[bookmark: _GoBack][image:]

[image:][image:][image:][image:]
image1.jpg
© Medwell Journals, 2007

Asian Journal of Information Technology 6 (5): 567-575, 2007

A New Public-Key Cryptosystem Based on Mandelbrot
and Julia Fractal Sets

Mohamma

Ahmad Alia and Azman Bin Samsudin

School of Computer Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

Abstract: In this study, we are proposing a new cryptographic public-key encryption protocol based on
Mandelbrot and Tulia fractal sets. The fractal based public-key encryption protocol is possible because of the
strong connection between the Mandelbrot and Julia fractal sets. In the proposed protocol, Mandelbrot fractal
function takes the chosen private key as the input parameter and generates the corresponding public-key. Julia
fractal function is used to cipher the plaintext with receiver's public key and decipher the ciphertext based on

the receiver's private key. The propose:

based public-key encryption protocol.

protocol is designed to be resistant against attacks, utilize small key
size and perform comparatively faster than the existing RSA public-key encryption protocol.
fractal public-key encryption protocol is, therefore, an attractive alternative to the traditional

The proposed
number theory

Key words: Fractals cryptography, public-key encryption protocol, Mandelbrot fractal set and Julia fractal set

INTRODUCTION

Encryption based cryptography algorithms are
divided into two categories: Secret-key (symmetric)
algorithm and public-key (asymmetric) algorithm. In
general, a security protocol uses public-key cryptosystem
to exchange the secret key between communicating nodes

and then uses secret-key cryptosystems with the agreed
secret key as the password to ensure confidentiality on
the data transferred (Branovic et al., 2003; Menezes et al.,
1996). Symmetric algorithms are used to encrypt and
decrypt messages by using the
Public-key encryption algorithms work in a different way.
In these algorithms, there is a pair of keys, one of which is
known to the public and used to encrypt the plaintext.
The corresponding ciphertext is then send to the receiver
who owns the corresponding decryption key, also known
as the private key.

RSA (Rivest et al., 1978) was the first public-key
encryption protocol published based on the public-key
characteristic proposed earlier by Diffie-Hellman (1976).
RSA public-key encryption is based on the difficulty of
factoring a number, resulted from a multiplication of two
prime numbers (Stallings, 2003). This study proposed a
new fractal (based on Mandelbrot and Julia fractal sets)
public-key encryption protocol as a secured method to
encrypt and decrypt information. The working of the
proposed protocol depends on the strong connection
between the Mandelbrot and Julia sets in their special

same secret key.

functions, Mandelfn and Juliafn functions (Giffin, 2006)
which generate the corresponding private and the
public keys.

FRACTALS

A complex number consists of a real and imaginary
number components (Fig. 1). It contains i, the imaginary
unit, where i* = -1 (Patrzalek, 2006). Every complex
numbers therefore can be represented in the form of a+bi,
where a and b are real numbers. For example, Fig. 1 shows
a point in a complex plane with coordinate 3 on real axis
and 2 on the imaginary axis. The sum and product of two
complex numbers are formulated as shown by Eq. 1 and 2.

(G+2i)

Real

Fig. 1: Complex numbers planes

Corresponding Author: Azman Bin Samstudin, School of Computer Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

image2.jpg
Asian J. Inform. Tech., 6 (5): 567-575, 2007

PUBLIC-KEY ENCRYPTION BASED ON THE
MANDELBROT AND JULIA FRACTALS SETS

Mandelbrot and Julia fractal shapes contain complex
number points, computed by the recursive functions
(Eq. 3 and 4). In this study we are using Mandelbrot and
Julia properties to design a new public-key encryption
protocol. In this study, with the aids of Fig. 5, we briefly
explain the propose idea of the fractal encryption
protocol.
In the proposed protocol, sender and receiver must
agree and use a public domain value, c. The receiver, Bob,
will generate e and n as the private keys, while the sender,
Alice, generates k and d as her private keys. Sender and
receiver use their private values as well as the value ¢ as
inputs to the Mandelbrot function to produce the public-
keys z,d and ze. Then Bob and Alice must exchange the
public keys. Alice will obtain Bob’s public key, z,d and
uses this value together with her private key and the
plaintext, as inputs to the Julia function to produce the
ciphertext V, which will then send to Bob. Bob must
obtain Alice’s public-key, ze and the ciphertext V from
Alice which will be used as input values together with his
own private key to Julia function, to decipher the
ciphertext V.

Sender (Allice)

@
e

I

NON

5 ¥

fi |

)

I

* ¢ is global information

Fig. 5: Fractal public-key encryption protocol

Mandelfn and Juliafn function of the Mandelbrot and
Julia fractal sets: In this study, we use a specific
andelbrot function, Mandelfn and similarly, a specific
TJulia function, Juliafn (Alia, 2007). An example of image
generated from the Mandelfn and the JTuliafn is shown
in Fig. 6. In Mandelfn and Juliafn functions, we can
substitute the function f() in Eq. 5 and Eq.6 with well
nown equations such as sin(), cos(), exp(), etc.
However, the value which is generated by Mandelfn must
reside within the Mandelbrot set and similarly, the value
generated by Juliafn must reside within Julia set
(Giffin, 2006). In our protocol we set f() as shown by
Eq. 7 for Mandelfn function and Eq. 8 for Juliafn function.

z(nt1) = oxf (z(n)) ®)

f(z(n)) = z,,%cxe;z,c,e €C;neZ ©)

In this study we will describe fractal public-key
encryption in details (Fig. 7). The first step of the
proposed protocol is to generate the private key and
public-key by wusing Mandelbrot function Mandelfn

Eq. 7 and Julia function Juliafn Eq. 8

z(n+)=cxf(z(m), z(0)=c;c,zeC,neZ O]

Reciver (Bob)

i uation,
4
|
N
3
[¥] |
Plain fext V) ?®

570

image3.jpg
Asian J. Inform. Tech., 6 (5): 567-575, 2007

Fig. 6: Mandelfn and Juliafn image (Giffin, 2006)

[ooms]
-kxmnndomimaym,whmxmmdkislprivmvlhes.i X are random integers, where x<k and n is a private values.)
-¢ is a complex number eMandelbrot set and e is Alice,s 1 is a complex numbere Mandelbrot set and d is Bob,s
private value H private value
Sender (Alice) | Receiver (Bob)
4 0 o4 | i o g o o

Z=cxf (@) 4= cxl ()
© || SiSusersnce

[II("]

7= oxf (z,.)
> f(z) = z.xcxe, 7, = 2d

V=% (@zdK+M
(ciphertext)

Fig. 7: Fractal public-key encryption algorithm

z+1)=cxfzm), zO) =y, v.ozeCnez (8 private key and then send the public key to the sender.
The sender will then generates his public key by using
As shown in Fig. 5 earlier, fractal public-key — Mandelfn functionand send it to the receiver.
encryption protocol involves sender and receiver. The
receiver must generate the public key from the chosen Z.d=z,,xc**d,z,c,d €C;neZ ()

571

image4.jpg
Asian J. Inform. Tech., 6 (5): 567-575, 2007

z,d is the generated public-key, generated by
receiver by executing Eq. 9 (Step 1 of Fig. 7).

receiver’s private key is the value (d, n). Similarly for the

sender, with the private value of (e, k), the sender

produce the corresponding public key, ze (Step 3
from Fig. 7) generated by using Mandelfn as shown by

Eq. 10.

Ze =7, xc'xe; z,c.e € CikeZ
In step 5 and 6 (Fig. 7), executing Juliafn by
sender will encrypt the
Vi 1 hertext V, will then send to the recei
Similarly (Fig. 7, Step 7), the receiver will execute Tulia!
produce W which then is used to recover back
plaintext M (Fig. 7, Step 8).

It is impossible to mount a ciphertext attack on
proposed protocol because of the iteration, k and
variation constant e, which are unknown to the pul
Hence, we can identify that the hard
proposed fractal public-key encryption is through
chaos property of the fractal function which in this
depends on the key selection. This is true since
generated complex value (zd and ze) produced

he cij

roblem for

Mandelfn depends on the number of iterations, n, as well

as the variation constant, d and e which makes
Mandelfn values jump path chaotically.
attack on the private values, given that
represented

d and e to be represented by a 128-bit value which shoul

(10)

plaintext to produce the ciphertext

Chis will prevent
and e are being
appropriately. We are suggesting the value of

the
The

will

the

ver.
nto
the

the
the
lic.

he

il
the

case

the
y

the

protocol. The process from Fig. 7, Step 5 is also being
illustrated by Eq. 11. The corresponding decryption

proce;

ss, which is Step 7 of Fig. 7 is further illustrated by

Eq 12

Table 2
proposed protocol.

numb

V= ¢k x (z,d)e+M; (
V,cede CnxkeZ;MeR

)

W= ¢"*x (z.),d; (
W,c,e,de C; nx,keZ

2)

shows a working example of the
In this example each complex

er is being represented by a 64-bit value. We

use GMP (http://swox.com/gmp/, 2006) to simulate

the

public information, ¢, is initialized to a complex val

64-bit complex numbers. In this example, the
ue

(-0.022134) + (-0.044)1 and variable x is initialized to 3

(The

Eq. 13 and 14. The value x can be

At

value of x is used to reduce the final calculation,
set to 0, if desired).
receiver and sender need to

the beginning,

choose their private keys (Table 2). Then they have
to calculate the corresponding public keys by using

the
Table
key)
both

Mandelbrot function, Mandel

fn, as shown by

2. These values zd (receiver’s public
and ze (sender’s public key). Table 2, shows

parties exchanging their public keys. Following

are

this process is the calculation of the ciphertext by

give 2128 possibilities for every value of n that is being ~ using Julia function, Juliafn. Sender will produce the

brute force. cipher value, V, after executes the Juliafn with input
After exchanging the public keys (Step 2 and 4 from parameters k and d (sender’s private key) as shown by

Fig. 7) and executing the Juliafn function (Step 5 and 7 Table 2. Table 2 shows the decrypted value M, after the

from Fig. 7), sender Alice and receiver Bob had completed Juliafn is executed with parameters n and e (receiver’s

the proposed secured encryption and decryption private key).

Table 2: Example of fractals based public-key encryption protocol

No. Description Reciever Sender

1 Choose ¢ = -0.022134+-0.044 from Mandelbrot set

2 Generate the private keys n=4 k=6

d=10.0134078079299425970 -

0.013407807929942597

3 Generate the public
keys z,d and ze by
using Mandelfi

zd=

4 Exchange the
public keys z,d and
ze between sender +
and reciever

3 Sender must find
v = cipher text by
Juliafn and then send V to the reciever.

6 Reciever must
calculates W by executing Juliafh to decrypt V.

ze =

0.0231483882363480530143 +
0.00465248587376768622462

0.00000000321672413221113239634

M = 0.0098765 + 0.00124078

e 0.013407807 +- 0.043407807929%4
m = 0.0098765+0.00134078

Ze=

0.00000000321672413221113239634

+

0.00000000228353112880313296451

z,d = 0.0231483882363480530143 +
0.00465248587376767622462

0.00000000228353112880313296451
V = 0.008459434591 73841256126+

V =0.002045673250788008458726

572

image5.jpg
Asian J. Inform. Tech., 6 (5): 567-575, 2007

Table 3: Key spce comparison between fractal based public-key encryption and RSA

Key size Fractals key space SA (primes) key space

8-bit 256 54

16-bit 65536 6542

32-bit 4294967296 193635250

64-bit 18446744073709551616 415828533893661771

128-bit 3.402823669209384634633¢+38 3.835341275963952949425+36
192-bit 6.277101735386680763835e+57 9.0477596284213696494797e+52
256-bit. 1.157920892373161954235¢+77 6.5254950440278514658199¢+74
512-bit 1.34078079299425970995e+154 3.77800352227868776256e+151

Fig

the

eC

are
Ol

can

spa

or

. 8 Key space comparison between fractal key and
RSA encryption implementation

KEY SIZE

The chaotic nature of the
security of the proposed

ractal functions ensures
protocol. However, to

revent a brute force attack, the choice of the key size

omes crucial. The key space in fractal public-key

encryption depends on the size of the key. For example in
28

its key, there are 2128 possible key values. RSA keys
undamentally different from fractal keys. The RSA
tocol depends on large prime numbers (Fig. 8). The

128-bit RSA key space is limited by how many primes exist
in the finite field of Z,, where p is the largest prime that

e represented by a 128-bit value. Therefore, RSA key

space is considerably smaller than the fractal key space
or a given finite field (Diffie, 1976). Table 3 shows the

ey
ey

ce for both RSA and the proposed fractal public-

encryption algorithms for a given key size. The key space

SA was calculated based on the number of primes

existed for particular key sizes. The calculation was based
on Eq. 13 (Caldwell, 2006).

13)

No. of prime in [0,n) =n/logn; ne Z.

PERFORMANCE EVALUATION BASED ON

EQUIVALENT KEY SIZES FOR FRACTAL AND

publ

PUBLIC-KEY ENCRYPTION PROTOCOL

We compare the performance of the fractal based
lic-key encryption protocol against the well known

573

Table4: Performance evaluation between fractal
encryption and RSA encryption protocols

based public-key

Fractal encry ption

RSA

Key Time Time
Description__size (Milliseconds) _Size (Milliseconds)
Key generation 35 580
Encryption 64-bit 5 512-bit 7
Decryption 5; 10
Key generation 144 3575
Encryption 128-bit 50 2304-bit 20
Decryption 40 630
Key generation 8763 10465
Encryption 192-bit 3565 7680-bit 79
Decryption 3485 15462
Key generation 60187 36442
Encryption 256-bit. 39507 15360-bit. 300
Decryption 36933 108386

Overall time comperision: Fractal and RSA
200000

anals
-=RSA

L
[oFmasl a5 | 234 | 1sm13 | 13627 |
[=rsa] 57 [4m5 | 26006 | asis |

Fig. 9: Overall time comparison between fractal and RSA

public-key encryption algorithm time

RSA public-key encryption protocol. Table 4 shows

the

performance for both approaches. Both protocols were
coded in Turbo C with GMP library and run on a computer

with 1.6 GHz Intel® M Pentium processor and 2561
RAM. Also, we used Miller-Rabin algorithm (MediaW:
2006) for primality test which was coded using C and G
as well.

The comparison between fractal and RSA public-

1B
iki,

p

ey

encryption protocols shows that fractal key encryption

protocol performs better than RSA in general. Note tl
in our implementation we increased the number
iterations k and n (Fig. 7) proportionate with the
to get suitable comparisons as shown by Fig. 9-12.
those Figures indicate, the fractal based public-]

at,
of

ey size

As
€y

encryption\decryption protocol provides higher level

of

security at a much lower cost, both in term of key size and

execution time.

