
I.J. Information Technology and Computer Science, 2015, 06, 52-58
Published Online May 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.06.07

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 52-58

A New Platform NIDS Based On WEMA

Adnan A. Hnaif
Al-Zaytoonah Private University of Jordan, Computer Networks Department, Amman, 11733, Jordan

Email: adnan_hnaif@zuj.edu.jo

Abstract─ The increasing speed of today's computer networks

directly affects the performance of Network Intrusion Detection

Systems (NIDS) in terms of speed of detection of threads.

Therefore, the performance of the existing algorithms needs to

be improved to enhance the speed of detection engine used in

NIDS applications. Hence, this paper defines a new platform

NIDS to enhance the speed of detection engine based on

Weighted Exact Matching Algorithm (WEMA). Furthermore,

this platform can be run in sequential and in parallel mode,

using the pthread techniques, in order to increase the total

performance of NIDS applications.

Index Terms─ Intrusion Detection Systems, Exact String

Matching Algorithms, Multi-Threading Technology.

I. INTRODUCTION

Network security is responsible for protecting the

information passing through any networks from the

intruders. Moreover, network security refers to all

hardware and software functionalities that are necessary

to provide an acceptable level of protection to the

network [1]. For example, a firewall is a system that is

used to secure the internal network from the external

traffic [2]. However, the traditional firewalls are

insufficient to ensure network security from the internal

network, and also a firewall filters all unwanted network

traffic but allows some of the services (i.e. VoIP) to pass

[3]. Therefore, Intrusion Detection Systems (IDS) can be

used to detect these intrusions that could affect the

network. Meaning, IDS is a system works after the

firewall to provide unauthorized people from accessing

the network [2].

NIDS is one of the IDS techniques, and it works by

matching the string pattern against packet payload using

one of the exact string matching algorithms (misuse

detection). And, NIDS also can works to monitor and

detect special types of events in a system (anomaly

detection) [4].

NIDS suffers from a slow speed of its detection engine

in linear and in parallel modes, and a lot of overhead

costs in some of the parallelized technology. Thus, the

main goal of this paper is to propose a new platform

NIDS to enhance the speed of the intrusion detection

engine based on the packet payload.

This paper contributions can be summarized as follow:

First, NIDS based on WEMA: A new platform NIDS

based on WEMA to enhance the speed of the detection

engine for the packet payload in a liner phase. Second,

load balance: A new platform is introduced to increase

the speed of the detection engine by utilizing the multi-

threading technology.

This paper is organized into six sections. This section

presents an introduction and background for the firewall

and NIDS. In section two, we discuss the most important

exact string matching algorithms used in NIDS, and will

also discuss the most current and related works in NIDS.

Section three discuss how the proposed solution was

designed. The new platform for the packet payload is also

described in this section. The design and implementation

details and issues are discussed in section four. The

illustration of the experimental direction and the

implementation of the detection engine are also

mentioned. The results obtained from the experiments in

section four are the primary content of section five. This

section is divided into two parts. The first part reports the

results of the detection engine for the sequential

evaluation process. The second part reports the result of

the detection engine for the load balance evaluation

process. Finally, in section 6, the conclusion for this

study is presented in some details.

II. RELATED WORKS

This section can be divided into two parts. First part

will explore the most related exact string matching

algorithms that can be used in NIDS applications. Second

part will present the load balance techniques which can

be used in NIDS applications.

A. Exact String Matching Algorithms

a. Boyer-Moore Algorithm

Boyer-Moore Algorithm has two heuristic phases. First:

bad character shift, which starts the comparison between

the pattern "P" and the text "T" from the right to the left,

and in case of mismatching, the algorithm will shift

forward to an "M" character (the pattern length). Second

heuristic is good suffix shift, which starts a comparison

from the right to the left, and in case of matching, then

the algorithm move to the next character in the text "T"

with the next character in the pattern "P", until get

matching with all string characters; but in case of

mismatching, the algorithm is move to the next

occurrence that was matched before [5].

Boyer-Moore algorithm suffers from two issues: First:

table skips function, which is very complicated and is

used only in the case of a short text. Second, Boyer-

Moore algorithm depends on the text information and

rarely refers to the pattern information [6]. Usually, all

the exact strings matching algorithm will determine the

number of shifting according to the characters in the

pattern, because the pattern is usually shorter than the

 A New Platform NIDS Based On WEMA 53

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 52-58

text. Therefore, [7] modified Boyer-Moore algorithm to

make the searching process working faster.

b. Horspool Algorithm

Horspool algorithm looks like Boyer-Moore algorithm

but in slightly different way. The Horspool algorithm

works in any order and the average number of

comparisons for one text character is lower than Boyer-

Moore algorithm [5]. But, the Horspool algorithm has a

problem which is the maximum number of shifting

depends on the length of the shortest pattern size [8].

c. Weighted Exact Matching Algorithm (WEMA)

WEMA is an exact string matching algorithm, which

contains two stages in order to evaluate the matching

process between the pattern "P" and the text "T". First:

preparing stage, which used to create an alphabetical

index matrix weight "M" that is running only once, as

long as no update are available in the text "T". Second:

matching stage, which can be used to find any possible

matching between the pattern "P" and the text "T" [9].

Table 1 summarizes the searching phase complexity for

the mentioned algorithm.

Table 1. complexity of some exact string matching algorithms

Algorithm Name Complexity of searching phase

Boyer-Moore A: O(mn)

Horspool A: O(mn)

WEMA A: O(n)

Where: A is the average case of searching

B. Load balance techniques

The Intel's communication technology laboratory

parallelized the SNORT-NIDS on one and four execution

cores using pthreads (POSIX) library. As shown by Fig.

1. The first attempt was to run SNORT-NIDS on all four

cores, where each thread runs using the same loop [10].

Fig. 1. Snort running on four execution cores in parallel without

pipelining

Because of the synchronization between the threads,

the performance of the system was very low. To avoid

this problem, Intel’s communication technology

laboratory used a pipelining and flow-pinning technology

[10]. The Pipelining and flow-pinning technology are

used to divide the applications into successive stages, and

assigns these stages to the implementation of the

dedicated units, which extends the application to the next

phase, (Fig. 2).

On the other hand, [11] designed a multi-designs for a

multi-threaded NIDS. The most important design was to

parallelize the signature matching process. The incoming

packets will be saved in a matching queue, and each

incoming packet will be dispatched to the signature

matching in a parallel, where every signature matching

contains its own rule sets. Fig. 3 depicts a parallel

signature machine for multi-threading technology as

proposed by [11].

Fig. 2. Snort running on four execution cores in parallel with pipelining

Fig. 3. Parallel signature matching [11]

III. PROPOSED METHODOLOGY

This section presents the design, goal, and

methodology of the proposed new platform NIDS based

on WEMA. This platform aim to enhance the speed of

the packet payload detection engine in NIDS both in

sequential and in parallel mode. The proposed novel

platform NIDS based on WEMA can detect the intruders

trying to gain access into the network using packet

payload information. On the Other hand, the proposed

platform is able to run on a single core and multi-cores

processor to show that the idea could cope up with the

Incomin

g packets

54 A New Platform NIDS Based On WEMA

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 52-58

traffic arrival speed and various bandwidth demands. Fig.

4 depicts the entire NIDS platform.

As shown in Fig. 4, the capture engine captures all the

packets from the network as the first step. The second

step is the preprocess engine, which is used to prepare the

captured packets to be passed to the matching engine.

Matching engine, checks if the incoming packet payload

match with any rule of the payload rule set by using

WEMA exact matching algorithm.

Fig. 4. The entire NIDS platform.

A. Sequential matching process

In general, existing packets payload detection engine

uses any exact string matching algorithm to detect the

intrusions. These string matching algorithm deal with

decimal, hexadecimal, and character values. The

proposed new platform NIDS based on WEMA deals

with the weight values, and the payload rule sets are

converted in "N" weights. Fig. 5 depicts the flowchart

diagram of sequential matching process.

Fig. 5. Flowchart diagram of sequential matching phase

The new proposed platform NIDS based on WEMA

applies a different technique to match the payload rule set

with the incoming packets payload. This technique works

as follows:

(1) Preparing phase: this phase will run only once, as

long as no updates are available in the rule set;

and also, this phase will create an alphabetical

index matrix weight "W" of the payload rule set,

which defines about 3000 rules based on

SNORT-NIDS rule set. Each character has its

own position in the text "T"(indices). Once the

rule set has been created, the sequential matching

phase will start.

(2) Sequential Matching phase: this phase can be

used to find the exact matching between the

incoming packet payload "P" and the payload

rule set "R.S" as follows:

A. Create array list "L" for each incoming packet

payload.

B. Determine the minimum character weight of

pattern "P", which refers to the minimum

number of occurrences of each character in

matrix "M". If the minimum character weight

is equal to zero, then stop the matching

process, because the pattern "P" does not exist

in the text "T". Otherwise, go to step c.

C. Create the attempt matching process of the

array list "L" by adding the minimum weight

character, (which selected in step b) under the

corresponding character position in the array

list "L" (index [i]).

D. Compare the next and the previous characters

in the pattern "P", which its indices are: index

[i+1] and index [i-1], with the corresponding

characters of matrix "M", if both exist, then

continue matching with index [i+2], and index

[i-2] until reaching the end of the pattern "P"

or until getting an exact matching.

E. If mismatch has occurred, then read the next

occurrence of the minimum character weight

of the pattern "P", and repeat from step c.

B. Load balance matching phase

The current NIDS applications are inadequate to detect

an intrusion in real time. As such, the main motivation of

this paper is to take advantage of the hardware revolution

to enhance the speed of the NIDS based on deep

inspection of the packet payload. This enhancement

should also be able to utilize WEMA to identify the

existence of any intrusion within the packet payload.

Thus, the new proposed platform NIDS based on WEMA

is designed to filter, and load balance the entire incoming

packets payload among an optimal number of cores

within each processor by utilizing the pthread techniques.

Based on the test bed hardware architecture, the total

number of cores in the machine is calculated and create

an optimal number of threads accordingly. Fig. 6 depicts

the flowchart diagram of load balance matching phase.

From Fig. 6, all of the components works in a

sequential process, except the dispatch component. The

dispatch component will load balance the incoming

packets payload into determined cores, where each core

create one thread in the first attempt as an optimal

Network Traffic

Capture Engine

Preprocess Engine

Matching Engine Payloa

d Rule

set

Analysis Engine

Start

Preparing phase

Capture Engine

Sequential matching phase

Match

Apply an Action

No

Yes

 A New Platform NIDS Based On WEMA 55

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 52-58

number of thread on each core. Thus, the dispatch

component works as follows:

Fig. 6. Flowchart diagram of load balance matching phase.

a. Identify the number of cores (n cores). In this

algorithm, the number of cores should be 1, 2, 3, or 12,

because the hardware that carried the program has 12

cores.

b. Create and manage the threads (threads = m: the

number of minimum character occurrences in the

matrix "M").

c. Start the searching process in parallel as follows:

1. Each core is equipped with a detection engine

(WEMA) as well as the entire matrix "M". This is

achieved by utilizing the multi-cores techniques.

2. Each character of the minimum character

occurrences in the matrix "M" will dispatch among

available cores with a maximum of 12 cores (12

character at a time).

3. Each core will create two internal threads to

perform the parallel search as follows:

1) Thread number 1, match the index [i+1] and

thread number 2, match the index [i-1]. This step

runs in all cores in parallel. In case of matching,

then match the index [i+2], and index [i-2], until

getting match, or get mismatch. Fig. 7 depicts the

parallel search in all cores simultaneously.

2) All threads are independent of each other, and if

any one of the threads finds matching, the other

threads will stop searching process accordingly.

3) Read another new incoming packet payload.

Fig. 7. The parallel search in all cores simultaneously

IV. DESIGN AND IMPLEMENTATION

This section explains the design and implementation of

the proposed a new platform NIDS based on WEMA in

both sequential matching process, and load balance

matching process. For sequential matching process, the

incoming pack payload, and the payload rule set as an

example represents as shown in Table 2 and Table 3

respectively.

Table 2. Example of an incoming packet payload

abcd

Table 3. Example of payload rule set

payload rule sets

aabbdeabdebsabsd/bbaddaeessacceeaabcdddaaaaabes/…

jhfdahjfhfhdhfajhkriequriueqrueqdddjdksjdksjdad

A. Implementation of sequential matching process

The implementation of the sequential matching

process has the following steps:

1- Convert the payload rule set into weight. Table 4

depicts the weighted matrix "M" for the first row in the

rule set.

2- Create the array list "L" for the incoming packet

payload as shown in Table 5.

3- Determine the character in the incoming packet

payload, which has the minimum number of

occurrences.

Based on matrix "M". The minimum character

occurrences in the incoming packet payload is "c" (a=14,

b=9, c=3, and d=8).

4- Create the first attempt of the searching process by

selecting the first occurrence of the character "c",

which is 29, under the corresponding character in the

array list "L". Show Table 6 (first attempt).

Start

Preparing phase

Capture Engine

Apply an Action

Load balance all packets

among available cores

Match

Dispatch

No

Yes

Core 1, thread 1

(First occurrence

index)

Core n, thread 1

(Last occurrence

index)

Index

[i-1]

Index

[i+1]

Index

[i-1]

Index

[i+1]

Index

[i-2]

Index

[i+2]

Index

[i+n]

56 A New Platform NIDS Based On WEMA

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 52-58

5- Create the second attempt of the searching process by

checking the index [i-1], and index [i+1] in the array

list "L".

Table 4. Weighted matching matrix "M"

Alpha.

Char.

Indices of the rule set characters

1 2 3 4 5 6 7 … n

a(14) 1 2 7 13 20 23 28 44

b(9) 3 4 8 11 14 18 19 45

c(3) 29 30 36

d(8) 5 9 16 21 22 37 38

e(7) 6 10 24 25 31 32 46

s(4) 12 26 27 47

Table 5. Array list "L"

 Incoming packet payload = abcd

Index 1 2 3 4

Array list "L" a b c d

6- Reference to the matrix "M", "b" does not exist in the

index [i-1]. See Table 6 (second attempt). Therefore,

no match can get in this attempt, and then we will

examine the next occurrence of the character "c",

which is 30. See Table 6 (third attempt). Also no

match can get in this attempt. Thus, examine the last

occurrence which is 36 as shown by Table 6 (fourth

attempt).

7- As shown by Table 6 (fourth attempt), we can get an

exact matching between the incoming packet payload

and one of the payload rule set (full sequence: 34, 35,

36, and 37).

Table 6. Attempts of the searching process

 Incoming packet payload = abcd

Index 1 2 3 4

Array list "L" a b c d

First attempt 29

Second attempt b ≠ 28 29 ?

Third attempt b ≠ 29 30 ?

Fourth attempt a=34 b = 35 36 d=37

B. Implementation of load balance matching process

To enhance the overall performance of the searching

and matching process, the proposed NIDS based on

WEMA runs on a multi-threading technology. Pthread

techniques is used to load balance the incoming packet

payload among available cores.

As we have mentioned, all of the components works in

a sequential process, except the dispatch component. For

instance, to apply the multi-threading technology on the

previous incoming packet payload, the following steps

are incorporated:

1- Dispatch the weighted matrix "M", which depicts in

Table 4 among needed cores.

2- Determine the character in the incoming packet

payload, which has the minimum number of

occurrences based on matrix "M".

3- In each core, create the array list "L".

4- Create the first attempt of the load balance matching

process on each core, where each core will select one

different index of the minimum character occurrences

as shown in Table 7.

5- In each core, two internal threads will be created,

thread number 1 check matching with index [i-1], and

thread number 2 check matching with index [i+1] in

parallel. See Table 7 second attempt.

As shown in Table 7, an exact matching has been

occurred after only one attempt comparing with

sequential matching process, which needed four attempts.

V. RESULTS

The proposed NIDS based on WEMA is evaluated in a

sequential and in load balance manner. Both of these

evaluations are explained in details as follows:

A. Sequential evaluation process

Based on the hardware architecture, we read 450 to

10000 packets from the file. The payload rule sets had a

size of 50 KB. In order to evaluate the effectiveness of

the proposed NIDS based on WEMA, a comparison is

made with Boyer-Moore algorithm. The comparison

results can be viewed in Fig. 8.

Fig. 8. NIDS based on WEMA Vs Boyer-Moore algorithm

From Fig. 8, it can be seen that the performance of the

proposed NIDS based on WEMA and Boyer-Moore

algorithm are very close for the first 1200 packets. After

this point, it seems that the proposed NIDS based on

WEMA has a little bit advantage than Boyer-Moore

algorithm. However, it is clear that the proposed NIDS

based on WEMA is faster after 1200 packets as

compared to Boyer-Moore algorithm. This is a very

encouraging enhancement. The achieved improvement

was between 74% - 87%.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

9
0
0

1
2
0

0
2

5
0

0
3

0
0

0
4

5
0

0
5

5
0

0
8

0
0

0
1

0
0

0
0

T
im

e
(S

)

NIDS based on: WEMA Vs Boyer-Moore

WEMA

Boyer Moore

of Packets

 A New Platform NIDS Based On WEMA 57

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 52-58

Table 7. Attempts of load balance matching process

Incoming packet payload = abcd

Core 1 Core 2 Core 3

 Thread 1 Thread 1 Thread 1

Index 1 2 3 4 1 2 3 4 1 2 3 4

Array list "L" a b c d a b c d a b c D

First attempt 29 30 36

Second attempt b≠28 d≠30 b≠29 d≠31 a=34 b=35 36 d=37

B. Load balance evaluation process

We parallelized the proposed NIDS based on WEMA

within the same environment by using the Pthread

techniques. 450 to 10000 packets were read from the file.

The payload rule set was 50 KB size. The result of the

parallelized NIDS based on WEMA is shown in Fig. 9.

As depicted by Fig. 9, the performance of the first 900

packets is low, because in some cases there will be no

need to use the load balance process since the number of

the packets is small (the process of distributing the

packets over the threads needs time, which lead to

slowing the load balance process). When the number of

packets increased from 1200 packets to 10000 packets it

can be observed that the load balance process had been

enhanced from 1% to 47%.

In addition, the efficiency, overhead, and speedup of

the proposed NIDS based on WEMA of the load balance

evaluation process is in Fig. 10.

As shown by Fig. 10, the efficiency and overhead of

the load balance evaluation process are acceptable and

very close of each other. Concerning the speedup issue,

the speedup increase whenever the number of packets

increases.

Fig. 9. Sequential Vs load balance evaluation process Fig. 10. Efficiency, overhead, and speedup of the load balanced scenario

VI. CONCLUSION

The performance evaluation of the proposed NIDS

based on WEMA has been improved comparing with the

traditional NIDS based on Boyer-Moore algorithm. The

evaluation shows promising results in terms of

processing speed. Furthermore, it shows the ability of the

proposed NIDS based on WEMA to cope with large size

file with minimal required time processing.

On the other hand, we have fulfilled the objective in

enhancing the speed of detection engine in both

sequential and in load balance modes using multi-

threaded technology in a complete and scalable manner.

ACKNOWLEDGEMENT

I would like to thank Al-zaytoonah University of

Jordan for supporting this research paper.

REFERENCES

[1] Stallings, w. (2006). Cryptography and Network Security

[2] Muhammad Abedin, S. N. (2006), “Detection and

Resolution of Anomalies in Firewall Policy Rules, “IFIP

International Federation for Information Processing (pp.

15-29). E. Damiani and P. Liu (Eds.): Data and

Applications Security 2006, LNCS 4127,.

[3] Li, W. (2004), “Using Genetic Algorithm for Network

Intrusion Detection, “ In Proceedings of the United States

Department of Energy Cyber Security Group 2004

Training Conference (pp. 1-9). Mississippi : Mississippi

State University, Mississippi State, MS 39762.

[4] Sutapa Sarkar, and Brindha.M (2014), “High Performance

Network Security Using NIDS Approach, “ I.J.

Information Technology and Computer Science, 2014,07,

47-55 Published Online June 2014 in MECS

(http://www.mecs-press.org/) DOI:

10.5815/ijitcs.2014.07.07

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

9
0
0

1
2
0

0
2

5
0

0
3

0
0

0
4

5
0

0
5

5
0

0
8

0
0

0
1

0
0

0
0

T
im

e
(S

)

of packets

Sequential Vs Load balance evaluation process

WEMA

Load

Balance 0.00

0.50

1.00

1.50

2.00

2.50

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

9
0
0

1
2
0

0
2

5
0

0
3

0
0

0
4

5
0

0
5

5
0

0
8

0
0

0
1

0
0

0
0

of packets

speed up

efficiency

overhead

http://www.mecs-press.org/

58 A New Platform NIDS Based On WEMA

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 52-58

[5] Lecroq, C. C. (2004), “Handbook of Exact String

Matching Algorithm,“ King's College Publications

ISBN:0954300645.

[6] Zhou, Y. X. (2008), “Using Multi-core Processors to

Support Network Security Applications, “ 12th IEEE

International Workshop on Future Trends of Distributed

Computing Systems (pp. 213-218). IEEE-Computer

Society.

[7] Rafiq, A. E.-K. (2004), “A fast String Search Algorithm

for Deep Packet Classification,“ ELSEVIER-SCIENCE

DIRECT , 1524-1538.

[8] Rong-Tai Liu, N.-F. H.-N.-H.-C. (2004), “A Fast Pattern-

Match Engine for Network Processor-based Network

Intrusion Detection Systems,“ Proceedings of the

International Conference on Information Technology:

Coding and Computing (ITCC’04) (pp. 1-5). IEEE

Computer Society.

[9] Abdallah A. Hlayel, Adnan A. Hnaif, “A New Exact

Pattern Matching Algorithm (WEMA), “Journal of

Applied Science, 13(24), 2013. ISSN 1812-5654 /

DOI:10.3923/jas. Vol 14. 2013

[10] Edwin Verplanke, E. (2007), “Understand Packet

Processing With Multi-core Processors, “. EETimes-indea,

April 2007, pp.1-5.

[11] Bart Haagdorens1, T. V. (2004), “Improving the

Performance of Signature-Based Network Intrusion

Detection Sensors by Multi-threading, “Springer-Verlag

Berlin Heidelberg , 188–203.

Author’s Profiles

Dr. Adnan Hnaif is an Assistance

professor at the computer networks

department, Faculty of Science and

information technology, Al Zaytoonah

Private University of Jordan. Dr. Hnaif

received his PhD degree in Computer

Science from University Sains

Malaysia – National Advanced IPv6

Centre and Excellence (NAV6) in 2010.

He received his MSc degree of

Computer Science in 2003, and obtained his Bachelor degree of

Computer Science in 1999/2000. His researches focus on the

network security, exact matching algorithms, and parallel

processing. E-mail: adnan_hnaif@zuj.edu.jo

