

## جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology



" عراقة وجودة" "Tradition and Quality"

Detailed Course Description - Course Plan Development and Updating Procedures/ Mathematics Department QF01/0408-3.0E

| Faculty                   | Faculty of Science and<br>Information Technology | Department                     | Mathematics                            |
|---------------------------|--------------------------------------------------|--------------------------------|----------------------------------------|
| Course number             | 0101471                                          | Course title                   | Mathematical Modeling (2)              |
| Number of credit<br>hours | 3                                                | Pre-requisite/co-<br>requisite | Mathematical Modeling (1)<br>(0101372) |

## **Brief course description**

This course is an introduction to mathematical modeling using tools from various parts of mathematics to describe and explore real-world data and phenomena. A variety of modeling techniques will be discussed with examples taken from physics, biology, chemistry, economics and other fields.

|                                                                                                      | Course goals and learning outcomes                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Goal 1                                                                                               | Seeking the connections between mathematics and the real world.                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Learning<br>outcomes                                                                                 | <ul><li>1.1 Solve applications using a variety of problem solving strategies including geometric and algebraic techniques.</li><li>1.2 Solve multiple-step problems through different (inductive, deductive, and symbolic) modes of reasoning.</li><li>1.3 Express mathematical information, concepts, and thoughts in verbal, numeric, graphical and symbolic forms while solving a variety of problems.</li></ul> |  |  |
| Goal 2                                                                                               | Enable students to build mathematical models of real-world systems                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Learning<br>outcomes                                                                                 | <ul><li>2.1 Modeling using matrices.</li><li>2.2 Modeling using linear programs.</li><li>2.3 Modeling using graphs and networks.</li><li>2.4 Modeling with differential equations.</li></ul>                                                                                                                                                                                                                        |  |  |
| Goal 3Enable students to analyze and make predictions about the behavior of var<br>modeling systems. |                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Learning<br>outcomes                                                                                 | 3.1 Use appropriate technology in the evaluation, analysis, and synthesis of information in problem solving situations given a set of data from real-world situations.                                                                                                                                                                                                                                              |  |  |



## جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology



" عراقة وجودة" "Tradition and Quality"

QF01/0408-3.0E

| Γ | Detailed Course Description - Course Plan Development and Updating Procedures/ |  |
|---|--------------------------------------------------------------------------------|--|
|   | Mathematics Department                                                         |  |

| Textbook                    | A First Course in Mathematical Modeling by F. Giordano, W. Fox and S. Horton, 5 <sup>th</sup> Ed., Cengage, 2013.                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Supplementary<br>references | <ol> <li>"Concepts of Mathematical Modeling", by J. Meyer, (2004), Dover Publications,<br/>ISBN 0-486-4315-6.</li> <li>"Mathematical Modeling", by Stefan Heinz, (2011), Springer,<br/>ISBN 978-3-642-20310-7</li> <li>"Principles of Mathematical Modeling, by Clive L. Dym, 2<sup>nd</sup> Ed., (2004),<br/>Elsevier Inc., ISBN: 0-12-226551-3.</li> <li>"Mathematical Modeling", by Mark M. Meerschaert, 4<sup>th</sup> Ed., (2013), Academic<br/>Press<br/>(Elsevier Inc.), ISBN: 978-0-12-386912-8.</li> </ol> |  |  |

| Course timeline |                    |                                                                                                                                                                                                                                   |                     |  |
|-----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| Week            | Number<br>of hours | Course topics                                                                                                                                                                                                                     | Pages<br>(textbook) |  |
| 01              | 1<br>1<br>1        | What is Mathematical Modeling?<br>Steps of the Modeling Process.<br>An Example.                                                                                                                                                   | Later               |  |
| 02              | 1<br>1<br>1        | Plotting data, proportionality.<br>Fitting linear data visually.<br>Functions we should recognize on sight.<br>Fitting $y=Cx^k$ .                                                                                                 |                     |  |
| 03              | 1<br>1<br>1        | Introduction to MATLAB.<br>Plotting functions and data in MATLAB.<br>Fitting curves to data in MATLAB.                                                                                                                            |                     |  |
| 04              | 1<br>1<br>1        | Modeling exponential data.<br>Exponential growth.                                                                                                                                                                                 |                     |  |
| 05              | 1<br>1<br>1        | Method of least squares.<br>Interpolation and extrapolation.                                                                                                                                                                      |                     |  |
| 06              | 1<br>1<br>1        | <ul> <li>Review of vectors and matrices</li> <li>Transition matrix.</li> <li>Modeling using Leslie matrices.</li> <li>Some examples in MATLAB.</li> <li>Exam 1 20% (may consists of a written exam 15% + a project 5%)</li> </ul> |                     |  |
| 07              | 1<br>1<br>1        | Optimization using calculus.<br>Linear optimization.                                                                                                                                                                              |                     |  |
| 08              | 1<br>1<br>1        | Formulation of linear programs.<br>Graphical solution of linear programs.<br>Some examples in MATLAB.                                                                                                                             |                     |  |
| 09              | 1<br>1<br>1        | The theory of linear programming.<br>The simplex method.                                                                                                                                                                          |                     |  |



## جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology



" عراقة وجودة" "Tradition and Quality"

| Detailed Course Description - Course Plan Development and Updating Procedures/<br>Mathematics Department QF01/0408-3.0E |             |                                                                                                                       |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| 10                                                                                                                      | 1<br>1<br>1 | Duality in linear programming.<br>Sensitivity analysis in linear programming.                                         |  |  |
| 11                                                                                                                      | 1<br>1<br>1 | Integer programming.<br>Branch and bound method.<br>Travelling salesman problem.                                      |  |  |
| 12                                                                                                                      | 1<br>1<br>1 | Exam 2 20% (may consists of a written exam 15% + a<br>project 5%)<br>Modeling with graphs.<br>Shortest-path problems. |  |  |
| 13                                                                                                                      | 1<br>1<br>1 | Minimum spanning tree.<br>Maximum-flow problems.<br>Graph coloring.                                                   |  |  |
| 14                                                                                                                      | 1<br>1<br>1 | Modeling with differential equations.<br>Graphical solution.                                                          |  |  |
| 15                                                                                                                      | 1<br>1<br>1 | Euler's method.         Runge-Kutta method.         Some examples in MATLAB.                                          |  |  |
| 16                                                                                                                      | 1<br>1<br>1 | Final Exam 50% (may consists of a written exam 40% + a project 10%)                                                   |  |  |

| Theoretical course<br>evaluation methods<br>and weight | Participation = 10%<br>First exam 20%<br>Second exam 20%<br>Final exam 50% | Practical (clinical)<br>course evaluation<br>methods | Semester students'<br>work = 50%<br>(Reports, research,<br>quizzes, etc.) |
|--------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|
|                                                        |                                                                            |                                                      | Final exam $= 50\%$                                                       |

| Approved by head of | Date of approval |  |
|---------------------|------------------|--|
| department          |                  |  |
|                     |                  |  |

Extra information (to be updated every semester by corresponding faculty member)

| Name of teacher             | Amal H. Al-Saket | Office Number | 9114                  |
|-----------------------------|------------------|---------------|-----------------------|
| Phone number<br>(extension) | 430              | Email         | Amal_saket@zuj.edu.jo |
| Office hours                |                  |               |                       |