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Abstract

Mathematics and computer science are closely linked with each other, and in many
respects, the functions of computer related elements might be interpreted using
mathematical approaches. In this paper the strong correlation that exist between
computer software and hardware elements (logic devices, digital circuits and logical
processing) and discrete mathematics (propositions and quantified assertions) will be
demonstrated. This will pave the way for a better understanding of the operations of
basic computer circuits and lay the foundation for developing new computer related
algorithms.
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Introduction

Boolean algebra is the backbone of computer software and hardware
systems and almost all computer algorithms may be interpreted using
mathematical modeling. Such a phenomenon may be exploited for the
purpose of developing new computer applications.

In this paper several links between mathematics and computers will
be investigated, namely, the implication (P=>Q), previously discussed by
other authors [1,4,5,6,7,10,11,12], the quantifiers VxP(x), 3xP(x),
J1xP(x) ,two quantifiers applied to a predicate VxVyP(x,y) ,3x3yP(x,y),
vxIyP(x,y), IyVxP(x,y) [1,2,3,10,11,12] and lastly , the distribution of
quantifiers Vx,3x over logical operators AND (), OR (v), implies (=)
[1,2,3].

The implication of P and Q

P and Q are propositional variables, each of which denotes a
proposition, whose truth-value is either true or false but not both. “P
implies Q (P=Q) “is a conditional statement of - the form “if-then “
statement, which means:

“If P, then Q”; where “P is a sufficient condition for Q”; and “Q is a
necessary condition for P”. Such a statement has the following truth table
[1,4,5,11,12}:

P Q (P=Q)=(=PVQ)
0 0 1
0 1 1
! 0 0
1 1 1

It is clear that the implication (P=Q) is always true except when the
premise P=1 and the conclusion Q=0, in the later case, the result is false.
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Such an implication can be realized using computer software algorithm
as shown in the following program fragment:

- 20 If X<=0 then go To 50
30 |

Where, P denotes “ X<=0 *; and Q denotes “ go to 507,

The result of execution of (P=Q) by the computer processor can be
analyzed as follows:

a) If P is false and Q is false, that is; if the premise (X>0) is false and
the execution process does not go to line 50 then the result is true, as
depicted by the following truth table:

P Q (P=Q)

0 0 1

i. e It is true not to go to line 50 if the condition P is false.

b) If P is false and Q is true, that is;
If the premise (X>0) i1s false and the execution process goes to line
50 then the result is true. This is because line 50 may be executed

sequentially without the premise P, as shown in the following truth
table segment:

P Q (P=Q)

0 . 1 1

From a) and b) it can be concluded that the premise P is a sufficient
condition for Q.

c) If P istrue and Q is false, i.e. if the premise (X<=0) is true and the
execution does not go to line 50 then the result is false, as depicted in
the following truth table segment:
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P Q (P=Q)
1 0 0

In this case, it is not true not to go to line 5O when the premise
(X<=0) is true.

d) If P is true and Q is true, i e. if the premise (X<=0) is true and the
execution goes to line 50 then the result is true. This, too, means
that, 1t is true to go to line 50 if the premise P is true, as illustrated in
the following truth table:

P Q (P=Q)
1 1 1

From c) and d) it can be concluded that Q is a necessary condition for
P '

The Quantified Assertions, VxP(x), IxP(x), 3!'xP(x):

These quantified assertions denote:

(a) VxP(x)

For all values of x selected from the universe of discourse U, the
predicate P(x) is true [2], i.e. the set of solution is equal to the universe
U.

Thus, if U={1,2,3} then VxP (x)<P(1)AP(2)AP(3) [3,11] For
example , If P(x): x> 1 then VxP(x) is true.

An application of the proposition VxP(x) in logic design can be
realized as a multiple input AND-gate, as shown in Fig. (1) .

(b) IxP(x)

For at least one value of x selected from the universe, the predicate
P(x) is true , [2]. i.e. the set of solution is a subset of the universe U.
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Thus, If U={1,23,} then 3IxP(X)=>P(1)vP(2)vP(3) [3,11]. For
example, If P(x): x> 2 then 3xP(x) 1s true.

An application of 3xP(x) in logic design can be realized as a multiple
input OR-gate , Fig(2)
(c) I'xP(x)

There is one and only one value of X, which yields P (x) as true [1].
Thus, IfU= {1,2,3}, then; 3! x P (x) < [P (1) A =P(2) A =P(3)] v [P(2)
A=P(L)an =P(3)] v [P(3) A =P(1) A —P(2)]. Transferring information,
generated from one source through a common bus and at the same time,
inhibiting - other sources connected to the bus is a good application for
JIxP(x) . The status of the bus is true if only one source transmits
information. This is in agreement with the results attained from 3!xP(x)
which yields a true value if only one value of x makes P(x) true. A
practical example of which is a data bus system constructed from three
state buffers [8]. Figure 3 shows a design for multiple lines to one line
(common) bus system. It should be noted that only one line must be
active at any given time, while all others must be inhibited. This can be
achieved using a suitable decoder to control the respective buffers.

Two quantifiers and two level logic gates
(a) VxVyP(x,y)
If the universe {0,1}, then;
VxVyP(x,y)=VyVXP(X,y)<=>[P(0,0AP(0,1) IA[P(1,0)AP(1,1)]
It is clear that this is a two level AND-AND gates.

In Boolean algebra AND-AND < one level AND, can be written as
follows:

(A.B). (C.D) < AB.CD
AND-AND <> AND, Fig (4)
(b) IxIyP(x,y)
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If the universe {0,1} then;
Ix3yP(x,y) < Jdy3xP(x,y) <[P(0,0)vP(0,1)]v[P(1,0)vP(1,1)]

This may be represented by atwo level OR-OR gates the Boolean
function of which can be written as

OR-OR < OR
1e. (A+B)+(C+D) < A+B+C+D
OR-OR < OR, Fig (5)
(¢) VxdyP(xy)
let the universe {0,1} then ;
vx3yP(x,y) < [P(0,0)vP(0,1)]A [P(1,0)vP(1,1)]
Such a quantifier may be represented by a two level OR-AND gate.
(d) 3yVxP(xy)
let the universe {0,1} then ;
JyVxP(x,y) <> [P(0,0)AP(1,0)]v [P(0,1)AP(1,1)]
It is clear that this is a two level AND-OR gate.

From (c) and (d) it can be concluded that Vx3yP(x,y) -<
JyVxP(x,y) . This is because OR-AND —<> AND-OR

i.e. (A+B)(C+D) < AB+CD , [9], Fig (6)

The analogy adopted in proving the non-equivalence of (c¢) and (d) is
different from that found in other related publications [1,2,3,12], all of
which use mathematical approaches to prove the non-equivalence, such
as

If the universe is the set of integers I, Then
Vx3dy[x+ty=0] —<«> dyVx[x+y=0],

where the left hand side is true and the right hand side is false.
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The distribution of quantifiers over the logical operators

Previous work [1,2,3] have shown that there is no unified method to
prove the truth of relationships between assertions involving quantifiers
and logical operators.

In the next section, the six possible cases of the distribution will be
presented. One of these cases will be discussed in details (the remaining
cases will be dealt with in the same maner).

(a) YX[P)AQ(X)] & [VxP(X)AVXQ(X)]
AND-AND <> AND-AND
 distributes over A.

(b) Ix[PX)VQX)] < [IxPx)vIXQX)]
OR-OR < OR-OR
3 distributes over V.

(©) VA[P@VQEX)] ~& [YxP(x)vxQ()]
v Does not distribute over v.

But [VxP(x)vVxQ(x)]=Vx[P(x)vQ(x)] is valid (always true) and the
converse is not valid.

(d) Ix[P(X)AQ(X)] ~= [FxP)AIXQ(X)]
J Does not distribute over A. However ;

Z‘IX[P(X)/\Q(X)]:>[3XP(X)/\3XQ(X)] is valid and the converse is not
valid.

(¢) Ix[P(X)=Q(x)] ~=[FxP(x)= IxQ(X)]
3 Does not distribute over =

However, [3xP(x) = IQX)] = Ix[P(x)=>Q(x)] is valid and the
converse is not valid.

() Vx[Px)=Q(x)] —<> [VxPx)=VxQ(x)]
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¥ Does not distribute over =

However, Vx [P (x)=Q (x)] =[VxP (x)=>VxQ (x)] 1s valid and the
converse 1s not valid.

In the next section, a new method for analysing the distributions over
logical operators will be presented. Such a method can be applied to all
possible cases.

For each of the above cases (a, b, ...f), a universe is taken , such as
{0,1}, which is a subset of the natural numbers (set N), the equivalence
of each side is found by replacing the variables by specific values drawn
from the universe, then a truth table is constructed in order to verify the
relationship.

Referring to case (f), namely;
VX[P(x)=Q(x)] =< [VxP(x)=VxQ(x)]
Then the left hand side:
VX[P()=Q(x) 1= VX[ =P(x)VQ(x) [ [-P0)vQ(0)]A[=P(1)vQ(1)]
And the right side:
[VXP(x)=VxQ(x)] ©-VxP(x)vVxQ(x) <IX-P(x)vVxQ(x)
S[=PO)v=P()IV[Q(0)AQ(1)]

Elements P (0), P (1), Q (0), and Q (1) are considered as four

variables in the proposition. These variables are used to construct the
truth table shown in table 1. Where;

ANBS[=P (0)vQ (0)]A[-P (1)vQ (1)] is the left hand side, and
CvD< [P (0)v—P (1)]V[Q (0)AQ (1)] is the right hand side.

It is clear, from the truth table, that the two sides are not equal, but
the left side implies the right side is always true. i.e. (AAB)=>(CvD), and
the converse is not valid. Such an approach may be applied to all other
cases.
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It should be pointed out at this stage that, other methods for

investigating the above relationships, do exist, however no known
method was found to be is applicable to all possible six cases (a to f)

Table (1):
PO) | P(1) | Q) | Q1) | =P(0) | —P(1) | ArB | —=P(O)v | QO)A | CVD
vQ(0) | vQ(1) —P(1) | Q)

0 0 0 0 1 1 1 1 0 1
0 0 0 1 1 1 1 1 0 1
0 0 1 0 1 1 1 1 0 1
0 0 1 1 1 1 1 1 1 1
0 1 0 0 1 0 0 1 0 1
0 | 0 1 1 1 1 1 0 1
0 1 1 0 1 0 0 1 0 1
0 1 1 1 1 1 1 I 1 1
1 0 0 0 0 1 0 1 0 1
1 0 0 1 0 1 0 I 0 1
1 0 1 0 1 1 1 1 0 1
1 0 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 0 0 0
1 1 i 0 1 0 0 0 0 0
1 1 ] 1 1 i 1 0 1 1

N N

Conclusions:

The implication (P=Q) is an If-Then statement, and its truth table is
clearly implemented when the processor executes the if-then
statement.

The quantifiers, VxP(x) and IxP(x) , are implemented as multiple
input AND and multiple input OR logic gates respectively.
Transferring information from one source through a common bus and
inhibiting other sources from the bus is a good application for
JIxP(x).
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- VXVyP(xy) © VyVxP(x,y)

AND-AND < One level multiple input AND gate.

- IxJyP(xy) © JyIxP(x,y) ©
OR-OR <> One level multiple input OR gate.

- Vx3yP(xy) < JyVxP(x,y), as well as OR-AND —<> AND-OR.

- A common method is presented for proving the distribution of
quantifiers over the logical operators by taking a universe such as
{0,1}, finding the equivalence of each side by replacing the variables
by specific values form the universe. Then constructing a truth table
to show the truth of the relationship.
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Fig.[4] : Two level AND-AND is equivalent to one level multiple input AND gate,
Va¥y P(x,y) <=> Vy¥x Px.y)
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Fig.[5] : Two level OR-OR is cquivalent (o one level multiple input OR gate.
JxIy Pixy) <=> Jy3x P(xy)
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Fig.[6] : OR-AND <f> AND-OR, as well as.
Vx3y P(uyr <> 357x p(xy)
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