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ABSTRACT 
This paper presents an integrated approach for scheduling in distributed computing with 

strategies as sets of job supporting schedules generated by a critical works method. The 

strategies are implemented using a combination of job-flow and application-level techniques 

of scheduling within virtual organizations of Grid. Applications are regarded as compound 

jobs with a complex structure containing several tasks co-allocated to processor nodes. The 

choice of the specific schedule depends on the load level of the resource dynamics and is 

formed as a resource request, which is sent to a local batch-job management system. We 

propose scheduling framework and compare diverse types of scheduling strategies using 

simulation studies. 
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1. Introduction 
The fact that a distributed computational 

environment is heterogeneous and dynamic 

along with the autonomy of processor 

nodes makes it much more difficult to 

manage and assign resources for job 

execution at the required quality level [1].  

When constructing a computing 

environment  based on the available 

resources, e.g. in the model which is used 

in X-Com system [2], one normally does 

not create a set of rules for resource 

allocation as opposed to constructing 

clusters or Grid-based virtual 

organizations. This reminds of some 

techniques, implemented in Condor project 

[3, 4]. Non-clustered Grid resource 

computing environments are using similar 

approach. For example, @Home projects 

which are based on BOINC system are 

using cycle stealing, i.e. either idle 

computers or idle cycles of a specific 

computer.  

Another still similar approach is related 

to the management of distributed 

computing based on resource broker 

assignment [5-11]. Besides Condor project 

[3, 4], one can also mention several 

application-level scheduling projects: 

AppLeS [6], APST [7], Legion [8], DRM 

[9], Condor-G [10], and Nimrod/G [11].  

It is known, that scheduling jobs with 

independent brokers, or application-level 

scheduling, allows adapting resource usage 

and optimizing a schedule for the specific 

job, for example, decreasing its completion 

time. Such approaches are important, 

because they take into account details of 

job structure and users resource load 

preferences [5]. However, when 

independent users apply totally different 

criteria for application optimization along 

with job-flow competition, it can degrade 

resource usage integral quality 

performance, system throughput, and 

processor nodes load balance and job 

completion time.  



Alternative way of scheduling in 

distributed computing based on virtual 

organizations includes a set of specific 

rules for resource use and assignment that 

regulates mutual relations between users 

and resource owners [1]. In this case only 

job-flow level scheduling and allocation 

efficiency can be increased. Grid-

dispatchers [12] or metaschedulers are 

acting as managing centres like in the 

GrADS project [13].  

Inseparability of the resources makes it 

much more complicated to manage jobs in 

a virtual organization, because the presence 

of local job-flows launched by owners of 

processor nodes should be taken into 

account. Dynamical load balance of 

different job-flows can be based on 

economical principles [14] that support 

fairshare division model for users and 

owners. Actual job-flows presence requires 

forecasting resource state and their 

reservation [15], for example by means of 

Maui cluster scheduler simulation 

approach or methods, implemented in 

systems such as GARA, Ursala, and Silver 

[16].  

The above-mentioned works are related 

to either job-flow scheduling problems or 

application-level scheduling.  

Fundamental difference between them 

and the approach described is that the 

resultant dispatching strategies are based 

on the integration of job-flows 

management methods and compound job 

scheduling methods on processor nodes. It 

allows increasing the quality of service for 

the jobs and distributed environment 

resource usage efficiency. 

It is considered, that the job can be 

compound (multiprocessor) and the tasks, 

included in the job, are heterogeneous in 

terms of computation volume and resource 

need. In order to complete the job, one 

would co-allocate the tasks to different 

nodes. Each task is executed on a single 

node and it is supposed, that the local 

management system interprets it as a job 

accompanied by a resource request.  

On one hand, the structure of the job is 

usually not taken into account. The rare 

exception is the Maui cluster scheduler 

[16], which allows for a single job to 

contain several parallel, but homogeneous 

(in terms of resource requirements) tasks. 

On the other hand, there are several 

resource-query languages. Thus, JDL from 

WLMS defines alternatives and 

preferences when making resource query, 

ClassAds extensions in Condor-G [10] 

allows forming resource-queries for 

dependant jobs. The execution of 

compound jobs is also supported by 

WLMS scheduling system of gLite 

platform, though the resource requirements 

of specific components are not taken into 

account. 

What sets our work apart from other 

scheduling research is that we consider 

coordinated application-level and job-flow 

management as a fundamental part of the 

effective scheduling strategy within the 

virtual organization.  

Environment state of distribution, 

dynamical state of its configuration, user’s 

and owner’s preferences cause the need of 

building multifactor and multicriteria job 

managing strategies [17-20]. Availability 

of heterogeneous resources, data 

replication policies [12, 21, 22] and 

multiprocessor job structure for efficient 

co-allocation between several processor 

nodes should be taken into account.  

In this work, the multicriteria strategy is 

regarded as a set of supporting schedules 

in order to cover possible events related to 

resource availability.  

The outline of the paper is as follows.  

In section 2, we provide details of 

application-level scheduling with a critical 

works method and strategies as sets of 

possible supporting schedules.  

Section 3 presents a framework for 

integrated  job-flow and application-level 

scheduling.  

Simulation studies of coordinated 

scheduling techniques and results are 

discussed in Section 4.  

We conclude and point to future 

directions in Section 5. 



2. Application-Level  Scheduling 

Based on a Critical Works Method 
The application-level scheduling strategy 

is a set of possible supporting schedules for 

all tasks in the job [18]. Figure 1 shows 

some examples of job graphs in strategies 

with different degrees of distribution, task 

details, and data replication policies [19].  
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Figure 1: Examples of job graphs 

The first type strategy S1 allows 

scheduling with fine-grain computations 

and multiple data replicas, the second type 

strategy S2 is one with fine-grain 

computations and a bounded number of 

data replicas, and the third type S3 implies 

coarse-grain computations and constrained 

data replication. The vertices P1, …, P6, 

P23, and P45 correspond to tasks, while 

D1, …, D8, D12, D36, and D78 

correspond to data transmissions. The 

transition from graph G1 to graphs G2 and 

G3 is performed through lumping of tasks 

and reducing of the parallelism level.  

The job graph is parameterized by prior 

estimates of the duration Tij of execution 

of a task Pi for a processor node nj of the 

type j, of relative volumes Vij of 

computations on a processor of the type j, 

etc. (Table 1).  

It is to mention, such estimations are 

also necessary in several methods of 

priority scheduling including backfilling in 

Maui cluster scheduler. 

Table 1: User's task estimations 
 

Tij, Tasks 
Vij P1 P2 P3 P4 P5 P6 

Ti1 2 3 1 2 1 2 

Ti2 4 6 2 4 2 4 

Ti3 6 9 3 6 3 6 

Ti4 8 12 4 8 4 8 

Vij 20 30 10 20 10 20 

 

Figure 2 shows fragments of strategies 

of types S1, S2, and S3 for jobs in Fig. 1.  

The duration of all data transmissions is 

equal to one unit of time for G1, while the 

transmissions D12 and D78 require two 

units of time and the transmission D36 

requires four units of time for G2 and G3.  
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Figure 2. Fragments of scheduling 

strategies S1 (a), S2 (b), S3 (c) 

We assume that the lumping of tasks is 

characterized by summing of the values of 

corresponding parameters of constituent 

subtasks (see Table 1).  



Supporting schedules in Fig. 2, a present 

a Pareto-optimal strategy of the type S1 

for tasks Pi, i=1, …, 6 in G1. The 

Pareto relation is generated by a vector of 

criteria CF, LLj, j=1, …, 4.  

A job execution cost-function CF is 

equal to the sum of Vij/Ti, where Ti is 

the real load time of processor node j by 

task Pi rounded to nearest not-smaller 

integer. Obviously, actual solving time Ti 

for a task can be different from user 

estimation Tij (see Table 1).  

The processor node load level LLj is 

the ratio of the total time of usage of the 

node of the type j to the job run time.  

Schedules in Fig. 2, b and Fig. 2, c are 

related to strategies S2 and S3. 

Strategies are generated with a critical 

works method [20].  

The gist of the method is a multiphase 

procedure. The first step of any phase is 

scheduling of a critical work – the longest 

(in terms of estimated execution time Tij 

for task Pi) chain of unassigned tasks 

along with the best combination of 

available resources. The second step is 

resolving collisions cased by conflicts 

between tasks of different critical works 

competing for the same resource.  

For example, there are four critical 

works 12, 11, 10, and 9 time units long 

(including data transfer time) on fastest 

processor nodes of the type 1 for the job 

graph G1 in Fig. 1, a (see Table 1): 

(P1, P2, P4, P6), (P1, P2, P5, P6), 

(P1, P3, P4, P6), (P1, P3, P5, P6). 

The schedule with CF=37 has a collision 

(see Fig. 2, a), which occurred due to 

simultaneous attempts of tasks P4 and P5 

to occupy processor node n4. This 

collision is further resolved by the 

allocation of P4 to the processor node n3 

and P5 to the node n4. Such reallocations 

can be based on virtual organization 

economics – in order to take higher 

performance processor node, user should 

“pay” more. Cost-functions can be used in 

economical models [14] of resource 

distribution in virtual organizations. It is 

worth noting that full costing in CF is not 

calculated in real money, but in some 

conventional units (quotas), for example 

like in corporate non-commercial virtual 

organizations. The essential point is 

different – user should pay additional cost 

in order to use more powerful resource or 

to start the task faster. The choice of a 

specific schedule from the strategy depends 

on the state and load level of processor 

nodes, and data storage policies. 

The critical works method was 

developed for application-level scheduling 

[19, 20]. However, it can be further refined 

to build multifactor and multicriteria 

strategies for job-flow distribution in 

virtual organizations. This method is based 

on dynamic programming and therefore 

uses some integral characteristics, for 

example total resource usage cost for the 

tasks that compose the job. However the 

method of critical works can be referred to 

the priority scheduling class. There is no 

conflict between these two facts, because 

the method is dedicated for task co-

allocation of compound jobs.  

Priority scheduling based on queues is 

not an efficient way of multiprocessor jobs 

co-allocating, in our opinion. Besides, 

there are several well-known side effects of 

this approach in the cluster systems such as 

LL, NQE, LSF, PBS and others. For 

example, traditional First-Come-First-

Serve (FCFS) strategy leads to idle 

standing of the resources. Another strategy, 

which involves job ranking according to 

the specific properties, such as 

computational complexity, for example 

Least-Work-First (LWF), leads to a severe 

resource fragmentation and often makes it 

impossible to execute some jobs due to the 

absence of free resources. In distributed 

environments these effects can lead to 

unpredictable job execution time and 

thereby to unsatisfactory quality of service. 

 In order to avoid it many projects have 

components that make schedules, which 

are supported by preliminary resource 

reservation mechanisms [15, 16]. One to 

mention is Maui cluster scheduler, where 

backfilling algorithm is implemented. 



Remote Grid resource reservation 

mechanism is also supported in GARA, 

Ursala and Silver projects [16]. Here, only 

one variant of the final schedule is built 

and it can become irrelevant because of 

changes in the local job-queue, 

transporting delays etc.  

The strategy is some kind of preparation 

of possible activities in distributed 

computing based on supporting schedules 

(see Fig. 2) and reactions to the events 

connected with resource assignment and 

advance reservations [15, 16]. The more 

factors considered as formalized criteria 

are taken into account in strategy 

generation, the more complete is the 

strategy in the sense of coverage of 

possible events [18, 19]. The choice of the 

supporting schedule [20] depends on the 

utilization state of processor nodes, data 

storage and relocation policies specific to 

the environment, structure of the jobs 

themselves and user estimations of 

completion time and resource 

requirements.  

3. Metascheduling Framework 
In order to implement the effective 

scheduling and allocation to heterogeneous 

resources, it is very important to group user 

jobs into flows according to the strategy 

type selected and to coordinate job-flow 

and application-level scheduling.  

A hierarchical structure (Fig. 3) 

composed of a job-flow metascheduler and 

subsidiary job managers, which are 

cooperating with local batch-job 

management systems, is a core part of a 

scheduling framework proposed in this 

paper.  

The advantages of hierarchically 

organized resources managers are obvious, 

e.g., the hierarchical job-queue-control 

model is used in the GrADS metascheduler 

[13] and X-Com system [2]. Hierarchy of 

intermediate servers allows decreasing idle 

time for the processor nodes, which can be 

inflicted by transport delays or by 

unavailability of the managing server while 

it is dealing with the other processor nodes. 

Tree-view manager structure in the 

network environment of distributed 

computing allows avoiding deadlocks 

when accessing resources. Another 

important aspect of computing in 

heterogeneous environments is that 

processor nodes with the similar 

architecture, contents, administrating 

policy are grouped together under the job 

manager control.  
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Figure 3: Components of 

metascheduling framework 

Users submit jobs to the metascheduler 

(see Fig. 3) which distributes job-flows 

between processor node domains according 

to the selected scheduling and resource co-

allocation strategy Si, Sj or Sk. It does 

not mean, that these flows cannot 

“intersect” each other on nodes. The 

special reallocation mechanism is 

provided. It is executed on the higher-level 

manager or on the metascheduler-level. Job 

managers are supporting and updating 

strategies based on cooperation with local 

managers and simulation approach for job 

execution on processor nodes.   

Innovation of our approach consists in 

mechanisms of dynamic job-flow 

environment reallocation based on 

scheduling strategies. The nature of 

distributed computational environments 

itself demands the development of 

multicriteria and multifactor strategies [17, 

18] of coordinated scheduling and resource 

allocation.  

The dynamic configuration of the 

environment, large number of resource 

reallocation events, user’s and resource 

owner’s needs as well as virtual 



organization policy of resource assignment 

should be taken into account. The 

scheduling strategy is formed on a basis of 

formalized efficiency criteria, which 

sufficiently allow reflecting economical 

principles [14] of resource allocation by 

using relevant cost functions and solving 

the load balance problem for 

heterogeneous processor nodes. The 

strategy is built by using methods of 

dynamic programming in a way that allows 

optimizing scheduling and resource 

allocation for a set of tasks, comprising the 

compound job. In contrast to previous 

works, we consider the scheduling strategy 

as a set of admissible supporting schedules 

(see Fig. 2). The choice of the specific 

variant depends on the load level of the 

resource dynamics and is formed as a 

resource query, which is sent to a local 

batch-job processing system. 

One of the important features of our 

approach is resource state forecasting for 

timely updates of the strategies. It allows 

implementing mechanisms of adaptive job-

flow reallocation between processor nodes 

and domains, and also means that there is 

no more fixed task assignment on a 

particular processor node. While one part 

of the job can be sent for execution, the 

other tasks, comprising the job, can 

migrate to the other processor nodes 

according to the updated co-allocation 

strategy. The similar schedule correction 

procedure is also supported in the GrADS 

project [13], where multistage job control 

procedure is implemented: making initial 

schedule, its correction during the job 

execution, metascheduling for a set of 

applications. Downside of this approach is 

the fact, that it is based on the creation of a 

single schedule, so the metascheduler stops 

working when no additional resources are 

available and job-queue is then set to 

waiting mode. The possibility of strategy 

updates allows user, being integrated into 

economical conditions of virtual 

organization, to affect job start time by 

changing resource usage costs. In fact it 

means that the job-flow dispatching 

strategy is modified according to new 

priorities and this provides competitive 

functioning and dynamic job-flow balance 

in virtual organization with inseparable 

resources. 

4. Simulations Studies and Results 
We have implemented an original 

simulation environment of the 

metascheduling framework (see Fig. 3) to 

evaluate efficiency indices of different 

scheduling and co-allocation strategies. In 

contrast to well-known Grid simulation 

systems such as ChicSim [12] or OptorSim 

[23], our simulator MetaSim generates 

multicriteria strategies as a number of 

supporting schedules for metascheduler 

reactions to the events connected with 

resource assignment and advance 

reservations.  

Strategies for more than 12000 jobs with 

a fixed completion time were studied. 

Every task of a job had randomized 

completion time estimations, computation 

volumes, data transfer times and volumes. 

These parameters for various tasks had 

difference which was equal to 2, ..., 3. 

Processor nodes were selected in 

accordance to their relative performance. 

For the first group of “fast” nodes the 

relative performance was equal to 0.66, …, 

1, for the second and the third groups 0.33, 

…, 0.66 and 0.33 (“slow” nodes) 

respectively. A number of nodes was 

conformed to a job structure, i.e. a task 

parallelism degree, and was varied from 20 

to 30.  

We have studied the strategies of the 

types S1 – with fine-grain computations 

and active data replication policy; S2 – 

with fine-grain computations and a remote 

data access; S3 – with coarse-grain 

computations and static data storage;  MS1 

– with fine-grain computations, active data 

replication policy, and the best- and worst 

execution time estimations (a modification 

of the strategy S1). The strategy MS1 is 

less complete than the strategy S1 in the 

sense of coverage of events in distributed 

environment. However the important point 

is the generation of a strategy by efficient 



and economic computational procedures of 

the metascheduler. The type S1 has more 

computational expenses than MS1 

especially for simulation studies of 

integrated job-flow and application-level 

scheduling. Therefore, in some 

experiments with integrated scheduling we 

compared strategies MS1, S2, and S3. 

4.1 Application-Level Scheduling Study 

We have conducted the statistical research 

of the critical works method for 

application-level scheduling with above-

mentioned types of strategies S1, S2, S3. 

The main goal of the research was to 

estimate a forecast possibility for making 

application-level schedules with the critical 

works method without taking into account 

independent job flows. For 12000 

randomly generated jobs there were 38% 

admissible solutions for S1 strategy, 37% 

for S2, and 33% for S3. This result is 

obvious: application-level schedules 

implemented by the critical works method 

were constructed for available resources 

non-assigned to other independent jobs. 

Along with it there is a conflict distribution 

for the processor nodes that have different 

performance (“fast” are 2-3 times faster, 

than “slow” ones): 32% for “fast” ones, 

68% for “slow” ones in S1, 56% and 44% 

in S2, 74% and 26% for S3 (Fig. 4). This 

may be explained as follows. The higher is 

the task state of distribution in the 

environment with active data transfer 

policy, the lower is the probability of 

collision between tasks on a specific 

resource.  

In order to implement the effective 

scheduling and resource allocation policy 

in the virtual organization we should 

coordinate application and job-flow levels 

of the scheduling. 

4.2 Job-Flow and Application-Level 

Scheduling Study 

For each simulation experiment such 

factors as job completion “cost”, task 

execution time, scheduling forecast errors 

(start time estimation), strategy live-to-

time (time interval of acceptable schedules 

in a dynamic environment), and average 

load level for strategies S1, MS1, S2, and 

S3 were studied.  
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Figure 4: Percentage of collisions for 

“fast” processor nodes in application-

level scheduling   

Figure 5 shows load level statistics of 

variable performance processor nodes 

which allows discovering the pattern of the 

specific resource usage when using 

strategies S1, S2, and S3 with coordinated 

job-flow and application-levels scheduling.  

The strategy S2 performs the best in the 

term of load balancing for different groups 



of processor nodes, while the strategy S1 

tries to occupy “slow” nodes, and the 

strategy S3 - the processors with the 

highest performance (see Fig. 5). 
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Figure 5: Processor node load level in 

strategies S1, S2, and S3 

Factor quality analysis of S2, S3 

strategies for the whole range of execution 

time estimations for the selected processor 

nodes as well as modification MS1, when 

best- and worst-case execution time 

estimations were taken, is shown in 

Figures 6 and 7. 
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Figure 6: Job completion cost and task 

execution time in strategies MS1, S2, 

and S3 

Lowest-cost strategies are the “slowest” 

ones like S3 (see Fig. 6); they are most 

persistent in the term of time-to-live as 

well (see Fig. 7).  

The strategies of the type S3 try to 

monopolize processor resources with the 

highest performance and to minimize data 

exchanges.  

Withal, less persistent are the “fastest”, 

most expensive and most accurate 

strategies like S2.  
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Figure 7: Time-to-live and start 

deviation time in strategies MS1, S2, 

and S3  

Less accurate strategies like MS1 (see 

Fig. 7) provide longer task completion 

time, than more accurate ones like S2 (Fig. 

6), which include more possible events, 

associated with processor node load level 

dynamics. 

5. Conclusions and Future Work 
The related works in scheduling problems 

are devoted to either job scheduling 

problems or application-level scheduling. 

The gist of the approach described is that 

the resultant dispatching strategies are 

based on the integration of job-flows and 

application-level techniques. It allows 

increasing the quality of service for the 

jobs and distributed environment resource 

usage efficiency.  

Our results are promising, but we have 

bear in mind that they are based on 

simplified computation scenarios, e.g., in 

our experiments we use FCFS management 

policy in local batch-job management 

systems. Afore-cited research results of 

strategy characteristics were obtained by 

simulation of global job-flow in a virtual 

organization. Inseparability condition for 

the resources requires additional advanced 

research and simulation approach of local 

job passing and local processor nodes load 

level forecasting methods development.  

Different job-queue management models 

and scheduling algorithms (FCFS 

modifications, LWF, backfilling, gang 



scheduling, etc.) can be used here. Along 

with it local administering rules can be 

implemented.  

One of the most important aspects here 

is that advance reservations have impact on 

the quality of service. Some of the 

researches (particularly the one in Argonne 

National Laboratory) show, that 

preliminary reservation nearly always 

increases queue waiting time.  

Backfilling decreases this time. With the 

use of FCFS strategy waiting time is 

shorter than with the use of LWF. On the 

other hand, estimation error for starting 

time forecast is bigger with FCFS than 

with LWF. Backfilling that is implemented 

in Maui cluster scheduler includes 

advanced resource reservation mechanism 

and guarantees resource allocation. It leads 

to the difference increase between the 

desired reservation time and actual job 

starting time when the local request flow is 

growing.  

Some of the quality aspects and job-flow 

load balance problem are associated with 

dynamic priority changes, when virtual 

organization user changes execution cost 

for a specific resource.  

All of these problems require further 

research.  
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