

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

Detailed Course Description - Course Plan Development and Updating Procedures/ Mathematics Department	QF01/0408-3.0E

Faculty	Faculty of Science and Information Technology	Department	Mathematic s
Course number	0101374	Course title	معادلات تفاضلية جزئية Partial Differential Equations
Number of credit hours	3	Pre-requisite/co- requisite	Ordinary Differential Equations (1) 0101273

Brief course description

Partial differential equations of the first-order, Nonlinear pde's of the first – order, Linear pde's with constant coefficients, Linear pde's with variable coefficients, Applications: wave, heat, and Laplace equations.

Course goals and learning outcomes			
Goal 1	Learn to solve linear and quasilinear pde's of the first order.		
Learning outcomes	 Students will be able to: 1.1 Classify types of Partial Differential Equations. 1.2 Eliminate the arbitrary constants and arbitrary functions 1.3 Solve linear and quasilinear first-order differential equations with and without initial conditions. 1.4 Find the Integral surfaces passing through a given curve. 		
Goal 2	Learn to solve nonlinear pde's of the first order.		
Learning outcomes	 Students will be able to: 2.1 Distinguish the types of solutions of nonlinear pde's of the first-order 2.2 Solve special types of nonlinear first order Partial Differential Equations. 2.3 Solve nonlinear first order Partial Differential Equations using Charpit's method. 		
Goal 3	Learn to solve linear second-order pde's.		
Learning outcomes	Students will be able to: 3.1. Classify the second-order pde's as parabolic, elliptic, or hyperbolic. 3.2. Solve homogenous linear equations with constant coefficients. 3.3. Solve non-homogeneous linear equations with constant coefficients. 3.4. Solve linear pde's with variable coefficients.		

Textbook	"Elements of Partial Differential Equations", By: Ian Sneddon, 1957, McGraw-Hill, Inc.		
Supplementary	1) "Introduction to Partial Differential Equations with Applications", By E.C.		
references	Zachmanoglou, and D.W. Thoe, 1976, Dover Publications.		
	2) Differential Equations with Applications and Historical Notes". By: G.		
	Simmons, 2nd Edition, 1991.		
	3) Partial Differential Equations, Prasad, Phoolan, 2010, ISBN: 8122430684.		
	4) Ordinary & Partial Differential Equation, M D Raisinghania, S. Chand, 2006, ISBN: 8121908922.		

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

Detailed Course Description - Course Plan Development and Updating Procedures/ Mathematics Department QF01/0408-3.0E

Course timeline				
Week	Number of hours	Course topics	Pages (textbook)	
01	1 1 1	Review of the first order ode's. Def. of (pde's, order, solution). Def. of quasilinear, almost linear, and linear pde's.	1 – 23	
02	1 1 1	Origin of first order pde's. Cauchy's problem of first order equations	24 – 34	
03	1 1 1	The general solution of the first order pde's. Lagrange's method for finding the general solution of the first- order pde's of the form f $z_x + g z_y = h$.	35 – 44	
04	1 1 1	Integral surfaces passing through a given curve. Surfaces orthogonal to a given system of surfaces	44 – 56	
05	1 1 1	One and two parameter systems. Types of solutions of nonlinear pde's of the first-order.	57 – 111	
06	1 1 1	Charpit's method for solving first order nonlinear pde's of the form $f(x, y, z, p, q) = 0$.	57 – 111	
07	1 1 1	First Exam 20% Solving special types of first order nonlinear equations.	57 – 111	
08	1 1 1	Second order partial differential equations. Fundamental types of second order pde's.	112 – 123	
09	1 1 1	Basic theory of linear pde's with constant coefficients.	124 – 130	
10	1 1 1	Complementary functions for $f(D_x, D_y) = 0$ when the operator $f(D_x, D_y)$ is reducible or irreducible.	130 - 132	
11	1 1 1	Short methods for obtaining the particular integral of the eqn. of the form $f(D_x, D_y) z = g(x, y)$	132 – 136	
12	1 1 1	Solving special types of pde's of second - order with variable coefficients. Second exam 20 %	137 – 142	
13	1 1 1	Laplace method for transforming second order pde's with variable coefficients to canonical forms.	143 – 152	

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "T<u>r</u>adition and Quality"

Detailed	Detailed Course Description - Course Plan Development and Updating Procedures/ Mathematics Department Procedures/ QF01/0408-3.0E				
14	1 1 1	Deriving wave, heat, and Laplace equations and findin their solutions by using separation of variable method.	C		
15	5 1 Deriving wave, heat, and Laplace equations and finding their solutions by using separation of variable method.		C		
16	1 1 1	Final Exam 50%			

Theoretical course	Participation = 10%	Practical (clinical)	Semester students'
evaluation methods	First exam 20%	course evaluation	work = 50%
and weight	Second exam 20%	methods	(Reports, research,
	Final exam 50%		quizzes, etc.)
			Final exam $= 50\%$

Approved by head of	Date of approval	
department		

Extra information (to be updated every semester by corresponding faculty member)

Name of teacher	Amjed Zraiqat	Office Number	9356
Phone number (extension)		Email	amjed@zuj.edu.jo
Office hours	Sun., Tue., Th. : 9:00 – 10:00 Mon., Wed. : 11:0 – 12:30		