

# جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan



#### كلية العلوم وتكنو لوجيا المعلومات

#### Faculty of Science and Information Technology

"حيث تصبح الرؤية واقعاً" الا مريح مريخ الع " عراقة وجودة" "Tradition and Quality"

QF01/0408-3.0E

"When Vision Becomes Reality

Detailed Course Description - Course Plan Development and Updating Procedures/ Department of Computer Science

| Faculty                   | Science & I.T. | Department                     | Computer Science     |
|---------------------------|----------------|--------------------------------|----------------------|
| Course number             | 0112214        | Course title                   | Computational Theory |
| Number of credit<br>hours | 3              | Pre-requisite/co-<br>requisite | Discrete Mathematics |

### **Brief course description**

This course introduces the concepts of computation theory through the study of formal languages and automata. The topics covered include language generators such as grammars and regular expressions and language recognizers such as the different types of automata. It also introduces some basic compiler design principles, and it provides insights into algorithm analysis.

|                      | Course goals and learning outcomes                                                          |  |  |
|----------------------|---------------------------------------------------------------------------------------------|--|--|
| Cool 1               | Ability to use the principles of computer science in understanding, implantation and        |  |  |
| Goal 1               | analysis of mathematical problems and finding their solutions.                              |  |  |
| Learning             | 1.1 Student should understand and analyze mathematical problems.                            |  |  |
| outcomes             | 1.2 Student should be able to use mathematical concepts in algorithm analysis.              |  |  |
| Goal 2               | Ability to relate formal languages to automata theory                                       |  |  |
|                      | 2.1 Student should be able to classify languages, grammars, and automata according          |  |  |
|                      | to the Chomsky Hierarchy.                                                                   |  |  |
| Learning             | 2.2 Student should relate each formal language to its corresponding grammar and             |  |  |
| outcomes             | automaton.                                                                                  |  |  |
|                      | 2.3 Student should be able transform language generators to language recognizers            |  |  |
|                      | and vice versa.                                                                             |  |  |
| Goal 3               | Ability to use formal languages and automata theory in compiler design                      |  |  |
|                      | 3.1 Student should be able to design finite automata for recognizing strings.               |  |  |
|                      | 3.2 Student should be able to use regular expressions as language generators                |  |  |
| Learning             | 3.3 Student should be able to remove useless productions from context-free grammars.        |  |  |
| outcomes             |                                                                                             |  |  |
|                      | 3.4 Student should be able to normalize context-free grammars.                              |  |  |
|                      | 3.5 Student should be able to design a simple parser.                                       |  |  |
| Goal 4               | Ability to relate computation and automata theories to algorithm analysis                   |  |  |
|                      | 4.1 Student should understand the Church-Turing Thesis.                                     |  |  |
| Learning<br>outcomes | 4.2 Student should relate different types of Turing Machines to algorithm                   |  |  |
|                      | complexity classes.                                                                         |  |  |
|                      | 4.3 Student should understand the concept of decidability with the Halting Problem          |  |  |
|                      | as an example.                                                                              |  |  |
| Textbook             | Michael Sipser, Introduction to the Theory of Computation, 3 <sup>rd</sup> Edition, 2014.   |  |  |
|                      | 1. T.P. Shekhar (Author), K. Srinivas and B. Kavitha Rani, Formal languages &               |  |  |
| Supplementary        | Automata Theory: A learner's handbook, 2016.                                                |  |  |
| references           | 2. Peter Linz, An Introduction to Formal Languages and Automata, 6 <sup>th</sup> Ed., 2016. |  |  |
|                      | 3. Gordon J. Pace, Mathematics of Discrete Structures for Computer Science, 2012.           |  |  |



# جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan



### كلية العلوم وتكنو لوجيا المعلومات

#### Faculty of Science and Information Technology

Detailed Course Description - Course Plan Development and Updating Procedures/

Department of Computer Science

"حيث تصبح الرؤية واقعاً" When Vision Becomes Reality" " عراقة وجودة" "Tradition and Quality"

QF01/0408-3.0E

| Course timeline |                    |                                                                                                                                                                                                                                                                            |                     |       |
|-----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|
| Week            | Number<br>of hours | Course topics                                                                                                                                                                                                                                                              | Pages<br>(textbook) | Notes |
| 01              | 1<br>1<br>1        | <ul> <li>Models of Computation (Automaton, Different Types of Automata)</li> <li>Mathematical Preliminaries and Notation (Sets, Functions, Relations, Graphs and Trees)</li> </ul>                                                                                         | 1–10                |       |
| 02              | 1<br>1<br>1        | - Basic Concepts of Automata Theory (Alphabet, String,<br>String Operations, Languages, Operations on Languages)                                                                                                                                                           | 10–16               |       |
| 03              | 1<br>1<br>1        | <ul> <li>Introduction to Finite Automaton</li> <li>Definition of Deterministic Finite Automaton (DFA)</li> <li>How a DFA processes strings</li> <li>Simpler Notation for DFA: Transition diagram, Transition Table</li> <li>The language of a DFA</li> </ul>               | 31–46               |       |
| 04              | 1<br>1<br>1        | <ul> <li>The Nondeterministic Finite Automaton (NFA): Definition of NFA, Processing the string by NFA, Extending the transition function and language of an NFA</li> <li>Finite Automaton with λ-Transitions (Note: λ ≅ ε).</li> <li>Equivalence of DFA and NFA</li> </ul> | 47–62               |       |
| 05              | 1<br>1<br>1        | <ul> <li>Regular Expressions (REs) and RE Operators</li> <li>Properties of REs</li> <li>Identities and Annihilators</li> <li>Some applications of REs</li> <li>Converting between Finite Automata and REs</li> </ul>                                                       | 63–76               |       |
| 06              | 1<br>1<br>1        | Review of Previous Chapters<br>First Exam (20%)                                                                                                                                                                                                                            |                     |       |
| 07              | 1<br>1<br>1        | <ul> <li>Properties of Regular Languages (RLs): Union,<br/>Concatenation, Closure, Reversal, Complement and<br/>Intersection</li> <li>Relationship between RE and RL</li> <li>Pumping Lemma</li> </ul>                                                                     | 63–81               |       |
| 08              | 1<br>1<br>1        | <ul> <li>Regular Grammars</li> <li>The equivalence between regular grammar and RL</li> <li>Context-Free Grammar (CFG) and Context-free Language (CFL)</li> <li>Derivations Using a Grammar</li> </ul>                                                                      | 101–106             |       |
| 09              | 1<br>1<br>1        | <ul> <li>The language of a CFG</li> <li>The relationship between Automata and Grammars</li> <li>Parse Tree (Construction and Yield)</li> <li>The relationship between RL and CFL</li> </ul>                                                                                | 101–106             |       |
| 10              | 1<br>1<br>1        | - Removing Ambiguity from Grammars and Languages<br>- Simplification of CFG<br>- Methods for transforming grammars                                                                                                                                                         | 107–153             |       |



## جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan



### كلية العلوم وتكنولوجيا المعلومات

#### Faculty of Science and Information Technology

"حيث تصبح الرؤية واقعاً" When Vision Becomes Reality" " عراقة وجودة" "Tradition and Quality"

Detailed Course Description - Course Plan Development and Updating Procedures/ OF01/0408-3.0E Department of Computer Science - Removing Useless Productions: Nullable Variables and 1 Unit Productions 11 1 -  $\lambda$  -Free Language 107 - 124- Chomsky Normal Form 1 - Greibach Normal Form 1 Review of Previous Chapters 12 1 Second Exam (20%) 1 - The Pumping Lemma for CFG 1 - CFGs relationship with Programming Languages 13 1 125-153 - Push Down Automaton (PDA) 1 - The Language Accepted by a PDA - Conversion between CFG and PDA - Deterministic PDAs 1 14 1 - Parsing 125-153 1 - Properties of CFL - Intersection of CFL and RL - The Chomsky Hierarchy - Turing Machines (TMs): Formal Definition, Acceptance 1 165-210, of Languages 15 1 - Computing Functions with TMs 273-303 1 - The Church-Turing Thesis - Using TMs in defining complexity classes 1 16 **Final Exam** 1

| Theoretical course | Participation $= 10\%$ | Practical (clinical) | Semester students'  |
|--------------------|------------------------|----------------------|---------------------|
| evaluation methods | First exam 20%         | course evaluation    | work $= 50\%$       |
| and weight         | Second exam 20%        | methods              | (Reports, research, |
|                    | Final exam 50%         |                      | quizzes, etc.)      |
|                    |                        |                      | Final exam $= 50\%$ |

| Approved by head of<br>department | Date of approval |  |
|-----------------------------------|------------------|--|
|                                   |                  |  |

Extra information (to be updated every semester by corresponding faculty member)

| Name of teacher             | Office Number |  |
|-----------------------------|---------------|--|
| Phone number<br>(extension) | Email         |  |
| Office hours                |               |  |