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Keywords: evolutionist algorithms, three states functions, algorithm R.A NMJ, multidimensional 
scaling. 
 

I- Introduction  
The algorithm R.A NMJ [6,7,8,9,10] is a regenerator of cryptographically reliable binary sequences, that exploits 
the complexity of evolutionist algorithms [2] and simulates a dynamic and dissipative system with compensation 
created from a keyword of an arbitrary size. Though it is deterministic, the system raises extremely complex 
behaviors [1,5] that look disorganized. These practical results imposed a theoretical study of the different 
functions of the system. Well founded on the observer notion that arises in the form of a class of three states α , 
β  and λ , this class is used during process I, to create Data blocks of the individuals from the initial population 
starting from a keyword. Thus these three states functions were adjusted in order to define new mating functions 
and allow the evolution of the individuals while doubling the size of their Data block during process II.; It also 
intervenes twice during process III : The first time during the mating function II, and permits the regeneration of 
Data blocks of N bits starting from two blocks of N bits. And in the second time during the contribution 
function, function to which every individual will contribute to the binary sequence which will be done by 
XOR’ing the plaintext or cipher text. The importance of functions and classes of three states functions for the 
study of the vulnerability of the algorithm R.A NMJ has set a theoretical study of these functions. The definition 
of a metric on the set of three states functions has permitted the computation of a distance matrix associated to 
every class of functions. Matrices whose analysis (MDS) will permit to make an estimation on a collective 
complexity of its classes. The multidimensional scaling (MDS) [3, 4, 11] is an analysis method of proximity 
matrix (similarity or dissimilarity) established on a set of elements. The objective of MDS is to model the 
proximities between individuals in order to present them as faithfully as possible in a space of a weak dimension. 
II- Notations and Definitions  
We denote by: 
|n: m|: the set of integers between n and m, with n < m. 
# (E): The cardinal of a set E. 
.,.  : The inner product defined in Rd . 

( )RmM  : The set of square matrices of order m . 

F  : The set of functions defined inN , periodical of period T with two states ( )2F  or three states ( )3F  . 
∧  : The logic operator « and ».  
X  : The sum of the absolute values of the entries of X . 

 
The three states functions play an important role in this approach since they allow us to represent the notion of 
observer. 
 
Definition 1 : For each two states or three states function F we assign a unique sequence f defined by : 
f=F(0)F(1)F(2)F(3)F(4)… F(n)…. And if there exists an integer k such that f=F(0)F(1)F(2)F(3)F(4)…F(k) 
F(0)F(1)F(2)F(3)F(4)…F(k)…, we say that F is periodic with period F(0)F(1)F(2)F(3)F(4)…F(k), called 
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primitive signal of f, that we denote (Sp F ) , therefore for every integer Ν∈n  F(n)=F(n mod (Sp F ) ). And if 
f is a finite sequence, we extend it to a unique infinite periodic sequence whose size of its primitive signal is a 
divisor of that of f. We call a regenerator signal of F, that we denote SR (F), every concatenation of its primitive 
signal. 
Remark: The existence of a bijection between the set of two or three states periodic functions and the set of the 
associated primitive signals simplifies the study of these functions, which is reduced to the study of the 
characteristics of its associated primitive signals.  
Definition 2: Let 2Γ ( )3Γ  be the set of two states functions 0 and 1(respectively. three states,α , β  and λ ) 
whose associated sequences are periodic.  
The study of the three states functions α , β and λ will be done via the associated sequences. 

Definition 3: Let S  and 'S be two elements of 2Γ   (or ), S   and 'S  are equal and (we denote 'SS = ) if 

( ) ( )nSnS '=  ∈∀n ℕ. 

Theorem 1: Let S  and 'S be two elements of 2Γ  ( or 3Γ ), 'SS =  if and only if ( ) ( )'SSpSSp = . 

Definition 4: We define a subset Ω  of 3Γ  by: G  is an element of Ω  if and only if 

)(GSp = βλββλαβα ............ . 
If we denote by : 
X : the frequency of α  in )(GSp   
Y: the frequency of β  between α  and β  in )(GSp . 
Z : the frequency of λ  in )(GSp . 
T : the frequency of β  in )(GSp  following λ  

Then G  will be denoted  [ ]TZYXG ,,,= . 
The advantage of the set Ω  is due to its structure which permits to authenticate its elements via the values of X, 
W, Y, Z and T. 

Definition 5 : A matrix ( )ij mM d M= ∈ ( )R  is called a distance matrix if it satisfies the following  

1)  It is symmetric (i.e. jiij dd =  for all i  and j ). 

2) 0=iid  for all i  

3) 0≥ijd  for all ji ≠ . 
Moreover it is Euclidean if there exists a configuration of points in a Euclidean space such that the distances 
between points are given by the matrix M , i.e. there exists an integer d  and points ∈mxx ,...,1 ℝd such that 

( ) ( )ji
T

jijijiij xxxxxxxxd −−=−−= ,2  for all { }mji ,...,1, ∈ .  

 
Proposition 1: The function :w  × → RF F  defined by: 

',S S∀ ∈ F  ( ) { } ( ) ( ){ }iSiSTiSSw '' /1,...,0#, ≠−∈= , is a distance on F . 
 
 Proof: 
It is clear that for all elements S , 'S  of F  we have: ( ) 0, ' ≥SSw  and ( ) ( )SSwSSw ,, '' = , 

( ) )()(0, '' nSnSSSw =⇔=  { }1,...,0 −∈∀ Tn . But it is known that )mod()( TnSnS =  and 

)mod(')(' TnSnS =  for all integers n. We deduce that )()( ' nSnS =  Nn∈∀ , thus 'SS = . 

Let S , 'S , ''S  be three elements of F . We consider the following sets: 
{ }{ })()(/1,...,0 ' iSiSTiK ≠−∈=  

{ }{ })()(/1,...,0 '' iSiSTiH ≠−∈=  

{ }{ })()(/1,...,0 ''' iSiSTiG ≠−∈=  

Let’s show that GHK ∪⊂   Let Ki ∈  then )()( ' iSiS ≠ , 
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 If GHi ∪∉  then Hi ∉  and Gi ∉ , thus )()( '' iSiS =  and )()( ''' iSiS = , therefore )()( ' iSiS =  which 

contradicts )()( ' iSiS ≠ . We deduce that:  
Ki ∈∀ , GHi ∪∈ , which shows that GHK ∪⊂ .  

But K , H  and G  are three finite sets, thus GHGHK +≤∪≤ , therefore  

( ) ( ) ( )'''''' ,,, SSwSSwSSw +≤ , for all periodic functions S , 'S  and ''S , of period T . 
 
Proposition 2: The function :w  × →F F R  defined by 

( ) ( )
T

SSw
SSD 21

21
,

, = , is a distance on F  that we call normalized distance on F . 

 
Proof 
From proposition 1 we get 

1. ( ) 0', ≥SSD  and ( ) 0', =SSD  iff  'SS = . 

2. ( ) ( ) ( )'''''' ,,, SSwSSwSSw +≤ , for all S , 'S  and ''S of F , thus ( ) ( ) ( )
T

SSw
T

SSw
T

SSw '''''' ,,,
+≤ , 

therefore ( ) ( ) ( )'''''' ,,, SSDSSDSSD +≤ . 

 In this section, we denote by P  a finite set of periodic two or three states functions not necessarily of the same 
period and k  the least common multiple of their period  

Proposition 3: The function: 'D : P P× → R  defined by ( ) { } ( ) ( ){ }
k

iSiSSSD ',1-k0,...,i#',' =∈
=  for all 

S  and 'S  in P  is a metric on P . 
 The proof is similar as of proposition 2. 
 
 Corollary 1 : Let S  and 'S  be two elements of P  of period T  and 'T   

( ){ } ( ) ( ){ }
( )',

',1',0,...,i#)',('
TTppmc

iSiSTTppmcSSD ≠−∈
=  

 
 Proof: 
It suffices to see that: 

{ } ( ) ( ){ } ( ){ } ( ) ( ){ }
( ) k

TTppmc
iSiSTTppmciSiSk ×

≠−∈
=≠−∈

',
',1',0,...,i#',10,...,i#  

 And from proposition 3 we deduce that: 

( ) ( ){ } ( ) ( ){ }
)',(

',1',0,...,i#','
TTppmc

iSiSTTppmcSSD ≠−∈
=  

This relation is more general since it defines the distance between two periodic functions of an arbitrary period, 

independently from the other functions of the class. 

III- Study of the inner characteristics of the classes of three states functions  
R.A NMJ calls on two classes of three states functions, One of them (CI) during the creation of the initial 
population, and the other (CII) during the contribution of the individuals. The study of the characteristics of the 
classes of three states functions faces a big problem related to the interpretation of the states that are displayed 
during the superposition of two sequences associated to three states functions that are : ),( αα , 

),( ββ , ),( λλ , ),( βα or ),( αβ , ),( λα or ),( αλ , ),( λβ or ),( βλ , 

and ),( yx  corresponding to )))(())((( ynSxnS ji =∧=  or )))(())((( xnSynS ji =∧= .  

Let [ ]TZYXG ,,,=  be the observer, the range of values denoted Di, X , Y , Z , and T  are variables and it 
is up to the designers to choose the adequate values. The original version of R.A NMJ uses two classes of three 
states functions defined by:  
C I : DX= |2 :7|, DY=|1 :6|, DZ=|2 :7|, DT= |1 :5| and C II : DX= |5 :8|, DY=|1 :4|, DZ=|5 :8|, DT= |1 :4|. 
The values of DX, DY, DZ and DT determine the number of functions of classes CI an CII 
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C I: 1080 = (7-2+1)*(6-1+1)*6*5 et C II: 256 = (8-5+1)*(4-1+1)*4*4. 
 
III-1 Distribution of distances of three states functions of the two classes  
In this section we will focus on the distribution of distances of the observers mGG ,...,1  with regard to each 
other for the two classes of functions C I and C II, and this will be done via the analysis of distance matrices. 
The analysis of distance matrices (Definition 5), associated to every class will allow, to give an estimation of the 
collective complexity of the elements of the class. The two following figures represent the histograms of distance 
matrices of classes I and II. 

 
Figure 1: Histogram of the matrix ( )ijd  associated to class C I 

 
Figure2: Histogram of the matrix ( )ijd  associated to class C II 

 The x- axis represents the distances between the observers. The y- axis represents the frequency of the same 
coefficients of the matrix ( )ijd  of the class in question.  
We notice that each histogram represents a pick at the value 0.66. This pick represents a kind of an attractor 
since we have a high density in the neighborhood at this point. 
 
III-2. The classic algorithm MDS 
The goal of the study of the characteristics of the three states functions is to estimate the complexity and 
theoretical bases of R.A NMJ, via more concise theory that might explain it globally or partially. The study of 
the characteristics of the three states functions used during the different steps of the algorithm R.A NMJ will 
give a theoretic view on this latter. It matters to study the complexity of the structure defined by the set of 
elements of the class but not of each element. The estimation of this collective complexity is essential to justify 
the use of the classes. Estimation that becomes possible via the analysis of the characteristics of distance 
matrices between pairwise elements of the class. The technique that will be used to exploit these matrices is the 
classic algorithm MDS [3, 4, 11] ‘Multidimensional Scaling Techniques’, technique that will allow the 
estimation of the coordinates of each element of the set of the Euclidean space. The use of the word ‘estimation’ 
is due to the fact that MDS tends to reduce the dimension of the Euclidean space while minimizing a "Stress 
function ". 
The observable data that characterize a given process are in several cases of high dimensions, consequently hard 
to interpret and this is why the techniques of the analysis of data were created; their goal is to find the data 
structure in the intrinsic subspace of the observations. The projection algorithms of data (data projection 
algorithms) are used to represent in a two or three dimension spaces data having a very high dimension number. 
They not only permit to help understand the data but also to provide means to visualize them intuitively.  
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The classic algorithm MDS is a technique of data analysis that operates on distance matrices or similarity in 
order to make projections of the starting structure on a space, generally Euclidean, of n dimensions. We are 
interested by this technique because it gives the coordinates of its objects in a Euclidean space, which permits the 
estimation of each axis and thus gets an indication on the collective complexity on the set of objects. In other 
words, given a set of N objects in a space, for which the dimension is unknown to us , MDS permits to find, the 
minimal dimension of a Euclidean space (ℝm) in which N points configure, starting from the distances between 
N objects to which these points are associated; thus its coordinates in this Euclidean space ; while minimizing a ‘ 
Stress function’, in our case , the equality of the sum of the squares of the differences of the distances with the 
sum of squares of differences of coordinates that we have at our disposal. In other words, MDS permits to assign 
coordinates to elements of the class, in a Euclidean space of minimal distance that will be used to evaluate the 
importance of each axis compared to the others. 
We will give in the following an outline of this technique: 
 Let ( )ijdD =  be the distances matrix of order n  where ijd  is the distance between two observers Gi and Gj 

which follows from the metric (Corollary 1), the quadratic distances matrix ( )2
ijd=∆  and 

( ) ( )nnnnnn UIUIB 11

2
1

−∆−=  with nI  the unit matrix (identity) of order n  and nU  a square matrix of 

order n  whose coefficients are equal to 1. We compute the eigenvalues of the matrix B  and the associated 

eigenvectors. Let then ( )d
ii 1=λ  be the d  positive eigenvalues of B  such that dλλ >> ...1 , and ( )d

iix
1)( =
the 

corresponding eigenvectors normalized by ( ) ( ) ii
T
i xx λ=  where TY  denotes the transpose of the vector Y . 

Further the coordinates of the points rP  in the Euclidean space ℝd, for { }nr ,...,1∈  are given 

by ( ) ( )rdrr xxx ,...,1= , which are the rows of the matrix ( ) ( )( )dxxX ,...,1=  of order dn × . 
 
Definition 5: Let S be the function defined from →.n dR R  by:  

( ) ( )∑∑ ∑
= += =

−−=
n

i

n

ij

d

k
jkikijndnd xxdxxxxS

1 1 1
1111 ,...,,...,,..., , and the "Stress function" minimized by the algorithm 

MDS. 
 
III-3 Results 
The aim of this part is to present and interpret the results obtained during the algorithm MDS on distance 
matrices associated to two classes of three states functions used in the algorithm R.A NMJ.  
 
III-3.1. Class CI used in R.A NMJ. 
 
Class CI is defined by: DX= |2:7|, DY=|1:6|, DZ=|2:7|, DT= |1:5| and is composed of 1080 functions. It plays a big 
role since it is the kernel of the function that regenerates the initial population associated to a given key word.  
The distance matrix associated to class CI is of range 1057 and has 313 positive eigenvalues that will be taken 
into account.  

 
Figure 3 : This figure represents the 313 positive eigenvalues associated to class CI, picked in an increasing order. 
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Figure 4 : The x-axis represents the indices of the axes associated to 313 positive eigenvalues, the y-axis represents the 

percentage ( )( )iP X  of the contribution of each axis compared to the other axes that constitute a Euclidean space. 

This graph represents the importance of the axes associated to positive eigenvalue; an estimated value via the 

following relation: ( )( ) ( )

| X| 
| X| 

XP i
i = . 

  
III-3.2 Class CII used in R.A NMJ 
Class CII is defined by: DX= |5:8|, DY=|1:4|, DZ=|5:8|, DT= |1:4|, it intervenes during the contribution function 
allowing to the individuals the contribution to binary sequences. Its matrix has a rank equal to 255 and has 83 
positive eigenvalues. 
 

 
Figure 5: This figure represents the 83 positive eigenvalues associated to class CII, picked in an increasing order. 
 

 
Figure 6 : The x-axis represents the indices of the axes associated to 83 positive eigenvalues, the y-axis represents the 

percentage ( )( )iP X  of the contribution of each axis compared to the other axes that constitute a Euclidean space. 

 
Remark 
Even though MDS gives only an approximated estimation (since MDS takes into account only the dominant 
aspects of the populating, the rare species are ignored, because they put difficulties in interpretation) of the 
dimension of a Euclidean space that would satisfy the distances between all pairwise elements of the set. The 
results found are 313 and 83 respectively for the first and second class, give an indication on the collective 
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complexity of its classes. In the sequel we will focus on the transform W  that describes the way in which the 
algorithm R.A NMJ calls for three states functions.  
 
IV- Study of the characteristics of the transform W   
In this part we will study the influence of the ignorance of the bits on the transition functions based on the three 
states functions via the study of their linearity while trying to find an algebraic structure that will explain their 
dissipative transforms. 
Definition 6: Let v be the transform defined by { } { } { }1,01,0,: →×λαv  such that ( ) kkv =,α  and 

( ) kkv =,λ  with c 10 =  and t 01 = . 

Definition 7: The transform defined by: :W 22 Γ→Γ×Ω  with '),( SSGW =  permits the transition of a 

given observer G , from the binary sequence associated to S  to the corresponding binary sequence associated to 
the function 'S . 
To determine the value of 'S , we construct two sequences iit )(  and iik )(  by: 

( ){ }β=∈= nGNnt /inf0   

( ){ }β≠∈= nGNnk /inf0   

We have two cases: 00 kt >  or 00 kt <  otherwise ( ) β=0G  or ( ) β≠0G . And since Ω∈G , then 

( ) α=0G , therefore 00 kt >  and 00 =k . 
And we define: 

( ){ }β=>∈=+ nGknNnt ii ;/inf1  

( ){ }β≠>∈=+ nGtnNnk ii ;/inf1  

The function 'S  is defined by:  
( ) ( ) ( )( )mSmGvnS ,' =  

with dkm r += , ∑
=

−+=
r

i
ii ktdn

0
)(  and 10 11 −−≤≤ ++ rr ktd .  

IV-1 Characteristics of the transform W  
 
Definition 8: 

We define { }λβα ,,3 =B  equipped with two binary operations ,*+  such that:  

ααα =+ ; βαββα =+=+ ; λαλλα =+=+ ; αβλλβ =+=+  
αβααβαλλααα ===== *****  

λλββλ == ** ; βλλ =*  

Theorem 2: 

( 3B , +,*) is a commutative field. 

The study of the linearity poses a big problem since 2Γ×Ω  is not a vector space neither on { }1,0 , nor on 3B . 

To encounter this problem we associate to each observer G  a function :GW 22 Γ→Γ  such that 

')( SSWG = . With these conditions we can study the linearity of GW . 

Proposition 4: GW is linear if and only if )()()( 2121 SWSWSSW GGG +=+  for all elements 1S  and 2S  in 

2Γ . 
 
To show the nonlinearity of this transform, suffices to show that there exist two elements 1S  and 2S  of 2Γ  

such that )()()( 2121 SWSWSSW GGG +≠+ .  
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Let [ ]TZYXG ,,,=  be the observer and let 1S  and 2S  be two functions such that ( ) 11 =SSp  

and ( ) 02 =SSp . We have 121 SSS =+ . 

To show that )()()( 2121 SWSWSSW GGG +≠+  we need to prove that there exists ∈m ℕ such that 

)))((()))((())(( 2121 mSWmSWmSSW GGG ⊕≠+ . 

For 1++= YXm  we have: 0))(( 1 =mSWG , 1))(( 2 =mSWG . And since 0))(( 21 =+ mSSWG  

and 1)))((()))((( 21 =⊕ mSWmSW GG  then )()()( 2121 SWSWSSW GGG +≠+ , therefore the transform 

GW  is nonlinear. 

Lemma 1: The function GW  is non injective, for each observer G . 

Proof: Let S1 and S2 be two elements of 2Γ  such that:  

( )1SRS ="110001100110001111010101101101110110111100001100110010001111", 

( )2SRS ="110101101010011111110100001010110110110100011100110010101010" 
 
And let G be an observer defined by: [ ]GGGG TZYXG ,,,=  with 2,2,3 === GGG ZYX  and 3=GT . We 

check that ( )( ) ( ) == )( 21 SWSSWS GRGR "000010011001010110101100010000" . 

This shows that the function GW  is non injective. And we verify that there exists at least 

( )( )



















+++

+
1*

2
SSL

TZYX
TYE R

GGGG

GG

 sequences Si such that ( ) )(1 iGG SWSW = , in this case this will give about 

230 functions iS . Suppose now that 'S  is known and [ ]GGGG TZYXG ,,,=  is the observer used during the 

transition, once we compute the number of possible cases SN  for S  in term of the parameters of 

GGGG TZYX ,,,  and ( )'SL , we find that
( )( )




















+
+

>
'*

2
SSL

ZX
TYE

S

R
GG

GG

N .  
 
V- Conclusion 
The nonlinearity, the non injectivity of the functions GW , in addition of the dissipation associated to the state β , 

dissipation that will be compensated by the function GW  itself, are piling up since R.A NMJ is a system that 
simulates the evolution of a population of individuals, which is heterogeneous dynamic with feedback. These 
characteristics justify that R.A NMJ is a chaotic system sensitive to the initial state and allow to generate an 
avalanche effect for very close states. This sensitivity will warranty the non-reducibility of the research space 
during an exhaustive attack through enumeration of key words.  
Moving towards evolutionist algorithms to generate crytographically reliable sequences is a hard decision to take 
and justify because of the stakes of this discipline, only the stored complexity in these processes and the results 
found motive this study. 
 Actually, the complexity of biological systems go beyond the one of the physics phenomena , moreover its 
techniques offer simplicity either at the stage of elaboration or in the study of vulnerability. Also the evolutionist 
algorithms may be an alternative for the generation of cryptographically reliable binary sequences.  
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