
European Journal of Scientific Research
ISSN 1450-216X Vol.62 No.3 (2011), pp. 311-320
© EuroJournals Publishing, Inc. 2011
http://www.eurojournals.com/ejsr.htm

Distributed Knowledge Acquisition System for

Software Design Problems

Nedhal A. Al-Saiyd

Comp. Sc. Department, Faculty of Information Technology

Applied Science University, Amman-Jordan

E-mail: nedhal_alsaiyd@asu.edu.jo

Adel H. Mohammad

CIS Department, Faculty of Information Technology

Applied Science University, Amman-Jordan

E-mail: a_hamdan@asu.edu.jo

Intisar A. Al-Sayed

Software Engineering Department

Faculty of Computer Science Information Technology

Al-Isra University Amman-Jordan

E-mail: Intisar@ipu.edu.jo

Muna F. Al-Sammarai

MIS Department, Faculty of Economics and Administrative Sciences

Al-Zaytoonah University, Amman, Jordan

E-mail: Faik_muna@yahoo.com

Abstract

Knowledge plays an important role in designing intelligent systems especially in

expert systems and knowledge-based systems in different application domains. Its
efficiency and effectiveness depends on the Knowledge Acquisition (KA) phase. Acquiring
experience knowledge and transferring it into a knowledge-based system is complex and
involves a range of diverse activities. There are two key problems related to KA-the
identification of domain knowledge expertise and the heuristics that are useful in problem
solving; and the identification of people who can provide this knowledge. In this paper, an
approach for Web-based knowledge acquisition system is presented for acquiring expertise
from software designers. This knowledge is used in software design decision making and
knowledge reasoning. The process and decision laddering techniques are involved with the
concept mapping to create and evaluate the knowledge as efficient and effective as
possible.

Keywords: Distributed Knowledge Acquisition, Intelligent Systems, Knowledge Models,

Conceptual Graph, Software Design.

Distributed Knowledge Acquisition System for Software Design Problems 312

1. Introduction
In artificial intelligence, the cognitive scientists try to find methods that map expert knowledge from
the real world into symbols and operations that computers can process. They found that there is a
strong relationship between the structure of an expert's knowledge and the processes used for problem-
solving [1], [2]. In general, experts possess highly organized knowledge structures which can be
rapidly and efficiently accessed during problem-solving. In addition, a problem's representation affects
the knowledge structures and problem-solving processes [3].

Knowledge acquisition (KA) is the process of obtaining knowledge from a domain expert as
knowledge source and is used to solve artificial intelligent problems; when and/or where the experts
are not available. Acquiring adequate and high-quality knowledge is the most costly, time-consuming
and difficult part of knowledge engineering. Experts have large amounts of knowledge and a lot of
tacit knowledge that is hard to describe, so KA requires intensive efforts [4], [5]. Knowledge
acquisition includes the elicitation, collection, analysis, modeling and validation of knowledge for
knowledge engineering and knowledge management projects [6].

Software designers develop the design by conducting various cognitive and physical activities.
Designers often fail to express what’s in their mind. Generally at the cognitive level, the design process
consists of a series of design activities. They are described as analysis-synthesis-evaluation. These
activities take place in an iterative manner. Design is an iterative process where schemes are
recognized, explored, revised and enhanced until a solution is identified. Design issues are general
categories for sorting design information into manageable chunks to support efficient decision making.
Each design issue will not evoke only one specific solution. Multiple design solutions are to be
generated and one of them will eventually be chosen for the skeleton of final solution.

Recently, the software architecture research community has faced the need to consider
architecture design decisions (ADD) as first class entities that should be stored and documented,
embodied with the standard architecture documentation. This shift is mentioned by Bosch [7], who
states that: ‘The key difference from traditional approaches is that we do not view software

architecture as a set of components and connectors, but rather as the composition of a set of ADD’.
Bass et al. [8] justify this as: ‘software architecture is a coherent, justified collection of system’s

earliest set of design decisions. These decisions will affect much of what the system will become’.
In practice the standard documentation of software architectural design lacks explicit

description of the decisions made and their underlying rationale, which often leads to knowledge loss.
This fact strongly affects the understanding of the changes performed in the design and the
maintenance activities when we need to spend additional effort and time to re-apply the decisions
made. Hence, codifying this architectural knowledge is a challenging task that requires adequate tool
support. In 2010 Capilla and etal test the capabilities of Architecture Design Decision Support System
(ADDSS), a web-based tool for supporting the creation, maintenance, use, and documentation of
architectural design decisions (ADD) with their architectures.[9].

In this paper, we need to identify the most important knowledge that is valuable in software
design phase as a knowledge domain. To overcome this, the knowledge engineer has to review the
goals and purposes of the elicited knowledge. The question “why do we need this knowledge?” may
lead to analyze and evaluate software design methodologies, techniques, and models. The elicitation
process is then expected to meet the knowledge that supports these objectives and strategies.We
attempt to use a hybrid method that integrates the knowledge acquisition method called Delphi method
and a semi-automated method to support knowledge engineer to elicit and evaluate knowledge from
different experts. In the Delphi method [10], the selection of domain experts is made according to the
knowledge field. They are given set of questions and then categorize their answers on the topic of
problems. The contribution of each expert is made available to other experts and the results of the
initial set of questions are used to derive another set of questions. In addition to the hybrid KA method,
the hierarchy-generation techniques (laddering) is used to create, review and modify hierarchical
knowledge. Laddering technique is used to build taxonomies, concepts, process roadmap and a

313 Nedhal A. Al-Saiyd, Adel H. Mohammad, Intisar A. Al-Sayed and Muna F. Al-Sammarai

hierarchical goal structures. The use of these is particularly important in capturing the "what", "how",
"when", "who" and "why" of tasks and events.

The rest of the paper is organized as follows: Section 2 briefly introduces the problems with
acquiring expertise and skills of software designs and describes the considerations that had an impact
on the choice of the overall approach to distributed KA from software designers. Section 3 provides
distributed knowledge acquisition approach and a description of the approach that is used in knowledge
acquiring, weighting and conceptual modeling. Section 4 contains the conclusions and proposes lines
of future work.

2. Knowledge Acquisition Techniques
The knowledge engineer focuses on the essential knowledge and uses suitable techniques to capture
various types of knowledge, such as goals, decisions, relationships and attributes from different experts
[11]. Figure 1 shows a the main KA techniques, it shows the main tacit and explicit knowledge types,
which are mainly intended at knowledge elicitation. The vertical axis on the figure represents the
dimension from concept (object) knowledge to process knowledge, and the horizontal axis represents
the dimension from explicit knowledge to tacit knowledge [12]. One of these techniques that we use is
a hierarchy-generation technique (laddering). It is used to builds hierarchical structures for taxonomies
and decisions. Various forms of ladder can be used:

Figure 1: Main KA Techniques

• Concept ladder: shows the way an expert classifies knowledge objects (concepts) and
instances into classes and sub-classes to which they belong. Hence, it is called taxonomy.
It is an important key to understand the way the domain knowledge is conceptualized.

• Composition ladder: shows the complex objects that is composed from its constituent
parts (i.e. piece of knowledge) in addition to their connected relations 'is-composed-of'.

• Attribute ladder: shows the attributes and attribute values of the concepts. By reviewing
and appending such a ladder, the knowledge engineer can validate and help elicit
knowledge of the properties of concepts.

• Process ladder: shows processes and sub-processes, all the relations are of the 'is-part-of'
sort. A process not only shows 'what experts do', but also 'what people produce' [13].

• Network diagrams: shows connected nodes. Concept maps are concentrated on labeled
relations that connected concept nodes and are similar to semantic nets. Concepts
connected with other words to form a meaningful statement. Process maps show the
inputs, outputs, resources, roles, and decisions associated with each process or task. It
shows how and when processes, tasks, and activities are performed. It shows how input is
transformed into output process map, the primary processes and the parallel processes.

Distributed Knowledge Acquisition System for Software Design Problems 314

The validation of the knowledge represented in a ladder with another expert is often very quick
and efficient.

3. Framework of Distributed Ka for Software Architecture Design
In this paper, we present a new distributed and incremental methodology to acquire knowledge from
the Web to build semi-automatically knowledge base and ontology of concepts. This is done (through
the composition of automatically obtained taxonomies) for a given "software architectural design"
domain according to the designer’s interests, using a flexible, dynamic and slightly supervised agent-
based components. This can be considered as an improvement over the classical way of elicits
knowledge expertise. The main framework components are shown in figure 2. We have to isolate the
broader characteristics of KA tasks concerned in knowledge engineering for those involved in eliciting
software design knowledge from software designers, in order to gain in-depth closer decision to the
solutions of specific indicated development problems.

Figure 2: The framework of distributed knowledge acquisition methodology from software design experts

We proposed a methodology that consists of a set of activities that covers distributed and
incremental KA that help us to extract the expertise of software designers. These interrelated activities
are illustrated in figure 3. The acquired knowledge structure are retrieved and categorized according to
the specific topic covered.

3.1. Knowledge Acquisition Requirements Phase

The knowledge elicitation process requires the identification of:
1) The Problem Domain: The knowledge engineer identifies the "software design" as the

knowledge domain, which is the process of problem-solving and planning for a software
solution. The "software design" domain can be divided into stable sub-domains.
The knowledge designer plans to accumulate specialized knowledge of each sub-domain
regarding the software design task because each expert (software designer) has specific tasks
within software design team and learn more from experience when working on his own tasks.

2) The Knowledge Engineer: reads many sources of information and discuss many issues with
different persons to (a) determine what knowledge is to be acquired, (b) decide what is the
purpose the knowledge, (c) find out some understanding of key terminology. Once knowledge

315 Nedhal A. Al-Saiyd, Adel H. Mohammad, Intisar A. Al-Sayed and Muna F. Al-Sammarai

engineer feels familiar with the problem domain, he prepares for computer-based interviewing
with one or more experts to acquire the knowledge.

Figure 3: Main activities of Knowledge Engineering for Distributed Incremental Knowledge Acquisition

 Identification of

Software Design Problems

(Knowledge Domain)

Identification of Software

Designers

(Knowledge Experts)

Distributed Knowledge

Acquisition of Declarative &

Procedural Designer's

Knowledge

Generate the Knowledge

Models &

Conceptual Graphs

Intelligent Analysis Task

(Assign weight to

Knowledge)

Knowledge Evaluation

&

 Incremental Knowledge

Acquisition

Knowledge
Validation

Weighted Knowledge

Knowledge

Base

Knowledge Construction

Knowledge

Maintenance

Inference Engine
Explanation

Component

3) The Knowledge Experts: It is needed to determine the people who are experts in solving

specific type software design problems and identify their strength relation to the software
design domain through task performance over a long period of time. Experts view problems
differently than novices do because of their higher ability to recognize design components,
patterns and models, conclude relationships, ignore irrelevant information, recall similar design
problems from past experience and retrieve probable solutions, when matched to a given
problem's characteristics.

• Each one has his own skills and expertise. This needs focusing on related information
about current experts' roles and responsibilities. The different knowledge sources'
types lead to different types of knowledge and different ways of acquiring knowledge.

• Since software design is considered as problem-solving and is determined by the way
the problem is conceptualized and represented, the knowledge engineer sends at the
same time a problem definition of proposed application software along with its
complete requirement specification. It is considered as the input to the software

Distributed Knowledge Acquisition System for Software Design Problems 316

design. This will help to ensure a consistent understanding of software problem
environment and its meaning.

4) Software Design Task and subtasks: it is helpful for the knowledge engineer to identify what
information is absolutely necessary for problem-solving. It required the expert to recognize
patterns, features and concept commonalities and variabilities of software design process.

5) The Question Form: The question form is divided into sections. Each section is concerned with
one task (knowledge component) of software design, and the relationships among these
knowledge components. The sequence and the importance of the questions within each section
are studied thoroughly. The knowledge engineer asks questions regarding different duties and
operations of the expert that seem more subtle.
We took into our consideration the questions that are concentrated on:

• Know-how: refers to the software designer expertise and the software design standards. It
is important to extract the procedural knowledge, i.e. how to design.

• Know-what: refers to the consistent set of design basics and their meaning, classification,
design specifications, design tasks, design attributes. It is useful to extract the declarative
knowledge, i.e. knowledge of facts.

• Know-why: refers to why a particular effort and process is related to one activity, it is
useful in justification.

The relationship among questions of one section includes a description of task and the domain
elements to which it belongs in order to better comprehend the connection between software design
concepts. Once the questions of all the sections are identified, the constraints are considered and the
description of constraint needs to be incorporated in question's formulation. A constraint may be
attributed to a single question, to multiple questions at once, or as a global constraint applicable across
all sections and all questions (i.e. constraints on design phase).

3.2. Incremental Knowledge Acquisition Phase

Within this phase, the emphasis is placed on eliciting as much information about the domain as can be
found. The experts will receive the question forms on their emails and they answer them when they are
out of tense of their work and when they have adequate time to do it, instead of take an appointment
that may not presents the appropriate circumstances to perform the elicitation task.

• Our distributed knowledge acquisition system has a unified query interface that is used to send
the same question's forms to different software design experts who have different viewpoints.
This may lead to various interpretations of the same domain and will help to capture as much
information as possible. The experts also give a linear sequence of justifications when they are
explaining how they reach a conclusion. The expert of software design will send back his/her
answers to the knowledge engineer. The answers of each section in the question form should be
analyzed in the same order to which they were elicited.

• The answers of each question are decomposed to find the relevant declarative, descriptive, and
the justification knowledge, classifying them into log files, finding commonalities and
differences, accuracy degree, and heuristics. The knowledge engineer will examine the elicited
information to determine their relevance to questions of each subtask (i.e. a section within
question form) of software design work. After knowledge is collected, it must be interpreted
and analyzed. Firstly, a transcript of the knowledge acquisition session is produced. The
transcript is indexed by the session date, expert ID, design topic, and design sub-task. It helps to
facilitate the search for the source knowledge if the knowledge engineer needs to maintain the
key pieces of knowledge.

• The transcript is used as a basis in reviewing and analyzing the key pieces of knowledge and
their relationships. It requires the involvement of experts to refine and approve the clarified
knowledge. The knowledge engineer assigns weights to the knowledge depending on their roles
and performance in solving problems, rather than depending on what experts rely heavily on.

317 Nedhal A. Al-Saiyd, Adel H. Mohammad, Intisar A. Al-Sayed and Muna F. Al-Sammarai

The ranking scale is between 0 and 4. '0' is assigned for irrelevant knowledge and '4' for the
most significant. This is the conception of trust in the source of the knowledge that is an
important component to any intelligent analysis task. Their results show that the incorporation
of trust information improves the accuracy of assessments compared to similarity alone. It is
considered as an important open issue in some of the methods for KA as it is mentioned in [14].
The inconsistent and uncertain knowledge that was stored in files from the first session; is
resend later to the source of knowledge and to other experts to check them, clarify them, and to
identify the reasoning of software design decision-making. The answers that are collected from
one expert can be forwarded to another expert to review them and/or discussed them further.
This will help in validating the collected knowledge. The irrelevant concepts or knowledge
elements should be removed from the transcript. The apparent inconsistencies should be
isolated along with any associated relationships and placed separately into a particular file with
a description and expert ID for further inquiries. Constraints associated to the removed concept
should be examined to determine whether it is still applied to other elements within the
knowledge or need to be detached along with the related knowledge.

• After completing the second acquiring knowledge session, the knowledge engineer accumulates
feedback knowledge from the experts and draws a tree-structure representation and sends them
to the experts in the direction of appraisal. The experts add, delete, rename or re-classify nodes
and/or relations as appropriate by having the expert's reasoning comments on each modified
element. This will qualify the answers through evaluating the satisfaction criteria for the
elicited knowledge. The expert can exchange knowledge among other expert members to
explain their decisions by which members achieve specialized and tacit (procedural) knowledge
that is associated with software design tasks.

• Finally, the knowledge engineer will collect the answers and organize them into knowledge
representation models (KRM) to discuss, analyze and evaluate the sequence of answers and the
correlation among them. KRM support experts and knowledge engineer in analyzing and
emphasizes on the development of the conceptual model.

3.3. Generate Knowledge Representation Models

The graphical technique defines structure of knowledge is used to show the pieces of knowledge and
the interrelationships among them. The knowledge engineer creates set of knowledge models to
summarize understanding of acquired knowledge. The concept ladder, attribute ladder, process ladder,
concept map, and process maps are produced to visualize them by the experts. They are easier for
experts to view knowledge conceptually because transcript models are "String maps" illustrate either
poor understanding of the material or an inadequate restructuring of the map. Using laddering also
involve a set of predefined investigate questions, such as "Could you tell me some types and sub-types
of Software Design?", "Could you tell me, how can you tell that the problem-solving approach is
Object-Oriented Design?", "Why would you prefer using design patterns to Y module?" and "Why
would you prefer Object-Oriented Design to Z-subsystem?".

The semantic mapping between the acquired knowledge and ontology that represents a domain
expertise mainly in hierarchies of concepts and relationships will facilitate semantic reasoning. The
conceptual model can be represented using the object-oriented approach. By conceptualization, we
mean a stable and formal representation of concepts, relationships and objects; for the structural and
behavioral knowledge. Clearly there is an interaction between these levels during the KA process. The
conceptual model for concepts of software design is shown in figure 4. It shows the declarative and
procedural knowledge.

The conceptual diagrams can also be used for evaluation. They should be revised and concepts
should be positioned in ways that lead to clarify a final diagram. They usually go through two to three
revisions and the request of the expert’s opinion is helpful to guide and limit when specific and non

Distributed Knowledge Acquisition System for Software Design Problems 318

widely-used concepts may appear. The creation of meaningful diagrams as a form of knowledge
elicitation nowadays has wide application in human factors studies [15], [16].

Figure 4: The conceptual graph of software design and rationale for design decision making

3.4. The Examination and Evaluation Phase

Resend the forms with inconsistencies to the source of knowledge and to other experts to resolve the
incompleteness and/or inconsistencies.

When negotiating the different interpretations of inconsistent knowledge is resolved, a new
knowledge is incrementally added to its related knowledge in a knowledge base. As time passes, the
knowledge base is growing.

The experts verify the inconsistent/incomplete knowledge and sent the verification knowledge
to the knowledge engineer who in turn adds new knowledge or replace some old knowledge from
knowledge base. Similarly, if the experts may add further knowledge, therefore, the knowledge
engineer can add it after knowledge representation to the knowledge base.

KA is a structured method so the new knowledge is added having one or more relations with
existing knowledge. Knowledge growth is dependent on knowledge transfer methods and on the

319 Nedhal A. Al-Saiyd, Adel H. Mohammad, Intisar A. Al-Sayed and Muna F. Al-Sammarai

evaluation technique. The evaluation function Evaluation (K, Refinement) can be defined recursively
as follows:

If 'Refinement' is the corner stone refinement passed to K and K is a knowledge base, which is
of the form:

A � L1,L2, ……, Lm then Evaluation(K, Refinement) = A.

and

If K = Correlation(Rule1,Rule2),

Let:

change1 = Evaluation(Rule1)

change2 = Evaluation(Rule2)

if change1 is 'ok' and change2 is 'not_ok' then

Evaluation(K, Refinement) = No_Change,

elseif change1 is 'not_ok' and change2 is 'ok' then

Evaluation(K, Refinement) =change1,

elseif Evaluation(K, Refinement) =change2

If change1 is 'ok' and change2 is 'not_ok' then Evaluation(K, Refinement) = No_Change, means
that: information initially added does not need to be removed.

4. Conclusion
In this paper a new methodology for distributed knowledge elicitation, evaluation and management for
software architecture design process was presented. This method integrates both the descriptive and
perspective software design knowledge. We have developed methods for performing deductive and
inductive reasoning. This methodology has several advantages over the existing ones, including ease of
elicitation, analysis, and evaluation knowledge. The design process performed by the expert designers
or guided by the system, novice designers will be greatly assisted to learn how to approach a certain
class of design. The system would also be useful for learning design process.

5. Acknowledgment
The authors are grateful to the applied science private university, Amman-Jordan, for the partial
financial support granted to cover the publication fee of this research article.

References
[1] Mehdi Sagheb-Tehrani, A Conceptual Model of Knowledge Elicitation, Proc CONISAR 2009,

v2, pp. 1-7,EDSIG. Also available on:
http://proc.conisar.org/2009/1542/CONISAR.2009.Sagheb-Tehrani.pdf

[2] Laudon, K. C and Laudon J. P (2007). Management Information Systems: Managing the
Digital Firms. 10th ed. Prentice-Hall.

[3] Wayne A, Nelson, Artificial Intelligence Knowledge Acquisition Techniques for Instructional
Development, Instructional Development, Volume 37, Number 3, pp. 81-94, Sept. 1989. Also
available from: http://www.springerlink.com/content/t124762278p4q73l/

[4] Cao, T., Martin, E. & Compton, P., On the convergence of incremental knowledge base
construction, in Proceedings of 7th International Conference of Discovery Science‟, pp. 207–
218, 2004.

[5] S. S. Patil, B. V. Dhandra, U. B. Angadi, A. G. Shankar, and Neena J., Web based Expert
System for Diagnosis of Micro Nutrients Deficiencies in Crops, Proceedings of the World
Congress on Engineering and Computer Science, Vol I, WCECS 2009, October 20-22, 2009,
San Francisco, USA.

Distributed Knowledge Acquisition System for Software Design Problems 320

[6] Hamdan A., and Al Saiyd N., A Framework for Expert Knowledge Acquisition, IJCSNS
International Journal of Computer Science and Network Security, VOL.10 No.11, November
2010 http://epistemics.co.uk/Notes/63-0-0.htm.

[7] Bosch J. Software architecture: The next step. Proceedings of the 1st European Workshop on
Software Architecture, (EWSA2004) (Lecture Notes in Computer Science, vol. 3047, pp. 194–
199 Springer: Berlin, 2004.

[8] Bass L, Clements P, Kazman R. Software Architecture in Practice, 2nd ed., Addison-Wesley
Professional: U.S.A., 2003.

[9] Capilla R., Due˜nas J. C., Nava F., Viability for codifying and documenting architectural design
decisions with tool support, Journal Of Software Maintenance And Evolution: Research And
Practice J. Softw. Maint. Evol.: Res. Pract. 2010; 22 PP. 81–119. Also available from:
http://web.ebscohost.com/ehost/pdfviewer/pdfviewer?sid=1b1195c9-77fc-4256-99aa-
992f7de70aa2%40sessionmgr14&vid=9&hid=7.

[10] Mironela PÎRNĂU, Methods for Knowledge Acquisition, Metalurgia International, vol. XIII,
no.9, pp. 99-102, 2008.

[11] Botha, A. P., Knowledge: Living and Working with It, Juta & Co, South Africa, 2007, Also
available from: http://epistemics.co.uk/Notes/90-0-0.htm.

[12] http://epistemics.co.uk/Notes/90-0-0.htm
[13] http://www.ajrhem.com/AJRhem-KAF%20Demo/Knowledge_Models.cfm.htm.
[14] L. Holder, Z. Markov and I. Russell, Advances in Knowledge Acquisition and Representation,

International Journal on Artificial Intelligence Tools Vol. XX, No. X (2006), pp. 1–8, World
Scientific Publishing Company Also available from:
http://www.cs.ccsu.edu/~markov/papers/ijait06.pdf.

[15] Robert R. Hoffman, Human Factors Contributions to Knowledge Elicitation, Institute for
Human and Machine Cognition, Pensacola, Florida, 2008.

[16] Joseph D. Novak , The Theory Underlying Concept Maps and How to Construct Them, Cornell
University, http://www.ajrhem.com/AJRhem-KAF%20Demo/Knowledge_Models.cfm.htm

