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Abstract:

Some logic operations in digital design are still not deeply explored or
rescarched. There are several relationships, such as the inverse (complement)
relationship, between the different logic operations. In this paper the inverse
 relationship between some logic operaﬁons will be demonstrated and completely
discussed. This will pave the way for a better understanding of the logic operations
and iay'the foundation for developing new computer related algorithms.
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1. Introduction
Boolean algebra is the backbone of computer software and hardware systems.
Such a phenomenon may be exploited for the purpose of developing new
computer applications.
In this paper several inverse relationships between logic operations will be
investigated, namely, the inverse relationship between the exclusive-OR and the
equivalence, previously discussed by other authors [1-14], and the inverse
between the inhibition and the implication [4, 5, §,10].
2. Exclusive-OR and Equivalence Functions:
These two functions are both commutative and associative and are the

complements of each other for two-variable functions [1-6] as follows:

The exclusive-OR (EXOR): x @ y = x'y + xy/

The complement: {x&® y)/ = (x /y + xy’y
=|x+ y/ x + y)

=x'y +xy
The equivalence: x=y=x'y +xy
Therefore, the complement of EXOR is equal to the equivalence for two-variable
functions. Furthermore, the EXOR is an odd function (is equal to one when the
total number of 1’s in the input variables is odd) [4,5], and the equivalence is an
even functions for two variables (is equal to one when the total number of 1’s in

the input variables is even), as depicted by the following truth tables:

202



" ICITNS 2003 International Conference on Information Technology and Natural Sciences

X Y x®y X Y x=y
0 0 0 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 1

But for more than two variables the relationship between the EXOR and the
equivalence will be something different as follows:
a- Three-variable function:

(x@y)@z=(x/y+xyl)@z=(x/y+xylyz+(x"y+xy/) 2!

=(x"y! +xy) z+x'yz' + o'z
=x'yz+xz+x'yz' + /2

=my+m, +my, +m,

=3(1,2,4,7) in sum of minterms form[4,5]

(xEy)Ez=(xlyi+xy )Ez=(x/y/+nyz’+(x"yl+xy) Z
=(x’y+xy’) 2 rxy vz
=x'yz' +xy'z' +x'y'z + xyz
=my +my +my+mqy=.(1,2,4,7)
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The truth table for these functions is the following:

X y Z x®y®:z |X=EY=2Z
0 .0 0 |0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 0
| 1 0 0 1 1
1 1 0 1 |0 0
i 1 0 {0 0
1 1 1 ll i

Tt is clear that the EXOR and equivalence are equal for three-variable functions,
and they are odd functions.

b- Four-variable function

2 =(w®x)@(y®z)=(w”x+wx")@(y}z+yz/)

= w/x+wx' (y"z'+ yz” )+ (w’x+wx") ((v"z+ yz" Y

=w'x +wx (y/z+ yz/ )+ (W"x+wx/) ((v"z" + yz)
=w/x!y"z+w/x/yz”+wxyfz+wszzf+wlxjf/zf+w/xyz+wx/y/z’+wx yz
=my+myt+my +m7+m8+m11+m13+m14

=¥ (1,2,47,81113,14) [4,5)
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) =(wzx)a (yzz)=(wjx/ + wx)z (y/z/ +yz)

w'x! + wx (y’z/ %+ yz)/ + (w/x/ +wx) (y/z/ +yz)

w’x+wx/ (y’z+yz/)+ (w/x/ +wx) (y/z/ +yZ)

d + ley/Z + wx/yz/ + w/x/y!z/ + w/x/yz+ WA}’/Z'( -+ wxyz
=my +my +ms + mg +m9 +mjip +m12 +m15

= (0,3,5,69,10,12,15)

F =3 (1,2,4781113,14)

= w/xyfz + w/xyz

Therefore, the complement of the equivalence is equal to the EXOR for 4-variable
functions, and the EXOR (£) is an odd function, but equivalence (¥, ) is an even
function,

¢- Five-variable function

F=vOw®x®ydz
Where, w&x® y@z= > (,2,4,7.811,134)

Therefore,

A =v®(m1 TP My +my +mg +myy +my +m14)
=vlmy +my +my +m, +mg +myy +my3 +myg) +v/ (m Iyt my +my +mg £ myy +myy +myy)
=v(m9 M3 +ms +mg +mg +myg +myy +m15)+v/(m1 My my +my +mg +my; +my3 +myy)
=(m1(, tmyg +myy +myy +mys + mog + mog +m31)+(m1 tmy +my +my +mg +myy +mys +m14)
=2.(12.4,7,8,11,13,14,16,19,21,22,25,26,28 31)

Where, vm, = ww'x’ y’z" = My

And vim, = v'w'x'y/z = m,
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}’-7'2 ZVEWSEXSYEZ
Where, w=x=y=2z=)(0,3,56,9,10,12,15)
Therefore,

=vs(m0 -+ my + ms +mg + My +mm+m12+m15)
=v/(m0+m3 +m5+m5+m9+m10+m12+m15)/+v(m0+m3 +mg + g + Mg +myg + My +m15)

=v/(m1+m2 +my +my +mg +my +my3 +m14)+v(m0 +H3 + Mg +mg +mg +myg+ Mo +m15)
=(m1 +my +my+my+mg gty +m14)+(m16+m19 + Mg + Mg +My5 +Myg + 0y +M31)
=3 (1,2,4,7,81113,14,16,19,21,22,25,26,28,31)

It is clear that the EXOR and equivalence are equal for five-variable functions,
and they are odd functions.

3. Inhibition and Implication ‘f‘unctions:

The inhibition and implication functions are the complements of each other for

two-variable functions [4,5,8,10] as follows:
The inhibition: x/y = x/

The complement: (x/y) = (x.y’ y =x'+y

The implication: xoy=x"+y
Therefore, the complement of inhibition is equal to the implication for two-
variable functions. But for more than two variables, the inhibition and implication

are not the complements of each other as follows:
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a- Three-variable function: |
(x/y)/z = (xy’)/z =x'z
The complement of inhibition: (o/2) =x'+y+2
The implication: (x> y)>z= (x" +y):) 7= (x" +yy +z=xy'+z
Since, the inhibition and implication are not commutative or associative [4,5], the
different combinations of X,y,z will show also that the complement of inhibition is

not equal to the implication.

b- Four-variable function:

wwwa(’ﬂw)w)uf

(wx ) +z) wx! ¥y ! +wrz
The complement of inhibition:

(wx’y’ +wx/zy =(w’ + x4+ y) (w’ +x+z’)

=w/+w/x+w/z/+w/'x+x+xz/+w/y+xy+yz/
=w/(1+x)+w/z/+x(1+z/)+w'(y+xy+yzf
———wl+w’z/+x+w/y+xy+yz"
:w/(1+z/)+x(l+y)+wly+,yz’
=w/+x+w/y+yz’=w/(l+y)+x+yz’

=w +x+y

The implication:(w:x):(y:z)z(w/+x) (y’ +z)

-0 +5) +/+2)

=wx' +y +2

207




ICITNS 2003 International Conference on Information Technology and Natural Sciences
Therefore, the complement of inhibition and the implication are not equal, and we
can conclude that the inhibition and implication functions are the complements of

each other only for two variables.

4. Conclusions

e The EXOR and equivalence functions are the complements of each other when
the number of variables in the function is even (two, four, ...).

¢ The EXOR and equivalence functions are equal when the number of variables
in the function is odd (three, five,...).

e The EXOR is always an odd function, but the equivalence is an even function
when the number of variables is even, and is an odd function when the number
of variables is odd.

e The inhibition and implication functions are the complements of each other

only for two-variable functions.
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