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Abstract. The functions and classes of three states functions are fully used by the algorithm R.A NMJ to
such a point that the theoretical analysis of the latter is connected to the one of the functions and the classes
of functions. An analysis stands out to justify the tests carried out on the algorithm R.A NMJ
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I- Introduction

The agorithm R.A NMJ[6,7,8,9,10] isaregenerator of cryptographically reliable binary sequences, that exploits
the complexity of evolutionist algorithms [2] and simulates a dynamic and dissipative system with compensation
created from a keyword of an arbitrary size. Though it is determinigtic, the system raises extremely complex
behaviors [1,5] that look disorganized. These practica results imposed a theoretica study of the different
functions of the system. Well founded on the observer notion that arises in the form of a class of three states a

b andl ,thisclassis used during process |, to creste Data blocks of the individuals from the initial population

starting from a keyword. Thus these three states functions were adjusted in order to define new mating functions
and allow the evolution of the individuals while doubling the size of their Data block during process I1.; It aso
intervenes twice during process 11 : The first time during the mating function 11, and permits the regeneration of
Data blocks of N hits starting from two blocks of N bits. And in the second time during the contribution
function, function to which every individual will contribute to the binary sequence which will be done by
XOR’ing the plaintext or cipher text. The importance of functions and classes of three states functions for the
study of the vulnerability of the algorithm R.A NMJ has set a theoretical study of these functions. The definition
of a metric on the set of three states functions has permitted the computation of a distance matrix associated to
every class of functions. Matrices whose analysis (MDS) will permit to make an estimation on a collective
complexity of its classes. The multidimensional scaling (MDS) [3, 4, 11] is an anaysis method of proximity
matrix (similarity or dissmilarity) established on a set of elements. The objective of MDS is to modd the
proximities between individuals in order to present them asfaithfully as possible in a space of a weak dimension.
I1- Notations and Definitions

We denocte by:

[n: m|: the set of integers between nand m, withn<m.

# (E): The cardinal of a set E.

<.,.> : The inner product definedin R® .
M., (R) : The set of square matrices of order M.
I : The set of functions defined in I\, periodical of period T with two states (FZ) or threestat&(]Fg) .

U : Thelogic operator « and ».
|X| : The sum of the absol ute values of the entries of X .

The three states functions play an important role in this approach since they allow us to represent the notion of
observer.

Definition 1: For each two states or three states function F we assign a unique sequence f defined by :
f=F(0)F(1))F(2)F(3)F(4)... F(n).... And if there exists an integer k such that f=F(0)F(1)F(2)F(3)F(4)...F(k)
FOF()F(2)F(S)F(4)...F(k)..., we say that F is periodic with period F(O)F(1)F(2)F(3)F(4)...F(k), called
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primitive signal of , that we denote S(F) , therefore for every integer NT N F(n)=F(n mod Sp(F)). And if

f is a finite sequence, we extend it to a unique infinite periodic sequence whose size of its primitive signal is a
divisor of that of f. We call aregenerator signal of F, that we denote Sk (F), every concatenation of its primitive
signal.

Remark: The existence of a bijection between the set of two or three states periodic functions and the set of the
associated primitive signals simplifies the study of these functions, which is reduced to the study of the
characteristics of its associated primitive signals.

Definition 2: Let G, (Q) be the set of two states functions 0 and 1(respectively. three states,a ,b and | )

whose associated sequences are periodic.
The study of the three states functionsa , b and | will be done viathe associated sequences.

Definition 3: Let S and S'betwo elementsof G, (or ), S and S' are equal and (we denote S=S') if
S(n)=s(n) " nT .

Theorem 1: Let S and S'betwo elementsof G, (or G)), S=S' if and only if S)(S): S)(S)

Definition 4. We define a subsst W of G by: G is an eement of W if and only if
F(G)=a..ab..bl ..Ib..b.

If we dencte by :

X: thefrequency of a in F(G)

Y : thefrequency of b between a and b in S(G).
Z : thefrequency of | in S(G) .

T : thefrequency of b in S(G) following |

Then G will bedencted G =[X,Y,Z,T].

The advantage of the set W is due to its structure which permits to authenticate its e ements via the values of X,
W,Y,ZandT.

Definition 5: A matrix M = (d; )T M, (R) iscalled adistance metrix if it satisfiesthe following

1) Itissymmetric(i.e.d; =d; forall i andj).

2) d, =0forali

3 d;3O0forali? j.

Moreover it is Euclidean if there exists a configuration of points in a Euclidean space such thaE the distances
between points are given by the matrix M , i.e. there exists an integer d and points X,..., X, | Rd such that

dif:<xi - X[, % - xj>:(xi - xj)T(xi - xj) foral i, jl {1,...,m.

Proposition 1: Thefunction w: '~ F ® R defined by:
"S,ST F w(s,s)=#{i1 {0,...T - 1}/s(i)* s'(i)}isadisanceon I

Proof:

It is cdear that for al dementsS, S of F we have W(S,S')3 0 and W(S,S')ZW(S',S),
ws,S$)=00 S(n)=s(n) "ni{0...T-1}. But it is known that S(n)=S(nmodT) and
S'(n) = S (nmodT) for al integersn. We deducethat S(N) =S'(n) " ni N, thus S=S .

LetS, S, S bethreeelementsof I. We consider the following sets:

K={iT{0,..T-13/s()* S()}

H ={i1 {0...T- /s() * S'()}

G={i1{0...T-13/S()* S'(i)}

Letsshowthat K1 HE G Letil K then S(i)* S(i),



Ifil HEG thenil H andil G,thus S(i)=S (i) andS (i) =S (i), therefore S(i) = S (i) which
contradicts S(i) S (i) . We deduce that:

"il K,il HEG,whichshowsthat KI HEG.

But K, H and G arethreefinite sets, thus|K|£|H E G|£|H|+|G|,therefore

W(S, S')E W(S, S")+ W(S",S'), for all periodic functionsS , S and S, of period T .
Proposition 2: Thefunction W: F~ F ® R defined by

)
D(Sl ,SZ)Z Slfz) isadistance on I that we call normalized distance on I .

Pr oof
From proposition 1 we get

1. D(S,S)2 0 ad D(S,S)=0iff S=S.

2 WS S)EWSS)+WS',S) fordl S, S and Sof I, thus W(Slgs')£ W(ST' s), W(S;S'),

therefore D(S, S')£ D(S, S")+ D(S",S')-

In this section, we denote by P afinite set of periodic two or three states functions not necessarily of the same
period and K the least common multiple of their period

Propasition 3: Thefunction: D': P* P® R defined by D'(S,S) = #il {0""’k-;'}’s(i) =S(i)} for all
S and S'in P isametricon P.

The proof is similar as of proposition 2.

Corollary 1: Let SA and S' betwo dementsof P of period T and T'
p(s,s7) = AT 10, ppme (T,T)-'l},s(|)1 0!
ppme (T,T")

Pr oof:
It suffices to see that:

401 {0 k- 1,50)r 5= AT 10 pome (T.7)- 115G S'()

pome (T,T")

And from proposition 3 we deduce that:
(5,57 = AT {0uer pome (1.79)- 13,56)* s'()}
ppme (T,T')
Thisrelation is more general since it defines the distance between two periodic functions of an arbitrary period,

independently from the other functions of the class.

[11- Study of the inner characteristics of the classes of three statesfunctions

R.A NMJ calls on two classes of three states functions, One of them (CI) during the creation of the initia
population, and the other (CII) during the contribution of the individuals. The study of the characteristics of the
classes of three states functions faces a big problem related to the interpretation of the states that are displayed

during the superposition of two sequences associated to three states functions that are : (& ,a ),
(b,b).(1 ,1),(a,b)o(p,a).(a,l )o(l ,a),(b,l)or(,b),

and (X, y) correspondingto ((S(n) =x) U(S;(n) =y)) or ((S(n) =y) U(S;(n) =x)).

Let G :[X,Y,Z,T] be the observer, the range of values denoted D;, X, Y, Z,and T arevariablesand it

is up to the designers to choose the adequate values. The original version of R.A NMJ uses two classes of three
states functions defined by:

C1l:Dx=12:7|, Dy=[1:6], Dz=|2:7|, D= [1:5]and C |l : Dx=[5:8|, Dy=|1:4|, D;=|5:8|, Dt=|1:4|.

The values of Dy, Dy, Dz and D+ determine the number of functions of classes Cl an Cl|



C : 1080 = (7-2+1)* (6-1+1)*6*5 et C |1 256 = (8-5+1)* (4-1+1)*4*4.

I11-1 Distribution of distances of three states functions of the two classes
In this section we will focus on the distribution of distances of the observers Gl,...,Gm with regard to each

other for the two classes of functions C | and C I1, and this will be done viathe analysis of distance matrices.

The analysis of distance matrices (Definition 5), associated to every class will alow, to give an estimation of the
collective complexity of the elements of the class. The two following figures represent the hisograms of distance
matrices of classes| and 1.
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Figure 1: Histogram of the matrix(dij) associated to dlass C |
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Figure2: Histogram of the matrix (dij) associated to class C |1

The x- axis represents the digtances between the observers. The y- axis represents the frequency of the same
coefficients of the matrix (dij ) of the classin question.

We notice that each histogram represents a pick at the value 0.66. This pick represents a kind of an attractor
since we have a high dendty in the neighborhood at this point.

[11-2. Theclassic algorithm MDS

The goal of the study of the characteristics of the three states functions is to estimate the complexity and
theoretical bases of R.A NMJ, via more concise theory that might explain it globally or partially. The study of
the characteristics of the three states functions used during the different steps of the algorithm R.A NMJ will
give a theoretic view on this latter. It matters to study the complexity of the structure defined by the set of
elements of the class but not of each element. The estimation of this collective complexity is essential to justify
the use of the classes. Estimation that becomes possible via the analysis of the characteritics of distance
matrices between pairwise elements of the class. The technique that will be used to exploit these matricesis the
classic algorithm MDS [3, 4, 11] ‘Multidimensional Scaling Techniques’, technique that will alow the
estimation of the coordinates of each element of the set of the Euclidean space. The use of the word ‘estimation’
is due to the fact that MDS tends to reduce the dimension of the Euclidean space while minimizing a "Stress
function ",

The observable data that characterize a given process arein several cases of high dimensons, consequently hard
to interpret and this is why the techniques of the analysis of data were created; their goal is to find the data
gtructure in the intringc subspace of the observations. The projection algorithms of data (data projection
algorithms) are used to represent in atwo or three dimension spaces data having a very high dimension number.
They not only permit to help understand the data but a so to provide meansto visualize them intuitively.



The classic agorithm MDS is a technique of data analysis that operates on distance matrices or similarity in
order to make projections of the starting structure on a space, generally Euclidean, of n dimensions. We are
interested by this technique because it gives the coordinates of its objectsin a Euclidean space, which permitsthe
estimation of each axis and thus gets an indication on the collective complexity on the set of objects. In other
words, given aset of N objects in a space, for which the dimension is unknown to us, MDS permits to find, the

minimal dimension of a Euclidean space (R™) in which N points configure, starting from the distances between
N objects to which these points are associated; thus its coordinatesin this Euclidean space ; while minimizing a ¢
Stress function’, in our case, the equality of the sum of the squares of the differences of the distances with the
sum of squares of differences of coordinates that we have at our disposal. In other words, MDS permitsto assign
coordinates to elements of the class, in a Euclidean space of minimal distance that will be used to evaluate the
importance of each axis compared to the others.

Wewill give in the following an outline of this technique:

Let D= (dij ) be the distances matrix of order n where dij is the distance between two observers Gi and Gj

which follows from the metric (Corollary 1), the quadratic distances matrix D=(dij2) and

B :%(I - %UH)D(I " %Un) with | the unit matrix (identity) of order N and U, a square matrix of
order N whose coefficients are equal to 1. We compute the eigenvalues of the matrix B and the associated
eigenvectors. Let then (I i)id:1 be the d positive eigenvalues of B suchthat | , >...>1 ,, and (X(i))id:lthe
corresponding eigenvectors normalized by X(Ti)X(i) =1, where Y' denotes the transpose of the vector Y .
Further the coordinates of the points P. in the Euclidean space RY for dl {L...,n} are given

r

by Xy = (Xrl,...,X,d),which are therows of the matrix X = (X(l),...,X(d)) of order n” d.

Definition 5: Let S be the function defined from R™® ® R by:

, and the "Stress function” minimized by the algorithm
i=1 j=i+ k=1

n n d
5(&1,---&,--%11,---%):3. aJdij' a()?k'xjk)
MDS.

I11-3 Results

The aim of this part is to present and interpret the results obtained during the algorithm MDS on distance
matrices associated to two classes of three states functions used in the algorithm R.A NMJ.

[11-3.1. ClassCl used in R.ANMJ.

Class Cl is defined by: Dx=|2:7|, Dy=|1.6|, D-=|2:7|, D= |1:5] and is composed of 1080 functions. It plays a big
rolesinceit isthe kernel of the function that regenerates theinitial population associated to a given key word.
The distance matrix associated to class Cl is of range 1057 and has 313 positive eigenvalues that will be taken
into account.
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Figure 3: Thisfigurerepresentsthe 313 positive eigenvalues associated to class Cl, picked in an increasing order.
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Figure 4: The x-axis representsthe indices of the axes associated to 313 positive eigenvalues, the y-axisrepresentsthe

per centage P(X(i) ) of the contribution of each axis compared tothe other axesthat constitute a Euclidean space.

This graph represents the importance of the axes associated to positive eigenvalue; an estimated value via the
. . I Xl

following relation: P(X (i)) = W .

[11-3.2 Class Cll used in R.A NMJ

Class Cll is defined by: D= |5:8|, Dy=|1:4], D,=|5:8|, Dr= [1:4], it intervenes during the contribution function
allowing to the individuas the contribution to binary sequences. Its matrix has a rank equal to 255 and has 83
positive eigenval ues.
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Figure 6: The x-axis represents the indices of the axes associated to 83 positive eigenvalues, the y-axis represents the

per centage P(X(i)) of the contribution of each axis compared to the other axesthat constitute a Euclidean space.

Remark

Even though MDS gives only an approximated estimation (since MDS takes into account only the dominant
aspects of the populating, the rare species are ignored, because they put difficulties in interpretation) of the
dimension of a Euclidean space that would satisfy the distances between all pairwise elements of the set. The
results found are 313 and 83 respectively for the first and second class, give an indication on the collective



complexity of its classes. In the sequel we will focus on the transform W that describes the way in which the
algorithm R.A NMJ calls for three states functions.

IV- Study of the characteristics of the transform W

In this part we will study the influence of the ignorance of the bits on the transition functions based on the three
states functions via the study of their linearity while trying to find an algebraic structure that will explain their
dissipative transforms.

Definition 6: Let V be the transform defined by v:{a,l} {0 ® {01} such that v(a,k)=k and
V(I ,k):E withc 0=1 andt 1=0.

Definition 7: Thetransform definedby:  W: W G, ® G, with W(G,S) = S' permitsthetranstion of a
given observer G , from the binary sequence associated to S to the corresponding binary sequence associated to
the function S .

To determine the value of S', we construct two sequences (t;). and (k). by:

t,=inf {nT N/G(n)=b}

k, =inf {nT N/G(n)* b}

We have two cases: t, >k, or t, <k, otherwise G(O)Zb orG(O)1 b. And sinceGT W, then
G(0)=a , therefore t, > k, and k, =0.

And we define;

t,, =inf {n1T N/n>k;G(n)=b}

k,,=inf {nT N/n>t;G(n)* b}

Thefunction S' is defined by:

S'(n)=v(G(m), S(m))

I

withm=k +d, n=d+Q (t - k) and0£d £t ,, - k,, - 1.
i=0

V-1 Characteristics of the transform W

Definition 8:

We define B, = {a b, } equi pped with two binary operations+,* such that:

a+a=a:a+b=b+a=b:a+l =I +a =I ;b+l =1 +b =a
a*a=a*l =l *Ya=b*a =a*b =a

| *b=b*l =I ;1 *I =b

Theorem 2;

(B;, +*) isa commutative field.

The study of the linearity poses a big problem since W G isnot avector space neither on {0,]} ,noron B;.
To encounter this problem we associate to each observer G a function W, : G ® G, such that
W, (S) = S'. With these conditions we can study the linearity of W .

Proposition 4: W islinear if and only if W; (S, +S,) =W, (§) +W,(S,) for all lements S, and S, in

G.

To show the nonlinearity of this transform, suffices to show that there exist two elements S, and S, of G

such that W (S, +S,) * We (§) +We (S,) -



Let GZ[X,Y,Z,T] be the observer and let S and S, be two functions such that 33(51)2

andS)(SZ) =0.Wehae S +S, =S.

To show that W; (S, +S,) * W, (S)) +W;(S,) we need to prove that there exists m| N such that

W, (S, +S,)(m) t (Ws (S)(m) A (W (S,)(m)).

For m=X+Y+1 we have W (S)(m) =0W,(S,)(m)=1. And since W;(S +S,)(m)=0
and (W (S)(M)) A (W, (S,)(M)) =1 then W, (S, +S,) WL (S,) +W,(S,), therefore the transform
W isnonlinear.

Lemma 1: The function W; isnon injective, for each observer G .

Proof: Let S; and S, be two elements of G, such that:

SR (Sl) ="110001100110001111010101101101110110111100001100110010001111",

SR (S2 ) ="110101101010011111110100001010110110110100011100110010101010"

And let G be an observer defined by: G =[X,Y,,Zg,Ts] with X =3,Y, =2,Z, =2 and T, =3. We
check that S,(W (S)) = Sk (W, (S,)) = "110001000001010110100000100110"
This shows that the function W is non injective. And we verify that there exists at least

B v, LS (8)]
2 ®reeteres Y sequences S such that W, (S,) =W, (S,) ., in this case this will give about
2% functions S . Suppose now that S is known and G = [XG Yo, Zs ,TG] is the observer used during the

transition, once we compute the number of possible cases Ng for S in term of the parameters of

e 2 (sa(s ))u

Xo.Ys,Zo,Ts and L(S), wefindthat N g > 2 € Xe"%e 5

V- Conclusion
The nonlinearity, the non injectivity of the functions VA, , in addition of the dissipation associated to the stateb ,

dissipation that will be compensated by the function W, itself, are piling up since RA NMJ is a system that

simulates the evolution of a population of individuals, which is heterogeneous dynamic with feedback. These
characteristics justify that R.A NMJ is a chaotic system sensitive to the initial state and allow to generate an
avalanche effect for very close states. This sensitivity will warranty the non-reducibility of the research space
during an exhaustive attack through enumeration of key words.

Moving towards evolutionist algorithms to generate crytographically reliable sequencesis ahard decision to take
and justify because of the stakes of this discipline, only the stored complexity in these processes and the results
found motive this study.

Actually, the complexity of biological systems go beyond the one of the physics phenomena , moreover its
techniques offer simplicity either at the stage of elaboration or in the study of vulnerability. Also the evolutionist
algorithms may be an aternative for the generation of cryptographically reliable binary sequences.
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