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Abstract

The main criterion of the ciphering key is that it will be expanded to schedule key in
ciphering phase. In addition, the schedule key is used to encrypt the plain text block.
However it is preferred to have an inverse that will be used to decrypt the ciphered
data block. This paper presents a new simple approach to carry out the key expansion
process; it first takes the cipher key and expands it to construct the schedule key. The
proposed approach is simple and fasts as it is based on Modified Genetic Algorithm
(MGA).
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1. Introduction

Key schedule algorithm process is expanding short cipher key (128 bits) into large set
of keys (1408 hits), called round keys (10). Schedule key is very important phase in
ciphering algorithms, as a strong schedule key means a strong cipher that would be
more resistant to various forms of attacks, such as differential and linear cryptanalysis
(5).

Carter, Dawsony and Nielseny (5) classfied AES candidates according to key
schedules as the authors thought that key expansion is very important as strong
schedule key means stronger agorithm against both linear and differential
cryptanalysis. They recommended that the schedule key of AES candidates should be
upgraded.

Genetic Algorithms (Gas) have played a strong role in data security systems, Y aseen
et.a. (15) used genetic algorithm for the cryptanalysis, Spillman and et a. used GA to
cryptanalysis a simple substitution (14), Mathews used GA in transposition ciphers
(9) and Spillman used GA in knapsack based systems (13), Bagnall used GA to crack
difficult systems such as block cipher (Data Encryption Standard DES) (3),
Grundlingh et. a. used GA to attack mono-alphabetic substitution but their approach
not seemed effective against transposition (8). Bagnall et al. used Genetic Algorithm
as cryptanalysis of a three rotor machine using genetic algorithm and their results
showed that an unknown three rotor machine can be cryptanalysed with about 4000
letters of ciphertext (4),

Dimovski et al. (7) presented an automated attack on the polyalphabetic substitution
cipher whereas Rashed (12) used Limited Genetic Algorithm (LGA) to generate a
pool of cipher keys and schedule keys that will be used in ciphering and deciphering
AES processes. However it was suggested having a pool of AES keys and a schedule
key would be taken from this pool then the ciphered block and index of the start
location (1).
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It is useful to avoid the normal key scheduling process, and specify the cipher keys
(which should be random and independent) directly (2). In this research the genetic
algorithm process will be modified to assist in the process of generating ciphering and
scheduling keys.

2. Basic Idea of GAs(12)

Genetic algorithms consist of three phases as following:

() Reproduction Operation: The old string is carried through into a new
population depending on the performance index values. The fitness values are
calculated for each candidate string using a fitness function, which depends on a goal
for optimization problems. According to the fitness values, string with larger fitness
values give rise to alarger number of copies in the next generation.

(1) Crossover operation: The strings are randomly mated using the crossover
operation. Each pair of candidate strings will undergo crossover with the probability
cross. This operation provides randomized information exchange among the strings.

(1) Mutation operation: Mutation is simply an occasional random alteration of
the value of a string position. In a binary code, this involves changing a 1 to 0 and
vice versa. The sequence of successive stages of genetic algorithms is shown in figure

(1).

OLD POPULATION F NEW POPULATION I

Evaluation

Crossover

Figure (1) sequence of genetic algorithm
3. Key Expansion in AES (6 and 11)

The Expanded Key is a linear array of cipher key (4-byte words) and is denoted by
WI[Nb*(Nr+1)]. The first Nk words contain the Cipher Key. The key expansion
function depends on the value of Nk: there are two versions of Nk as Nk may be
equal to or below 6 (Nk=4 or 6), or Nk above 6 (Nk=8) for Nk < 6, we have the
following algorithm:

Function keyExpansion(byte Key[4* Nk] word W[Nb* (Nr+1)])
Begin
Fori=0toNk stepby 1
WII] = (Key[4*i] Key[4*i+1] Key[4*i+2] Key[4*i+3])
End for



For i=Nk to Nb (Nr + 1) step by 1

Begin
temp = W[i - 1];
if i mod Nk=0

temp = subBytes(rotBytes(temp)) ~ rcon[i / NK]
WIi] = W[i - NK] " temp
End if
End for
End keyExpansion

subBytes(state) is a method that substitutes each byte of applying the AES (Rijndael)
S-box to the byte at the corresponding position in the input word returns a 4-byte
word. The function rotBytes(W) returns a word in which the bytes are a cyclic
permutation of those in its input such that the input word (a,b,c,d) produces the output
word (b,c,d,a).

The first Nk words are filled with the cipher key. Every following word W[i] is equal
to the EXOR of the previous word W[i-1] and the word Nk positions earlier W[i-NK].

For words in positions that are a multiple of Nk, atransformation is applied to W[i-1]
prior to the EXOR and around constant is EXORed. This transformation consists of a
cyclic shift of the bytes in a word (rotByte), followed by the application of a table
lookup to all four bytes of the word (subBytes).

For Nk > 6, we have:
Function keyExpansion(byte Key[4* Nk] word W[Nb* (Nr+1)])
Begin
Fori=0toNk stepby 1
WII] = (key[4*i] key[4*i+1] key[4*i+2] key[4*i+3])

End for
Fori=Nk toNb (Nr+1)stepbyl
Begin
temp = W[i - 1]
if 1modNk =0
temp = subBytes(rotByte(temp)) ~ rCon[i / NK]
end if

elseif (imod Nk =4)
temp = SubBytes(temp)
end else if
WIi] = W[i - NK] " temp
End for
End keyExpansion

The round constants are independent of Nk and defined by:
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rCon[i] = (RC[i],*00’,“00’,°00’) with RC[i] representing an element in GF(2%) with a
value of x( i - 1) so that:

RC[1] =1 (i.e. ‘01")

RC[i] = x (i.e. ‘02’) «(RC[i-1]) = x(i-1)

Round Key Selection
Round key (i) is given by the round key buffer words W[Nb*i] to W[Nb* (i+1)]
Thecipher
The cipher AES consists of
Aninitial Round Key addition;
Nr-1 Rounds;
A final round.
Thealgorithm is:
Input: State, CipherKey
Output: cipheredBlock
Function AES
Begin
keyExpansion(CipherKey,ExpandedKey) ;
addRoundK ey(State, ExpandedK ey);
for i=1toNr-1 stepby 1
Round(State,ExpandedKey + Nb*i) ;
cipheredBlock= finalRound(State,ExpandedKey + Nb* Nr);
end for
end AES

The key expansion can be done on in advance and AES can be specified in terms of
the Expanded Key.
Input: State, ExpandedKey
Output: cipheredBlock
Function AES
Begin
addRoundK ey(State, ExpandedK ey)
for i=1toNr-1 stepby 1
round(State, ExpandedKey + Nb*i)
cipheredBlock= finalRound(State, ExpandedKey + Nb* Nr)
end for
end AES

Note: There are no restrictions on the selection of the Cipher Key. Whereas expanded
key must be expanded from cipher key.



4. Proposed Algorithm

To date there has been no reported research using GAs in any form or shape within a
key expansion. The work introduced in this paper will show the use of the first
modified GAs in key expansion algorithm. The modified GAs will only use some of
the conventional GAs process; this will include random initialization of the first
population of cipher keys, and then apply the process of random cross over and
mutation to produce further sets of cipher keys. In this research all cipher keys will be
considered acceptable and hence, there will be no need to search for a best cipher key,
since all keys will be used to cipher data in this system. The proposed algorithm in
this case will only be used to generate cipher keys and it will not involve any search
or optimization techniques.

4.1 Algorithm M GA Key Expansion
Input: Nk
Output: schedule key with length (Nr+1)Nb
Begin
Initialization: generate a cipher key (Nk words) in hexadecimal formeat.
Begin
Generate Child 1 and Child 2 by Calling MGA algorithm (cipher key)
Generate Child 3 and Child 4 by Calling MGA agorithm (Child 1)
Generate Child 5 and Child 6 by Calling MGA agorithm (Child 2)
Generate Child 7 and Child 8 by Calling MGA algorithm (Child 3)
Generate Child 9 and Child 10 by Calling MGA algorithm (Child 4)
If Nk= 6 then
Generate Child 11 and Child 12 by Calling MGA agorithm (Child 5)
End if
If Nk= 8 then
Generate Child 13 and Child 14 by Calling MGA algorithm (Child6)
End if
The crossover point would be in the range [ 2...6] and should not be duplicated as the
crossover point of the child should be different to the parents.
End
4.2 Function MGA

Input: cipher key with 16 bytes
Output: two children considered as round keys
Begin
Convert all elements of the cipher key into binary String
Generate random crossover point using equation 1
Recombine individuals
Mate individuals as follows:
Generate two random points, r1 and r2
Keyl = leftkey,, with rightKey 11
Key2 = rightKey 1 with leftkey;,
Add the new population to the old ones
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End GACipherkey
For the second round: The crossover point should not be the same as the previous
round as it might produce the parent element again. To prevent repeating the parent

value (at grand child level), the agorithm have to follow up the following equation
(1).

If old Crossover point= new Crossover point then
New crossover point = i+i mod 5 equation (1)

5. Advantages of the Proposed Scheme
The use of modified Genetic algorithm can introduce number of advantages to the
whole process of crypto industry. These advantages will include the following:
This approach is very fast with comparison to all other conventional methods
used to date.
In this approach only the cipher key and the crossover point for each round
will be sent to the receiver.

6. lllustrative Example K ey Expansion
Assuming that we have the cipher key =41 c6 20 61 62 6¢ 41 c6 64 61 62 69 75 68 64
52 the schedule key should be as shown in figure 2 and figure 3.
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Figure 2: MGA for Nk=4

7. Conclusion

This paper showed how modified genetic algorithms can be used to produce a
ciphering or schedule key. However the Modified Genetic algorithm can be used to
expand the cipher key to schedule key in any ciphering algorithm. The results
obtained using this method has showed a highly secured and efficient algorithm and it
decreased the complexity of the original AES algorithm by more than 50%. As future
work the algorithm can be enhanced to have an inverse algorithm.
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Appendix
All vectors are represented in hexadecimal format as a hexadecimal number can be
represented as one byte as it consists of two digits (4 bits four one hexadecimal digit)
These tests have been generated by RANA system; we use the same phrases that AES
has been used. Date: Friday June 25 21:15:54 IDT 2004
Legend for cipher (round number r =0to 10, 12 or 14):
Input: cipher input
start: state at sart of round[r]
s box: state after SubBytes.subBytes(state)
s col: state after Shif.shiftCols(state)
m_Row: state after MixRow. mixRow (state)
k_sch: key schedule value for round([r]
output: cipher output

Cipher Example: 128-bit cipher key: Example Vectors

Input String = 41 73 69 6d 20 41 20 45 6¢ 2d 53 68 65 69 6b 68
Cipher Key = 416c¢ 20 61 62 6¢ 41 6¢ 64 61 62 69 75 68 64 52

And schedule key is as following:
parent childl child 2 child 3

§ [y [ g [ve 64] 6C] 64] 64] [ [ Y% |6 | 46 €0 [ Y [ g [ YV
cl | 6c |61 | 68 62| 45| 21| 41 6 |54 |4 | 26 1Y | €8 | e | e
Yo [ &) Ay | e 6C | 4c| 28| 52| [ [ Y [AY [ o Y [ct | 6C | 62
T | ¢t |69 |52 ] [ 64] 62 65| 61] | % e [¥s [t ] [T | ct |4c |48
child 4 childs childé child7
SE YR LY 24| 6| 26| 6 sy | € [ay | © ey | 6y | 1e | gs
YU et 26| 561 46| C6| |4y (4o |ng | ¢¢ [ ¢ [y | ©
£ |4 |6 |26 | | o8] 56| 12[ 6| [ct 1o vy [ | | o | ne |av | gy
"1 ]c6 jca 84 54| 26| 6| 6 o [ay (€| W[y [t |1
Child8 Child 9 Child 10

ve [ ve | g1 | gt YY | Ax |4 | A Yy |aa [CF | CE

s¢ [e¢ [yn |9 4 | ae | 9B | vy C e | CY | vy

of |1 | Y1 | ¢ Yi ey [v1[¥ya WO ve |y |y

YU[xn et | v | B | on | ¢n ve [C | e | e
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Figure 2: schedule key generated by MGA



r[0].input

4173696d204120456¢2d5368656960b68

r[0].k_sch | 416c2061626c416c6461626975686452
r[0].input 001f490c422d6129084¢310110010f3a
Round 1
r[1].s box | 63c03bfe2cd8efa53029c77ccarc7680
r[1].s row | 63d8c7802c2976fe307c3babcacOef7c
r[1].m col | f21ab5alablafOcc7a20ced647074092
r[1].start 9678d9c5c75fbcaele01e623234619f3
r[1].s sch | 64626c646c454c626421286564415261
Round 2
r[2].s box | 90bc35a6c6¢cf65e4727c8e26265ad40d
r[2].s row | 90cf8e0dc67cd4ab725a35e426bc6526
r[2].m col | f2914ff061fff8aedb7d752ad0cc3aff
r[2].start b45709b647abeabal dbof 70f96eabced
r[2].s sch | 46c6464626541214c6c4822546265616
Round 3
r[3].s box | 8d5b014ea06287f4a45668769087501e
r[3].s row | 8d62681ea056504€a48701f4905b8776
r[3].m col | dlefldbabfb284613446268227c2449b
r[3].start 948d39dbddf6¢80d50234ace05a626d3
r[3].s sch | 4562246162444c6c64656c4c22646248
Round 4
r[4].s box | 225d12b9c142e8d75326d68b6h24f766
r[4].s row | 2242d666c126f7h9532412d76b5de88b
r[4].m_col | 32al7d3ebd36c2e00ffa317652797b05
r[4].start 66873f289b72062649acf 7b2703f5d81
r[4].s sch | 542642162644c4c64656c6c422462684
Round 5
r[5].s box | 3317753414406ff73b91683751754c0c
r[5].s row | 3340680c14914c343b7575f751176f37
r[5].m col | c207b765f8cd41896bb9abb8c3focles
r[5].start €62173313e9b17af4dffb47e053f0723
r[5].s sch | 2426c454c6565626264612c6¢c6c6¢6¢C6
Round 6
r[6].s box | 8efd8fc7b214f079e3168df36b75c526
r[6].s row | 8e148d26b216c5c7e3758f796bfdf0f3
r[6].m col | 900cf15c470d678bb4fal836c972634d
r[6].start d26ebd192b6802e9d69e395aa51e0f21
r[6].s sch | 42624c456c6565626264216c6c6c6C6C
Round 7
r[7].s box | b59f7ad4f145771ef60b12be067276fd
r[7].s row | b54512fdf10b76d4f6727a1e069f77be
r[7].m col | 51f4c87246a971c6058252357f04ae85
r[7].start 13b08d1007ed15a461030503b68efed
r[7].s sch | 424445624144646264626265446c4161

Figure 3: Ciphering Phase (continue)




Round 8

r[8].s box | 7de75dcac5555949efe10453e2450f69
r[8].s row | 7d550469c5eldfcaef455d49e2e75953
r[8].m_col | 68b29b04bcacc4e5lechchale78f4225
r[8].start 4cf6ef22a8e882c358ededf6a3495633
r[8].s sch | 24445426144446264626265644c61416
Round 9
r[9].s box | 29428a93c29h132e6a5555420a3bb1c3
r[9].s row | 299b55c3c255h1936a3b8a2e0a421342
r[9].m col | 72384628423340843db72c5383f9a8ch
r[9].start 50fc606ac4bh70242f9710a0547db8e8d
r[9].s sch | 22c42642868442c6cAc62656c4222646
Round 10
r[10].s box | 53b0d0021ca9772c99a3676badb9195d
r[10].s box | 5389675d1ca3190299h9d02calb0776b
r[10].s sch | 416c2061626c416c6461626975686452
r[10].output | 71e5057974eb3d6ed5d5h249ec92150f

Figure 3: Ciphering Phase

Cipher Example: 128-bit cipher key:

The following diagrams shows the hexadecimal values in the state array as the
cipher progresses for a input block with length 16 bytes and a cipher key with 4
words too.

Input String = 41 736 96d 20 41 20 45 6c 2d 53 68 65 69 6b 63

Cipher Key = 416c¢ 20 61 62 6¢ 41 6¢ 64 61 62 69 75 68 64 52

round

number

start of

round

after
subbyte

input

after
shiftrows

after mixrowss

round key values

41 20 6c 65 41 62 64 75

73|41 | d 69 6c 6c | 61 | 68

69 20 53 6b 20 41 62 64

6d 45 | 68 | 68 61 6c | 69 | 52

00 42 08 10 :' e 30 ca :' cY 30 ca f2 ab Ta 47 64 6 64 64

i 2d | 4c | 01 0 | d8 | 29 | 7¢ dg | 29 | 7c | c0 a) la | 20 | O7 62 | 45 | 21 | 41

o | e | 3| o g JPRN R c7 | 76 | 3 | b5 | fO | ce | 4b o | | | =

Oc |29 | 01| 3 fe | & | 7c | 80 Mfe @ e e N o | 62 | 65| 61

Figure 4: Ciphering Phase(continue)
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Figure 4: Ciphering Phase
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