
International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013), pp.375-390

http://dx.doi.org/10.14257/ijseia.2013.7.6.32

ISSN: 1738-9984 IJSEIA

Copyright ⓒ 2013 SERSC

Requirements Analysis Modeling for Buyer-Driven E-commerce
Using ConGolog Agent-Oriented

Afaf Al-Kaddo1 and Afaf Al-Neaimi2
1Dept. of Computer Science, College of Education for Women,

University of Baghdad
2Dept. of Software Engineering, College of Science and IT,

Al-Zaytoonah University of Jordan
1Afafbad@yahoo.com, 2drafafn@zuj.edu.jo, afafmali@yahoo.com

Abstract
This paper describes an agent-oriented requirements engineering approach. Agent-

oriented techniques represent an exciting new means of analysing, designing and building
complex software systems. They have the potential to significantly improve current practice in
software engineering and to extend the range of applications that can feasibly be tackled. i *
can be used to model social dependencies between agents and how process design choices
affect the agents’ goals. Agent-oriented approaches are becoming popular in software
engineering, both as architectural frameworks, and as modeling frameworks for requirements
engineering and design. i* is an informal diagram-based language for early-phase
requirements engineering that supports the modeling of social dependencies between agents
and how process design choices affect the agents’ goals both functional and non-functional.
ConGolog is an expressive logic-based formalism for specifying processes that involves
multiple agents. The two formalisms complement each other well, and in this work, we used
the combination of the two frameworks in requirements engineering. The i* SR-diagram
language is extended with process specification annotations, which allow the SR model of a
system to be refined and then mapped into a ConGolog model. The mapping must satisfy a set
of mapping rules, which ensure that it specifies which elements in the two models are related
and that the models are consistent.

Keywords: Agent-oriented, Requirements Engineering, Buyer-Driven E-commerce, i*,
ConGolog

1. Introduction

To support the development of agent based systems, suitable software engineering methods
and tools are required. So far, most efforts in this area have been directed at the design phase
of software development. In this paper, we focus mainly on the requirements engineering
phase. The i* framework [1] was developed for early phase requirements analysis. But i* is
not a formal language and it has limited support for describing complex processes. ConGolog
[2, 3] is a formal language for process specification and agent programming. It supports the
formal specification of complex multiagent systems, but lacks features for modeling the
rationale behind design choices. The two frameworks complement each other well and it
would be good to have a methodology for using them in combination.

Agent orientation is emerging as a new paradigm for constructing software systems. New
kinds of systems are now being developed based on the concept of software agent. Agent
orientation is offering an exciting new way of thinking about what software is and how it

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

376 Copyright ⓒ 2013 SERSC

should be constructed. Agent orientation offers a higher level of abstraction for thinking about
the characteristics and behaviors of software systems. It can be seen as part of an ongoing
trend towards greater interactivity in conceptions of programming and software system
construction [4,5,6]. The concept of agent can be developed to serve as the central construct
in a new kind of modeling and analysis to respond to today's needs. The agent concept can be
instrumental in bringing about a shift to a much richer, socially-oriented ontology that is
needed to characterize and analyze today's systems and environments.

In this paper, we used an approach to the combined use of the i* and ConGolog
frameworks for requirements analysis. The i* framework will be used to model different
alternatives for the desired system, analyze and decompose the functions of the different
actors, and model the dependency relationships between the actors and the rationale behind
process design decisions. The ConGolog framework will be used to formally specify the
system behavior described informally in the i* model. the i* technique [7,8], which allows a
better description of the organizational relationships among the various agents of a system as
well as an understanding of the rationale of the decisions taken. The ConGolog model will
provide more detailed information about the actors, tasks, processes, and goals in the system,
and the relationships between them. To reduce the gap between i* and ConGolog models,
notation involving the use of process specification annotations in i* SR diagrams will be
introduced. A set of mapping rules to map the elements of the annotated SR diagram to
appropriate ConGolog entities and ensures that the two models are consistent will be used.
Finally, a method for combination both the i* and ConGolog frameworks are used for early to
late phase requirements engineering.

2. The i* Modeling Framework

The i* framework [1, 9] was developed for modeling and analyzing organizations to help
support business process reengineering and requirements engineering. The framework focuses
on modeling intentional and strategic relationships between actors. It consists of two models
— the Strategic Dependency (SD) model (represents the intention level) and the Strategic
Rationale (SR) model (represents the rational level). The SD model is used to capture the
network of relationships that hold among the actors. The SR model describes in more detail
the alternative methods that the actors have for accomplishing their goals and tasks. It helps
the modeler in understanding the existing processes, and in generating alternatives in order to
reach a new process design that better addresses the organization’s objectives.

SD model is a graph consisting of a set of actors (nodes) and links among the nodes. Each
node represents an actor, and each link between the actors represents how one actor depends
on another for something in order to accomplish a goal or task. The depending actor is called
the depender, the actor who is depended upon by another is called the dependee, and the
object on which the dependency relationship centers is called the dependum (can be a
resource, task, goal or softgoal). An actor can be an agent, a role, or a position. An agent is a
concrete, physical actor or subsystem. A role is a function in an organization. A position is a
set of roles played by one agent (actor) that is institutionalized in an organization. For
example, in a buyer-driven e-commerce process, the Customer As Buyer (a role) depends on
a Middleman As Seller agent to organize purchasing. The Customer As Buyer is a depender,
the Middleman As Seller is a dependee, and the goal “Service Be Purchased” is the dependum
in a dependency relationship that the Customer As Buyer has on the buyer-driven e-
commerce.

We can distinguish four types of dependencies: goal-, task-, resource-, and softgoal-
dependencies. In a goal-dependency, the depender (agent) depends on the dependee to bring
about some desired state. The dependee is free to decide how to achieve the goal on his own.

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

Copyright ⓒ 2013 SERSC 377

A task-dependency specifies that the depender (agent) depends on the dependee to complete
some activities (i.e., how the task is to be performed, but not what and why). A resource-
dependency specifies that the depender (agent) depends on the dependee for the availability
of an information or physical resource (entity). The soft-goal dependency is similar to the
goal dependency, except that the condition is not precisely defined at the start of the process,
i.e., the goals in a sense involves subjective aspects, that gradually are clarified during the
development process. A softgoal-dependency expresses that the depender depends on the
dependee to achieve a softgoal, i.e. a goal that can be achieved to varying degrees, and needs
to be optimized. In a dependency, the depender may be vulnerable in case that dependee fails
to bring about the dependum. There are three degrees of strength of dependencies in the SD
model: open (uncommitted), committed, and critical.

The Strategic Dependency model describes the network of intentional relationships among
actors. Actors depend on each other for goals to be achieved, tasks to be performed, and
resources to be furnished. These dependencies are intentional in that they are based on
underlying concepts such as goal, ability, commitment, belief, and so on [10]. The Strategic
Rationale (SR) model of i* model addresses this.

The Strategic Rationale model describes and supports the reasoning that each actor has
about its relationships with other actors, its alternative means to achieve its goals, and how
the qualitative expectations of actors are satisfied by these alternatives. Actors in i* are
strategic in that they evaluate their social relationships in terms of opportunities that they
offer, and vulnerabilities that they may bring. Strategic actors seek to protect or further their
interests.

The SR model is a graph consisting of four types of nodes (present in the SD model): goal,
task, resource, and softgoal nodes, and two types of links, means-ends links and task-
decomposition links. Task-decomposition links describe how a task can be decomposed into
subtasks or subgoals. Means-ends links specify how a goal may be achieved. They provide
information about why an actor would perform a task, pursue a goal, need a resource, or want
a softgoal. From the softgoals, the modeler can tell why one alternative may be chosen over
others.

2.1. The Strategic Dependency (SD) Model

Figure.1 shows a Strategic Dependency (SD) model for a buyer-driven ecommerce system.
In this system, there are 3 actor nodes (customer as buyer, middleman as seller and supplier),
the customer depends on a middleman to find a service provider who is willing to accept a
price set by the customer. The customer submits a priced request to a middleman. The
middleman forwards the request to suppliers. If a supplier decides to accept the request, it
makes an agreement with the middleman. The middleman expects the customer to pay for the
purchase in time.

In this system, each link between these agents/roles represents how one agent/role depends
on another for something, for example, the supplier depends on the middleman to attract more
customers, which in turn relies on the middleman having loyal customers. The customer
depends on the supplier for quality service (since the service is coming from the supplier, not
from the middleman). Finally, the scheme works only if the prices set by customers are
acceptable to suppliers.

The Strategic Dependency model distinguishes among several types of dependencies based
on the degree of freedom the dependee has and the ontological category of the dependum
when delivering the dependum to the depender. In a goal dependency, an actor depends on
another to make a condition in the world come true. In Figure1, the goal dependency Low

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

378 Copyright ⓒ 2013 SERSC

Price Service Provider be Found from the customer to the middleman means that it is up to
the middleman to decide how to find the low price service provider.

In a task dependency, an actor depends on another to perform an activity. The activity
description specifies a particular course of action. For example, the task dependency Name a
Price [Service] expresses that the customer depends on the middleman to name his own price
for the service in need by specifying the standard procedure for naming a price.

In a resource dependency, an actor depends on another for the availability of an entity. The
depender takes the availability of the resource to be unproblematic. In Figure1, the customer’s
dependency on the supplier for agreement on price is modeled as a resource dependency.

The fourth type of dependency, softgoal dependency, is a variant of the first. It is different
from a (hard) goal dependency in that there are no a priori, cut-and-dry criteria for what
constitutes meeting the goal. The meaning of a softgoal is specified in terms of the methods
that are chosen in the course of pursuing the goal. The dependee contributes to the
identification of alternatives, but the depender makes the decision. The notion of softgoal
allows the model to deal with many of the usually informal concepts. For example, the
customer’s dependency on the supplier for good quality service can be achieved in different
ways. The desired degree of how good the quality should be is ultimately decided by the
depender.

2.2. The Strategic Rational (SR) Model

The Strategic Rationale (SR) model provides a more detailed level of modeling by looking
“inside” actors to model internal intentional relationships. Intentional elements (tasks,
resources, goals, and softgoals) in SR models appear as external dependencies and as internal
elements linked by means-ends, task decompositions and contribution relationships.

Figure 2 is an SR model of the buyer-driven e-commerce system with middleman
corresponding to Figure 1. In this model, the internal rationale of the customer and the
middleman are elaborated. The customer’s main goal is that Service Be Purchased [Service],
for the customer as buyer this is an internal goal.

To achieve this goal, the internal task Purchase By Naming My Own Price [Service] must
be accomplish. This internal task is connected to the internal goal with a means-ends link, but
this task has two sub-elements connected to it through decomposition links – the sub-task
Name A Price [Service], and the sub-goal Low Price Service Provider Be Found. The
purchase task is achievable only if all its sub-elements are accomplish.

Naming one’s own price contributes positively (+) to the buyer’s softgoal of Low Price,
but negatively (-) to Flexibility [Purchasing] because preferences about schedule, choice of
airline, etc., could not be accommodated.

2.2. The Strategic Rational (SR) Model

The Strategic Rationale (SR) model provides a more detailed level of modeling by looking
“inside” actors to model internal intentional relationships. Intentional elements (tasks,
resources, goals, and softgoals) in SR models appear as external dependencies and as internal
elements linked by means-ends, task decompositions and contribution relationships.

Figure 2 is an SR model of the buyer-driven e-commerce system with middleman
corresponding to Figure 1. In this model, the internal rationale of the customer and the
middleman are elaborated. The customer’s main goal is that Service Be Purchased [Service],
for the customer as buyer this is an internal goal.

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

Copyright ⓒ 2013 SERSC 379

Figure 1. Strategic Dependency Model of a Buyer-driven e-commerce System

with Middleman

To achieve this goal, the internal task Purchase By Naming My Own Price [Service] must
be accomplish. This internal task is connected to the internal goal with a means-ends link, but
this task has two sub-elements connected to it through decomposition links – the sub-task
Name A Price [Service], and the sub-goal Low Price Service Provider Be Found. The
purchase task is achievable only if all its sub-elements are accomplish.

Naming one’s own price contributes positively (+) to the buyer’s softgoal of Low Price,
but negatively (-) to Flexibility [Purchasing] because preferences about schedule, choice of
airline, etc., could not be accommodated.

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

380 Copyright ⓒ 2013 SERSC

Figure 2. Strategic Rationale Model of a Buyer-driven e-commerce System with
Middleman

Figure 3. Strategic Rationale Model of a Seller-driven e-commerce System with

Middleman

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

Copyright ⓒ 2013 SERSC 381

Figure 3 shows the constructed of buyer-driven system. The Be Middleman goal is addressed
by an alternate task Provide Comparison Shopping Service. By doing this, the middleman is
more profitable as he could earn more revenue by maximizing the margin. The higher price
might impact Customer Attraction negatively, the middleman could regain some customer
attraction by Provide Good Purchasing Environment and the customer can enjoy more
Flexibility [Purchasing] at the same time and get overall satisfaction.

3. ConGolog Modeling Framework

ConGolog [2,3] is a framework for process modeling and agent programming, it is also a
language for high-level programming. ConGolog is an extension of the situation calculus for
modeling dynamic worlds and supports complex actions as well as a logic programming
language for agents. The ConGolog framework can be used to model complex processes
involving nondeterminism, loops, multiple agents, concurrency. Because it is logic-based, the
framework can accommodate incompletely specified models, either in the sense that the
initial state of the system is not completely specified, or that the processes involved are
nondeterministic and may evolve in any number of ways.

A ConGolog model of a domain includes two components. The specification of the domain
dynamics (how to model the state, what is the initial state of the domain, what actions can be
performed, when the actions can be performed and what their effects are). The specification
of the process of interest (behavior of the agents involved in the domain). A dynamic domain
in ConGolog and the situation calculus can be modeled using the following entities:
 • Actions: are functions denoting individual instantaneous events that change the state of

the world.
 • Agents: are agents to be modeled in the system; these are represented by constants, e.g.,

bd1, the customer as buyer.
 • Situations: are histories of the actions that have occurred, viewed as sequences of actions.

The initial situation S0(no actions have yet occurred) and the successive situations built
up using binary function do(B,S), denotes the situation which results from action
B being performed in situation S. The sequence of actions in a history, and the order in
which they occur, are obtained from a situation term. For example,
do(B3,do(B2,do(B1,s0))) represents the history of the sequence of actions
B1, B2, and then B3 are performed starting in the initial situation s0.

 • Primitive actions: all changes to the world are taken to be the result of named primitive
actions that are performed by some agent in the system; primitive actions are
represented by terms.

 • Fluents: these are predicates or functions representing relations, properties, or functions
whose value may change from situation to another and they are represented by symbols
that take a situation term as their last argument.

The dynamics of a domain are specified using three kinds of axioms:

■ Action precondition axioms: these axioms state the conditions under which an action can
be enabled(what preconditions must hold in order an action to be executable in a
situation); these use the predicate poss(B,S), which represents that action B is
possible(executable) in situation S. For example, in buyer-driven e-commerce domain, we
have the following precondition axiom:

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

382 Copyright ⓒ 2013 SERSC

poss(acceptAgreementReq(Middleman,BD,ReqID,Price),S)
≡ agreementReqRcvd(Middleman,BD,ReqID,Price,S)∧ LowPrice(Mi
ddleman,Price,S)

This says that in situation S, Middleman may perform the action of accepting a request
ReqID from BD to sell on Price if and only if he has received a request to that effect and
the price is OK for him.

■ Successor state axioms: these axioms specify how the fluents are affected by the actions in
the domain. For example, in buyer-driven e-commerce domain, we have the following
successor axiom:

agreementReqRcvd(Middleman,BD,ReqID,Price,do(A,S)) ≡
A = requestAgreement(BD,Middleman,Price) ∧ reqCtr(S) =
ReqID ∨ agreementReqRcvd(Middleman,BD,ReqID,Price,S)

This says that Middleman has received a request ReqID from BD to agree to sell on

Price in situation do(A,S) if and only if the action A is such a request and the value of the
request counter is ReqID or if he had already received such a request in situation S.

Successor state axioms can be generated automatically from a specification of the effects
of primitive actions if we assume that they specify all of the ways that the value of the fluent
may change. Successor state axioms were introduced in [11] and provide a solution to the
frame problem. [3] describes a convenient high-level notation for specifying the effects (and
preconditions) of actions and a tool that compiles such specifications into successor state
axioms.

• Initial situation axioms: these axioms specify the initial state of the modeled system. For
example:

 customerPrice(kk,s0)=[200], this says that agent kk has a price 200 in the initial
situation.

4. Combination Use of i* and ConGolog[12]

In i* SR diagram many aspects of processes are represented, but it is imprecise and
produce incomplete models. For instance, it is not specified if the subtask in a task
decomposition link is repeated or not (i.e., performed once or more). In a ConGolog model,
the process must be precisely and completely specified (non-deterministic processes are
allowed). We need to fill the gap between SR diagram and Conolog model. We will use a set
of annotations to SR diagrams that allow the missing information to be specified. We want to
have a mapping between the annotated SR (ASR) diagram and the ConGolog model to
specifies which parts are related of each model. This allows us identify which parts of the
ConGolog model need to be changed when the SR model is modified and vice versa. We
define a set of mapping rules that define what mappings are allowed to respect the semantics
of both frameworks.

4.1. Annotations of SR Diagram

Two types of annotations are defined: composition annotations and link annotations.
Composition annotations are applied to groups of decomposition links in the SR model. These
annotations explain how the linked subtasks/subgoals are to be composed in order to perform
the super task/goal.

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

Copyright ⓒ 2013 SERSC 383

Figure 4. Sequence Annotation Applied to a Group of Decomposition Links

There are four types of composition annotations: sequence “;”, alternative
(nondeterministic branch) “|”, concurrency execution “||”, and concurrency with different
priority “>>”. For example, in Figure 4, if we put sequence annotation “;” on the links as the
subtasks/subgoals are to be sequentially performed left to right to complete the decomposed
task.

Link annotations are applied to individual decomposition links connecting a task/goal with
the linked subtask/subgoal. Link annotations describe what condition the subtask/subgoal is to
be performed and whether it should be perform once or more. There are five types of link
annotations: the while-loop annotation “*while(condition)”, the for-loop annotation
“*for(variable,listOfValues)”, the interrupt annotation “*whenever(variableList,condition)”,
the if annotation “if(condition)”, and the pick annotation “pick(variableList,condition)”. The
first three are for iterating the subtask/subgoal, and the last is for non-deterministic picking
values for the variables in the subtask that satisfy the condition. All of the annotations
correspond to ConGolog operators and are taken to have the same meaning.

4.2. Mapping Rules

We must define a mapping m from the annotated SR (ASR) diagram elements to the
entities in the ConGolog model. We define mapping rules that respect the rules, which arise
from the semantics of the two formalisms to ensure consistency between the ASR model and
the ConGolog model. There are two sets of mapping rules:

4.2.1. Mapping Rules for SR Diagram Nodes

We have to define mapping rules for each type of nodes in the ASR model (i.e. agent,
goal, task, role, and position nodes). These ensure that the nodes are mapped into appropriate
ConGolog entities.

■ Rule for agent nodes is:

If gn is an agent node, b(gn)=<ag, ag_behavior>, where ag is a ConGolog agent and
ag_behavior is a ConGolog procedure representing the behavior of the agent.

We use b_agent(gn) to refer to the agent ag and b_behavior(gn) to refer to the agent’s
behavior ag_behavior.

■ Rule for role/position nodes is:

If gn is a role/positiont node, b(gn)=gn_behavior, where gn_behavior is a ConGolog
procedure representing the behavior associated with the role/position.

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

384 Copyright ⓒ 2013 SERSC

■ Rule for task nodes is:

If gn is a task node, b(gn)=t, where t is a ConGolog procedure or primitive action
representing the task.

■ Rule for goal nodes is:
If gn is a goal node, b(gn)=<g, achieve_g>, where g is a ConGolog fluent (primitive or
defined) and achieve_g is a ConGolog procedure specifying a selected set of means for
achieving the goal which the agent will perform when he adopts it.

We use b_fluent(gn) to refer to the fluent g and b_achieve(gn) to refer to the procedure
achieve_g.

4.2.2. Mapping Rules for SR Diagram Links

The two types of links in the ASR model, task decomposition links and means-ends links
have mapping rules. The task decomposition links' mapping rule is as follows:

If t is a task node that is decomposed into nodes n1,..,nk by task decomposition links,
where a composition annotation g is applied to the group of decomposition links and link
annotations yi are applied to the individual decomposition link between t and ni , i.e.,

then m(t) must be a ConGolog procedure of the form:

where γ ’(ψi ’) is the ConGolog operator corresponding to the annotation γ (ψi) and
m_proc(ni) is the ConGolog procedure associated with node ni, i.e. m(ni) if ni is a task node
and m_achieve(ni) if ni is a goal node. Thus, the body of the ConGolog procedure associated
to a task node t must be exactly as specified by the decomposition defined for t in the ASR
diagram. It should be straightforward to automate the translation. The mapping rule for
means-ends links (goal decomposition links) is very similar to the one above. Essentially, it

proc(t(parameterList),
ψ1’(m_proc(n1))
γ’

ψ2’(m_proc(n2))
γ’
…
γ’
ψk’(m_proc(nk))
)./*end of procedure*/

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

Copyright ⓒ 2013 SERSC 385

requires that the b_achieve(bg) procedure associated with a goal node bg be as specified by
the decomposition defined for bg in the ASR diagram. There is one additional requirement:
that the fluent associated with the goal b_fluent(bg) be true when the procedure completes
execution.

5. Operationalization

The dependencies between agents, roles and positions in the SR model indicate that the
depender depends on the dependee to accomplish one of his tasks or goals or to supply some
resource. The i* SR model abstracts all details of the associated interactions between the
agents (requests, communication/interaction protocols). The ConGolog model focuses on the
operational aspects of processes rather than their strategic/social aspects. Dependency
relationships themselves are not represented in the ConGolog model. Instead, the modeler
operationalize the dependencies in the ASR model. After this, the tasks and goals that result
are mapped into ConGolog. The details of how a dependency is operationalized depends on
the particulars of the case and must be filled in by the modeler.

5.1. A Method to Combine Use of i* and ConGolog Frameworks

1). Building the Strategic Dependency (SD) Model for the Application.

The SD model specifies the agents, roles, positions, and the intentional dependency
relationships between them for the application.

2). Building the Strategic Rationale (SR) Model for the Application.

The SR model identifies the tasks/goals/softgoals inside the agents, roles, and positions,
the decompositions of the tasks/goals, and the contributions of the various alternatives to the
softgoals. Dependency relationships are specified between nodes inside the
agents/roles/positions.

3). Building the Annotated Strategic Rationale (ASR) model for the application.

This involves the following substeps:

• Reduce unnecessary information from the SR model. Softgoals and their links and
dependencies are suppressed.

• Goals that cannot always be achieved are weakened/conditionalized.
• Operationalizing the dependencies: Specified the interactions through which the

task/goal/resource dependencies are realized by the actors.
• Using annotations to fill out process details and to specify how goals and tasks are to be

composed. Every task/goal will be decomposed into atomic subtasks/subgoals if
applicable.

4). Developing the Initial ConGolog Model

Maps elements in the ASR model into entities in the ConGolog model while conforming to
the mapping rules; complete the initial ConGolog model by specifying the fluents, primitive
actions, precondition axioms, and successor state axioms for the system.
 Repeat steps 1 to 4 until objectives are met.

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

386 Copyright ⓒ 2013 SERSC

Whenever the i* model or ConGolog model has to be modified based on the results of the
validation step, the modeler refines the corresponding part of the other model. This continues
until the objectives are accomplished.

5). Producing the Requirements Specification Document.

Steps 2, 3, and 4 could be performed in sequence, but need not be. Instead, work on
different tasks/goals, decomposing/refining them, and introducing annotations and ConGolog
domain specifications.

6. Buyer Driven E-commerce Process

6.1. Building SD Model

A strategic Dependency (SD) model was shown in Figure 1. The SD model specifies the
dependencies that actors have on each other to make the modeler understanding of the "why"
behind the process.

6.2. Building SR Model

The SR model of Buyer-driven ecommerce was shown in Figures 2 and 3. The SR model
shows more detailed level of modeling is performed by looking "inside" the actors to model
internal relationships.

6.3 Refinement of Annotated SR Model

Annotated SR diagram is a more detailed description of the process and that can be
mapped into a ConGolog model. Figure 5 shows the buyer part because the diagram is large.
This diagram is developed in stages: Simplify the SR model by suppressing unnecessary
information from the SR model, we simplify the SR diagram by suppressing softgoal nodes
and their links with other nodes from the initial SR model because these are not relevant to
mapping the SR model into a ConGolog model. Relativizing goals that cannot Always be
accomplished, In Figure 3, the goal “Service Be Purchased [Service]” is accomplished only
when prices set by customers are acceptable to suppliers. To allow for failure, this will
weaken the goal to “Service Benn Purchased [Service]”, which is accomplished once the
supplier with low price is found. The scheme of achieving this goal are refined into “try
obtain agreement on price [P]” and “try to find low price provider” in the customer and “try
to find agreement price[P]” in the Middleman. Using annotations to fill out process details,
annotations are added to specify how subtasks are composed and whether they are iterated or
conditional Figure 5.

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

Copyright ⓒ 2013 SERSC 387

Figure 5. The Annotated SR Model for the Middleman

For example, in the shadowed area of Figure 4, the task node “try agree on price[p]” is
decomposed into two subtask nodes “reply agree on price[p]” and “cancel agree on price[p]”,
and the group of decomposition links is labeled with the concurrency annotation “||”, meaning
that the two subtasks will be performed concurrently. The link connecting the node “reply
agreement” with “try agree on price[p]” is accompanied by the annotation
“*whenever(requestedAgreement)”, which means that whenever there is a request for
agreement from the customer, the task “reply agreement” will be performed.

6.4. Developing the ConGolog Model

We have to map entities in the ASR diagram into corresponding elements of a ConGolog
model. Bellow some examples explaining the mapping rules to obtain the initial ConGolog
model. First, all nodes must be mapped. For example, the behavior of the role node
“Middleman” is mapped into a ConGolog procedure as follows:

The second example the task node "try agree on price[p]" in the shadowed area of Figure.4,

is mapped into ConGolog procedure as follows:

All links must be mapped. The task node “try agree on price” is decomposed into subtasks

“reply agreement” and “cancel agreement on price” these subtasks are performed
concurrently whenever an associated condition holds.

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

388 Copyright ⓒ 2013 SERSC

After mapping, we must specifying the domain dynamics. Primitive actions and fluents are
used to model the features of the domain. Successor state axioms will be used to model how
the primitive actions affect the fluents. The ConGolog domain specification includes:

 A primitive action acceptAgreementReq(Middleman,BD,ReqID,Price), that models
the action of the Middleman to accept the request ReqID from the BD to sell on
price[p].

 An exogenous action occupyDateFromMiddleman(Middleman,Price), that models an
action by an agent outside the system which causes the Middleman to occupy Price.

 A predicate fluent occupyAcknowledged(Middleman,Price), that models the fact that
the occupation of the Priceon Middleman’s price has been acknowledged (in response
to the exogenous action described above).

 A functional fluent MiddlemanPrice(Middleman), whose value is the price.
 A defined fluent waitingForAgreemeentAnswer(BD,Middleman,Price,Selling), that

models the fact that the BD is waiting for the Middleman to agree to have the Selling
on Price.

A successor state axiom for each primitive are specified. For example, the successor axiom

for the fluent occupyAcknowledged(Middleman,Price) is as follows:

 holds(occupyAcknowledged(Middleman,Price),do(A,S)):-
 A = acknowledgeOccupy(Middleman,Price);
 holds(occupyAcknowledged(Middleman,Price), S).

This says that a request to occupy a Price has been acknowledged in the situation that is the

result of doing action A in situation S if and only if action A is to acknowledge this
occupation, or if the occupation has already been acknowledged in situation S.

We specify an action precondition axiom for each primitive action. For example, the
precondition axiom for the action acceptAgreementReq(Middleman,BD,ReqID,Price) is as
follows:

 poss(acceptAgreementReq(Middleman,BD,ReqID,Price),S):-
 holds(agreementReqRcvd(Middleman,BD,ReqID,Price),S),
 holds(dateFree(Middleman,Price),S).

This says that the action can be performed in situation S if Middleman has received a
request ReqID from BD to sell on Price

6.5. Simulation and Validating of the ConGolog Model

A complete ConGolog models can be executed to run process simulation experiments. To
do this, the modeler must first specify an instance of the overall system. We do this by
defining a main procedure, for example:

proc(main,[customer_behavior(init1,bd1)#
middleman_behavior(bd1,init1) #
supplier_behavior(agn,bd1) #]).

Here, there is a customer agent init1, a middleman bd1, and a supplier agn. # is the
concurrent execution operator in the ConGolog implementation.

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

Copyright ⓒ 2013 SERSC 389

6.6. Producing the Requirements Document by Refining the i* and ConGolog Models

The above steps will be repeated if inadequacies or errors are found in the modeled. If after
specifying the ConGolog model and performing simulation, we determine that the i* model
lacks some element of the desired requirements, so, it will be modified appropriately.
Similarly if we find that the ConGolog model needs an additional details or aspects of the i*
model, modifications will be made to it. A requirement specification document is produced,
once a satisfactory model of the required system has been developed.

7. Conclusion

We used an approach to requirements engineering that integrates the two frameworks the
i* and ConGolog. i* can be used to model social dependencies between agents and ConGolog
can be used to model complex processes formally. The advantages of using the two
frameworks are:

■ Extended i* SR diagrams by using a set of process specification annotations. By using
annotated SR diagrams, we can provide a precise specification of the processes of interest,
and the producing diagrams can then be mapped directly into a ConGolog model.

■ Using a set of mapping rules to constrain the modeler to map the annotated SR diagram
into ConGolog model and ensure that the models are consistent. This allows the modeler
to trace corresponding elements in the two models when changes are made.

References
[1] Yu, E. S. K., "Modelling Strategic Relationships for Process Reengineering", Ph.D. thesis, Dept. of

Computer Science, University of Toronto, Toronto, ON, (1995).
[2] G. De Giacomo, Y. Lespérance and H. J. Levesque, “ConGolog, a concurrent programming language based

on the situation calculus”, Artificial Intelligence", vol. 121, (2000), pp. 109-169.
[3] Y. Lespérance, T. G. Kelley, J. Mylopoulos and E. S. K. Yu., “Modeling Dynamic Domains with

ConGolog”, Advanced Information Systems Engineering, 11th International Conference, CAiSE-99,
Proceedings, Heidelberg, Germany, LNCS, Springer-Verlag, Berlin, vol. 1626, (1999) June, pp. 365-380.

[4] A. Newell, “The Knowledge Level”, Artificial Intelligence, vol. 18, (1982), pp. 87-127.
[5] D. G. Bobrow, “Dimensions of Interaction":AAAI-90 Presidential Address”, AI Magazine, vol. 12, no. 3,

(1991), pp. 64-80.
[6] G. Wagner, Y. Lesperance and E. Yu, “Agent-Oriented Information Systems 2000”, Proceedings of the 2nd

International Workshop at CAiSE*00, Stockholm, iCue Publishing, Berlin. ISBN 3-8311-0093-4. See also
http://aois.org, (2000) June.

[7] E. Yu and J. Mylopoulos. “Understanding "Why" in Software Process Modelling, Analysis, and Design”,
Proceedings of the 16th International Conference on Software Engineering, 16th International Conference on
Software Engineering (ICSE’94) Sorrento, Italy, (1994), pp. 159-168.

[8] P. Traverso, “Specifying and analizing early requirements in Tropos”, Requirements Engineering Journal,
vol. 9, no. 2, (2004), pp. 132-150.

[9] E. S. K. Yu, “Towards Modelling and Reasoning Support for Early-Phase Requirements Engineering”, Proc.
of the 3rd IEEE Int. Symp. on Requirements Engineering (RE’97), Washington, DC, (1997), pp. 226-235.

[10] E. Yu, “Modelling Strategic Relationships for Process Reengineering”, Ph.D. thesis, also Tech. Report
DKBS-TR-94-6, Dept. of Computer Science, University of Toronto, (1995).

[11] R. Reiter, “The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes) and a
Completeness Result for Goal Regression”, Artificial Intelligence and Mathematical Theory of Computation:
Papers in Honor of John McCarthy, V. Lifschitz, Academic Press, San Diego, CA, (1991), pp. 359-380.

[12] X. Wang and Y. Lespe'rance, “Agent-Oriented Requirements Engineering Using ConGolog and i*”, Dept. of
Computer Science, York University, Toronto, On, M3J 1P3, Canada, (2002).

International Journal of Software Engineering and Its Applications

Vol.7, No.6 (2013)

390 Copyright ⓒ 2013 SERSC

	Requirements Analysis Modeling for Buyer-Driven E-commerce Using ConGolog Agent-Oriented
	Abstract

