

جامعة الزيتونة الأردنية AI-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

Detailed Course Description - Course Plan Development and Updating Procedures/	
Mathematics Department	QF01/0408-3.0E

Faculty	Faculty of Science and Information Technology	Department	Mathematics
Course number	0101272	Course title	Numerical Analysis (1)
Number of credit	3	Pre-requisite/co-	Calculus (1)
hours	2	requisite	(0120121)

Brief course description

This course is designed to introduce the student to a number of numerical methods as well as to teach the student how to do some error analysis. These include methods to approximate roots of functions, to interpolate data points with polynomials and to solve linear systems.

	Course goals and learning outcomes		
Goal 1	Introduce the student to various numerical methods		
Learning outcomes	1.1 Get introduced to the various methods to approximate roots of functions.1.2 Get introduced to the types of polynomials used to approximate functions.1.3 Get introduced to the exact and iterative methods to solve linear systems.		
Goal 2	Enable the student to apply error analysis to the numerical methods he is introduced to during the course .		
Learning outcomes	2.1 Understand computer arithmetic and types of errors.2.2 Being able to analyze how and why the algorithms discussed work.		

Textbook	"Numerical Analysis", by R. Burden & D. Fairs, 7th Ed.		
Supplementary references	 "Applied Numerical Analysis", by Gerald & Wheatley , 7th Ed., (2004), Addison-Wesley Publishing Company. "Numerical Methods: Using Matlab", by John H. Mathews and Kurtis D. Fink, 4th Ed., (2004) , Prentice-Hall Pub. Inc. "Numerical Methods and Computing", by Cheney & KinCaid , 6th Ed., (2008), Thomson Learning Academic Resource Center. "Numerical Methodsfor Engineers", by S. K. Gupta, 3rd Ed., (2013), New Academic Science Ltd, United Kingdom. 		

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

Detailed Course Description - Course Plan Development and Updating Procedures/ Mathematics Department

QF01/0408-3.0E

Course timeline					
Week Number of hours		Course topics	Pages (textbook)		
01 1 Chapter 1: Mathematical Preliminar Continuity, differentiation, Rules of diff Mean value theorem. Extreme value the theorem. Bolzano theorem.		Chapter 1: Mathematical Preliminaries Continuity, differentiation, Rules of differentiation. Rolle's Theorem. Mean value theorem. Extreme value theorem. Intermediate value theorem. Bolzano theorem.	2-10		
02	02 1 Applications of the I.V.T. and Rolle's Theorem to prove the existence and uniqueness of a root of a function.				
03	1 1 1	Chapter 2: Solutions of Equations in One Variable The bisection method. Analysis of the bisection method, error analysis. Applications of the bisection method.	48 - 55		
04	04 1 1 The Fixed-Point method: definition, theorem of existence, theorem of uniqueness. Analysis of the Fixed-point method.				
05	05 1 The Newton-Raphson Method, derivation and applications.		66 – 78		
06 1 1		The Secant method, derivation and applications. Zeros of Polynomials and multiplicity. Applications. <u>First Exam 20%</u>	78 – 86		
07	071 1 1The Modified Newton method. Horner's Method (synthetic division).		86 - 91		
08	081 1 1Chapter 3: Interpolation and Polynomial Approximation Taylor Polynomial; applications.		107 – 122		
09	09 1 Interpolation and Lagrange's Polynomial.		107 – 122		
10	101 1 1Iterated Interpolation; Newton's Divided Differences form. Analysis and applications.		122 – 133		
11	1 1 1Chapter 6: Direct Methods for Solving Linear Systems Review of systems and matrices.		345 - 359		
12	1Second Exam 20%1Gaussian Elimination and Backward Substitution, applications.1Matrix inversion.		370 - 388		

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

Detailed Course Description - Course Plan Development and Updating Procedures/ Mathematics Department QF01/0				
13	1 1 1	Chapter 7: Iterative Techniques in Matrix Algebra Norms of Vectors and Matrices.		418 - 430
14	1 1 1	Iterative Techniques for Solving Linear Systems. Derivation, analysis, and applications. Jacobi method.		437 - 454
15	1 1 1	Gauss-Seidel method, applications.		437 – 454
16	1 1 1	<u>Final Exam 50%</u>		

Theoretical course evaluation methods	Participation = 10% First exam 20%	Practical (clinical) course evaluation	Semester students' work = 50%
and weight	Second exam 20%	methods	(Reports, research,
	Fillal exam 50%		Final exam = 50%

Approved by head of department	Date of approval	

Extra information (to be updated every semester by corresponding faculty member)

Name of teacher	Amal H. Al-Saket	Office Number	9114
Phone number (extension)	430	Email	Amal_saket@zuj.edu.jo
Office hours			