Treatment of olive mill wastewater by combined advanced oxidation and biodegradation

Walid K. Lafi^a, Benbella Shannak^b, Mohammad Al-Shannag^{a, ,}, Zaid Al-Anber^a, Mohammad Al-Hasan^c

^a Department of Chemical Engineering, Faculty of Engineering Technology, Al-Balqa Applied University, P.O. Box 15008, Marka, 11134 Amman, Jordan, ^b Department of Mechanical Engineering, Al-Huson University College, Al-Balqa Applied University, P.O. Box 50, Al-Huson, Irbid, Jordan, ^c Department of Mechanical Engineering, Faculty of Engineering Technology, Al-Balqa Applied University, P.O. Box 15008, Marka, 11134 Amman, Jordan

Received 12 June 2009, Revised 27 August 2009, Accepted 16 September 2009, Available online 23 September 2009

Abstract

In the present study, olive mill wastewater (OMW) treatment is investigated experimentally in various stage processes of advanced oxidation with ozone (O₃), photodegradation by UV radiation, and an aerobic biodegradation. The effects of these treatment processes on the removal of chemical oxygen demand (COD) of OMW are monitored. For both single-stage treatment of O₃ and two-stage treatment of O₃/UV, the chemical oxygen demand remains quite high. In contrast, a combination of biological and UV/O₃ process for the OMW treatment seems to be a serious alternative in the reduction of the COD. In particular, biodegradation of UV/O₃ pretreated OMW found to have the highest removal levels; the percent of COD removal reaches about 91%. On the other hand, the kinetic study shows that the decay of chemical oxygen demand follows a first-order and pseudo first-order models for advanced oxidation and biodegradation processes; respectively.

Keywords COD removal; Biodegradation treatment; Olive mill wastewater OMW); Kinetic study; Advanced oxidation