

## جامعة الزيتونة الأردنية AI-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology



" عراقة وجودة" "Tradition and Quality"

QF01/0408-3.0E

Detailed Course Description - Course Plan Development and Updating Procedures/ Mathematics Department

| Faculty          | Faculty of Science and<br>Information Technology | Department        | Mathematics            |
|------------------|--------------------------------------------------|-------------------|------------------------|
| Course number    | 0101472                                          | Course title      | Numerical Analysis (2) |
| Number of credit | 3                                                | Pre-requisite/co- | Numerical Analysis (1) |
| hours            | 5                                                | requisite         | (0101272)              |

## **Brief course description**

As a second course in numerical analysis, this course is designed to introduce the student to more numerical methods as well as to teach the student how to do some error analysis. These methods include finite difference methods for numerical differentiation; the trapezoidal rule, Simpson's rule and Gaussian quadrature for numerical integration and Euler's, Taylor series and Runge-Katta methods for solving differential equations.

|                      | Course goals and learning outcomes                                                                                                                                                                                                              |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Goal 1               | Introduce the student to various numerical methods                                                                                                                                                                                              |  |  |  |
| Learning<br>outcomes | <ul><li>1.1 Being able to apply numerical methods to differentiation</li><li>1.2 Being able to apply numerical methods to integration (quadrature)</li><li>1.3 Being able to apply numerical methods to solve differential equations,</li></ul> |  |  |  |
| Goal 2               | Appraise the different numerical methods used to solve problems.                                                                                                                                                                                |  |  |  |
| Learning<br>outcomes | 2.1 Being able to apply error analysis to the numerical methods the student is introduced to during the course .                                                                                                                                |  |  |  |

| Textbook                    | "Numerical Methods", by J. H. Mathews, 2 <sup>nd</sup> Edition                                                                                                                                                                                                                                                                                                     |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Supplementary<br>references | <ol> <li>"Applied Numerical Analysis", by Gerald &amp; Wheatley, 7th Ed, (2004), Addison-Wesley Publishing Company.</li> <li>"Numerical Analysis", by R. Burden &amp; D. Fairs, 9<sup>th</sup> Ed., (2010).</li> <li>"Numerical Methods and Computing", by Cheney &amp; KinCaid, 6<sup>th</sup> Ed., (2008), Thomson Learning Academic Resource Center.</li> </ol> |  |  |
|                             | 4. "Numerical Methodsfor Engineers", by S. K. Gupta, 3 <sup>rd</sup> Ed., (2013), New                                                                                                                                                                                                                                                                              |  |  |
|                             | Academic Science Ltd, United Kingdom.                                                                                                                                                                                                                                                                                                                              |  |  |



## جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology



" عراقة وجودة" "Tradition and Quality"

Detailed Course Description - Course Plan Development and Updating Procedures/ Mathematics Department

QF01/0408-3.0E

| Course timeline |                    |                                                                                                                                                                                                                            |                     |  |  |
|-----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|
| Week            | Number<br>of hours | Course topics                                                                                                                                                                                                              | Pages<br>(textbook) |  |  |
| 01              | 1<br>1<br>1        | <b>I.</b> <u>Numerical Differentiation</u><br>introduction; finite difference formulas to approximate $f'(x)$ ; forward and backward formulas of O(h); the<br>central difference formula of O(h <sup>2</sup> ).            | 315-339             |  |  |
| 02              | 1<br>1<br>1        | Geometric interpretation of the forward, backward and<br>central formulas; deriving difference formulas using<br>Taylor's theorem; a central difference formula of order<br>$O(h^4)$ .                                     |                     |  |  |
| 03              | 1<br>1<br>1        | A central difference formula of order $O(h^2)$ to<br>approximate $f''(x)$ ; Analysis of the truncation error in<br>the approximations of the different difference formulas.                                                |                     |  |  |
| 04              | 1<br>1<br>1        | Interpolating polynomials (Lagrange's & Newton's); approximating the derivative via differentiation of interpolating polynomials.                                                                                          |                     |  |  |
| 05              | 1<br>1<br>1        | II. <u>Numerical Integration (Quadrature)</u><br>The trapezoidal rule; Simpson's 1/3-rule;<br>deriving the the trapezoidal rule & Simpson's rule<br>using Taylor's theorem                                                 |                     |  |  |
| 06              | 1<br>1<br>1        |                                                                                                                                                                                                                            |                     |  |  |
| 07              | 1<br>1<br>1        | <b>First Exam 20%</b><br>Recursive relation between trapezoidal approximations<br>with #panels=2 <sup>k-1</sup> ; Simpson's approximation as a linear<br>combination of trapezoidal approximations; Romberg<br>algorithm . |                     |  |  |
| 08              | 1<br>1<br>1        | Gaussian quadrature and Legendre polynomials;<br>Gaussian quadrature formula with two nodes ;<br>Gaussian quadrature formula with three nodes .                                                                            |                     |  |  |
| 09              | 1<br>1<br>1        | Transforming a quadrature formula for integrals over [c, d]<br>to a quadrature formula for integrals over [a, b];<br>comparison between different approximation formulas .                                                 |                     |  |  |
| 10              | 1<br>1<br>1        | finding precision of a formula by applying it to polynomials; approximating double integrals.                                                                                                                              |                     |  |  |
| 11              | 1<br>1<br>1        | III. Numerical Methods for Solving Differential         Equations:         Equations:         Some review of exact methods for solving first-order         ordinary differential equations; initial-value problems .       | 423-475             |  |  |
| 12              | 1<br>1<br>1        | Euler's method; geometric interpretation of Euler's<br>method ; analytic derivation of Euler's method;<br>the modified Euler's method ( Heun's method) ;<br>Taylor's method.                                               |                     |  |  |



## جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology



" عراقة وجودة" "Tradition and Quality"

| Detailed Course Description - Course Plan Development and Updating Procedures/ | OE01/0408 3.0E |
|--------------------------------------------------------------------------------|----------------|
| Mathematics Department                                                         | QF01/0408-5.0E |

| 13 | 1<br>1<br>1 | Second Exam. 20%<br>Runge-Kutta method; Runge-Kutta formula of order 4;<br>multi-step methods.                                                                                                                                                                                         |         |
|----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 14 | 1<br>1<br>1 | IV. <u>Systems of First-Order Differential Equations</u><br>Transforming higher-order differential equations into<br>a system of first order differential equations ;<br>applying methods of single differential equations to<br>solve systems of first-order differential equations . | 475-497 |
| 15 | 1<br>1<br>1 | Applications on second-order initial-value problems;<br>applications on second-order boundary-value problems;                                                                                                                                                                          |         |
| 16 | 1<br>1<br>1 | Final Exam 50%                                                                                                                                                                                                                                                                         |         |

| Theoretical course<br>evaluation methods<br>and weight | Participation = 10%<br>First exam 20%<br>Second exam 20%<br>Final exam 50% | Practical (clinical)<br>course evaluation<br>methodsSemester students'<br>work = 50%<br>(Reports, research,<br>quizzes_etc.) |                     |
|--------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                        | Final exam 50%                                                             |                                                                                                                              | Final exam = $50\%$ |

| Approved by head of | Date of approval |  |
|---------------------|------------------|--|
| department          |                  |  |
|                     |                  |  |

Extra information (to be updated every semester by corresponding faculty member)

| Name of teacher             | Amal H. Al-Saket | Office Number | 9114                  |
|-----------------------------|------------------|---------------|-----------------------|
| Phone number<br>(extension) | 430              | Email         | Amal_saket@zuj.edu.jo |
| Office hours                |                  |               |                       |