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Abstract: - Unified Smart Classification Algorithm (USCA) for the purpose of data processing and 

classification of data obtained from different testing techniques is designed and tested. The developed 

algorithm conditions data taken from damaged composite structures such as modern car bodies and Plane frame 

structure. It is used in conjunction with a Modified Weight Elimination Neural Networks Algorithm (MWEA) 

to provide predictive models for impact damage in composite structures. The developed neural models 

correlated between various NDT testing techniques, such that in the absence of one technique, its results are 

predicted by the Neural Network through interrogation of available data obtained using other testing methods. 

The real and predicted data showed good agreements in terms of classification and prediction. 
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1 Introduction 
Composites materials with desirable properties and 

low weight have become increasingly popular, with 

their laminated structure allowing for design 

improvements compared to other materials, the 

increase use of composites in operating structures 

has raised the issue of inspection reliability and 

condition assessment and the need for advanced 

techniques and algorithms for data processing and 

interpretation.  

Modern Automotive and Aerospace applications 

have resulted in an increased demand for real-time, 

effective techniques for structural integrity 

monitoring and damage detection with   accurate 

and timely assessment of component damage as a 

critical element of safety with short computational 

time. Model based techniques offer a 

computationally efficient approach.  

 

The previous highlights the need for an intelligent 

classification system, which is flexible enough to 

accommodate different boundary conditions with 

complex non-linear behavior in a fast and accurate 

manner with capabilities of generalization and 

prediction [1-4]. 

 

There is a large amount of literature describing 

statistical discrimination of features for damage  

 

 

detection using pattern recognition algorithm. Other 

studies showed neural networks (NNs) as a 

powerful tool for damage identification where feed- 

forward neural networks is used to detect and locate 

damage. Bayesian probabilistic methods and 

functions also used to compute the probability of 

continually updated model parameters. In addition, 

genetic algorithm (GA) is used to identify and locate 

damage in a laminated composite structure. 

 

Many studies suggested that neural network can 

directly map the characteristics of a material without 

the need for a mathematical model. Work has been 

carried out to build and apply neural network 

models to characterize, map, and predict parameters 

such as, temperature, effective strain, strain rate 

flow stress, inelastic strain, internal variables, 

inelastic strain rate, creep, and time. The neural 

network ‘‘learns’’, and if applied to another set of 

experimental data, may fulfill its task more 

accurately in shorter time periods. The present 

methodology may simulate to some extent the 

experiments after a period of learning [5-9].  

 

Artificial Neural Networks (ANNs) are one of the 

adaptive systems that are widely used in signal 

applications because of their remarkable ability to 

extract patterns that are too complex to be analyzed 
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by normal algorithms. Thus, artificial neural 

networks help to approximate the complex material 

or structural behaviors in composites, for both 

material and structural behaviors due to their 

effectiveness, robustness, and noise-tolerance.  

 

Neural Networks can be applied to many real world 

problems. Multilayer neural networks are used in 

areas like pattern recognition, optimization, 

intelligent control and others. The objective of 

neural network design and application is to find the 

optimum network that can learn and generalize 

satisfactory taking into consideration, time, speed, 

reliability and possible future modifications. Hence, 

it is important to choose the right design with 

method of training and pruning to achieve optimum 

performance per selected application [10-16].  

 

In this paper a combination of Modified Weight 

Elimination Algorithm Neural Networks and our 

novel Unified Smart Classification Algorithm 

(USCA) algorithms is used to classify and predict 

structural variables using different testing 

techniques. 

 

2 Experimental Arrangements 
Testing of resin injection molded (RIM) samples 

response to impact damage was carried out using the 

following techniques: 

 

(1) Low Frequency Tapping. 

(2) Low Temperature Thermal imaging. 

(3) Tensile Strength. 

 

USCA was used on each data file to produce a 

fingerprint. The collated data was then fed to the 

designed Neural Structures. 

 

2.1 USCA  
The initial raw data is conditioned before entering 

into the Neural Networks using the USCA 

algorithm, which utilizes matrix equations, where 

individual data matrices that correspond to different 

testing techniques are grouped into an overall matrix 

as shown in equation (1).  

 

In the USCA algorithm, the converted data file is 

grouped into sequences S1 to Sm containing vectors 

of individual column matrices extracted from the 

converted source data file. The overall extracted 

matrix consists of discrete combination of all 

column sequences as in equation (2). 
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Where: 

 

aij : Original matrix elements 

 

rij : Amplitude Factor 

 

From (1) we obtain: 
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From (2) we obtain: 
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Where: θ is a normalizing factor. 

 

As the original matrix is simplified in (3), the data 

classification column matrix is represented in 

equation (4). 

 























=

mT

T

T

S

S

S

D

2

1

………………(4) 

 

The designed classification algorithm takes into 

account reference, undamaged sample data in its 

operations. Now data is ready to be exported using 

MWEA.   

 

2.2 MWEA  
Training of the Networks was carried out using 

Weight Elimination Algorithm (MWEA), which is a 

bidirectional Bottom-Up, Top-Down pruning 
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algorithm. It starts with a simple, then complex 

network and drives unnecessary weights during 

training towards zero as follows: 

 

1. The neural network is built constructively 

(Bottom-Up), where its size and complexity 

are modified (Top-Down) to achieve a 

stable network with error below a pre-

defined initial value. 

 

2. The training patterns are scaled within 

controllable values to prevent oscillations. 

 

3. The network is subjected to various patterns 

during training with constant recording of 

weights and Removal of any connections 

that might contribute to bad classification 

and generalization, then redistribution of 

removed connection weights among the rest 

of the interneuron connections. 

 

4. The overall number of actively connected 

neurons in the hidden layer is reduced 

during the process, due to weight and bias 

eliminations. 

 

5. The MWEA makes use of a liability 

function that is based on the error function. 
By reducing the number of connection 

weights and hence the model’s complexity 

using the weight-elimination liability term, 

it is expected that network’s classification 

performance to improve. The weight-

elimination overhead function is shown in 

(5). The liability term in weight-elimination 

minimizes the sum of performance error and 

the number of weights using standard 

backpropagation technique. 

 

)()()( WEWEWE LiabilitySquaredSumTotal += ..(5) 

 

)(WETotal is the combined overhead 

function that includes the initial overhead 

function, )(WE SquaredSum  and the weight-

elimination term )(WELiability . 
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Where:  

 

kT  : Target Output 

kO  : Actual Output 
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Hence; 
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Where 

 

η : Learning Rate (between 0 and 1) 

 

W represents the weight vector, ξ  is the weight-

reduction factor, and jkw represents the individual 

weight of the neural network model. 

The role of the weight-reduction factor is to 

determine the relative importance of the weight-

elimination term. Larger values of ξ  pushes small 

weights to further reduce their size. Small values of 

ξ  will not affect the network.  

The scale parameter, nepochsw − , is a scale parameter 

computed by the MWEA, and chosen to be the 

smallest weigh from the last epoch or set of epochs 

to force small weights to zero [17-19].  

 

Figure (1) illustrates the used training neural 

network sufficient large no of neurons per hidden 

layer for better convergence, while Figure (2) shows 

the designed decision neural network. Training of 

the Neural Network model is carried using patterns 

similar to the one in Table (1). 

 

3 Results 
Using our MWEA in training the Neural Network 

resulted in an elimination of weak connections 

( 5.2,1.0 == ξη ). Figure (3) show weight 

distribution prior to training, while Figure (4) show 

a fundamental change in characteristics with 

induced uniformity in connection weight 

distribution due to network convergence and 

stability. Weight elimination is evident in Figure (4) 

and in output weight characteristics in Figure (5). 

 

WSEAS TRANSACTIONS on COMPUTERS Mahmoud Z. Iskandarani

ISSN: 1109-2750 1004 Issue 9, Volume 9, September 2010



I E 

T 

TS 

D 

LF 

TH 

 
Fig.1: Training Network Neural Model. 
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Fig.2: Damaged/Undamaged decision Neural 

Network. 
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Fig.3: Untrained Network Weight Connections. 

 

 

Trained Neural Network Using MWEA
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Fig.4: Trained Network Weight Connections. 

 

Table1: Data for training network 

 

Matrices A to F contain weight matrices and 

illustrate transformation and elimination within the 

hidden layer with matrices G and H contain output 

and bias weights.  

Weight Characteristics for Output Neuron
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Fig.5: Weight Characteristics at Output Neuron. 
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Energy 

I E 

 

 ( J ) 

Sample 

Thickness 

T 

 

mm  

Tensile 

Strength 

TS 

 

N/mm 

%USCA 

Low 

Frequency 

LF 

No Units 

%USCA  

Thermo-

imaging 

TH 

No Units 

Defect 

Diameter 

D 

 

mm  

7.14 2 205.16 74.5 28.60 0.727 

7.14 5 208.30 91.5 24.98 0.573 

14.3 2 190.00 67.0 35.40 1.210 

14.3 5 206.78 87.5 30.05 0.858 

28.6 2 150.74 49.2 46.02 2.840 

28.6 5 205.67 59.5 35.01 1.540 

42.0 2 150.68 46.0 46.04 2.850 

42.0 5 180.96 57.4 39.92 1.970 

47.6 2 150.68 29.0 46.04 2.850 

47.6 5 153.44 37.0 45.07 2.710 
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Weight Matrix: Impact Energy (IE) 
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Weight Matrix: Thickness (T) 
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Weight Matrix: Tensile Strength (TS) 
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Weight Matrix: Low Frequency (LF) 
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Weight Matrix: Thermal Imaging (TH) 
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Weight Matrix: Diameter (D) 
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Weight Matrix: Output 
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4 Discussion and Conclusion 
Table (2) shows the predicted data with 

classification using the networks shown in Figures 

(1) and (2). From the table, it is observed that a very 

good predication is achieved with excellent 

classification using MWEA. Table (3) contains the 

decision implementation of the MWEA whether to 

accept or reject a component by using all or some of 

the input techniques and data used earlier, which 

accounts for missing, incomplete and corrupted data 

files. This provides a fast process of testing and 

production. 

 

Table (4) compares decisions for initial, trained with 

complete data, and trained with incomplete and 

corrupted data. As shown the decision values start at 

a certain number before converging and being 

mapped to different values depending on the input 

testing pattern. Figures (6) and (7) show the 

decision boundaries for Tables (2) and (3). It is clear 

that the initial state of the network form a decision 

ring with a uniform and patterned specific spread of 

decision points either side of it as mapped by the 

MWEA in response to the applied testing patterns. 

The used decision criterion is: 

 

Decision >0.5 � Accept 

Decision <0.5 � Reject 

 

Even thought the correct classification is obtained, 

comparing figure (6) with figure(7) demonstrate that 

the classification pattern around starting decision 

values is distinct for the data files with missing or 

corrupted data compared to the one with normal 

data. This in turn affects the classification and 

decision values where it drops just above the 

threshold level for the corrupted data file. Some 

classification values remain at a high level due to 

the missing part of data being not so significant in 

contributing towards a final decision. 

 

The decision points (1.00 and 0.00) common to both 

normal and corrupted data; support the importance 

of tensile strength in judging damage effect on a 

composite structure, which is affected by the impact 

energy that affects components differently 

depending on component thickness. The resulting 

defect diameter of the applied impact load is also a 

function of impact energy, tensile strength and 

component thickness. 

 

Hence, at the start of network learning and looking 

at Table (4), all initial decision values starts as 

acceptance values, even for damaged structures, 

which is normal as training and weight elimination  

 

will map the training patterns and optimize the 

network. Starting with positive valued decision 

surface is a good idea to avoid sinking into minima.  

 

The decision vector (dj) changes length in 

accordance with the classification decision as it 

maps values from initial to final. The change in 

length of the vector depends on the quality of testing 

data, error value, and number of neurons per hidden 

layer.  

MWEA for Normal Testing Data
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Fig.6: Decision Boundary for Normal Data 

MWEA for Missing and Corrupted Data
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Fig.7: Decision Boundary for Missing or Corrupted 

Data 

Table (5) shows effect of weight reduction factorξ  

on current training error for a fixed number of 

epochs, learning rate, and momentum factors. The 

value of 5.2=ξ  is chosen for training as it 

corresponds to the smallest error. 
.  
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 Table2: Predicted data with classification 

 
Table3: Classification of Missing or Corrupted data 

 

 

 

I E 

 

  J 

T 

 

mm  

TS 

 

N/mm 

%USCA 

LF 

No 

Units 

%USCA  

TH 

No 

Units 

D 

 

mm  

Decision 

Accept 

(A)  

Reject 

(R) 

7.14 2 205.16 74.5 28.60 0.727 1.00 (A) 

7.14 3 207.44 61.2 26.47 0.785 1.00 (A) 

7.14 4 208.21 77.6 25.05 0.643 1.00 (A) 

7.14 5 208.30 91.5 24.98 0.573 1.00 (A) 

7.14 6 208.14 96.8 25.48 0.525 1.00 (A) 

14.3 2 190.00 67.0 35.40 1.210 0.00 (R) 

14.3 3 205.37 34.0 32.40 1.157 1.00 (A) 

14.3 4 205.94 36.9 33.13 1.333 1.00 (A) 

14.3 5 206.78 87.5 30.05 0.858 1.00 (A) 

14.3 6 207.80 96.1 26.43 0.615 1.00 (A) 

28.6 2 150.74 49.2 46.02 2.840 0.00 (R) 

28.6 3 152.18 79.1 45.75 2.686 0.00 (R) 

28.6 4 205.36 88.5 32.60 0.847 1.00 (A) 

28.6 5 205.67 59.5 35.01 1.540 1.00 (A) 

28.6 6 205.73 57.6 35.12 1.648 1.00 (A) 

42.0 2 150.68 46.0 46.04 2.850 0.00 (R) 

42.0 3 151.54 57.3 45.52 2.761 0.00 (R) 

42.0 4 153.07 63.6 44.76 2.610 0.00 (R) 

42.0 5 180.96 57.4 39.92 1.970 0.00 (R) 

42.0 6 205.76 42.4 34.57 1.488 1.00 (A) 

47.6 2 150.68 29.0 46.04 2.850 0.00 (R) 

47.6 3 151.25 34.2 45.70 2.789 0.00 (R) 

47.6 4 152.87 42.5 44.78 2.582 0.00 (R) 

47.6 5 153.44 37.0 45.07 2.710 0.00 (R) 

47.6 6 205.41 38.6 33.62 1.200 1.00 (A) 

I E 

 

  J 

T 

 

mm  

TS 

 

N/mm 

%USCA 

LF 

No 

Units 

%USCA  

TH 

No 

Units 

D 

 

mm  

Decision 

Accept 

(A)  

Reject 

(R) 

7.14 2 0 74.5 28.60 0.727 0.52 (A) 

7.14 3 207.44 0 26.47 0.785 1.00 (A) 

7.14 4 208.21 77.6 0 0.643 0.52 (A) 

7.14 5 208.30 91.5 24.98 0 0.52 (A) 

7.14 6 208.14 96.8 0 0.525 0.52 (A) 

14.3 2 190.00 0 35.40 1.210 0.00 (R) 

14.3 3 0 34.0 32.40 1.157 0.52 (A) 

14.3 4 205.94 0 33.13 1.333 1.00 (A) 

14.3 5 206.78 87.5 0 0.858 0.52 (A) 

14.3 6 207.80 96.1 26.43 0 0.52 (A) 

28.6 2 150.74 49.2 0 2.840 0.48 (R) 

28.6 3 152.18 0 45.75 2.686 0.01 (R) 

28.6 4 0 88.5 32.60 0.847 0.52 (A)  

28.6 5 205.67 0 35.01 1.540 1.00 (A) 

28.6 6 205.73 57.6 0 1.648 1.00 (A) 

42.0 2 150.68 46.0 46.04 0 0.48 (R) 

42.0 3 151.54 57.3 0 2.761 0.48 (R) 

42.0 4 153.07 0 44.76 2.610 0.01 (R) 

42.0 5 0 57.4 39.92 1.970 0.48 (R) 

42.0 6 205.76 0 34.57 1.488 1.00 (A) 

47.6 2 150.68 29.0 0 2.850 0.42 (R) 

47.6 3 151.25 34.2 45.70 0 0.48 (R) 

47.6 4 152.87 42.5 0 2.582 0.48 (R) 

47.6 5 153.44 0 45.07 2.710 0.00 (R) 

47.6 6 0 38.6 33.62 1.200 0.52 (A) 
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Table4: Decision Mapping 

 

 

 

 

Reduction Factor ξ Percentage error 

0.5 5.8 

1.5 0.32 

2.5 0.3 

3.5 0.36 

4.5 0.43 

5.5 0.33 

Table5: Reduction Factor versus Error 

 

Different reduction factor values are chosen and the 

network response is observed. The value is 

increased if the weights are not diminishing and 

decreased if all the weights are forced to zero. The 

results shown in Table (5) indicates that the value of 

2.5 is the one that provides minimum error with 

network stability for the used network model, 

learning rate, momentum, number of used neurons 

and type of training and testing data. 

 

Table (7) shows a comparison between MWEA and 

Backpropagation (BP). Starting from same decision 

values prior to training, the network model in Figure 

(2) trained using BP and MEWA algorithms for the 

same number of epochs. The results shown in Table 

(7) illustrates that for the used training data and 

network model, MWEA managed to correctly 

classify all corrupted data records in comparison to 

BP which failed to correctly classify 5 out of 25 data 

records.  

 

Figure (8) show weights characteristics for BP 

trained network. By comparison to Figures (2) and 

(3), it is clear that MWEA produced a more uniform 

weight characteristic via pruning and weight 

elimination with better classification and stability. 

 

BP Trained Network
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Fig.8: Trained Network Weight Connections Using 

BP. 

 

Decision (Initial) 

 

(Rounded) 

Decision (Trained) 

Normal  

( Rounded) 

Decision (Trained) 

Corrupt 

(Rounded) 

 

0.60 1.00 0.52 

0.60 1.00 1.00 

0.60 1.00 0.52 

0.60 1.00 0.52 

0.60 1.00 0.52 

0.60 0.00 0.00 

0.60 1.00 0.52 

0.60 1.00 1.00 

0.60 1.00 0.52 

0.60 1.00 0.52 

0.60 0.00 0.48 

0.60 0.00 0.01 

0.60 1.00 0.52 

0.60 1.00 1.00 

0.60 1.00 1.00 

0.60 0.00 0.48 

0.60 0.00 0.48 

0.60 0.00 0.01 

0.60 0.00 0.48 

0.60 1.00 1.00 

0.60 0.00 0.42 

0.60 0.00 0.48 

0.60 0.00 0.48 

0.60 0.00 0.00 

0.60 1.00 0.52 
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Figure (9) presents a comparison between the 

MWEA and BP output weight characteristics with 

clear indication of more stable network under 

MWEA training. 

 

Weight Characteristics for Output Neuron
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Fig.9: Comparison of Weight Characteristics at 

Output Neuron. 

 

Figure (10) show BP decision characteristic in 

reference to the initial decision boundary ring. 

When compared to Figure (7), a clear pattern 

difference appears in the decision distribution 

around the initial boundary values with MWEA 

producing a much more uniform decision values. 

BP for Missing and Corrupted Data
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Fig.10: Decision Boundary for Missing or 

Corrupted Data 

 
In conclusion, the overall system is devised to make 

use of intelligent algorithms in classifying damage 

in composites whereby the absence of one testing 

data file is complemented by the experience gained 

within the network. This system makes full use of 

the associative and predictive properties of Neural 

Networks for the application discussed in this paper 

where Neural Networks served to save time and 

effort in determining the extent of damage in 

composite structures, which is invaluable if the 

received data is corrupted or part of it is missing. 

 

Decision 

(Initial) 

 

BP 

(Rounded) 

Decision 

(Initial) 

 

MWEA 

( Rounded) 

Decision 

(Trained) 

Corrupted 

(BP) 

(Rounded) 

 

Decision 

(Trained) 

Corrupted  

(MWEA) 

(Rounded) 

 

0.60 0.60 0.21 0.52 

0.60 0.60 0.93 1.00 

0.60 0.60 0.99 0.52 

0.60 0.60 0.99 0.52 

0.60 0.60 0.99 0.52 

0.60 0.60 0.10 0.00 

0.60 0.60 0.01 0.52 

0.60 0.60 0.92 1.00 

0.60 0.60 0.99 0.52 

0.60 0.60 0.99 0.52 

0.60 0.60 0.30 0.48 

0.60 0.60 0.10 0.01 

0.60 0.60 0.21 0.52 

0.60 0.60 0.91 1.00 

0.60 0.60 0.99 1.00 

0.60 0.60 0.21 0.48 

0.60 0.60 0.33 0.48 

0.60 0.60 0.10 0.01 

0.60 0.60 0.01 0.48 

0.60 0.60 0.91 1.00 

0.60 0.60 0.27 0.42 

0.60 0.60 0.20 0.48 

0.60 0.60 0.69 0.48 

0.60 0.60 0.1 0.00 

0.60 0.60 0.01 0.52 
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