

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan

كلية العلوم وتكنولوجيا المعلومات

Faculty of Science and Information Technology

"حيث تصبح الرؤية واقعاً" الحيث محسوم معنية المرابع " عراقة وجودة" "Tradition and Quality"

"When Vision Becomes Reality

Detailed Course Description - Course Plan Development and Updating Procedures/ Department of Computer Science QF01

Faculty	Science & I.T.	Department	Computer Science
Course number	0132328	Course title	Computer Graphics
Number of credit hours	3	Pre-requisite/co- requisite	Image Processing

Brief course description

This course aims to present basic principles for the design, use, and understanding of computer graphics systems and applications. Its topics cover 2D and 3D shapes, their representations, drawing algorithms, and transformations. Implementation of graphics algorithms is explained with examples using a high-level language (such as C++ or Java) and OpenGL library.

	Course goals and learning outcomes		
Goal 1	Ability to use the principles of computer science in understanding, implantation and		
	analysis of mathematical problems and finding their solutions.		
	1.1 Student should be able to write programs to plot different mathematical		
Learning	functions.		
outcomes	1.2 Student should be able to use mathematical concepts in algorithm analysis.		
oucomes	1.3 Apply and implement line and polygon clipping.		
	1.4 Apply and implement linear transformations.		
Goal 2	Ability to analyze, design and implement efficient and reliable computer programs.		
	2.1 Student should know different programming methods.		
Learning	2.2 Choose the suitable methods for drawing lines and shapes based on the required		
outcomes	applications.		
oucomes	2.3 Student should be able to account for hardware and environment limitations		
	when implementing computer programs with graphics.		
Goal 3	Ability to draw shapes with vector graphics.		
	3.1 Student should know the concepts of vector graphics and differentiate them from		
Learning	other types of image representations.		
outcomes	3.2 Student should be able to write programs to draw 2D and 3D vector graphics in a		
<u> </u>	high-level language (such as C++ or Java) and OpenGL library.		
Goal 4	Ability to apply and implement common computer graphics algorithms.		
	4.1 Apply common algorithms for drawing 2D and 3D shapes.		
Learning	4.2 Apply common algorithms for graph processing, such as filling and		
outcomes	transformation.		
	4.3 Student should be able to map world coordinates to viewing coordinates and to		
	perform the required clipping.		
	1. V. Scott Gordon and John L. Clevenger, <i>Computer Graphics Programming in</i>		
	OpenGL with Java, Mercury Learning & Information; Har/Cdr Edition, 2017. (Main		
Textbook	textbook used in the course timeline)		
Supplementary references	2. D.D. Hearn, M.P. Baker and W. Carithers, <i>Computer Graphics with OpenGL</i> , 4 th		
	Ed., 2010. 1. Edward Angel and Dave Shreiner, Interactive computer graphics: a top down		
	approach with WebGL, 7 th Ed. (Global Edition), 2015.		
	2. Graham Sellers, Richard S. Wright, Jr., Nicholas Haemel, <i>OpenGL SuperBible</i> :		
	<i>Comprehensive Tutorial and Reference</i> , 7 th Ed., 2015.		
	3. John Kessenich, Graham Sellers, Dave Shreiner, OpenGL Programming Guide:		
	5. John Ressenten, Oranam Sciers, Dave Smeller, OpenOL Hogramming Oulde.		

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan

كلية العلوم وتكنو لوجيا المعلومات

Faculty of Science and Information Technology

"حيث تصبح الرؤية واقعاً" When Vision Becomes Reality " عراقة وجودة" "Tradition and Quality"

"When Vision Becomes Reality

Detailed Course Description - Course Plan Development and Updating Procedures/ Department of Computer Science

QF01/0408-3.0E

The Official Guide to Learning OpenGL, 9th Ed., 2016.

Course timeline				
Week	Number of hours	Course topics	Pages (textbook)	Notes
01	1 1 1	A Survey of Computer Graphics Applications Computer Graphics Hardware Video Display Devices	Ch1 & Ch2	
02	1 1 1	Three-Dimensional Viewing Devices Stereoscopic and Virtual-Reality Systems Graphics Workstations and Viewing Systems Input Devices Computer Graphics Software Functions & Standards	Ch2	
03	1 1 1	Other Graphics Packages & Introduction to OpenGL Basic OpenGL Syntax & Related Libraries Header Files & Display-Window Management Using GLUT	Ch3& Ch4	
04	1 1 1	A Complete OpenGL Program Examples & review	Ch3& Ch4	
05	1 1 1	Point Drawing & Line-Drawing Algorithms Line Equations & DDA Algorithm Bresenham's Line Algorithm	Ch6	
06	1 1 1	First Exam Properties of Circles Midpoint Circle Algorithm	Ch6	
07	1 1 1	General Scan-Line Polygon-Fill Algorithm Scan-Line Fill for Regions with Curved Boundaries Boundary-Fill Algorithm Flood-Fill Algorithm	Ch6	
08	1 1 1	Two-Dimensional Geometric Transformations Translation, Rotation & Scaling Matrix Representations, Homogeneous Coordinates Translation Matrix, Rotation Matrix, & Scaling Matrix	Ch7	
09	1 1 1	Pivot-Point Rotation General & Fixed-Point Scaling Two-Dimensional Composite Transformations Reflection Shearing	Ch7	
10	1 1 1	Clipping Window Viewing-Coordinate Clipping Window World-Coordinate Clipping Window Normalization and Viewport Transformations Mapping the Clipping Window into a Normalized Viewport	Ch8	
11	1 1 1	Two-Dimensional Point Clipping Two-Dimensional Line Clipping Cohen-Sutherland Line Clipping SutherlandHodgman Polygon Clipping	Ch8	
12	1 1 1	Examples and Review Second Exam		

جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan

كلية العلوم وتكنولوجيا المعلومات

Faculty of Science and Information Technology

"حيث تصبح الرؤية واقعاً" When Vision Becomes Reality" " عراقة وجودة" "Tradition and Quality"

QF01/0408-3.0E

13	1 1 1	Three-Dimensional Translation & Rotation Coordinate-Axis Rotations, General Rotations Quaternion Methods for Three-Dimensional Rotations	Ch9	
14	1 1 1	Three-Dimensional Scaling & Composite Three-Dimensional Transformations Three-Dimensional Reflections Three-Dimensional Shears	Ch9	
15	1 1 1	Overview of Three-Dimensional Viewing Concepts Viewing a Three-Dimensional Scene Projections Review	Ch10	
16	1 1	Final Exam		

Detailed Course Description - Course Plan Development and Updating Procedures/

Department of Computer Science

Theoretical course	Participation = 10%	Practical (clinical)	Semester students'
evaluation methods	First exam 20%	course evaluation	work = 50%
and weight	Second exam 20%	methods	(Reports, research,
	Final exam 50%		quizzes, etc.)
			Final exam $= 50\%$

Approved by head of department	Date of approval	

Extra information (to be updated every semester by corresponding faculty member)

Name of teacher	Office Number	
Phone number (extension)	Email	
Office hours		