computing

environment based on the available

resources, e.g. in the model which is used

in X-Com system [2], one normally does

not create a set of rules for resource

allocation as opposed to constructing

clusters or Grid-based virtual

organizations. This reminds of some

techniques, implemented in Condor project

[3, 4]. Non-clustered Grid resource

computing environments are using similar

approach. For example, @Home projects

which are based on BOINC system are

using cycle stealing, i.e. either idle

computers or idle cycles of a specific

computer.

Another still similar approach is related

to the management of distributed

computing based on resource broker

assignment [5-11]. Besides Condor project

[3, 4], one can also mention several

application-level scheduling projects:

AppLeS [6], APST [7], Legion [8], DRM

[9], Condor-G [10], and Nimrod/G [11].

It is known, that scheduling jobs with

independent brokers, or application-level

scheduling, allows adapting resource usage

and optimizing a schedule for the specific

job, for example, decreasing its completion

time. Such approaches are important,

because they take into account details of

job structure and users resource load

preferences [5]. However, when

independent users apply totally different

criteria for application optimization along

with job-flow competition, it can degrade

resource usage integral quality

performance, system throughput, and

processor nodes load balance and job

completion time.

Alternative way of scheduling in

distributed computing based on virtual

organizations includes a set of specific

rules for resource use and assignment that

regulates mutual relations between users

and resource owners [1]. In this case only

job-flow level scheduling and allocation

efficiency can be increased. Grid-

dispatchers [12] or metaschedulers are

acting as managing centres like in the

GrADS project [13].

Inseparability of the resources makes it

much more complicated to manage jobs in

a virtual organization, because the presence

of local job-flows launched by owners of

processor nodes should be taken into

account. Dynamical load balance of

different job-flows can be based on

economical principles [14] that support

fairshare division model for users and

owners. Actual job-flows presence requires

forecasting resource state and their

reservation [15], for example by means of

Maui cluster scheduler simulation

approach or methods, implemented in

systems such as GARA, Ursala, and Silver

[16].

The above-mentioned works are related

to either job-flow scheduling problems or

application-level scheduling.

Fundamental difference between them

and the approach described is that the

resultant dispatching strategies are based

on the integration of job-flows

management methods and compound job

scheduling methods on processor nodes. It

allows increasing the quality of service for

the jobs and distributed environment

resource usage efficiency.

It is considered, that the job can be

compound (multiprocessor) and the tasks,

included in the job, are heterogeneous in

terms of computation volume and resource

need. In order to complete the job, one

would co-allocate the tasks to different

nodes. Each task is executed on a single

node and it is supposed, that the local

management system interprets it as a job

accompanied by a resource request.

On one hand, the structure of the job is

usually not taken into account. The rare

exception is the Maui cluster scheduler

[16], which allows for a single job to

contain several parallel, but homogeneous

(in terms of resource requirements) tasks.

On the other hand, there are several

resource-query languages. Thus, JDL from

WLMS defines alternatives and

preferences when making resource query,

ClassAds extensions in Condor-G [10]

allows forming resource-queries for

dependant jobs. The execution of

compound jobs is also supported by

WLMS scheduling system of gLite

platform, though the resource requirements

of specific components are not taken into

account.

What sets our work apart from other

scheduling research is that we consider

coordinated application-level and job-flow

management as a fundamental part of the

effective scheduling strategy within the

virtual organization.

Environment state of distribution,

dynamical state of its configuration, user’s

and owner’s preferences cause the need of

building multifactor and multicriteria job

managing strategies [17-20]. Availability

of heterogeneous resources, data

replication policies [12, 21, 22] and

multiprocessor job structure for efficient

co-allocation between several processor

nodes should be taken into account.

In this work, the multicriteria strategy is

regarded as a set of supporting schedules

in order to cover possible events related to

resource availability.

The outline of the paper is as follows.

In section 2, we provide details of

application-level scheduling with a critical

works method and strategies as sets of

possible supporting schedules.

Section 3 presents a framework for

integrated job-flow and application-level

scheduling.

Simulation studies of coordinated

scheduling techniques and results are

discussed in Section 4.

We conclude and point to future

directions in Section 5.

2. Application-Level Scheduling

Based on a Critical Works Method
The application-level scheduling strategy

is a set of possible supporting schedules for

all tasks in the job [18]. Figure 1 shows

some examples of job graphs in strategies

with different degrees of distribution, task

details, and data replication policies [19].

P2

P3

P4

P1

P5

P6

D1

D2

D7

D8

D4

D5

D3

D6

P2

P3

P4

P1

P5

P6

D12
D78

G2

G1

D36

G3

P23 P45

P1 P6

D12 D78 D36

Figure 1: Examples of job graphs

The first type strategy S1 allows

scheduling with fine-grain computations

and multiple data replicas, the second type

strategy S2 is one with fine-grain

computations and a bounded number of

data replicas, and the third type S3 implies

coarse-grain computations and constrained

data replication. The vertices P1, …, P6,

P23, and P45 correspond to tasks, while

D1, …, D8, D12, D36, and D78

correspond to data transmissions. The

transition from graph G1 to graphs G2 and

G3 is performed through lumping of tasks

and reducing of the parallelism level.

The job graph is parameterized by prior

estimates of the duration Tij of execution

of a task Pi for a processor node nj of the

type j, of relative volumes Vij of

computations on a processor of the type j,

etc. (Table 1).

It is to mention, such estimations are

also necessary in several methods of

priority scheduling including backfilling in

Maui cluster scheduler.

Table 1: User's task estimations

Tij, Tasks
Vij P1 P2 P3 P4 P5 P6

Ti1 2 3 1 2 1 2

Ti2 4 6 2 4 2 4

Ti3 6 9 3 6 3 6

Ti4 8 12 4 8 4 8

Vij 20 30 10 20 10 20

Figure 2 shows fragments of strategies

of types S1, S2, and S3 for jobs in Fig. 1.

The duration of all data transmissions is

equal to one unit of time for G1, while the

transmissions D12 and D78 require two

units of time and the transmission D36

requires four units of time for G2 and G3.

 (a)

0 5

LL1=0.35

Nodes

10 15 20

n1

n4

n3

n2

CF=41

P1 P2

P3

P4

P5

P6

LL2=0.10

LL3=0.15

LL4=0.50

LL1=0.35

Nodes

n1

n4

n3

n2

CF=37

P1 P2

P3

P6

P4

P5

LL2=0

LL3=0.65

LL4=0.50

LL1=0.35

Nodes

n1

n4

n3

n2

CF=41

P4P2

P3

P6

P5

P1

LL2=0.10

LL3=0.15

LL4=0.50

Time

(b)

0 5 10 15 20

LL1=0.60

Nodes

n1

n4

n3

n2

CF=39

P4P2

P3

P6P1

P5

LL2=0

LL3=0.15

LL4=0.20

Time
(c)

0 5 10 15 20

LL1=1

Nodes

n1

n4

n3

n2

CF=25

P45P23 P6P1

LL2=0

LL3=0

LL4=0

Time

Figure 2. Fragments of scheduling

strategies S1 (a), S2 (b), S3 (c)

We assume that the lumping of tasks is

characterized by summing of the values of

corresponding parameters of constituent

subtasks (see Table 1).

Supporting schedules in Fig. 2, a present

a Pareto-optimal strategy of the type S1

for tasks Pi, i=1, …, 6 in G1. The

Pareto relation is generated by a vector of

criteria CF, LLj, j=1, …, 4.

A job execution cost-function CF is

equal to the sum of Vij/Ti, where Ti is

the real load time of processor node j by

task Pi rounded to nearest not-smaller

integer. Obviously, actual solving time Ti

for a task can be different from user

estimation Tij (see Table 1).

The processor node load level LLj is

the ratio of the total time of usage of the

node of the type j to the job run time.

Schedules in Fig. 2, b and Fig. 2, c are

related to strategies S2 and S3.

Strategies are generated with a critical

works method [20].

The gist of the method is a multiphase

procedure. The first step of any phase is

scheduling of a critical work – the longest

(in terms of estimated execution time Tij

for task Pi) chain of unassigned tasks

along with the best combination of

available resources. The second step is

resolving collisions cased by conflicts

between tasks of different critical works

competing for the same resource.

For example, there are four critical

works 12, 11, 10, and 9 time units long

(including data transfer time) on fastest

processor nodes of the type 1 for the job

graph G1 in Fig. 1, a (see Table 1):

(P1, P2, P4, P6), (P1, P2, P5, P6),

(P1, P3, P4, P6), (P1, P3, P5, P6).

The schedule with CF=37 has a collision

(see Fig. 2, a), which occurred due to

simultaneous attempts of tasks P4 and P5

to occupy processor node n4. This

collision is further resolved by the

allocation of P4 to the processor node n3

and P5 to the node n4. Such reallocations

can be based on virtual organization

economics – in order to take higher

performance processor node, user should

“pay” more. Cost-functions can be used in

economical models [14] of resource

distribution in virtual organizations. It is

worth noting that full costing in CF is not

calculated in real money, but in some

conventional units (quotas), for example

like in corporate non-commercial virtual

organizations. The essential point is

different – user should pay additional cost

in order to use more powerful resource or

to start the task faster. The choice of a

specific schedule from the strategy depends

on the state and load level of processor

nodes, and data storage policies.

The critical works method was

developed for application-level scheduling

[19, 20]. However, it can be further refined

to build multifactor and multicriteria

strategies for job-flow distribution in

virtual organizations. This method is based

on dynamic programming and therefore

uses some integral characteristics, for

example total resource usage cost for the

tasks that compose the job. However the

method of critical works can be referred to

the priority scheduling class. There is no

conflict between these two facts, because

the method is dedicated for task co-

allocation of compound jobs.

Priority scheduling based on queues is

not an efficient way of multiprocessor jobs

co-allocating, in our opinion. Besides,

there are several well-known side effects of

this approach in the cluster systems such as

LL, NQE, LSF, PBS and others. For

example, traditional First-Come-First-

Serve (FCFS) strategy leads to idle

standing of the resources. Another strategy,

which involves job ranking according to

the specific properties, such as

computational complexity, for example

Least-Work-First (LWF), leads to a severe

resource fragmentation and often makes it

impossible to execute some jobs due to the

absence of free resources. In distributed

environments these effects can lead to

unpredictable job execution time and

thereby to unsatisfactory quality of service.

 In order to avoid it many projects have

components that make schedules, which

are supported by preliminary resource

reservation mechanisms [15, 16]. One to

mention is Maui cluster scheduler, where

backfilling algorithm is implemented.

Remote Grid resource reservation

mechanism is also supported in GARA,

Ursala and Silver projects [16]. Here, only

one variant of the final schedule is built

and it can become irrelevant because of

changes in the local job-queue,

transporting delays etc.

The strategy is some kind of preparation

of possible activities in distributed

computing based on supporting schedules

(see Fig. 2) and reactions to the events

connected with resource assignment and

advance reservations [15, 16]. The more

factors considered as formalized criteria

are taken into account in strategy

generation, the more complete is the

strategy in the sense of coverage of

possible events [18, 19]. The choice of the

supporting schedule [20] depends on the

utilization state of processor nodes, data

storage and relocation policies specific to

the environment, structure of the jobs

themselves and user estimations of

completion time and resource

requirements.

3. Metascheduling Framework
In order to implement the effective

scheduling and allocation to heterogeneous

resources, it is very important to group user

jobs into flows according to the strategy

type selected and to coordinate job-flow

and application-level scheduling.

A hierarchical structure (Fig. 3)

composed of a job-flow metascheduler and

subsidiary job managers, which are

cooperating with local batch-job

management systems, is a core part of a

scheduling framework proposed in this

paper.

The advantages of hierarchically

organized resources managers are obvious,

e.g., the hierarchical job-queue-control

model is used in the GrADS metascheduler

[13] and X-Com system [2]. Hierarchy of

intermediate servers allows decreasing idle

time for the processor nodes, which can be

inflicted by transport delays or by

unavailability of the managing server while

it is dealing with the other processor nodes.

Tree-view manager structure in the

network environment of distributed

computing allows avoiding deadlocks

when accessing resources. Another

important aspect of computing in

heterogeneous environments is that

processor nodes with the similar

architecture, contents, administrating

policy are grouped together under the job

manager control.

Job manager

for strategies Si, Sj

Computer node domains

j

Computer nodes

Job manager

for strategy Si

Metascheduler

Job manager

for strategy Sk

Job-flows

Computer nodes

i k

Figure 3: Components of

metascheduling framework

Users submit jobs to the metascheduler

(see Fig. 3) which distributes job-flows

between processor node domains according

to the selected scheduling and resource co-

allocation strategy Si, Sj or Sk. It does

not mean, that these flows cannot

“intersect” each other on nodes. The

special reallocation mechanism is

provided. It is executed on the higher-level

manager or on the metascheduler-level. Job

managers are supporting and updating

strategies based on cooperation with local

managers and simulation approach for job

execution on processor nodes.

Innovation of our approach consists in

mechanisms of dynamic job-flow

environment reallocation based on

scheduling strategies. The nature of

distributed computational environments

itself demands the development of

multicriteria and multifactor strategies [17,

18] of coordinated scheduling and resource

allocation.

The dynamic configuration of the

environment, large number of resource

reallocation events, user’s and resource

owner’s needs as well as virtual

organization policy of resource assignment

should be taken into account. The

scheduling strategy is formed on a basis of

formalized efficiency criteria, which

sufficiently allow reflecting economical

principles [14] of resource allocation by

using relevant cost functions and solving

the load balance problem for

heterogeneous processor nodes. The

strategy is built by using methods of

dynamic programming in a way that allows

optimizing scheduling and resource

allocation for a set of tasks, comprising the

compound job. In contrast to previous

works, we consider the scheduling strategy

as a set of admissible supporting schedules

(see Fig. 2). The choice of the specific

variant depends on the load level of the

resource dynamics and is formed as a

resource query, which is sent to a local

batch-job processing system.

One of the important features of our

approach is resource state forecasting for

timely updates of the strategies. It allows

implementing mechanisms of adaptive job-

flow reallocation between processor nodes

and domains, and also means that there is

no more fixed task assignment on a

particular processor node. While one part

of the job can be sent for execution, the

other tasks, comprising the job, can

migrate to the other processor nodes

according to the updated co-allocation

strategy. The similar schedule correction

procedure is also supported in the GrADS

project [13], where multistage job control

procedure is implemented: making initial

schedule, its correction during the job

execution, metascheduling for a set of

applications. Downside of this approach is

the fact, that it is based on the creation of a

single schedule, so the metascheduler stops

working when no additional resources are

available and job-queue is then set to

waiting mode. The possibility of strategy

updates allows user, being integrated into

economical conditions of virtual

organization, to affect job start time by

changing resource usage costs. In fact it

means that the job-flow dispatching

strategy is modified according to new

priorities and this provides competitive

functioning and dynamic job-flow balance

in virtual organization with inseparable

resources.

4. Simulations Studies and Results
We have implemented an original

simulation environment of the

metascheduling framework (see Fig. 3) to

evaluate efficiency indices of different

scheduling and co-allocation strategies. In

contrast to well-known Grid simulation

systems such as ChicSim [12] or OptorSim

[23], our simulator MetaSim generates

multicriteria strategies as a number of

supporting schedules for metascheduler

reactions to the events connected with

resource assignment and advance

reservations.

Strategies for more than 12000 jobs with

a fixed completion time were studied.

Every task of a job had randomized

completion time estimations, computation

volumes, data transfer times and volumes.

These parameters for various tasks had

difference which was equal to 2, ..., 3.

Processor nodes were selected in

accordance to their relative performance.

For the first group of “fast” nodes the

relative performance was equal to 0.66, …,

1, for the second and the third groups 0.33,

…, 0.66 and 0.33 (“slow” nodes)

respectively. A number of nodes was

conformed to a job structure, i.e. a task

parallelism degree, and was varied from 20

to 30.

We have studied the strategies of the

types S1 – with fine-grain computations

and active data replication policy; S2 –

with fine-grain computations and a remote

data access; S3 – with coarse-grain

computations and static data storage; MS1

– with fine-grain computations, active data

replication policy, and the best- and worst

execution time estimations (a modification

of the strategy S1). The strategy MS1 is

less complete than the strategy S1 in the

sense of coverage of events in distributed

environment. However the important point

is the generation of a strategy by efficient

and economic computational procedures of

the metascheduler. The type S1 has more

computational expenses than MS1

especially for simulation studies of

integrated job-flow and application-level

scheduling. Therefore, in some

experiments with integrated scheduling we

compared strategies MS1, S2, and S3.

4.1 Application-Level Scheduling Study

We have conducted the statistical research

of the critical works method for

application-level scheduling with above-

mentioned types of strategies S1, S2, S3.

The main goal of the research was to

estimate a forecast possibility for making

application-level schedules with the critical

works method without taking into account

independent job flows. For 12000

randomly generated jobs there were 38%

admissible solutions for S1 strategy, 37%

for S2, and 33% for S3. This result is

obvious: application-level schedules

implemented by the critical works method

were constructed for available resources

non-assigned to other independent jobs.

Along with it there is a conflict distribution

for the processor nodes that have different

performance (“fast” are 2-3 times faster,

than “slow” ones): 32% for “fast” ones,

68% for “slow” ones in S1, 56% and 44%

in S2, 74% and 26% for S3 (Fig. 4). This

may be explained as follows. The higher is

the task state of distribution in the

environment with active data transfer

policy, the lower is the probability of

collision between tasks on a specific

resource.

In order to implement the effective

scheduling and resource allocation policy

in the virtual organization we should

coordinate application and job-flow levels

of the scheduling.

4.2 Job-Flow and Application-Level

Scheduling Study

For each simulation experiment such

factors as job completion “cost”, task

execution time, scheduling forecast errors

(start time estimation), strategy live-to-

time (time interval of acceptable schedules

in a dynamic environment), and average

load level for strategies S1, MS1, S2, and

S3 were studied.

S1

S2

S3

Figure 4: Percentage of collisions for

“fast” processor nodes in application-

level scheduling

Figure 5 shows load level statistics of

variable performance processor nodes

which allows discovering the pattern of the

specific resource usage when using

strategies S1, S2, and S3 with coordinated

job-flow and application-levels scheduling.

The strategy S2 performs the best in the

term of load balancing for different groups

of processor nodes, while the strategy S1

tries to occupy “slow” nodes, and the

strategy S3 - the processors with the

highest performance (see Fig. 5).

20

S1

0.33-0.66

S2

Average node load level, %

0.66-1

Relative processor nodes performance

0

80

S3

0.33

40

60

Figure 5: Processor node load level in

strategies S1, S2, and S3

Factor quality analysis of S2, S3

strategies for the whole range of execution

time estimations for the selected processor

nodes as well as modification MS1, when

best- and worst-case execution time

estimations were taken, is shown in

Figures 6 and 7.

0
MS1 S2

1

Relative job

completion cost

Job cost

Relative task

execution time

0

1

S3

Task execution time

0.5 0.5

Figure 6: Job completion cost and task

execution time in strategies MS1, S2,

and S3

Lowest-cost strategies are the “slowest”

ones like S3 (see Fig. 6); they are most

persistent in the term of time-to-live as

well (see Fig. 7).

The strategies of the type S3 try to

monopolize processor resources with the

highest performance and to minimize data

exchanges.

Withal, less persistent are the “fastest”,

most expensive and most accurate

strategies like S2.

0
MS1 S2

1

Relative

time-to-live

Time-to-live

Start time deviation/

job run time

0

1

S3

Deviation

0.5 0.5

Figure 7: Time-to-live and start

deviation time in strategies MS1, S2,

and S3

Less accurate strategies like MS1 (see

Fig. 7) provide longer task completion

time, than more accurate ones like S2 (Fig.

6), which include more possible events,

associated with processor node load level

dynamics.

5. Conclusions and Future Work
The related works in scheduling problems

are devoted to either job scheduling

problems or application-level scheduling.

The gist of the approach described is that

the resultant dispatching strategies are

based on the integration of job-flows and

application-level techniques. It allows

increasing the quality of service for the

jobs and distributed environment resource

usage efficiency.

Our results are promising, but we have

bear in mind that they are based on

simplified computation scenarios, e.g., in

our experiments we use FCFS management

policy in local batch-job management

systems. Afore-cited research results of

strategy characteristics were obtained by

simulation of global job-flow in a virtual

organization. Inseparability condition for

the resources requires additional advanced

research and simulation approach of local

job passing and local processor nodes load

level forecasting methods development.

Different job-queue management models

and scheduling algorithms (FCFS

modifications, LWF, backfilling, gang

scheduling, etc.) can be used here. Along

with it local administering rules can be

implemented.

One of the most important aspects here

is that advance reservations have impact on

the quality of service. Some of the

researches (particularly the one in Argonne

National Laboratory) show, that

preliminary reservation nearly always

increases queue waiting time.

Backfilling decreases this time. With the

use of FCFS strategy waiting time is

shorter than with the use of LWF. On the

other hand, estimation error for starting

time forecast is bigger with FCFS than

with LWF. Backfilling that is implemented

in Maui cluster scheduler includes

advanced resource reservation mechanism

and guarantees resource allocation. It leads

to the difference increase between the

desired reservation time and actual job

starting time when the local request flow is

growing.

Some of the quality aspects and job-flow

load balance problem are associated with

dynamic priority changes, when virtual

organization user changes execution cost

for a specific resource.

All of these problems require further

research.

Acknowledgments. This work was

supported by the Russian Foundation for

Basic Research (grant no. 09-01-00095)

and by the State Analytical Program “The

higher school scientific potential

development” (project no. 2.1.2/6718).

References:

[1] I. Foster, C. Kesselman, and S.

Tuecke, “The Anatomy of the Grid:

Enabling Scalable Virtual

Organizations,” Int. J. of High

Performance Computing

Applications, Vol. 15, No. 3, 2001,

pp. 200 - 222.

[2] V.V. Voevodin, “The Solution of

Large Problems in Distributed

Computational Media,” Automation

and Remote Control, Vol. 68, No. 5,

2007, pp. 32 - 45.

[3] D. Thain, T. Tannenbaum, and M.

Livny, “Distributed Computing in

Practice: the Condor Experience,”

Concurrency and Computation:

Practice and Experience, Vol. 17, No.

2-4, 2004, pp. 323 - 356.

[4] A. Roy and M. Livny, “Condor and

Preemptive Resume Scheduling,” In:

J. Nabrzyski, J.M. Schopf, and

J.Weglarz (eds.): Grid resource

management. State of the art and

future trends, Kluwer Academic

Publishers, 2003, pp. 135 - 144.

[5] V.V. Krzhizhanovskaya and V.

Korkhov, “Dynamic Load Balancing

of Black-Box Applications with a

Resource Selection Mechanism on

Heterogeneous Resources of Grid,”

In: 9th International Conference on

Parallel Computing Technologies,

Springer, Heidelberg, LNCS, Vol.

4671, 2007, pp. 245 - 260.

[6] F. Berman, “High-performance

Schedulers,” In: I. Foster and C.

Kesselman (eds.): The Grid:

Blueprint for a New Computing

Infrastructure, Morgan Kaufmann,

San Francisco, 1999, pp. 279 - 309.

[7] Y. Yang, K. Raadt, and H. Casanova,

“Multiround Algorithms for

Scheduling Divisible Loads,” IEEE

Transactions on Parallel and

Distributed Systems, Vol. 16, No. 8,

2005, pp. 1092 - 1102.

[8] A. Natrajan, M.A. Humphrey, and

A.S. Grimshaw, “Grid Resource

Management in Legion,” In: J.

Nabrzyski, J.M. Schopf, and

J.Weglarz (eds.): Grid resource

management. State of the art and

future trends, Kluwer Academic

Publishers, 2003, pp.145 - 160.

[9] J. Beiriger, W. Johnson, H. Bivens et

al., “Constructing the ASCI Grid,” In:

9th IEEE Symposium on High

Performance Distributed Computing,

IEEE Press, New York, 2000, pp. 193

- 200.

[10] J. Frey, I. Foster, M. Livny et al.,

“Condor-G: a Computation

Management Agent for Multi-

institutional Grids,” In: 10th

International Symposium on High-

Performance Distributed Computing,

IEEE Press, New York, 2001, pp. 55 -

66.

[11] D. Abramson, J. Giddy, and L. Kotler,

“High Performance Parametric

Modeling with Nimrod/G: Killer

Application for the Global Grid?” In:

International Parallel and Distributed

Processing Symposium, IEEE Press,

New York, 2000, pp. 520 - 528.

[12] K. Ranganathan and I. Foster,

“Decoupling Computation and Data

Scheduling in Distributed Data-

intensive Applications,” In: 11th

IEEE International Symposium on

High Performance Distributed

Computing, IEEE Press, New York,

2002, pp. 376 - 381.

[13] H. Dail, O. Sievert, F. Berman et al.,

“Scheduling in the Grid Application

Development Software project,” In: J.

Nabrzyski, J.M. Schopf, and

J.Weglarz (eds.): Grid resource

management. State of the art and

future trends, Kluwer Academic

Publishers, 2003, pp. 73 - 98.

[14] R. Buyya, D. Abramson, J. Giddy et

al., “Economic Models for Resource

Management and Scheduling in Grid

Computing,” J. of Concurrency and

Computation: Practice and

Experience, Vol. 14, No. 5, 2002, pp.

1507 – 1542.

[15] K. Aida and H. Casanova,

“Scheduling Mixed-parallel

Applications with Advance

Reservations,” In: 17th IEEE

International Symposium on High-

Performance Distributed Computing,

IEEE Press, New York, 2008, pp. 65

- 74.

[16] D.B. Jackson, “GRID Scheduling

with Maui/Silver,” In: J. Nabrzyski,

J.M. Schopf, and J.Weglarz (eds.):

Grid resource management. State of

the art and future trends, Kluwer

Academic Publishers, 2003, pp. 161 -

170.

[17] K. Kurowski, J. Nabrzyski, A.

Oleksiak, and J. Weglarz,

“Multicriteria Aspects of Grid

Resource Management,” In: J.

Nabrzyski, J.M. Schopf, and

J.Weglarz (eds.): Grid resource

management. State of the art and

future trends, Kluwer Academic

Publishers, 2003, pp. 271 - 293.

[18] V. Toporkov, “Multicriteria

Scheduling Strategies in Scalable

Computing Systems,” In: 9th

International Conference on Parallel

Computing Technologies, Springer,

Heidelberg, LNCS, Vol. 4671, 2007,

pp. 313 - 317.

[19] V.V. Toporkov and A.S. Tselishchev,

“Safety Strategies of Scheduling and

Resource Co-allocation in Distributed

Computing,” In: 3rd International

Conference on Dependability of

Computer Systems, IEEE CS Press,

2008, pp. 152 – 159.

[20] V.V. Toporkov, “Supporting

Schedules of Resource Co-Allocation

for Distributed Computing in Scalable

Systems,” Programming and

Computer Software, Vol. 34, No. 3,

2008, pp. 160 – 172.

[21] M. Tang, B.S. Lee, X. Tang, et al.,

“The Impact of Data Replication on

Job Scheduling Performance in the

Data Grid,” Future Generation

Computing Systems, Vol. 22, No. 3,

2006, pp. 254 - 268.

[22] N.N. Dang, S.B. Lim, and C.K. Yeo,

“Combination of Replication and

Scheduling in Data Grids,” Int. J. of

Computer Science and Network

Security, Vol. 7, No. 3, 2007, pp. 304

- 308.

[23] W.H. Bell, D. G. Cameron, L.

Capozza et al., “OptorSim – A Grid

Simulator for Studying Dynamic Data

Replication Strategies,” Int. J. of High

Performance Computing

Applications, Vol. 17, No. 4, 2003,

pp. 403 - 416.

