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Mathematics and computer science are crosery linked with each other, and in many
respects, the frrnctions of computer related elements might be interpreted usini
mathematical approaches. In this paper the strong correlition that e;i$ betweei
computer software and hardware elements Qogic devices, digital circuits and logical
processing) and discrete mathematics (proposiiions and quanified asr.rtion.j *iiit"
demonsfiated. This will pave tre way for a better understanding ofthe operations oi
basic computer circuits ald lay the foundation for developing ni.* .o.put".."htJ
algorithms.
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Introduction

Boolean algebra is the backbone ofcomputer software and hardware

systems and almost all computer algorithms may be interpreted using

mathematical modeling. Such a phenomenon may be exploited for the

purpose of developing new computer applications.

In this paper several links between mathematics and computers will
be investigated, namely, the implication (P>Q), previously discussed by

other authors 11,4,5,6,'7,10,11,i21, the quantifiers VxP(x), 3xP(x),

I !xP(x) ,two quantifiers applied to a predicate VxVyP(x,y) ,3x3yP(x,y),
VxlyP(x,y), 3yVxP(x,y) 11,2,3,10,11,121 and lastly , the distribution of
quantifiers Vx,3x over logical operators AND (n), OR (v), implies (=)
11,2,3).

The implication of P and Q

P and Q are propositional variables, each of which denotes a
proposition, whose truth-value is either true or false but not both. "P

implies Q (P+Q) "is a conditional statement of'theform"if-then"
statement, which means:

"If P, then Q", where "P is a sufficient condition for Q"; and "Q is a

necessary condition for P". Such a statement has the following truth table

il ,4.5. 1 1, 1 21:

It is clear that the implication (P=Q) is always true except when the

premise P=l and the conclusion Q=0, in the later case, the result is false'
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Such an implication can be realized using computer software algorithm
as shown in the following program fragment:

20 IfX<=0 then go To 50
30 ......
40......
50.....

Where, P denotes " X<:0 "; and Q denotes " go to 50".

The result of execution of (P=+Q) by the computer processor can be
analyzed as follows:

a) If P is false and Q is false, that is; if the premise (X>0) is false and

the execution process does not go to line 50 then the result is true, as

depicted by the following truth table:

i. e. It is true not to go to line 50 if the condition P is false.

If P is false and Q is true, that is;
If the premise (X>0) is false and the execution process goes to line
50 then the result is true. This is because line 50 may be exe-cuted
sequentially without the premise P, as shown in the following truth
table segment:

From a) and b) it can be concluded that the premise P is a sufficient
condition for Q

c) If P is true and Q is false, i.e. if the premise (X<=0) is true and the
execution does not go to line 50 then the result is false, as depicted in
the following truth table segment:

159

b)
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In this case, it is not true not to go to line 50 when the premise
(X<=0) is true.

If P is true and Q is true, i e. if the premise (X<:0) is true and the
execution goes to line 50 then the result is true. This, too, means
that, it is true to go to line 50 if the premise P is true, as illustrated in
the followine truth table:

From c) and d) it can be concluded that Q is a necessary condition for
P

The Quantified Assertions, VxP(x), :xP(x), 3!xP(x):

These quantified assertions denote:

(a) VxP(x)

For all values of x selected from the universe ofdiscourse U, the
predicate P(x) is true l2),i.e. the set ofsolution is equal to theuniverse
U.

Thus, if U:{1,2,3} then VxP (x)eP(1)AP(2)AP(3) [3,11] For
example , If P(x): x> 1 then VxP(x) is true.

An application of the proposition VxP(x) in logic design can be

realized as a multiple input AND-gate, as shown in Fig. (l) .

(b) lxP(x)

For at least one value ofx selected from the universe, the predicate
P(x) is true, [2]. i.e. the set of solution is a subset of the universe U.

d)
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Thus, If U={1,2,3,} then 3xP(x)eP(l)vP(2)vP(3) [3,11]. For

example, If P(x): x> 2 then lxP(x) is true.

An application of lxP(x) in logic design can be realized as a multiple
input OR-gate , Fig(2)

(c) 3!xP(x)

There is one and only one value of X, which yields P (x) as true [].
Thus, If U : {1,2,3\,then; 3! x P (x) e [P (l) n--P(2) n--P(3)] v fP(2)
n--P(l)n --P(3)l v [P(3) n --P(1) n--P(2)]. Transferring information,
generated from one source through a common bus and at the same time,
inhibiting gther sources connected to the bus is a good application for
3!xP(x) The status of the bus is true if only one source transmits

information. This is in agreement with the results attained from 3!xP(x)
which yields a true value if only one value of x makes P(x) true, A
practical example of which is a data bus system constructed from three

state buffers [8]. Figure 3 shows a design for multiple lines to one line
(common) bus system. It should be noted that only one line must be

active at any given time, while all others must be inhibited. This can be

achieved using a suitable decoder to control the respective buffers.

Two quantifiers and two level logic gates

(a) VxVyP(x,y)

If the universe { 0, I }, then;

VxVyP(x,y)eVyVxP(x,y)<+[P(0,0)nP(0, 1 )]n[P( 1,o)nP( 1, 1 )]

It is clear that this is a two level AND-AND gates.

In Boolean algebra AND-AND <> one level AND, can be written as

follows:

(A.B). (C.D) e A.B.C.D

AND-AND <+ AND, Fig (a)

(b) 3x3yP(x,y)

6t
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If the universe { 0, I } then;

lxlyP(x,y) e lylxP(x,y) e[P(0,0)vP(0,t)]v[P(1,0)vP(l,l)]

This may be represented by a two level OR-OR gates the Boolean
lunction of which can be written as

OR-OR e OR

ie. (A+B)+(C+D) <> A+B+C+D

OR-OR <+ OR, Fig (5)

(c) Vx3yP(x,y)

let the universe {0, I } then ;

VxiyP(x,y) e [P(0,0)vP(0, 1)]n [P(1,O)vP(1,1)]

Such a quantifier may be represented by a two level OR-AND gate

(d) SyVxP(x,y)

let the universe {0, 1} then ;

lyVxP(x.y) e [P(0,0)nP(1,0)]v [P(0,1)nP( l. l)]

It is clear that this is a two level AND-OR gate

From (c) and (d) it can be concluded that Vx3yP(x,y) -<>
!yVxP(x,y) . This is because OR-AND-e AND-OR

i.e. (A+B)(C+D) .-<> AB+CD , [9] , Fig (6)

The analogy adopted in proving the non-equivalence of (c) and (d) is
different from that found in other related publications [1,2,3,12], all of
which use mathematical approaches to prove the non-equivalence, such
as;

Ifthe universe is the set ofintegers I, Then

Vx3y [x+y=0] --<+ 3yVx[x+y:0],

where the left hand side is true and the right hand side is false.
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The distribution of quantifiers over the logical operators

PreViouswork[1,2,3]haveshownthatthereisnounifiedmethodto
pror. ,tt" tmth of retationships between assertions involving quantifiers

and logical oPerators.

lnthenextSection,thesixpossiblecasesofthedistributionwillbe
presented. One of these .ur.r *ill be discussed in details (the remaining

cases will be dealt with in the same maner)'

(a) Vx[P(x)nQ(*)] e [VxP(x)nVxQ(x)]

AND-AND E AND-AND

V distributes over n.

(b) lxtP(x)vQ(x)l e []xP(x)vlxQ(x)l

OR-OR e OR-OR

3 distributes over v.

(c) Vx[P(x)vQ(x)] .-<+ [VxP(x)vVxQ(x)]

V Does not distribute over v

But [VxP(x)vVxQ(x)]=Vx[P(x)vQ(x)] is valid (always true) and the

converse is not valid

(d) lx[P(x)nQ(x)l -e [3xP(x)nlxQ(x)]

I Does not distribute over n However ;

-x[P(x)nQ(x)]+[1xP(x)n!xQ(x)] is valid and the converse is not

valid.

(e) 3x[P(x)=Q(x)] -.e[rxP(x)= !xQ(x)]

I Does not distribute over ?
However, tlxP(x) + lxQ(x)l = 3x[P(x):+Q(x)] is valid and the

converse is not valid.

(f VxtP(x)=Q(x)l .-<a [VxP(x)=VxQ(x)]
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V Does not distribute over =.
However, Vx [P (x)+e (x)] =[Vxp (x)=Vxe (x)] is valid and the

converse is not valid.

In the next section, a new method for analysing the distributions over
logical operators will be presented. Such a method can be applied to all
possible cases.

For each of the above cases (a, b, 0, u universe is taken , such as
{0, 1}, which is a subset ofthe natural numbers (set N) , the equivalence
of each side is found by reptacing the variabres by specific varues drawn
from the universe, then a truth table is construcied-in order to verify the
relationship.

Refering to case (f), namely;

Vx[P(x)=Q(x)] -<+ [Vxp(x)+Vxe(x)]
Then the left hand side.

Vx[P(x)=Q(x)]eVx[.-p(x)ve(x)]e[.-p(0)ve(0)]n[;p( 
r )ve( r )]

And the right side;

IVxP(x)=VxQ(x)] e--Vxp(x)vVxe(x) e3x--P(x)vVxQ(x)
e[.-P(0)v-P( t )]v[Q(o)ne( t )]

Elements p (o), p (l), e (o),
variables in the proposition. These
truth table shown in table l. Where;

''Some Propositions, Quantified Assertions arld _.......

and Q (1) are considered as four
variables are used to construct the

AzrB<+[--P (0)vQ (0)]n[-p (l)ve (l)] is the left hand side, and

CvD<+[-P (0)v--P (t)]vte (O)ne (t)l is the right hand side.

It is clear, from the truth table, that the two sides are not equal, but
the left side implies the right side is always true. i.e. (A,rn)>(CvO), and
the converse is not valid. Such an approach may be applied io all'other
cases.
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It should be

investigating the
method was found

Table (1):

pointed out at this stage that, other methods for

ubou. relationships, do exist, however no known

to be is applicable to all possible six cases (a to f)

P(0) P(1) Q(0) Q(1) --P(o)
vO(0)

"-P(1)
vO(1)

A,^.8 -,P(0)v
.-P(r)

Q(o)n
o(1)

CvI)

0
0
0
0
0
0
0
0

1

I
1

1

I
1

I
1

1

1

1

1

1

1

I
1

I
I
I
1

0
0
0
1

1l

0
0
0
1

0
0

0
I
0
0

0
1

0
0
0
I
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Conclusions:
- The implication (p=Q) is an lf-Then statement, and its truth table is

"i.u.ty 
'implemented when the processor executes the if-then

statement.

The quantifiers, VxP(x) and 3xP(x) , are implemented as multiple

input AND and multiple input OR logic gates respectively'

iiu*r.iting informaiion fiom one source through a common bus and

inhibiting other sources from the bus is a good application for

3!xP(x).
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VxVyP(x,y) <+ VyVxP(x,y) c>
AND-AND <> One level multiple input AND gate.
3x3yP(x,y) <+ 3ytxP(x,y) <+
OR-OR c> One level multiple input OR gate.
VxlyP(x,y) -e 3yVxP(x,y), as well as OR-AND _-e AND_OR.A common method is presented for proving the distribution of
quantifiers over the logical operators by taking a universe such as
{ 0, I }, finding the equivalence of each side by replacing the variables
by specific values form the universe. Then ionsiructing a truth table
to show the truth of the relationship.
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