

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

Detailed Course Description - Course Plan Development and Updating Procedures/ Mathematics Department	QF01/0408-3.0E

Faculty	Faculty of Science and Information Technology	Department	Mathematic s
Course number	0101455	Course title	دوال خاصة Special Functions
Number of credit hours	3	Pre-requisite/co- requisite	Ordinary Differential Equations (1) 0101273

Brief course description

Frobinius method, Gamma and beta functions, Legendre polynomials and functions, Orthogonal functions and polynomials. Bessel's equation and its solutions, the Laplace Transform and its Use in Solving Differential Equations.

	Course goals and learning outcomes
Goal 1	Introduce the Power Series solution technique to Ordinary Differential Equations
Learning outcomes	Students will be able to:1.1 Use power series methods to solve differential equations about ordinary points.1.2 Use the Method of Frobenius to solve differential equations about regular singular points.
Goal 2	Expose the student to some special functions fundamental to engineering specifically Gamma, Beta, Bessel and Legendre
Learning outcomes	 Students will be able to: 2.1 Understand purpose and functions of the gamma and beta functions. 2.2 Use the gamma function, beta function and special functions to: evaluate different types of integral calculus problems. 2.3 Solve a Boundary Value problem using Bessel and Legendre functions.
Goal 3	Learn to Compute the Laplace transform of a function and to use Laplace transform methods to solve differential equations.
Learning outcomes	Students will be able to: 3.1. Use shift theorems to compute the Laplace transform and inverse Laplace transform of functions. 3.2 Use the Laplace transform to compute solutions of second order, linear equations with constant coefficients. 3.3 Use the method of Laplace transforms to solve initial-value problems for linear differential equations with constant coefficients.
	1. "Special Functions for Scientists and Engineers". By W.W. Bell, Dover

Textbook	 Publications, 2004. 2. "Special Functions for Scientists and Engineers". By; N. M. Laham and A. K. Abdullah. Yarmouk University, Irbid, Jordan 1996.
Supplementary references	1) "Orthogonal Functions" By G. Sansone, Dover, New York, 1991.

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

		Tradition and Quanty
Detailed Cours	e Description - Course Plan Development and Updating Procedures/ Mathematics Department	QF01/0408-3.0E
	 "Special Functions and Orthogonal Polynomials". By Tu D Robert S. Maier Tucson, Arizona. 	Diego Dominici,
	3) "Fourier series and Orthogonal Functions". By: Harry F. D. Bacon 1989.	avis, Allyn and
	4) Special Functions: An Introduction to the Classical Function Physics, Nico M. Temme, John Wiley & Sons, 1996, ISBN	ns of Mathematical : 0471113131.

Course timeline				
Week	Number of hours	Course topics	Pages (textbook)	
01	1 1 1	Review of power series. Series solution of ordinary differential equation about an ordinary point Classification of ordinary and singular points	7 – 34	
02	1 1 1	Solution around regular singular point-Frobinius method Solution around regular singular point, part I. Solution around regular singular point, part II.	35 – 44	
03	1 1 1	Solution around regular singular point, repeated roots. Definitions of factorial function. Definitions of Gamma and Beta functions	$\begin{array}{c} 45-64\\ 85-88\end{array}$	
04	1 1 1	1 1 1Properties of the Gamma and Beta functions Relations between Gamma and Beta functions. Definitions of the Gamma function for negative values of the argument.		
05	1 1 1	Legendre's equation and its solution. Legendre polynomials and functions. Generating function for the Legendre polynomials.	213 - 223	
06	1 1 1	Further expressions for the Legendre polynomials. Explicit expressions for and special values of the Legendre polynomials. Orthogonally properties of the Legendre polynomials.	224 - 230	
07	1 1 1	First Exam 20% Legendre series. Relations between the Legendre polynomials and their derivatives; recurrence relations.	231 – 248	
08	08 1 Associated Legendere functions, properties of the associated Legendere functions. Legendere functions of the second kind. Spherical harmonics, graphs of Legendere functions.		249 - 276	
091 1 1Bessel's equation and its solutions; Bessel's functions of the first and second kind. Generating function for the Bessel's functions. Integral representations for Bessel's functions.		143 – 158		
10	1	Recurrence relations.	159 – 184	

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

" عراقة وجودة" "Tradition and Quality"

Detailed Course Description - Course Plan Development and Updating Procedures/ Mathematics Department QF01			1/0408-3.0E		
	1	Hankel functions.			
	1	Equations reducible to Bessel's equation.			
	1	Modified Bessel's functions.			
11	1	Recurrence relations for the modified Bessel's functions.		185 - 197	
	1	Kelvin's functions			
	1	Spherical of the Bessel function.			
12	1	Second Exam. 20%		197 - 211	
	1	Orthonormality of the Bessel's functions; Bessel's series.			
	1	State the definition of the Laplace transform, and use the			
13	1	definition to calculate the transform of a simple function.		250 266	
15	1	Solution of initial value problems.		239 - 200	
	I	Transform of Unit Step functions.			
	1	Transform of periodic function.			
14	1	Inverse of the Laplace Transform.			
	1	Translation theorems.		267 - 305	
	1	Differentiation of the Laplace Transform.		207 - 303	
15	1	A Convolution Theorem.			
	1	Applications of the Laplace transform.			
16	2	Review of the course. Final Exam. 50%		-	

Theoretical course	Participation = 10%	Practical (clinical) Semester students'	
evaluation methods	First exam 20%	course evaluation	work $= 50\%$
and weight	Second exam 20%	methods (Reports, research,	
	Final exam 50%		quizzes, etc.)
			Final exam $= 50\%$

Approved by head of	Date of approval	
department		

Extra information (to be updated every semester by corresponding faculty member)

Name of teacher	Amjed Zraiqat	Office Number	9356
Phone number (extension)		Email	amjed@zuj.edu.jo
Office hours	Sun., Tue., Thu. : 9:00 – 10:00 Mon., Wed. : 11:0 – 12:30		