
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/26445734

Distributed	Shared	Memory	Consistency	Object-
based	Model

ARTICLE		in		JOURNAL	OF	COMPUTER	SCIENCE	·	JANUARY	2007

DOI:	10.3844/jcssp.2007.57.61	·	Source:	DOAJ

CITATIONS

2

READS

41

2	AUTHORS,	INCLUDING:

Abdelfatah	A	Tamimi

Al-Zaytoonah	University	of	Jordan

31	PUBLICATIONS			38	CITATIONS			

SEE	PROFILE

Available	from:	Abdelfatah	A	Tamimi

Retrieved	on:	16	March	2016

https://www.researchgate.net/publication/26445734_Distributed_Shared_Memory_Consistency_Object-based_Model?enrichId=rgreq-b0603fa2-59c3-4bb9-8340-c914df2f303e&enrichSource=Y292ZXJQYWdlOzI2NDQ1NzM0O0FTOjIwMjg0NjU0NTk0NDU4MEAxNDI1MzczNzkzNTg0&el=1_x_2
https://www.researchgate.net/publication/26445734_Distributed_Shared_Memory_Consistency_Object-based_Model?enrichId=rgreq-b0603fa2-59c3-4bb9-8340-c914df2f303e&enrichSource=Y292ZXJQYWdlOzI2NDQ1NzM0O0FTOjIwMjg0NjU0NTk0NDU4MEAxNDI1MzczNzkzNTg0&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-b0603fa2-59c3-4bb9-8340-c914df2f303e&enrichSource=Y292ZXJQYWdlOzI2NDQ1NzM0O0FTOjIwMjg0NjU0NTk0NDU4MEAxNDI1MzczNzkzNTg0&el=1_x_1
https://www.researchgate.net/profile/Abdelfatah_Tamimi?enrichId=rgreq-b0603fa2-59c3-4bb9-8340-c914df2f303e&enrichSource=Y292ZXJQYWdlOzI2NDQ1NzM0O0FTOjIwMjg0NjU0NTk0NDU4MEAxNDI1MzczNzkzNTg0&el=1_x_4
https://www.researchgate.net/profile/Abdelfatah_Tamimi?enrichId=rgreq-b0603fa2-59c3-4bb9-8340-c914df2f303e&enrichSource=Y292ZXJQYWdlOzI2NDQ1NzM0O0FTOjIwMjg0NjU0NTk0NDU4MEAxNDI1MzczNzkzNTg0&el=1_x_5
https://www.researchgate.net/institution/Al-Zaytoonah_University_of_Jordan?enrichId=rgreq-b0603fa2-59c3-4bb9-8340-c914df2f303e&enrichSource=Y292ZXJQYWdlOzI2NDQ1NzM0O0FTOjIwMjg0NjU0NTk0NDU4MEAxNDI1MzczNzkzNTg0&el=1_x_6
https://www.researchgate.net/profile/Abdelfatah_Tamimi?enrichId=rgreq-b0603fa2-59c3-4bb9-8340-c914df2f303e&enrichSource=Y292ZXJQYWdlOzI2NDQ1NzM0O0FTOjIwMjg0NjU0NTk0NDU4MEAxNDI1MzczNzkzNTg0&el=1_x_7

Journal of Computer Science 3 (1): 57-61, 2007
ISSN1549-3636
© 2007 Science Publications

Corresponding Author: Abdelfatah Aref Yahya, Faculty of Science and Information Technology, Al-Zaytoonah University
of Jordan, P.O.Box 130, Amman 11733 Jordan

57

Distributed Shared Memory Consistency Object-based Model

Abdelfatah Aref Yahya and Rana Mohamad Idrees Bader

Faculty of Science and Information Technology, Al-Zaytoonah University of Jordan
P.O.Box 130, Amman 11733 Jordan

Abstract: A novel model that describes consistency in shared memory was developed, presented and
discussed. The new object-based model handles errors of inaccuracy and misrepresentation in
distributed shared memory process. The issue of misalignment was also covered.

Key words: Distributed, communication, object, memory, consistency

INTRODUCTION

 Distributed shared memory (DSM) systems
represent a successful hybrid of two parallel computer
classes: shared-memory multiprocessors and distributed
computer systems. They provide the shared memory
abstraction in systems with physically distributed
memories and consequently combine the advantages of
both approaches[1].
 A consistency model is essentially a contract
between the software and the memory. It says that the
software agrees to obey certain rules and the memory
promises to work correctly. If the software violates
these rules, all bets are off and correctness of memory
operation is no longer guaranteed[2,3].
 Different techniques have been suggested to keep
the consistency of the shared data. The techniques are
differentiated according to synchronization. The
consistency models that do not use synchronization are
also be known as "Strong consistency models"[2,4].
There are several models of this type, such as:
* Strict consistency: Absolute time ordering of all

shared accesses matters.
* Sequential consistency: All processes see all shared

accesses in the same order.
* Causal consistency: All processes see all casually

related shared accesses in the same order.
* PRAM consistency: All processes see a "write"

from each processor in the order they were issued.
Writes from different processors may not always
be seen in the same order.

* Processor consistency: PRAM consistency +
memory coherence.

 On the other hand the synchronization consistency
models are known as "Relaxed memory
consistency"[2,5,6]. Examples of such models are:
* Weak consistency: Shared data can only be

counted on to be consistent after synchronization is
done.

* Release consistency: Shard data are made
consistent when a critical region is exited.

* Entry consistency: Shared data pertaining to a
critical region are made consistent when critical
region is entered.

 In this study the problem of deviation and offset in
a distributed shared memory (DSM) is solved using a
novel object-based process and algorithm. The
environment of the system in this model is a pure
distributed machine, since each processor works as a
server and once again works as a client, depending on
the operation it will perform.

Design and development: The following design issues
where examined for this model:
a. Transparency: it is transparent and it has the single-

system image view. It works in the different
transparency concepts with Location Transparency:
the user can not know where the most recent value
is. For Migration Transparency: the user will not
feel the existence of other users in the system using
the same shared object if he has read only access,
but he will feel it if he has write access to the
shared object. Finally, Parallelism Transparency:
can only be achieved in read operation.

b. Flexibility: In general it is flexible, since the micro
kernel is used for interposes communication and
helps memory management.

c. Reliability: it considered to be reliable for the
Availability concept, since the fraction of time the
system is used in asking for the counter value and
receiving the answers is not too large if the system
contains a small number of machines. For the
Security concept, no other machine can access the
shared object if it does not have authorization. For
the Fault Tolerance concept, the system can work if
one or more of the machines have crashed.

d. Performance: it shows performance in general with
small number of machines in the system, but it may
need a big bandwidth if the system has a large
number of machines. If more than one machine ask
for the shared object at the same time, the
performance may become lower. Generally, in this
model consistency is achieved over the
performance.

e. Scalability: It may be not very scalable for a large
system.

J. Computer Sci., 3 (1): 57-61, 2007

 58

CPU1

0 0 0

CPU4

0 � 0

CPU2

0 0 0

CPU3

0 0 0

CPU5

0 0 0

CPU1

2 1 0

CPU4

9 6 0

CPU2

2 1 0

CPU3

4 3 0

CPU5

5 7 0

�

�

� �

�

CPU1

2 1 0

CPU4

9 6 0

CPU2

2 1 0

CPU3

4 3 0

CPU5

5 7 0

Busybit Counter Value

Fig. 1: Structure of the shared variable object

Fig. 2: The system in the initial state

Fig. 3a: CPU4 asks other CPUs for their counter values, looking for the highest counter

Fig. 3b: Each CPU5 returns its counter value to CPU 4

The object: In this model, the contract between the
software and the memory says that the structure of the
shared object is a record. The first field is the structure
of the object itself. In this field, the value and the type
of the object are defined. The second field, which is
important to the consistency model, holds the counter
value. This field indicates the number of modifications

to this object. From this counter value, the most recent
value can be determined by taking the value from the
object associated with the highest value of the counter.
A third field was defined to indicate the status of
the object, whether it is busy or not. This field is
denoted by busybit. Figure 1 shows the structure of this
object.

J. Computer Sci., 3 (1): 57-61, 2007

 59

CPU1

2 1 0

CPU4

9 6 0

CPU2

2 1 0

CPU3

4 3 0

CPU5

5 7 0

CPU1

2 1 0

CPU4

� 7 0

CPU2

2 1 0

CPU3

4 3 0

CPU5

5 7 0

Fig. 3c: CPU4 asks CPU5 for its object value and then CPU5 answers it

Fig. 3d: Final step. CPU4 changes its object value to 5, and its counter to 7, keeping the most recent value of the

object. The busybit in CPU 4 becomes 1, indicating that it is busy

The system: In the proposed model, the system has (n)
machines. The user of the system can determine the
value of (n). Each machine has its own memory. These
(n) machines are connected with each other through a
network and each machine access the shared object.
Each machine works as a server and as a client
depending on the operations it performs.
 All machines in the system have this shared object,
where the initial value of the object and counter is zero.
The busybit will also be initials zero (busybit = 1 means
it is busy, busybit = 0 means it is free). Figure 2 shows
the system in the initial state.
 If one of the machines (say M1) wants to access
the shared object, it should search for the highest value
of the counter in all machines including itself. It may
have one of the following cases:
(I) If all other machines have the same value or less

than what M1 has, this means it has the most recent
value (recall that the highest value of the counter
returns the most recent value of the object).

(II) If another machine found is to be the one which
has the highest value (say M2), then M1 should do
the following:

a. A remote access occurs using the IP address of M2.

b. M1 checks the busybit in M2 if it is 0 or 1.
c. If busybit is 0, M1 asks for the value of the objects

and the counter value in order to have the most
recent value, otherwise it should wait and try again.

 Figure 3a-d, show an example of the process of
searching for the highest counter value and the return of
the most recent value to maintain memory
consistency. Consider in this example that the object
is of type integer and CPU4 is attempting to write to
this object.
 There are three types of operations: a read only
(RO), write only (WO) and read and write (RW). The
type of an operation affects the status of the object to be
free or not. Any object, M1, should determine the type
of access it wants to have. Here is a brief description of
how these operations are interpreted.
* Read only (RO): M1 has the most recent value and

the value of counter and the busybit = 0. This
means that this object is not busy, so any other
machine can read this object in parallel with.

* Write only (WO): M1 has the most recent value
and the value of counter and the busybit = 1. This
means that this object is busy, so no other machine
can use it as shown in Fig. 2d.

J. Computer Sci., 3 (1): 57-61, 2007

 60

* Read and Write (RW): also M1 has the most recent
value and the value of counter and the busybit = 1.
This means that this object is busy and no other
machine can use it as shown in Fig. 2d.

In (WO) and (RW) cases, after M1 finishes accessing
the object it increments the counter by 1 and the busybit
becomes 0 once again.

RESULTS

 The Direct result of this work is an algorithm that
deals with all the mentioned problems in existing
systems. The algorithm answers the main question:
 What happened if two machines ask for the most
recent value at the same time? The solution comes from
time principal: the one, which asked first, will gain
access to it; the second machine will try again. If the
system is large, this should be solved by partitioning the
large system into subsystems, according to the number
of machines and then the subsystems can apply the
object-based model among the machines that receive
the results of the subsystems for the first time[7].

DSM object-based algorithm
* We have N machines.
* If a machine (M1) wants to access the object, first

it must determine the operation type.
* If the operation is Read Only (RO):
* M1 will search for the highest counter value in the

system in order to have the most recent value of the
object.

* It will get the object value from that machine
which has the highest counter value.

* Set the busybit to 0, so any other machine in the
system can use the object.

* If the operation is Write Only (WO):
* M1 will search for the highest counter value in the

system in order to have the most recent value of the
object as in (RO).

* It will get the object value from that machine
which has the highest counter value.

* Set the busybit to 1, to prevent any other machine
from accessing this object, by this it can access the
object exclusively and store the new value into it.

* At the end, it adds 1 to the counter value and sets
the busybit to 0.

* If the operation is Read And Write (RW), the same
procedure as in point 4 will be executed, but M1
may store a new value into object instead of the old
value.

DISCUSSION AND CONCLUSION

 Memory consistency is one of the most important
topics in Distributed Systems[8,9], since data must be as
consistent as possible to keep the work in the
distributed system acceptable and correct. In a general
model, synchronization variables or synchronization

operations are considered to give better performance
and more utilization of the system, since they try to
preserve consistency as much as possible.
 Object-based model is classified as a
"synchronization model". It uses a counter and a busy
bit to maintain consistency, differ in that from the
strong restrictive models and relaxed models. It may
have less performance than the relaxed models, but it
insures the consistency of shared objects.
In conclusion, a new object-Based DSM model is
developed with the following characteristics[10,11]:
1. Pure consistent: any machine wants the shared

object; it always has the most recent value of it. If
one machine asks for (RO), say (M1) and then after
a while another machine asks for (WR) or (WO),
say (M2), then there is no problem in value
consistency. Since M1 has really the most recent
value before M2 starts, even when M2 change the
value of the object, the value of M1 counter will
give a clear view that it has the value before M2
and also it indicates that it does not have the most
recent value now.

2. If one of the machines crashes, there will be no
problem, because even if it has the most recent
value, this value will crash with it. The machine,
which has the highest counter now, will become
the one, with the most recent value available to the
system.

3. In the case when Busy bit = 1 and other machines
want the object, they will simply try again.

4. It is efficient since it does not require a long time to
ask for and receive the highest value of the counter
and for the value of the object. Also, the requesting
machine asks each of the other machines
separately, which does not affect the work of these
machines.

5. It does not waste bandwidth since there is no need
to pass the most recent value to all other machines.
The one that needs a value can ask for it.

6. It is designed for multi-computers and can be
implemented on multiprocessors.

7. It is user-friendly and easy to be programmed.

REFERENCES

1. Scott, M.L., 2005. Shared memory computing on

clusters with symmetric multiprocessors and
system area networks. ACM Trans. on Computer
Systems, 23: 301-335, pp: 35.

2. Kistler, M. and A. Lorenzo, 2005. Improving the
performance of software distributed shared
memory with speculation. IEEE Trans. on Parallel
& Distributed Systems, 16: 885-896, pp: 12.

3. Huh, J., J. Chang, D. Burger and G.S. Sohi, 2004.
Coherence decoupling: Making use of incoherence.
Proc. 11th Intl. Conf. Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-XI), pp: 97-106.

J. Computer Sci., 3 (1): 57-61, 2007

 61

4. Katsinis, C., 2003. Models of distributed-shared-
memory on an interconnection network for
broadcast communication. J. Interconnection
Networks, 4: 77, pp: 26.

5. Acacio, M.E., J. Gonzalez, J.M. Garcia and J.
Duato, 2002. Owner prediction for accelerating
cache-to-cache transfer misses in a cc-NUMA
architecture. Proc. 2002 ACM/IEEE Conf.
Supercomputing (SC’02).

6. Chaudhuri, M. and M. Heinrich, 2004. SMTp: An
architecture for nextgeneration scalable multi-
threading. Proc. 31st Ann. Intl. Symp. Computer
Architecture (ISCA’04), pp: 124-135.

7. Krewell, K., 2003. Sun weaves multithreaded
future. Microprocessor Report.

8. Tam K.K., 2004. Sun’s Niagara pours on the cores:
Early details revealed at hot chips 16.
Microprocessor Report.

9. Krewell, K., 2005. Best Servers of 2004: Where
Multicore Is the Norm. In Microprocessor Report.

10. Cain, H.W. and M.H. Lipasti, 2004. Memory
ordering: A value-based approach. Proc. 31st Ann.
Intl. Symp. Computer Architecture (ISCA’04), pp:
90-101.

11. InfiniBand Trade Association, InfiniBand
Architecture Specification, Release 1.2, Oct. 2004.
Available from http://www.infinibandta.org.

