

Course Detailed Description – Procedures of the Course Plan Committee /Faculty of Pharmacy

QF02/0408-2.1E

Department	Pharmacy
------------	----------

Course Name	Biopharmaceutics & Pharmacokinetics	Course No.	0201421
Prerequisite	(0201321) Pharmaceutics-3-	Credit Hours	3
Number & date of course plan approval		Brief Description	See form QF02/0409

Course Objective	1. Ability to design and adjust a patient's drug dosage regimen to keep the plasma/serum concentration of the drug within a desired therapeutic range. 2. Know the principles of the ADME of a drug, and how these apply to the optimum utilization of a drug in a patient. 3. Have knowledge to apply biopharmaceutics and pharmacokinetics principles in pharmaceutical care.		
Intended Learning Outcomes	 At the end of this course, students will gain: Knowledge and understanding 1. An understanding of the fundamental concepts of pharmacokinetics processes in humans 2. An Understanding of the compartmental modeling and its significance 3. A knowledge of the pharmacokinetics and biopharmaceutics of drugs after intravascular and extravascular routes of administration. 4. A knowledge of the drug clearance 5. A knowledge of the bioavailability and bioequivalence Cognitive skills (thinking and analysis). 1. The student should be able to analyze and scientifically use mathematical equations to understand the ADME of drugs in the body. 2. The student should be able to relate the basic principles of biopharmaceutics and pharmacokinetics to practical clinical situations. 		
Course Topics	 Rates and orders of reactions Pharmacokinetics of IV bolus Pharmacokinetics of IV infusion Pharmacokinetics of oral route Multiple dosage regimen Drug elimination and Clearance Bioavailability & Bioequivalence 		

Course Detailed Description – Procedures of the Course Plan Committee /Faculty of Pharmacy

QF02/0408-2.1E

Text Books	Applied Biopharmaceutics & Pharmacokinetics 7 th edition, 2016, editor Leon Shargel		
References	1.Pharmacokinetics, Milo Gibaldi 2.Clinical pharmacokinetics, concepts and applications, Rowland Tozer 3. http://www.boomer.org/c/p1		
Grade Determination	1 st Exam = 25% 2 nd Exam = 25% Final Exam = 50%	Practical Course Grade Determination	Course Work = 50% (Reports, Term Papers, Quizes) Final Exam = 50%

Course Outline

Week	Hours	Subjects	Chapters in Textbook	Notes
1	1 1 1	Introduction to Biopharmaceutics and Pharmacokinetics -Pharmacokinetics Introduction & Concepts -Plasma Level-Time curve - Pharmacokinetic models	1	
	1	-Review of rates and orders of reactions	2	
2 1 1		One compartment open model(IV bolus): -calculation of volume of distribution -calculation of Elimination half-life and AUC	4	
3	1 1 1	-calculation of k from plasma data - calculation of k from urinary excretion data - Learning questions	4	
4	1 1 1	Two compartment open model (IVbolus): -Define the pharmacokinetic terms used in a two- and three-compartment modelequations and graph to simulate plasma drug concentration -Estimate two-compartment model parameters by using the method of residuals.	5	
5	1 1 1	-types of Volumes of distribution -Learning questions Intravenous Infusion: -the concept of steady state and how it relates to continuous dosing.	5 6	
6	1 1 1	- time needed to reach Css -loading dose plus IV infusion -calculating elimination half-life & K -estimation of drug clearance and Vd from infusion data	6	

Course Detailed Description – Procedures of the Course Plan Committee /Faculty of Pharmacy QF02/0408-2.1E

	1	Iin- Oti f IV infection		
7	1	- Learning Questions for IV infusion		
	1	Pharmacokinetics of oral absorption:		
	1	- first order absorption models	8	
	1	-calculation of plasma concentration,		
		calculation of t max		
	1	-determination of absorption rate constant by		
		method of residuals	8	
8	1	-Lag time and flip-flop of ka and k		
		-determination of excretion rate constant from		
	1	urine data		
	1	-Learning Questions in single oral dose		
0		Multiple dosage regimens:		
9	1	-drug accumulation & superposition principle	9	
	1	-Repetitive intravenous bolus injections		
		- Calculation of Missed dose		
	1	-Early or Late Dose Administration during		
10	1	Multiple Dosing	9	
	1	- Intermittent IV infusion		
	1	-Multiple oral dose regimen		
	1			
11	1	-Loading dose plus maintenance dose	9	
	1	-Determination of bioavailability in multiple		
	1	dose regimen		
	1	-Learning Questions in multiple dosage		
10	1	regimens	_	
12	1	Drug Elimination and Renal Clearance:	7	
	1	Drug Elimination :metabolism &excretion		
	•	-Total body clearance, clearance models		
	1	-Physiological processes of kidneys		
13	1	-1 st order elimination, fraction of drug excreted	7	
13		and renal clearance	,	
	1	-Learning Questions		
	1	Drug Elimination and Hepatic Clearance:		
	1	-hepatic elimination of drugs, pathways for		
	1	drug metabolism		
14	1	-1 st order elimination, fraction of drug	12	
		metabolized, hepatic clearance		
	1	-1 st pass effect, liver extraction ratio, intrinsic		
		clearance		
		-Bioavailability & Bioequivalence:		
	1	-definitions		
15	1	-Relative & Absolute availability	16	
	1	-Methods for assessing bioavailability		
İ.	1	-wichious for assessing bloavailability		

Course Detailed Description – Procedures of the Course Plan Committee /Faculty of Pharmacy			QF02/0408-2.1E
Approved by Dept. Chair		Date of Approval	

Extra Information: (Updated every semester and filled by course instructor)

Course Instructor	Dr. Suhair Hikmat
Office No.	
Extension	306
Email	suhair.jasim@zuj.edu.jo
Office hours	