
Towards an Ontological Concepts for Domain-Driven Software Design

Dr. Nedhal Al Saiyd

Applied Science University,

Jordan

Nedhal_alsaiyd@asu.edu.jo

Dr. Intisar Al Said

Al-Isra University, Jordan

Intisar@ipu.edu.jo

Dr. Afaf Al Neaimi

Al-Zaytouna University,

Jordan

drafafn@alzaytoonah.edu.jo

Abstract

 Software design process has been followed and

widely used to describe logical structure of software

using different types of design model, to ensure

consistency among the multiple views of a design.

This paper describes an effort to identify the major

concepts in software design that are required to

understand system functionality from various

perspectives. It also presents systematic framework

ontology for software design lifecycle context,

ontology development, and ontology representation.

The aim is to resolve misunderstanding or

misinterpretation especially with ambiguous terms

for designers and users who have different

backgrounds and knowledge of the software for

functional-oriented, object-oriented, component-

oriented, agent-oriented designs, and represent the

reasons that led the designers to choose one design

among the other alternatives.

1. Introduction

Architectural design is recognized as a critical

element in the successful development of software

systems. It influences the construction, deployment

and evolution of the system as a whole. Designing

domain-specific software artifact typically involves

understanding the problem being addressed and user

requirements, understanding analysis models,

identifying possible design alternatives, analyzing

them, and deciding which design will be used to

construct the final artifact specifications [1].

There are different aspects of software design

process such as data design, architectural design,

interface design, and detailed design. Determining

design activities require domain participant (i.e.

designers and users) involvement in selecting good

design plan, making design decisions, implementing

design roadmap, selecting the best design out of other

alternative solutions, and specifying design artifacts

[2,3].

 There is an increasing interest of knowledge in

the application of architectural design concepts to

achieve the benefits of reducing costs and improve

quality, such as usability, flexibility, reliability,

interoperability and other software qualities.

But the variety of design areas is huge,

complicated and largely ill-defined. There is no

guiding theory, no overall conceptual viewpoint and

no uniform formalism. The concept of architecture

have not been consistently defined and applied with

lifecycle of software-intensive systems

[2,3,4,5,6,7,8]. Despite significant industrial and

research activity in this area, there is no single

accepted framework codifying architectural thinking

[2]. The final artifact represent part of the knowledge

employed by designers during the design process,

but do not represent the reasons that led the

designers to choose that specific design model, and

why the other alternatives are discarded. In other

words, they do not capture the Design Rationale

(DR). Design rationales include not only the reasons

behind a design decision but also the justification for

it and the argumentation that led to the decision. In

most cases the DR is not adequately documented.

The fundamental motivation of our work is to

resolve some of these difficulties and to come up

with a systematic framework ontology that serves as

a knowledge base for software design process. It

incorporates the most common design methodologies

utilized in object-oriented, function-oriented,

component-based and multi-agent-oriented design

processes, in addition to the DR activities.

Representing software design process knowledge in

the form of ontology is helping to clear up

ambiguities in the terms used in the situation of

software design process. The domain-specific

ontological model addresses two orthogonal

concerns; the first is, the general concepts and

categories originating in the design knowledge, and

the second is the specific behavior originating in DR

and user requirements.

The remainder of this paper is organized as

follows. The related works are presented in section

2. The suggested software design ontology model is

introduced in section 3. The suggested ontology

development is presented in section 4, then the

ontology representation is presented in section 5.

Section 5 presents ontology validation. Section 7

978-1-4244-4615-5/09/$25.00 ©2009 IEEE 127

presents the conclusions and suggestions for the

future work.

2. Related Works

There were some research attempts that

concentrate on one aspect or issue of software design

knowledge. Eden and Turner proposed

hypothetically the ontology of software design. They

suggested a combination of the intension and the

locality criteria that divides the design statements

into a hierarchy of three abstraction classes;

Strategic, Tactical, and Implementation statements.

The vocabulary they use in defining the criteria are

described in mathematical logic [7]. Medeiros and et

al [8] define rules that enable performing computable

operations to support the use of design rational DR

in the design process of new artifacts.

Wongthongtham's and et al [9] aimed to present an

ontology model of the software design structural and

behavioral views (such as: entity-relation diagram,

activity diagram, and state-chart diagram, etc.) to

represent design knowledge. In [10] a first stage is

described towards constructing of conceptual

ontology for generic software architecture

knowledge. They realize that semantic relationships

between design terms are more difficult to construct

and requires more work, and there are no documents

that talk about scenarios, tactics, views and view

types.

3. The Proposed Conceptual Framework

for Software Design

The objective is to define an ontology

describing the knowledge relevant to the practice of

software design. The conceptualization step was

based on a study a variety of design areas, activities

and aspects, study of the literature [1,2,3,4,5,6,7,8],

and the experience of the authors. Firstly, We study

the related knowledge through three different and

related areas as shown in figure 1. The first area is

related to the knowledge of design participants

(software designers); who make design decisions,

select the best design to be implemented, and specify

design models. The second area is related to design

lifecycle context that can be classified further into

the analysis models, DR and the aspects of software

design process. The analysis model can be classified

in turn into functional modeling, behavioral

modeling and data modeling. They are considered as

the input to the software design process. The third

category is related to the design specification (i.e.,

structural and dynamic views). The three areas

enable us to extract the useful knowledge through

the identification of concepts, attributes, the

relationships among concepts and the rules that

govern these relationships. Secondly, we structure

hierarchically the knowledge of software design into

design process activities, which use design

techniques, that deals with one or more of the design

strategies and methods. The designer can find

alternative designs, and analyzes them to choose the

best one; which then specifies it using static and

dynamic views. Guidelines in [11, 12] help us to

formulate the software design hierarchically. Figure

(2) shows the five main categories of software

design, and the associated terms for each category

are given beneath.

The conceptualization is the longest step and

requires the definition of the scope of the software

design ontology, definition of its concepts,

description of each one (through a glossary,

specification of attributes, domain values, and

constraints). It represents the knowledge modeling

itself. We identified some scenarios and questions

that the ontology must answer. We started the

ontology construction by looking for motivating

scenarios and questions that help us in extracting the

useful knowledge. Some of these scenarios are:

deciding who is the best designer assigned to a

design activity, based on designer skills and

experience of the technology and the system

considered; understanding requirement specification

and the problem domain that the designer will act on

(which are the analysis models and documents);

defining the software design lifecycle context (i.e.,

design activities to be followed) in a specific

software design style, and also the resources

necessary to perform these activities.

 These and other situations encourage us to organize

the knowledge around four different aspects; which

are proposed in a conceptual framework, as shown in

figure(3).

The designer usually begins with a general

question that establishes the problem to be solved.

This general question can generate new questions

that represent new design to solve sub-problems

related to the main problem. For each question

introduced, the designers can suggest ideas,

formulating possible solutions to the problem

expressed in the question. Ontologies are good

candidate to represent software design life cycle

activities and DR in a formally precise and

computable way.

4. The Suggested Ontology Development

Ontology development is necessarily an iterative

process and there is no one correct way to model a

domain; there are always alternative models. The

best solution almost always depends on the

application and the anticipated extensions [11]. Then

determining which software solution one would

work better for the projected task, be more

extensible, and more maintainable. Our experiences

of ontology development have revealed and

128

concluded that the processes should include the set

of the following tasks:

Step 1: Identify the boundaries of software

design. To identify the boundary of the domain, we

have to create a simple lexicons or a controlled

vocabulary which includes all the terms in this

domain; by extracting 317 design concepts from the

software engineering literatures [1,2,3]. Controlled

vocabulary helps in eliminating meaningless terms,

i.e. terms which are too broad or too narrow.

Step 2: Build the taxonomy: From the controlled

vocabulary, we categorically organize a dictionary to

build the taxonomy; classification that arranges the

terms into super-class and sub-class hierarchy. Then

define many relationships like Related term, Uses,

Consists of, has-a, is-a, described by, identifies, uses,

work on, described by, ... etc

Step 3: Identify attributes of classes and allowed

values. Distinguishing properties are identified to

define new concepts. These concepts have

relationships with other concepts, to classify and

clarify the classes. The binary relations are being

used among classes, objects and data values that

satisfy certain constraints. We organize classes, in a

class hierarchy and create relationships among

classes, in a similar way to that in [13, 14]. Then we

applied UML class diagram successfully for some of

the design methods as: functional-oriented, object-

oriented, component-based and agent-based.

Figure(4) shows a UML class diagram for a part of

ontological concepts of software design methods and

activities. It shows that software design is composite

into software design process activities that has a

sequence of design activities: data design,

architectural design, interface design and unit design.

The architectural design is decomposing the system

into its components and identifying the relationships

among them. The design methods can be either

functional-oriented, object-oriented, component-

based or agent-based. The design methods is

described by static and dynamic views. The design

method uses the design techniques that has the

instances; decomposition, cohesion, abstraction,

coupling and extensibility.

Step 4: Define axioms and rules for constraint

checking. To define the constraints over the

concepts and relations, we defined axioms in first

order logic (FOL).

To express the constraints over the relations (e.g.

correlation or realization), we defined a set of

axioms like ∀ (a,b) correlation(a,b) ∧ ReqSpec(a) →

ReqSpec(b)). It specifies that: if a1 is a requirement

specification and a1 correlated to a2, then a2 must

also be a requirement specification (i.e. the

correlation relation stands between artifacts of the

same type), and ∀ (a,b) (realization(a,b) ∧

ReqSpec(a) → ¬ ReqSpec(b)). Similarly, the second

axiom specifies that realization may only stand

between two artifacts of different kind.

5. Ontology Representation

As it has explained in step 4, the ontology

representation or formalization was done using first

order logic; which uses a well-formed formula (wff).

It is a sentence containing no "free" variables. i.e., all

variables are bounded by universal or existential

quantifiers.

 The designer must understand the concepts of the

application domain and the tasks performed in it. To

express those relations, we defined axioms like:

(∀ d) (designer(d)→ ∃ (t) (CompScTechnoloogy(t) ∧

knows(d,t)), and (∀ d) (designer(d) → (∃ a)

(DesignActivity(a) ∧ knows(m,a)); to express that

any designer knows at least one technology and one

activity).

The axioms are also used to specify the sequence or

ordered of software design activities: ∀ (a, b) (pre-

activity (a,b) ¬ pre-activity (b,a)) expressing the

anti-symmetry, and ∀(a,b,c) (pre-activity(a,b) ∧ pre-

activity(b,c) pre-activity(a,c), expressing the

transitivity on the design activities.

6. Ontology Validation

With the ontology defined, we started its validation

in two ways: validation of the quality of the ontology

itself (how clear it is, how complete, concise, etc.),

and validation of the usefulness of the concepts for

maintenance (which was the ontology’s purpose). To

validate the quality of the ontology we considered

(a) consistency, referring to the absence (or not) of

contradictory information in the ontology; (b)

completeness, referring to how well the ontology

covers the real world (software design for us); (c)

clarity, referring to how effectively the intended

meaning is communicated. We present our

ontological model to three high-skilled software

engineers to evaluate it. The evaluation is good. The

usefulness of concepts of the Design Process

ontology appears when it can give answers for some

of the important questions, like: what are the design

types? What are the design methods? What are their

possible sources? What are the activities performed

during design? What does one need to perform

them? Who perform them? What do they produce?.

Also it can answer What kind of procedures

(methods, techniques, and styles) does the designer

know? What programming techniques and/or

modeling languages does the designer know?

But we observe that some concepts that are related

with domain applications, design tools, modeling

languages, design guidelines; are not well-identified

or not exist in the ontology for lack of enough

examples and there were fewer sessions in our first

experiment.

129

Figure (1) The hierarchical of the three different areas related to software design

Figure (2) The five main categories of software design, and their associated terms

Figure (4) A portion of ontological concepts of software design methods and activities

Figure(3) Ontology overview

130

7. Conclusions and Further Work

This research contributes to software design in

several ways. First, our study categorizes the

software design concepts into a framework.

Taxonomy or ontology of the software design

enables the designer in understanding the best

practices and the relationships between them and

also provide a means to apply them to the software

systems to be developed. Second, an ontology

development steps have been suggested to build a

knowledge base of classes, objects and attributes.

This knowledge base will help the designer to

analyze the designed software system. Third, to

better manage a large number of design models, we

propose that an ontological approach for storing and

searching design concepts is necessary. Fourth, the

first order predicate is used to represent software

design axioms.

This approach gives us the ability to create views on

domain-driven demand from a structured repository,

and the ontology itself can be easily extended, e.g.

by adding new concepts. The approach provides a

common vocabulary to enhance precision, usefulness

and clarity that provides better design decision

making, and its justification.

Future research will include completing the

construction of a knowledge base of software design

ontologies, and making more validations to increase

the quality of ontology. Based on our approach, we

will further examine ways to infer the relationships

among design concepts and design actions by using

semantic information.

Acknowledgments

The authors would like to thank the Applied

Sciences University in Amman, Jordan for

supporting this publication.

References

 [1] IEEE Recommended Practice for Architectural

Description of Software-Intensive Systems, IEEE STD

1471-2000, IEEE (2000).

[2] Pressman, R. S. & Ince Darre, Software Engineering a

Practitioner's Approach: European Adaptation, McGraw

Hill, 2006.

[3] Summerville, I. Software Engineering, Addison-

Wesley, 7th Edition, 2006.

[4] SWEBOK: Guide to the Software Engineering Body of

Knowledge, A project of the IEEE Computer Society

Professional Practices Committee, Version 2004, available

from:www.geocities.com/lbu_measure/swebok/swebok.ht

m

[5] Akerman A. , and Tyree J., Using Ontology to

Support Development of Software Architectures, IBM

Systems Journal; Oct 1, 2006

[6] Witmer, G., Dictionary of philosophy of mind–

ontology, 2004. Available from:

http://www.artsci.wustl.edu/~philos/MindDict/ontology.ht

ml

 [7] Eden A. H., and Turner R. Towards an Ontology of

Software Design: The Intension/Locality hypothesis, 3rd

European Conf. Computing And Philosophy—ECAP (2-4

Jun. 2005), Sweden.

[8] Medeiros, A. P.; Schwabe, D.; Feijo, B. "Kuaba

Ontology: Design Rationale Representation and Reuse in

Model-Based Designs", Proceedings of the 24th

International Conference on Conceptual Modeling (ER

2005), Klagenfurt, Austria, Lecture Notes in Computer

Science, pp 241-255, Springer, October 2005.

[9] Wongthongtham, Pornpit and Chang, Elizabeth and

Dillon, Tharam, Software Design Process Ontology

Development, in Meersman, R. and Tari, Z. and Herrero,

P. (ed), 2nd IFIP WG 2.12 & WG 12.4 International

Workshop on Web Semantics (SWWS) in conjunction

with OTM 2006, Oct 29 2006, pp. 1806-1813. Montpellier,

France: Springer-Verlag.

[10] Babu T L., Ramaiah M S, Prabhakar T.V., Rambabu

D, ArchVoc – Towards an Ontology for Software

Architecture, 29th International Conference on Software

Engineering Workshops(ICSEW'07)

 [11] N. F. Noy, and D. L. McGuinness, “Ontology

Development 101: A Guide to Creating Your First

Ontology. Stanford Knowledge Systems Laboratory

Technical Report KSL-01-05 and Stanford Medical

Informatics Technical Report SMI-2001-0880”, March

2001. Available from:

http://mia.ece.uic.edu/~papers/MediaBot/ontology101.pdf

[12] Siricharoen W V., Ontology Modeling and Object

Modeling in Software Engineering, International Journal of

Software Engineering and Its Applications Vol. 3, No. 1,

January, 2009

[13] P. Kogut, S. Cranefield, L. Hart, M. Dutra, K.

Baclawski, M. Kokar, and J. Smith, UML for Ontology

Development, The Knowledge Engineering Review, Vol

17, Issue 1, March 2002, pp(61-64), Cambridge University

Press.

[14] J. Iris Reinhartz-Berger1, Arnon Sturm2, and Yair

Wand1 , Akoka et al. (Eds.): Domain Engineering – Using

Domain Concepts to Guide Software Design, ER

Workshops Springer-Verlag Berlin Heidelberg, LNCS

3770, pp. 461 – 463, 2005.

131

