شعار الكلية

جامعة الزيتونــة الأردنيـة Al-Zaytoonah University of Jordanكلية

" عراقة وجودة" "Tradition and Quality"

Detailed Course Description - Course Plan Development and Updating Procedures/
...... Department

QF01/0408-3.0E

Faculty	Science & Information Technology	Department	Computer Science
Course number	112111	Course title	Discrete Mathematics
Number of credit hours	3	Pre-requisite/co-requisite	Introduction to Information Technology

Brief course description

Discrete mathematics is concerned with data structures, logic design, artificial intelligence, and many other materials. This course introduces the following topics: Numbers and Exponents, Errors (absolute and relative), Propositions, Predicates and Quantifiers, Quantifiers and Logical operators, Logical inference, Methods of proof, Sets, Relations, and Functions.

	Course goals and learning outcomes		
Goal 1	Learning about errors when representing real numbers in computer.		
Learning outcomes	1.1 Distinguish between numbers in mathematics and computer.1.2 Find the absolute and relative errors for real numbers in computer.1.3		
Goal 2	Understanding propositional logic and predicate logic.		
Learning outcomes	2.1 Simplify the propositions.2.2 Convert predicates into propositions using quantification methods.2.3 Understand the distribution of quantifiers over logical operators.		
Goal 3 Recognizing rules of logical inference and methods of proof.			
Learning outcomes	3.1 Use logical inference to prove the validity of arguments. 3.2 Understand and use different methods of proof. 3.3		
Goal 4	Providing knowledge of sets, relations, and functions.		
4.1 Understand set theory and Cartesian product. 4.2 Represent set operations in computer. 4.3 Understand different types of functions.			
Textbook 1 James L. Hein, "Discrete Structures, Logic, and Computability", Fourthed edition, Jones and Bartlett learning, 2017. 2			
Supplementary references	 Oscar Levine, "Discrete Mathematics: an open introduction", 2nd edition, Oscar Levine, 2016. Liben-Nowell, D. "Discrete Mathematics for Computer Science Preliminary Edition", 1st edition, John Wiley.2015. 		

شعار الكلية

جامعة الزيتونــة الأردنيـة Al-Zaytoonah University of Jordan كلية

" عراقة وجودة" "Tradition and Quality"

Detailed Course Description - Course Plan Development and Updating Procedures/
..... Department

QF01/0408-3.0E

3.- <u>Kenneth H. Rosen</u>, "**Discrete Mathematics and its Applications**", Seventh edition, McGraw-Hill , 2012.

Course timeline					
Week	Number of hours	Course topics	Pages (textbook)	Notes	
01	1 1 1	Numbers and Exponents. Integer and real numbers in mathematics and in computer. Exponents, properties of exponents, and metric system.	1-5		
02	1 1 1	Errors. Normalized exponential notation of numbers (mantissa and exponent parts). Precision, magnitude, absolute and relative errors.	5-10		
03	1 1 1	Propositions. Truth tables for logical operators. Types of propositions (tautology, contingency and contradiction).	10-35		
04	1 1 1	Logical identities. Simplifying propositions using logical identities. Translation from English statements to logical expression, and vice versa.			
05	1 1 1	Predicates and Quantifiers. Universe of discourse. The quantifiers (universal, existential, and unique).	36-69		
06	1 1 1	Nested Quantifiers. Review of previous chapters. First Exam.			
07	1 1 1	Quantifiers and Logical Operators. Translation from English statements to Logical notation, and vice versa. The negation of quantifiers.			
08	1 1 1	Distribution of quantifiers over logical operators. Proofs of distribution. Logical Inference.			
09	1 1 1	Rules of inference. Fallacious arguments. Additional rules of inference.	69-79		
10	1 1 1	Methods of Proof. Techniques of proof for implication (vacuous, trivial, direct, and indirect proofs). Proof by contradiction, proof by counter example.	80-108		
11	1 1	Proof by cases. Additional methods of proof.			

شعار الكلية

جامعة الزيتونــة الأردنيـة Al-Zaytoonah University of Jordan كلية Faculty of

" عراقة وجودة" "Tradition and Quality"

Department		Detailed Course Description - Course Plan Development and Updating Procedures/ Department	QF01/0408-3.0E
------------	--	---	----------------

	1	Sets.	
12	1 1 1	Subsets, Proper Subsets, power set. Set operations, set identities, generalization. Cartesian products.	115-126
13	1 1 1	Computer representation of sets. Review of previous chapters. Second Exam.	127-137
14	1 1 1	Relations. Definition and their properties. Types of relations.	573-583
15	1 1 1	Functions. Definition of functions. Types of functions (one to one, onto and inverse function).	138-156
16	1 1 1	Final Exam.	

Theoretical course evaluation methods and weight	Participation = 10%	Practical (clinical)	Semester students'
	First exam 20%	course evaluation	work = 50%
	Second exam 20%	methods	(Reports, research,
9	Final exam 50%		quizzes, etc.) Final exam = 50%

Approved by head of department	Da	ate of approval	
tichti tileit			

Extra information (to be updated every semester by corresponding faculty member)

Name of teacher	Dr. Maher Nabulsi	Office Number	9332
Phone number (extension)	346	Email	nabulsi@ zug.edu.jo
Office hours			